
EM Distillation for One-step Diffusion Models

Sirui Xie1,2,3 Zhisheng Xiao2 Diederik P. Kingma1 Tingbo Hou2

Ying Nian Wu3 Kevin Murphy1 Tim Salimans1 Ben Poole1 Ruiqi Gao1
1Google DeepMind 2Google Research 3UCLA

Abstract

While diffusion models can learn complex distributions, sampling requires a compu-
tationally expensive iterative process. Existing distillation methods enable efficient
sampling, but have notable limitations, such as performance degradation with very
few sampling steps, reliance on training data access, or mode-seeking optimization
that may fail to capture the full distribution. We propose EM Distillation (EMD), a
maximum likelihood-based approach that distills a diffusion model to a one-step
generator model with minimal loss of perceptual quality. Our approach is derived
through the lens of Expectation-Maximization (EM), where the generator parame-
ters are updated using samples from the joint distribution of the diffusion teacher
prior and inferred generator latents. We develop a reparametrized sampling scheme
and a noise cancellation technique that together stabilize the distillation process.
We further reveal an interesting connection of our method with existing methods
that minimize mode-seeking KL. EMD outperforms existing one-step generative
methods in terms of FID scores on ImageNet-64 and ImageNet-128, and compares
favorably with prior work on distilling text-to-image diffusion models.

1 Introduction

Diffusion models [1–3] have enabled high-quality generation of images [4–6], videos [7, 8], and
other modalities [9–11]. Diffusion models use a forward process to create a sequence of distributions
that transform the complex data distribution into a Gaussian distribution, and learn the score function
for each of these intermediate distributions. Sampling from a diffusion model reverses this forward
process to create data from random noise by solving an SDE, or an equivalent probability flow
ODE [12]. Typically, solving this differential equation requires a significant number of evaluations
of the score function, resulting in a high computational cost. Reducing this cost to single function
evaluation would enable applications in real-time generation.

To enable efficient sampling from diffusion models, two distinct approaches have emerged: (1)
trajectory distillation methods [13–18] that accelerate solving the differential equation, and (2)
distribution matching approaches [19–23] that learn implicit generators to match the marginals
learned by the diffusion model. Trajectory distillation-based approaches have greatly reduced the
number of steps required to produce samples, but continue to face challenges in the 1-step generation
regime. Distribution matching approaches can enable the use of arbitrary generators and produce
more compelling results in the 1-step regime, but often fail to capture the full distribution due to the
mode-seeking nature of the divergences they minimize.

In this paper, we propose EM Distillation (EMD), a diffusion distillation method that minimizes an
approximation of the mode-covering divergence between a pre-trained diffusion teacher model and a
latent-variable student model. The student enables efficient generation by mapping from noise to
data in just one step. To achieve Maximum Likelihood Estimation (MLE) of the marginal teacher
distribution for the student, we propose a method similar to the Expectation-Maximization (EM)
framework [24], which alternates between an Expectation-step (E-step) that estimates the learning
gradients with Monte Carlo samples, and a Maximization-step (M-step) that updates the student

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

40
5.

16
85

2v
2

 [c
s.L

G
]

6
D

ec
 2

02
4

through gradient ascent. As the target distribution is represented by the pre-trained score function, the
E-step in the original EM that first samples a datapoint and then infers its implied latent variable would
be expensive. We introduce an alternative MCMC sampling scheme that jointly updates the data and
latent pairs initialized from student samples, and develop a reparameterized approach that simplifies
hyperparameter tuning and improves performance for short-run MCMC [25]. For the optimization in
the M-step given these joint samples, we discover a tractable linear noise term in the learning gradient,
whose removal significantly reduces variances. Additionally, we identify a connection to Variational
Score Distillation [9, 26] and Diff-Instruct [22], and show how the strength of the MCMC sampling
scheme can interpolate between mode-seeking and mode-covering divergences. Empirically, we first
demonstrate that a special case of EMD, which is equivalent to the Diff-Instruct [22] baseline, can
be readily scaled and improved to achieve strong performance. We further show that the general
formulation of EMD that leverages multi-step MCMC can achieve even more competitive results.
For ImageNet-64 and ImageNet-128 conditional generation, EMD outperforms existing one-step
generation approaches with FID scores of 2.20 and 6.0. EMD also performs favorably on one-step
text-to-image generation by distilling from Stable Diffusion models.

2 Preliminary

2.1 Diffusion models and score matching

Diffusion models [1, 2], also known as score-based generative models [27, 3], consist of a forward
process that gradually injects noise to the data distribution and a reverse process that progressively
denoises the observations to recover the original data distribution pdata(x0). This results in a sequence
of noise levels t ∈ (0, 1] with conditional distributions qt(xt|x0) = N (αtx0, σ

2
t I), whose marginals

are qt(xt). We use a variance-preserving forward process [3, 28, 29] such that σ2
t = 1 − α2

t .
Song et al. [3] showed that the reverse process can be simulated with a reverse-time Stochastic
Differential Equation (SDE) that depends only on the time-dependent score function ∇xt

log pt(xt)
of the marginal distribution of the noisy observations. This score function can be estimated by a
neural network sϕ(xt, t) through (weighted) denoising score matching [30, 31]:

J (ϕ) = Epdata(x0),p(t),qt(xt|x0)

[
w(t)∥sϕ(xt, t)−∇xt log qt(xt|x0)∥22

]
, (1)

where w(t) is the weighting function and p(t) is the noise schedule.

2.2 MCMC with Langevin dynamics

While solving the reverse-time SDE results in a sampling process that traverses noise levels, simulat-
ing Langevin dynamics [32] results in a sampler that converges to and remains at the data manifold of
a target distribution. As a particularly useful Markov Chain Monte Carlo (MCMC) sampling method
for continuous random variables, Langevin dynamics generate samples from a target distribution
ρ(x) by iterating through

xi+1 = xi + γ∇x log ρ(x
i) +

√
2γn, (2)

where γ is the stepsize, n ∼ N (0, I), and i indexes the sampling timestep. Langevin dynamics has
been widely adopted for sampling from diffusion models [27, 3] and energy-based models [33–36].
Convergence of Langevin dynamics requires a large number of sampling steps, especially for high-
dimensional data. In practice, short-run variants with early termination have been succesfully used
for learning of EBMs [25, 37, 38].

2.3 Maximum Likelihood and Expectation-Maximization

Expectation-Maximization (EM) [24] is a maximum likelihood estimation framework to learn latent
variable models: pθ(x, z) = pθ(x|z)p(z), such that the marginal distribution pθ(x) =

∫
pθ(x, z)dz

approximates the target distribution q(x). It originates from the generic training objective of maxi-
mizing the log-likelihood function over parameters: L(θ) = Eq(x)[log pθ(x)], which is equivalent
to minimizing the forward KL divergence DKL(q(x)||pθ(x)) [39]. Since the marginal distribution
pθ(x) is usually analytically intractable, EM involves an E-step that expresses the gradients over the
model parameters θ with an expectation formula

∇θL(θ) = ∇θ Eq(x)[log pθ(x)] = Eq(x)pθ(z|x)[∇θ log pθ(x, z)], (3)

2

(a) ImageNet (b) Text-to-image (SD embedding space) (c) Text-to-image (SD image space)

Figure 1: Before and after MCMC correction. In (a)(b), the left columns are x = gθ(z), the right
columns are updated x after 300 steps of MCMC sampling jointly on x and z. (a) illustrates the
effect of correction in ImageNet. Note that the off-manifold images are corrected. (b) illustrates the
correction in the embedding space of Stable Diffusion v1.5, which are decoded to image space in (c).
Note the disentanglement of the cats and sharpness of the sofa. Zoom in for better viewing.

where pθ(z|x) = pθ(x|z)p(z)
pθ(x)

is the posterior distribution of z given x. See Appendix A for a detailed
derivation. The expectation can be approximated by Monte Carlo samples drawn from the posterior
using e.g. MCMC sampling techniques. The estimated gradients are then used in an M-step to
optimize the parameters. Han et al. [40] learned generator networks with an instantiation of this EM
framework where E-steps leverage Langevin dynamics for drawing samples.

2.4 Variational Score Distillation and Diff-Instruct

Our method is also closely related to Score Distillation Sampling (SDS) [9], Variational Score
Distillation (VSD) [26] and Diff-Instruct [22], which have been used for distilling diffusion mod-
els into a single-step generator [23, 41]. The generator produces clean images x0 = gθ(z)
with p(z) = N (0, I), and can be diffused to noise level t to form a latent variable model
pθ,t(xt, z) = pθ,t(xt|z)p(z), pθ,t(xt|z) = N (αtgθ(z), σ

2
t I). This model is trained to match

the marginal distributions pθ,t(xt) and qt(xt) by minimizing their reverse KL divergence. Integrating
over all noise levels, the objective is to minimize J (θ) where

J (θ) = Ep(t)[w̃(t)DKL(pθ,t(xt)||qt(xt))] = Ep(t)

[
w̃(t)

∫
pθ,t(xt) log

pθ,t(xt)

qt(xt)
dxt

]
. (4)

When parametrizing xt = αtgθ(z) + σtϵ, the gradient for this objective in Eq. (4) can be written as

∇θJ (θ) = Ep(t),p(ϵ),p(z)[−w̃(t)(∇xt log qt(xt)︸ ︷︷ ︸
teacher score

−∇xt log pθ,t(xt)︸ ︷︷ ︸
learned sϕ(xt,t)

)αt∇θgθ(z)], (5)

where p(ϵ) = N (0, I), the teacher score is provided by the pre-trained diffusion model. In SDS,
∇xt

log pθ,t(xt) is the known analytic score function of the Gaussian generator. In VSD and Diff-
Instruct, an auxiliary score network sϕ(xt, t) is learned to estimate it. The training alternates between
learning the generator network gθ with the gradient update in Eq. (5) and learning the score network
sϕ with the denoising score matching loss in Eq. (1).

3 Method

3.1 EM Distillation

We consider formulating the problem of distilling a pre-trained diffusion model to a deep latent-
variable model pθ,t(xt, z) defined in Section 2.4 using the EM framework introduced in Section 2.3.
For simplicity, we begin with discussing the framework at a single noise level and drop the subscript
t. We will revisit the integration over all noise levels in Section 3.3. Assume the target distribution
q(x) is represented by the diffusion model where we can access the score function ∇x log q(x).
Theoretically speaking, the generator network gθ(z) can employ any architecture including ones
where the dimensionality of the latents differs from the data dimensionality. In this work, we reuse
the diffusion denoiser parameterization as in other work on one-step distillation: gθ(z) = x̂θ(z, t

∗),
where x̂θ is the x-prediction function inherited from the teacher diffusion model, and t∗ remains a
hyper-parameter.

3

A naive implementation of the E-step involves two steps: (1) draw samples from the target diffusion
model q(x) and (2) sample the latent variable z from pθ(z|x) with e.g. MCMC techniques. Both
steps can be highly non-trivial and computationally expensive, so here we present an alternative
approach to sampling the same target distribution that avoids directly sampling from the pretrained
diffusion model, by instead running MCMC from the joint distribution of (x, z). We initialize
this sampling process using a joint sample from the student: drawing z ∼ p(z) and x ∼ pθ(x|z).
This sampled x is no longer drawn from q(x), but z is guaranteed to be a valid sample from the
posterior pθ(z|x). We then run MCMC to correct the sampled pair towards the desired distribution:
ρθ(x, z) := q(x)pθ(z|x) = pθ(x, z)

q(x)
pθ(x)

(see Fig. 1 for a visualization of this process). If q(x)
and pθ(x) are close to each other, ρθ(x, z) is close to pθ(x, z). In that case, initializing the joint
sampling of ρθ(x, z) with pairs of (x, z) from pθ(x, z) could significantly accelerate both sampling
of x and inference of z. Assuming MCMC converges, we can use the resulting samples to estimate
the learning gradients for EM:

∇θL(θ) = Eρθ(x,z) [∇θ log pθ(x, z)] = Eρθ(x,z)

[
−∇θ∥x− αgθ(z)∥22

2σ2

]
. (6)

We abbreviate our method as EMD hereafter. To successfully learn the student network with EMD,
we need to identify efficient approaches to sample from ρθ(x, z).

3.2 Reparametrized sampling and noise cancellation

As an initial strategy, we consider Langevin dynamics which only requires the score functions:

∇x log ρθ(x, z) = ∇x log q(x)︸ ︷︷ ︸
teacher score

−∇x log pθ(x)︸ ︷︷ ︸
learned sϕ(x)

+∇x log pθ(x|z)︸ ︷︷ ︸
− x−αgθ(z)

σ2

,

∇z log ρθ(x, z) = ∇z log pθ(x|z) +∇z log pθ(z) = −x− αgθ(z)

σ2
α∇zgθ(z)− z.

(7)

While we do not have access to the score of the student, ∇x log pθ(x), we can approximate it with
a learned score network sϕ estimated with denoising score matching as in VSD [26] and Diff-
Instruct [22]. As will be covered in Section 3.3, this score network is estimated at all noise levels.
The Langevin dynamics defined in Eq. (7) can therefore be simulated at any noise level.

Running Langevin MCMC is expensive and requires careful tuning, and we found this challenging in
the context of diffusion model distillation where different noise levels have different optimal step sizes.
We leverage a reparametrization of x and z to accelerate the joint MCMC sampling and simplify
step size tuning, similar to Nijkamp et al. [36], Xiao et al. [42]. Specifically, the parametrization
x = αgθ(z) + σϵ defines a deterministic transformation from the pair of (ϵ, z) to the pair of (x, z),
which enables us to push back the joint distribution ρθ(x, z) to the (ϵ, z)-space. The reparameterized
distribution is

ρθ(ϵ, z) =
q(αgθ(z) + σϵ)

pθ(αgθ(z) + σϵ)
p(ϵ)p(z). (8)

The score functions become
∇ϵ log ρθ(ϵ, z) = σ(∇x log q(x)−∇x log pθ(x))− ϵ,

∇z log ρθ(ϵ, z) = α(∇x log q(x)−∇x log pθ(x))∇zgθ(z)− z.
(9)

Algorithm 1: EM Distillation
Input: Teacher score functions ∇xt log qt(xt), generator network gθ , prior p(z), score network
sϕ, noise scheduler p(t), weighting functions w(t) and w̃(t), # of MCMC steps K, MCMC step
size γ.
Output: Generator network gθ , score network sϕ.
while not converged do

Sampling a batch of t, z, ϵ from p(t), p(z), N (0, I) to obtain xt

Updating sϕ via Stochastic Gradient Descent with the batch estimate of Eq. (12)
Sampling xK

t and zK with (ϵ, z)-corrector(x0, ϵ, z, t,∇xt log qt(xt), gθ, sϕ,K, γ)
Updating gθ via Stochastic Gradient Ascent with the batch estimate of Eq. (11)

end while

4

Algorithm 2: (ϵ, z)-corrector
Input: x0, ϵ, z, t, teacher score function ∇xt

log qt(xt), generator network gθ , prior p0(z), score
network sϕ, # of MCMC steps K, MCMC step size γ.
Output: xK

t , zK .
Sampling Langevin noise n1,n2, ...,nK from N (0, I), letting ϵ0 = ϵ, z0 = z
for i in [1,K] do

Updating (ϵi, zi) with 1-step Langevin update over scores Eq. (9), with ϵi updated using ni

end for
Pushing (ϵK , zK) forward to (xK

t , zK) and then canceling the noises in xK
t

See Appendix B for a detailed derivation. We found that this parameterization admits the
same step sizes across noise levels and results in better performance empirically (Table 1).

(a) x w/ accumulated noise (b) x w/o accumulated noise
Figure 2: Images after 8-step Langevin updates
with and without accumulated noise.

Still, learning the student with these samples
continued to present challenges. When visu-
alizing samples x produced by MCMC (see
Fig. 2a), we found that samples contained sub-
stantial noise. While this makes sense given
the level of noise in the marginal distributions,
we found that this inhibited learning of the stu-
dent. We identify that, due to the structure of
Langevin dynamics, there is noise added to x
at each step that can be linearly accumulated
across iterations. By removing this accumulated
noise along with the temporally decayed initial
ϵ, we recover cleaner x samples (Fig. 2b). Since
x is effectively a regression target in Eq. (6), and
the expected value of the noises is 0, canceling these noises reduces variance of the gradient without
introducing bias. Empirically, we find bookkeeping the sampled noises in the MCMC chain and
canceling these noises after the loop significantly stabilize the training of the generator network. This
noise cancellation was critical to the success of EMD, and is detailed in Appendix B and ablated in
experiments (Fig. 3ab).

3.3 Maximum Likelihood across all noise levels

The derivation above assumes smoothing the data distribution with a single noise level. In practice,
the diffusion teachers always employ multiple noise levels t, coordinated by a noise schedule p(t).
Therefore, we optimize a weighted loss over all noise levels of the diffusion model, to encourage that
the marginals of the student network match the marginals of the diffusion process at all noise levels:

∇θL(θ) = ∇θ Ep(t),qt(xt) [w̃(t) log pθ,t(xt)] = Ep(t),ρt(xt,z) [w̃(t)∇θ log pθ,t(xt, z)] , (10)

where pθ,t(xt, z) are a series of latent-variable models as defined in Section 2.4, with a shared
generator gθ(z) across all noise levels. Empirically, we find w̃(t) = σ2

t /αt or w̃(t) = σ2
t /α

2
t

perform well.

Denote the resulted distribution after K steps of MCMC sampling with noise cancellation as
ρKt (xK

t , zK), the final gradient for the generator network gθ is

∇θL(θ) =Ep(t),ρK
t (xK

t ,zK)

[
−w̃(t)

∇θ∥xK
t − αtgθ(z

K)∥22
2σ2

t

]
. (11)

The final gradient for the score network sϕ(xt, t) is

∇ϕJ (ϕ) = Ep(t),pθ,t(xt,z)

[
w(t)∇ϕ∥sϕ(xt, t)−∇xt

log pt(xt|gθ(z))∥22
]
. (12)

Similar to VSD [26, 22], we employ alternating update for the generator network gθ and the score
network sϕ(xt, t). See summarization in Algorithm 1 and also Appendix C for a JAX-style imple-
mentation.

5

3.4 Connection with VSD and Diff-Instruct

In this subsection, we reveal an interesting connection between EMD and Variational Score Dis-
tillation (VSD) [26, 22], i.e., although motivated by optimizing different types of divergences,
VSD [26, 22] is equivalent to EMD with a special sampling scheme.

To see this, consider the 1-step EMD with noise cancellation, stepsize γ = 1 in x, and no update on z

x0
t = αtgθ(z) + σtϵ, x1

t = αtgθ(z) + σ2
t∇x log

q(x0
t)

pθ,t(x0
t)
✘✘✘✘✘
+
√
2σn1 . (13)

Substitute it into Eq. (11), we have

∇θL(θ) = Ep(t),p(ϵ),p(z)

[
−w̃(t)

∇θ∥x1
t − αtgθ(z)∥22
2σ2

t

]
= Ep(t),p(ϵ),p(z) [w̃(t)(∇xt

log qt(xt)−∇xt
log pθ,t(xt))αt∇θgθ(z)] ,

(14)

which is exactly the gradient for VSD (Eq. (5)), up to a sign difference. This insight demonstrates that,
EMD framework can flexibly interpolate between mode-seeking and mode-covering divergences,
by leveraging different sampling schemes from 1-step sampling in only x (a likely biased sampler)
to many-step joint sampling in (x, z) (closer to a mixing sampler). Notably, for image generation,
some believe that forward KL divergence may fail to achieve better fidelity compared to reverse KL
divergence. The interpolation enabled by EMD can thus be very useful in practice.

If we further assume the marginal pθ(x) is a Gaussian, then EMD update in Eq. 14 would resemble
Score Distillation Sampling (SDS) [9].

4 Related Work

Diffusion acceleration. Diffusion models have the notable issue of slowness in inference, which
motivates many research efforts to accelerate the sampling process. One line of work focuses on
developing numerical solvers [43, 12, 44–47] for the PF-ODE. Another line of work leverages the
concept of knowledge distillation [48] to condense the sampling trajectory of PF-ODE into fewer
steps [13, 49, 15, 14, 50, 51, 18, 52–55]. However, both approaches have significant limitations
and have difficulty in substantially reducing the sampling steps to the single-step regime without
significant loss in perceptual quality.

Single-step diffusion models. Recently, several methods for one-step diffusion sampling have been
proposed, sharing the same goal as our approach. Some methods fine-tune the pre-trained diffusion
model into a single-step generator via adversarial training [20, 21, 56], where the adversarial loss
enhances the sharpness of the diffusion model’s single-step output. Adversarial training can also
be combined with trajectory distillation techniques to improve performance in few or single-step
regimes [52, 57, 58]. Score distillation techniques [9, 26] have been adopted to match the distribution
of the one-step generator’s output with that of the teacher diffusion model, enabling single-step
generation [22, 41]. Additionally, Yin et al. [23] introduces a regression loss to further enhance
performance. These methods achieve more impressive 1-step generation, some of which enjoy
additional merits of being data-free or flexible in the selection of generator architecture. However,
they often minimizes over mode-seeking divergences that can fail to capture the full distribution
and therefore causes mode collapse issues. We discuss the connection between our method and this
line of work in Section 3.4. Concurrent with our work, Zhou et al. [59] adopt Fisher divergence as
the distillation objective and propose a novel decomposition that alleviates the dependency on the
approximation accuracy of the auxiliary score network. Although the adopted Fisher divergence is
similar to reverse KL in terms of the reparametrization and hence the risk of mode collapse, Zhou
et al. [59] demonstrate impressive performance gain.

5 Experiments

We employ EMD to learn one-step image generators on ImageNet 64×64, ImageNet 128×128 [60]
and text-to-image generation. The student generators are initialized with the teacher model weights.
Results are compared according to Frechet Inception Distance (FID) [61], Inception Score (IS) [62],

6

Figure 3: (a)(b) Gradient norms and FIDs for complete noise cancellation, last-step noise cancellation
and no noise cancellation. (c)(d) FIDs and Recalls of EMD with different numbers of Langevin steps.

Recall (Rec.) [63] and CLIP Score [64]. Throughout this section, we will refer to the proposed
EMD with K steps of Langevin updates on (x, z) as EMD-K, and we use EMD-1 to describe the
DiffInstruct/VSD-equivalent formulation with only one update in x as presented in Section 3.4.

5.1 ImageNet

We start from showcasing the effect of the key components of EMD, namely noise cancellation,
multi-step joint sampling, and reparametrized sampling. We then summarize results on ImageNet
64×64 with Karras et al. [47] as teacher, and ImageNet 128×128 with Kingma and Gao [29] as
teacher.

Noise cancellation During our development, we observed the vital importance of canceling the
noise after the Langevin update. Even though theoretically speaking our noise cancellation tech-
nique does not guarantee reducing the variance of the gradients for learning, we find removing
the accumulated noise term from the samples (including the initial diffusion noise ϵ) does give us
seemingly clean images empirically. See Fig. 2 for a comparison. These updated xK can be seen
as regression targets in Eq. (11). Intuitively speaking, regressing a generator towards clean images
should result in more stable training than towards noisy images. Reflected in the training process,
canceling the noise significantly decreases the variance in the gradient (Fig. 3a) and boosts the speed
of convergence (Fig. 3b). We also compare with another setting where only the noise in the last step
gets canceled, which is only marginally helpful.

Multi-step joint sampling We scrutinize the effect of multi-step joint update on (ϵ, z). Empirically,
we find a constant step size of Langevin dynamics across all noise levels in the (ϵ, z)-space works well:
γ = (γϵ, γz) = (0.42, 0.0042), which simplifies the process of step size tuning. Fig. 1 shows results
of running this (ϵ, z)-corrector for 300 steps. We can see that the (ϵ, z)-corrector removes visual
artifacts and improves structure. Fig. 3cd illustrates the relation between the distilled generator’s
performance and the number of Langevin steps per distillation iteration, measured by FID and Recall
respectively. Both metrics show clear improvement monotonically as the number of Langevin steps
increases. Recall is designed for measuring mode coverage [63], and has been widely adopted in the
GAN literature. A larger number of Langevin steps encourages better mode coverage, likely because
it approximates the mode-covering forward KL better. Sampling z is more expensive than sampling
ϵ, requiring back-propagation through the generator gθ. An alternative is to only sample ϵ while
keeping z fixed, with the hope that if x does not change dramatically with a finite number of MCMC
updates, the initial z remains a good approximation of samples from ρθ(z|x). As shown in Fig. 3cd,
sampling ϵ performs similarly to the joint sampling of (ϵ, z) when the number of sampling steps is
small, but starts to fall behind with more sampling steps.

Table 1: EMD-8 on ImageNet
64×64, 100k steps of training

FID (↓) IS (↑)

(x,)/(ϵ,) 2.829 62.31
(x, z) 3.11 61.08
(ϵ, z) 2.77 62.98

Reparametrized sampling As shown in Appendix B, the noise
cancellation technique does not depend on the reparametrization.
One can start from either the score functions of (x, z) in Eq. (7) or
the score functions of (ϵ, z) in Eq. (9) to derive something similar.
We conduct a comparison between the two parameterizations for
joint sampling, (x, z)-corrector and (ϵ, z)-corrector.

For the (x, z)-corrector, we set the step size of x as σ2
t γϵ to align the

magnitude of update with the one of the (ϵ, z)-corrector, and keep

7

Table 2: Class-conditional genreation on
ImageNet 64×64.

Method NFE (↓) FID (↓) Rec. (↑)

Multiple Steps
DDIM [12] 50 13.7
EDM-Heun [47] 10 17.25
DPM Solver [44] 10 7.93
PD [13] 2 8.95 0.65
CD [15] 2 4.70 0.64
Multistep CD [18] 2 2.0 -

Single Step
BigGAN-deep [65] 1 4.06 0.48
EDM [47] 1 154.78 -
PD [13] 1 15.39 0.62
BOOT [16] 1 16.30 0.36
DFNO [17] 1 7.83 -
TRACT [14] 1 7.43 -
CD-LPIPS [15] 1 6.20 0.63
Diff-Instruct [22] 1 5.57 -
DMD [23] 1 2.62 -
EMD-1 (baseline) 1 3.1 0.55
EMD-16 (ours) 1 2.20 0.59

Teacher 256 1.43 -

Table 3: Class-conditional generation on
ImageNet 128×128.

Method NFE (↓) FID (↓) IS (↑)

Multiple Steps
Multistep CD [18] 8 2.1 164
Multistep CD [18] 4 2.3 157
Multistep CD [18] 2 3.1 147

Single Step
CD [15] 1 7.0 -
EMD-1 (baseline) 1 6.3 134 ± 2.75
EMD-16 (ours) 1 6.0 140 ± 2.83

Teacher 512 1.75 171.1 ± 2.7

Table 4: FID-30k for text-to-image generation in
MSCOCO. † Results are evaluated by Yin et al. [23].

Family Method Latency (↓) FID (↓)

Unaccelerated

DALL·E [66] - 27.5
DALL·E 2 [4] - 10.39
Parti-3B [67] 6.4s 8.10
Make-A-Scene [68] 25.0s 11.84
GLIDE [69] 15.0s 12.24
Imagen [5] 9.1s 7.27
eDiff-I [70] 32.0s 6.95

GANs
StyleGAN-T [71] 0.10s 13.90
GigaGAN [72] 0.13s 9.09

Accelerated

DPM++ (4 step)† [45] 0.26s 22.36
UniPC (4 step)† [73] 0.26s 19.57
LCM-LoRA (1 step)† [74] 0.09s 77.90
LCM-LoRA (4 step)† [74] 0.19s 23.62
InstaFlow-0.9B† [55] 0.09s 13.10
UFOGen [20] 0.09s 12.78
DMD (tCFG=3)† [23] 0.09s 11.49
EMD-1 (baseline, tCFG=3) 0.09s 10.96
EMD-1 (baseline, tCFG=2) 0.09s 9.78
EMD-8 (ours, tCFG=2) 0.09s 9.66

Teacher SDv1.5† [6] 2.59s 8.78

Table 5: CLIP Score in high CFG regime.
Family Method Latency (↓) CLIP (↑)

Accelerated

DPM++ (4 step) [45]† 0.26s 0.309
UniPC (4 step)† [73] 0.26s 0.308
LCM-LoRA (1 step)† [74] 0.09s 0.238
LCM-LoRA (4 step)† [74] 0.19s 0.297
DMD† [23] 0.09s 0.320
EMD-8 (ours) 0.09s 0.316

Teacher SDv1.5 † [6] 2.59s 0.322

the step size of z the same (see Appendix B for details). This also promotes numerical stability in
(x, z)-corrector by canceling the σ2

t in the denominator of the term ∇x log pθ(x|z) = −x−αgθ(z)
σ2 in

the score function (Eq. (7)). A similar design choice was proposed in Song and Ermon [27]. Also
note that adjusting the step sizes in this way results in an equivalence between (ϵ,)-corrector and
(x,)-corrector without sampling in z, which serves as the baseline for the joint sampling.

Table 1 reports the quantitative comparisons with EMD-8 on ImageNet 64×64 after 100k steps of
training. While joint sampling with (ϵ, z)-corrector improves over (ϵ,)-corrector, (x, z)-corrector
struggles to even match the baseline. Possible explanations include that the space of (ϵ, z) is
more MCMC friendly, or it requires more effort on searching for the optimal step size of z for the
(x, z)-corrector. We leave further investigation to future work.

Comparsion with existing methods We report the results from our full-fledged method, EMD-16,
which utilizes a (ϵ, z)-corrector with 16 steps of Langevin updates, and compare with existing
approaches. We train for 300k steps on ImageNet 64×64, and 200k steps on ImageNet 128×128.
Other hyperparameters can be found in Appendix D. Samples from the distilled generator can be found
in Fig. 4. We also include additional samples in Appendix E.1. We summarize the comparison with
existing methods for few-step diffusion generation in Table 2 and Table 3 for ImageNet 64×64 and
ImageNet 128×128 respectively. Note that we also tune the baseline EMD-1, which in formulation
is equivalent to Diff-Instruct [22], to perform better than their reported numbers. The improvement
mainly comes from a fine-grained tuning of learning rates and enabling dropout for both the teacher
and student score functions. Our final models outperform existing approaches for one-step distillation
of diffusion models in terms of FID scores on both tasks. On ImageNet 64× 64, EMD achieves a
competitive recall among distribution matching approaches but falls behind trajectory distillation
approaches which maintain individual trajectory mappings from the teacher.

8

(a) ImageNet 64×64 multi-class (b) ImageNet 128×128 multi-class (c) ImageNet 128×128 single-class

Figure 4: ImageNet samples from the distilled 1-step generator. Models are trained class-conditionally
with all classes. We provide single-class samples in (c) to demonstrate good mode coverage.

Figure 5: Text-to-image samples from the 1-step student model distilled from Stable Diffusion v1.5.

5.2 Text-to-image generation

We further test the potential of EMD on text-to-image models at scale by distilling the Stable
Diffusion v1.5 [6] model. Note that the training is image-free and we only use text prompts from the
LAION-Aesthetics-6.25+ dataset [75]. On this task, DMD [23] is a strong baseline, which introduced
an additional regression loss to VSD or Diff-Instruct to avoid mode collapse. However, we find
the baseline without regression loss, or equivalently EMD-1, can be improved by simply tuning the
hyperparameter t∗. Empirically, we find it is better to set t∗ to intermediate noise levels, consistent
with the observation from Luo et al. [22]. In Appendix D.4 we discuss the selection of t∗. The
intuition is that by choosing the value of t∗, we choose a specific denoiser at that noise level for
initialization. Other hyperparameters can be found in Appendix D.3.

We evaluate the distilled one-step generator for text-to-image generation with zero-shot generalization
on MSCOCO [76] and report the FID-30k in Table 4 and CLIP Score in Table 5. Yin et al. [23] uses
the guidance scale of 3.0 to compose the classifer-free guided teacher score (we refer to this guidance
scale of teacher as tCFG) in the learning gradient of DMD, for it achieves the best FID for DDIM
sampler. However, we find EMD achieves a lower FID at the tCFG of 2.0. Our method, EMD-8,
trained on 256 TPU-v5e for 5 hours (5000 steps), achieves the FID=9.66 for one-step text-to-image
generation. Using a higher tCFG, similar to DMD, produces a model with competitive CLIP Score. In
Fig. 5, we include some samples for qualitative evaluation. Additional qualitative results (Tables 14
and 15), as well as side-by-side comparisons (Tables 10 to 13) with trajectory-based distillation
baselines [55, 74] and adversarial distillation baselines [21] can be found in Appendix E.2.

9

Table 6: Training steps per second in ablations for computation overhead in ImageNet 64×64
Algorithmic Ablation sec/step

Student score matching only 0.303
Generator update for EMD-1 based on (ϵ, z)-corrector 0.303
Generator update for EMD-2 based on (ϵ, z)-corrector 0.417
Generator update for EMD-4 based on (ϵ, z)-corrector 0.556
Generator update for EMD-8 based on (ϵ, z)-corrector 0.714
Generator update for EMD-16 based on (ϵ, z)-corrector 1.111
EMD-16 (student score matching + generator update based on (ϵ, z)-corrector) 1.515

Baseline Diff-Instruct (student score matching + generator update) 0.703

5.3 Computation overhead in training

Despite EMD being more expensive per training iteration compared to the baseline approach Diff-
Instruct, we find the performance gain of EMD cannot be realized by simply running Diff-Instruct for
the same amount of time or even longer than EMD. In fact, the additional computational cost that
EMD introduced is moderate even with the most expensive EMD-16 setting. In Table 6 we report
some quantitative measurement of the computation overhead. Since it is challenging to time each
python method’s wall-clock time in our infrastructure, we instead logged the sec/step for experiments
with various algorithmic ablations on ImageNet 64×64. EMD-16 only doubles the wall-clock time
of Diff-Instruct when taking all other overheads into account.

6 Discussion and limitation

We present EMD, a maximum likelihood-based method that leverages EM framework with novel
sampling and optimization techniques to learn a one-step student model whose marginal distributions
match the marginals of a pretrained diffusion model. EMD demonstrates strong performance in class-
conditional generation on ImageNet and text-to-image generation. Despite exhibiting compelling
results, EMD has a few limitations that call for future work. Empirically, we find that EMD still
requires the student model to be initialized from the teacher model to perform competitively, and is
sensitive to the choice of t∗ (fixed timestep conditioning that repurposes the diffusion denoiser to
become a one-step genertor) at initialization. While training a student model entirely from scratch is
supported theoretically by our framework, empirically we were unable to achieve competitive results.
Improving methods to enable generation from randomly initialized generator networks with distinct
architectures and lower-dimensional latent variables is an exciting direction of future work. Although
being efficient in inference, EMD introduces additional computational cost in training by running
multiple sampling steps per iteration, and the step size of MCMC sampling can require careful tuning.
There remains a fundamental trade-off between training cost and model performance. Analysis and
further improving on the Pareto frontier of this trade-off would be interesting for future work.

Acknowledgement

We thank Jonathan Heek and Lucas Theis for their valuable discussion and feedback. We also thank
Tianwei Yin for helpful sharing of experimental details in his work. Sirui would like to thank Tao
Zhu, Jiahui Yu, and Zhishuai Zhang for their support in a prior internship at Google DeepMind.

References

[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

10

[3] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[4] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[5] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
neural information processing systems, 35:36479–36494, 2022.

[6] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[7] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[8] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

[9] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

[10] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

[11] Mengjiao Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor
Mordatch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv preprint
arXiv:2311.09235, 2023.

[12] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[13] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022.

[14] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

[15] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine Learning, pages 32211–32252. PMLR, 2023.

[16] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free
distillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on
Structured Probabilistic Inference {\&} Generative Modeling, 2023.

[17] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.
Fast sampling of diffusion models via operator learning. In International Conference on
Machine Learning, pages 42390–42402. PMLR, 2023.

[18] Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv
preprint arXiv:2403.06807, 2024.

[19] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion gans. In International Conference on Learning Representations, 2021.

11

[20] Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. arXiv preprint arXiv:2311.09257, 2023.

[21] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

[22] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2023.

[23] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T
Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In
CVPR, 2024.

[24] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society: series B (methodological), 39
(1):1–22, 1977.

[25] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent
non-persistent short-run mcmc toward energy-based model. Advances in Neural Information
Processing Systems, 32, 2019.

[26] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024.

[27] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[28] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
Advances in neural information processing systems, 34:21696–21707, 2021.

[29] Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple
data augmentation. Advances in Neural Information Processing Systems, 36, 2023.

[30] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[31] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[32] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

[33] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet. In
International Conference on Machine Learning, pages 2635–2644. PMLR, 2016.

[34] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Cooperative learning of energy-based
model and latent variable model via mcmc teaching. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[35] Ruiqi Gao, Yang Lu, Junpei Zhou, Song-Chun Zhu, and Ying Nian Wu. Learning generative
convnets via multi-grid modeling and sampling. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9155–9164, 2018.

[36] Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu, and
Ying Nian Wu. Mcmc should mix: Learning energy-based model with neural transport latent
space mcmc. In International Conference on Learning Representations, 2021.

[37] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy
of mcmc-based maximum likelihood learning of energy-based models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 5272–5280, 2020.

[38] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-
based models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125, 2020.

12

[39] Christopher M Bishop. Pattern recognition and machine learning. Springer google schola, 2:
1122–1128, 2006.

[40] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for
generator network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

[41] Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239, 2023.

[42] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis between
variational autoencoders and energy-based models. In International Conference on Learning
Representations, 2020.

[43] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[44] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[45] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-
solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022.

[46] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503,
2022.

[47] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

[48] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[49] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho,
and Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14297–14306, 2023.

[50] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey
Tulyakov, and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within
two seconds. arXiv preprint arXiv:2306.00980, 2023.

[51] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

[52] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

[53] Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and
Tat-Jen Cham. Trajectory consistency distillation. arXiv preprint arXiv:2402.19159, 2024.

[54] Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

[55] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

13

[56] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin
Rombach. Fast high-resolution image synthesis with latent adversarial diffusion distillation.
arXiv preprint arXiv:2403.12015, 2024.

[57] Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

[58] Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng
Xiao. Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv
preprint arXiv:2404.13686, 2024.

[59] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score
identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step
generation. In Forty-first International Conference on Machine Learning, 2024.

[60] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[61] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[62] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

[63] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

[64] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[65] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[66] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on
machine learning, pages 8821–8831. Pmlr, 2021.

[67] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive
models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5,
2022.

[68] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman.
Make-a-scene: Scene-based text-to-image generation with human priors. In European Confer-
ence on Computer Vision, pages 89–106. Springer, 2022.

[69] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

[70] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang,
Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion
models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

[71] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. arxiv e-prints. arXiv preprint arXiv:1812.04948, 2018.

14

[72] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and
Taesung Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10124–10134, 2023.

[73] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

[74] Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023.

[75] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294, 2022.

[76] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[77] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[78] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion
for high resolution images. In International Conference on Machine Learning, pages 13213–
13232. PMLR, 2023.

A Expectation-Maximization

To learn a latent variable model pθ(x, z) = pθ(x|z)pθ(z), pθ(x) =
∫
pθ(x, z)dz from a target

distribution q(x), the EM-like transformation on the gradient of the log-likelihood function is:

∇θL(θ) = ∇θ Eq(x)[log pθ(x)]

= Epθ(z|x)[Eq(x)[∇θ log pθ(x)]]

= Eq(x)pθ(z|x)[∇θ log pθ(x) +∇θ log pθ(z|x)]
= Eq(x)pθ(z|x)[∇θ log pθ(x, z)].

(15)

Line 3 is due to the simple equality that Epθ(z|x)[∇θ log pθ(z|x)] = 0.

B Reparametrized sampling and noise cancellation

Reparametrization. The EM-like algorithm we propose requires joint sampling of (x, z) from
ρθ(x, z). Similar to [36, 42], we utilize a reparameterization of x and z to overcome challenges
in joint MCMC sampling, such as slow convergence and complex step size tuning. Notice that
x = αgθ(z) + σϵ defines a deterministc mapping from (ϵ, z) to (x, z). Then by change of variable
we have:

ρθ(ϵ, z)dϵdz = ρθ(x, z)dxdz

=
q(x)

pθ(x)
pθ(x, z)dxdz

=
q(αgθ(z) + σϵ)

pθ(αgθ(z) + σϵ)
pθ(ϵ, z)dϵdz

⇒ ρθ(ϵ, z) =
q(αgθ(z) + σϵ)

pθ(αgθ(z) + σϵ)
p(ϵ)p(z),

(16)

where p(ϵ) and p(z) are standard Normal distributions.

15

The score functions become
∇ϵ log ρθ(ϵ, z) = σ(∇x log q(x)−∇x log pθ(x))− ϵ,

∇z log ρθ(ϵ, z) = α(∇x log q(x)−∇x log pθ(x))∇zgθ(z)− z.
(17)

Noise cancellation. The single-step Langevin update on ϵ is then:

ϵi+1 = (1− γ)ϵi + γσ∇x log
q(xi)

pθ(xi)
+

√
2γni. (18)

Interestingly, we find the particular form of ∇ϵ log ρ(ϵ, z) results in a closed-form accumulation of
multi-step updates

ϵi+1 = (1− γ)i+1ϵ0 + γ
∑i

k=0
(1− γ)i−kσ∇x log

q(xi)

pθ(xi)
+

∑i

k=0
(1− γ)i−k

√
2γnk, (19)

which, after the push-forward, gives us

xi+1 =αg(zi+1) + γ
∑i

k=0
(1− γ)i−kσ2∇x log

q(xi)

pθ(xi)︸ ︷︷ ︸
drift

+ (1− γ)i+1σϵ0 +
∑i

k=0
(1− γ)i−k

√
2γσnk︸ ︷︷ ︸

noise

,

(20)

x1 =αg(z1) + γσ2∇x log
q(x0)

pθ(x0)︸ ︷︷ ︸
drift

+(1− γ)σϵ0 +
√
2γσn0︸ ︷︷ ︸

noise
(21)

As xi+1 is effectively a regression target in Eq. (6), and the expected value of the noise is 0, we can
remove it without biasing the gradient. Empirically, we find book-keeping the sampled noises in
the MCMC chain and canceling these noises after the loop significantly stabilize the training of the
generator network.

The same applies to the (x, z) sampling (with step size γσ2):

xi+1 =xi + γσ2(∇x log q(x
i)−∇x log pθ(x

i))− γ(xi − αg(zi)) +
√
2γni

=γ
∑i

k=1
(1− γ)i−kαg(zk) + γ

∑i

k=0
(1− γ)i−kσ2(∇x log q(x

i)−∇x log pθ(x
i))

+ (1− γ)iαg(z0) + (1− γ)i+1σϵ0 +
∑i

k=0
(1− γ)i−k

√
2γσnk︸ ︷︷ ︸

noises

.

(22)

C JAX-style Code

We provide JAX-style code to illustrate how the MCMC correction and generator loss work.

MCMC correction The MCMC corrector is mainly a loop function that iterates with Langevin
updates on ϵ and z. The noises for the Langevin updates on ϵ are pre-sampled before the loop
body. They are then integrated by weights and subtracted from the MCMC corrected ϵ̂ for noise
cancellation. Finally, the corrected and noise-canceled ϵ̂ is used to parameterize x̂.

1def eps_corrector(self , eps , z, lambd , rng):
2 ### collecting parameters ###
3 ld_steps = self.config.model.ld_steps
4 z_step_size = self.config.model.ld_size_z
5 eps_step_size = self.config.model.ld_size_eps
6 sigma = jnp.sqrt(nn.sigmoid(lambd))
7 sigma = utils.broadcast_from_left(sigma , eps.shape)

16

8 alpha = jnp.sqrt(nn.sigmoid(-lambd))
9 alpha = utils.broadcast_from_left(alpha , eps.shape)

10 z_base_rng , eps_base_rng = jax.random.split(rng)
11

12 ### pre -sampling eps noises ###
13 eps_noises = jax.random.normal(eps_base_rng , (ld_steps ,) + eps.

shape)
14

15 def loop_body(step , val):
16 ### calculating scores ###
17 eps , z = val
18 x, _ = self.sample_g(z, None)
19 xt = alpha * x + sigma * eps
20 teacher_model_output = self._run_model(
21 xt=xt,
22 lambd=lambd ,
23 model_fn=self.model_fns[’teacher ’],
24)
25 s_model_output = self._run_model(
26 xt=xt, lambd=lambd , model_fn=self.model_fns[’s’],
27)
28 teacher_eps = teacher_model_output[’model_eps ’]
29 s_eps = s_model_output[’model_eps ’]
30 diff = - jax.lax.stop_gradient(teacher_eps - s_eps) / sigma
31 grad_z = self.grad_z_g(z, diff , alpha) # alpha * diff * grad_z(g

(z))
32 z_score = grad_z - z
33 eps_score = diff * sigma - eps
34

35 ### Langevin update on z ###
36 z_rng = jax.random.fold_in(z_base_rng , step)
37 z_noise = jax.random.normal(z_rng , z.shape)
38 z_mean = z + z_step_size **2 * z_score
39 z_next = z_mean + z_noise * jnp.sqrt (2) * z_step_size
40 z_next = jax.lax.stop_gradient(z_next)
41

42 ### Langevin update on eps ###
43 eps_noise = eps_noises[step]
44 eps_mean = eps + eps_score * eps_step_size **2
45 eps_next = eps_mean + eps_noise * jnp.sqrt (2) * eps_step_size
46 eps_next = jax.lax.stop_gradient(eps_next)
47

48 return eps_next , z_next
49

50 ### ld_steps Langevin updates ###
51 eps_hat , z_hat = jax.lax.fori_loop(0, ld_steps , loop_body , (eps , z

))
52 ### preparing noise weights ###
53 step_weights = (1 - eps_step_size ** 2) ** jnp.arange(ld_steps)

[:: -1]
54 step_weights = utils.broadcast_from_left(step_weights , eps_noises.

shape)
55 ### noise cancellation ###
56 eps_hat = eps_hat - (1 - eps_step_size ** 2) ** ld_steps * eps
57 eps_hat = eps_hat - jnp.sqrt (2) * jnp.sum(eps_step_size *

step_weights * eps_noises , axis =0)
58 ### parametrizing x_hat ###
59 x_h_hat , _ = self.sample_g(z_hat , None)
60 x_hat = x_h_hat + sigma * eps_hat / alpha
61 x_hat = jax.lax.stop_gradient(x_hat)
62 return x_hat , z_hat

Listing 1: MCMC corrector for (ϵ, z)

17

Generator loss The generator loss is simply an MSE loss between x̂ and gθ(ẑ)

1def x_loss_g(self , eps , z, lambd , rng):
2 ### MCMC correction ###
3 x_hat , z_hat = self.eps_corrector(eps , z, lambd , rng)
4 x_z_hat , _ =
5 ### forwarding generator network ###
6 self.sample_g(z_hat , None)
7 ### calculating loss ###
8 loss = jnp.square(jax.lax.stop_gradient(x_hat) - x_z_hat)
9 loss = utils.meanflat(loss)

10 return loss , x_hat , x_z_hat

Listing 2: Generator loss

D Implementation details

D.1 ImageNet 64×64

We train the teacher model using the best setting of EDM [47] with the ADM UNet architecture [77].
We inherit the noise schedule and the score matching weighting function from the teacher. We run
the distillation training for 300k steps (roughly 8 days) on 64 TPU-v4. We use (ϵ, z)-corrector, in
which both the teacher and the student score networks have a dropout probability of 0.1. We list other
hyperparameters in Table 7. Instead of listing t∗, we list the corresponding log signal-to-noise ratio
λ∗.

Table 7: Hyperparameters for EMD on ImageNet 64×64.
lrg lrs batch size Adam b1 Adam b2 γϵ γz K λ∗ w̃(t)

2× 10−6 1× 10−5 128 0.0 0.99 0.42 0.0042 16 −3.2189
σ2
t

α2
t

D.2 ImageNet 128×128

We train the teacher model following the best setting of VDM++ [29] with the ‘U-ViT, L’ architec-
ture [78]. We use the ‘cosine-adjusted’ noise schedule [78] and ‘EDM monotonic’ weighting for
student score matching. We run the distillation training for 200k steps (roughly 10 days) on 128
TPU-v5p. We use (ϵ, z)-corrector, in which both the teacher and the student score networks have a
dropout probability of 0.1. We list other hyperparameters in Table 8.

Table 8: Hyperparameters for EMD on ImageNet 128×128.
lrg lrs batch size Adam b1 Adam b2 γϵ γz K λ∗ w̃(t)

2× 10−6 1× 10−5 1024 0.0 0.99 0.42 0.0042 16 −6
σ2
t

αt

D.3 Text-to-image generation

We adopt the public checkpoint of Stable Diffusion v1.5 [6] as the teacher. We inherit the noise
schedule from the teacher model. The student score matching uses the same weighting function as
the teacher. We list other hyperparameters in Table 9.

Table 9: Hyperparameters for EMD on Text-to-image generation.
lrg lrs batch size Adam b1 Adam b2 γϵ γz K t∗ w̃(t)

2× 10−6 1× 10−5 1024 0.0 0.99 0.32 0.0052 8 500
σ2
t

αt

18

D.4 Choosing t∗ and λ∗

The intuition is that by choosing the value of t∗, we choose a specific denoiser at that noise level.
When parametrizing t, the log-signal-to-noise ratio λ is more useful when designing noise schedules,
a strictly monotonically decreasing function [28]. Due to the monotonicity, λ∗ is an alternative
representation for t∗ that actually reflects the noise levels more directly.

(a) Initial denoiser generation with λ∗ = 0

(b) Initial denoiser generation with λ∗ = −6

(c) Initial denoiser generation with λ∗ = −10

Figure 6: Initial denoiser generation with different λ∗.

Fig. 6 shows the denoiser generation at the 0th training iteration for different λ∗ in ImageNet 128×128.
When λ∗ = 0, the generated images are no different from Gaussian noises. When λ∗ = −6, the
generated images have more details than λ∗ = −10. In the context of EMD, these samples help
us understand the initialization of MCMC. According to our experiments, setting λ∗ ∈ [−6,−3]
results in similar performance. For the numbers reported in the manuscript, we used the same λ∗ as
the baseline Diff-Instruct on ImageNet 64×64 and only did a very rough grid search on ImageNet
128×128 and Text-to-image.

E Additional qualitative results

E.1 Additional ImageNet results

In this section, we present additional qualitative samples for our one-step generator on ImageNet
64×64 and ImageNet 128×128 in Fig. 7 to help further evaluate the generation quality and diversity.

E.2 Additional text-to-image results

In this section, we present additional qualitative samples from our one-step generator distilled from
Stable Diffusion 1.5. In Table 10, 11, 12, and 13, we visually compare the sample quality of our
method with open-source competing methods for few- or single-step generation. We also include the

19

(a) ImageNet 64×64 Multi-class

(b) ImageNet 128×128 Multi-class

(c) ImageNet 128×128 Single-class (Left: Husky, right: Siamese)

Figure 7: Additional qualitative results for ImageNet

20

teacher model in our comparison. We use the public checkpoints of LCM1 and InstaFlow2, where
both checkpoints share the same Stable Diffusion 1.5 as teachers. Note that the SD-turbo results are
obtaind from the public checkpoint 3 fine-tuned from Stable Diffusion 2.1, which is different from
our teacher model.

From the comparison, we observe that our model significantly outperforms distillation-based methods
including LCM and InstaFlow, and it demonstrates better diversity and quality than GAN-based
SD-turbo. The visual quality is on-par with 50-step generation from the teacher model.

We show additional samples from our model on a more diverse set of prompts in Table 14 and 15.

1https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
2https://huggingface.co/XCLiu/instaflow_0_9B_from_sd_1_5
3https://huggingface.co/stabilityai/sd-turbo

21

Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table 10: Prompt: Dog graduation at university.

22

Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table 11: Prompt: 3D animation cinematic style young caveman kid, in its natural environment.

23

Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table 12: Prompt: An underwater photo portrait of a beautiful fluffy white cat, hair floating. In a
dynamic swimming pose. The sun rays filters through the water. High-angle shot. Shot on Fujifilm X.

24

Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table 13: Prompt: A minimalist Teddy bear in front of a wall of red roses.

25

A close-up photo of a intricate beautiful natural landscape of mountains and waterfalls.

A hyperrealistic photo of a fox astronaut; perfect face, artstation.

Large plate of delicious fried chicken, with a side of dipping sauce,
realistic advertising photo, 4k.

A DSLR photo of a golden retriever in heavy snow.

Masterpiece color pencil drawing of a horse, bright vivid color.

Oil painting of a wise old man with a white beard in the enchanted and magical forest.

Table 14: Additional qualitative results of EMD. Zoom-in for better viewing.

26

3D render baby parrot, Chibi, adorable big eyes. In a garden with butterflies, greenery, lush
whimsical and soft, magical, octane render, fairy dust.

Dreamy puppy surrounded by floating bubbles.

A painting of an adorable rabbit sitting on a colorful splash.

Macro photo of a miniature toy sloth drinking a soda, shot on a light pastel cyclorama.

A traditional tea house in a tranquil garden with blooming cherry blossom trees.

Three cats having dinner at a table at new years eve, cinematic shot, 8k.

Table 15: Additional qualitative results of EMD. Zoom-in for better viewing.

27

