
NP-NDS: A Nature-Powered Nonlinear Dynamical System for
Power Grid Forecasting

Chunshu Wu1, Ruibing Song1, Chuan Liu1, Yuqing Wang5, Yousu Chen2, Ang Li2,
Dongfang Liu3, Ying Nian Wu4, Michael Huang1, Tony (Tong) Geng1

1University of Rochester,
2Pacific Northwest National Laboratory,

3Rochester Institute of Technology,
4University of California, Los Angeles,

5Tufts University

Abstract
The power grid is a critical dynamical system that forms the backbone of modern
society, powering everything from household appliances to complex industrial
machinery. However, this essential system is not without vulnerabilities – as
electricity travels at lightspeed, unanticipated failures can cause catastrophic
consequences such as country-wide blackouts in a cascading manner. In response
to such threats, we introduce NP-NDS, a nature-powered nonlinear dynamical
system designed to accurately and rapidly predict power grids as macroscopic
dynamical systems in the real world. In particular, NP-NDS is established
through a Hamiltonian-Hardware co-design: First, NP-NDS employs a hardware-
friendly serial-additive Hamiltonian based on Chebyshev series for accurately
capturing highly nonlinear interactions among power grid nodes, coupled with
node-relation-aware training for high accuracy. Second, NP-NDS features a fully
CMOS-based hardware dynamical system governed by the proposed Hamiltonian,
facilitating inferences with “speed of electrons”. Results show that NP-NDS
achieves, on average, 2.3 × 103 speedup and 105× energy reduction versus
GNNs on GPU with 23.6% and 28.2% decrease in MAE and RMSE compared
to GNNs on power grid forecasting datasets.

1 Introduction
“If it weren’t for electricity, we’d all be watching television by candlelight.”

− George Gobel
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Figure 1: Global electricity generated by year [1].

The domestic use of electricity dates back more
than a century ago, gradually transforming the
lifestyle of generations – one may be too com-
fortable to realize that television is powered
by electricity. To enable the modern lifestyle,
power grids play a critical role as the vein, trans-
porting electricity from power plants to millions
of households. The vein is also growing actively
and consistently: over the past decades, power
grids have undergone significant enhancements
in both scope and complexity (3× global electricity generation in 40 years as Figure 1 highlights),
establishing the lifeline of modern economy, technology, and even the entire civilization.

However, despite years of development, power grids are still far from flawless. As a dynamical
system of electricity, the behavior of a local area can have immediate global impacts as electricity
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Figure 2: The overview of NP-NDS, a graph learning paradigm utilizing microscopic artificial
dynamical systems to predict macroscopic real-world dynamical systems such as power grids.

propagates. In addition to performance fluctuations that can damage electrical devices, detrimental
consequences can be triggered. For example, the failure of a single power line in a power grid can
cause nearby lines to overload, causing cascading failures [2] that lead to severe total blackouts. To
name a few on a mass scale: Northern India in 2012 for 14 hours [3], South Australia in 2016 for
up to a week [4], and Southeast South America in 2019 for half a day [5]. Formidably, such events
are too fast to respond, as damage is done in only a few seconds [6], vaporizing billions of dollars
(in USD) [7]. With power grids constantly evolving in scale and density, this situation escalates,
posing threats of significant losses in terms of finance, and even human lives. To minimize the losses
inflicted, it becomes imminent to develop an approach to predict the behavior of power grids with
high accuracy and ultra-low latency.

Recently, a new Graph Learning (GL) framework has emerged [8–12], achieving over 1000× speedup
compared to SOTA GNNs on Nvidia A100 GPUs, while maintaining comparable or even superior
accuracy in graph prediction tasks. Within the framework, graph predictions are carried out through
rapid natural processes on a dynamical system of electrons. Similar to how water freezes into ice, the
electronic system evolves by seeking equilibrium at the lowest energy state, forming an organized
pattern in electric charge distribution. By mapping the observed data to the lowest energy state
through training, desired results are automatically obtained through a spontaneous decrease in energy
function (Hamiltonian). The physical embodiment of the artificial dynamical system is derived from a
CMOS-compatible Ising machine [13], which is based on the Ising model rooted in physics, featuring
strong connectivity and long-range information propagation in a cascading fashion. Observing the
remarkable results, we are motivated to investigate the following opportunity: Can we leverage
such artificial microscopic dynamical systems to efficiently model and predict the behavior of the
macroscopic dynamical systems – power grids, that demand extremely rapid responses?

Despite the framework’s promising characteristics, two significant obstacles remain, fundamentally
limiting the effectiveness of this approach when applied to power grids modeled as graphs. First,
the Hamiltonian, or the energy function described in the framework only leads to a linear model,
capturing mere linear relations between graph nodes. As a result, the expressivity and versatility of
the framework are fundamentally restricted, considering that power grids are dynamical systems with
sophisticated inter-node relations. Second, although intricate extensions could enable nonlinearity in
the machine, they must be carefully designed to ensure the practical complexity of the Hamiltonian,
given the constraints imposed by hardware feasibility.

In this paper, we address these problems by proposing NP-NDS, a nature-powered nonlinear dynami-
cal system that accurately predicts real-world graph behaviors such as power grids with lightweight
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CMOS-based hardware, as depicted in Figure 2. To highlight, NP-NDS can capture intricate and
nonlinear connections among nodes, demonstrating sufficient expressivity and versatility for such
a complex system. Meanwhile, it harnesses the inherent computational power within dynamical
systems through a Hamiltonian-hardware co-design approach that bridges Hamiltonian characteristics
with hardware implementation. On the Hamiltonian side, taking the linear model in previous work
as the backbone, we further enhance the Hamiltonian’s expressivity by integrating the Chebyshev
polynomials to capture nonlinear inter-node relations. Consequently, a highly nonlinear Hamiltonian
with serial-additive augmentation is constructed, unleashing the power of NP-NDS for complex real-
world GL problems such as power grid prediction. To achieve high accuracy, node-relation-aware
training enhancement methods are incorporated, including self-influence reinforcement, relation
matrix truncation, and order-based fine-tuning. On the hardware side, we develop a CMOS-based
programmable dynamical system governed by the proposed Hamiltonian following the serial-additive
structure. Specifically, the inter-node influences on a node are realized by combining electrical
currents modeled after Chebyshev polynomials, allowing the system to efficiently seek the lowest
energy state through electron movement. As a result, the hardware dynamical system, embodied
as a nature-powered processor, automatically evolves toward the desired results at the “speed of
electrons”, enabling ns-level inference on NP-NDS.

To the best of our knowledge, NP-NDS is the first work that exploits nature’s power within a nonlinear
dynamical system to solve real-world graph learning problems, outperforming SOTA GNNs. Our
contributions are summarized below.
• We introduce NP-NDS, a CMOS-compatible artificial dynamical system designed to predict the

behaviors of complex real-world graphs. By co-designing the Hamiltonian and hardware of the
dynamical systems, NP-NDS outperforms state-of-the-art GNN methods.

• We design hardware-friendly Hamiltonians with high expressivity and versatility for a nonlinear
dynamical system through serial-additive augmentation, ensuring high accuracy in prediction.

• We develop a microscopic dynamical system that is governed by the proposed Hamiltonian,
unleashing the inherent computational power within the system to solve power grid prediction
problems at the “speed of electrons”.

• Using power grids as representative cases, experimental results demonstrate that NP-NDS delivers
2.3× 103 speedup (vs. GPU), 105× energy saving, and higher accuracy compared to GNNs.

2 Background
2.1 Ising Model

The Ising model is a model originally proposed to study ferromagnetism in statistical physics with
only binary variables as “spins” σ. The model is characterized by its Hamiltonian:

HIsing = −
N∑
i̸=j

Jijσiσj −
N∑
i

hiσi ; σi ∈ {−1,+1} (1)

The Hamiltonian indicates that the pairwise relation between two spins σi and σj is denoted as Jij ,
and the self-response of spin σi to an external magnetic field is indicated by hi. In practice, the
self-response term is equivalent to a coupling term with an extra spin fixed to “+1”, namely, virtual
spin. In the binary domain, despite the simplicity of the model, it provides high expressivity due to
the vast number of discrete values (2N , with N being the total number of spins) that the Hamiltonian
can take. For conciseness, real-valued variables are also denoted as spins from now on.

2.2 Ising Machine

Ising machines are physical embodiments of the Ising model, which are essentially artificial dynamical
systems governed by the Hamiltonian described in the Ising model. Through carefully designed spin
dynamics, the systems are capable of spontaneously evolving toward the lowest energy state, offering
orders of magnitude speedup compared to conventional digital computers, particularly for tasks such
as combinatorial optimization problems [14].

To date, myriad Ising machines have been developed, such as D-Wave the quantum annealer [15],
optical coherent Ising machines [16], and electrical coupled oscillators [17]. However, the Ising ma-
chines listed above typically pose significant challenges in modification, due to their strict operating
conditions, sophisticated manufacturing, or the lack of high-quality hardware components. Conse-
quently, in this work, we choose the CMOS-compatible Ising machine [13] as our basic hardware
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substrate, due to its ability to function at room temperature, mature manufacturing technology, and
easily controllable hardware components such as resistors and capacitors.

To achieve spontaneous energy decrease, a Lyapunov analysis is performed to design the circuit that
defines the spin dynamics. Specifically, the inequality of Hamiltonian H needs to be satisfied:

dH
dt

=
∑
i

(
∂H
∂σi

dσi

dt
) ≤ 0 (2)

Reasonably, the spin dynamics can be designed following:
dσi

dt
= − 1

C

∂H
∂σi

(3)

with C being a positive constant. The summation in the inequality becomes
∑

i
−1
C (dσi/dt)

2,
naturally satisfying the inequality with its quadratic shape.

2.3 The Linear Additive Model

The Linear Additive Model (LAM) used in prior work [8, 9] is extended from the Ising model,
enabling real-value support and utilizing the spontaneous energy decrease in the selected Ising
machine with slight modifications. In this paper, this linear work is taken as the foundation and is
therefore briefly introduced here.

2.3.1 The Modified Hamiltonian and Graph Mapping

The Ising Hamiltonian in Eq. 1 is only suitable for discrete spins due to the lack of convexity. If the
spin values are naively extended to real values, the spontaneous energy decrease leads to infinitely
low energy, leading to divergent spin values. A naive approach is to replace the linear terms in the
Ising Hamiltonian (Eq. 1) by quadratic terms:

HLinear = −
N∑
i̸=j

Jijσiσj −
N∑
i

hiσ
2
i ; σi ∈ R (4)

With negative parameters h, the Hamiltonian is granted a global minimum, allowing the dynamical
system to evolve towards the lowest energy state.
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Figure 3: Example: predicting node values at time t+1
based on the data at time t in IGL paradigm.

The inter-spin relations and the self-
response depicted in the model are partic-
ularly compatible with graph concepts. It
is logical to consider the values of nodes in
a graph as analogous to spin values in the
model, where the edges and self-loops of
the graph correspond to the parameters J
and h, respectively. In Ising Graph Learn-
ing (IGL), these parameters J and h are trainable based on the historical data of the graph nodes, and
are then used to forecast future values of the nodes. Figure 3 provides an example of the predictive
mechanism, in which the node values in the next time step are estimated from their values in the
current time step. As depicted in the figure, the graph consists of N nodes, with each node in the
graph linked to a pair of spins in the Ising model, representing the node’s state at time t and its
subsequent state at time t+ 1.

During the inference process, the spins related to the known node values are kept constant, whereas
their influences propagate through the spins to be predicted. As the spins evolve, the Hamiltonian of
the dynamical system naturally decreases, moving towards the lowest energy state. To escape local
minima, IGL is usually accompanied by an annealing process. Eventually, the lowest energy state is
reached, with the predicted spin values obtained as the inference result.

2.3.2 Training with Spin Regression

The spin relations at the lowest energy state are obtained by taking the gradient of the Hamiltonian.

∂HLinear

∂σi
= 0 ⇒⇒ σi =

−1

2hi

N∑
i̸=j

(Jij + Jji)σj (5)
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It indicates that any spin σi follows a linear additive relation at the lowest energy state. Since σi

is clearly modeled in the equation, a direct training process can be carried out by minimizing the
difference between the modeled σi and the ground truth, effectively mapping the desired result to the
lowest energy state, allowing the dynamical system to perform inference.

2.3.3 The Modified Ising Machine

In Figure 2, the primary modification in the hardware of the vanilla Ising machine is to replace the
voltage regulator with a variable resistor. In the original setup [13], the voltage regulator, designated
as "ZIV," confines the capacitor’s voltage (or spin value) to either +1 or -1, suitable for binary
applications. With the variable resistor, the voltage is now influenced by the the resistor, the electric
current Ivri flowing through the resistor, and the total input current Iini . The spin dynamics satisfy:

dσi

dt
=

1

C
(Iini − Irvi ) =

1

C
(

N∑
i̸=j

(Jij + Jji)σj − 2hiσi) (6)

where 2hi is the inverse of resistance Ri, which essentially leads to the term “2hiσi” in the equation,
effectively corresponds to the quadratic term in the Hamiltonian as described in the model (See Eq. 4,
note that ∇(hiσ

2
i ) = 2hiσi).

3 Methods
3.1 Overview

Despite the real-value support and the use of a rapidly evolving dynamical system, the complexity of
LAM’s Hamiltonian (described and discussed in Sec. 2.3) is compromised for hardware feasibility,
causing the lack of nonlinearity. Consequently, its ability to accurately represent sophisticated
relations between real-world observables is hampered. To this end, we propose a Hamiltonian-
hardware co-design paradigm that bridges hardware with Hamiltonians of high complexity, breaking
the trade-off between model complexity and hardware feasibility with the following steps.

(1) We design the spin relations by modifying the gradient of the LAM’s Hamiltonian, incorporating
nonlinear relations in the designed Hamiltonian. (2) To ensure the versatility of the model to represent
various relations, the nonlinear relations are approximated using series, taking the coefficients of the
series as trainable parameters. (3) Three training enhancement methods are adopted to improve the
self-influence of nodes in power grids, to eliminate redundant relations that may induce significant
error, and to fine-tune the model by gradually adding higher-order terms in the series. (4) We
demonstrate that the Hamiltonian design is highly compatible with hardware since the dynamics of
spins on hardware are also derived from the gradient of the Hamiltonian.

3.2 The Serial-Additive Augmentation

3.2.1 Series-Based Hamiltonian Design

The Hamiltonian design methodology is derived from Eq. 5. Rather than starting from an analytical
Hamiltonian such as HLinear, we begin with the equation on the right hand side, which essentially
represents the spin relations at the lowest energy state. As a result, the gradient of the Hamiltonian
can be directly designed with a general form:

∂H
∂σi

= hiσi +

N∑
j ̸=k

(Pjkf(σj) +Qjkg(σj) + ...) (7)

where Pjk and Qjk are parameters to be trained, f(σj) and g(σj) are functions of σj . Compared to
Eq. 5, two notable improvements are achieved. First, the original linear relations are generalized into
flexible functions, allowing for custom model complexity. Second, the symmetric relation (Jij + Jji)
between two spins is no longer compulsory, enabling more realistic asymmetric relations.

To properly capture the spin relations for a wide range of applications, functions such as f(σj) and
g(σj) must be carefully designed. In the following discussions, a guideline is provided to design the
functions in a systematic manner.

To design spin relations following the methodology above, we aim to achieve two key objectives.
First, for practicality, the model should be hardware-friendly, preferably analytical, to guide the
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Figure 4: The model and hardware implementation schematics based on the Chebyshev series.

hardware design. Second, a versatile “one-for-all” model is desired. This not only provides a general
model but also eliminates the need for expensive hardware customization for various spin relations.

With these objectives in mind, our approach is to approximate the spin relations with series. Specifi-
cally, the spin relations at ∇H = 0 are generally designed as:

σi = − 1

2hi

M∑
m

N∑
i̸=j

Jm
ij f

m(σj) (8)

It shows that the relation between σi and σj is represented as M -order series, with fm(σj) being the
m’th term in the series. Similar to the original Ising model, the 0’th order relation is represented by a
virtual spin and therefore omitted in the following discussions. It is worth noting that this approach
not only shows promising practicality and versatility but also demonstrates high interpretability. By
decomposing the inter-spin relations into separate components with trainable coefficients Jm

ij , the
strength of a particular component is quantified, thereby offering a clearer understanding of the
underlying mechanisms governing real-world phenomena.

With the general series form of inter-spin relations established, an immediate follow-up question is:
What series to choose? In this work, the Chebyshev polynomials of the first kind are selected for the
following features: (1) Chebyshev polynomials are typically used for series expansion, as it is often
used to mitigate Runge’s phenomenon in high-order polynomials. (2) Compared to trigonometric
series such as the Fourier series, the hardware implementation for polynomials is considerably
straightforward. While inductors can be used to directly achieve periodicity in trigonometric series,
the lack of high-quality inductors and their large size pose significant challenges. Conversely,
polynomials offer a simpler implementation path, as they require just multiplication and addition
operations. (3) Every term fm(σj) in the polynomial is confined between -1 and 1 for σj ∈ [−1, 1].
As σj and fm(σj) are represented by voltages, these non-divergent terms are exceptionally valuable
for practical implementation. To provide an intuitive view, the leading terms of the Chebyshev
polynomials are shown on the Model side in Figure 4. Conveniently, the 1st order of the polynomials
(NP-NDS O-1) is a linear term, preserving the linear relations from the backbone model.

3.2.2 Training Enhancement Methods

In training, we inherit the straightforward yet effective regression method for LAM introduced
in Sec. 2.3.2. With the serial additive model established, we focus on improving its training by
implementing three enhancement methods for graph prediction as shown in Figure 5, where the
original relation matrix depicts the general relation from the spin series of σ(t) and σ(t+ 1) to the
spins σ(t+ 1), where σ(t+ 1) are the spins to be predicted.

Self-Influence Reinforcement. Based on empirical observations, the relation of a power grid node
with its historical values outweighs its relation with other nodes. To differentiate the relations, the
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Figure 5: The three training enhancement methods. Each square represents a coefficient Jm
ij .

self-influence, or the diagonal lines in the square sub-matrices in Figure 5 are amplified, as indicated
by the arrows. The amplification is performed by multiplying a constant factor, which is considered
a hyperparameter. Note that the self-response parameter hi is also amplified, as the summations in
Eq. 8 typically require a sufficiently large hi for a limited range of σi.

Relation Matrix Truncation. This approach deliberately removes the off-diagonal elements in the
sub-matrices describing the relations between spins to be predicted σ(t+1) and themselves. Despite
that the relations contribute to the model’s expressivity, errors are introduced and amplified through
spin evolution following the relations, causing a destructive influence on the accuracy. To this end,
the error sources are removed to preserve clean spin relations.

Order-Based Fine-Tuning. The complexity of the model apparently increases as more terms of
the series are included. However, more terms do not always lead to high accuracy, as they may
cause disruptive influences on the actual significant terms during training. Based on this observation,
without prior knowledge of the optimal number of series terms, we first train a basic model using
only the lower-order terms to capture the relatively simple relations, which are usually predominant.
Subsequently, we increase the model size by adding higher-order terms as corrections while preserving
the previously trained parameters, and initiate a fine-tuning process to include higher-order relations
until the maximum order is reached, or the validation accuracy stops improving. As illustrated in
Figure 5, the number of parameters scales linearly with the number of series terms, demonstrating
good scalability in model sizes.

3.3 Hardware Implementation

In accordance with the model design, the hardware design is also closely related to the Hamiltonian’s
gradient, which directly corresponds to the spin dynamics described by dσi/dt as designed in Eq. 3.
The architecture of a spin shown in Figure 4 indicates that the spin dynamics is determined by the
current Ivri flowing through the variable resistor and the total input current Iini from the system.
Since the gradient is already defined in the model (Eq. 7), our task is to match the behavior of currents
with the gradient. Note that the value of Ivri obtained from LAM already fulfills the condition
Ivri = 2hiσi as stated by Ohm’s Law, our attention is thus directed towards Iini . Specifically,
Iini =

∑M
m

∑N
i̸=j J

m
ij f

m(σj). This implies that the inter-spin relations are physically interpreted as
the superposition of electrical currents. Originally, a coupling unit combines (Jij + Jji) and σj in
the Ising model and LAM, producing partial input currents to the corresponding spins. In NP-NDS,
the coupling units are upgraded to produce multiple current components according to the series terms.
During the process, to prevent voltages from exceeding limits, the series terms are scaled down by
a factor (e.g., the second order 2σ2

i − 1 becomes σ2
i − 1/2), leaving the factor embedded in the

downstream resistor. Eventually, the current components are merged as Iinj , and delivered to the j’th
spin. This work employs dynamical systems with up to the 4th order of the Chebyshev polynomial.

4 Evaluation

4.1 Experimental Setup

Datasets. We evaluate NP-NDS with three datasets listed below, covering different aspects of power
grids. The datasets are divided into 70% for training, 20% for validation, and 10% for testing.
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Table 1: Accuracy comparison of NDS-GL variances: the lower the better - best results are in bold.

Dataset PMU-PA PMU-V PowerFlow
Metric MAE RMSE MAE RMSE MAE RMSE

NDS-O1 1.88e-2 2.31e-2 5.20e-2 6.78e-2 0.396 0.687
NDS-O2 1.41e-2 1.77e-2 5.15e-2 6.66e-2 0.395 0.690
NDS-O3 1.33e-2 1.70e-2 4.97e-2 6.61e-2 0.391 0.685
NDS-O4 1.26e-2 1.68e-2 4.75e-2 6.46e-2 0.394 0.690

NDS-FT-O2 1.27e-2 1.71e-2 5.05e-2 6.71e-2 0.387 0.681
NDS-FT-O3 1.16e-2 1.54e-2 4.61e-2 6.21e-2 0.379 0.662
NDS-FT-O4 1.08e-2 1.43e-2 4.27e-2 6.02e-2 0.377 0.664

• PMU-PA – Second-level Phase Angle prediction of Phasor Measurement Unit (PMU) data on a
synthetic network in Texas [18].

• PMU-V – Second-level Voltage data (in mV) prediction on a synthetic network in Texas [18].
• PowerFlow – Prediction of hourly power flow in MW on a synthetic network in Texas [19].

Baselines. We compare the accuracy and inference of NP-NDS with four SOTA spatial-temporal
GNNs that are capable of capturing a graph’s logical topology for fair evaluations. These GNNs
include Graph WaveNet [20], MTGNN [21], DDGCRN [22], and MegaCRN [23]. Their hyperparam-
eters are set based on their released code.

Platforms. The inference latency of the baseline GNNs is measured using an NVIDIA A100-40GB
GPU and an 18-core, 36-thread Intel Xeon Gold 6140 CPU. The dynamical system used for NP-NDS
is adapted from the current SOTA Ising machine, BRIM [13], based on the Cadence Analog Design
Environment.

4.2 Accuracy Evaluation
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

0.6
0.5
0.4
0.3
0.2
0.1

0

0.03
0.065

0.02

0.01

�
0.04

0.03

0.02

����

�

0.20
0.16
0.12
����
����

�
������

GraphWaveNet MTGNN DDGCRN MegaCRN
LAM NDS-best Best GNN Result

����� ���������

�
�
�

�
�
��

0.0730.23

0.087 0.0960.29

Figure 6: Accuracy comparison with SOTA GNNs across
three datasets in MAE and RMSE. Lower is better.

Figure 6 depicts the MAE and RMSE re-
sults of predicting the (t+1)’th snapshot
based on the (t)’th snapshot. The com-
parison involves LAM, NP-NDS, and
four SOTA GNNs that are capable of ex-
tracting the logical topology of graphs.
Specifically, NDS-best shows the best
NP-NDS result of up to the 4th series
order with order-based fine-tuning taken
into consideration. In the LAM and NP-
NDS implementations, L1 loss is used to
mitigate the effect of outliers. The results
demonstrate that the NDS-best, incorpo-
rated with nonlinearity and custom model
complexity, is generally much more ac-
curate than the high-dimensional linear
model LAM, and significantly outperforms the best GNN results, with 23.6% reduced MAE and
28.2% reduced RMSE averaged over all three power grid datasets.

4.3 Latency Evaluation
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Figure 7: Latency comparison: NP-NDS vs SOTA GNNs.

Figure 7 shows the inference la-
tency results. Compared to the av-
erage latency of SOTA GNNs, NP-
NDS delivers 3.2× 104 speedup
over CPU and 2.3 × 103 over
GPU for all three datasets. In
addition, the power consumption
of the dynamical system is mere
∼2 W, more than 50× more effi-
cient in Watts than modern CPUs
and GPUs, which ultimately con-
tributes to over 105× reduction in energy consumption compared to GNNs on CPUs and GPUs.
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4.4 Ablation Study

In this section, we investigate how prediction is impacted by series order and fine-tuning. To this
end, we examine the results of NP-NDS with different orders, ranging from 1st to 4th order (NDS-
O1 to O4), as well as the results with fine-tuning for orders 2 to 4 (NDS-FT-O2 to O4). These
results are demonstrated in Table 1, where the higher-ordered implementations generally yield better
results. However, when fine-tuning is not applied, the MAE/RMSE may increase for higher orders.
Conversely, the order-based fine-tuning approach tends to maintain the MAE/RMSE achieved in the
lower-ordered models, while further enhancing the accuracy with higher-order corrections.

5 Related Work
5.1 Graph Neural Networks

GNNs have become a cornerstone in machine learning for graph-structured data, enabling effective
predictions and classifications. Their ability to model complex relational data has led to widespread
applications across various domains, including physics [24], social science [25], bioinformatics [26],
and chemistry [27]. In GNNs, information is propagated through message passing among nodes –
typically, each node collects and updates information from neighboring nodes, effectively capturing
the relations between graph embeddings and target outputs. The major areas of GNN research include,
but are not limited to, the following fields:

Graph Convolutional Networks (GCNs) [28–31] extend convolutional neural networks to graphs,
enabling efficient learning on non-Euclidean data structures. GCNs have been widely adopted
in, e.g., e-commerce [32, 33], natural language processing [34], internet of things [35], chemical
reactivity [36], material sciences [37] and pharmaceutical sciences [38]. Limited by the latency and
throughput requirements by those applications, GCN accelerators have also emerged [28, 29, 39–45].

Graph Attention Networks (GATs) [46] enhance GNNs by integrating attention mechanisms that allow
nodes to assign different importance weights. Subsequent advancements[47] have extended GATs to
support heterogeneous graphs containing multiple types of nodes and links. Further developments
have introduced dynamic attention mechanisms [48], enhancing the adaptability and expressiveness.
GATs have also been widely adopted across various research areas [49–52].

GraphSAGE [53] enables efficient inductive learning by leveraging node feature information to
generate embeddings for unseen data, eliminating the need to retrain the entire model as required
by traditional transductive methods. Subsequent works include: FastGCN [54] addresses sampling
inefficiency by applying importance sampling; Cluster-GCN [55] improves scalability by clustering
the graph and performing mini-batch training on these clusters; GraphSAINT [56] introduces a graph
sampling-based inductive learning method that reduces computation and memory consumption.

5.2 General Additive Models

Generalized additive models [57] are a statistical modeling technique that incorporates the relations
between variables. The related work dates back to a decade ago: GAM [58] employs decision
trees for regression and classification, achieving outstanding model interpretability. Its follow-up
work GA2M [59] further includes pairwise coupling interactions to improve model complexity.
Recently, neural network based additive models have also emerged. In NAM [60], individual neural
networks are employed to capture complex relationships between variables. Furthermore, this
research highlights the extensive influence of additive models. For example, scientific insights can be
obtained from such interpretable models and utilized to guide studies in natural sciences. Our work is
clearly distinguished from others, as we exploit the inherent power of dynamical systems to address
real-world dynamical system problems.

6 Conclusion
In this work, NP-NDS is proposed to address real-world graph learning problems with a physical
dynamical system. incorporating complicated nonlinear graph node relations through a Hamiltonian-
hardware co-design. As a result, the inherent computing power in the dynamical system is unleashed.
In particular, an average 2.3× 103 speedup is achieved compared to a Nvidia A100 GPU on various
GNNs, with 23.6% reduced MAE and 28.2% reduced RMSE averaged over three datasets for power
grids, as well as approximately 105× power saving compared to modern CPUs and GPUs.

9



NP-NDS: A Nature-Powered Nonlinear Dynamical System for Power Grid Forecasting

Acknowledgement
This work is supported by the U.S. DOE Office of Electricity through its Advanced Grid Modeling
(AGM) program and by ComPort: Rigorous Testing Methods to Safeguard Software Porting, the U.S.
DOE, Office of Science, Office of Advanced Scientific Computing Research, under Award Number
78284. This work is also supported by NSF under Awards SHF-2326494. The Pacific Northwest
National Laboratory is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830.

References
[1] Hannah Ritchie and Pablo Rosado. Electricity mix. Our World in Data, 2020.

https://ourworldindata.org/electricity-mix.

[2] Vaiman, Bell, Chen, Chowdhury, Dobson, Hines, Papic, Miller, and Zhang. Risk assessment of
cascading outages: Methodologies and challenges. IEEE Transactions on Power Systems, 27
(2):631–641, 2012. doi: 10.1109/TPWRS.2011.2177868.

[3] Central Electricity Regulatory Commission et al. Report on the grid disturbances of 30th july
and 31st july 2012. New Delhi: Central Electricity Regulatory Commission, 2012.

[4] Ruifeng Yan, Tapan Kumar Saha, Feifei Bai, Huajie Gu, et al. The anatomy of the 2016 south
australia blackout: A catastrophic event in a high renewable network. IEEE Transactions on
Power Systems, 33(5):5374–5388, 2018.

[5] Gonzalo E. Alvarez. A novel strategy to restore power systems after a great blackout. the
argentinean case. Energy Strategy Reviews, 37:100685, 2021. ISSN 2211-467X. doi: https:
//doi.org/10.1016/j.esr.2021.100685. URL https://www.sciencedirect.com/science/
article/pii/S2211467X21000717.

[6] Benjamin Schäfer, Dirk Witthaut, Marc Timme, and Vito Latora. Dynamically induced cascad-
ing failures in power grids. Nature communications, 9(1):1975, 2018.

[7] Electricity Consumers Resource Council. The economic impacts of the august 2003 blackout.
Washington, DC, 2004.

[8] Chunshu Wu, Ruibing Song, Chuan Liu, Yunan Yang, Ang Li, Michael Huang, and Tong
Geng. NP-GL: Extending power of nature from binary problems to real-world graph learning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=qT7DXUmX7j.

[9] Ruibing Song, Chunshu Wu, Chuan Liu, Ang Li, Michael Huang, and Tong Geng. DS-
GL: Advancing graph learning via harnessing the power of nature within dynamic systems. In
Proceedings of the 51st Annual International Symposium on Computer Architecture. Association
for Computing Machinery, 2024.

[10] Liu Chuan, Wu Chunshu, Song Ruibing, Chen Yousu, Li Ang, Huang Michael, and Geng Tony.
Nature-gl: A revolutionary learning paradigm unleashing nature’s power in real-world spatial-
temporal graph learning. In the 30th Asia and South Pacific Design Automation Conference,
2025.

[11] Zhenyu Pan, Anshujit Sharma, Jerry Yao-Chieh Hu, Zhuo Liu, Ang Li, Han Liu, Michael
Huang, and Tony Geng. Ising-traffic: Using ising machine learning to predict traffic congestion
under uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 9354–9363, 2023.

[12] Zhuo Liu, Yunan Yang, Zhenyu Pan, Anshujit Sharma, Amit Hasan, Caiwen Ding, Ang Li,
Michael Huang, and Tong Geng. Ising-cf: A pathbreaking collaborative filtering method through
efficient ising machine learning. In Proceedings of the 60th ACM/IEEE Design Automation
Conference. of DAC, 2023.

[13] Richard Afoakwa, Yiqiao Zhang, Uday Kumar Reddy Vengalam, Zeljko Ignjatovic, and Michael
Huang. Brim: Bistable resistively-coupled ising machine. In 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pages 749–760. IEEE, 2021.

[14] Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising machines as hardware solvers of
combinatorial optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

10



NP-NDS: A Nature-Powered Nonlinear Dynamical System for Power Grid Forecasting

[15] R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva,
E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C. Enderud, C. Rich,
S. Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson,
K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose. Experimental investigation of an
eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B, 82:024511, Jul
2010. doi: 10.1103/PhysRevB.82.024511.

[16] Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Tamate, Toshi-
mori Honjo, Alireza Marandi, Peter L. McMahon, Takeshi Umeki, Koji Enbutsu, Osamu
Tadanaga, Hirokazu Takenouchi, Kazuyuki Aihara, Ken ichi Kawarabayashi, Kyo Inoue, Shoko
Utsunomiya, and Hiroki Takesue. A coherent ising machine for 2000-node optimization
problems. Science, 354(6312):603–606, 2016. doi: 10.1126/science.aah4243.

[17] Tianshi Wang and Jaijeet Roychowdhury. Oim: Oscillator-based ising machines for solving
combinatorial optimisation problems. In Ian McQuillan and Shinnosuke Seki, editors, Un-
conventional Computation and Natural Computation, pages 232–256, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-19311-9.

[18] Hanyue Li, Ashly L Bornsheuer, Ti Xu, Adam B Birchfield, and Thomas J Overbye. Load
modeling in synthetic electric grids. In 2018 IEEE Texas Power and Energy Conference (TPEC),
pages 1–6. IEEE, 2018.

[19] Ti Xu, Adam B Birchfield, Komal S Shetye, and Thomas J Overbye. Creation of synthetic
electric grid models for transient stability studies. In The 10th Bulk Power Systems Dynamics
and Control Symposium (IREP 2017), pages 1–6, 2017.

[20] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling, 2019.

[21] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang.
Connecting the dots: Multivariate time series forecasting with graph neural networks, 2020.

[22] Wenchao Weng, Jin Fan, Huifeng Wu, Yujie Hu, Hao Tian, Fu Zhu, and Jia Wu. A decomposition
dynamic graph convolutional recurrent network for traffic forecasting. Pattern Recognition,
142:109670, 2023. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2023.109670.

[23] Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi,
Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning
for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 8078–8086, 2023.

[24] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

[25] Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, and Philip S. Yu. Consisrec: Enhancing
gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
page 2141–2145, 2021.

[26] Hai-Cheng Yi, Zhu-Hong You, De-Shuang Huang, and Chee Keong Kwoh. Graph representation
learning in bioinformatics: trends, methods and applications. Briefings in Bioinformatics, 23(1):
bbab340, 2021.

[27] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org, 2017.

[28] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya Haghi, Antonino
Tumeo, Shuai Che, Steve Reinhardt, and Martin C. Herbordt. Awb-gcn: A graph convolutional
network accelerator with runtime workload rebalancing. MICRO ’20, .

[29] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie, Haoran You, Martin
Herbordt, Yingyan Lin, and Ang Li. I-gcn: A graph convolutional network accelerator with
runtime locality enhancement through islandization. MICRO ’21, .

[30] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016.

11



NP-NDS: A Nature-Powered Nonlinear Dynamical System for Power Grid Forecasting

[31] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin. Gcod: Graph convolutional
network acceleration via dedicated algorithm and accelerator co-design. In 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages 460–474. IEEE,
2022.

[32] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jin-
gren Zhou. Aligraph: A comprehensive graph neural network platform. arXiv preprint
arXiv:1902.08730, 2019.

[33] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’18, page 974–983, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219890. URL https://doi.org/
10.1145/3219819.3219890.

[34] Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. Graph
convolutional encoders for syntax-aware neural machine translation. In Martha Palmer, Rebecca
Hwa, and Sebastian Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1957–1967, Copenhagen, Denmark, September 2017.
Association for Computational Linguistics. doi: 10.18653/v1/D17-1209. URL https://
aclanthology.org/D17-1209.

[35] Huy-Trung Nguyen, Quoc-Dung Ngo, and Van-Hoang Le. Iot botnet detection approach based
on psi graph and dgcnn classifier. In 2018 IEEE international conference on information
communication and signal processing (ICICSP), pages 118–122. IEEE, 2018.

[36] Connor W Coley, Wengong Jin, Luke Rogers, Timothy F Jamison, Tommi S Jaakkola, William H
Green, Regina Barzilay, and Klavs F Jensen. A graph-convolutional neural network model for
the prediction of chemical reactivity. Chemical science, 10(2):370–377, 2019.

[37] Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties. Physical review letters, 120(14):145301,
2018.

[38] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

[39] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Comput-
ing graph neural networks: A survey from algorithms to accelerators. ACM Computing Surveys
(CSUR), 54(9):1–38, 2021.

[40] Adam Auten, Matthew Tomei, and Rakesh Kumar. Hardware acceleration of graph neural
networks. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[41] Xiaobing Chen, Yuke Wang, Xinfeng Xie, Xing Hu, Abanti Basak, Ling Liang, Mingyu Yan,
Lei Deng, Yufei Ding, Zidong Du, et al. Rubik: A hierarchical architecture for efficient graph
learning. arXiv preprint arXiv:2009.12495, 2020.

[42] Kevin Kiningham, Philip Levis, and Christopher Ré. Grip: A graph neural network accelerator
architecture. IEEE Transactions on Computers, 72(4):914–925, 2022.

[43] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen Xu, and Xiaowei Li.
Engn: A high-throughput and energy-efficient accelerator for large graph neural networks. IEEE
Transactions on Computers, 70(9):1511–1525, 2020.

[44] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang,
Dongrui Fan, and Yuan Xie. Hygcn: A gcn accelerator with hybrid architecture. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 15–29.
IEEE, 2020.

[45] Yongan Zhang, Haoran You, Yonggan Fu, Tong Geng, Ang Li, and Yingyan Lin. G-cos:
Gnn-accelerator co-search towards both better accuracy and efficiency. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2021.
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A Implementation Details
The Rprop optimizer is utilized with a customized early-stop mechanism for all experiments conducted
on the six datasets. The experiments employ the same set of hyperparameters, except for the Self-
Influence Reinforcement Factors (SIRF), which are specified in Table 2.

The remaining hyperparameters are listed in Table 3. LR is the initial learning rate, Etas and Step
Sizes are embedded in the Rprop optimizer. LR Decay and Step Decay are related to the early stop
mechanism – if the loss does not decrease in 100 consecutive epochs, the learning rate is halved. If
the learning rate reaches the early stop threshold of 1E-6, training is completed.
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Table 2: Self-Influence Reinforcement Factors (SIRF) for Different Datasets.

Dataset PMU-PA PMU-V PowerFlow
SIRF 1000 50 1000

Table 3: The universal hyperparameters used for all datasets.

Minibatch LR Etas Step Sizes LR Decay Step Decay Early Stop Random Seed
64 0.01 (0.5, 1.2) (1E-4, 50) 0.5 100 1E-6 123

B Social Impacts
The development of NP-NDS represents a significant stride in the realm of power grid forecasting,
with implications extending beyond technological advancement. By addressing the pressing need for
accurate and rapid predictions in power grid behaviors, NP-NDS holds the potential to mitigate the
socio-economic repercussions of power grid failures. Such failures, as evidenced by past incidents
in regions like Northern India, South Australia, and Southeast South America, not only disrupt
daily activities but also incur substantial financial losses and jeopardize public safety. NP-NDS,
with its ability to efficiently model complex inter-node relations and provide ultra-low latency
predictions, offers a proactive approach to safeguarding against such disruptions. By enhancing the
resilience and reliability of power grids, NP-NDS contributes to the stability of essential services,
fosters economic productivity, and ultimately enhances the quality of life for communities reliant on
electricity infrastructure.
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