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Preface

The history of optimal transport begins in 1781 with a memoir by
Gaspard Monge that he submitted to the Académie des Sciences [Mon81].
Since then, it has grown into a mature mathematical field with many
important discoveries, such as Kantorovich’s duality theory, Brenier’s
theorem, Otto’s calculus, the JKO scheme, and the Lott–Sturm–Villani
definition of the Ricci curvature of geodesic spaces, to name a few. The
first comprehensive treatment of optimal transport dates back to the
seminal volumes of Rachev and Rüschendorf [RR98a, RR98b]. We also
refer the reader to the excellent texts of Villani [Vil03, Vil09b], Ambrosio,
Gigli, and Savaré [AGS08], and more recently, Santambrogio [San15]
for a comprehensive treatment of this subject from the mathematical
perspective, and to the notes of Ambrosio and Gigli [AG13], Ambrosio,
Brué, and Semola [ABS21], and the short monograph of Figalli and
Glaudo [FG23] for quicker introductions. Even a quick inspection of
their tables of contents reveals that Monge’s question was the gateway to
many more, and that the field of optimal transport has many unexpected
connections, ranging from geometry to partial di”erential equations.

More recently, optimal transport has made a resounding entrance
into the field of machine learning under the impetus of Marco Cuturi,
who showed that Wasserstein distances could be computed e!ciently
using the Sinkhorn algorithm [Cut13]. This initial spark was followed by
an extensive toolbox, built on optimal transport, that covered multiple
tasks across various areas of machine learning and graphics. The de-
velopment of this toolbox, now called computational optimal transport,
was led by Marco Cuturi and Gabriel Peyré and collected in their inspir-
ing manuscript [PC19b]. The far-reaching scope of optimal transport
across machine learning and data science rests on the fact that many
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objects such as point clouds, polygonal meshes, or even documents can
be encoded as probability measures. In turn, the Wasserstein metric
between these probability measures o”ers a semantically meaningful
notion of distance.

So what is statistical optimal transport? This modifier comes largely
as an echo to Peyré and Cuturi’s computational optimal transport.
It is an umbrella term that captures the remarkably diverse points
of contact between statistics and optimal transport. The aim of the
present monograph is to provide an introduction to a selection of topics
within this burgeoning field according to our tastes (see [PZ20] for a
complementary treatment).

Historically, Wasserstein distances have been employed in statistics
as a tool to quantify the rate of convergence of empirical probability
measures µn to their limit µ. This line of work was inaugurated in a
celebrated work of Dudley [Dud69], who provided bounds for W1(µn, µ).
Wasserstein distances are particularly well-suited for quantifying this
convergence for several reasons. First, unlike the total variation distance
or Kullback–Leibler divergence, the Wasserstein distance between a dis-
crete distribution µn and a potentially continuous one µ remains finite
and informative. Second, by definition, bounding the Wasserstein dis-
tance amounts to exhibiting a coupling between the two measures. Third
and finally, thanks to Kantorovich duality, a bound on the Wasserstein
distance translates into a strong uniform bound on test functions. For
example, when p = 1, W1(µn, µ) → ω implies that |

∫
f dµn↑

∫
f dµ| → ω

for all functions f that are 1-Lipschitz; in fact the two statements are
equivalent (see Section 1.6 for details).

In the last decade, following the impetus of machine learning, optimal
transport has percolated to many more aspects of statistics. One of the
most exciting directions is a new avenue of research that had largely been
out of reach of classical methods in the past. In this class of problems,
the coupling of data is the main obstacle to statistical analysis. More
concretely, consider a classical statistical setup where one observes
independent copies of a pair of random variables (X,Y ) where X is
thought of as input and Y output. Regression falls in this framework,
as does, more generally, all of supervised learning. In particular, the
observed X and Y are coupled. A more challenging model arises when
X and Y are observed in an uncoupled fashion: independent copies of
X and independent copies of Y . Such a setup arises naturally in single-
cell genomics where the destructive nature of the prevailing sequencing
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process does not allow for taking multiple measurements of the same cell.
This conundrum is a key obstacle to cellular trajectory reconstruction
where one aims at reconstructing the time evolution of a cell in a genetic
landscape; see [SST+19, BMPKC22] for more details. However, under a
natural physical hypothesis that the distribution of Y is obtained from
the distribution of X by evolving it in a conservative vector field for a
short time, it is natural to model the unobserved coupling between X
and Y as arising from optimal transport. These problems and more raise
fundamental questions about the estimation of Wasserstein distances
and the corresponding couplings, which are taken up in the first part of
this monograph.

The aforementioned applications make use of the role of optimal
transport in endowing the space of probability measures with an inter-
pretable and useful notion of distance. A deeper study of this space,
however, uncovers a rich underlying geometrical structure admitting
descriptions of curvature, geodesics, gradient flows, etc. This geometric
perspective, first advocated by Felix Otto in his seminal article [Ott01],
provides statisticians with powerful new tools for the design and anal-
ysis of algorithms for manipulating probability distributions. A key
development in this regard was the edifying interpretation, by Jordan,
Kinderlehrer, and Otto [JKO98], of the Langevin di”usion as a Wasser-
stein gradient flow of the KL divergence. Since the Langevin di”usion
is popularly employed as a sampling algorithm in Bayesian statistics,
this discovery has ushered in a decade of research linking sampling to
optimization over the Wasserstein space. More broadly, Wasserstein
gradient flows and their variants yield new algorithmic paradigms and
fresh perspectives for diverse problems including the nonparametric
MLE, the dynamics and training of neural networks, and variational
inference (see Chapter 6). Geometric considerations also lead to novel
applications, such as the geometric averaging of data which can be
cast as probability measures, e.g., images or speech. The subject of
Wasserstein geometry is studied in the second half of this monograph.

How to read this book.

This monograph aims to o”er a concise introduction to optimal trans-
port, quickly transitioning to its applications in statistics and machine
learning. It is primarily tailored for students and researchers in these
fields, yet it remains accessible to a broader audience of applied mathe-
maticians and computer scientists.
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Chapter 1 serves as the gateway to the subsequent chapters by
presenting the foundational concepts of optimal transport that will be
used throughout. The remaining chapters are largely independent, with
the exceptions of chapters 5 and 6, and chapters 7 and 8, which should
be studied together. Figure 0.1 illustrates the dependencies between the
various chapters.

1

2 3 4 5

6

7

8

Fig. 0.1. Dependencies between chapters. Solid arrows show prerequisites; dotted
arrows indicate references.

Each chapter concludes with a series of exercises, allowing readers to
apply the concepts learned to questions not addressed in the main text.
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1

Optimal transport

1.1 The optimal transport problem

In his 1781 memoir [Mon81], Monge formulated the following problem:
how can one transport a given pile of sand to fill a given ditch so as
to minimize the cost of transporting the sand? This problem can be
modeled using probability distributions. Indeed, note first that for this
task to be solvable, the pile and the ditch must occupy the same volume.
Without loss of generality, let us normalize this volume to be 1. We
are therefore led to consider two probability measures, µ and ε over Rd.
It is often convenient to reason about two random variables, X ↓ µ,
Y ↓ ε. This is our input to a constrained optimization problem.

1.1.1 The Monge and Kantorovich problems

Back to our sand analogy, transporting the pile means finding a (mea-
surable) function, called a transport map T : Rd ↔ Rd, which indicates
that the sand located at x ↗ Rd should be moved to T (x) ↗ Rd. For
the transport map to actually complete the job (filling the ditch), one
needs to ensure that T (X) ↓ ε whenever X ↓ µ. We say that T pushes
µ to ε or that ε is the pushforward measure of µ (through T ) and write
T#µ = ε. This is our constraint.

Turning now to our objective function, recall that Monge’s question
involved minimizing the cost of transporting the sand. There are many
ways to measure this cost (e”ort, fuel consumption, etc.) so to simplify
our exposition, we simply measure it in terms of the Euclidean distance
travelled by the sand. The sand at location x travels a distance of
↘T (x)↑ x↘. Therefore, the average distance travelled is
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∫
↘T (x)↑ x↘µ(dx) .

The Monge formulation of the optimal transport problem is therefore
to minimize the above objective subject to the constraint that T pushes
µ to ε:

inf
T :T#µ=ω

∫
↘T (x)↑ x↘µ(dx) .

Note that many choices for the transport cost may be considered. In full
generality, it is customary to consider a general cost c(X,T (X)), where
c(x, y) measures the cost of transporting x ↗ Rd to y ↗ Rd. In this
general framework, we may even allow X and Y to be defined on two
di”erent spaces, not necessarily Rd. In these notes, we focus primarily
on the cases where c(x, y) = ↘x ↑ T (x)↘ or c(x, y) = ↘x ↑ T (x)↘2,
which give rise to the Wasserstein distances. The space Rd may also be
replaced with more complex spaces such as Riemannian manifolds, but
this is generally beyond the scope of these lectures (with the exception
of Section 5.6).

While the Monge problem is easy to formulate, we need to ask several
questions:

• Does there always exists such a valid transport map or, conversely,
is the constraint set empty?

• If there is a minimizer, is it unique? How to characterize it? Note
that our constraint is not convex, which makes finding an answer to
this question rather di!cult.

A simple example gives an answer to the first question. Indeed, take
d = 1, assume that µ = ϑ0 is a point mass at 0, and that ε = 1

2
ϑ→1+

1

2
ϑ1

is a mixture of two point masses. Whatever our choice of the transport
map T , the pushforward T#µ is the point mass ϑT (0) at T (0), so we
cannot achieve the transport at all, at least with a deterministic map.

Intuitively, we would like:

T (0) =

{
↑1 w.p. 1

2

1 w.p. 1

2

and T (x) = x , ≃ x ⇐= 0 .

Such a T is not a function but a Markov kernel: it assigns a probability
distribution to each point x ↗ R.

The second question remained without a satisfactory answer for
almost two centuries until the Soviet mathematician Leonid Kan-
torovich [Kan42] introduced a relaxation of the problem that exactly
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allows for Markov kernels, as discussed in the example above, in a
groundbreaking two-pager. Equivalently, this formulation involves cou-
plings as opposed to maps.

Let µ, ε be two probability measures over Rd and let ϖ be a coupling
between these two distributions, that is, a joint distribution over Rd⇒Rd

such that its first marginal is µ and its second marginal is ε: for any
Borel set A ↗ Rd, we have

ϖ(A⇒ Rd) = µ(A) and ϖ(Rd ⇒A) = ε(A) .

The terminology coupling comes from the fact that while X ↓ µ and
Y ↓ ε were random variables that had nothing to do with each other, the
coupling forces them to live on the same probability space by describing
their probabilistic dependence. Here and throughout these notes, we
use the notation #µ,ω for the set of couplings of µ and ε.

Let c : Rd ⇒Rd ↔ [0,⇑) be a measurable cost function. The general
Kantorovich formulation of the optimal transport problem consists of
the following optimization problem:

inf
ε↑!µ,ω

∫
c(x, y) ϖ(dx, dy) . (KOT)

1.1.2 Couplings

To get a better understanding of the Kantorovich problem, it is infor-
mative to explore the set #µ,ω .

Perhaps the simplest coupling is the independent coupling ϖ = µ⇓ ε
where X ↓ µ and Y ↓ ε are simply assumed to be independent: for
any Borel sets A,B ⇔ Rd,

ϖ(A⇒B) = µ(A) · ε(B) .

The next proposition collects preliminary facts about #µ,ω .

Proposition 1.1. Let µ, ε be two probability measures on Rd. The set
#µ,ω of couplings between µ and ε is non-empty, convex, and compact
with respect to the topology of weak convergence.

Proof. Because the independent coupling always exists, we know that
#µ,ω ⇐= ⊋.

To show that #µ,ω is convex, consider two couplings ϖ0, ϖ1 ↗ #µ,ω

and for any ϱ ↗ (0, 1) define the mixture ϖϑ = (1↑ϱ) ϖ0+ϱ ϖ1. Observe
that for any Borel set A ↗ Rd,
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ϖϑ(A⇒ Rd) = (1↑ ϱ) ϖ0(A⇒ Rd) + ϱ ϖ1(A⇒ Rd)

= (1↑ ϱ)µ(A) + ϱµ(A) = µ(A) .

Hence the first marginal of ϖϑ is given by µ and by the same argument
its second marginal is given by ε. Thus ϖϑ ↗ #µ,ω for any ϱ ↗ (0, 1),
whence #µ,ω is convex.

To complete the proof of our proposition, we show that #µ,ω is
compact. By Prokhorov’s theorem (Theorem B.3), it is su!cient to
show that #µ,ω is closed and (uniformly) tight. To that end, recall that
from Prokhorov’s theorem, the constant sequences (µ)n, (ε)n are both
tight, so that for any ω > 0, there exists a compact set K ↖ Rd such
that µ(Kc) + ε(Kc) < ω. Then the set K ⇒K is also compact and for
any ϖ ↗ #µ,ω ,

ϖ((K ⇒K)c) → ϖ(Rd ⇒Kc) + ϖ(Kc ⇒ Rd) = µ(Kc) + ε(Kc) < ω .

Hence, #µ,ω is tight. Moreover, since ϖ ↗ #µ,ω is equivalent to

∫
f(x) ϖ(dx, dy) =

∫
f dµ and

∫
f(y) ϖ(dx, dy) =

∫
f dε

for all bounded continuous f : Rd ↔ R, by the definition of weak
convergence (Theorem B.4) it follows that #µ,ω is closed. Therefore,
Prokhorov’s theorem yields that #µ,ω is compact. ↙∝

Fig. 1.1. (Left) Independent coupling of a mixture of two Gaussians. (Right)
Deterministic coupling of X → N(0, 1) with Y → ω

2

1.
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A coupling ϖ ↗ #µ,ω captures the dependence between two random
variablesX ↓ µ and Y ↓ ε. As mentioned above, one option is to assume
that X and Y are independent, which gives rise to the independent
coupling. In Figure 1.1 (Left), we plot the independent coupling between
two mixtures of Gaussians. At the opposite extreme of the independent
coupling, suppose by way of example that X ↓ N(0, 1) and Y ↓ ς2

1
and

observe that Y has the same distribution as X2. Then we can take the
deterministic coupling such that Y = X2:

ϖ(dx, dy) = µ(dx) ϑx2(dy) .

We plot this coupling in Figure 1.1 (Right); observe that it is degenerate.
To continue our exploration of couplings, assume that X ↓ N(0, 1)

and Y ↓ N(0, 1), then we can take any coupling where
(
X
Y

)
↓ N

((
0
0

)
,

(
1 φ
φ 1

))
(1.1)

and φ ↗ [↑1, 1] is the correlation between X and Y . See Figure 1.2.

Fig. 1.2. The bivariate Gaussian coupling (1.1) for five di!erent values of ε.

The content of Brenier’s theorem later in this chapter is that under
mild regularity conditions, the solution of the Kantorovich problem with
quadratic cost is achieved by a deterministic coupling. As we discuss
next, when µ and ε are discrete measures, this fact can be understood
by examining the geometry of the set #µ,ω .

1.1.3 Discrete optimal transport

The case where µ and ε are two discrete distributions is of special
practical relevance. For example, µ, ε can be empirical measures on a
point cloud. Consider the case where

µ =
m∑

i=1

piϑxi , and ε =
n∑

j=1

qjϑyj .
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In this case, a coupling ϖ of X ↓ µ and Y ↓ ε is characterized by a
non-negative matrix P ↗ Rm↓n where Pi,j = ϖ(X = xi, Y = yj). The
marginal constraints on ϖ ↗ #µ,ω readily translate into

≃i ↗ [m] ,
∑

j↑[n]

Pi,j = pi , and ≃j ↗ [n] ,
∑

i↑[m]

Pi,j = qj .

Introducing 1m, 1n for the all-ones vectors of sizes m and n, respectively,
these constraints can be represented concisely as P1n = p, PT1m = q,
where p = (p1, . . . , pn)T and q = (q1, . . . , qm)T.

Like the coupling, the cost c can also be captured by an m⇒n matrix
C where Ci,j = c(xi, yj) for i ↗ [m], j ↗ [n]. The Kantorovich optimal
transport problem (KOT) is therefore equivalent to

min
P↑Rm→n

+

∑

i,j↑[n]

Ci,jPi,j s.t. P1n = p , PT1m = q ,

which can also be written more concisely as

min
P↑Rm→n

+

′C,P ∞ s.t. P1n = p , PT1m = q ,

where ′C,P ∞ = tr(CTP ) is the Frobenius inner product on the set of
m⇒ n real matrices.

In particular, when m = n and all of the weights pi, qj are equal to
1/n, the set of valid coupling matrices P is (a multiple of) the set of
doubly stochastic matrices, also known as the Birkho! polytope:

Birk := {ϖ ↗ Rn↓n

+
: ϖ1n = 1n, 1

T
nϖ = 1Tn} . (1.2)

Then, (KOT) reduces to

min
P↑n↑1Birk

′C,P ∞ . (1.3)

The extreme points of the Birkho” polytope are permutation matrices:
they are binary matrices ↼ ↗ {0, 1}n↓n with exactly one non-zero
entry in each row and column. In particular, general principles of convex
geometry imply that the solution to any linear program of the form (1.3)
can be taken to be a matrix of the form n→1↼. A transport plan of this
form is induced by a deterministic map (the permutation), and hence
in this case there is a solution to the Monge problem. As we shall see
in the subsequent sections, extreme points of #µ,ω play a special role
more generally in the geometry of the optimal transport problem.
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1.2 Wasserstein distances

The Kantorovich problem (KOT) makes sense for a wide variety of cost
functions, with di”erent interpretations in each case. For instance, one
natural example comes from taking c(x, y) = x ↔=y to be the trivial
metric. In this case, (KOT) gives:

inf
ε↑!µ,ω

ϖ(X ⇐= Y )

which is a well-known formulation of the total variation distance. (See
Exercise 9.) Note, however, that the trivial distance x ↔=y is unrelated
to the geometry of Rd. In particular, it does not say whether x and y
are far from each other but only if they are di”erent. This limitation
manifests itself in the total variation. Indeed, if µ = ϑx and ε = ϑy, then
the objective of (KOT) is equal to 1 as soon as x ⇐= y.

To obtain a geometrically meaningful quantity from the Kantorovich
problem, we need to choose a cost that reflects the actual distance
between x and y. This idea gives rise to the Wasserstein distances.
For any p ∈ 1, let Pp(Rd) be the set of probability measures over Rd

equipped with the Euclidean norm ↘ · ↘ that have finite p-th moment:

µ ↗ Pp(Rd) ∋
∫

↘x↘p µ(dx) < ⇑ .

The p-Wasserstein distance between two probability measures µ, ε ↗
Pp(Rd) is defined by

Wp(µ, ε) = inf
ε↑!µ,ω

(∫
↘x↑ y↘p ϖ(dx, dy)

)
1/p

,

where we recall that #µ,ω is the set of couplings between µ and ε.
We first show that in fact the above infimum is attained. To that

end, define

I(ϖ) :=

∫
↘x↑ y↘p ϖ(dx, dy)

and observe that by definition, there exists a sequence (ϖn)n in #µ,ω

such that I(ϖn) ↔ W p
p (µ, ε). Since #µ,ω is compact (Proposition 1.1),

there is a subsequence of (ϖn)n which converges to some ϖ̄ ↗ #µ,ω . By
definitionWp(µ, ε) → I(ϖ̄). Since (x, y) △↔ ↘x↑y↘p is unbounded, I is not
continuous, but it is lower semicontinuous, so I(ϖ̄) → lim infn↗↘ I(ϖn) =
W p

p (µ, ε) (part three of the portmanteau theorem, Theorem B.4). Hence
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I(ϖ̄) = W p
p (µ, ε). Note that the only property of the cost function

we used in this proof is lower semicontinuity so this argument readily
extends to more general costs.

We can therefore adopt the following definition of Wasserstein dis-
tances. Note that these distances should really be called Kantorovich–
Rubinstein distances but we stick to the modern trend of “Wassersteini-
fication”.

Definition 1.2. The p-Wasserstein distance between two probability
measures µ, ε ↗ Pp(Rd) is defined by

Wp(µ, ε) = min
ε↑!µ,ω

(∫
↘x↑ y↘p ϖ(dx, dy)

)
1/p

.

Proposition 1.3. The p-Wasserstein distance defines a metric over
Pp(Rd), that is for every µ, ε ↗ Pp(Rd), it holds

1. Wp(µ, ε) ∈ 0
2. Wp(µ, ε) = Wp(ε, µ)
3. Wp(µ, ε) = 0 i! µ = ε
4. Wp(µ, ε) → Wp(µ, φ) +Wp(φ, ε) for any φ ↗ Pp(Rd).

Proof. Note first that 1. and 2. hold trivially.
We now turn to the proof of 3. If µ = ε, then the measure ϖ(dx, dy) =

µ(dx) ϑx(dy) is a valid coupling: ϖ ↗ #µ,ω . Concretely, ϖ is the law of
(X,X) for X ↓ µ. Therefore

0 → W p

p (µ, µ) →
∫

↘x↑ y↘p ϖ(dx, dy) =
∫

↘x↑ x↘p µ(dx) = 0 .

To show the other direction of 3., observe that if Wp(µ, ε) = 0, there
exists ϖ̄ ↗ #µ,ω such that (X,Y ) ↓ ϖ̄, and X = Y almost surely; in
particular, they must have the same distribution: µ = ε.

To complete the proof, we check the triangle inequality 4. To that
end, we employ the gluing lemma (Lemma B.5) which ensures that
there exists X,Y, Z such that X ↓ µ, Y ↓ ε, Z ↓ φ and such that
(X,Z) and (Z, Y ) are optimally coupled.

Then

Wp(µ, ε) →
(
E↘X ↑ Y ↘p

)
1/p

=
(
E↘X ↑ Z + Z ↑ Y ↘p

)
1/p

→
(
E↘X ↑ Z↘p

)
1/p

+
(
E↘Z ↑ Y ↘p

)
1/p
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= Wp(µ, φ) +Wp(φ, ε) ,

where in the first line we used the suboptimality of the coupling (X,Y ),
in the third line we used the triangle inequality for Lp norms, and in the
last line, we used the optimality of the couplings (X,Z) and (Z, Y ). ↙∝

Example 1.4 (Wasserstein distances in simple cases).

1. Fix x, y ↗ Rd. Then

Wp(ϑx, ϑy) = ↘x↑ y↘ .

Therefore, (Rd, ↘ · ↘) is isometrically embedded in (Pp(Rd),Wp) via
x △↔ ϑx.

2. Fix x, y ↗ Rd and 0 → ϱ, ↽ → 1. Then

Wp

(
ϱ ϑx + (1↑ ϱ) ϑy, ↽ ϑx + (1↑ ↽) ϑy

)
= |ϱ↑ ↽ |1/p ↘x↑ y↘ .

Note that it follows from ordering of the Lp norms that Wp(µ, ε) →
Wq(µ, ε) whenever p → q. In particular, the smallest of the Wasserstein
distances is W1.

Wasserstein distances induce a useful topology on random variables:
they metrize weak convergence on compact spaces; see Appendix B for
background. More specifically, a sequence (µn)n satisfies Wp(µn, µ) ↔ 0
if and only if it converges weakly to µ, denoted µn ⇀↔ µ, and the
p-th moment converges:

∫
↘ · ↘p dµn ↔

∫
↘ · ↘p dµ. This “metrization”

property can be found in all of the main texts on optimal transport and
has often been employed as a justification for the use of Wasserstein
distance as opposed to other distances. This is hardly a discriminating
feature, however, and many other distances (Lévy–Prokhorov, Fortet–
Mourier, etc.) also have this property; see [Vil09b, Chapter 6]. In fact,
this folklore result does not do justice to the quantitative meaning of
Wp(µ, ε) → ω for some ω.

For example, the following statement implies that if two random
variables with su!ciently light tails are close in p-Wasserstein distance
for any p > 1, then all of their moments must also be close. We formalize
the assumption that the tails are light by considering sub-exponential
random variables, that is, random variables Z satisfying

Ee|Z| → 2 . (1.4)

For such random variables, we have the following bound.
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Proposition 1.5. Let X ↓ µ and Y ↓ ε be two sub-exponential random
variables. Then, for any p > 1, there exists a constant Cp > 0 such that
for any integer ⇁ ∈ 1, it holds

∣∣E|X|ϖ ↑ E|Y |ϖ
∣∣ → (Cp⇁)

ϖWp(µ, ε) .

Proof. By convexity of the function x △↔ |x|ϖ, ⇁ ∈ 1, it holds

|X|ϖ ↑ |Y |ϖ → ⇁ |X ↑ Y | (|X|ϖ→1 ▽ |Y |ϖ→1) .

Taking expectation on both sides and applying Hölder’s inequality yields
for any coupling (X,Y ),

∣∣E|X|ϖ↑E|Y |ϖ
∣∣ → ⇁

(
E|X↑Y |p

)
1/p (E(|X|ϖ→1▽|Y |ϖ→1)q

)
1/q

,
1

p
+
1

q
= 1 .

Taking the optimal coupling between X and Y yields

∣∣E|X|ϖ ↑ E|Y |ϖ
∣∣ → ⇁Wp(µ, ε)

(
E(|X|ϖ→1 ▽ |Y |ϖ→1)q

)
1/q

.

To conclude, recall that that it is a standard property of sub-exponential
random variables [Ver18] that if Z is sub-exponential, then (E[|Z|k])1/k →
k for all k ∈ 1. Thus

(
E(|X|ϖ→1 ▽ |Y |ϖ→1)q

) 1

(ε↑1) q → 2(⇁↑ 1) q → 2
⇁p

p↑ 1
.

↙∝

The above result is encouraging: obtaining bounds on the Wasserstein
distance between two measures implies quantitative bounds on the
distance between their moments. It could be the case, though, that
the Wasserstein distance tends to be quite large compared to other
commonly used distances or divergences such as total variation or the
Kullback–Leibler divergence; see [Tsy09, Chapter 2] for a list of such
distances, their comparison, and relevance to statistical problems.

It turns out, however, that the Wasserstein distance can often be
controlled by other commonly used distances. For example, the next
result shows that on a bounded domain, the Wasserstein distance is
dominated by the total variation distance (see Exercise 9 for background).
Moreover, its proof is our first illustration of how to bound Wasserstein
distances—it su!ces to exhibit a (suboptimal) coupling ϖ such that
Eε↘X ↑ Y ↘p is controlled appropriately.
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Theorem 1.6. Let µ, ε ↗ Pp(Rd) be two distributions with densities f
and g respectively. Then, for any p ∈ 1, it holds

W p

p (µ, ε) → 2p→1 inf
x0↑Rd

∫
↘x↑ x0↘p |f(x)↑ g(x)| dx .

In particular, if the supports of both µ and ε are included in the same
ball of diameter D, then

W p

p (µ, ε) → Dp dTV(µ, ε) ,

where dTV(µ, ε) is the total variation distance between µ and ε and is
defined by

dTV(µ, ε) =
1

2

∫
|f(x)↑ g(x)| dx .

Proof. Assume that µ ⇐= ε as otherwise the statement is trivial. As
mentioned before the statement of the theorem, we construct an explicit
coupling between µ and ε. To that end, consider the three positive
functions (f ↑ g)+, (f ↑ g)→, and f ̸ g (see Figure 1.3 for reference)
and observe that:

Fig. 1.3. The integrals
∫
(f ↑ g)+,

∫
(f ↑ g)↑, and

∫
f ↓ g correspond to the blue,

red, and orange regions, respectively.

∫ (
(f ↑ g)+ ↑ (f ↑ g)→

)
=

∫
f ↑

∫
g = 1↑ 1 = 0

so that ∫
(f ↑ g)+ =

∫
(f ↑ g)→ =: t > 0

and
∫

f ̸ g =
1

2

(∫
f +

∫
g ↑

∫
(f ↑ g)+ ↑

∫
(f ↑ g)→

)
= 1↑ t .
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Next, we normalize these functions to obtain three densities

h+ =
1

t
(f ↑ g)+ , h→ =

1

t
(f ↑ g)→ , h≃ =

1

1↑ t
f ̸ g .

We can rewrite f and g as mixtures of the above densities:

f = th+ + (1↑ t)h≃ , g = th→ + (1↑ t)h≃ .

Next, let Z+, Z→, and Z≃ be three independent random variables with
densities h+, h→, and h≃ respectively and let B be a Bernoulli random
variable with parameter t ↗ (0, 1], independent of Z+, Z→, and Z≃.

We are now in a position to define our coupling between µ and ε.
To that end, let (X,Y ) be a random pair such that

X = BZ+ + (1↑B)Z≃ ,

Y = BZ→ + (1↑B)Z≃ ,

and observe that the distribution ϖ of (X,Y ) is indeed a valid coupling
between µ and ε. Using this fact together with the inequality ↘x↑y↘p →
2p→1 (↘x↑ x0↘p + ↘y ↑ x0↘p), we get

W p

p (µ, ε) → Eε↘X ↑ Y ↘p

= P(B = 0) · 0 + P(B = 1)

∫
↘x↑ y↘p h+(x)h→(y) dx dy

→ t2p→1

(∫
↘x↑ x0↘p h+(x) dx+

∫
↘y ↑ x0↘p h→(y) dy

)

= t2p→1

(∫
↘x↑ x0↘p (h+(x) + h→(x)) dx

)

= 2p→1

(∫
↘x↑ x0↘p

(
(f ↑ g)+(x) + (f ↑ g)→(x)

)
dx

)

= 2p→1

(∫
↘x↑ x0↘p |f(x)↑ g(x)| dx

)

and the result follows by minimizing the right-hand side with respect to
x0. The second statement follows easily by taking x0 to be the center
of said ball. ↙∝

The assumption that µ and ε are absolutely continuous is superfluous
and the exact same proof follows by manipulating measures rather
than densities, albeit with slightly more opaque notation; see [Vil09b,
Theorem 6.15].
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1.3 Optimal transport in one dimension

To gain a bit of insight into optimal transport, we look at the simpler
case where µ and ε are probability measures on the real line. In this
case, we may define their associated cumulative distribution functions.

Recall that the cumulative distribution function (CDF) of a random
variables Z is the function F : R ↔ [0, 1] defined by

F (t) := P(Z → t) , t ↗ R .

Since F is monotonically non-decreasing, we may define its pseudo-
inverse F † by

F †(u) = inf{t ↗ R : F (t) ∈ u} , u ↗ [0, 1] ,

with the convention that inf ⊋ = ⇑. While F † is not an inverse per se,
it does satisfy the following property:

F †(u) → t ∋ u → F (t) (1.5)

This property is often used to simulate random variables. Let U ↓
Unif([0, 1]) be a uniform random variable, then Z ↓ F †(U) has CDF F .
Indeed, for any t ↗ R,

P(Z → t) = P(F †(U) → t) = P(U → F (t)) = F (t) . (1.6)

The following theorem characterizes optimal transport in one dimen-
sion in terms of CDFs.

Theorem 1.7. Let µ, ε ↗ P1(R) be two probability distributions with
CDFs Fµ and Fω respectively. Let U ↓ Unif([0, 1]) be a uniform random

variable and denote by ϖ̄ the distribution of (F †
µ(U), F †

ω (U)). Then ϖ̄ ↗
#µ,ω is a valid coupling between µ and ε and it is optimal:

W1(µ, ε) =

∫
|x↑ y| ϖ̄(dx, dy) = min

ε↑!µ,ω

∫
|x↑ y| ϖ(dx, dy) .

Moreover,

W1(µ, ε) =

∫ ↘

→↘

∣∣Fµ(t)↑ Fω(t)
∣∣ dt .
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Proof. It follows from (1.6) that ϖ̄ ↗ #µ,ω and it remains to check that
it is optimal. To that end, observe that for any ϖ ↗ #µ,ω , it follows from
Fubini’s theorem that for (X,Y ) ↓ ϖ,

∫
|x↑ y| ϖ(dx, dy) =

∫∫ ↘

→↘

(
1Ix⇐t<y + 1Iy⇐t<x

)
dt ϖ(dx, dy)

=

∫ ↘

→↘

(
ϖ(X → t < Y ) + ϖ(Y → t < X)

)
dt

=

∫ ↘

→↘

(
ϖ(X → t) + ϖ(Y → t)↑ 2ϖ(X → t, Y → t)

)
dt

∈
∫ ↘

→↘

(
Fµ(t) + Fω(t)↑ 2 (Fµ(t) ̸ Fω(t))

)
dt

=

∫ ↘

→↘

∣∣Fµ(t)↑ Fω(t)
∣∣ dt .

To show that the above inequality becomes an equality when ϖ = ϖ̄,
observe that

ϖ̄(X → t, Y → t) = P(F †
µ(U) → t, F †

ω (U) → t)

= P(U → Fµ(t), U → Fω(t))

= P(U → Fµ(t) ̸ Fω(t))

= Fµ(t) ̸ Fω(t) .

We have proved
∫

|x↑ y| ϖ(dx, dy) ∈
∫ ↘

→↘

∣∣Fµ(t)↑ Fω(t)
∣∣ dt =

∫
|x↑ y| ϖ̄(dx, dy)

so that ϖ̄ is an optimal coupling. ↙∝

If Z admits a density, then its CDF F is actually a left inverse of F †,
i.e., F ◦ F † = Id. If µ has a density, this fact implies that the optimal
coupling ϖ̄ takes the following special form. If X ↓ µ, then

(X,F †
ω ◦ Fµ(X)) ↓ ϖ̄ . (1.7)

In other words, the solution to the Monge problem and the Kantorovich
problem coincide since we have found a transport map T̄ = F→1

ω ◦ Fµ

such that T̄#µ = ε and
∫

|x↑ T̄ (x)|µ(dx) = min
ε↑!µ,ω

∫
|x↑ y| ϖ(dx, dy)
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= min
T :T#µ=ω

∫
|x↑ T (x)|µ(dx) .

Although we have focused on the W1 distance in this section, the
coupling ϖ̄ given in (1.7) turns out to be universally optimal, in the
sense that it is optimal for the Kantorovich problem for any strictly
convex cost (a cost of the form c(x, y) = h(x↑ y) where h : R ↔ R is
strictly convex); this includes all Wp distances for p > 1. See Exercise 8.

Note that T̄ is a monotone increasing function as the composition
of two increasing functions. Continuous monotone increasing functions
in one dimension are derivatives of convex functions, suggesting that
this property may be generalized to higher dimension by considering
gradients of convex functions. Existence of such monotone transport
maps in higher dimensions is the content of the influential result of
Brenier [Bre87], which we explore next.

1.4 Brenier’s theorem

The p-Wasserstein distance is a natural object for any p ∈ 1. However,
the cases p = 1, 2 possess remarkable special structure, and we focus on
them in much of what follows. We first explore the case p = 2, which is
notable for its close connection to convex analysis.

Recall that

W 2

2 (µ, ε) = min
ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy) . (W2

2)

Theorem 1.8(Brenier). Let µ, ε ↗ P2(Rd) be two probability mea-
sures such that µ has a density and let X ↓ µ. If ϖ̄ is an optimal
coupling for (W2

2),
∫

↘x↑ y↘2 ϖ̄(dx, dy) = min
ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy) = W 2

2 (µ, ε) ,

then there exists a convex function ϕ : Rd ↔ R such that (X,∀ϕ(X)) ↓
ϖ̄ ↗ #µ,ω .

The crucial assumption of Brenier’s theorem is that µ has a density,
that is, that µ is absolutely continuous with respect to the Lebesgue mea-
sure. In particular, since convex functions are di”erentiable Lebesgue-
almost everywhere, this assumption guarantees that ∀ϕ(X) makes
sense.
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Before turning to the proof, we first consider a first statistical im-
plication of Brenier’s theorem. Brenier’s theorem asserts that, as long
as µ has a density, for any ε ↗ P2(Rd), there exists a convex function
φ so that ∀φ#µ = ε. Since gradients of convex functions are natural
analogues of monotone functions in higher dimensions, this theorem
is therefore a significant generalization of the classical univariate fact
mentioned in Section 1.3, that if U ↓ Unif([0, 1]), then F †

ω (U) ↓ ε.

In one dimension, the function F †
ω is known as the quantile func-

tion of ε, and is of fundamental statistical significance. Brenier’s the-
orem therefore can be used to define a multivariate notion of quan-
tiles [CGHH17, HdBCAM21]. This point of view has proven to be
extremely fruitful and has led to a wide range of statistical applica-
tions [Hal22]. (For more details, see the discussion section.)

Returning to the content of Brenier’s theorem, at this point it
is not obvious what optimal transport has to do with gradients of
convex functions. We therefore begin by studying such gradients to gain
intuition.

1.4.1 Gradients of convex functions

Note first that a continuous function f : R ↔ R is such that f = ϕ⇒ for
some di”erentiable convex function ϕ if and only if f is non-decreasing.
Indeed, convexity of ϕ implies that for any x, y ↗ R:

ϕ(x)↑ ϕ(y) → (x↑ y)ϕ⇒(x) , (1.8)

ϕ(y)↑ ϕ(x) → (y ↑ x)ϕ⇒(y) . (1.9)

Summing the above two inequalities yields

(x↑ y) (ϕ⇒(x)↑ ϕ⇒(y)) ∈ 0 ,

so that ϕ⇒ is non-decreasing.
Is there an analogue of this statement for functions on Rd? Of course

we immediately get that for any x, y ↗ Rd

′x↑ y, ∀̃ϕ(x)↑ ∀̃ϕ(y)∞ ∈ 0 ,

where ∀̃ϕ(x) ↗ ▷ϕ(x) denotes a subgradient of ϕ at x (see Appendix A
for preliminaries on convex analysis). Unfortunately, while in dimension
1, the two-point inequalities (1.8)–(1.9) imply inequalities for any ar-
rangement of points, in higher dimension this is no longer the case and
we need to capture additional information.
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In fact, convexity implies many such inequalities: for any integer
k ∈ 2, and any collection of points x1, . . . , xk ↗ Rd, we have

ϕ(xi)↑ ϕ(xi+1) → ′xi ↑ xi+1, ∀̃ϕ(xi)∞ , i = 1, . . . , k ↑ 1 ,

ϕ(xk)↑ ϕ(x1) → ′xk ↑ x1, ∀̃ϕ(xk)∞ .

Summing these inequalities yields:

k∑

i=1

′xi ↑ xi+1, ∀̃ϕ(xi)∞ ∈ 0 , (1.10)

with the convention that xk+1 = x1.1

1.4.2 Cyclical monotonicity

Since there may exist several points in the subdi”erential of ϕ at x, we
first describe the graph {(x, ∀̃ϕ(x)) : x ↗ Rd} before thinking about
∀̃ϕ(·) as a map from Rd to Rd. We first define an important property
of such graphs.

Definition 1.9.A set A ↖ Rd ⇒ Rd is said to be cyclically monotone
if for any integer k ∈ 2, and points (xi, yi) ↗ A, i = 1, . . . , k, it holds

k∑

i=1

′xi ↑ xi+1, yi∞ ∈ 0 , (1.11)

with the convention that xk+1 = x1.

In light of (1.10), the set ▷ϕ ↖ Rd ⇒ Rd is cyclically monotone
whenever ϕ is convex. It turns out that all cyclically monotone subsets
of Rd ⇒ Rd are of this form.

Theorem 1.10(Rockafellar). A set A ↖ Rd⇒Rd is cyclically mono-
tone if and only if there exists a closed convex function ϕ : Rd ↔ R∃{⇑}
such that

A ⇔ ▷ϕ .

The proof of this classical theorem of convex analysis can be found
in Appendix A.

Note that condition (1.11) is equivalent to the requirement that

1 With this convention, the points x1 ↔ x2 ↔ · · · ↔ xk ↔ x1 form a “cycle.”
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k∑

i=1

↘xi ↑ yi↘2 →
k∑

i=1

↘xi+1 ↑ yi↘2 (1.12)

for any points (xi, yi) ↗ A, i = 1, . . . , k. This formulation enables us to
see the connection with optimal transport. Indeed, consider the following
example for illustration purposes. Let

µ =
1

n

n∑

j=1

ϑaj , ε =
1

n

n∑

j=1

ϑbj .

In this discrete case, the set of all couplings between µ and ε can be
identified with the Birkho” polytope (see Section 1.1.3), whose extreme
points are rescaled permutation matrices. Since the discrete optimal
transport problem is a linear program, solutions can be taken to be ex-
treme points. We may therefore restrict our attention to couplings given
by permutations. Concretely, a permutation ◁ of {1, . . . , n} corresponds
to the coupling

ϖ =
1

n

n∑

j=1

ϑ(aj ,bϑ(j))
.

Such a coupling is optimal if its cost is minimal among all permutations,
that is, if

n∑

j=1

↘aj ↑ bϱ(j)↘2 →
n∑

j=1

↘aj ↑ bς(j)↘2 , ≃↽ . (1.13)

This condition is precisely equivalent to the support of ϖ being
cyclically monotone. Indeed, by relabeling the atoms of ε, we may
assume without loss of generality that ◁ is the identity permutation.
Then the support of ϖ consists of the pairs (aj , bj), j ↗ {1, . . . , n}.
Given any subset of k distinct points (xi, yi) = (aji , bji) ↗ supp(ϖ),
i = 1, . . . , k, let ↽ be the cyclic permutation of {j1, . . . , jk} that leaves
other indices unchanged

↽(j) =






ji→1 if j = ji, i ↗ {2, . . . , k}
jk if j = j1

j otherwise.

Then (1.13) implies (1.12). In fact, since any permutation ↽ can be
decomposed into cycles, similar reasoning then shows that (1.12) is also
a su!cient condition for (1.13) to hold.
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The preceding discussion indicates that, in the discrete case, the
support of an optimal coupling is cyclically monotone. A similar phe-
nomenon holds in the general case; however, the argument given above is
not valid when ϖ does not assign positive mass to points in its support.
Nevertheless, the following result shows that a similar strategy can
be made to work by reasoning about small neighborhoods (e.g., balls)
rather than individual points. Some care is required to ensure that it
is possible to modify ϖ on such neighborhoods while maintaining the
constraint ϖ ↗ #µ,ω .

Proposition 1.11. Let ϖ̄ ↗ #µ,ω be an optimal coupling between µ and
ε in the sense that

∫
↘x↑ y↘2 ϖ̄(dx, dy) = min

ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy) = W 2

2 (µ, ε) .

Then supp(ϖ̄) is cyclically monotone.

Proof. Suppose that S := supp(ϖ̄) is not cyclically monotone. Then
there exists k ∈ 2 and (xi, yi) ↗ S, i = 1, . . . , k such that

k∑

i=1

↘xi ↑ yi↘2 >
k∑

i=1

↘xi+1 ↑ yi↘2 ,

and by continuity of the Euclidean norm, there exist neighborhoods
Ui, Vi of xi, yi respectively for i = 1, . . . , k such that ϖ̄(Ui ⇒ Vi) > 0 and

k∑

i=1

↘x̃i ↑ ỹi↘2 >
k∑

i=1

↘x̃⇒i+1 ↑ ỹ⇒i↘2 , (1.14)

for all x̃i, x̃⇒i ↗ Ui, ỹi, ỹ⇒i ↗ Vi, i = 1, . . . , k.
Now, let ϖi, i = 1 . . . , k be a family of (conditional) probability

distributions on Rd ⇒ Rd defined such that ϖi(A) = ϖ̄(A | Ui ⇒ Vi) for

any Borel set A ↖ Rd ⇒ Rd. Next, let ϖ(1)
i

and ϖ(2)
i

denote the first and
second marginal of ϖi respectively and define the mixture:

ϖ = ϖ̄ +
c

k

k∑

i=1

(ϖ(1)
i+1

⇓ ϖ(2)
i

↑ ϖi) ,

where c > 0 is to be chosen later and with the convention that ϖk+1 = ϖ1.
Note that for any Borel set A ↖ Rd ⇒ Rd, it holds
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ϖ(A) ∈ ϖ̄(A)↑ c

k

k∑

i=1

ϖi(A)

= ϖ̄(A)↑ c

k

k∑

i=1

ϖ̄(A | Ui ⇒ Vi)

= ϖ̄(A)↑ c

k

k∑

i=1

ϖ̄(A ¬ (Ui ⇒ Vi))

ϖ̄(Ui ⇒ Vi)

∈ ϖ̄(A)↑ cϖ̄(A)

k

k∑

i=1

1

ϖ̄(Ui ⇒ Vi)
.

Thus ϖ(A) ∈ 0 if c < mini↑[k] ϖ̄(Ui ⇒ Vi). Moreover, ϖ(Rd ⇒ Rd) = 1 so

that ϖ is indeed a probability distribution over Rd ⇒ Rd.
To check that ϖ ↗ #µ,ω observe that for any Borel set B ↖ Rd,

ϖ(B ⇒ Rd) = µ(B) +
c

k

k∑

i=1

(ϖ(1)
i+1

(B)↑ ϖi(B ⇒ Rd))

= µ(B) +
c

k

k∑

i=1

(ϖ(1)
i+1

(B)↑ ϖ(1)
i

(B))

= µ(B) +
c

k
(ϖ(1)

k+1
(B)↑ ϖ(1)

1
(B)) = µ(B) .

Similarly

ϖ(Rd ⇒B) = ε(B) +
c

k

k∑

i=1

(ϖ(2)
i

(B)↑ ϖi(Rd ⇒B))

= ε(B) +
c

k

k∑

i=1

(ϖ(2)
i

(B)↑ ϖ(2)
i

(B)) = ε(B) .

Next observe that
∫

↘x↑ y↘2 ϖ(dx, dy)↑
∫

↘x↑ y↘2 ϖ̄(dx, dy)

=
c

k

k∑

i=1

(∫

Ui+1↓Vi

↘x↑ y↘2 ϖ(1)
i+1

(dx) ϖ(2)
i

(dy)

↑
∫

Ui↓Vi

↘x↑ y↘2 ϖi(dx, dy)
)
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< 0 ,

by (1.14). This contradicts optimality of ϖ̄. ↙∝

1.4.3 Proof of Brenier’s theorem

We are now in a position to prove Brenier’s theorem.
Let ϖ̄ be an optimal coupling. In light of Proposition 1.11, supp(ϖ̄)

is cyclically monotone. By Rockafeller’s Theorem 1.10, this implies
that there exists a convex function ϕ : Rd ↔ R ∃ {⇑} such that
ϖ̄(Y ↗ ▷ϕ(X)) = 1. But since ϕ is convex, it is locally Lipschitz on the
interior of its domain, and the boundary of the domain has measure zero
by convexity. Hence, ϕ is almost everywhere di”erentiable with respect
to the Lebesgue measure over its domain by Rademacher’s theorem.
Since µ has a density, this implies that ϕ is di”erentiable µ almost
everywhere. Therefore, ϖ̄(Y = ∀ϕ(X)) = 1 or in other words, if X ↓ µ,
then (X,∀ϕ(X)) ↓ ϖ̄.

1.5 Kantorovich duality

Brenier’s theorem shows that an optimal coupling for (W2
2) if µ has a

density is a deterministic coupling given by the gradient of a convex
function ϕ. This result raises the question of whether it is possible
to solve an optimization problem to find ϕ directly, or whether it is
possible to certify that a convex function ϕ corresponds to an optimal
coupling. These questions can be answered by employing tools from
convex duality.

In the fully discrete setting (see Section 1.1.3), (W2
2) is a linear

program or LP (linear objective & linear constraints), which admits a
useful theory of duality. This intuition carries over to the general setting
(and the link can be made precise through approximation arguments,
see [Dud02, Chapter 11]). In fact, it was through optimal transport
that Kantorovich actually introduced LP duality, which has furnished
algorithmic advances continuously since its inception.

1.5.1 The dual Kantorovich problem

The dual problem to (W2
2) is a maximization problem. To find its

expression, encode the constraint ϖ ↗ #µ,ω as
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sup
f,g↑Cb

{∫
f(x)µ(dx) +

∫
g(y) ε(dy)↑

∫ (
f(x) + g(y)

)
ϖ(dx, dy)

}

=

{
0 , if ϖ ↗ #µ,ω ,

⇑ , otherwise ,

where the supremum is taken over the set Cb of continuous and bounded
functions over Rd. Thus, (W2

2) is equivalent to

inf
ε↑M+

{∫
↘x↑ y↘2 ϖ(dx, dy)

+ sup
f,g↑Cb

∫
f(x)µ(dx) +

∫
g(y) ε(dy)↑

∫ (
f(x) + g(y)

)
ϖ(dx, dy)

}
,

where the infimum is taken over the set M+ of all positive measures
on Rd ⇒ Rd (unrestricted). Note that for ϖ /↗ #µ,ω this new objective is
infinite so the problem is strictly equivalent.

Next, we switch the inf and sup to get the following lower bound on
the value of (W2

2):

sup
f,g↑Cb

{∫
f(x)µ(dx) +

∫
g(y) ε(dy)

+ inf
ε↑M+

{∫ (
↘x↑ y↘2 ↑ f(x)↑ g(y)

)
ϖ(dx, dy)

}}

(1.15)
Next observe that since ϖ is a positive measure, it holds,

inf
ε↑M+

{∫ (
↘x↑ y↘2 ↑ f(x)↑ g(y)

)
ϖ(dx, dy)

}

=

{
0 , if f(x) + g(y) → ↘x↑ y↘2 , ≃x, y ↗ Rd ,

↑⇑ , otherwise .

Indeed, if there exists a pair (x, y) that violates the above constraint
then we can take the sequence of measures ϖn = nϑ(x,y) and the integral
would converge to ↑⇑.

Hence we have shown that (W2
2) is bounded below by

sup
f,g↑Cb

f(x)+g(y)⇐⇑x→y⇑2

{∫
f dµ+

∫
g(y) dε

}
.

Though the choice f, g ↗ Cb above is motivated by reference to the
weak topology on the set of probability measures, this lower bound
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on W 2

2
(µ, ε) holds for any pair (f, g) of integrable functions satisfying

f(x) + g(y) → ↘x↑ y↘2 almost everywhere.

Lemma 1.12. Let µ, ε ↗ P2(Rd), then

W 2

2 (µ, ε) = inf
ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy)

∈ sup
f↑L1

(µ), g↑L1
(ω)

f(x)+g(y)⇐⇑x→y⇑2

{∫
f dµ+

∫
g dε

}
.

Proof. Let f ↗ L1(µ), g ↗ L1(ε) be such that f(x) + g(y) → ↘x ↑ y↘2
for µ-a.e. x, ε-a.e. y, and fix ϖ ↗ #µ,ω . Then

∫
f(x)µ(dx) +

∫
g(y) ε(dy) =

∫ (
f(x) + g(y)

)
ϖ(dx, dy)

→
∫

↘x↑ y↘2 ϖ(dx, dy) .

The proof follows by taking the supremum on the left-hand side and
the infimum on the right-hand side. ↙∝

The dual Kantorovich problem is given by

sup
f↑L1

(µ), g↑L1
(ω)

f(x)+g(y)⇐⇑x→y⇑2

{∫
f dµ+

∫
g dε

}
. (D-W2

2)

It is the dual problem to the primal problem (W2
2).

In particular, Lemma 1.12 describes a phenomenon known as weak
duality, in which the dual is only shown to be a lower bound on the
primal problem. This terminology is to be contrasted with strong duality,
where the inequality becomes an equality so that the primal and dual
objectives take the same optimal value. While strong duality is, strictly
speaking, only a statement about objective values, it is often the case
that the solutions to the primal and dual problems are related to each
other; see [BV04, Chapter 5] for a treatment of duality in the context
of convex optimization.

We show in Subsection 1.5.3 that strong duality in fact holds and it
leads to important consequences for our problem of interest.
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1.5.2 The semidual

Before moving to strong duality, we make a quick detour to define the
semidual problem, a partially solved version of the dual problem (D-W2

2).
It plays an important role in the estimation of optimal transport maps
(Chapter 3).

Consider (D-W2
2) and suppose that we hold the first dual potential f

fixed; given this choice of f , what is the optimal choice of g? Since the
dual problem is a supremum, we want to make g as large as possible,
but we must respect the constraint f(x)+ g(y) → ↘x↑ y↘2. The optimal
function g is therefore given by

g(y) = inf
x↑Rd

{↘x↑ y↘2 ↑ f(x)} . (1.16)

The function defined in (1.16) is called the c-conjugate or c-transform
of f , denoted f c, associated with the cost c(x, y) = ↘x ↑ y↘2. This
reasoning shows that we can reformulate the dual as

(D-W2
2) = sup

f↑L1(µ)

{∫
f dµ+

∫
f c dε

}
. (1.17)

This is a version of the semidual problem, and it is applicable to optimal
transport for any cost function c provided that we replace ↘x↑y↘2 with
c(x, y) in (1.16).

However, for the quadratic cost, we can go one step further and
explicitly link the semidual with convex analysis. In this case, the
semidual is given by

inf
φ↑L1(µ)

{∫
φ dµ+

∫
φ⇓ dε

}
(SD)

where φ⇓ denotes the convex conjugate of φ; see Appendix A.

Proposition 1.13. Let µ, ε ↗ P2(Rd) be probability measures. Then,
the dual problem (D-W2

2) is equivalent to the semidual problem (SD) in
the following sense:

1. Objective values: Write S and D for the optimal objective values
of (SD) and (D-W2

2) respectively. Then

D =

∫
↘ · ↘2 dµ+

∫
↘ · ↘2 dε ↑ 2 · S .
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2. Solutions: A pair of functions (f, g) is optimal for (D-W2
2) if and

only if f = ↘ · ↘2 ↑ 2ϕ and g = ↘ · ↘2 ↑ 2ϕ⇓ where ϕ is optimal
for (SD).

Proof. Let us write f = ↘ · ↘2 ↑ 2φ and g = ↘ · ↘2 ↑ 20; this is simply a
reparametrization of the dual potentials. Then,
∫

f dµ+

∫
g dε =

∫
↘ · ↘2 dµ+

∫
↘ · ↘2 dε ↑ 2

∫
φ dµ+

∫
0 dε


.

The constraint f(x) + g(y) → ↘x↑ y↘2 translates into

↘x↘2 ↑ 2φ(x) + ↘y↘2 ↑ 20(y) → ↘x↑ y↘2 ∋ φ(x) + 0(y) ∈ ′x, y∞ .

Hence, (D-W2
2) is equivalent to

inf
φ↑L1

(µ),↼↑L1
(ω)

φ(x)+↼(y)⇔↖x,y↙

{∫
φ dµ+

∫
0 dε

}
.

Next, let us apply the same trick as described above: for fixed φ, the
optimal choice of 0 obeying the constraint is given by

0(y) = sup
x↑Rd

{′x, y∞ ↑ φ(x)} ,

which is precisely the definition of the convex conjugate φ⇓. Substituting
this in yields the equivalence. ↙∝

In the preceding proof, we showed that for fixed φ0, the optimal
choice of 0 is 0 = φ⇓

0
. Due to the symmetry of the problem, for fixed

0 = φ⇓
0
, the optimal choice of φ is then 0⇓ = φ⇓⇓

0
. One could imagine

iterating this process, obtaining better and better dual potentials, but
actually the process halts here. Since φ⇓

0
is a closed convex function, it is

self-dual, so that φ⇓⇓⇓
0

= φ⇓
0
; see Appendix A. In the end, this argument

shows that the optimal potential ϕ in (SD) can be taken to be a closed
convex function.

Thus far, we have seen two convex functions ϕ arise from the optimal
transport problem. From the primal standpoint, Brenier’s Theorem 1.8
shows that the optimal transport plan is supported on the subdi”erential
of a convex function. From the dual standpoint, a minimizer of (SD)
can be taken to be convex. In the next section, we show that these two
convex functions are one and the same.
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1.5.3 The fundamental theorem of optimal transport

Recall from Brenier’s theorem that if a measure µ has a density then
any optimal coupling between µ and ε is supported on the graph
of the gradient of a convex function. It turns out that the converse
holds: any coupling ϖ ↗ #µ,ω supported on the graph of the gradient
of a convex function has to be optimal. This equivalence follows from
the fundamental theorem of optimal transport stated below. In fact,
this theorem contains another fundamental result about strong duality
between the primal problem (W2

2) and its dual (D-W2
2) which is the key

to establishing this equivalence.

Theorem 1.14(Fundamental theorem of optimal transport).
Let µ, ε ↗ P2(Rd) be two probability measures such that µ has a density
and let X ↓ µ. Then the following are equivalent:

(i) ϖ̄ ↗ #µ,ω is an optimal coupling in the sense that:

∫
↘x↑ y↘2 ϖ̄(dx, dy) = W 2

2 (µ, ε) .

(ii)There exists a proper convex function ϕ such that (X,∀ϕ(X)) ↓
ϖ̄ ↗ #µ,ω .

(iii) Strong duality holds between (W2
2) and (D-W2

2):

∫
↘x↑ y↘2 ϖ̄(dx, dy) = sup

f↑L1
(µ), g↑L1

(ω)

f(x)+g(y)⇐⇑x→y⇑2

{∫
f dµ+

∫
g dε

}
.

Moreover, the above supremum is achieved for

f̄(x) := ↘x↘2 ↑ 2ϕ(x) and ḡ(y) := ↘y↘2 ↑ 2ϕ⇓(y) .

Proof. We have already proved that (i) ∅ (ii) in Subsection 1.4 so it
remains to prove that (ii) ∅ (iii) and (iii) ∅ (i).

We first prove that (ii) ∅ (iii). To that end, observe that for µ
almost every x

↘x↑∀ϕ(x)↘2 = ↘x↘2 + ↘∀ϕ(x)↘2 ↑ 2 ′x,∀ϕ(x)∞ .

Moreover, the convex conjugate ϕ⇓ of ϕ satisfies for µ almost every x,

ϕ(x) + ϕ⇓(∀ϕ(x)) = ′∀ϕ(x), x∞ .
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This is the optimality condition for the Fenchel–Young inequality (The-
orem A.6). The above two displays yield

↘x↑∀ϕ(x)↘2 = ↘x↘2 ↑ 2ϕ(x)  
f̄(x)

+ ↘∀ϕ(x)↘2 ↑ 2ϕ⇓(∀ϕ(x))  
ḡ(∝↽(x))

.

Integrating with respect to µ yields
∫

↘x↑ y↘2 ϖ̄(dx, dy) =
∫

↘x↑∀ϕ(x)↘2 µ(dx)

=

∫
f̄(x)µ(dx) +

∫
ḡ(∀ϕ(x))µ(dx)

=

∫
f̄(x)µ(dx) +

∫
ḡ(y) ε(dy) . (1.18)

We now check that the pair (f̄ , ḡ) satisfies the constraints of (D-W2
2). It

follows from the Fenchel–Young inequality (Theorem A.6) that for any
x, y ↗ Rd,

f̄(x) + ḡ(y) = ↘x↘2 + ↘y↘2 ↑ 2
(
ϕ(x) + ϕ⇓(y)

)

→ ↘x↘2 + ↘y↘2 ↑ 2 ′x, y∞ = ↘x↑ y↘2 . (1.19)

To check integrability, note that from the definition of convex conju-
gation, ϕ = ϕ⇓⇓ and ϕ⇓ are both lower bounded by a!ne functions.
Therefore, since µ, ε ↗ P2(Rd) we have that f+ ↗ L1(µ) and g+ ↗ L1(ε).
Moreover, (1.18) yields

∫
f dµ+

∫
g dε ∈ 0 so that

∫
f dµ > ↑⇑ and∫

g dε > ↑⇑. It yields
∫

|f | dµ = 2

∫
f+ dµ↑

∫
f dµ < ⇑

so that f ↗ L1(µ) and similarly g ↗ L1(ε). This completes the proof of
(ii) ∅ (iii).

We now turn to the proof of (iii) ∅ (i). We have by (1.18) that for
any ϖ ↗ #µ,ω

∫
↘x↑ y↘2 ϖ̄(dx, dy) =

∫
f̄ dµ+

∫
ḡ dε

=

∫ (
f̄(x) + ḡ(y)) ϖ(dx, dy)

→
∫

↘x↑ y↘2 ϖ(dx, dy) ,

where in the last inequality, we used (1.19). Therefore, ϖ̄ is an optimal
coupling and (i) follows. ↙∝
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Some implications of this theorem are still true even when µ does not
have a density. In particular, it can be shown using these tools that strong
duality still holds, and moreover that the converse of Proposition 1.11
holds: for any two measures µ, ε ↗ P2(Rd), if ϖ ↗ #µ,ω is supported on a
cyclically monotone set, then it must be an optimal coupling (see [AG13]
for example).

The optimal f and g arising in Theorem 1.14 play a central role in
the sequel.

Definition 1.15(Kantorovich potentials). The functions

f̄(x) = ↘x↘2 ↑ 2ϕ(x) and ḡ(y) = ↘y↘2 ↑ 2ϕ⇓(y)

that realize the optimum of the dual Kantorovich problem (D-W2
2) are

called Kantorovich potentials for the pair (µ, ε).

Even though a priori solutions to (D-W2
2) are only defined almost

everywhere, f̄ and ḡ are bona fide functions defined everywhere on Rd.
Note that by symmetry of (D-W2

2) and the form of the Kantorovich
potentials, it is easy to check that if ε admits a density, then ∀ϕ⇓ is an
optimal transport map from ε to µ.

1.5.4 An improved Brenier theorem

With the fundamental theorem, we can state an improved version of
Brenier’s theorem, which is often useful.

Theorem 1.16(Improved Brenier). Let µ, ε ↗ P2(Rd) be two prob-
ability measures such that µ has a density and let X ↓ µ. Then there
exists a convex function ϕ : Rd ↔ R such that (X,∀ϕ(X)) ↓ ϖ̄ ↗ #µ,ω

and ϖ̄ is an optimal coupling for (W2
2):

∫
↘x↑ y↘2 ϖ̄(dx, dy) = min

ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy) = W 2

2 (µ, ε) .

Moreover, ∀ϕ is unique in the sense that if there exists a convex function
0 such that ∀0(X) ↓ ε, then ∀0(X) = ∀ϕ(X), almost surely.

In particular, any valid coupling ϖ ↗ #µ,ω of the form (X,∀0(X)) ↓
ϖ for some convex function 0, must be the unique optimal coupling
between µ and ε.
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Proof. We have already proved the existence of ϕ in the previous sub-
section and we need to prove uniqueness of ∀ϕ.

It turns out that as soon as every optimal coupling is induced by a
transport map, this transport map (and hence the optimal coupling)
must be unique.

To see this, let ϖ1 and ϖ2 be two optimal couplings induced by the
transport maps T1 and T2 respectively:

ϖ1(Y = T1(X)) = 1 , and ϖ2(Y = T2(X)) = 1 .

Then consider the coupling ϖ̄ = (ϖ1 + ϖ2)/2 ↗ #µ,ω . Then ϖ̄ is also
optimal since
∫

↘x↑ y↘2 ϖ̄(dx, dy)

=
1

2

∫
↘x↑ y↘2 ϖ1(dx, dy) +

1

2

∫
↘x↑ y↘2 ϖ2(dx, dy) = W 2

2 (µ, ε) .

In particular, it follows from Brenier’s theorem that ϖ̄ is also induced
by a transport map T (which happens to be the gradient of a convex
function but we do not need this fact here). Therefore, if (X,Y ) ↓ ϖ̄,
it must be the case that the conditional distribution of Y given X is
the Dirac ϑT (X). But by construction this conditional distribution is the
mixture of two Diracs (ϑT1(X) + ϑT2(X))/2 and the two may only be the
same when T1(X) = T2(X) = T (X), almost surely.

Therefore, if there exists a convex function 0 such that ∀0(X) ↓ ε,
then by Theorem 1.14, it must be that ϖ such that (X,∀0(X)) ↓ ϖ ↗
#µ,ω is an optimal coupling and therefore that ∀0(X) = ∀ϕ(X), almost
everywhere in light of the above discussion.

The last statement of the theorem follows by observing that the
equivalence (ii) ∋ (i) in Theorem 1.14 implies that optimal couplings
are supported on the graph of the gradient of a convex function, which
has to be unique from the above argument. ↙∝

The improved Brenier theorem is very useful since it characterizes
optimality of a transport map: if a transport map is the gradient of a
convex function, then it is optimal and is unique! We call this map the
Brenier map. We can use Theorem 1.16 to characterize optimal trans-
port maps in two fundamental instantiations of the optimal transport
problem: the one-dimensional case and the Gaussian case.
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Example 1.17 (One-dimensional optimal transport). Recall that the cu-
mulative distribution function (CDF) F of a random variable X is given
by the map t △↔ P(X → t).

Proposition 1.18. Let µ, ε ↗ P2(R) be two univariate distributions
with CDFs, Fµ and Fω respectively and such that µ admits a density.
Then

W 2

2 (µ, ε) =

∫
1

0

|F †
µ(u)↑ F †

ω (u)|2 du

and the optimal coupling between µ and ε is induced by the Brenier map
F †
ω ◦ Fµ.

Proof. Since µ has a density, Fµ ◦ F †
µ = id. Let U ↓ Unif([0, 1]) be a

uniform random variable and define X = F †
µ(U), Y = F †

ω (U) so that

X ↓ µ and Y ↓ ε. Next observe that Y = F †
ω ◦Fµ(X) and that F †

ω ◦Fµ

is an increasing function. In light of Theorem 1.16, this defines the
unique optimal coupling between µ and ε. ↙∝

The geometric consequence of this identity, as explored further
in Chapter 7, is that the metric space P2(R) equipped with the 2-

Wasserstein distance is flat. Indeed the map µ △↔ F †
µ is an isometric

embedding of (P2(R),W2) into the (flat) Hilbert space L2([0, 1]).

Example 1.19 (Gaussian optimal transport). We can also used the im-
prove Brenier theorem to derive the optimal transport map between
two Gaussian measures. Let m1,m2 ↗ Rd and let $1, $2 be positive
definite d⇒ d matrices. Let µ1 = N(m1,$1) and µ2 = N(m2,$2).

Recall that a!ne maps preserve Gaussianity. Namely, if X1 ↓ µ1

and T (x) = Ax + b, where A ↗ Rd↓d and b ↗ Rd, then T (X1) is also
Gaussian. To calculate the distribution of T (X1), it su!ces to compute
the mean and covariance, and we find that

ET (X1) = Am1 + b , cov T (X1) = A$1A
T .

It is therefore a reasonable guess that the optimal transport map from
µ1 to µ2 is a!ne, and this can be verified using Brenier’s Theorem 1.16.
For this, we require that Am1 + b = m2 and A$1AT = $2, representing
the constraint that T#µ1 = µ2. We also require T to be the gradient of
a convex function. If we set

ϕ(x) =
1

2
′x,Ax∞+ ′b, x∞ ,
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then ∀ϕ(x) = 1

2
(A+AT)x+ b, and ϕ is convex provided A+AT ℜ 0.

We conclude that T = ∀ϕ is the gradient of a convex function (and
therefore optimal) provided that A is symmetric and positive definite.

How do we choose A and b so that the pushforward constraints and
the PSD constraint on A are simultaneously met? The most näıve choice

for A, namely A = $→1/2

1
$1/2

2
, works when $1 and $2 commute, but in

general this choice of A is not even symmetric. It takes a little ingenuity
to find a PSD choice for A that works, but it can be done as follows.
Starting with the idea that A is PSD and satisfies A$1A = $2, then by

squaring $1/2

1
A$1/2

1
we find that

($1/2

1
A$1/2

1
)
2

= $1/2

1
A$1A$1/2

1
= $1/2

1
$2$

1/2

1
.

Taking square roots and solving, we obtain

A = $→1/2

1
($1/2

1
$2$

1/2

1
)1/2$→1/2

1
.

It is seen that this is the matrix A that we are looking for. By using
the other constraint Am1 + b = m2, we find that

T (x) = $→1/2

1
($1/2

1
$2$

1/2

1
)1/2$→1/2

1
(x↑m1) +m2 .

By Theorem 1.16, this is the unique optimal transport map from µ1 to
µ2. Moreover, by substituting this into the definition of the Wasserstein
distance, we find that (exercise!)

W 2

2 (µ1, µ2) = ↘m1 ↑m2↘2 + tr

$1 + $2 ↑ 2 ($1/2

1
$2$

1/2

1
)1/2] . (1.20)

1.6 Duality for p = 1

In the case of the 1-Wasserstein metric, the dual takes a remarkably
simple form. Most textbooks derive this result as a specific instanti-
ation of strong duality for optimal transport with a general cost c,
which requires tools to generalize Theorem 1.14 beyond the case of the
quadratic cost c(x, y) = ↘x↑y↘2. The tools include a generalized notion
of cyclical monotonicity and of Legendre transform, and the reader is
invited to become familiar with them (see the discussion section for a
brief overview). When specialized to the p-Wasserstein distance, they
yield the following result; see, e.g., [San15, Section 3.1.1] for a proof.
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Theorem 1.20. Fix p ∈ 1 and let µ, ε ↗ Pp(Rd) be two probability
measures. Then the following holds:

W p

p (µ, ε) = sup
f↑L1

(µ), g↑L1
(ω)

f(x)+g(y)⇐⇑x→y⇑p

{∫
f dµ+

∫
g dε

}
. (1.21)

In the case, where p = 1, this result can be simplified to eliminate
one of the dual functions.

Theorem 1.21. Let µ, ε ↗ P1(Rd) be two probability measures. Then
the following holds:

W1(µ, ε) = sup
f↑Lip

1

{∫
f dµ↑

∫
f dε

}
, (1.22)

where Lip1 is the set of 1-Lipschitz functions.

Before proceeding to the proof of this theorem, let us see where
Lipschitz functions come from. Recall that the semidual in Section 1.5.2
was also removing one of the dual functions. In particular, when p = 1,
we can replace the function g in (1.21) with the c-transform

f c(y) = inf
x↑Rd

{↘x↑ y↘ ↑ f(x)} .

The following lemma holds.

Lemma 1.22. For c(x, y) = ↘x ↑ y↘, a function g : Rd ↔ R is a c-
transform g = f c if and only it is 1-Lipschitz. Moreover, any 1-Lipschitz
function satisfies gc = ↑g.

Proof. Write

g(y) = f c(y) = inf
x↑Rd

{↘x↑ y↘ ↑ f(x)} .

For any x, the function y △↔ ↘x ↑ y↘ ↑ f(x) is clearly 1-Lipschitz by
the reverse triangle inequality. Since the set of 1-Lipschitz functions is
closed under taking infima, the function g is also 1-Lipschitz.

To prove the converse, let g be a 1-Lipschitz function so that for any
x, y ↗ Rd, it holds

g(y) → ↘x↑ y↘+ g(x) .

Taking the infimum over x yields g → (↑g)c. Moreover,
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(↑g)c(y) = inf
x↑Rd

{↘x↑ y↘+ g(x)} → g(y) ,

where we took y = x in the last inequality.
We have shown that (↑g)c = g and in particular that g has to be a

c-transform (of ↑g). The second statement of the lemma follows from
the fact that if g is 1-Lipschitz, then so is ↑g. ↙∝

We are now in a position to prove Theorem 1.21.

Proof of Theorem 1.21. By the argument in Subsection 1.5.2, (1.21) is
equal to the following semidual

sup
f↑L1(µ)

{∫
f dµ+

∫
f c dε

}
.

We can continue optimizing the potentials further to obtain

sup
f↑L1(µ)

{∫
f cc dµ+

∫
(f cc)c dε

}
.

It follows from Lemma 1.22 that

{f cc : f ↗ L1(µ)}

only contains 1-Lipschitz functions. Moreover, since µ ↗ P1(Rd), it holds
that any 1-Lipschitz function is integrable against µ:
∫

|f | dµ →
∫

|f(x)↑ f(y)|µ(dx) + |f(y)| →
∫

↘x↑ y↘µ(dx) + |f(y)|

< ⇑ ,

so that f ↗ L1(µ). Hence, we have shown that

W1(µ, ε) = sup
f↑Lip

1

{∫
f dµ+

∫
f c dε

}
= sup

f↑Lip
1

{∫
f dµ↑

∫
f dε

}
,

(1.23)
which concludes the proof of Theorem 1.21. ↙∝
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1.7 Discussion

§1.1. For a historical bibliography, consult [Vil03].
§1.2. Villani [Vil09b] remarks that the common terminology “Wasser-
stein distances” is “very questionable”—though these distances are
attributed to Leonid Vasershtein by Dobrushin [Dob70], Vasershtein
was not their progenitor. Nevertheless, the name has stuck.

Proposition 1.5 is taken from the paper [RNW19], which also provides
a converse. Further comparisons between “information divergences” (e.g.,
total variation, Kullback–Leibler, chi-squared divergence) and optimal
transport distances are implied by so-called transport inequalities, which
also connects to a larger literature on concentration of measure; see,
e.g., [BV05] and [Vil09b, Chapter 22].
§1.3. As shown in Exercise 8, the monotone coupling in Theorem 1.7
and Proposition 1.18 is also optimal for any cost function which is a
strictly convex function of x↑ y; see [San15, Section 2.2].
§1.4. Brenier’s theorem was first used to define multivariate quantiles
for ε ↗ P2(Rd) by [CGHH17], and this definition was extended to ε
which may not have a second moment by [Hal17]. In addition to its
mathematical elegance, this definition of multivariate quantiles has
important implications for nonparametric testing [GS22, DS23].

Rockafellar’s theorem is from [Roc66]. The proof of Proposition 1.11
is from [GM96].
§1.5. Although we deduced strong duality by explicitly exhibiting dual
potentials for which the duality gap is zero (namely, the ones obtained
from the characterization of optimal couplings as having cyclically
monotone support), it is also possible to prove strong duality directly
via appeal to an abstract min-max principle; see [Vil03, Section 1.1].

Many of the arguments in Section 1.5 generalize to general continuous
costs c : X⇒ Y ↔ R: the c-conjugate of a function f : X ↔ R is given
by f c(y) := infx↑X{c(x, y) ↑ f(x)}, and likewise the c-conjugate of
g : Y ↔ R is given by gc(x) := infy↑Y{c(x, y) ↑ g(y)}. We say that f
is c-concave if f = gc for some function g. The equality (1.17) still
holds and equals the optimal transport value (strong duality). Any
optimal transport plan is supported on a c-cyclically monotone set,
which is defined as in (1.12) but replacing the quadratic cost with c.
Then, c-cyclically monotone sets are characterized as c-subdi”erentials,
where the c-subdi”erential of a c-concave function f = gc is the set of
(x, y) pairs such that f(x)+ g(y) = c(x, y). What does not generalize as
easily, however, is Brenier’s theorem, which requires further conditions



1.8 Exercises 43

to ensure the single-valuedness of the c-subdi”erential. For example if
c(x, y) = h(x ↑ y) for some strictly convex function h, then a unique
optimal transport map exists but it need not be the gradient of a convex
function; see [San15, Theorem 1.17].
§1.6. The duality formula for W1 is classical and is closely related to
the bounded Lipschitz metric [Dud02], which can be extended to define
a norm over signed measures. As discussed in Subsection 2.8.1, this
formula expresses W1 as an integral probability metric.

1.8 Exercises

1. Let A ⇔ R⇒ R be monotone:

≃ (x, y), (x⇒, y⇒) ↗ A , x < x⇒ ∅ y < y⇒ .

For simplicity, assume that A is contained in the graph of a function.
Show that A is cyclically monotone.

2. Let X ↗ R be a random variable that admits a density supported on
the whole real line. Let f, g be two monotone increasing functions
such that f(X) has the same distribution as g(X). Then, f = g
almost everywhere.

3. Let m1,m2 ↗ Rd and let $1, $2 be positive definite d⇒ d matrices.
Let µ1 = N(m1,$1) and µ2 = N(m2,$2).
a) Verify the equation (1.20).
b) Using a suboptimal coupling, prove the simple upper bound

W 2

2 (µ1, µ2) → ↘m1 ↑m2↘2 + ↘$1/2

1
↑ $1/2

2
↘2HS

where ↘M1 ↑M2↘2HS
:= tr((M1 ↑M2)

T(M1 ↑M2)). Show that
this is an equality when $1 and $2 commute.

c) Prove that if ε1, ε2 are probability measures with means m1, m2

and covariance matrices $1, $2 respectively, then

W2(ε1, ε2) ∈ W2(µ1, µ2) .

Hint : What are the optimal dual potentials for the optimal
transport problem from µ1 to µ2?

4. a) Let X and Y be random vectors in Rd. Prove that

W 2

2

(
law(X), law(Y )

)
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= ↘EX ↑ EY ↘2 +W 2

2

(
law(X ↑ EX), law(Y ↑ EY )

)
.

Thanks to this equality, often when we work with theW2 distance,
it su!ces to consider centered random variables.

b) Let X,Y1, . . . , Yk be random vectors in Rd and ϱ1, . . . ,ϱk ∈ 0.
Suppose that X and Yi are optimally coupled for each i =
1, . . . , k. Show that X and


k

i=1
ϱiYi are optimally coupled.

5. Let ε admit a density w.r.t. Lebesgue measure. Show that W 2

2
(·, ε) is

strictly convex; that is, if µ0, µ1 ↗ P2(Rd) are distinct and t ↗ (0, 1),
then

W 2

2

(
(1↑ t)µ0 + t µ1, ε

)
< (1↑ t)W 2

2 (µ0, ε) + tW 2

2 (µ1, ε) . (1.24)

Hint : Start by proving that (1.24) holds with → instead of <. Next,
supposing that (1.24) fails, show that there is an optimal transport
plan between (1 ↑ t)µ0 + t µ1 and ε which is not induced by a
transport map, contradicting Brenier’s theorem.

6. Consider the measures µ = 1

2
N(↑m, 1) + 1

2
N(+m, 1) and ε =

1

4
N(↑m, 1) + 3

4
N(+m, 1), where m > 0. Prove that W2(µ, ε) ℑ m.

Hint : The point of this question is that computing the optimal
transport map from µ to ε is painful, but it is not hard to obtain
good lower and upper bounds. For the lower bound, prove and use
the fact that for any 1-Lipschitz function f : R ↔ R, it holds that
Eµf ↑ Eωf → W1(µ, ε) → W2(µ, ε). For the upper bound, exhibit a
coupling of µ and ε.

7. Recall that the chi-squared divergence between two probability
measures µ and ε is defined as

ς2(µ ↘ ε) =
∫ dµ

dε
↑ 1


2

dε .

Show that
W1(µ, ε) →


ς2(µ ↘ ε) ,

when ε has unit variance.
8. Let c : R ↔ R be strictly convex and consider optimal transport

over R with the cost function (x, y) △↔ c(x↑ y). For example, when
c(z) = |z|p for p > 1, we obtain W p

p . In this exercise, we show that
the coupling ϖ̄ given in Proposition 1.18 is universally optimal for
all costs of this form. See the discussion section for background.
a) Show that for any a, b ↗ R, ϖ̄((↑⇑, a]⇒(↑⇑, b]) = Fµ(a)̸Fω(b).



1.8 Exercises 45

b) Show that ϖ̄ is the unique coupling of µ and ε such that

≃ (x, y), (x⇒, y⇒) ↗ supp ϖ̄ , x < x⇒ ∅ y → y⇒ . (1.25)

Hint : Consider the sets A = (↑⇑, a]⇒ (b,⇑) and B = (a,⇑)⇒
(↑⇑, b]. Show that any coupling satisfying (1.25) must assign
one of these two sets measure zero. Use this to show that any
coupling ϖ which satisfies (1.25) must agree with ϖ̄.

c) Let (x, y), (x⇒, y⇒) ↗ supp ϖ, where ϖ is an optimal transport plan
between µ and ε with cost defined by c as above. By c-cyclical
monotonicity of supp ϖ,

c(x↑ y) + c(x⇒ ↑ y⇒) → c(x↑ y⇒) + c(x⇒ ↑ y) .

Show that if x < x⇒, then y → y⇒, hence ϖ = ϖ̄.
Hint : Argue by contradiction. If the claim fails, then both u :=
x↑ y⇒ and v := x⇒ ↑ y lie between w := x↑ y and w⇒ := x⇒ ↑ y⇒.
Write u and v as convex combinations of w and w⇒, and apply
strict convexity of c.

d) Deduce that the optimal cost equals Ec(F †
µ(U)↑ F †

ω (U)) where
U ↓ Unif([0, 1]).

9. Given two probability measures µ, ε over the same space S, define
the total variation distance between µ and ε to be

dTV(µ, ε) = sup
A′S

|µ(A)↑ ε(A)| ,

where the supremum ranges over all measurable subsets. Show that
the total variation distance is also equal to all of the following. (Hint :
Consider the coupling in Theorem 1.6.)
a) If f and g denote the respective densities of µ and ε with

respect to some common dominating measure ϱ for µ and ε (e.g.,
ϱ = µ+ ε), then

dTV(µ, ε) =
1

2

∫
|f ↑ g| dϱ = 1↑

∫
f ̸ g dϱ = µ(f ∈ g) .

b) dTV(µ, ε) = inf P(X ⇐= Y ) where the infimum ranges over all
couplings (X,Y ) of µ and ε.

c) dTV(µ, ε) = sup{
∫
h d(µ↑ ε) | h : S ↔ [0, 1]}. Compare with W1

duality from Theorem 1.21.
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10. Let µ, ε ↗ P2(Rd) admit densities with respect to Lebesgue measure.
Show that if ∀ϕ is the optimal transport map from µ to ε, then
∀ϕ⇓ is the optimal transport map from ε to µ. (See Appendix A.)
Apply this fact to the optimal transport map between two Gaussians
and discover a non-trivial matrix identity.



2

Estimation of Wasserstein distances

In applications of optimal transport in statistics, it is paramount to be
able to obtain good upper and lower bounds on the Wasserstein distance
between probability measures. This chapter describes tools to bound
the Wasserstein distance. To do so, we heavily employ the primal and
dual formulations of optimal transport. As a primary application, we
consider a quantitative form of the Wasserstein law of large numbers,
which is the statement that if µn is an empirical measure consisting of
n i.i.d. samples from a probability measure µ, then EWp(µn, µ) ↔ 0 as
n ↔ ⇑.

2.1 The Wasserstein law of large numbers

Suppose that X1, . . . , Xn

i.i.d.↓ µ, where µ is a probability measure on a
compact subset of Rd, which we assume for convenience is equal to the
unit cube [0, 1]d. The empirical measure is defined to be the (random)
measure

µn =
1

n

n∑

i=1

ϑXi .

The law of large numbers implies that µn ⇀↔ µ and also
∫
↘ · ↘p dµn ↔∫

↘ · ↘p dµ almost surely; therefore, the discussion in Chapter 1 implies
that Wp(µn, µ) ↔ 0. Moreover, since Wp(µn, µ) is bounded almost
surely, we also have convergence in mean:

EWp(µn, µ) ↔ 0 .
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How fast does this convergence occur? In the context of the classic law
of large numbers for bounded random vectors X1, . . . , Xn in Rd, we of
course have

E

1

n

n∑

i=1

Xi ↑ EX

2

↭ 1

n
.

Note that the rate of decay n→1 holds irrespective of the dimension, and
is true even in infinite-dimensional Hilbert spaces.

By contrast, the Wasserstein law of large numbers behaves quite
di”erently. In this chapter, we prove the following proposition.

Proposition 2.1. If the support of µ lies in [0, 1]d, then

EW1(µn, µ) ↭
⊤
d ·






n→1/2 if d = 1,

(log n/n)1/2 if d = 2,

n→1/d if d ∈ 3,

(2.1)

and this rate is unimprovable in general.

In contrast to the standard law of large numbers, the convergence of
µn to µ in Wasserstein distance degrades exponentially as the dimension
grows, a phenomenon often known as the curse of dimensionality.

2.2 The dyadic partitioning argument

The fact that the Wasserstein distance is defined by a minimization over
couplings suggests a natural strategy for proving bounds: we can show
an upper bound on W1 by exhibiting a coupling with a small cost. In
this section, we build such a coupling, which, perhaps surprisingly, gives
rise to good bounds in many situations. The main idea is to attempt
to couple µ and ε by recursively constructing candidate couplings at
multiple scales.

Before stating the bound, let us describe the basic strategy. For
simplicity, let us consider proving an upper bound on W1(µ, ε) for µ
and ε whose support lies in [0, 1]d. We first make a trivial observation:

W1(µ, ε) →
⊤
d . (2.2)

Indeed, the diameter of [0, 1]d is
⊤
d, so no coupling between µ and ε

can move mass a greater distance than this.
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Let us now imagine a slight sharpening of this bound. Let Q be the
collection of cubes of side length 1/2 whose corners lie at points of
the form 2→1 (k1, . . . , kd) for k1, . . . , kd ↗ {0, 1, 2}. These cubes form a
partition of [0, 1]d into 2d pieces.1 Suppose for the sake of argument
that µ(Q) = ε(Q) for all Q ↗ Q, j = 1, . . . , 2d, so that µ and ε assign
the same mass to each of the small cubes. Then, it would be possible to
couple µ and ε by only moving mass within each small cube. Since the
diameter of each small cube is

⊤
d/2, any such coupling improves on

the bound in (2.2) by a factor of 2.
Even when µ and ε do not assign the same mass to each small cube,

we can use the above idea to construct a coupling between µ and ε in
two steps: first, we can match as much mass as possible between µ and
ε within each cube. This creates a partial coupling between a portion of
µ’s mass and a portion of ε’s. Since we only move mass within each small
cube, the total cost of this partial coupling is at most

⊤
d/2. We then

need to extend this partial coupling to a full coupling, by transporting
µ’s extra mass on any cube Q for which µ(Q) > ε(Q) to ε’s extra mass
on some cube Q⇒ for which ε(Q⇒) > µ(Q⇒). The amount of extra mass
matched in this step is


Q↑Q(µ(Q)↑ ε(Q))+ = 1

2


Q↑Q |µ(Q)↑ ε(Q)|,

at a total cost of at most
∞
d

2


Q↑Q |µ(Q)↑ ε(Q)|.

Combining these bounds yields the refined estimate

W1(µ, ε) →
⊤
d

2

∑

Q↑Q
|µ(Q)↑ ε(Q)|+

⊤
d

2
. (2.3)

This bound improves on (2.2) when µ and ε assign similar mass to each
cube.

The proof of the following bound is based on recursing the above
argument J times. At the j-th stage, we bound the discrepancy between
µ and ε on 2dj cubes of side length 2→j . To state this bound, let us
define the set Qj , j ∈ 0, to consist of a set of 2dj cubes of side length
2→j which form a partition of [0, 1]d.2

Theorem 2.2(Dyadic partitioning bound). Let µ, ε ↗ P([0, 1]d).
For any J ∈ 0,

1 These cubes overlap at their boundaries, but we can easily modify these sets by
removing overlaps to obtain a bona fide partition.

2 As above, we assume that the elements of Qj been modified at their boundary so
that Qj is a partition and so that Qj+1 is a refinement of Qj for all j ↗ 0.
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W1(µ, ε) →
⊤
d
J→1∑

j=0

(
2→j

∑

Q↑Qj+1

|µ(Q)↑ ε(Q)|
)
+
⊤
d 2→J .

Proof. We define a sequence of positive measures µ0, . . . , µJ and
ε0, . . . , εJ , which satisfy


J

j=0
µj = µ and


J

j=0
εj = ε and such that

µj(Q) = εj(Q) ≃Q ↗ Qj , j = 0, . . . , J .

We write for simplicity % := [0, 1]d. We first claim that

W1(µ, ε) →
⊤
d

J∑

j=0

2→jµj(%) . (2.4)

This bound is nothing but an instantiation of the strategy described
above: since µj and εj assign the same mass to each element of Qj , there
exists a coupling ϖj between µj and εj which only moves mass within
each element of Qj ; for instance, we can take the piecewise independent
coupling

ϖj =
∑

Q↑Qj :µj(Q)>0

(µj)|Q ⇓ (εj)|Q
µj(Q)

.

The fact that ϖj ↗ #µj ,ωj implies ϖ =


J

j=0
ϖj ↗ #µ,ω , and

W1(µ, ε) →
∫

↘x↑ y↘ ϖ(dx, dy)

=
J∑

j=0

∫
↘x↑ y↘ ϖj(dx, dy)

→
⊤
d

J∑

j=0

2→jµj(%) ,

where the last inequality follows from the fact if (x, y) ↗ supp(ϖj), then
x and y lie in the same element Q ↗ Qj , so that ↘x↑ y↘ → diam(Q) =⊤
d 2→j .
We now exhibit the measures µj and εj which give rise to the final

bound. Define the restriction of µJ on each Q ↗ QJ by setting

(µJ)|Q =
µ(Q) ̸ ε(Q)

µ(Q)
µ|Q ,
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where by convention we let µJ be zero on Q if µ(Q) = 0. Similarly, set

(εJ)|Q =
µ(Q) ̸ ε(Q)

ε(Q)
ε|Q .

For 1 → j < J , let

µ⇒
j = µ↑

∑

j<k⇐J

µk ,

ε ⇒j = ε ↑
∑

j<k⇐J

εk ,

and then, for each Q ↗ Qj , define

(µj)|Q =
µ⇒
j
(Q) ̸ ε ⇒

j
(Q)

µ⇒
j
(Q)

(µ⇒
j)|Q ,

(εj)|Q =
µ⇒
j
(Q) ̸ ε ⇒

j
(Q)

ε ⇒
j
(Q)

(ε ⇒j)|Q .

Finally, we set

µ0 = µ↑
J∑

j=1

µj and ε0 = ε ↑
J∑

j=1

εj ,

so that
J∑

j=0

µj = µ and
J∑

j=0

εj = ε .

It is easy to see that µj(Q) = εj(Q) for all Q ↗ Qj and all j ↗ {0, . . . , J}.
To apply (2.4), we also need to check that µj , εj ∈ 0.

Lemma 2.3. The measures µ0, . . . , µJ and ε0, . . . , εJ are all positive.

Proof. By symmetry, it su!ces to verify this fact for the sequence
µ0, . . . , µJ .

We first show by backwards induction on j that

µj+1 ∈ 0 and 0 →
∑

j<k⇐J

µk → µ (Aj)

for all j = 0, . . . , J ↑ 1.
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For j = J ↑ 1, these bounds follow directly from the construction of
µJ . Next assume that (Aj) holds for some j, then

µ⇒
j = µ↑

∑

j<k⇐J

µk ∈ 0 ,

and therefore µj ∈ 0, since µj is obtained by reweighting µ⇒
j
on each

element of Qj by a non-negative quantity. Note also that this non-
negative quantity is also bounded by one so that we also have µj → µ⇒

j
.

Together these two facts yields 0 → µj → µ⇒
j
so that

0 →
∑

j→1<k⇐J

µk =
∑

j<k⇐J

µk + µj →
∑

j<k⇐J

µk + µ⇒
j = µ .

We have proved that (Aj→1) holds. By induction, we obtain that
µ1, . . . , µJ are all positive. Finally, since we have also shown that

∑

0<k⇐J

µk → µ,

we obtain µ0 ∈ 0 as well. ↙∝

In light of (2.4), it remains to bound µj(%) for j = 0, . . . , J . We first
claim that

|µ⇒
j(Q)↑ ε ⇒j(Q)| = |µ(Q)↑ ε(Q)| ≃Q ↗ Qj , j = 1, . . . , J . (2.5)

This follows from the fact that

µ⇒
j(Q)↑ ε ⇒j(Q) = µ(Q)↑ ε(Q)↑

∑

j<k⇐J

(µk(Q)↑ εk(Q)) ,

since µk and εk assign the same mass to each element of Qk and since
Q can be written as a disjoint union of elements of Qk, so the sum
vanishes. We now claim that we can bound the mass that µj and εj
assign to elements of Qj in terms of the di”erence between µ and ε on
cubes in Qj+1.

Lemma 2.4. If R ↗ Qj for some 0 → j < J , then

µj(R) = εj(R) →
∑

Q′R,Q↑Qj+1

|µ(Q)↑ ε(Q)| .
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Proof. We have already shown that µj(R) = εj(R), so it su!ces to
show that expression holds for µj(R). For notational consistency, we
set µ⇒

0
= µ0. Then, for any 0 → j < J and any R ↗ Qj ,

µj(R) → µ⇒
j(R)

=
∑

Q′R,Q↑Qj+1

µ⇒
j(Q)

=
∑

Q′R,Q↑Qj+1

(µ⇒
j+1(Q)↑ µj+1(Q))

=
∑

Q′R,Q↑Qj+1

(µ⇒
j+1(Q)↑ ε ⇒j+1(Q))+

→
∑

Q′R,Q↑Qj+1

|µ⇒
j+1(Q)↑ ε ⇒j+1(Q)|

=
∑

Q′R,Q↑Qj+1

|µ(Q)↑ ε(Q)| ,

where the second equality comes from comparing the definitions of µ⇒
j

and µ⇒
j+1

, and the last equality follows from (2.5). ↙∝

Putting it all together, (2.4) implies

W1(µ, ε) →
⊤
d

J∑

j=0

2→jµj(%)

=
⊤
d
J→1∑

j=0

2→jµj(%) +
⊤
d 2→JµJ(%)

=
⊤
d
J→1∑

j=0

(
2→j

∑

R↑Qj

µj(R)

)
+
⊤
d 2→JµJ(%)

→
⊤
d
J→1∑

j=0

(
2→j

∑

Q↑Qj+1

|µ(Q)↑ ε(Q)|
)
+
⊤
d 2→J .

This concludes the proof of Theorem 2.2. ↙∝

Applying Theorem 2.2 to µ and µn, we obtain the following bound.

Proposition 2.5. If the support of µ lies in [0, 1]d, then
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EW1(µn, µ) ↭
⊤
d ·






n→1/2 if d = 1,

(log n)n→1/2 if d = 2,

n→1/d if d ∈ 3.

Proof. Theorem 2.2 implies that for any J ∈ 0,

EW1(µn, µ) →
⊤
d
J→1∑

j=0

2→j
∑

Q↑Qj+1

E|µn(Q)↑ µ(Q)|+
⊤
d 2→J

→
⊤
d
J→1∑

j=0

2→j 2d (j+1)/2

( ∑

Q↑Qj+1

E(µn(Q)↑ µ(Q))2
)

1/2

+
⊤
d 2→J

→
⊤
d
J→1∑

j=0

2→j 2d (j+1)/2 n→1/2 +
⊤
d 2→J

↭
⊤
d ·






2(J+1) (d/2→1) n→1/2 + 2→J if d ∈ 3,

Jn→1/2 + 2→J if d = 2,

n→1/2 + 2→J if d = 1.

To balance these terms, we choose J such that 2J → n1/2 < 2J+1 if
d → 2, and J such that 2J+1 → n1/d < 2J+2 if d ∈ 3. ↙∝

Note that bound of Proposition 2.5 is weaker than that of Proposi-
tion 2.1 when d = 2. Unfortunately, the dyadic partitioning argument
does not yield a sharp bound in two dimensions. We return to this
question in Section 2.4.

2.3 Dual chaining bounds

In this section, we present a superficially di”erent proof of Proposi-
tion 2.5. Rather than constructing a coupling in the primal, we use the
dual representation of the 1-Wasserstein distance instead. The benefit
of this approach is that we can write

W1(µn, µ) = sup
f↑Lip

1

{∫
f dµn ↑

∫
f dµ

}

= sup
f↑Lip

1

1

n

n∑

i=1

{f(Xi)↑ Ef(Xi)} . (2.6)
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The random process f △↔ 1

n


n

i=1
{f(Xi) ↑ Ef(Xi)} is known as an

empirical process , and bounding the expected suprema of such processes
is a very common task in many areas of statistics.

To control this empirical process, we use a standard technique known
as chaining. Given a class F of real-valued functions on % ⇔ Rd, we call
a set F = {f1, . . . , fN} an ω-cover of F if, for any f ↗ F, there exists
fi ↗ F such that ↘f ↑ fi↘L↓(”) → ω. The ω-covering number of F is

N(ω,F) = min{|F | : F is an ω-cover of F} .

The chaining argument shows that the covering number of a class F

controls the supremum of an empirical process indexed by that set. We
use the following version:

Proposition 2.6([vH14, Theorem 5.31]). If F is a set of real-valued
functions on % such that ↘f↘L↓(”) → R for all f ↗ F, then

E sup
f↑F

1

n

n∑

i=1

{f(Xi)↑ Ef(Xi)} ↭ inf
ς>0

{
↽ +

1⊤
n

∫
R

ς


logN(ω,F) dω

}
.

Proposition 2.6 and (2.6) imply that we can obtain an upper bound
on EW1(µn, µ) as long as we can calculate the covering numbers of the
set of Lipschitz functions on [0, 1]d. We also notice that we can assume
without loss of generality that the functions appearing in (2.6) take the
value 0 at (0, . . . , 0). Indeed, a Lipschitz function on [0, 1]d is bounded,
and since the value of 1

n


n

i=1
{f(Xi)↑Ef(Xi)} is una”ected if we shift

f by a constant, we may fix its value at (0, . . . , 0) to be 0 without loss
of generality.

Lemma 2.7. Denote by Lip1([0, 1]
d) the set of 1-Lipschitz functions on

[0, 1]d satisfying f(0) = 0. Then

logN(ω,Lip1([0, 1]
d)) ↭ (4

⊤
d/ω)d .

Proof. We bound the covering number by exhibiting an ω-cover of
Lip1([0, 1]

d) of the specified size. To do so, we again use the notion of
a dyadic partition of [0, 1]d into a set Qj of cubes of side length 2→j .
Each element of Qj is of the form 2→j ([k1, k1 + 1]⇒ . . .⇒ [kd, kd + 1])
for some integers k1, . . . , kd ↗ [2j ↑ 1] := {0, . . . , 2j ↑ 1}, and we denote
such an element by Q⇀k

for 1k = (k1, . . . , kd).3

3 This collection of cubes overlaps at the boundaries, but as above we may remove
overlaps to obtain a disjoint partition of [0, 1]d.
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Fix an integer j ∈ 0 and positive ϑ > 0 to be specified. Consider the
set H of functions h satisfying the following requirements:

1. h is constant on each element of Qj , i.e., there exist constants
(h⇀k)⇀k↑[2j→1]d

such that h(x) = h⇀k for all x ↗ Q⇀k
.

2. h⇀k is an integer multiple of ϑ for all 1k ↗ [2j ↑ 1]d.
3. h(0,...,0) = 0.

4. If ↘1k ↑ 1k⇒↘↘ → 1, then |h⇀k ↑ h⇀k↔ | → 2→j
⊤
d+ ϑ.

We first claim thatH constitutes an ω-cover of Lip1([0, 1]
d) if 2→j

⊤
d+

ϑ → ω. Given any f ↗ Lip1([0, 1]
d), denote by hf the element of H given

by (hf )⇀k = ϑ ⊥f(2→j (k1, . . . , kd))/ϑℵ for all 1k ↗ [2j ↑ 1]d. To see that
hf ↗ H, note that it immediately satisfies the first three requirements
by construction, and for the fourth, we have

|(hf )⇀k ↑ (hf )⇀k↔ | = ϑ
∣∣⊥f(2→j (k1, . . . , kd))/ϑℵ ↑ ⊥f(2→j (k⇒1, . . . , k

⇒
d))/ϑℵ

∣∣

→ |f(2→j (k1, . . . , kd))↑ f(2→j (k⇒1, . . . , k
⇒
d))|+ ϑ

→ 2→j ↘1k ↑ 1k⇒↘2 + ϑ ,

where the last inequality follows from the fact that f is Lipschitz. Since
↘1k ↑ 1k⇒↘2 →

⊤
d when ↘1k ↑ 1k⇒↘↘ = 1, the claim follows. Finally, for any

x ↗ Q⇀k
, the fact that f is Lipschitz again implies

|f(x)↑ (hf )⇀k| =
∣∣f(x)↑ ϑ ⊥f(2→j (k1, . . . , kd))/ϑℵ

∣∣

→ |f(x)↑ f(2→j (k1, . . . , kd))|+ ϑ

→ diam(Q⇀k
) + ϑ

= 2→j
⊤
d+ ϑ .

Therefore ↘f ↑ hf↘↘ → 2→j
⊤
d+ ϑ.

We have shown that for every f ↗ Lip1([0, 1]
d), there exists hf ↗ H

such that ↘f ↑hf↘↘ → 2→j
⊤
d+ ϑ. Therefore, if 2→j

⊤
d+ ϑ → ω, then H

is an ω-cover of Lip1([0, 1]
d). We fix ϑ = 2→j

⊤
d, so that this requirement

reduces to 2→j
⊤
d → ω/2.

To bound |H|, note that if we fix the value of h⇀k for some 1k, then

for any 1k⇒ such that ↘1k ↑ 1k⇒↘↘ = 1, there are at most 5 possible values
of h⇀k↔ . This follows from the fact that h⇀k↔ must be an integer multiple

of ϑ = 2→j
⊤
d, and there are 5 integer multiples of ϑ in the interval

[h⇀k ↑ 2ϑ, h⇀k + 2ϑ]. Therefore, if we consider specifying an element H

by specifying the values of h⇀k sequentially by setting h(0,...,0) = 0 and
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proceeding in lexicographic order, then at each stage we have at most 5
choices for the next value of h⇀k. This implies that |H| → 52

dj→1.

For any j for which 2→j
⊤
d → ω/2, we have therefore obtained an

ω-cover H of F satisfying log |H| ↭ 2dj . Choosing 2j to be the smallest
power of two larger than 2

⊤
d/ω yields the claim. ↙∝

With the bound of Lemma 2.7 in hand, we can give another proof
of Proposition 2.5.

Proof of Proposition 2.5. Since ↘f↘↘ →
⊤
d for all f ↗ Lip1([0, 1]

d), by
Proposition 2.6 and (2.6), for any ↽ > 0,

EW1(µn, µ) ↭ ↽ +
1⊤
n

∫ ∞
d

ς


logN(ω,Lip1([0, 1]d)) dω .

Applying Lemma 2.7 yields

EW1(µn, µ) ↭ ↽ +
1⊤
n

∫ ∞
d

ς

(4
⊤
d/ω)d/2 dω .

We now consider the bound separately for d = 1 and d > 1. If d = 1,
then we may take ↽ = 0 to obtain

EW1(µn, µ) ↭
1⊤
n

∫
1

0

(4/ω)1/2 dω ↭ n→1/2 .

If d > 1, then ω→d/2 is no longer integrable at 0, so we take ↽ = 4
⊤
dn→1/d

to obtain

EW1(µn, µ) ↭
⊤
dn→1/d +

1⊤
n

∫ ∞
d

4

∞
dn↑1/d

(4
⊤
d/ω)d/2 dω .

When d = 2, the integral is O(log n), and we obtain EW1(µn, µ) ↭
(log n)/

⊤
n. When d > 2, the integral is O(n1/2→1/d), and we obtain

EW1(µn, µ) ↭
⊤
dn→1/d. ↙∝

Though these two proofs of Proposition 2.5 look quite di”erent,
they are in fact very similar: in both cases, we employ a multi-scale
decomposition of [0, 1]d. The dyadic partitioning argument uses this
decomposition to construct a coupling in the primal; the chaining
argument uses this decomposition to control the covering numbers of
Lipschitz functions in the dual.
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2.4 A finer analysis for d = 2

Both the dyadic partition argument presented in Section 2.2 and the
chaining argument presented in Section 2.3 su”er from the defect that
they fail to obtain the correct rate for the Wasserstein law of large
numbers in two dimensions. This fact is related to the fact that d = 2
is the “critical” case for the behavior EW1(µn, µ)—it can be shown
that in d = 1, the cost of the optimal transport between µn and µ
is dominated by “global” features and that when d ∈ 3, the cost of
optimal transport is dominated by “local” irregularities. In dimension
2, by contrast, irregularities at all scales contribute simultaneously, and
bounding the optimal cost requires more care.

The correct rate for d = 2 was first discovered by Ajtai, Komlós, and
Tusnády [AKT84] by a somewhat delicate argument. In this section,
we present an ingenious approach due to Bobkov and Ledoux [BL21]
that obtains the correct rate by simpler means. This proof is based on
Fourier analysis, and as a first step, we show that we can focus our
attention on periodic functions, to which the tools of Fourier analysis
can naturally be applied. This gives rise to the following periodic version
of the Wasserstein distance: for probability measures µ and ε on Rd,
define

W1(µ, ε) = sup
f↑L̃ip

∫
f (dµ↑ dε) , (2.7)

where Lip denotes the set of 1-Lipschitz, 2↼-periodic C↘ functions
on Rd. For measures on the cube, this definition actually agrees with
standard Wasserstein distance.

Lemma 2.8. If the supports of µ and ε lie in [0, 1]d, then W1(µ, ε) =
W1(µ, ε).

Proof. The point of this lemma is that, under the restriction on the
support of µ and ε, we can assume that the Lipschitz functions appearing
in the dual representation of W1 are both periodic and smooth.

We first handle the former restriction. Define a metric dTd on Rd by

dTd(x, y) = min
z↑Zd

↘x↑ y ↑ 2↼z↘ .

The notation dTd is used to emphasize that this is the metric that arises
from identifying the opposite faces of [0, 2↼]d so that it becomes a flat
torus. Given any f ↗ Lip1([0, 1]

d), define the function f̃ : Rd ↔ R by
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f̃(y) = sup
x↑[0,1]d

{f(x)↑ dTd(x, y)} . (2.8)

For each x ↗ [0, 1]d, the function y △↔ f(x)↑dTd(x, y) is 2↼-periodic and
Lipschitz with respect to the Euclidean metric on Rd (since both facts
are true of dTd(x, y)). Both periodicity and Lipschitzness are preserved
by taking pointwise suprema, so these properties are inherited by f̃
as well. We also note the crucial fact that f̃ = f on [0, 1]d: indeed, for
y ↗ [0, 1]d, we clearly have f̃(y) ∈ f(y) by choosing x = y in (2.8). On
the other hand, since dTd(x, y) = ↘x↑ y↘ for any x, y ↗ [0, 1]d, we also
have

f(x)↑ dTd(x, y) = f(x)↑ ↘x↑ y↘ → f(y) ≃x ↗ [0, 1]d ,

where the inequality follows from the fact that f is Lipschitz. Taking
suprema on both sides yields f̃(y) → f(y).

Since the supports of µ and ε lie in [0, 1]d, we therefore have, for any
f ↗ Lip1([0, 1]

d)

∫
f (dµ↑ dε) =

∫
f̃ (dµ↑ dε) ,

where the function on the right side is Lipschitz and 2↼-periodic. This
implies that we can always assume that the functions appearing in the
dual representation of W1 are periodic.

The restriction to smooth functions is routine: since any Lipschitz
function can be uniformly approximated by a smooth function, we can
always assume that the functions in question are C↘. ↙∝

Given a probability measure µ, we denote by φµ its Fourier transform
(or characteristic function):

φµ(m) =

∫
ei↖m,z↙ µ(dz) , m ↗ Zd . (2.9)

The basis of the Bobkov–Ledoux argument is the following proposition.

Proposition 2.9.

W1(µ, ε)
2 →

∑

m ↔=0

↘m↘→2 |φµ(m)↑ φω(m)|2 , (2.10)

where the sum is over all nonzero m ↗ Zd and ↘m↘2 = m2

1
+ · · ·+m2

d
.
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Before giving the proof, we pause for a moment to compare Propo-
sition 2.9 to Theorem 2.2. Both results give a bound on W1(µ, ε) by
comparing them at di”erent scales: in the case of Theorem 2.2, this
is done by calculating how much they di”er on smaller and smaller
cubes, in the case of Proposition 2.9, this is done by calculating how
much they di”er at higher and higher frequencies. In both cases, each
term in the sum is weighted by the scale of the comparison (2→j in the
case of Theorem 2.2, ↘m↘→2 in the case of Proposition 2.9). The key
di”erence between these bounds is that Theorem 2.2 has an ⇁1 flavor,
whereas Proposition 2.9 has an ⇁2 flavor. This di”erent turns out to be
the source of the

⊤
log n savings in the rate for d = 2.

Proof of Proposition 2.9. Given a 2↼-periodic C↘ function f , we can
expand it as a Fourier series:

f(x) =
∑

m↑Zd

f̂m ei↖m,x↙ ,

where the coe!cients f̂m tend to zero faster than any polynomial as
↘m↘ ↔ ⇑. We may therefore di”erentiate term-by-term and apply
Parseval’s identity to obtain

1

(2↼)d

∫

[0,2⇁]d
(▷if(x))

2 dx =
∑

m↑Zd

m2

i |f̂(m)|2 ,

and summing over the coordinates yields

1

(2↼)d

∫

[0,2⇁]d
↘∀f(x)↘2 dx =

∑

m↑Zd

↘m↘2 |f̂(m)|2 .

If we assume that f is 1-Lipschitz, then ↘∀f(x)↘ → 1 for all x ↗ [0, 2↼]d,
so

∑

m↑Zd

↘m↘2 |f̂(m)|2 = 1

(2↼)d

∫

[0,2⇁]d
↘∀f(x)↘2 dx → 1 . (2.11)

Fubini’s theorem therefore implies that for any 1-Lipschitz, 2↼-
periodic C↘ function f ,

∫
f (dµ↑ dε) =

∫ ∑

m↑Zd

f̂m ei↖m,x↙ (µ(dx)↑ ε(dx))
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=
∑

m↑Zd

f̂m (φµ(m)↑ φω(m))

=
∑

m↑Zd\{0}

f̂m (φµ(m)↑ φω(m)) ,

where the last equality follows from the fact that φµ(0) = φω(0) = 1. The
result then follows from the Cauchy–Schwarz inequality and (2.11). ↙∝

Unfortunately, Proposition 2.9 is often vacuous—if µ is not abso-
lutely continuous, then φµ is not integrable, and the sum in (2.10)
can diverge. This problem is immediately apparent when attempting
to apply Proposition 2.9 to the singular empirical measure µn. The
solution to this issue is to inject additional regularity into the problem
by convolving with Gaussians. For any ω > 0, we denote by ε 2 ϖε the
convolution of ε with a N(0, ωI) distribution; equivalently, ε 2 ϖε is the
law of X +

⊤
ωZ where X ↓ ε and Z ↓ N(0, I) are independent. We

first recall the e”ect that this smoothing has on the Fourier transform.

Lemma 2.10. For all ω > 0,

φω-εϖ(m) = φω(m) e→ε ⇑m⇑2/2 ≃m ↗ Zd .

Proof. This follows directly from the representation

φω-εϖ(m) =

∫
ei↖m,y↙ (ε 2 ϖε)(dy) = Eei↖m,X+

∞
εZ↙

for X ↓ ε and Z ↓ N(0, I) independent. ↙∝

The smoothing operation is useful because it immediately ensures
that the Fourier transform of the resulting measure is well-behaved.
Moreover, smoothing only changes W1 by a small amount.

Lemma 2.11. For all ω > 0,

W1(µ, ε) → W1(µ, ε 2 ϖε) +
⊤
dω .

Proof. First, the expression W1 satisfies the triangle inequality; this
follows directly from the definition in (2.7):

W1(µ, ε
⇒) + W1(ε

⇒, ε) = sup
f↑L̃ip

∫
f (dµ↑ dε ⇒) + sup

f↑L̃ip

∫
f (dε ⇒ ↑ dε)
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∈ sup
f↑L̃ip

{∫
f (dµ↑ dε ⇒) +

∫
f (dε ⇒ ↑ dε)

}

= W1(µ, ε) .

Second, W1 is dominated by W1, since the supremum in (2.7) is taken
over a strict subset of Lip. Combining these facts yields

W1(µ, ε) → W1(µ, ε 2ϖε)+ W1(ε, ε 2ϖε) → W1(µ, ε 2ϖε)+W1(ε, ε 2ϖε) .

We now use the fact that (X,X +
⊤
ωZ) with X ↓ ε, Z ↓ N(0, I)

independent is a coupling between ε and ε 2 ϖε, so that

W1(ε, ε 2 ϖε) → E↘X ↑ (X +
⊤
ωZ)↘ =

⊤
ωE↘Z↘ →

⊤
dω .

This concludes the proof. ↙∝

Combining the preceding two lemmas yields the following corollary
to Proposition 2.9.

Corollary 2.12. For any ω > 0,

W1(µ, ε) →
∑

m ↔=0

↘m↘→2 e→ε ⇑m⇑2 |φµ(m)↑ φω(m)|2 + 2
⊤
dω .

We can now prove the desired bound.

Theorem 2.13. For any probability measure µ with support in [0, 1]2,

EW1(µn, µ) ↭

log n/n .

Proof. Since µ and µn have support lying in [0, 1]2, we may equivalently

prove an upper bound on EW1(µn, µ). Applying Corollary 2.12 and
Jensen’s inequality yields, for any ω > 0,

EW1(µn, µ) →
∑

m ↔=0

↘m↘→2 e→ε ⇑m⇑2 E|φµn(m)↑ φµ(m)|2 + 2
⊤
2ω .

We can write φµn(m)↑φµ(m) = 1

n


n

i=1
{ei↖m,Xi↙↑Eei↖m,Xi↙}, and since

|ei↖m,Xi↙| = 1 almost surely we conclude that

E|φµn(m)↑ φµ(m)|2 → n→1 ≃m ↗ Zd . (2.12)
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Continuing, we have for any ω > 0,

EW1(µn, µ) → n→1/2

∑

m ↔=0

↘m↘→2 e→ε ⇑m⇑2 + 2
⊤
2ω . (2.13)

By comparing the sum to the integral
∫
⇑x⇑⇔1

↘x↘→2 e→ε ⇑x⇑2 dx, we obtain

that the sum is of order log(1/ω). Therefore, we obtain

EW1(µn, µ) ↭

log(1/ω)/n+

⊤
ω .

Choosing ω = n→1 gives the claim. ↙∝

2.5 Applications

2.5.1 Estimation of Wasserstein distances

So far, we have focused on estimating a measure µ in Wasserstein
distance using the empirical measure µn. As the title of this chapter
indicates, we are often interested in the estimation of Wasserstein dis-
tances. Indeed, Wasserstein distances are central to many statistical
tasks. For example, one of the first applications of the 1-Wasserstein
distance (under the name “earth mover’s distance”) to machine learning
was in the context of information retrieval where it was used to measure
the distance between images [RTG00]. Other immediate examples in-
clude nearest neighbors [BDI+20, Pon23] and regression [GP22, CLM23]
for example.

The goal of estimation is to produce an estimator W ofW1(µ, ε) using
i.i.d. data X1, . . . , Xm ↓ µ and Y1, . . . , Yn ↓ ε. A natural candidate
is the plug-in estimator W := W1(µm, εn) where µm and εn are the
empirical measures associated to the samples above. A performance
bound for this estimator can be readily obtained using the triangle
inequality and Proposition 2.1: for d ∈ 3,

E|W1(µm, εn)↑W1(µ, ε)| → EW1(µm, µ) + EW1(εn, ε) ↭ (m ̸ n)→1/d .

This coarse bound turns out to be sharp in general. Moreover, using
the more general result (2.21) presented at the end of this Chapter, we
can get that for d > 2p,

E|Wp(µm, εn)↑Wp(µ, ε)| → EWp(µm, µ) + EWp(εn, ε) ↭ (m ̸ n)→1/d .
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It turns out that when p > 1, this bound is only sharp when µ and ε
are su!ciently close. Indeed, better rates can be obtained when p > 1
and Wp(µ, ε) > c > 0. For example, when p = 2, [MNW24] show that

E|W2(µm, εn)↑W2(µ, ε)| ↭ (m ̸ n)→2/d .

That paper also shows that this rate is essentially sharp. While signifi-
cant, this improvement shows that estimation of Wasserstein distances
still su”ers from the curse of dimensionality.

2.5.2 Hypothesis testing

These upper bounds can be readily applied to two classical non-
parametric hypothesis testing problems: goodness-of-fit and two-sample
(a.k.a. homogeneity) testing.

Consider first the goodness-of-fit test. Given observation X1, . . . , Xn

i.i.d. from some unknown distribution µ, and a fixed distribution µ0,
the goal is to test

H0 : µ = µ0 vs. H1 : µ ⇐= µ0 .

For example, µ0 can be taken to be a standard Gaussian distribution
on Rd or the uniform distribution on [0, 1]d. There exist many goodness-
of-fit tests when d = 1, for example, the Kolmogorov–Smirnov test
for continuous distributions. For discrete distributions, the ς2-test is
another popular choice; see, e.g., [LR05, Chapter 14].

Note that the two hypotheses can be written equivalently as

H0 : W1(µ, µ
0) = 0 vs. H1 : W1(µ, µ

0) > 0 .

To study the theoretical limits of a such a setting, we can consider a
quantitative version of this testing problem, with hypotheses

H0 : W1(µ, µ
0) = 0 vs. H1 : W1(µ, µ

0) > ω

for some ω > 0. We then ask how large the separation ω must be in
order to guarantee that the combined type I and type II errors may be
kept small.

Consider a simple test, which consists in rejecting the null hypothesis
at level 3 ↗ (0, 1) as soon as W1(µn, µ0) > T▷

n for some threshold T▷
n

such that
µ0[W1(µn, µ

0) > T▷

n ] = 3 .
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If we observe Xi = xi, i = 1, . . . , n, a p-value for such a test may be
computed as

µ0[W1(µn, µ
0) > W1(µ

obs

n , µ0)]

where

µobs

n =
1

n

n∑

i=1

ϑxi .

Both the computation of T▷
n and of the p-value require understanding

the actual distribution of W1(µn, µ0) under the null hypothesis. Our
results above are actually quite far from achieving this level of preci-
sion since we only know an upper bound on E[W1(µn, µ0)] when µ0 is
supported on the unit cube. Nevertheless, these bounds are su!cient to
paint a rather disappointing picture of the potential of the Wasserstein
distance in multivariate goodness-of-fit tests. Indeed, our results suggest
that we must take T▷

n ↫ n→1/d in order to control the type I error of this
test, and therefore that a separation of ω A n→1/d is necessary to have
reasonable power. Even in moderate dimensions, this level of separation
is quite large.

It turns out that the test described above is not optimal for this
problem, and that consistent testing is possible with the smaller sep-
aration n→2/d via a di”erent approach. Nevertheless, the simple fact
remains that the slow convergence of W1 is an impediment to the use
of goodness of fit tests based on the Wasserstein distance.

An explanation for this phenomenon is that a test based on W1 tries
to be powerful against too many alternatives. Assume for the sake of
discussion that µ0 is the standard Gaussian distribution over Rd. The
1-Wasserstein distance does not discriminate between distributions that
are not µ0: Gaussian distributions, distributions with smooth densities,
those with discontinuous densities, or even discrete distributions. Our
test {W1(µn, µ0) > T▷

n } tries to detect all of them and spreads thin,
resulting in low power against all alternatives. This behavior is to be
contrasted with a simple parametric test, for example the Wald test
{|X̄n| > ↽n} where X̄n = 1

n


n

i=1
Xi, which simply tries to detect if the

mean of µ di”ers from that of µ0. This test is clearly unable to detect
even if µ is a Rademacher distribution, which is quite far from µ0, but
it focuses all of its e”orts on shifts in means: when these happen, it can
detect them very accurately.

The manifestation of the curse of dimensionality also extends to
two-sample testing where one observes two samples X1, . . . , Xm from µ
and Y1, . . . , Yn from ε and the goal is to test
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H0 : µ = ε vs. H1 : W1(µ, ε) > ω .

Denote the corresponding empirical distributions by

µm =
1

m

m∑

i=1

ϑXi , εn =
1

n

n∑

j=1

ϑYj .

In this context it is natural to reject the null hypothesis if W1(µm, εn)
is large. Akin to the goodness-of-fit test, such tests require a sample size
that is exponential in the dimension to achieve any reasonable power.

The conclusion of this section is that Wasserstein distances suf-
fer from the curse of dimensionality and are therefore unsuitable for
statistical applications of moderate dimension. In Section 2.8 we de-
scribe various regularizations of Wasserstein distances that escape the
curse of dimensionality and have been successfully applied in large-scale
statistical applications.

2.6 Optimality

We have established upper bounds on the Wasserstein distance between
the empirical distribution µn and the data generating distribution µ
in two di”erent ways: using the primal and using the dual formulation
of the problem. Omitting idiosyncrasies associated to low dimensions,
we found that µn estimates µ in W1 distance at a rate of order n→1/d.
While this result readily yields consistency, the rate is slow even in
moderate dimensions and is symptomatic of the curse of dimensionality
that plagues most non-parametric methods. One could wonder then
whether such rates can be improved.

Note that there are two ways to potentially improve these rates.
The most obvious one would be to provide a tighter analysis than the
one above and show that in fact, E[W1(µn, µ)] is much smaller than
n→1/d. Another possibility would be that while this rate is tight for the
empirical measures µn, there could be another estimator µ̃n of µ that
enjoys much faster rates. In fact, the answer to both questions, while
di”erent in nature, is negative, as illustrated by lower bounds.

While a negative answer to the second question implies a negative
answer to the first one—if no estimator can estimate µ faster than
n→1/d then certainly the empirical measure µn cannot—we also make
the negative answer to the first question explicit since it is, in some
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sense stronger. Indeed, we show below that even in the case where µ
is the uniform measure on [0, 1]d then, E[W1(µn, µ)] ↫ n→1/d. However,
in that case, there is clearly a better estimator than µn: simply take
µ̃n = µ itself! The answer to the second question relies on the theory
of minimax lower bounds as in [Tsy09, Chapter 2] and states that
for any estimator, i.e., any measurable function µ̃n = µ̃n(X1, . . . , Xn)
of the data X1, . . . , Xn, there exists µ supported on [0, 1]d such that
E[W1(µ̃n, µ)] ↫ n→1/d. Unlike the lower bound for the empirical measure
µn, in the minimax lower bounds, the unfavorable distribution µ is not
explicit.

2.6.1 Lower bounds for the empirical measure µn

The goal of this section is to show that any distribution supported on n
points has to be far from the uniform measure on [0, 1]d in W1 distance.

Theorem 2.14. Fix d ∈ 3 and let µ denote the uniform measure on
[0, 1]d. Then for any measure µ̃n supported on n points x1, . . . , xn ↗ Rd,
it holds

W1(µ̃n, µ) ∈
1

108d
n→1/d .

Proof. We employ the dual formulation of Theorem 1.21 since proving
a lower bound on W1 can be done by simply exhibiting a 1-Lipschitz
function, which we define as follows. Given x ↗ [0, 1]d, let 4(x) ↗
{x1, . . . , xn} denote the closest point to x in {x1, . . . , xn} (ties are
broken arbitrarily). Next, consider the function

fn(x) = ↘x↑ 4n(x)↘ ,

which is 1-Lipschitz thanks to the reverse triangle inequality. Moreover,
for any i = 1, . . . , n, we have fn(xi) = 0 so that

∫
f dµ̃n = 0. Hence

W1(µ̃n, µ) ∈
∫

fn dµ =

∫
↘x↑ 4n(x)↘µ(dx) .

To bound this quantity from below, we show that µ places significant
mass on points that are far from any xi. To that end, consider a partition
Q of [0, 1]d into cubes of side length (2n)→1/d. Since |Q| = 2n, there
exist n such cubes Q1, . . . , Qn that do not contain any of the xi’s. Let
Q ↗ Q be one such cube with center q and consider its subcube Q⇒ ↖ Q
also with center q but with a smaller side length than Q by a factor of
1↑ 2/d. Using Minkowski sum notation, we can write this as:
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Q⇒ =
(
1↑ 2

d

)
(Q↑ {q}) + {q} .

By construction, any x ↗ Q⇒ satisfies

↘x↑ 4n(x)↘ ∈ inf
x↑Q↔

y↑Qc

↘x↑ y↘ =
1

d
· (2n)→1/d .

Hence

∫
↘x↑4n(x)↘µ(dx) ∈

n∑

i=1

∫

Q↔
i

↘x↑4n(x)↘µ(dx) ∈
(2n)→1/d

d

n∑

i=1

µ(Q⇒
i) .

We conclude by observing that

µ(Q⇒
i) =

(1↑ 2/d

(2n)1/d
)d ∈ 1

54n
,

where we used the fact that d △↔ (1 ↑ 2/d)d is increasing and that
d ∈ 3. ↙∝

Theorem 2.14 shows that W1(µn, µ) is indeed of order n→1/d at least
for d ∈ 3. In fact the lower bound holds almost surely in X1, . . . , Xn

since it only exploits the fact that µn has a support of size at most n.
Note that the d dependence in Theorem 2.14 is o” by some polynomial
factors in d. It can be shown that the

⊤
d factor in Proposition 2.5

cannot be improved; see Exercise 1.

2.6.2 Minimax lower bounds

While it is hard to think of a better estimator for µ than µn in general
(in Section 2.7 we show that we can under additional assumptions on
µ) it could be the case that there exists another estimator µ̃n for which
E[W1(µ̃n, µ)] is smaller than E[W1(µn, µ)] uniformly over all measures
µ. This possibility is ruled out by the following minimax lower bound.

Theorem 2.15. Fix d ∈ 3, n ∈ 8 and let X1, . . . , Xn be n i.i.d. obser-
vations from a distribution µ on Rd. For any estimator µ̃n, i.e., any
measurable function of X1, . . . , Xn, there exists a measure µ supported
on [0, 1]d such that

Eµ[W1(µ̃n, µ)] ∈
1

16
(2n)→1/d .
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Proof. Our proof relies on classical techniques for minimax lower bounds.
In particular, we use Theorem 2.12 in [Tsy09]. According to this theorem,
if we can find 2m probability measures indexed by 5 ↗ {↑1, 1}m each
supported on [0, 1]d such that

(i) W1(µ(◁), µ(◁
↔
)) ∈ rn

2


m

j=1
|5j ↑ 5⇒

j
| for any 5,5⇒ ↗ {↑1, 1}m,

(ii) for any 5,↗ {↑1, 1}m di”ering in at most one coordinate,

KL(µ(◁) ↘ µ(◁
↔
)) → 1

2n
,

then for any estimator µ̃n based on n i.i.d. observations, there exists
5 ↗ {↑1, 1}m such that

E
µ(ϱ) [W1(µ̃n, µ

(◁))] ∈ mrn
4

.

In our construction, we take m = n and define the measures µ(◁) to
be supported on a discrete set as follows. As in the proof of Theorem 2.14,
let Q denote a partition of [0, 1]d into 2n cubes of side length (2n)→1/d

and let q1, . . . , q2n denote their centers. Let µ(0) denote the uniform
measure on {q1, . . . , q2n}:

µ(0) =
1

2n

2n∑

i=1

ϑqi .

For 5 ↗ {↑1, 1}n, let µ(◁) denote a perturbation of µ(0) defined as

µ(◁) = µ(0) +
3

2n

n∑

i=1

5i (ϑqi ↑ ϑqn+i) ,

where 5 = (51, . . . ,5n) and 3 ↗ (0, 1) is to be defined later. Note that
µ(◁) is a probability measure.

Since ↘qj ↑ qk↘ ∈ (2n)→1/d for j ⇐= k for we have

W1(µ
(◁), µ(◁

↔
)) ∈ 3

2n
(2n)→1/d

n∑

j=1

|5j ↑ 5⇒
j | =:

rn
2

n∑

j=1

|5j ↑ 5⇒
j |

for any 5,5⇒ ↗ {0}n ∃ {↑1, 1}n.
It remains to show that (ii) holds for a suitable choice of 3. To that

end, suppose that 5 and 5⇒ di”er on the jth coordinate. Observe that
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KL(µ(◁) ↘ µ(◁
↔
)) =

2n∑

i=1

µ(◁)(qi) log
( µ(◁)(qi)

µ(◁↔)(qi)

)

=
1

2n

{
(1 + 35j) log

1 + 35j

1↑ 35j

+ (1↑ 35j) log
1↑ 35j

1 + 35j

}

=
3

n
log

1 + 3

1↑ 3
,

and this quantity is smaller than 1

2n
if 3 = 1

4
. With this choice of 3, we

obtain

rn =
1

4n
(2n)→1/d , (2.14)

which implies the desired bound. ↙∝

2.7 Faster rates for smooth measures

The preceding section indicates that no estimator can avoid the slow
n→1/d rate in general.

There are multiple ways to alleviate this curse of dimensionality
and the rest of this chapter illustrates two main approaches. In this
section, we impose smoothness assumptions on the measure µ. Such
assumptions are classical in non-parametric statistics and known to
partially mitigate the curse of dimensionality. In the next section, we
describe how modifying/regularizing the Wasserstein distance into other
distances that are similar in nature can be used to bypass the curse of
dimensionality altogether.4

The fact that imposing smoothness conditions on µ can lead to better
rates is natural in light of the lower bound presented in Theorem 2.15.
The measures used in the proof are mixtures of Dirac masses and are
therefore highly “irregular” in the sense that they do not even possess
densities with respect to the Lebesgue measure. By assuming that µ is
smooth, we rule out these pathological examples.

For mathematical convenience, we consider smooth densities de-
fined on the torus Td := Rd/(2↼Z)d. Concretely, this can be viewed as
isomorphic to the set [0, 2↼)d, equipped with the metric dTd(x, y) :=
minz↑Zd ↘x↑y↑2↼z↘. On this space, the Wasserstein distance coincides

with W1 defined in Section 2.4.

4 Since we are interested in improvements to the exponent in the rate of decay, in
the remainder of this chapter we ignore dimension-dependent constants in the
bounds for clarity.
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We focus on the torus so that we can again use the tools of Fourier
analysis. A similar but slightly more technical argument can extend the
results of this section to standard Euclidean space. Note that the n→1/d

minimax lower bound proved in the previous section still holds on the
torus, so in moving to this setting we have not a”ected the fundamental
statistical di!culty of the problem.

We consider a probability measure µ on Td with a density, which
we also denote by µ. We make the assumption that the density of µ is
smooth, in the sense that it lies in a Sobolev space.

Definition 2.16.Given a positive integer s, the Sobolev space H
s con-

sists of all functions f : Td ↔ R such that for every multi-index 3 with
|3| → s, the derivative d▷f lies in L2. Given f ↗ H

s, its Sobolev norm
is defined to be

↘f↘2
Hs = max

|▷|⇐s

∫

Td
↘d▷f↘2 dx .

The importance of the Sobolev spaces lies in their close connection
with Fourier series. If µ ↗ H

s, then its Fourier transform (2.9) satisfies

∑

m↑Zd

(1 + ↘m↘2s) |φµ(m)|2 < ⇑ .

Moreover, this expression in terms of Fourier coe!cients actually gives
an equivalence of norms. Indeed, from the Fourier representation

µ(x) B
∑

m↑Zd

φµ(m) e→i↖m,x↙

we obtain, for any multi-index 3,

d▷µ(x) B
∑

m↑Zd

m2▷ φµ(m) e→i↖m,x↙ ,

where m▷ = m▷1

1
· · ·m▷d

d
. By Parseval’s identity,

∫

Td
↘d▷µ↘2 dx ℑ

∑

m↑Zd

m2▷ |φµ(m)|2 (2.15)

↭
∑

m↑Zd

(1 + ↘m↘2s) |φµ(m)|2 . (2.16)

On the other hand, by the binomial theorem,
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↘m↘2s =
∑

|▷|=s

m2▷ .

By (2.15), it holds that
∑

m↑Zd

↘m↘2s |φµ(m)|2 =
∑

m↑Zd

∑

|▷|=s

m2▷ |φµ(m)|2

↭
∑

|▷|=s

∫

Td
↘d▷µ↘2 dx . (2.17)

By (2.16) and (2.17) (applying the latter inequality also for s = 0), we
have shown that

↘µ↘2
Hs ℑ

∑

m↑Zd

(1 + ↘m↘2s) |φµ(m)|2 .

We construct an estimator µ̃n obtained by estimating the Fourier
coe!cients of µ for all m ↗ Zd satisfying ↘m↘ → M . Concretely, we
define

φµ(m) = φµn(m) =
1

n

n∑

j=1

ei↖m,Xj↙ ,

then for any M ∈ 1 we set

µ̃n(x) =
1

(2↼)d

∑

⇑m⇑⇐M

φµ(m) e→i↖m,x↙ .

Note that while µ̃n is always a real-valued function on Td integrating
to 1, it may not be positive everywhere; however, we ignore this issue
for now. Even when the density µ̃n takes negative values, the definition
of W1 in terms of its dual representation (2.7) still gives a sensible

interpretation of W1(µ, µ̃n).
We have the following result.

Proposition 2.17. Assume µ ↗ H
s(Td) with ↘µ↘Hs ↭ 1. For any

M ∈ 1 and d ∈ 3, the estimator µn defined above satisfies

EW1(µ, µ̃n) ↭ n→1/2Md/2→1 +M→(s+1) .

Proof. We first note that

W1(µ, µ̃n)
2 ↭

∑

m ↔=0, ⇑m⇑⇐M

↘m↘→2 |φµ(m)↑ φµ(m)|2
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+
∑

⇑m⇑>M

↘m↘→2 |φµ(m)|2 .

This follows directly from Proposition 2.9, using the fact that the
(signed) measure µ̃n has Fourier coe!cients φµ(m) for ↘m↘ → M and
zero otherwise. As in Section 2.4, we may use the fact that |ei↖m,Xj↙| → 1

to conclude that E|φµ(m)↑ φµ(m)|2 → n→1. Therefore,

EW1(µ, µ̃n) → n→1/2

 ∑

m ↔=0, ⇑m⇑⇐M

↘m↘→2 +
 ∑

⇑m⇑>M

↘m↘→2 |φµ(m)|2 .

Before proceeding, we pause to compare this bound with (2.13).
There are two di”erences: first, the smooth cut-o” e→ε⇑m⇑2 in (2.13) has
been replaced by the restriction ↘m↘ → M . This change is inessential:
since e→ε⇑m⇑2 C 1 when ↘m↘2 A ω→1, the smooth cut o” term mimics
a restriction to ↘m↘ ↭ ω→1/2. The second di”erence is that the term
2
⊤
2ω in (2.13) has been replaced by a term that depends on the higher

Fourier coe!cients of µ. This change is crucial, since, as we now show,
it implies that the second term automatically becomes smaller when µ
is smooth.

Since


m↑Zd ↘m↘2s |φµ(m)|2 ↭ 1, we may write

∑

⇑m⇑>M

↘m↘→2 |φµ(m)|2 → M→2(s+1)
∑

⇑m⇑>M

↘m↘2s |φµ(m)|2

↭ M→2(s+1) .

For the first term, we can compare the sum with the integral
(
∫
1⇐⇑x⇑⇐M

↘x↘→2 dx)1/2, which is of order Md/2→1 when d ∈ 3. ↙∝

Tuning M appropriately, we arrive at the following theorem.

Theorem 2.18. If µ ↗ H
s(Td) with ↘µ↘Hs ↭ 1, then there exists an

estimator µ̃n such that

EW1(µ, µ̃n) ↭ n→ s+1

d+2s .

Proof. Apply Proposition 2.17 with M ℑ n1/(d+2s). ↙∝

Theorem 2.18 shows that, when s > 0, the estimator µ̃n strictly
improves over the empirical measure µn. However, we note that the
estimator µ̃n is a signed measure, which may be viewed as undesirable.
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This is a common phenomenon in non-parametric statistics; for instance,
in the design of kernel density estimators for very smooth densities, it
is necessary to employ higher-order kernels which take negative values.
If a positive estimator is desired, then it is possible to show that the
estimator µ̄n defined by

µ̄n := argmin
ω↑P(Td)

W1(ε, µ̃n)

also achieves the bound in Theorem 2.18: indeed, since µ ↗ P(Td),

W1(µ, µ̄n) → W1(µ, µ̃n) + W1(µ̄n, µ̃n) → 2W1(µ, µ̃n) ,

so that µ̄n is worse than µ̃n by a factor of at most 2.

2.8 Regularization of Wasserstein distances

The curse of dimensionality that plagues statistical optimal transport
has been recognized since its early days. To overcome this limitation,
researchers have proposed multiple solutions which can, in retrospect, be
viewed as some kind of regularization of the original optimal transport
problem. In the rest of this section, we review three examples and
demonstrate how they escape the curse of dimensionality.

2.8.1 Integral probability metrics

Recall from the dual chaining argument of Section 2.3 that the rate
n→1/d came directly from the entropy number of the class of 1-Lipschitz
functions. Lemma 2.7 showed

logN(ω,Lip1([0, 1]
d)) ↭ (4

⊤
d/ω)d .

The polynomial scaling in 1/ω is characteristic of non-parametric classes,
as opposed to parametric classes where this scaling is logarithmic;
see e.g., [GN16]. This raises the question of potentially replacing the
class of 1-Lipschitz functions with a smaller, ideally parametric, class of
functions.

Take for example the class of linear functions on Rd:

Flin :=

f(x) = ′6, x∞ : 6, x ↗ Rd, ↘6↘ = 1


,
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and consider the quantity

ϑ(µ, ε) = sup
f↑Flin

{∫
f dµ↑

∫
f dε

}

= sup
0↑Rd, ⇑0⇑=1

{∫
′6, x∞µ(dx)↑

∫
′6, y∞ ε(dy)

}

= ↘Eµ[X]↑ Eω [Y ]↘ .

In particular, ϑ(µ, ε) = 0 if and only if µ and ε have the same mean.
This is of course not su!cient to say that the two measures are the same
so the above quantity does not define a distance between probability
measures like the Wasserstein distance. To do so, we need to find a
class of test functions F that is large enough to yield a distance but
not as massive as 1-Lipschitz functions so as to escape the curse of
dimensionality.

Definition 2.19. A metric d(·, ·) between two probability measures is
called an integral probability metric (IPM) if it satisfies the properties
of a metric and can be written in the form

d(µ, ε) = sup
f↑F

∣∣∣∣
∫

f dµ↑
∫

f dε

∣∣∣∣ . (2.18)

Note that both the 1-Wasserstein distance W1 and the quantity ϑ
above are of the form (2.18) with F = Lip1 and F = Flin respectively.
Indeed, the absolute value in (2.18) is implicit when F is symmetric:
F = ↑F. However, while W1 is an IPM, the quantity ϑ is not because it
fails to satisfy the properties of a metric; here: definiteness.

Another example of a choice for F is the set of bounded Lipschitz
functions which indeed yields an IPM, but the size of this class is
the same as Lip1 for the matter at hand here. To improve the sample
complexity, we need much smoother functions.

2.8.2 Maximum mean discrepancy

Reproducing Kernel Hilbert Spaces (RKHS) form a flexible and practical
class of functions. To define this class of functions very briefly we
introduce some basic definitions and key properties. We refer the reader
to [MFSS17] for more details on kernel methods that are particularly
relevant to this section.
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Consider a reproducing kernel Hilbert space H of functions Rd ↔ R
associated to a bounded positive definite kernel k on Rd. Denote by
′·, ·∞H and ↘ · ↘H the inner product and norm on H respectively. The
reproducing property of the RKHS H ensures that for any f ↗ H,

′k(x, ·), f∞H = f(x) .

In particular taking f = k(y, ·) yields

′k(x, ·), k(y, ·)∞H = k(x, y) .

We are now in a position to define the Maximum Mean Discrepancy.

Definition 2.20. Let H be an RKHS. The Maximum Mean Discrepancy
(MMD) between two probability measures µ and ε on Rd is defined to
be the quantity

MMD(µ, ε) = sup
f↑H

⇑f⇑H⇐1

∣∣∣∣
∫

f dµ↑
∫

f dε

∣∣∣∣ .

Without further assumptions on the RHKS, MMD need not define a
distance between probability measures. Indeed, observe that the set of
linear functions on Rd equipped with the Euclidean inner product is in
fact an RKHS associated to the linear kernel k(x, y) = ′x, y∞. Moreover,
if f(x) = ′6, x∞, then

↘f↘2
H
= ↘′6, ·∞↘2

H
= ↘k(6, ·)↘2

H
= k(6, 6) = ↘6↘2 .

Hence, the unit ball of H is no other than Flin and we have shown that
this class is not rich enough to define an IPM.

In fact, we have not addressed whether MMD is finite. To that end,
we use the following useful proposition.

Proposition 2.21. Let H be an RKHS. The Maximum Mean Discrep-
ancy (MMD) between two probability measures µ and ε on Rd can be
equivalently defined as

MMD(µ, ε) =


∫

k(x, ·)µ(dx)↑
∫

k(x, ·) ε(dx)

H

.

Proof. For any f ↗ H it holds
∫

f(x) (µ↑ ε)(dx) =

∫
′k(x, ·), f∞H (µ↑ ε)(dx)
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=
∫

k(x, ·) (µ↑ ε)(dx), f


H

.

Hence, the claim follows from Cauchy–Schwarz. ↙∝

As a corollary of Proposition 2.21, we get that

MMD
2(µ, ε) =

∫∫
k(x, y)µ(dx)µ(dy) +

∫∫
k(x, y) ε(dx) ε(dy)

↑ 2

∫∫
k(x, y)µ(dx) ε(dy) (2.19)

and

MMD(µ, ε) →
∫

↘k(x, ·)↘H µ(dx) +

∫
↘k(x, ·)↘H ε(dx)

→ 2 sup
x↑Rd


k(x, x) < ⇑

where we used the fact that k is bounded.
The map µ △↔

∫
k(x, ·)µ(dx) which embeds µ onto the RKHS H

is called kernel mean embedding. It follows from Proposition 2.21 that
MMD is an IPM, meaning that it is indeed a metric, if and only
if the kernel mean embedding is injective. Kernels that ensure this
property are called characteristic and one such example is the Gaussian

kernel k(x, y) = e→
↗x↑y↗2

2ϑ2 . To see this, observe that, up to normalizing
constants, the kernel mean embedding is a convolution of µ with a
Gaussian measure: for any y ↗ Rd, it holds

∫
k(x, y)µ(dx) =

∫
e→

↗x↑y↗2

2ϑ2 µ(dx) = (◁
⊤
2↼)d (µ 2N(0,◁2I))(y) .

Injectivity of the convolution with a Gaussian distribution can be seen
readily using characteristic functions. Indeed, the characteristic function
of µ 2N(0,◁2I) is given by

φµ-N(0,ϱ2I)(·) = φµ(·)φN(0,ϱ2I)(·) = φµ(·) e→
ϑ2 ↗·↗2

2 .

Hence, since the characteristic function e→
ϑ2 ↗·↗2

2 of the Gaussian is
everywhere positive, we get that

µ 2N(0,◁2I) = ε 2N(0,◁2I)
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if and only if µ = ε.
Clearly, the above argument generalizes to translation-invariant

kernels that are of the form k(x, y) = K(x ↑ y) for some bounded
positive definite function K : Rd ↔ R and whose Fourier transform
is everywhere positive5. This includes for example the Laplace kernel
k(x, y) = e→⇑x→y⇑ as well as other examples; see [MFSS17, Table 3.1].

The representation of MMD given by (2.19) gives an easy way to
estimate MMD from data. For example, assume that X1, . . . , Xm are
i.i.d. from µ and Y1, . . . , Yn are i.i.d. from µ. Denote by µm and εn the
corresponding empirical distributions. Then,

MMD
2(µm, εn) =

1

m2

m∑

i,i↔=1

k(Xi, Xi↔) +
1

n2

n∑

j,j↔=1

k(Yj , Yj↔)

↑ 2

mn

m∑

i=1

n∑

j=1

k(Xi, Yj) .

A natural question is whether this gives a good estimator of MMD
2(µ, ε).

Using the triangle inequality, it is su!cient to control MMD(µm, µ).
While MMD is an IPM, the closed-form representation of Proposi-
tion 2.21 allows us to bypass the use of empirical process theory to
control this quantity.

Theorem 2.22. Let k be a characteristic kernel such that k(x, x) → 1
for any x ↗ Rd. Let X1, . . . , Xn be n i.i.d. observations from a distribu-
tion µ on Rd and define the empirical measure

µn =
1

n

n∑

i=1

ϑXi .

Then

Eµ[MMD(µn, µ)] →
1⊤
n
.

Proof. It follows from Proposition 2.21 that

E[MMD
2(µn, µ)] = E


1

n

n∑

i=1

{k(Xi, ·)↑ Ek(Xi, ·)}

2

H

5 Note that Bochner’s theorem implies that positive definite kernels have a non-
negative Fourier transform, so this is a stronger requirement.
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=
1

n
E↘k(X1, ·)↑ Ek(X1, ·)↘2H

=
1

n

(
E↘k(X1, ·)↘2H ↑ ↘Ek(X1, ·)↘2H

)

→ 1

n
E↘k(X1, ·)↘2H .

Next, observe that

E↘k(X1, ·)↘2H = E[k(X1, X1)] → 1 .

The claim follows from Jensen’s inequality. ↙∝

We see that unlike Wasserstein distances, MMD does not su”er from
the curse of dimensionality. This is certainly a desirable feature, but it
may also be interpreted from a more cautious perspective. Indeed, while
MMD does define a metric, it is less sensitive to deviations between
probability measures and tends to make them small. This is why µn,
which according to the 1-Wasserstein distance is quite far from µ,
appears to be quite close to µ from the perspective of MMD.

2.8.3 Smoothed Wasserstein distances

We see from Proposition 2.21 that when k is the Gaussian kernel,
MMD(µ, ε) is a Hilbert space norm involving the densities µ2N(0,◁2Id)
and ε 2N(0,◁2Id). We could very well measure this distance between
probability measures using other distances, in particular, using Wasser-
stein distances.

Definition 2.23. Fix p ∈ 1. The smoothed p-Wasserstein distance
between two probability measures µ, ε ↗ Pp(Rd) is defined by

W (ϱ)

p (µ, ε) := Wp(µ 2N(0,◁2I), ε 2N(0,◁2I)) .

The idea of computing the Wasserstein distance between smoothed
versions of the measures was already used as an analytical tool in the
proof of Corollary 2.12; here, we consider it as a notion of distance in
its own right.

It follows readily from this definition that the smoothed Wasserstein
distance is indeed a distance. Compared to MMD, which embeds dis-
tributions in a Hilbert space, the geometry induced on distributions
by the smoothed Wasserstein distance is much closer to the original
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Wasserstein distance. Like MMD, however, smoothed Wasserstein dis-
tances enjoy faster statistical rates of convergence. For simplicity, we
focus here on the case p = 1, but parametric rates have been established
for p = 2 as well.

Theorem 2.24. Fix ◁ > 0. Let X1, . . . , Xn be n i.i.d. observations
from a distribution µ on [↑1, 1]d and define the empirical measure

µn =
1

n

n∑

i=1

ϑXi .

Then

Eµ[W
(ϱ)

1
(µn, µ)] ↭

1⊤
n
,

where the implicit constant depends on both ◁2 and d.

Before turning to the proof, we note that the constant factor in this
bound scales exponentially in the dimension. This poor scaling in d is,
in fact, unavoidable and reflects the fundamental statistical di!culty of
estimating the Wasserstein distance.

Proof. Denote by f the density of µ2N(0,◁2I) and by fn the density of
µn 2N(0,◁2I). Write ϕ(z) := (2↼◁2)→d/2 exp(↑ 1

2ϱ2 ↘z↘2) for the density
of N(0,◁2I). Theorem 1.6 implies

EW (ϱ)

1
(µn, µ) → E

∫
↘z↘ |fn(z)↑ f(z)|dz

=

∫
↘z↘E

∣∣∣
1

n

n∑

i=1

ϕ(z ↑Xi)↑ Eϕ(z ↑Xi)
∣∣∣ dz

→ 1⊤
n

∫
↘z↘

(
E(ϕ(z ↑X1)↑ Eϕ(z ↑X1))

2
)
1/2

dz

→ 1⊤
n

∫
↘z↘ (Eϕ(z ↑X1)

2)1/2 dz .

It su!ces to show that the integral is bounded. If ↘z↘ → 2
⊤
d, then we

can use the crude bound (Eϕ(z ↑X1)2)1/2 → (2↼◁2)→d/2. If ↘z↘ > 2
⊤
d,

then ↘z ↑ X1↘ ∈ ↘z↘ ↑ ↘X1↘ ∈ ↘z/2↘ almost surely, which yields
(Eϕ(z ↑X1)2)1/2 → ϕ(z/2). We obtain

EW (ϱ)

1
(µn, µ) →

(2↼◁2)→d/2

⊤
n

∫

⇑z⇑⇐2

∞
d

↘z↘ dz + 1⊤
n

∫
↘z↘ϕ(z/2) dz

↭ n→1/2 ,

as claimed. ↙∝
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2.8.4 Sliced Wasserstein distances

Finally, we close this chapter with yet another method to avoid the
curse of dimensionality, this time based on considering the Wasserstein
distance between one-dimensional projections.

Formally, let Sd→1 denote the unit sphere in Rd and for 6 ↗ Sd→1

let 70 : Rd ↔ R be the projection 70(x) := ′6, x∞. Define the sliced
Wasserstein distance between µ, ε ↗ Pp(Rd) to be the quantity

SWp(µ, ε) :=
∫

W p

p (7
0

#
µ,70

#
ε)◁(d6)


1/p

, (2.20)

where ◁ is the uniform measure on Sd→1.
The idea of considering one-dimensional projections is rooted in

applications to imaging and tomography, for which various integral
transforms have been introduced. In particular, the Radon transform of
a measure µ is defined to be the collection of one-dimensional projections
(70

#
µ)0↑Sd↑1 . It is a classical fact, known as the Cramér–Wold theorem,

that the Radon transform of µ completely characterizes µ, justifying
its use in defining a metric over probability measures. Let us start by
checking that the axioms of a metric space are indeed satisfied.

Theorem 2.25. For every p ∈ 1, SWp defines a metric over Pp(Rd).

Proof. Symmetry and non-negativity follow from the corresponding
facts about the Wasserstein distance. For & ↓ ◁, the triangle inequality
is verified via

SWp(µ, ε) =
(
EW p

p (7
#

#
µ,7#

#
ε)
)
1/p

→
(
EW p

p (7
#

#
µ,7#

#
φ)
)
1/p

+
(
EW p

p (7
#

#
φ,7#

#
ε)
)
1/p

= SWp(µ, φ) + SWp(φ, ε) .

Finally, we must check that SWp(µ, ε) = 0 implies µ = ε. Certainly,
SWp(µ, ε) = 0 implies that Wp(70

#
µ,70

#
ε) = 0 for almost every 6 ↗

Sd→1, which implies 70

#
µ = 70

#
ε. To finish, we would like to upgrade

“almost every” to “every” to apply the Cramér–Wold device.
To do so, we prove a Lipschitz continuity property of the mapping

6 △↔ 70

#
µ. For 6⇒ ↗ Sd→1 and X ↓ µ,

Wp(7
0

#
µ,70

↔
#
µ) →

(
E[|′6 ↑ 6⇒, X∞|p]

)
1/p → (E↘X↘p)1/p ↘6 ↑ 6⇒↘ .



82 2 Estimation of Wasserstein distances

Together with the Wp triangle inequality, it shows that

|Wp(7
0

#
µ,70

#
ε)↑Wp(7

0
↔

#
µ,70

↔
#
ε)|

→ Wp(7
0

#
µ,70

↔
#
µ) +Wp(7

0

#
ε,70

↔
#
ε) ↭ ↘6 ↑ 6⇒↘ .

Therefore, 6 △↔ Wp(70

#
µ,70

#
ε) is continuous, and SWp(µ, ε) = 0 im-

plies that this quantity vanishes for every 6 ↗ Sd→1.6 ↙∝

We can now prove that the sliced Wasserstein distance can be
estimated at a parametric rate.

Proposition 2.26. Suppose that µ, ε ↗ P(B1), where B1 is the unit
ball in Rd, and let µn, εn denote the corresponding empirical measures
formed from i.i.d. samples X1, . . . , Xn ↓ µ and Y1, . . . , Yn ↓ ε. Then,

ESW1(µn, µ) ↭ n→1/2 .

Also,

E|SW1(µn, εn)↑ SW1(µ, ε)| ↭ n→1/2 .

Proof. The second inequality follows from the first by the triangle
inequality. To establish the first, we can note that ′6, X1∞, . . . , ′6, Xn∞
is an i.i.d. sample from 70

#
µ, and 70

#
µn is the corresponding empirical

measure. Hence, from the one-dimensional rate in Proposition 2.5,
EW1(70

#
µn,70

#
µ) ↭ n→1/2. Then, average over 6. ↙∝

Although we have motivated the sliced Wasserstein distance for its
statistical benefits, fortuitously it also comes with substantial computa-
tional ones. Indeed, computation of SWp boils down to one-dimensional
optimal transport, which for discrete measures can be solved via sorting;
see Exercise 5.

2.9 Discussion

§2.1. The Wasserstein law of large numbers is discussed in more detail
in [Dud02, Chapter 11]. The slow rate of convergence is a manifestation
of the fact that W1 convergence automatically implies convergence of

6 An alternative argument proceeds as follows: ϑς
#µ = ϑ

ς
#ϖ for almost every ϱ

implies that the characteristic functions of µ, ϖ are equal almost everywhere. But
characteristic functions are uniformly continuous.
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all Lipschitz text functions (and, for p > 1, convergence of all higher
moments, as Proposition 1.5 shows); it is therefore not surprising that
a large number of samples is needed to obtain such strong control.
The implications of the Wasserstein law of large numbers for optimal
quantization and k-means clustering were first developed in a statistical
context in [Pol82].
§2.2. The usefulness of the dyadic partitioning argument for controlling
the Wasserstein distances was first highlighted by [BLG14]; see also
[DSS13, FG15] extensions to the unbounded setting. A further discussion
of the history of this approach appears in [NWB19], from which this
version of the argument was taken. This argument can easily be extended
to show that the rate of convergence depends on the intrinsic dimension
of the measure µ rather than the ambient dimension.

The dyadic partitioning argument also applies to the p > 1 case, and
shows that

EWp(µn, µ) ↭p

⊤
d ·






n→1/2p , if d < 2p ,

(log n)1/p/n1/2p , if d = 2p ,

n→1/d , if d > 2p .

(2.21)

This rate is essentially sharp, apart from the logarithmic factor in the
d = 2p case. On the other hand, the dual bounds we present in this
chapter do not easily extend to p > 1 since the dual formulation of
Wp(µn, µ) does not give rise to an empirical process when p > 1.

The triangle inequality implies that rates of convergence of Wp(µn, ε)
to Wp(µ, ε) can be derived from the corresponding rates of convergence
of Wp(µn, µ); however, these rates can fail to be sharp. To give one
example, [CRL+20] showed that

E|W 2

2 (µ, εn)↑W 2

2 (µ, ε)| ↭






n→1/2 , if d < 4 ,

(log n)/n1/2 , if d = 4 ,

n→2/d , if d > 4 .

(2.22)

Note that when µ ⇐= ε, this bound is stronger than what could be
deduced from (2.21). A similar phenomenon exists for other Wp dis-
tances [MNW24].

More strikingly, the rate at which Wp(µn, ε) converges to Wp(µ, ε)
can be shown to depend on the smaller of the intrinsic dimensions of µ
and ε; see [HSM24]. In particular, if ε is supported on a finite number
of points (sometimes known as the semi-discrete optimal transport
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problem), then Wp(µn, ε) converges to Wp(µ, ε) at a rate that does not
su”er from the curse of dimensionality. This fact cannot be deduced
from bounds on Wp(µn, µ) alone.
§2.3. Chaining is an idea that goes back implicitly to Kolmogorov. In the
form of Proposition 2.6, it is known as Dudley’s entropy integral [Dud67].
For some of the many references on chaining and its applications,
see [Dud99, vH14, Ver18, Wai19, Tal21, vdVW23].
§2.4. As mentioned, the result of this section is due to [AKT84] and the
argument here is taken from [BL21]. The idea of using Fourier transforms
to bound matching costs is originally due to [CS91], and was developed
extensively by Talagrand [Tal21]. More broadly, there is a large literature
on so-called matching problems, e.g., [Led17, LZ21, Tal21], and recently
techniques from partial di”erential equations have been used to derive
very sophisticated results when d = 2, see, e.g., [AST19].
§2.5. Applications of Wasserstein distances to testing can be found
in [dBCAMRR99, HMS21, GDGSCN23, NWKB23]. Goodness-of-fit
and two-sample testing problems with Wasserstein distances were stud-
ied in [BNNR11]; for each problem, they showed that the optimal
separation is of order n→c/d for some constant c > 1.

It was shown in [NWR22] that, up to logarithmic factors, a separation
of n→1/d is necessary for a “robust” version of goodness-of-fit problem
described above, with hypotheses

H0 : W1(µ, µ
0) < ω vs. H1 : W1(µ, µ

0) > 2ω .

This lower bound can be used to obtain nearly sharp minimax lower
bounds for estimating the Wasserstein distance.
§2.6. The lower bound in Theorem 2.14 is due to [Dud69]. The minimax
lower bound in Theorem 2.15 was first proved by [SP18]. For expositions
of minimax lower bound techniques, see [Tsy09, RH17, Wai19].
§2.7. Minimax estimation of smooth densities in the Wasserstein dis-
tance was studied in [SUL+18, Lia21] for W1, and in [NWB22] for Wp,
p > 1. The case of p > 1 evinces di”erent behavior from the p = 1
case: [NWB22] showed that the rate in Theorem 2.18 is achievable for
p > 1 only under the additional assumption that the density of µ is
bounded below; without this assumption, rates of estimation are strictly
worse. The results for the p > 1 case are confined to densities lying in
Besov classes; extending the arguments of [NWB22] to other classes of
densities is an open question. A version of this problem on manifolds
has been studied in [Div22].
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Non-parametric density estimation is itself a classical topic in statis-
tics, albeit usually studied in other distance metrics [Tsy09].
§2.8. It is worth mentioning that IPMs have received significant atten-
tion in the context of Generative Adversarial Networks (GANs), and
in particular, Wasserstein GANs [ACB17] where F is chosen to be a
family of deep neural networks. For statistical analyses of IPMs and
GANs, see, e.g. [USP19, Lia21].

Maximum mean discrepancy was first developed in [BGR+06], and
is now the subject of a large literature, see, [MFSS17]. The rate given
in Theorem 2.22 is folklore. A notable special case of MMD is the class
of energy distances, for which we recommend [Ger24, Subsection 1.2.4]
for an introduction and references.

The favorable statistical properties of the smoothed Wasserstein
distances were first recorded in [GGNWP20]. The simple proof of The-
orem 2.24 is taken from [NW18].

Sliced Wasserstein distances were introduced in [RPDB12]. They
arose as a device to understand the “iterative distribution transfer” algo-
rithm [PKD07]; see the PhD thesis of Bonnotte [Bon13] for history. For
further discussion, consult [San15, Section 5.5.4], and see [NDC+20] for
generalizations with similar metric and statistical properties. Extensions
of Proposition 2.26 appear in [MBW22]. The sharp condition for the fast
rate of estimation of sliced Wasserstein distances to hold was obtained
in [BL19]. Other results in this vein, including distributional limits, can
be found in [MBW22, NWR22, OI22, XNW22, XH22, PS23, GKRS24].

2.10 Exercises

1. This exercise shows that the
⊤
d factor in Proposition 2.1 cannot be

improved.
a) Show that there exists a positive universal constant c such that

for any n ∈ 1, the Lebesgue measure of a ball in Rd with radius
c
⊤
dn→1/d is at most (2n)→1. (Hint: recall that the unit ball in

Rd has Lebesgue measure ↼d/2/#(d
2
+ 1).)

b) Let µ be the uniform measure on [0, 1]d, and let µ̃n be any mea-
sure supported on n points x1, . . . , xn. If we denote by B(xi, 8)
a ball of radius 8 around xi, show that µ(

⋃
n

i=1
B(xi, 8)) → 1

2
if

8 = c
⊤
dn→1/d, where c is the constant from part (a).

c) Conclude that if ϖ ↗ #(µ, µ̃n), then
∫
↘x ↑ y↘dϖ(x, y) ∈ 1

2
·

c
⊤
dn→1/d.



86 2 Estimation of Wasserstein distances

2. Adapt the proof of Proposition 2.5 to establish (2.21).
3. Recall the bounded di”erences inequality (e.g., [BLM13, Theorem

6.2]). Use it to prove a concentration inequality for W1(µn, µ) around
its expectation, where X1, . . . , Xn are i.i.d. from a distribution µ
supported on a ball of radius R and µn is the empirical measure
µn = 1

n


n

i=1
ϑXi .

4. Prove that SWp → Wp for any p ∈ 1. Is this inequality tight?

Similarly, show that W (ϱ)

1
→ W1. Is this inequality tight?

5. We consider the computational aspects of the sliced Wasserstein
distance, defined in Subsection 2.8.4.
a) Show that if µ, ε ↗ Pp(R) (p ∈ 1), and µ and ε are each uni-

formly distributed on n points, then Wp(µ, ε) can be computed
in O(n log n) time (where we treat arithmetic and comparison
operations as constant time). Assume that the measures µ, ε
are given as (unordered) lists of points.

b) Now suppose that µ, ε ↗ Pp(Rd) are each uniformly distributed
on n points, presented as lists of points in Rd. Argue that we
can compute Wp(70

#
µ,70

#
ε) in O(dn+ n log n) time.

c) This is still insu!cient for algorithmic purposes, since comput-
ing SW1(µ, ε) exactly requires computing W1(70

#
µ,70

#
ε) for

uncountably many values of 6 and integrating. Argue instead
that if µ, ε ↗ P(B1) and we draw m i.i.d. points 61, . . . , 6m from
the uniform measure ◁ on Sd→1, then the Monte Carlo average

ŜW1(µ, ε) :=
1

m

m∑

i=1

W1(7
0i
#
µ,70i

#
ε)

approximates SW1(µ, ε) to an additive error of size O(m→1/2).
6. Theorem 1.7 implies that if µ ↗ P1(R), then

W1(µn, µ) =

∫ ↘

→↘
|Fµn(t)↑ Fµ(t)| dt ,

where Fµn and Fµ are the cumulative distribution functions of µn

and µ, respectively. Use this fact to show Proposition 2.1 for d = 1
directly. (Hint: E|Fµn(t)↑ Fµ(t)|2 = Fµ(t) (1↑ Fµ(t)).)

7. The minimax lower bound proved in Theorem 2.15 is suboptimal
when d = 1. This exercise proves an optimal bound based on testing
between two hypotheses (Theorem 2.2 in [Tsy09]). To use this
approach, it su!ces to construct two measures µ(0) and µ(1) with
support in [0, 1] such that
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W1(µ
(0), µ(1)) ∈ 2rn ,

KL(µ(1) ↘ µ(0)) → 1

2n
.

The existence of such measures implies that for any estimator µ̃n

based on n i.i.d. observations, there exists j ↗ {0, 1} such that
E
µ(j) [W1(µ̃n, µ(j))] ∈ rn

4
.

a) Fix ω ↗ (0, 1/2), and consider µ(0) = (1
2
+ ω)ϑ0 + (1

2
↑ ω)ϑ1 and

µ(1) = (1
2
↑ ω)ϑ0 + (1

2
+ ω)ϑ1. Show that W1(µ(0), µ(1)) = 2ω.

b) Show that this pair of measures satisfies KL(µ(1), µ(0)) → 16ε
2

1→4ε2
.

c) Conclude that there exists a positive universal constant c such
that for any estimator µ̃n there exists j ↗ {0, 1} such that
E
µ(j) [W1(µ̃n, µ(j))] ∈ cn→1/2.

8. The regularization strategies discussed in Section 2.8 can be applied
more broadly. For example, given probability measures µ, ε, define
the following quantity and call it “smoothed L2”:

d2ϱ(µ, ε) :=

∫ (
µ 2N(0,◁2I)↑ ε 2N(0,◁2I)

)
2
.

Show that it can be estimated at a parametric rate: if µn denotes
the empirical measure formed from n i.i.d. samples from µ, then

Ed2ϱ(µn, µ) →
1

(2↼◁2)d/2 n
.

9. For µ, ε ↗ Pp(Rd), the “max-sliced Wasserstein distance” [DHS+19,
KNS+19]7 between them is

MSWp(µ, ε) := max
0↑S

Wp(7
0

#
µ,70

#
ε) .

The goal of this exercise is to show that MSW1 can be estimated at
the parametric rate.
a) Let µ ↗ P(B1), and let µn be the empirical measure correspond-

ing to X1, . . . , Xn

i.i.d.↓ µ. Show that

MSW1(µn, µ) = sup
f↑F

1

n

n∑

i=1

{f(Xi)↑ Ef(Xi)} ,

where F is the class of functions of the form x △↔ h(6Tx) where
6 ↗ Sd→1 and h is a 1-Lipschitz function on [↑1, 1] satisfying
h(0) = 0.

7 Also known as the “low-dimensional Wasserstein distance” [NWR22] or the “sub-
space robust Wasserstein distance” [PC19a].
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b) Prove that

logN(ω,F) ↭ 1/ω+ d log(1 + 1/ω) .

Hint: Consult Exercise 2 in Chapter 3.
c) Using Proposition 2.6, conclude that

EMSW1(µn, µ) ↭

d/n .

In fact, a more sophisticated argument shows that the correct
rate is dimension free [Boe24].



3

Estimation of transport maps

Thus far, the statistical questions we have investigated center around
the estimation of optimal transport distances (and their variants), but
the gamut of diverse applications of optimal transport (to name but a
few: data fusion [CFTC16] adaptation/transfer learning [CFTR17], and
computational biology [SST+19, BSG+23]), it is the optimal transport
map which is the object of primary interest. In this chapter, we address
the question of estimating this map on the basis of finitely many samples.

3.1 Problem formulation

Recall from Brenier’s theorem that if µ has a density,

W 2

2 (µ, ε) = min
ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy)

= min
T :T#µ=ω

∫
↘x↑ T (x)↘2 µ(dx) .

Moreover, the optimal transport map takes the form T = ∀ϕ, where ϕ
is convex. We can also write this as (X,∀ϕ(X)) ↓ ϖ, or ϖ(dx,dy) =
µ(dx) ϑT (x)(dy).

The statistical question under investigation is formulated as follows.

Given samples X1, . . . , Xn

i.i.d.↓ µ and Y1, . . . , Yn
i.i.d.↓ ε, how can we

estimate the optimal transport map T from µ to ε via an estimator T̂
constructed on the basis of the samples?

We take as our measure of performance the integrated error
∫

↘T̂ (x)↑ T (x)↘2 µ(dx) .
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The L2 integrated error is a natural measure of distance that is commonly
employed in non-parametric statistics. In this context, however, it takes
on an additional interpretation of controlling the Wasserstein distance
between the pushforwards of µ under the two maps. More precisely, by
definition we have ε = T#µ. If we define the measure ε̂ via ε̂ = T̂#µ,

then (T̂ (X), T (X)) for X ↓ µ is a (suboptimal) coupling of ε̂ and ε,
and hence

W 2

2 (ε̂, ε) → E↘T̂ (X)↑ T (X)↘2 =
∫

↘T̂ (x)↑ T (x)↘2 µ(dx) .

See Figure 3.1 for an illustration.

µ ϖ

ϖ̂ = T̂#µ

T

T̂

Fig. 3.1. The L2 error between the transport maps controls the W 2

2 distance between
ϖ̂ and ϖ.

A first approach to estimation might be to compute the opti-
mal coupling between the empirical measures µn and εn, i.e., solve
minε↑!µn,ωn

∫
↘x↑ y↘2 ϖ(dx, dy), but we rapidly recognize an untenable

hole in this näıve plan. Namely, even if the optimal transport plan ϖn is
induced by a transport map Tn, so that ϖn(dx, dy) = µn(dx) ϑTn(x)

(dy),
the mapping Tn is only well-defined on the sample {X1, . . . , Xn} and
it is not clear how to extend it in a principled manner to a mapping
over all of Rd (Figure 3.2). To remedy this, several approaches have
been proposed in the literature aimed at building an interpolation T̂n

of Tn to out-of-sample points. For example, we can take T̂n(x) to equal
Tn(Xi), where Xi is the closest sample point to x. This is a 1-nearest
neighbor estimator and it can be shown to be minimax optimal without
further smoothness assumptions [MBNWW21]; see Exercise 1 for the
one-dimensional case. Such an approach, however, cannot take advan-
tage of additional regularity of µ and ε and we do not pursue it any
further here.

Instead, in the next section, we devise an estimator based on the
semidual formulation of optimal transport. A benefit of this estima-
tion strategy is that it can be used to flexibly incorporate additional
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x

?

Fig. 3.2. How do we interpolate the empirical optimal transport map at the out-of-
sample point x?

assumptions—e.g., smoothness—on the population-level transport map
T . Adopting su!ciently strong assumptions gives rise to map estimators
that avoid the curse of dimensionality.

3.2 The semidual problem and its stability

We recall the semidual problem: if ∀ϕ is the optimal transport map,
then ϕ minimizes

S(φ) :=

∫
φ dµ+

∫
φ⇓ dε

where φ⇓(y) = supx↑Rd{′x, y∞ ↑ φ(x)} is the convex conjugate of φ.
Crucially, the semidual problem readily lends itself to replacing the
population measures µ, ε with their empirical counterparts µn, εn,
leading to a natural estimator for ϕ: namely, we set

ϕ̂ = argmin
φ↑F

Sn(φ) := argmin
φ↑F

∫
φ dµn +

∫
φ⇓ dεn


(3.1)

where F is a suitable class of functions to be chosen later. We then
obtain an estimator for the optimal transport map by setting T̂ = ∀ϕ̂.
Through (3.1), we have placed the problem of transport map estimation
within the well-studied framework of empirical risk minimization (ERM)
which is a cornerstone of modern statistical theory—see, e.g., [Wai19] for
a modern overview of these techniques. Akin to many other estimators
defined via ERM, it is unclear whether the estimator T̂ can be computed
e!ciently; however, our focus here is on the statistical, rather than
computational, aspects of transport map estimation.

Through the statistician’s lens, the uniqueness assertion in Brenier’s
theorem ensures that the optimal transport map T is identifiable, and
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hence our statistical question is well-posed. In other words, if S(φ) = S(ϕ)
then ∀φ = ∀ϕ, µ-a.s. However, in order to obtain rates of estimation,
this qualitative assertion needs to be upgraded into a stability statement,
which is given as the following theorem.

Theorem 3.1. Assume that φ is strongly convex and smooth,

1

2
I D ∀2φ D 2 I .

Then,

1

4
↘∀φ↑∀ϕ↘2

L2(µ)
→ S(φ)↑ S(ϕ) → ↘∀φ↑∀ϕ↘2

L2(µ)
. (3.2)

Before proving Theorem 3.1, we first describe how the stability result
feeds into the overall statistical analysis. The proof is prototypical of
analysis of ERM estimators. By definition, ϕ̂ minimizes Sn. Applying
the machinery of empirical process theory, we control the fluctuations
of the random functional Sn from its mean S, thereby concluding that
S(ϕ̂)↑ S(ϕ) is small. The first inequality in (3.2) then implies that the
estimation error ↘T̂ ↑ T↘2

L2(µ)
is small.

Actually, to obtain faster rates of estimation, we improve upon
this argument by incorporating another ingredient: the fixed-point or
localization technique. Briefly, the estimation rates depend on a uniform
bound on the deviations of Sn from S over a set of functions that contains
the estimator ϕ̂. Once we know through the stability inequality (3.2)
that ϕ̂ lies close to ϕ, we can repeat the argument but restricting to
a smaller class of functions, thereby improving our estimation rates
further. Seeking the fixed point of this iterative process in which we
refine our bounds by localizing the estimator ϕ̂, we arrive at our final
rates of estimation.

We now turn towards the proof of Theorem 3.1. We repeatedly use
the Fenchel–Young inequality (Theorem A.6), as well as the fact that
3-convexity of f is equivalent to 3→1-smoothness of f⇓ (Lemma A.9).

Proof of Theorem 3.1. Since (∀ϕ)
#
µ = ε,

S(φ) =

∫
φ(x)µ(dx) +

∫
φ⇓(y) ε(dy) =

∫ (
φ(x) + φ⇓(∀ϕ(x))

)
µ(dx) .

By strong convexity of φ⇓,
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φ⇓(∀ϕ(x)) ∈ φ⇓(∀φ(x)) + ′∀φ⇓(∀φ(x))  
=x

,∀ϕ(x)↑∀φ(x)∞

+
1

4
↘∀ϕ(x)↑∀φ(x)↘2

hence

φ(x) + φ⇓(∀ϕ(x)) ∈ φ(x) + φ⇓(∀φ(x))  
=↖x,∝φ(x)↙

+′x,∀ϕ(x)↑∀φ(x)∞

+
1

4
↘∀ϕ(x)↑∀φ(x)↘2

= ′x,∀ϕ(x)∞+ 1

4
↘∀ϕ(x)↑∀φ(x)↘2 .

However,

S(ϕ) =

∫ (
ϕ(x) + ϕ⇓(∀ϕ(x))

)
µ(dx) =

∫
′x,∀ϕ(x)∞µ(dx) .

Therefore, we obtain

S(φ) ∈ S(ϕ) +
1

4
↘∀ϕ↑∀φ↘2

L2(µ)
.

Similarly, by smoothness,

φ⇓(∀ϕ(x)) → φ⇓(∀φ(x)) + ′∀φ⇓(∀φ(x))  
=x

,∀ϕ(x)↑∀φ(x)∞

+ ↘∀ϕ(x)↑∀φ(x)↘2

hence

φ(x) + φ⇓(∀ϕ(x)) → φ(x) + φ⇓(∀φ(x)) + ′x,∀ϕ(x)∞ ↑ ′x,∀φ(x)∞
+ ↘∀ϕ(x)↑∀φ(x)↘2

= ′x,∀φ(x)∞+ ϕ(x) + ϕ⇓(∀ϕ(x))↑ ′x,∀φ(x)∞
+ ↘∀ϕ(x)↑∀φ(x)↘2

and the result follows from integration. ↙∝

Note that we have proved something even stronger: for

S(φ) =

∫ (
φ(x) + φ⇓(∀ϕ(x))

)
  

sφ(x)

µ(dx)

we have the pointwise bounds

1

4
↘∀ϕ(x)↑∀φ(x)↘2 → sφ(x)↑ s↽(x) → ↘∀ϕ(x)↑∀φ(x)↘2 .
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3.3 A special case: a!ne transport maps

As a sanity check, we first show that the semidual estimation technique
is reasonable for a very simple problem. Consider the one-sample setting,
where µ = N(0, I) is known, and we obtain samples from ε = (∀ϕ)#µ
for some ϕ ↗ F, where F consists of all convex quadratic functions
x △↔ 1

2
xTAx+ bTx with A ℜ 0. If ϕ is of this form, then the transport

map ∀ϕ is the a!ne map Ax+ b, and ε = N(b, A2).
In this setting, it is natural to estimate the transport map by first

computing the empirical mean m̂ and covariance $̂ of ε, and setting

T̂ (x) = $̂1/2x+ m̂ . (3.3)

This estimator is studied in more generality in [FLF20] by leveraging
techniques to derive rates of estimation for covariance matrices.

The next result shows that T̂ defined in (3.3) is precisely the estimator
computed by minimizing the empirical semidual functional.

Proposition 3.2. Let F be the set of all convex quadratic functions on
Rd. Let µ = N(0, I), and write εn for an empirical measure consisting
of i.i.d. samples from a probability measure ε. If

ϕ̂ = argmin
φ↑F

{∫
φ dµ+

∫
φ⇓ dεn

}
,

then
∀ϕ̂(x) = $̂1/2x+ m̂ ,

where m̂ and $̂ are the mean and covariance of εn, respectively.

Proof. By definition, ϕ̂ = 1

2
xTÂx+ b̂Tx, where (Â, b̂) solve

min
A∈0, b↑Rd

[∫ 1
2
xTAx+ bTx


µ(dx) +

∫ 1
2
yTAy + bTy

⇓
εn(dy)

]
.

By Lemma A.13, the convex conjugate of a quadratic is also a quadratic,
so the second integral only depends on moments of εn of order at most 2.
We can therefore replace the integration over εn with any other measure
that matches the first two moments, in particular N(m̂, $̂). Then, since
the function class contains all Kantorovich potentials between Gaussians
(see Example 1.19), it follows that the minimizer is the one which
corresponds to the optimal transport from N(0, I) to N(m̂, $̂). ↙∝
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In the setting of Proposition 3.2, it is easy to analyze the performance
of T̂ directly, since it is defined explicitly in terms of the sample mean
and covariance. However, for more general families F, we typically
cannot solve the semidual problem explicitly, and we need to use more
abstract arguments to analyze ϕ̂.

3.4 Obtaining the slow rate

In this and the following section, we focus on estimating maps arising
from potentials that lie in a suitable class ’ whose covering numbers—
in the sense of Section 2.3—are suitably bounded. The size of these
covering numbers directly a”ects the quality of the estimator obtained
by minimizing the empirical semidual, as in (3.1).

To begin our analysis, we make several technical assumptions on the
measures µ and ε and the family ’.

Assumption 3.3. There exists ϕ ↗ ’ such that ε = (∀ϕ)#µ, where µ,
ε, and ’ satisfy:

• The supports of µ and ε lie in % = B1(0).
• The set ’ is bounded in L↘ on %, i.e., supφ↑$ ↘φ↘L↓(”) ↭ 1.
• The potentials satisfy φ(0) = 0 and φ(x) = +⇑ if x /↗ %.
• The potentials are lower-semicontinuous everywhere, and smooth
and strongly convex on %: 1

2
I D ∀2φ(x) D 2I if ↘x↘ < 1.

The first and second of these assumptions can be weakened under
suitably strong moment assumptions, but we do not pursue this avenue
here. The third is without loss of generality: since subtracting a constant
from φ does not a”ect the semidual objective or the gradient ∀φ, we can
always assume that φ(0) = 0, and since the supports of µ and ε lie in
B1(0), we may define φ to be infinity outside of this set without a”ecting
the semidual problem. The fact that φ = +⇑ identically outside of %
simplifies several arguments involving the conjugate function, since it
implies that

φ⇓(y) = sup
x↑Rd

{′x, y∞ ↑ φ(x)} = sup
x↑”

{′x, y∞ ↑ φ(x)}

for all y ↗ Rd and φ ↗ ’. The fourth assumption is the most impor-
tant, because it guarantees the stability of the semidual problem via
Theorem 3.1.

With these assumptions in hand, we can carry out the first step of
the analysis.
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Lemma 3.4. Adopt Assumption 3.3, and assume that ε = ∀ϕ#µ for
some ϕ ↗ ’. Let ϕ̂ be given by

ϕ̂ = argmin
φ↑$

Sn(φ) .

Then

↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ sup
φ↑$

{|(µn ↑ µ)(φ)|+ |(εn ↑ ε)(φ⇓)|} . (3.4)

Proof. The proof is an application of a standard argument in empirical
risk minimization. Theorem 3.1 implies

↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ S(ϕ̂)↑ S(ϕ)

= S(ϕ̂)↑ Sn(ϕ̂) + Sn(ϕ̂)↑ Sn(ϕ) + Sn(ϕ)↑ S(ϕ)

→ 2 sup
φ↑$

|Sn(φ)↑ S(φ)| ,

where the last inequality uses that Sn(ϕ̂)↑ Sn(ϕ) → 0 by definition of
ϕ̂. Expanding the definitions of S and Sn yields the claim. ↙∝

To bound the right side of (3.4), we employ the chaining technique
of Proposition 2.6. For simplicity, we focus on the case where the class
of functions is small enough that the covering numbers satisfy

logN(ω,’) ↭ ω→ε log(1 + ω→1) , ϖ ↗ [0, 1) (3.5)

for all su!ciently small ω.
A paradigmatic example of such classes are parametric classes, where

the set ’ is finite dimensional, that is, where ’ = {φ0}0↑# is indexed
by a parameter 6 ↗ & ⇔ RM . Indeed, in this case, we have the following
bound.

Lemma 3.5. Assume that ’ = {φ0}0↑#, where & ⇔ RM is bounded,
and the potentials satisfy ↘φ0 ↑ φ0↔↘L↓(”) ↭ ↘6 ↑ 6⇒↘. Then there ex-
ists a positive constant C such that the covering numbers of ’ satisfy
logN(ω,’) = 0 if ω ∈ C and

logN(ω,’) ↭ log(1 + ω→1)

otherwise.
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Proof. By assumption, & ⇔ BR(0) for some R > 0, so ↘φ↑0↘L↓(”) ↭ R
for any φ,0 ↗ ’. Therefore, if ω is larger than a su!ciently large
constant, any element of ’ constitutes a one-element ω-cover of ’.

For any ϑ > 0, Exercise 2 shows that there exists 61, . . . , 6N with
N → (1+ 2Rϑ→1)M such that

⋃
N

i=1
B1(6i) E &. Then φ01

, . . . ,φ0N is an
O(ϑ)-cover of ’. Indeed, for any 6 ↗ &, we may choose i ↗ [N ] such
that ↘φ0 ↑ φ0i↘L↓(”) ↭ ↘6 ↑ 6i↘ → ϑ. Taking ϑ = cω for a su!ciently
small positive constant c yields the claim. ↙∝

To give some examples of parametric classes, {φ0}0↑# could be a set
of convex quadratic functions, as in Section 3.3, or it could consist of
linear combinations of a fixed dictionary {φ1, . . . ,φM}, with

φ0 =
M∑

i=1

6iφi .

Note that it is common in non-parametric statistics to choose the
dictionary carefully to balance approximation and estimation errors,
but we do not delve into such questions here in order to focus on the
core statistical content.

More generally, condition (3.5) allows for infinite-dimensional func-
tion classes which are nevertheless not “too large”. By contrast, it
excludes classes whose complexity grows with the ambient dimension,
such as the class of Lipschitz functions studied in Lemma 2.7.

What is the optimal rate of estimating T = ∀ϕ under this assump-
tion? If ’ is a parametric class, we expect the minimax rate to be
n→1—in particular, we expect that the map estimation problem avoids
the curse of dimensionality. Indeed, rates avoiding the curse of dimen-
sionality are achievable whenever a bound such as (3.5) is satisfied.

Lemma 3.4 involves both the potential φ and its conjugate φ⇓. Unfor-
tunately, even if the set ’ has a simple form, the set ’⇓ = {φ⇓ : φ ↗ ’}
may defy easy description. However, we make the following crucial
observation: the covering numbers of ’ control those of ’⇓.

Lemma 3.6. For any ω > 0,

N(ω,’⇓) → N(ω,’) .

Proof. The result follows from the fact that the conjugation operation
is a contraction in L↘. Indeed, given any pair of functions φ,0 ↗ ’,
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|φ⇓(y)↑ 0⇓(y)| = | sup
x↑”

{′x, y∞ ↑ φ(x)}↑ sup
x↔↑”

{′x⇒, y∞ ↑ 0(x⇒)}|

→ sup
x↑”

|φ(x)↑ 0(x)| = ↘φ↑ 0↘L↓(”) .

In particular, if φ1, . . . ,φN is an ω-net for ’, then φ⇓
1
, . . . ,φ⇓

N
is an ω-net

for ’⇓. ↙∝

We can now prove our first convergence rate for map estimation.

Theorem 3.7. Adopt Assumption 3.3 and assume (3.5) holds. The
semidual estimator ϕ̂ satisfies the bound

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ n→1/2 .

Proof. Lemma 3.4 implies

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ E sup
φ↑$

|(µn ↑ µ)(φ)|+ E sup
φ↑$

|(εn ↑ ε)(φ⇓)| .

By Assumption 3.3, there exists a positive constant R such that
↘φ↘L↓(”) → R and ↘φ⇓↘ → R for all φ ↗ ’. Applying Proposition 2.6
with ↽ = 0 yields

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ 1⊤
n

∫
R

0

(
logN(ω,’) +


logN(ω,’⇓)

)
dω .

Applying (3.5) and Lemma 3.6, we obtain

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ 1⊤
n

∫
R

0

ω→ε/2

log(1 + ω→1) dω ↭ n→1/2 ,

as desired. ↙∝

As anticipated, the parametric assumption on the class ’ translates
to a rate of convergence that avoids the curse of dimensionality. However,
the “slow rate” n→1/2 is not quite what we hoped to prove. To obtain
the “fast rate” n→1, we need to localize and exploiting this localization
step requires imposing additional assumptions on µ.
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3.5 The fixed point argument

As mentioned above, the chaining argument in Theorem 3.7 fails to
give the correct rate of convergence because it is based on bounding the
deviations of Sn from S uniformly over the set ’. However, Theorem 3.7
shows that ϕ̂ is close to ϕ when n is large, which suggests that it is not
necessary to bound the deviations of Sn from S uniformly over the set
’, but only over that subset near ϕ.

The argument below, due to van de Geer, formalizes this process in
the context of map estimation. The main idea is to apply the reasoning
of Lemma 3.4 not to ϕ̂ but to a convex combination of ϕ̂ and ϕ itself.
For simplicity, to apply this argument, we make one more assumption
on ’.

Assumption 3.8. The set ’ is convex, that is, if φ,0 ↗ ’, then
(1↑ ϱ)φ+ ϱ0 ↗ ’ for all ϱ ↗ [0, 1].

Define

ϕε = (1↑ ϱ)ϕ+ ϱ ϕ̂ , ϱ =
ω

ω+ ↘∀ϕ̂↑∀ϕ↘L2(µ)

.

Then,

↘∀ϕε ↑∀ϕ↘L2(µ) = ϱ ↘∀ϕ̂↑∀ϕ↘L2(µ)

= ω
( ↘∀ϕ̂↑∀ϕ↘L2(µ)

ω+ ↘∀ϕ̂↑∀ϕ↘L2(µ)

)
→ ω .

Moreover:

↘∀ϕε ↑∀ϕ↘L2(µ) →
ω

2
F∅

ω ↘∀ϕ̂↑∀ϕ↘L2(µ)

ω+ ↘∀ϕ̂↑∀ϕ↘L2(µ)

→ ω

2

F∅ ↘∀ϕ̂↑∀ϕ↘L2(µ) → ω ,

so in considering ↘∀ϕε ↑∀ϕ↘L2(µ) instead of ↘∀ϕ̂↑∀ϕ↘L2(µ) we only
lose a factor of 2. Finally, Assumption 3.8 guarantees that ϕε ↗ ’, since
it is a convex combination of elements of ’.

Also, note that for ϱ ↗ [0, 1], pointwise we have ((1↑ϱ)φ0+ϱφ1)⇓ →
(1↑ ϱ)φ⇓

0
+ ϱφ⇓

1
, from which it follows that Sn is a convex functional.

If we set S = S↑ S(ϕ) and Sn = Sn ↑ Sn(ϕ), then by convexity,

Sn(ϕε) → (1↑ ϱ) Sn(ϕ)  
=0

+ϱ Sn(ϕ̂)  
⇐0

→ 0
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by the definition of ϕ̂. Therefore, by Theorem 3.1, if ϕε is 1

2
-strongly

convex and 2-smooth,

1

4
↘∀ϕε ↑∀ϕ↘2

L2(µ)
→ S(ϕε) → (S↑ Sn)(ϕε)

= (S↑ Sn)(ϕε)↑ (S↑ Sn)(ϕ)

→ sup
φ↑$ϖ

(S↑ Sn)(φ)↑ (S↑ Sn)(ϕ)

→ sup
φ↑$ϖ

{|(µn ↑ µ)(φ↑ ϕ)|+ |(εn ↑ ε)(φ⇓ ↑ ϕ⇓)|} ,

where ’ε = {φ ↗ ’ : ↘∀φ↑∀ϕ↘L2(µ) → ω}.
If the right side of the above inequality is less than ω2/16, then

↘∀ϕε↑∀ϕ↘L2(µ) → ω/2, which in turn implies that ↘∀ϕ̂↑∀ϕ↘L2(µ) → ω.
We therefore can control the risk of ϕ̂ if we can find an ω for which the
supremum of the empirical process over Fε is of order ω2. We formalize
the above considerations in the following proposition.

Proposition 3.9. Adopt Assumptions 3.3 and 3.8. For ω > 0, let

r(ω) = sup
φ↑$ϖ

{|(µn ↑ µ)(φ↑ ϕ)|+ |(εn ↑ ε)(φ⇓ ↑ ϕ⇓)|} .

Then on the event {r(ω) → ω2/16}, the semidual estimator ϕ̂ satisfies
↘∀ϕ̂↑∀ϕ↘L2(µ) → ω.

In particular, if ωn is a deterministic quantity such that r(ωn) → ω2n/16
with high probability, then the risk of ϕ̂ is bounded by ωn with high
probability.

Comparing Lemma 3.4 with Proposition 3.9 shows that we have
replaced the task of bounding the deviations of an empirical process
uniformly over ’ by the task of bounding them over the smaller set ’ε.

3.6 Obtaining the fast rate

In order to exploit the fact that we now seek to bound the empirical
process only over ’ε, we need to formalize the notion that ’ε is much
smaller than ’. A complicating factor is that the chaining technique
given in Proposition 2.6 measures the “size” of ’ by its ω-covering
numbers, which are defined in terms of L↘ covers. By contrast, the
restriction of ’ to ’ε is based on the additional restriction on the L2
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norm of the gradients of φ. We therefore need a version of the chaining
bound which is able to exploit the size of a function class with respect
to both L↘ and L2.

The following modified chaining bound addresses this deficit.

Proposition 3.10([vdVW23, Theorem 2.14.21]). Let P be a prob-

ability measure on a set % ⇔ Rd. Let X1, . . . , Xn

i.i.d.↓ P . If F is a set of
real-valued functions such that ↘f↘L2(P ) → ◁ and ↘f↘L↓(”) → R for all
f ↗ F, then

E sup
f↑F

1

n

n∑

i=1

{f(Xi)↑ Ef(Xi)} ↭ 1⊤
n

∫
ϱ

0


logN(ω,F) dω

+
1

n

∫
R

0

logN(ω,F) dω . (3.6)

Note that in the first term in (3.6), the upper limit of the integral
is ◁ rather than R. The second integral incurs a worse dependence on
the covering number, but appears with a prefactor of 1

n
rather than

1∞
n
. We may therefore hope that when n is large enough, the first term

dominates. If the L2 size of F is small, as captured by ◁, then the first
term may be substantially smaller than the bound obtained by applying
Proposition 2.6 directly.

Proposition 3.10 also comes with a tail bound, showing that the
quantity on the right-hand side of (3.6) also bounds the empirical
process with high probability.

Proposition 3.11. Let Jn(F) denote the right side of (3.6). Under the
same assumptions as Proposition 3.10, there exists a positive universal
constant C such that for any t ∈ 0,

P
(
sup
f↑F

1

n

n∑

i=1

{f(Xi)↑Ef(Xi)} ∈ C
(
Jn(F)+◁

√
t

n
+R

t

n

))
→ exp(↑t) .

Proposition 3.10 requires us to control the L2 norm of the elements
of our function class; however, ’ε is defined using the L2 norms of the
gradients of the elements of ’. We therefore adopt the final assumption
on µ, which allows us to move back and forth between these notions.

Definition 3.12.A measure P satisfies a Poincaré inequality (with
constant C) if for all f ↗ L2(P ),

∫ 
f ↑

∫
f dP


2

dP → C

∫
↘∀f↘2 dP .
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Assumption 3.13. The measure µ satisfies a Poincaré inequality.

The Poincaré inequality is a quantitative form of the statement that
the support of µ is connected. Indeed, a Poincaré inequality holds for
any measure having a density bounded away from zero and infinity on
a bounded Lipschitz domain.

Under this new assumption, we obtain L2 bounds on ’ε and ’⇓
ε.

Proposition 3.14. If Assumptions 3.3 and 3.13 hold, then

↘φ↑ ϕ↑ µ(φ↑ ϕ)↘L2(µ) ↭ ω

↘φ⇓ ↑ ϕ⇓ ↑ ε(φ⇓ ↑ ϕ⇓)↘L2(ω) ↭ ω

for all φ ↗ ’ε.

Proof. The first bound follows directly from the Poincaré inequality: for
φ ↗ ’ε,

↘φ↑ ϕ↑ µ(φ↑ ϕ)↘2
L2(µ)

→ C ↘∀(φ↑ ϕ)↘2
L2(µ)

↭ ω2 .

To prove the second bound, we first use the strong convexity of φ
and ϕ. Consider the functional T defined by

T(0) :=

∫
0 dε +

∫
0⇓ dµ .

That is, T is the semidual functional obtained by exchanging the roles
of µ and ε. Since (φ⇓)⇓ = φ for all convex and lower semicontinuous φ,
we have that S(φ) = T(φ⇓) for all such φ. In particular, the minimizer
of T is ϕ⇓, and Theorem 3.1 implies that

1

4
↘∀φ⇓↑∀ϕ⇓↘2

L2(ω)
→ T(φ⇓)↑T(ϕ⇓) = S(φ)↑S(ϕ) → ↘∀φ↑∀ϕ↘2

L2(µ)
.

Therefore ↘∀φ⇓ ↑∀ϕ⇓↘2
L2(ω)

↭ ω2 for all φ ↗ ’ε.
To obtain the bound, all that is left is to show that ε also satisfies a

Poincaré inequality, since we can then conclude as in the proof of the
first inequality. To see this, we use the fact that ε = (∀ϕ)#µ. The fact
that ϕ is smooth means that for any f : Rd ↔ Rd,

↘∀(f ◦ ∀ϕ)(x)↘ = ↘∀2ϕ(x)∀f(∀ϕ(x))↘ → 2 ↘∀f(∀ϕ(x))↘ .

The Poincaré inequality for µ implies that for any f ↗ L2(ε),



3.6 Obtaining the fast rate 103

∫ 
f ↑

∫
f dε


2

dε =

∫ 
f ◦ ∀ϕ↑

∫
f ◦ ∀ϕ dµ


2

dµ

→ C

∫
↘∀(f ◦ ∀ϕ)↘2 dµ

→ 4C

∫
↘∀f(∀ϕ(x))↘2 dµ

= 4C

∫
↘∀f↘2 dε .

Therefore ε also satisfies a Poincaré inequality, with constant 4C. Hence
we may conclude as in the first case. ↙∝

We are finally ready to prove the desired rate. Note that in the
finite-dimensional setting, when Lemma 3.5 holds, this theorem shows
that the map can be estimated at nearly the parametric rate.

Theorem 3.15.Adopt Assumptions 3.3, 3.8, and 3.13. If (3.5) holds,
then the semidual estimator ϕ̂ satisfies

↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭
 log n

n

 2

2+↼
+

t+ 1

n
(3.7)

with probability at least 1↑ e→t. In particular,

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭
 log n

n

 2

2+↼
.

Proof. By Proposition 3.9, it su!ces to show that r(ωn) → ω2n/16 with

probability at least 1 ↑ e→t for ωn ℑ
(
logn

n

) 1

2+↼ +


t+1

n
. Let us first

bound supφ↑$ϖ
|(µn ↑ µ)(φ↑ϕ)|. Since (µn ↑ µ)h = 0 if h is a constant

function, we have

sup
φ↑$ϖ

|(µn ↑ µ)(φ↑ ϕ)| = sup
φ↑$ϖ

|(µn ↑ µ)(φ↑ ϕ↑ µ(φ↑ ϕ))| .

We can apply Proposition 3.10, Proposition 3.11, and Proposition 3.14
along with the fact that φ ↑ ϕ ↑ µ(φ ↑ ϕ) is bounded to obtain that
there exists a constant C2 such that

sup
φ↑$ϖ

|(µn ↑ µ)(φ↑ ϕ↑ µ(φ↑ ϕ))|

↭ 1⊤
n

∫
C2ε

0

ϑ→ε/2

log(1 + ϑ→1) dϑ
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+
1

n

∫
C2

0

ϑ→ε log(1 + ϑ→1) dϑ + ω

√
t

n
+

t

n

↭ ω1→ε/2

√
log(1 + ω→1)

n
+ ω

√
t

n
+

t+ 1

n

with probability at least 1↑ e→t. Therefore, taking

ωn = C
 log n

n

 1

2+↼
+

√
t+ 1

n


(3.8)

for a su!ciently large constant C, we can ensure that

sup
φ↑$ϖn

|(µn ↑ µ)(φ↑ ϕ↑ µ(φ↑ ϕ))| → ω2n/32

with probability at least 1↑ e→t/2. An analogous argument yields

sup
φ↑$ϖn

|(εn ↑ ε)(φ⇓ ↑ ϕ⇓ ↑ ε(φ⇓ ↑ ϕ⇓))| → ω2n/32

with the same probability. By a union bound, we obtain that r(ωn) →
ω2n/16 for ωn as in (3.8) as claimed.

The second bound following from integrating the tail. ↙∝

3.7 Discussion

§3.1. The empirical “plug-in” approach based on nearest neighbors
was developed as a simple alternative to the semidual approach
in [MBNWW21, DGS21, GS22]. Although the nearest neighbors es-
timator does not adapt to the smoothness of µ and ε, one recovers
minimax rates via the optimal transport map between density esti-
mators [MBNWW21], and even central limit theorems [MBNWW23].
However, compared to the plug-in approach, the semidual approach
developed here is overall more flexible and can be combined with other
tools such as kernel SoS [VMB+24].
§3.2. The semidual approach to map estimation was introduced in the
paper [HR21], which also proved the semidual stability estimates and
minimax lower bounds. That paper showed that, if the map between µ
and ε is assumed to be s-smooth (i.e., to possess s bounded derivatives),
then a suitable semidual estimator achieves the minimax-optimal rate

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭ n→ 2↽
2↽↑2+d (log n)2 +

1

n
. (3.9)
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This approach was then explored in great generality in [DNWP22],
and the arguments in that paper are closely related to those in this
chapter. However, the tools we describe here are not strong enough to
prove (3.9), since the class of s-smooth functions does not satisfy (3.5).
More information about how to obtain (3.9) along the lines of the
arguments we have presented in this chapter can be found in [DNWP22,
Section 4.4].

The alternative semidual stability estimates in Exercises 3 and 5 are
taken from [MBNWW21].
§3.3. Estimating the transport map between Gaussians was given as an
example in [DNWP22] in which the semidual approach yields parametric
rates; see the paper for other function classes of interest.
§3.4. Standard references for empirical risk minimization (or M-
estimation) include [vdV98, Wai19]. The “slow rate” is characteristic of
M-estimation problems in the absence of strong convexity; the Poincaré
inequality assumption adopted in §3.6 can be viewed as the appropriate
strong convexity condition for the semi-dual functional S.
§3.5. The one-shot localization we use is due to van de Geer [vdG87,
vdG02] and provides an alternative to the usual localization arguments
(e.g., [Wai19, Chapter 14]).
§3.6. The improved chaining bound of Proposition 3.10 is obtained by
the “generic chaining” technique developed by Talagrand [Tal96]. This
technique is at the heart of the study of Gaussian processes, see [Tal21].
The tail bound in Proposition 3.11 follows from a more general result
for generic chaining bounds [vdVW23, Theorem 2.2.19].

The Poincaré inequality is a standard tool in high-dimensional prob-
ability, see [BLM13, BGL14, vH14]. It is an open question whether
the rates presented in this chapter are achievable without making this
assumption.

3.8 Exercises

1. Let µ, ε ↗ P([0, 1]) and let X1, . . . , Xn ↓ µ, Y1, . . . , Yn ↓ ε be
i.i.d. samples independent from each other. Assume that µ, ε have
di”erentiable CDFs Fµ, Fω respectively, such that

0 < c → F ⇒
µ, F

⇒
ω → C < ⇑ on [0, 1] .

This is equivalent to µ, ε having densities on [0, 1] which are bounded
away from zero and infinity.
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Let us show that the following estimator T̂n obeys a parametric
rate of convergence. Let X(1) < · · · < X(n), Y(1) < · · · < Y(n) denote
the samples in sorted order, and given x ↗ [0, 1] let X(i) denote the

largest sample from µ such that X(i) → x. We then set T̂n(x) := Y(i)
(if no such X(i) exists, then output T̂n(x) := 0). This estimator can
be viewed as a piecewise constant interpolation of the empirical
optimal coupling, or as a 1-nearest neighbor estimator. For simplicity,
we fix x ↗ [0, 1] and prove

E[|T̂n(x)↑ T (x)|2] ↭ 1/n

where T is the true optimal transport map F→1
ω ◦ Fµ from µ to ε,

although it is a straightforward exercise to extend the results of this
problem to the integrated risk E

∫
|T̂n ↑ T |2 dµ.

a) Let Nx :=


n

i=1
{Xi → x} and N ⇒

y
:=


n

i=1
{Yi → y}. Argue

that if N ⇒
y < Nx, then T̂n(x) ∈ y; if N ⇒

y > Nx, then T̂n(x) → y.
b) Using the Dvoretzky–Kiefer–Wolfowitz inequality, argue that for

any ϑ ↗ (0, 1), the following hold simultaneously with probability
at least 1↑ ϑ:

|Nx ↑ nFµ(x)| ↭


n log(1/ϑ)

and

|N ⇒
y ↑ nFω(y)| ↭


n log(1/ϑ) for all y ↗ [0, 1].

c) Use the previous two parts to conclude.
2. This exercise shows that the ball BR(0) in Rd can be covered by

(1 + 2Rϑ→1)d balls of radius ϑ.
a) Argue by rescaling that it su!ces to consider the case R = 1.
b) Let X = {x1, . . . , xN} be any set of elements of B1(0) such that

↘xi↑xj↘ > ϑ for all i ⇐= j. Such a set is called a ϑ-packing of B1(0).
Show that if X is a ϑ-packing of B1(0), then the sets {B ⇀

2

(x)}x↑X
are disjoint subsets of B

1+
⇀
2

(0). Conclude that |X| → (1+ 2ϑ→1)d.

c) Suppose that X is a maximal ϑ-packing of BR(0), i.e., there does
not exist a strict superset of X which is also a ϑ-packing. Argue
(via the contrapositive) that BR(0) ⇔

⋃
x↑XB1(x).

d) Use the previous two parts to conclude.
3. Let µ, ε be probability measures over Rd and let ∀ϕ denote the

optimal transport map from µ to ε. Assume that ∀ϕ is L-Lipschitz.
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In this exercise, we establish the following estimate: for any other
convex function φ, if ε̂ := (∀φ)

#
µ, then

↘∀φ↑∀ϕ↘2
L2(µ)

→ L

W 2

2 (µ, ε̂)↑W 2

2 (µ, ε)↑
∫ (

↘ · ↘2 ↑ 2ϕ⇓) d(ε̂ ↑ ε)

.

Hint : First, argue that by strong convexity of ϕ⇓, it holds that

1

2L
↘∀φ↑∀ϕ↘2

L2(µ)

→
∫

ϕ⇓ d(ε̂ ↑ ε)↑
∫
′x,∀φ(x)↑∀ϕ(x)∞µ(dx) .

Then, expand out the quantity W 2

2
(µ, ε̂)↑W 2

2
(µ, ε) and substitute

this into the above inequality.
4. We now use the stability estimate from the previous exercise to

deduce rates for map estimation in the one-sample setting. Let µ, ε
be probability measures with densities supported on the ball B1(0)
of radius 1 and assume that the optimal transport map ∀ϕ from µ
to ε is Lipschitz. Assume that we have access to µ, and to n i.i.d.
samples from ε. Let ∀ϕ̂ denote the optimal transport map from µ
to the empirical measure εn. Using (2.22), prove that

E↘∀ϕ̂↑∀ϕ↘2
L2(µ)

↭






n→1/2 , d < 4 ,

n→1/2 log n , d = 4 ,

n→2/d , d > 4 .

5. Starting with Exercise 3, assume additionally that ϕ is ⇁-strongly
convex. Let ϖ denote the optimal coupling between ε and ε̂, and let
(Y, Ŷ ) ↓ ϖ. Then, (∀ϕ⇓(Y ), Ŷ ) is a (suboptimal) coupling between
µ and ε̂, hence W 2

2
(µ, ε̂) → E↘∀ϕ⇓(Y )↑ Ŷ ↘2. Expand this out and

use the smoothness of ϕ⇓ to deduce the stronger stability estimate

↘∀φ↑∀ϕ↘L2(µ) →

L/⇁W2(ε, ε̂) .
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Entropic optimal transport

Entropic regularization is one of the most active research areas in
modern optimal transport. As a regularization technique, it technically
falls under the scope of Section 2.8. Indeed, we show in this chapter
that it yields parametric rates, like many of the other regularization
approaches we have discussed. But entropic optimal transport is, in
fact, much more.

Since the groundbreaking work of Cuturi [Cut13], it has been pri-
marily used as a computational device that enables fast computation
of optimal transport distances using the Sinkhorn algorithm. However,
our focus remains statistical and we refer the reader to the excellent
manuscript [PC19b] of Gabriel Peyré and Marco Cuturi for more details
on the computational benefits of entropic regularization.

The basic principle of entropic optimal transport is to modify the
definition of optimal transport to include a penalization term based
on the entropy of the coupling, that is, to consider the optimization
problem

inf
ε↑!µ,ω

{∫
↘x↑ y↘2 ϖ(dx, dy)↑ ωEnt(ϖ)

}
, (4.1)

where Ent(ϖ) denotes the di”erential entropy
∫
ϖ(x) log 1

ε(x)
dx for an

absolutely continuous probability measure ϖ. In fact, Cuturi originally
considered a discrete version of this problem, where µ and ε are finitely
supported and the coupling ϖ can therefore be identified with a matrix.
He considered the problem

inf
ε↑!µ,ω

{∑

i,j

↘xi ↑ yj↘2ϖi,j ↑ ωH(ϖ)

}
, (4.2)

where H(ϖ) denotes the Shannon entropy


i,j
ϖi,j log

1

εi,j
.
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The role of the penalty terms in both (4.1) and (4.2) is to encourage
the coupling to be more spread out than the solution to the unregular-
ized optimal transport problem. Informally, the entropy of a measure
increases when its mass is more evenly spread. Indeed, Exercise 1 shows
that uniform distributions (over a subset of Rd in continuous case, or
over a finite set in the discrete case) have the maximum possible entropy.
The entropic penalty biases the solutions to (4.1) and (4.2) towards
that extreme.

To put (4.1) and (4.2) on a common footing, we introduce the KL
divergence between probability measures:

KL(P ↘Q) =

{∫
dP

dQ
log dP

dQ
dQ if P C Q,

+⇑ otherwise.

Exercise 2 shows that both (4.1) and (4.2) are equivalent to

inf
ε↑!µ,ω

{∫
↘x↑ y↘2 ϖ(dx, dy) + ωKL(ϖ ↘ µ⇓ ε)

}
, (4.3)

in the sense of yielding the same optimal ϖ, and we take (4.3) as the
main definition of entropic OT.

In the next section, we give a non-rigorous motivation for this regu-
larization approach from the perspective of convex duality. We analyze
the resulting dual problem in Section 4.2.

4.1 Derivation of entropic optimal transport

In this section, we attempt to motivate the definition of entropic OT
from basic optimization and duality principles. For simplicity, we assume
for now that we work on a compact set % ⇔ Rd. Given µ, ε ↗ P(%),
recall from Theorem 1.14 that W 2

2
(µ, ε) can be written

W 2

2 (µ, ε) = sup
f,g↑Cb(”)

f(x)+g(y)⇐⇑x→y⇑2

{∫
f dµ+

∫
g dε

}
.

Formally, we can rewrite this as an unconstrained maximization problem
by introducing a penalization term that enforces the constraint. Indeed,
if we define

9(f, g) =

{
0 if f(x) + g(y) → ↘x↑ y↘2 µ⇓ ε-a.e.,

+⇑ otherwise,
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then we obtain

W 2

2 (µ, ε) = sup
f,g↑Cb(”)

{∫
f dµ+

∫
g dε ↑ 9(f, g)

}
.

This is a concave maximization problem, so it is (in principle) benign;
however, from a computational and statistical perspective, the fact that
9 fails to be continuous, much less smooth, is a source of di!culty. To
remedy this, we can consider a relaxed version of this problem obtained
by replacing 9 by a smoothed version.1 Define

9ε(f, g) = ω

∫∫ 
e(f(x)+g(y)→⇑x→y⇑2)/ε ↑ 1


µ(dx) ε(dy) .

The function 9ε is convex and continuous on the space Cb(%) of bounded,
continuous functions on %. Moreover, it is easy to see that as ω G 0, we
recover the original hard constraint.

Lemma 4.1. For any measurable f, g,

lim
ε∋0

9ε(f, g) = 9(f, g) .

Proof. Suppose first that 9(f, g) = 0, so that f(x) + g(y) → ↘x ↑ y↘2
µ⇓ ε-almost everywhere. Then the integral

∫∫ 
e(f(x)+g(y)→⇑x→y⇑2)/ε ↑ 1


µ(dx) ε(dy)

is bounded as ω G 0, and hence 9ε(f, g) ↔ 0.
On the other hand, if 9(f, g) = +⇑, then there exists ϑ > 0 and a

set U of positive µ ⇓ ε measure such that e(f(x)+g(y)→⇑x→y⇑2)/ε ∈ e1/ε

for all (x, y) ↗ U . We obtain

ω

∫∫ 
e(f(x)+g(y)→⇑x→y⇑2)/ε ↑ 1


µ(dx) ε(dy) ∈ ωe1/ε (µ⇓ ε)(U)↑ ω

↔ ⇑ .

This concludes the proof. ↙∝

1 The smoothing we employ is reminiscent of the “softmax” function in machine
learning.
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We are therefore led to consider the following “ω-smoothed” dual
version of the W 2

2
distance:

sup
f,g↑Cb(”)

{∫
f dµ+

∫
g dε ↑ 9ε(f, g)

}
(ω-D-W2

2)

Now that we have derived a relaxation of the dual problem, we can
ask what this corresponds to in the primal problem. It turns out that
the relaxation we have proposed in the dual corresponds to an entropic
penalty in the primal problem.

To obtain this connection, let us define a version of the Kullback–
Leibler divergence over the space M+(%) of all positive (not necessarily
probability) Borel measures on %:

KL(P ↘Q) =

{∫ 
dP

dQ
log dP

dQ
↑ dP

dQ
+ 1


dQ if P C Q,

+⇑ otherwise.

Note that the integrand is non-negative, so that the integral is always
well defined, and KL is always non-negative. When P and Q are proba-
bility measures, the terms ↑dP

dQ
+ 1 cancel out and we obtain the usual

definition.
The importance of this definition is that the convex conjugate of

the functional KL(· ↘Q) (see Appendix A.1) is precisely the exponential
term appearing in 9ε. This fact is a variant of what is commonly known
as the Gibbs variational principle.

Proposition 4.2. For any bounded measurable function h,

sup
P↑M+(”)

∫
h dP ↑ KL(P ↘Q)


=

∫
(exph↑ 1) dQ .

Moreover the supremum is achieved at Ph satisfying dPh
dQ

= exph.

Proof. We show that, for any Borel measure P , the di”erence

( :=

∫
(exph↑ 1) dQ↑

∫
h dP + KL(P ↘Q)

is non-negative, and equals 0 when P = Ph. We may assume without
loss of generality that KL(P ↘Q) < +⇑, since otherwise the claim is
vacuous. Expanding the definition of KL(P ↘Q), we obtain
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( =

∫ 
eh ↑ 1↑ h

dP

dQ
+

dP

dQ
log

dP

dQ
↑ dP

dQ
+ 1


dQ

=

∫ dP
dQ

log

e→h

dP

dQ


↑ dP

dQ
+ eh


dQ . (4.4)

By change of measure, we have

dP

dQ
=

dPh

dQ

dP

dPh

= eh
dP

dPh

.

Therefore (4.4) can be written

( =

∫
eh

 dP

dPh

log
dP

dPh

↑ dP

dPh

+ 1

dQ = KL(P ↘ Ph) .

Since KL(P ↘ Ph) ∈ 0 and KL(Ph ↘ Ph) = 0, this proves the claim. ↙∝

We can therefore rewrite (ω-D-W2
2) as

sup
f,g↑Cb(”)

∫
f dµ+

∫
g dε



↑ ω sup
ε↑M+(”)

∫ f(x) + g(y)↑ ↘x↑ y↘2

ω
ϖ(dx, dy)↑ KL(ϖ ↘ µ⇓ ε)


,

and, rearranging,

sup
f,g↑Cb(”)

inf
ε↑M+(”)

∫
↘x↑ y↘2 ϖ(dx, dy) + ωKL(ϖ ↘ µ⇓ ε)

+

∫
f dµ+

∫
g dε ↑

∫
f H g dϖ


,

where we define (f H g)(x, y) = f(x) + g(y).
As in Subsection 1.5.1, we can swap the inf and sup to get an upper

bound on the value of (ω-D-W2
2):

inf
ε↑M(”)

∫
↘x↑ y↘2 ϖ(dx, dy) + ωKL(ϖ ↘ µ⇓ ε)

+ sup
f,g↑Cb(”)

∫
f dµ+

∫
g dε ↑

∫
f H g dϖ


.

(4.5)

We have already seen that

sup
f,g↑Cb(”)

∫
f dµ+

∫
g dε ↑

∫
f H g dϖ


=

{
0, if ϖ ↗ #µ,ω ,

⇑, otherwise.
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Therefore, (4.5) is equivalent to

inf
ε↑!µ,ω

∫
↘x↑ y↘2 ϖ(dx, dy) + ωKL(ϖ ↘ µ⇓ ε)


. (ω-W2

2)

This is the primal version of the entropic OT problem, and it is the
version that is usually taken as the definition of entropic regularization.
This choice of regularization is usually justified a posteriori by the
existence of Sinkhorn’s algorithm (see Section 4.2), but as we have seen
it also arises naturally from a simple relaxation of the dual Kantorovich
problem. The argument in this section establishes a form of weak
duality, showing that the value of (ω-W2

2) is lower bounded by the value
of (ω-D-W2

2). The next section establishes a tight connection between
the primal and dual problems, both in terms of their optimal value and
their optimal solutions. This connection has been heavily exploited in
the statistical analysis of entropic OT.

4.2 Duality

In this section, we show that the values of the primal problem (ω-W2
2)

and dual problem (ω-D-W2
2) actually agree, and that an optimal solution

to one problem can be extracted from the optimal solution to the other.

Proposition 4.3. Let f-, g- solve (ω-D-W2
2). Then

ϖ-(dx, dy) = exp
f-(x) + g-(y)↑ ↘x↑ y↘2

ω


µ(dx) ε(dy) (4.6)

is the unique solution to (ω-W2
2), and

∫
↘x↑ y↘2 ϖ-(dx, dy) + ωKL(ϖ- ↘ µ⇓ ε)

=

∫
f- dµ+

∫
g- dε ↑ 9ε(f-, g-) =

∫
f- dµ+

∫
g- dε .

Proof. It su!ces to show that ϖ- is a solution to (ω-W2
2), since uniqueness

follows immediately from the strict convexity of KL(ϖ ↘ µ⇓ ε).
We need to show that ϖ- ↗ #µ,ω . Clearly ϖ- is positive, so it su!ces

to show that it has the correct marginals. To that end, we need to verify
that for any Borel set A,

ε(A) =

∫

A

∫
exp

f-(x) + g-(y)↑ ↘x↑ y↘2

ω


µ(dx) ε(dy) .



4.2 Duality 115

Equivalently, we need to show that

∫
exp

f-(x) + g-(y)↑ ↘x↑ y↘2

ω


µ(dx) = 1 ε-a.e. (4.7)

Let us define the function

ḡ(y) = ↑ω log

∫
exp

f-(x)↑ ↘x↑ y↘2

ω


µ(dx) . (4.8)

We show that ḡ = g-, ε-almost everywhere. Since

∫
exp

f-(x) + ḡ(y)↑ ↘x↑ y↘2

ω


µ(dx) = 1 ≃y ↗ Rd (4.9)

holds by definition, this establishes that (4.7) holds as well.
Let ϖ̄(dx, dy) = exp((f-(x) + ḡ(y)↑↘x↑ y↘2)/ω)µ(dx) ε(dy). Then,

0 → KL(ϖ̄ ↘ ϖ-) =
∫  dϖ̄

dϖ-
log

dϖ̄

dϖ-
↑ dϖ̄

dϖ-
+ 1


dϖ̄

=

∫
ḡ(y)↑ g-(y)

ω
ϖ̄(dx, dy)↑

∫
dϖ̄ +

∫
dϖ-

=
1

ω

∫
(ḡ ↑ g-) dε ↑ 9ε(f-, ḡ) + 9ε(f-, g-)


,

where the last step uses that the second marginal of ϖ̄ is ε, by (4.9).
We obtain that

ωKL(ϖ̄ ↘ ϖ-) =
∫

ḡ dε +

∫
f- dµ↑ 9ε(f-, ḡ)

↑
(∫

g- dε +

∫
f- dµ↑ 9ε(f-, g-)

)

→ 0 ,

since (f-, g-) are optimal for (ω-D-W2
2).

Therefore KL(ϖ̄↘ϖ-) = 0, so ϖ̄ = ϖ-, and ḡ = g-, ε-almost everywhere.
This establishes that the second marginal of ϖ- is ε, and an analogous
argument shows that the first marginal of ϖ- is µ. We obtain that ϖ- is
feasible in (ω-W2

2).
To conclude, we compute the value that ϖ- achieves in the primal

problem:
∫

↘x↑ y↘2 ϖ-(dx, dy) + ωKL(ϖ- ↘ µ⇓ ε)
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=

∫
↘x↑ y↘2 ϖ-(dx, dy)

+

∫
(f-(x) + g-(y)↑ ↘x↑ y↘2) ϖ-(dx, dy)

=

∫
(f-(x) + g-(y)) ϖ-(dx, dy)

=

∫
f- dµ+

∫
g- dε ↑ 9ε(f-, g-) ,

where the last step uses that ϖ- ↗ #µ,ω and that 9ε(f-, g-) = 0 since
ϖ- is a probability measure. Therefore, the primal objective evaluated
at ϖ- and the dual objective evaluated at (f-, g-) have the same value,
and weak duality (see Section 4.1) shows that ϖ- and (f-, g-) are an
optimal pair of primal/dual solutions. ↙∝

Proposition 4.3 deserves several remarks. First, note that the hypoth-
esis of the proposition is the existence of optimal solutions to (ω-D-W2

2).
We do not justify the existence of such solutions here, but it can be
shown that that if µ and ε are compactly supported, then there exist
f-, g- ↗ Cb(%). More generally, if µ and ε have finite second moments,
then optima exist in L1(µ) and L1(ε), respectively, and Proposition 4.3
continues to hold.

The proof of Proposition 4.3 actually shows that if f , g are such
that ϖ(dx, dy) = exp((f(x) + g(y)↑ ↘x↑ y↘2)/ω)µ(dx) ε(dy) is a valid
coupling between µ and ε, then ϖ is optimal for (ω-W2

2) and f , g are
optimal for (ω-D-W2

2). This fact can be viewed as an entropic variant
of the complementary slackness condition f̄(x) + ḡ(y) = ↘x ↑ y↘2,
ϖ̄-almost everywhere, which holds for the optimal solutions of (W2

2)
and (D-W2

2). (See Theorem 1.14.) We can therefore conclude that f-

and g- are optimal for (ω-D-W2
2) if and only if they satisfy the marginal

constraint (4.7) and the analogous constraint for the other marginal:

∫
exp

f-(x) + g-(y)↑ ↘x↑ y↘2

ω


ε(dy) = 1 µ-a.e. (4.10)

The marginal constraints (4.7) and (4.10), sometimes known as the
Schrödinger system, are at the core of the theory of entropic OT. Even
though these equations a priori only hold ε- and µ-almost everywhere,
respectively, the construction in (4.8) shows that we can construct
canonical extensions of f- and g- so that the marginal constraints
hold everywhere in Rd. Moreover, the dominated convergence theorem
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shows that if µ and ε are compactly supported, then these extensions
are continuous (even C↘) functions on Rd. In what follows, we may
therefore always assume that f- and g- are defined everywhere on Rd,
and that (4.7) and (4.10) hold for all y and x ↗ Rd, respectively.

Finally, we note that Proposition 4.3 is the basis for the celebrated
Sinkhorn algorithm for entropic optimal transport. This algorithm is
defined by initializing f0 I 0, and for t ∈ 1 performing the updates

gt(y) = ↑ω log

∫
exp

ft→1(x)↑ ↘x↑ y↘2

ω


µ(dx) , (4.11)

ft(y) = ↑ω log

∫
exp

gt(y)↑ ↘x↑ y↘2

ω


ε(dy) . (4.12)

Proposition 4.3 shows that a fixed point of this algorithm yields an opti-
mal solution to (ω-D-W2

2), and therefore an optimal solution to (ω-W2
2).

4.3 Statistical rates for dual solutions

In this and the following section, we consider the statistical behavior
of empirical versions of the entropic OT problem. In contrast to the
results of Chapter 2, the rates of convergence (as a function of n) no
longer su”er from the curse of dimensionality. However, the price to pay
for this improvement is a steep dependence on 1/ω.

The strategy for proving statistical bounds is to analyze the dual
problem (ω-D-W2

2). We then transfer these bounds to the primal solu-
tion using the connection between primal and dual solutions given by
Proposition 4.3.

Let us denote by S(µ, ε) the value of the primal problem (ω-W2
2).

Given i.i.d. samples from µ and ε, we are chiefly interested in estimating
two quantities:

• The cost S(µ, ε),
• The entropic map or entropic regression function

b-(x) = E(X,Y )△ε⇁ [Y | X = x] .

Estimating the first quantity is the entropic analogue of the question we
considered in Chapter 2. Estimating the second quantity is the entropic
analogue of the map estimation task described in Chapter 3. Indeed, b-

is a projection of ϖ-, in the sense of L2, onto the space of maps; however,
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we stress that b- is not a valid transport map between µ and ε, since
(b-)#µ ⇐= ε.

As in Chapter 2, we analyze plug-in estimators for these quantities:
S(µn, εn) for the cost, and b̂(x) = E(X,Y )△ε̂ [Y | X = x], where ϖ̂ is the
optimal solution to the empirical entropic OT problem between µn and
εn.2

As emphasized above, our main tool to analyze these quantities is
the duality relationship established in Proposition 4.3. Denote by C▽

b
the subspace of Cb(% ⇒ %) consisting of functions of the form f H g
for f, g ↗ Cb(%). The dual problem (ω-D-W2

2) depends on f and g only
through their sum h = f H g ↗ C▽

b . In particular, if (f, g) is a dual
solution, then so is (f + ϱ, g ↑ ϱ) for any ϱ ↗ R. Inspired by this fact,
let us define the dual functional ’ : C▽

b ↔ R given by

h △↔
∫ (

h↑ ω (e(h→c)/ε ↑ 1)
)
d(µ⇓ ε) , (4.13)

where c(x, y) = ↘x↑y↘2 is the squared Euclidean cost. The dual problem
can then be written succinctly as sup

h↑C↘
b
’(h).

Suppose we wish to compare S(µ, ε) to S(µn, εn), where, as in
Chapter 2, µn and εn denote empirical measures corresponding to i.i.d.
samples from µ and ε. We can define an empirical version of the dual
functional by

’̂(h) =

∫ (
h↑ ω (e(h→c)/ε ↑ 1)

)
d(µn ⇓ εn) .

Then

S(µn, εn)↑ S(µ, ε) = sup
h↑C↘

b

’̂(h)↑ sup
h↑C↘

b

’(h) = ’̂(ĥ)↑ ’(h-) ,

where ĥ and h- are maximizers of ’̂ and ’, respectively.
Exercise 7 sketches a direct approach to obtain an upper bound

on ’̂(ĥ)↑ ’(h-) based on empirical process theory, analogous to the
one developed in Section 2.3 for the unregularized optimal transport
problem. However, we pursue a di”erent path, which leverages the
strong concavity of the dual functional.

2 Though the formulas for the entropic maps b⇁ and bn define them as elements of
L

1(µ) and L
1(µn), respectively, the canonical extensions described in Section 4.2

can be used to define continuous versions of b⇁ and bn.
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We begin with a non-rigorous sketch of the argument. Strong con-
cavity of the functional ’̂ should imply there exists ϑ > 0 such that

’̂(ĥ) → ’̂(h-) + ′∀’̂(h-), ĥ↑ h-∞L2(µn̸ωn)
↑ ϑ

2
↘ĥ↑ h-↘2

L2(µn̸ωn)
.

While it is possible to define a suitable notion of gradient for ∀’̂, it
is su!cient for our purposes to interpret the above inner product as a
directional (Gâteaux) derivative. In contrast to the empirical process
theory approach, this inequality implies that we can obtain a bound by
controlling ’̂ and ∀’̂ at the fixed function h- rather than the random
function ĥ. In particular, there is no need to “sup-out” ĥ which allows
us to circumvent the use of empirical process theory.

We make the following assumption.

Assumption 4.4. The supports of µ and ε lie in % ⇔ B1/2(0).

In particular, under Assumption 4.4, diam(%) → 1. This assumption
implies simple a priori bounds on ĥ and h-.

Proposition 4.5. Under Assumption 4.4, it holds that

↘ĥ↘L↓ , ↘h-↘L↓ → 2 .

Proof. We first prove the claim for h-. Recall that h- = f- H g- for
f-, g- ↗ Cb(%) and that thanks to canonical extensions, we may assume
that the marginal constraints (4.7) and (4.10) hold for all x, y ↗ %.
Since c(x, y) → 1 for all x, y ↗ %, we get

1 =

∫
e(f

⇁▽g
⇁→c)/ε µ(dx) ∈ e(g

⇁
(y)→1)/ε

∫
ef

⇁
(x)/ε µ(dx) , ≃y ↗ % ,

1 =

∫
e(f

⇁▽g
⇁→c)/ε ε(dy) ∈ e(f

⇁
(x)→1)/ε

∫
eg

⇁
(y)/ε ε(dy) , ≃x ↗ % .

Multiplying these two inequalities yields

e(h
⇁→2)/ε

∫
eh

⇁
/ε d(µ⇓ ε) → 1 .

Next note that by Jensen’s inequality, we get
∫

eh
⇁
/ε d(µ⇓ ε) ∈ eS(µ,ω)/ε ∈ 1 ,

where we used Proposition 4.3. From the above two displays, we get
that h- → 2 for all x, y ↗ %.
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Next, since c ∈ 0 on %⇒ %, we get from the same argument that

1 → eh
⇁
/ε

∫
eh

⇁
/ε d(µ⇓ ε) → e(h

⇁
+2)/ε ,

where we used the bound h- → 2 that we just proved. Hence h- ∈ ↑2
for all x, y ↗ %.

Since the only fact that was used about h- is that it maximizes
the dual functional ’ corresponding to measures whose supports lie
in %, the claim also holds for ĥ when replacing (µ, ε) with (µn, εn) in
Proposition 4.3. Again, canonical extensions play a crucial role here. ↙∝

We require some fundamental di”erentiability and concavity prop-
erties of the empirical dual functional. If we let µn = 1

n


n

i=1
ϑXi and

εn = 1

n


n

j=1
ϑYj , for X1, . . . , Xn

i.i.d.↓ µ and Y1, . . . , Yn
i.i.d.↓ ε, then we

can write ’̂ explicitly as

’̂(h) =
1

n2

n∑

i,j=1


h(Xi, Yj)↑ ω

(
e(h(Xi,Yj)→⇑Xi→Yj⇑2)/ε ↑ 1

)
. (4.14)

Rather than appealing to functional analysis to study di”erentiability
of the functional ’̂, it is su!cient to study the function ϕ defined on
[0, 1] by

ϕ(t) = ’̂(ht) , where ht := (1↑ t)ĥ+ th- . (4.15)

In particular, it is twice di”erentiable with derivatives given by

ϕ⇒(t) =
1

n2

n∑

i,j=1

(
h-(Xi, Yj)↑ ĥ(Xi, Yj)

) (
1↑ e(ht(Xi,Yj)→⇑Xi→Yj⇑2)/ε

)
,

(4.16)
and

ϕ⇒⇒(t) = ↑ 1

ωn2

n∑

i,j=1

(
h-(Xi, Yj)↑ ĥ(Xi, Yj)

)
2
e(ht(Xi,Yj)→⇑Xi→Yj⇑2)/ε



→ ↑e→3/ε

ω
↘ĥ↑ h-↘2

L2(µn̸ωn)
, (4.17)

where we used Proposition 4.5 and Assumption 4.4 in the above inequal-
ity. We readily get that ϕ is strongly concave on [0, 1].

The expression (4.16) reveals that the derivative of ϕ is an L2(µn⇓εn)
inner product with a function in the space C▽

b . This inner product can be
well understood using the Hoe”ding (a.k.a. Efron–Stein, a.k.a. ANOVA)
decomposition [Hoe48].
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Definition 4.6. Let X,Y be two independent random variables with
distributions P and Q respectively. Given k ↗ L2(P ⇓Q), the Hoe!ding
decomposition of k(X,Y ) in L2(P ⇓Q) is given by

k(X,Y ) = k̄1(X) + k̄2(Y ) + k + r(X,Y )

where

k = E[k(X,Y )] ↗ R ,

k̄1(x) = E[k(X,Y ) | X = x]↑ k ,

k̄2(y) = E[k(X,Y ) | Y = y]↑ k ,

and
r(X,Y ) = k(X,Y )↑ k̄1(X)↑ k̄2(Y )↑ k .

It is easy to check (exercise!) that the Hoe”ding decomposition is
orthogonal in L2(P ⇓ Q). In fact, the same calculations reveal the
relevance of this decomposition to our problem: for any h = f H g ↗ C▽

b ,
it holds

′h, k∞L2(P̸Q) = ′f, k̄1∞L2(P ) + ′g, k̄2∞L2(Q) + ′h, k∞L2(P̸Q)

= ′h, k̄1 + k̄2 + k∞L2(P̸Q) .

Using Cauchy–Schwarz and orthogonality of the Hoe”ding decomposi-
tion, we get

′h, k∞2
L2(P̸Q)

→ ↘h↘2
L2(P̸Q)

↘ k̄1 + k̄2 + k↘2
L2(P̸Q)

= ↘h↘2
L2(P̸Q)

(
↘k̄1↘2L2(P̸Q)

+ ↘k̄2↘2L2(P̸Q)
+ k

2)
.

(4.18)

Using orthogonality again implies

E
(
E[k(X,Y ) | X]

)
2
]
= ↘k̄1 + k↘2

L2(P̸Q)

= ↘k̄1↘2L2(P̸Q)
+ k

2

and similarly

E
(
E[k(X,Y ) | Y ]

)
2
]
= ↘k̄2↘2L2(P̸Q)

+ k
2

.

These two identities together with (4.18) yield
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′h, k∞2
L2(P̸Q)

↘h↘2
L2(P̸Q)

→ E
(
E[k(X,Y ) | X]

)
2
]
+ E

(
E[k(X,Y ) | Y ]

)
2
]
↑ k

2

.

Applying this result with P = µn, Q = εn we get the following lemma.

Lemma 4.7. For any k ↗ L2(µn ⇓ εn) and any h ↗ C▽
b , we have

′h, k∞2
L2(µn̸ωn)

→ ↘h↘2
L2(µn̸ωn)

(↘εn(k)↘2L2(µn)
+ ↘µn(k)↘2L2(ωn)

) ,

where

µn(k)(y) =
1

n

n∑

i=1

k(Xi, y) , εn(k)(x) =
1

n

n∑

j=1

k(x, Yj) .

We are now in a position to obtain an important lemma showing
that ĥ is a good estimator of h-. In turn, rates of convergence for the
cost and the entropic map follow from this lemma.

Lemma 4.8. Let Assumption 4.4 hold. Then

E↘ĥ↑ h-↘2
L2(µn̸ωn)

→ 2ω2e10/ε

n
.

Proof. Since ϕ is strongly concave, using respectively (4.17), the opti-
mality condition ϕ⇒(0) = 0, and (4.16), we get

e→3/ε

ω
↘ĥ↑ h-↘2

L2(µn̸ωn)
→ ϕ⇒(0)↑ ϕ⇒(1) = ↑ϕ⇒(1)

=
1

n2

n∑

i,j=1

(
h-(Xi, Yj)↑ ĥ(Xi, Yj)

) (
e(h

⇁
(Xi,Yj)→⇑Xi→Yj⇑2)/ε ↑ 1

)

= ′h- ↑ ĥ, p- ↑ 1∞L2(µn̸ωn)
, (4.19)

where
p-(x, y) = e(h

⇁
(x,y)→⇑x→y⇑2)/ε .

Since h- ↑ ĥ ↗ C▽
b , Lemma 4.7 implies

′h- ↑ ĥ, p- ↑ 1∞L2(µn̸ωn)
→ ↘h- ↑ ĥ↘L2(µn̸ωn)

ϑn ,

where

ϑn =
(
↘εn(p- ↑ 1)↘2

L2(µn)
+ ↘µn(p

- ↑ 1)↘2
L2(ωn)

)
1/2

.
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Combining this with (4.19) yields

↘ĥ↑ h-↘2
L2(µn̸ωn)

→ ω2e6/ε ϑ2n . (4.20)

Recall from (4.7) that

E[p-(Xi, Yj) | Yj ] = 1 ,

so that

E↘µn(p
- ↑ 1)↘2

L2(ωn)
=

1

n
E

n∑

j=1

 1

n

n∑

i=1

p-(Xi, Yj)↑ E[p-(Xi, Yj) | Yj ]

2

=
1

n
E var

(
p-(X1, Y1)

∣∣ Y1
)

→ E[p-(X1, Y1)2]

n
→ e4/ε

n
.

An analogous bound holds for E↘εn(p- ↑ 1)↘2
L2(µn)

, which implies that

Eϑ2n → 2e4/ε

n
, (4.21)

proving the claim. ↙∝

4.4 Statistical rates for primal solutions

Lemma 4.8 shows that solutions to the dual problem (ω-D-W2
2) converge

at the parametric rate. In this section, we use this result to give bounds
for the primal problem as well.

We now turn to our first quantity of interest, the cost S(µ, ε). The
following result shows that the mean squared error and bias of the
estimator S(µn, εn) are both of order n→1, albeit with constants that
scale exponentially in 1/ω. Strikingly, the n→1 rate we have obtained for
the variance and bias is characteristic of parametric estimation problems,
despite the non-parametric setting. It is of course to be contrasted with
the slow, non-parametric rates of Chapter 2.

Theorem 4.9. If µ and ε satisfy Assumption 4.4, then the mean
squared error and bias of S(µn, εn) satisfy

E(S(µn, εn)↑ S(µ, ε))2 ↭ 1

n
,
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|ES(µn, εn)↑ S(µ, ε)| ↭ 1

n
, (4.22)

where the implicit constants depends exponentially on 1/ω.

Proof. We begin with establishing (4.22) by studying the bias. Jensen’s
inequality implies

ES(µn, εn) = E sup
h↑C↘

b

’̂(h) ∈ sup
h↑C↘

b

’(h) = S(µ, ε) .

Hence

0 → bn := ES(µn, εn)↑ S(µ, ε)

= E

’̂(ĥ)↑ ’̂(h⇓)

]

= E

ϕ(0)↑ ϕ(1)

]
→ ↑Eϕ⇒(1) ,

where we recall that the concave function ϕ is defined in (4.15). It
follows from (4.16) that ↑ϕ⇒(1) is given by

1

n2

n∑

i,j=1

(
h-(Xi, Yj)↑ ĥ(Xi, Yj)

) (
e(h

⇁
(Xi,Yj)→⇑Xi→Yj⇑2)/ε ↑ 1

)

→ ↘ĥ↑ h-↘L2(µn̸ωn)
ϑn ,

where ϑn is defined as in the proof of Lemma 4.8 and we have applied
Lemma 4.7. By the Cauchy–Schwarz inequality,

0 → bn →

E↘ĥ↑ h-↘2

L2(µn̸ωn)
Eϑ2n

→
⊤
2ωe5/ε⊤

n

⊤
2e2/ε⊤
n

=
2ωe7/ε

n
,

where we used Lemma 4.8 and (4.21).
To prove the bound on the mean squared error, we first use a bias–

variance decomposition to write

E(S(µn, εn)↑ S(µ, ε))2 = var(S(µn, εn)) + |ES(µn, εn)↑ S(µ, ε)|2

= var(S(µn, εn)) +O(n→2) .

It therefore su!ces to show that the variance of S(µn, εn) is O(n→1).
For this purpose, we employ the Efron–Stein inequality. More pre-
cisely, [BLM13, Corollary 3.2] is su!cient for our purposes. It says that
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if f = f(Z1, . . . , Zm) is a function of independent random variables that
satisfies the bounded di”erences inequality:

|f(z1, . . . , zm)↑ f(z1, . . . , zi→1, z
⇒
i, zi+1, . . . , zm)| → 2c (4.23)

for all z1, . . . , zm, z⇒
i
and all i ↗ [m], then var(f) → c2m.

Let us view S(µn, εn) as a function of the m = 2n independent ran-
dom variables X1, . . . , Xn, Y1, . . . , Yn. Fix (X2, . . . , Xn) = (x2, . . . , xn)
and (Y1, . . . , Yn) = (y1, . . . , yn), and view the dual functional ’̂ = ’̂x1

as a function of the value of X1 = x1 alone. Then for any x1 ↗ %,
under Assumption 4.4, Proposition 4.5 implies that the maximizer of
the dual functional ’̂x1

over C▽
b is achieved at an h satisfying ↘h↘↘ → 2.

Therefore

| sup
h↑C↘

b

’̂x1
(h)↑ sup

h↔↑C↘
b

’̂x↔
1
(h⇒)| → sup

h↑C↘
b , ⇑h⇑↓⇐2

|’̂x1
(h)↑ ’̂x↔

1
(h)|

→ 2ωe2/ε + 4

n
=: 2c ,

where we have used the fact that each term in (4.14) is bounded.
Repeating this argument for X2, . . . , Xn, Y1, . . . , Yn, we obtain that
S(µn, εn) satisfies (4.23) with

c =
ωe2/ε + 2

n
→ 2ωe2/ε

n
,

since ωe2/ε > 2 for all ω > 0.
Applying the Efron–Stein inequality, we obtain

var(S(µn, εn)) → 2c2n → 8ω2e4/ε

n
,

as claimed. ↙∝

We now conclude with an analogous sample complexity result for
the entropic map b-.

Recall from (4.6) that the density of ϖ- with respect to µ⇓ ε is

p- = e(h
⇁→c)/ε .

Similarly, let p̂ = e(ĥ→c)/ε denote the density of ϖ̂ with respect to µn⇓εn.
Note that thanks to canonical extensions, these two functions may be
defined on the whole space.
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In the sequel, we use the fact that these densities are uniformly
bounded. Indeed, from Proposition 4.5 and Assumption 4.4,

↘p̂↘L↓ , ↘p-↘L↓ → e2/ε . (4.24)

With these definitions, we have the identities

b-(x) =

∫
y p-(x, y) ε(dy) ,

b̂(x) =

∫
y p̂(x, y) εn(dy) .

The following bound holds.

Theorem 4.10. Adopt Assumption 4.4. The empirical entropic map
satisfies

E↘b- ↑ b̂↘2
L2(µn)

↭ 1

n
,

where the implicit constant depends exponentially on 1/ω.

Proof. Fix x ↗ %. Young’s inequality and Jensen’s inequality imply

↘b-(x)↑ b̂(x)↘2

→ 2

∫

y p-(x, y) (ε ↑ εn)(dy)
2 + 2


∫

y (p- ↑ p̂)(x, y) εn(dy)
2

→ 2

∫

y p-(x, y) (ε ↑ εn)(dy)
2 + 2

∫
↘y↘2 |(p- ↑ p̂)(x, y)|2 εn(dy)

→ 2

∫

y p-(x, y) (ε ↑ εn)(dy)
2 + 2 ↘p-(x, ·)↑ p̂(x, ·)↘2

L2(ωn)
,

where in the last inequality we use the fact that ↘y↘ → 1 on the support
of εn, by Assumption 4.4. We therefore obtain

↘b- ↑ b̂↘2
L2(µn)

→ 2

n

n∑

i=1


∫

y p-(Xi, y) (ε ↑ εn)(dy)
2 + 2 ↘p- ↑ p̂↘2

L2(µn̸ωn)
.

To control the first term, observe that

E


∫
y p-(Xi, y) (ε ↑ εn)(dy)

2 ∣∣ Xi

]

=
1

n
E
Y1p-(Xi, Y1)↑ E[Y1p-(Xi, Y1)]

2 ∣∣ Xi

]
→ e4/ε

n
,
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where we used Assumption 4.4 and (4.24).
To control the second term, we use the fact that the exponential

function ex is eM -Lipschitz on (↑⇑,M ] for any M . Hence, using As-
sumption 4.4 and Proposition 4.5, we get also that

|p-(x, y)↑ p̂(x, y)| → e2/ε |h-(x, y)↑ ĥ(x, y)| ≃x, y ↗ % .

Therefore

E↘p- ↑ p̂↘2
L2(µn̸ωn)

→ e4/ε E↘h- ↑ ĥ↘2
L2(µn̸ωn)

→ ω2e14/ε

n
,

by Lemma 4.8. We have proved that

E↘b- ↑ b̂↘2
L2(µn)

→ 2e4/ε

n
+

2ω2e14/ε

n
↭ 1

n
.

↙∝

The preceding theorem gives a bound on the empirical entropic map
in expected L2(µn) norm. At the price of a larger constant factor, it is
also possible to obtain a bound in L2(µ).

Theorem 4.11. Adopt Assumption 4.4. The empirical entropic map
satisfies

E↘b- ↑ b̂↘2
L2(µ)

↭ 1

n
,

where the implicit constant depends exponentially on 1/ω.

Proof. As in the proof of Theorem 4.10, we have the pointwise bound

↘b-(x)↑ b̂(x)↘2

↭

∫

y p-(x, y) (ε ↑ εn)(dy)

2

+ ↘h-(x, ·)↑ ĥ(x, ·)↘2
L2(ωn)

.

Integrating with respect to µ and taking expectation, we obtain

E↘b- ↑ b̂↘2
L2(µ)

↭ 1

n
+ E↘h- ↑ ĥ↘2

L2(µ̸ωn)
.

It is thus su!cient to establish that

E↘h- ↑ ĥ↘2
L2(µ̸ωn)

↭ 1

n
. (4.25)
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To that end, we use the fact that the logarithm and exponential func-
tions are locally Lipschitz, with Lipschitz constant depending on the
magnitude of the arguments. In particular, we recall the elementary
inequalities

emin{a,b} |a↑ b| → |ea ↑ eb| → emax{a,b} |a↑ b| ,

which also imply the bound | log a↑ log b| → |a→b|
min{a,b} for a, b > 0.

Recall that

ĥ(x, y) = f̂(x) + ĝ(y) = ↑ω log

∫
e(ĝ(y)→⇑x→y⇑2)/ε εn(dy) + ĝ(y) ,

and

h-(x, y) = f-(x) + g-(y) = ↑ω log

∫
e(g

⇁
(y)→⇑x→y⇑2)/ε ε(dy) + g-(y)

= ↑ω log

∫
e(g

⇁
(y)→⇑x→y⇑2)/ε εn(dy) + g-(y) +((x) ,

where

((x) = ω log

∫
e(g

⇁
(y)→⇑x→y⇑2)/ε εn(dy)↑ω log

∫
e(g

⇁
(y)→⇑x→y⇑2)/ε ε(dy) .

Moreover, we may assume that
∫
ĝ dεn =

∫
g- dεn without loss of

generality since dual solutions are defined up to an additive constant.
Using the Lipschitz properties listed above together with Assumption 4.4
and Proposition 4.5, we get

|ĥ(x, y)↑ h-(x, y)| ↭
∫
|ĝ ↑ g-| dεn + |ĝ(y)↑ g-(y)|

+
∣∣∣
∫

e(g
⇁
(y)→⇑x→y⇑2)/ε (εn ↑ ε)(dy)

∣∣∣ .

Using Jensen’s inequality and a trivial variance bound for the average
of independent and bounded random variables, we finally obtain

E↘ĥ↑ h-↘2
L2(µ̸ωn)

↭ E↘ĝ ↑ g-↘2
L2(ωn)

+
1

n
.

Finally, note that

↘ĥ↑ h-↘2
L2(µn̸ωn)

=

∫ 
(f̂ ↑ f-)H (ĝ ↑ g-)

]
2
d(µn ⇓ εn)
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= ↘f̂ ↑ f-↘2
L2(µn)

+ ↘ĝ ↑ g-↘2
L2(ωn)

+ 2

∫
(f̂ ↑ f-) dµn

∫
(ĝ ↑ g-) dεn

∈ ↘ĝ ↑ g-↘2
L2(ωn)

,

where in the last inequality we used the fact that
∫
ĝ dεn =

∫
g- dεn.

Hence we have proved that

E↘ĥ↑ h-↘2
L2(µ̸ωn)

↭ E↘ĥ↑ h-↘2
L2(µn̸ωn)

+
1

n
.

Together with Lemma 4.8, it completes the proof of (4.25), and hence
of the theorem. ↙∝

The conclusion of this section is quite striking: non-parameteric
quantities can be estimated at a parametric rate. An inspection of the
proofs of these results indicates that strong convexity is key to achieve
such a result. In retrospect it is not surprising that the empirical risk
minimizer of a strongly convex functional should enjoy such dimension-
free rates. Indeed, stochastic gradient descent on such an objective does
(see, e.g., [KNS16, Theorem 4]). This phenomenon is not new: it is
known for specific losses such as the ones employed in Chapter 8 and
was observed in [EHL18] for example.

4.5 Discussion

§4.1. Entropic optimal transport was first popularized for computational
purposes in [Cut13]. See [PC19b] for an introduction to computational
optimal transport which nicely complements our treatment of statisti-
cal optimal transport. Entropic optimal transport between Gaussians
(Exercise 4) was computed in [JMPC20, MGM22].

Besides statistical applications, entropic optimal transport has also
been used to establish mathematical results for unregularized optimal
transport [FGP20, GLRT20, CP23].
§4.2. The convergence of Sinkhorn’s algorithm is discussed in many
places, see [KLRS08, ANWR17, DGK18, DBTHD21, Lég21, AFKL22,
GN22, BB23, GNCD23, CDV24].
§4.3. The proofs in this section are based on [RS22]. Note that the
bounds obtained here are dimension-free, but scale exponentially w.r.t.
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1/ω. The sample complexity of entropic optimal transport was first es-
tablished by [GCB+19], who proved bounds that scaled as eO(1/ε)ω→O(d).
Later, [MNW19] observed that it was possible to slightly modify their
argument to remove the exponential factor. These bounds can be better
in low dimension, but provide poor control when the dimension is large.

Recent works have also focused on obtaining bounds which instead
scale as ω→O(d

⇁
), where the parameter d- denotes the intrinsic dimen-

sionality of the measures (in fact, the minimum intrinsic dimension
among µ and ε). See Exercise 8 and [Str23] for an approach close to
the one taken here, and [GH23] for an empirical process argument.

The techniques used in this section can be used not only to prove
sample complexity bounds, but also to obtain distributional lim-
its [MNW19, dBSLNW23, GSLNW24]. Such bounds were originally
obtained in the discrete case by [BCP19a, KTM20].

One notable quirk about entropic optimal transport is that in general,
S(µ, µ) > 0 due to the presence of the entropic term in the objective. In
light of this, Genevay et al. [GPC18] proposed the “debiased” quantity
D(µ, ε) := S(µ, ε) ↑ 1

2
(S(µ, µ) + S(ε, ε)), called the Sinkhorn diver-

gence between µ and ε. It can be shown that the Sinkhorn divergence
is convex in each of its variables, non-negative, and vanishes if and only
if µ = ε [FSV+19]. Like entropic optimal transport, the Sinkhorn diver-
gence can be estimated at a parametric rate [GCB+19, dBSLNW23].
The Sinkhorn divergence has been advocated as tool for estimating
Wasserstein distances [CRL+20], although there are caveats when using
it for map estimation [PCNW22].
§4.4. Theorem 4.11 provides a rate for estimating the entropic map b-,
but combined with an approximation result quantifying the distance
between b- and the true optimal transport map T , one can use b̂ as a
computationally e!cient estimator for T (c.f. [PNW22]). Although it is
not minimax in general, it is in the semi-discrete case [PDNW23].

As the alternative nomenclature “entropic regression function” indi-
cates, the entropic map also solves a regression problem with respect to
the entropic coupling ϖ-; indeed, b- = argminf :Rd↗Rd Eε⇁↘Y ↑ f(X)↘2.
Analyzing this regression problem when the minimization is taken over
a smaller class of candidate regression functions rather than all maps
from Rd ↔ Rd is an open problem.
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4.6 Exercises

1. a) Let % be a compact subset of Rd with positive Lebesgue measure.
Show that the uniform measure on % has the largest di”erential
entropy of any probability measure on %.

b) Let m be a positive integer. Show that the uniform measure on
[m] has the largest Shannon entropy of any probability measure
on [m].

2. a) Show that if µ, ε, and ϖ are absolutely continuous, and ϖ ↗ #µ,ω ,
then KL(ϖ ↘ µ⇓ ε) = Ent(µ) + Ent(ε)↑ Ent(ϖ). Conclude that
if µ and ε are absolutely continuous, then the optimization
problem (4.1) is equivalent to (4.3).

b) Show by an analogous calculation that if µ and ε are discrete,
then (4.2) is equivalent to (4.3).

3. Let ϖε denote the entropic optimal transport plan between µ and
ε, with corresponding potentials fε, gε. Define ϕε := 1

2
↘ · ↘2 ↑ fε.

Compute the derivatives of ϕε and conclude that

∀ϕε(x) = Eεϖ [Y | X = x] , (4.26)

∀2ϕε(x) = ω→1 cov
εϖ

(Y | X = x) . (4.27)

In particular, since we expect that ϕε converges to the unregularized
Brenier potential ϕ as ω ↔ 0 (proven rigorously in [NW22]), and
ϕε is convex by (4.27), this gives another explanation for Brenier’s
Theorem 1.16.

4. Compute the entropic optimal transport solution (i.e., the potentials,
the plan, the cost) between two Gaussians. Hint : as you might expect,
the entropic potentials are quadratic functions.

5. In this exercise, we present another view on the Sinkhorn itera-
tions (4.11), (4.12). Consider the joint distributions

ϖ
t→ 1

2

(dx, dy) B exp
(
(ft→1(x) + gt(y)↑ ↘x↑ y↘2)/ω

)
µ(dx) ε(dy) ,

ϖt(dx, dy) B exp
(
(ft(x) + gt(y)↑ ↘x↑ y↘2)/ω

)
µ(dx) ε(dy) .

Here, we take ϖ0(dx,dy) B exp(↑↘x ↑ y↘2/ω)µ(dx) ε(dy). Show
that the Sinkhorn updates correspond to iteratively “fixing the
marginals”; i.e., ϖ

t→ 1

2

is obtained from ϖt→1 by keeping the condi-

tional distribution of X | Y fixed but setting the Y -marginal to ε,
and ϖt is obtained from ϖ

t→ 1

2

by keeping the conditional distribution

of Y | X fixed but setting the X-marginal to µ.
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6. In the discrete setting where µ, ε are finitely on {x1, . . . , xm} and
{y1, . . . , yn} respectively, Sinkhorn’s algorithm shows that there are
positive scalings . ↗ Rm

+ , ϱ ↗ Rn
+ of the rows and columns of the

matrix M with entries Mi,j = exp(↑↘xi ↑ yj↘2/ω), such that the
scaled matrix diag(.)M diag(ϱ) has marginals µ and ε respectively;
see [PC19b] for details.
As a special case, suppose that µ, ε are uniformly distributed
and m = n. Then, the scaled matrix M̃ := diag(.)M diag(ϱ) has
marginals µ and ε if and only if nM̃ is doubly stochastic, i.e.,
it belongs to the Birkho” polytope (1.2). In this case, prove the
existence of these scalings for any matrix M with positive entries
by considering the KL minimization problem

minimize
ε↑Birk

n∑

i,j=1

(
ϖi,j log

ϖi,j
Mi,j

↑ ϖi,j +Mi,j

)
.

Namely, show that a solution to this problem exists, and using
Lagrange multipliers, show that ϖ is of the form diag(.)M diag(ϱ)
for positive scalings ., ϱ.

7. The strong convexity arguments in Section 4.3 are designed to avoid
the use of empirical process theory. However, this exercise shows
how to use empirical process theory to prove sample complexity
bounds using techniques analogous to those in Section 2.3. Unlike
the approach in Section 4.3, these bounds depend polynomially
on 1/ω, but with exponent scaling with d. For simplicity, we focus
on the one-sample problem, and prove bounds on the quantity
S(µn, ε)↑ S(µ, ε).
a) Let f and g be solutions to (ω-D-W2

2) for any pair of measures
supported on % = B1/2(0). Let s be a positive integer. Arguing
as in Exercise 3, show that there exists a positive constant Cs

such that for all multi-indices 3 = (31, . . . ,3d) with |3| = s, we
have the bound

sup
x↑”

|▷▷f(x)| → Csω
1→s .

Argue that we can assume that f(0) = 0 without loss of generality,
and thereby obtain the bound supx↑” |f(x)| → C0 for some
positive constant C0.

b) For L > 0, define

Fs(L) :=

f : % ↔ Rd :

s∑

k=0

∑

▷:|▷|=k

↘▷▷f↘L↓(”) → L

.
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Fix a positive integer s. Argue that there exists a constant
C = C(s) such that for L = C (1 + ω1→s), we have

|S(µn, ε)↑ S(µ, ε)| → sup
f↑Fs(L)

∣∣∣∣
∫

f dµn ↑
∫

f dµ

∣∣∣∣ .

Hint: let f- and g- be solutions to (ω-D-W2
2) for µ and ε, and let

f̂ and ĝ be the solutions for µn and ε. Argue that h- = f- H g-

and ĥ = f̂ H ĝ satisfy

S(µn, ε)↑ S(µ, ε) = ’̂(ĥ)↑ ’(h-) →
∫

f̂ dµn ↑
∫

f̂ dµ ,

and analogously

S(µ, ε)↑ S(µn, ε) →
∫

f- dµ↑
∫

f- dµn .

Then apply part (a).
c) It can be shown that logN(ϑ,Fs(L)) ↭ (L/ϑ)d/s, and moreover

that this bound holds also for fractional s, where Fs is interpreted
as a suitable Hölder space. Taking s = d/2+1, use Proposition 2.6
to conclude

E|S(µn, ε)↑ S(µ, ε)| ↭ (1 + ω→d/2)n→1/2 .

8. The statistical results in Section 4.3 rely on pointwise bounds on
the density p-. Here, we show a di”erent way to control ↘p-↘L2(µ̸ω),
which provides an entry point into [Str23].
a) Argue that the dual potentials f-, g- are O(1)-Lipschitz, and

that log p- is O(ω→1)-Lipschitz. (Here, we are still working over
a bounded domain.)

b) Prove that for all ϑ > 0,
∫
ε(B(z, ϑ))→1 ε(dz) → N(ϑ/4, supp ε),

where N(ϑ/4, supp ε) is the covering number of supp ε at scale
ϑ/4. (Let z1, . . . , zK ↗ supp ε be a ϑ/2-covering of supp ε with
K → N(ϑ/4, supp ε). Bound the integral by summing over the
integals over B(zk, ϑ/2) for k = 1, . . . ,K.)

c) Using the fact that

1 = p-(x, y)

∫
p-(x, y⇒)

p-(x, y)
ε(dy⇒) ∈ p-(x, y)

∫

B(y,r)

p-(x, y⇒)

p-(x, y)
ε(dy⇒)

and the log-Lipschitz property from (a), show that p-(x, y) ↭
ε(B(y, r))→1, where r ℑ ω.
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d) Combining this with the estimate in (b), prove that ↘p-↘L2(µ̸ω) ↭
N(r⇒, supp ε) where r⇒ ℑ ω. Explain why this implies that if

suppµ is dµ-dimensional and supp ε is dω-dimensional, then
↘p-↘L2(µ̸ω) ↭ ω→(dµ≃dω)/2.
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Wasserstein gradient flows: theory

We have seen in Proposition 1.3 that P2(Rd), once endowed with the
W2 distance, has the structure of a metric space. It has in fact a much
richer geometric structure, as it resembles a Riemannian manifold.
Consequently, we can bring to bear the calculation rules of Riemannian
geometry, known in this context as Otto calculus, on the design and
interpretation of algorithms over the space of probability measures.

The identification of P2(Rd) with a Riemannian manifold is purely
“formal” (that is, heuristic). For instance, P2(Rd) is not locally homeo-
morphic to a Hilbert space. However, the Riemannian view of P2(Rd) is
nevertheless a powerful tool for understanding the geometric properties
of the Wasserstein space.

To elucidate this Riemannian viewpoint, we work with absolutely
continuous measures in this chapter, for which the Riemannian formal-
ism can be put on a more rigorous footing. Our main goal in constructing
this formalism is to define interesting dynamics on the Wasserstein space,
given by gradient flows. Having defined these dynamics, we shall see that
they often make sense even for non-absolutely continuous measures—in
particular, they give rise to well-defined dynamics for discrete measures,
viewed as particle systems. Once derived, these non-trivial dynamics can
be studied directly for discrete measures without the need for making
rigorous sense of the Riemannian calculations in the discrete case. The
reader interested in seeing a fully rigorous derivation of gradient flows
for general measures should consult the seminal monograph of Ambrosio,
Gigli, and Savaré [AGS08], or [San17] for a quick overview.
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5.1 Metric derivative and the continuity equation

The utility of optimal transport lies in its endowment of the space of
probability measures with a geometric structure which respects that of
the underlying space. For example, we saw that the mapping x △↔ ϑx
is an isometric embedding of (Rd, ↘ · ↘) into (P2(Rd),W2). Accordingly,
as we now seek to understand dynamics on P2(Rd), our approach is to
“lift” the corresponding dynamics of particles on Rd.

The general way to prescribe dynamics on Rd using di”erential
calculus is via ordinary di”erential equations (ODEs). Namely, given a
time-dependent family of vector fields (vt)t⇔0

, consider the ODE

Ẋt = vt(Xt) . (5.1)

Under standard assumptions on (vt)t⇔0
,1 there is a unique solution

to the ODE for any given initial condition X0. Suppose now that X0

is drawn randomly from a measure µ0 ↗ P2(Rd), and similarly let µt

denote the law of Xt for all t ∈ 0. We think of the curve of measures
(µt)t⇔0

as describing the evolution of a collection of particles. Then,
the dynamics of (µt)t⇔0

is described by a partial di”erential equation
(PDE), known as the continuity equation.

Proposition 5.1(Continuity equation). Suppose that X0 ↓ µ0, and
that (Xt)t⇔0

evolves according to the dynamics (5.1), which we assume
is well-posed. Let µt denote the law of Xt for all t ∈ 0. Then, (µt)t⇔0

satisfies the following equation in the weak sense,

▷tµt + div(µtvt) = 0 , (5.2)

i.e., for all compactly supported and smooth test functions ϕ : Rd ↔ R,
it holds that

▷t

∫
ϕ dµt =

∫
′∀ϕ, vt∞ dµt . (5.3)

The equation (5.3), when written in probabilistic language, reads
▷tEϕ(Xt) = E′∀ϕ(Xt), vt(Xt)∞, and it simply follows from (5.1) and
the chain rule. The real content of the proposition actually lies in (5.2):
when µt admits a smooth density w.r.t. Lebesgue measure, which by an

1 For example, if the vector fields are Lipschitz uniformly in time, then well-posedness
follows from the Cauchy–Lipschitz theorem.
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abuse of notation we denote also by µt, then integration by parts yields
the equation

∫
ϕ▷tµt = ▷t

∫
ϕ dµt =

∫
′∀ϕ, vt∞µt = ↑

∫
ϕ div(µtvt) .

Since this equality is supposed to hold for all suitable test functions ϕ,
it follows that (5.2) holds pointwise. To summarize, we see that (µt)t⇔0

solves the PDE (5.2), at least when µt admits a smooth density for all
t ∈ 0. In general, it is more convenient to make statements that hold
for curves (µt)t⇔0

without knowing in advance the regularity of µt, in
which case (5.2) should be interpreted to hold in the weak sense (5.3).
However, for the sake of developing the framework of Otto calculus
unencumbered by technical distractions, from now on we ignore such
issues of regularity and pretend that we are working with curves of
smooth densities. See [AGS08] for a more rigorous treatment.

The equations (5.1) and (5.2) provide us with dual perspectives on
the same dynamics; in the field of fluid dynamics, these perspectives
are known as Lagrangian and Eulerian respectively. The Lagrangian
perspective describes the evolution of individual particle trajectories,
whereas the Eulerian perspective tracks the evolution of aggregate
quantities through the notions of mass density µt and velocity field vt.

To foreshadow the development of geometry over P2(Rd), let us first
examine how to develop geometry over Rd; for now, we refer to concepts
from Riemannian geometry loosely, but we return to the subject in
Section 5.2. For a single particle trajectory t △↔ Xt evolving according
to (5.1), the kinetic energy at time t (assuming the particle has unit mass)
is ↘Ẋt↘2 = ↘vt(Xt)↘2. The total energy of the curve over the time interval
[0, 1] is

∫
1

0
↘vt(Xt)↘2 dt, and if we minimize this energy over all curves

(Xt)t↑[0,1] evolving according to (5.1) with endpoints fixed at X0 and
X1, we obtain the constant-speed geodesic t △↔ Xt := (1↑ t)X0 + tX1.
Geometrically, we think of vt(Xt) as the tangent vector to the curve
(Xt)t↑[0,1] at time t, and we measure its length using the Euclidean
norm ↘ · ↘.

We now try to lift this picture to P2(Rd). For a curve (µt)t⇔0
evolving

according to (5.2), it is natural to think of the velocity vector field
vt : Rd ↔ Rd as an abstract “tangent vector” to (µt)t⇔0

at time t, and

to measure its squared “length” via the kinetic energy2

2 Since µt plays the role of a mass density, then ↘vt↘2 µt is the kinetic energy density,
and integrating this over all of space yields the kinetic energy.
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↘vt↘2µt
:=

∫
↘vt↘2 dµt . (5.4)

However, we immediately arrive at an obstacle in doing so: given a
curve (µt)t⇔0

, there is not a unique choice of vector fields (vt)t⇔0
for

which (5.2) holds, and hence it is unclear what vector field vt to choose
as our tangent vector. Indeed, if we start with any family of vector fields
(vt)t⇔0

for which (5.2) holds, and if wt satisfies div(µtwt) = 0 for all
t ∈ 0, then (vt + wt)t⇔0

is another family of vector fields for which (5.2)
holds by linearity of the divergence operator. To see a concrete example
of non-uniqueness, suppose that µt is the standard Gaussian distribution
on R2 for all t ∈ 0. Then, one natural choice of vector fields is to take
vt = 0 for all t ∈ 0; however, due to the rotational invariance of the
standard Gaussian, another choice is to choose vector fields inducing a
rotation (see Figure 5.1).

Zero vector field Rotation vector field

Fig. 5.1. Two vector fields which preserve the standard Gaussian on R2.

We see that the vector field on the right of Figure 5.1 induces extrane-
ous motion for the particles and is therefore not the most parsimonious
explanation for the dynamics of (µt)t⇔0

. To resolve the ambiguity in
the choice of vector fields, we can elect to declare as our tangent vector
the vector field which minimizes the kinetic energy (5.4) while still ex-
plaining the dynamics of (µt)t⇔0

. As discussed below, the minimization
of kinetic energy falls naturally in line with the philosophy of “optimal”
transport of mass.

To further motivate this choice, we introduce the notion of the
metric derivative of a curve (xt)t⇔0

in a metric space (S, d). Although
in general we cannot make sense of the notion of a tangent vector (or
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the “derivative”) of a curve in a general metric space, it turns out that
we can make sense of its speed.

Definition 5.2(Metric derivative). Let (S, d) be a metric space and
let (xt)t⇔0

be a curve in S. Then, the metric derivative of the curve at
time t is given by

|ẋ|(t) := lim
s↗t, s ↔=t

d(xs, xt)

|s↑ t| ,

provided that the limit exists.

The next theorem shows that our selection principle produces a
well-defined choice of tangent vector vt which can be characterized in
any one of three ways: (1) as the vector field vt with minimal kinetic
energy subject to the constraint (5.2); (2) as the unique choice of vector
field solving (5.2) with length ↘vt↘µt equal to the metric derivative
|µ̇|(t); (3) as a limit of Brenier maps.

However, let us first introduce the concept of the flow map associated
with the ODE (5.1) (or equivalently, with the family of vector fields
(vt)t⇔0

). The map F0,t : Rd ↔ Rd is defined as the map which, given

X0 ↗ Rd, outputs the solution Xt to the ODE (5.1) at time t when
started at X0. In an analogous manner, we can define the flow map
Fs,t : Rd ↔ Rd for any pair of times 0 → s → t. The significance of this
definition is that it shifts our attention away from thinking about the
ODE as describing a single trajectory, and instead views the e”ect of
the ODE as a deformation of the entire space Rd.

Given a pair of probability measures µ, ε ↗ P2(Rd) such that µ
admits a density, we write Tµ↗ω for the Brenier map from µ to ε, and
denote by |µ̇| the metric derivative of a curve in P2(Rd) with respect to
the metric d = W2.

Theorem 5.3. Let (µt)t⇔0
be a regular3 curve of probability measures.

Then, for every family of vector fields (vt)t⇔0
for which (5.2) holds, we

have |µ̇|(t) → ↘vt↘µt for all t ∈ 0.
Conversely, there exists a unique family (vt)t⇔0

such that (5.2) holds
and for which |µ̇|(t) = ↘vt↘µt for every t ∈ 0. This family is such that

3 Here, “regular” can be taken to mean that µt ≃ P2(Rd) and admits a density, and
that the metric derivative |µ̇|(t) exists for all t ↗ 0. The qualifier “for all t ↗ 0” in
the assumptions and conclusions can be replaced by “for almost every t ↗ 0”, and
the assumed existence of a density can also be relaxed.
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vt = lim
h∋0

Tµt↗µt+h ↑ id

h
in L2(µt) , (5.5)

where id is the identity function.

Proof sketch. We start with the first statement. Let (Xt)t⇔0
be the

curve of random variables with X0 ↓ µ0 solving Ẋt = vt(Xt). Since
the continuity equation (5.2) holds by assumption, then Xt ↓ µt for
all t ∈ 0, and in particular, µt+h = (Ft,t+h)#µt. We can upper bound

W2(µt, µt+h) using this suboptimal coupling:

W 2

2
(µt, µt+h)

h2
→ E

[↘Ft,t+h(Xt)↑Xt↘2

h2

]
.

Observe that Ft,t+h(Xt) = Xt + hvt(Xt) + o(h) so that letting h ↔ 0,

we obtain |µ̇|(t) →


E[↘vt(Xt)↘2] = ↘vt↘µt .
Note that the inequality above arises from the use of a suboptimal

coupling. Intuitively, if we take Xt and Xt+h to be optimally coupled
and thereby define vt according to (5.5), then we ought to obtain an
equality. This is in fact the case but we omit the proof.

Finally, by combining the two statements, we obtain that if (vt)t⇔0

is such that (5.2) holds and |µ̇|(t) = ↘vt↘µt , then

0 ↗ argmin
wt:Rd↗Rd

↘vt + wt↘µt s.t. div(µtwt) = 0 .

Moreover, this is a strictly convex problem, so the minimizer is unique.
We obtain that if (vt)t⇔0 and (ut)t⇔0 are two vector fields satisfying the
continuity equation and ↘vt↘µt = ↘ut↘µt = |µ̇|(t), then wt = ut ↑ vt = 0,
as claimed. ↙∝

In the above theorem, we used the fact that µt admits a density in
order to write (5.5), i.e., to assert that the optimal transport map exists.
In order to facilitate the discussion, we restrict to this class of measures
from now on, although we return to the subject of particle methods at
the end of the chapter.

Definition 5.4. P2,ac(Rd) is the class of probability measures over Rd

with finite second moment and which are absolutely continuous (i.e.,
admit a density w.r.t. Lebesgue measure).
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5.2 Elements of Riemannian geometry

Before proceeding further, we provide a brief and informal exposition
to the concepts from Riemannian geometry that we need.

A manifold M is a set which is locally homeomorphic to a Euclidean
space Rd. At each point p ↗ M, we can associate a tangent space TpM,
which is a d-dimensional vector space and represents all possible velocity
vectors of curves passing through p. A Riemannian metric is a choice
of an inner product gp on each tangent space TpM, and once endowed
with a Riemannian metric, the manifold is then called a Riemannian
manifold. To emphasize the Hilbertian structure, we usually simply write
′·, ·∞p for the metric gp. Usually, one imposes additional smoothness
assumptions for these objects in order to properly build up a theory of
di”erential calculus, but here we focus on introducing the basic language
without delving into details. In the case of the Wasserstein space, note
that we have already identified a natural norm for a “tangent vector”
(velocity vector field) vt at µt—the L2 norm,


gµt(vt, vt) = ↘vt↘µt—

indicating the possibility of identifying further Wasserstein analogues
of Riemannian theory.

The next important concept is that of a geodesic. For a curve
(pt)t↑[0,1] in M, let ṗt ↗ TptM denote the tangent vector at time t.

Given p0, p1 ↗ M, geodesics or shortest paths4 between p0 and p1 are
obtained by solving either of the following variational problems,

min
(pt)t≃[0,1]

∫
↘ṗt↘pt dt or min

(pt)t≃[0,1]

∫
↘ṗt↘2pt dt

over curves (pt)t↑[0,1] joining p0 to p1. In the first problem, the objective
functional is the arc length of the curve; in the second problem, the
objective functional is called the energy. The second variational prob-
lem is technically more convenient. Indeed, the arc length is invariant
under reparametrization (i.e., replacing (pt)t↑[0,1] by (pf(t))t↑[0,1] for

any continuous and strictly increasing function f : [0, 1] ↔ [0, 1]), so
solutions to the first variational problem can only be unique up to
reparametrization. In contrast, the second variational problem singles
out a specific parametrization of the optimal curves, namely, curves
with constant speed (i.e., t △↔ ↘ṗt↘pt is constant). Henceforth, we only

4 In Riemannian geometry, it is more customary to define geodesics to only be
locally length-minimizing, but here we always use the word “geodesic” to refer to
shortest paths.
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consider constant-speed geodesics and therefore omit the adjective
“constant-speed”.

The values of the variational problems are d(p0, p1) and d
2(p0, p1)

respectively, where d defines a metric (in the sense of metric spaces) on
M induced by the Riemannian metric ′·, ·∞.

The exponential map5 is a mapping expp : TpM ↔ M which maps a
tangent vector v to p1, where (pt)t↑[0,1] is the constant-speed geodesic
such that p0 = p and ṗ0 = v. The inverse map is called the logarithmic
map logp : M ↔ TpM, which maps q △↔ exp→1

p (q). Actually, in general,
the exponential map may not be defined over all of TpM because a
geodesic, once extended too far, may no longer remain a shortest path
between its endpoints; think, for instance, of extending the geodesic
from the north pole to the south pole of the sphere.

With the idea of a geodesic in hand, we can then define the concepts of
convexity, gradients, and gradient flows, which form the building blocks
of optimization over curved spaces. We say that a set C ⇔ Rd is convex
if for all p0, p1 ↗ C and all t ↗ [0, 1], it holds that (1↑ t) p0 + t p1 ↗ C.
In this definition, t △↔ (1↑ t) p0 + t p1 is the Euclidean geodesic joining
p0 to p1. We can generalize this definition to Riemannian manifolds: we
say that C ⇔ M is geodesically convex if for all p0, p1 ↗ C, all geodesics
joining p0 to p1 also lie in C.

We can also define convexity for functions: given 3 ↗ R, a function
f : M ↔ R is called 3-geodesically convex if

f(pt) → (1↑ t) f(p0) + t f(p1)↑
3 t (1↑ t)

2
d
2(p0, p1) (5.6)

for all t ↗ [0, 1] and all geodesics (pt)t↑[0,1]. Equivalently, we have the
first-order condition

f(q) ∈ f(p) + ′∀f(p), logp(q)∞p +
3

2
d
2(p, q) ≃p, q ↗ M

where ∀f , the Riemannian gradient, is defined so that for all curves
(pt)t⇔0

, ∀f(pt) ↗ TptM satisfies ▷tf(pt) = ′∀f(pt), ṗt∞pt . Equivalently,
we also have the second-order condition

∀2f(p)[v, v] ∈ 3 ↘v↘2p ≃p ↗ M, ≃v ↗ TpM ,

5 The name is motivated by a classical example of a manifold, the set of orthogonal
matrices, in which the tangent space at the identity matrix is the set of anti-
symmetric matrices and the exponential map expI(A) = exp(A) coincides with
the matrix exponential.
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where ∀2f , the Riemannian Hessian, can be defined via ∀2f(p)[v, v] :=
▷2
t f(pt)|t=0, where (pt)t↑[0,1] is the geodesic with p0 = p and ṗ0 = v.

In the next section, we return to P2,ac(Rd) which, despite not being
a bona fide Riemannian manifold, carries enough structure to apply
calculation rules from Riemannian geometry (and indeed, the formidable
book [AGS08] is devoted to the task of placing this endeavor on rigorous
footing). It leads to a toolbox, known as Otto calculus after Felix Otto,
for the study of gradient flows over the space of probability measures.

5.3 The Riemannian structure of Wasserstein space

We are now in a position to define a formal Riemannian structure over
P2(Rd). Recall from Brenier’s theorem (Theorem 1.16) that optimal
transport maps for the quadratic cost are gradients of convex functions.
From (5.5), it follows that optimal velocity vector fields lie in the L2

closure of the space of gradients of functions (which are not necessarily
convex, since we have subtracted the identity map).

Definition 5.5. Let µ ↗ P2,ac(Rd). We define the tangent space to
P2,ac(Rd) at µ to be

TµP2,ac(Rd) := {∀0 | 0 : Rd ↔ R compactly supported, smooth}
L
2
(µ)

where {·}L
2
(µ)

denotes the L2(µ) closure. We endow TµP2,ac(Rd) with
the L2(µ) inner product,

′∀01,∀02∞µ :=

∫
′∀01,∀02∞ dµ .

One can show that requiring vt to be the gradient of a function,
vt = ∀0t, in fact furnishes a fourth characterization of the optimal
vector field vt in Theorem 5.3, thus justifying Definition 5.5, but we do
not prove this here.

Remark 5.6.We pause to describe a common alternative convention:
instead of defining the tangent vector at µt to be the driving velocity
vector field ∀0, we could take it to be the ordinary time derivative ▷tµt

which is given by the continuity equation: ▷tµt = ↑ div(µt∀0) =: ς.
In this case, the tangent space becomes the space of signed measures
with zero total mass, and the metric becomes ′ς,ς⇒∞µ =

∫
′∀0,∀0⇒∞ dµ,
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where 0, 0⇒ solve the equations ς = ↑ div(µ∀0), ς⇒ = ↑ div(µ∀0⇒).
This just amounts to a change of notation: ∀0 △↔ ς is an isometry
between our convention and the alternative convention.

Although our logical development thus far has strongly hinted at a
connection between this Riemannian structure and the theory of optimal
transport, we have not yet stated any result to this e”ect. The following
theorem computes the constant-speed geodesics in the metric defined
above. In the language of Section 5.2, it asserts that the metric induced
by the Riemannian structure we defined over P2,ac(Rd) is indeed the
Wasserstein distance.

Theorem 5.7(Benamou–Brenier). Let µ0, µ1 ↗ P2,ac(Rd). Then,

W 2

2 (µ0, µ1) = inf
∫ 1

0

↘vt↘2µt
dt

∣∣∣ (µt, vt)t↑[0,1] solves (5.2)

. (5.7)

The optimal curve (µt)t↑[0,1] is unique and is described by Xt ↓ µt,
where Xt = (1 ↑ t)X0 + tX1 and (X0, X1) ↓ ϖ̄ ↗ #µ0,µ1

with ϖ̄ being
an optimal coupling.

Proof. Let (µt, vt)t↑[0,1] solve (5.2), and let Ẋt = vt(Xt) with X0 ↓ µ0.
Then, it holds that

W 2

2 (µ0, µ1) → E[↘X0 ↑X1↘2] = E
[

∫
1

0

Ẋt dt

2
]
→

∫
1

0

E[↘Ẋt↘2] dt

=

∫
1

0

↘vt↘2µt
dt .

To study the equality case, note that in the above calculations we
employed two inequalities. The first inequality is an equality if and only
if (X0, X1) are optimally coupled. The second inequality is an equality
if and only if t △↔ Ẋt is constant, which forces Ẋt = X1 ↑ X0 for all
t ↗ [0, 1].

It therefore su!ces to show that there exists a family of vector fields
(vt)t⇔0 such that X1 ↑X0 = vt((1↑ t)X0 + tX1) for all t ↗ [0, 1). Since
(X0, X1) are optimally coupled, there exists a convex function ϕ such
that ∀ϕ(X0) = X1. This implies that (1 ↑ t)X0 + tX1 = ∀ϕt(X0),

where ϕt(x) := (1↑ t)⇑x⇑
2

2
+ tϕ(x). In particular, ϕt is strongly convex

for all t ↗ [0, 1), so ∀ϕt is invertible. We may therefore define vt :=
(∀ϕ↑ id) ◦∀ϕ→1

t
, which satisfies vt((1↑ t)X0 + tX1) = vt(∀ϕt(X0)) =

∀ϕ(X0)↑X0 = X1 ↑X0, as claimed. ↙∝
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Note that we can also write µt = [(1↑ t) id+ t T ]#µ0, where T is the
optimal transport map from µ0 to µ1. Hence, we formulate the following
definition.

Definition 5.8. Let µ0, µ1 ↗ P2,ac(Rd) and let T denote the optimal
transport map from µ0 to µ1. The constant-speed geodesic joining µ0

to µ1 is the curve (µt)t↑[0,1], where

µt = [(1↑ t) id + t T ]#µ0 . (5.8)

This curve is known as the displacement interpolation, McCann’s inter-
polation, or simply the Wasserstein geodesic joining µ0 to µ1.

From (5.8), we can identify logµ(ε) = Tµ↗ω ↑ id, and hence
expµ(∀0) = (id +∀0)#µ. Note that the exponential map is not well-
defined if ∀20 has an eigenvalue smaller than ↑1, since then id+∀0 is
not the gradient of a convex function and thus not an optimal transport
map. This reflects our earlier discussion that the exponential map is not
necessarily defined on the full tangent space of a Riemannian manifold.6

5.4 Otto calculus

The next step is to identify the Wasserstein gradient, which, in turn,
allow us to define Wasserstein gradient flows. After obtaining criteria
for functionals to be geodesically convex, we can then obtain rates of
convergence thereof.

It turns out that the Wasserstein gradient can be expressed in terms
of the first variation.

Definition 5.9(First variation). Let F : P2,ac(Rd) ↔ R be a func-
tional. The first variation of F at µ, denoted ϑF(µ) : Rd ↔ R, is the
function defined by

lim
ε∋0

F(µ+ ως)↑ F(µ)

ω
=

∫
ϑF(µ) dς , (5.9)

for all signed measures ς such that µ+ως ↗ P2,ac(Rd) for all su”ciently
small ω.
6 However, the domain of the exponential map for a Riemannian manifold always
contains a neighborhood of the origin, whereas this is not true for the Wasser-
stein space. This is one of the reasons why the Wasserstein space is not truly a
Riemannian manifold, even an infinite-dimensional one.
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If (µt)t⇔0
is a curve of densities, then we can write the linear ap-

proximation µt+ε J µt + ω ▷tµt for ω small, where ▷tµt denotes the
usual time derivative. We can take ς = ▷tµt, in which case (5.9) reads
▷tF(µt) =

∫
ϑF(µt) ▷tµt. Note also that the first variation is only defined

up to an additive constant, since the perturbations ς always satisfy∫
dς = 0.
We can now define Wasserstein gradients. By definition, given a

curve of measures (µt)t⇔0
with tangent vectors (vt)t⇔0

, the gradient of

a functional F : P2,ac(Rd) ↔ R is the element of TµtP2,ac(Rd) such that
▷tF(µt) = ′∀∀F(µt), vt∞µt . The following proposition shows that this
definition can be written directly in terms of the first variation.

Proposition 5.10. Let F : P2,ac(Rd) ↔ R be a functional with first
variation ϑF. Then, the Wasserstein gradient of F is the vector field
∀∀F(µ) : Rd ↔ Rd defined by

∀∀F(µ) = ∀ϑF(µ) ,

where ∀ on the right-hand side denotes the usual Euclidean gradient.

Proof. Let (µt)t⇔0
be a curve of measures with tangent vectors (vt)t⇔0

.
The fact that vt is the tangent vector at time t means that it solves
the continuity equation (5.2). From the above discussion of the first
variation,

▷tF(µt) =

∫
ϑF(µt) ▷tµt = ↑

∫
ϑF(µt) div(µtvt)

=

∫
′∀ϑF(µt), vt∞ dµt = ′∀ϑF(µt), vt∞µt .

Moreover, since∀ϑF(µt) is the gradient of a function, from Definition 5.5
we have ∀ϑF(µt) ↗ TµtP2,ac(Rd). From this, we conclude that ∀ϑF(µt)
is indeed the Wasserstein gradient of F at µt. ↙∝

To compute the Wasserstein gradient, we therefore have to compute
the first variation and then take its gradient. We illustrate this on three
canonical examples of functionals over P2,ac(Rd).

Example 5.11 (Potential energy). Let F(µ) :=
∫
V dµ for some (po-

tential) function V : Rd ↔ R. Then, ▷tF(µt) =
∫
V ▷tµt and we can

identify ϑF(µ) = V . Thus, ∀∀F(µ) = ∀V .
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Example 5.12 (Internal energy). Let F(µ) :=
∫
U(µ(x)) dx for some

function U : R+ ↔ R. For example, U(x) = x log x gives rise to the
entropy7 functional. Then, ▷tF(µt) =

∫
U ⇒(µt) ▷tµt, so we can identify

ϑF(µ) = U ⇒ ◦µ and therefore ∀∀F(µ) = ∀(U ⇒ ◦µ). In the case of entropy,
ϑF(µ) = logµ+ 1, and ∀∀F(µ) = ∀ logµ.

Example 5.13 (Interaction energy). Take a symmetric kernel K : Rd ↔
R, i.e., K(↑z) = K(z). Set F(µ) := 1

2

∫∫
K(x ↑ y)µ(dx)µ(dy). For

example, we could consider a Gaussian kernel K(x) = exp(↑⇑x⇑2
2ϱ2 ).

Then, ▷tF(µt) =
∫∫

K(x↑y)µt(dy) ▷tµt(dx), so we can identify ϑF(µ) =∫
K(·↑ y)µ(dy), and ∀∀F(µ) =

∫
∀K(·↑ y)µ(dy).

We can now define the Wasserstein gradient flow of a functional F
over P2,ac(Rd). The gradient flow is a curve of measures (µt)t⇔0

such that
the tangent vector to the curve at time t equals ↑∀∀F(µt). Recalling
that the tangent vectors governs the evolution of (µt)t⇔0

through the
continuity equation (5.2), we arrive at the following definition.

Definition 5.14(Wasserstein gradient flow). Let F : P2,ac(Rd) ↔
R be a functional. Then, (µt)t⇔0

is called the Wasserstein gradient flow
of F if it solves the PDE

▷tµt = div
(
µt∀∀F(µt)

)
.

As is well-understood in optimization, gradient flows are natural
dynamics for minimizing the objective functional F because, as discussed
shortly, they always reduce the value of the objective. Wasserstein
gradient flows therefore constitute a principled approach for designing
dynamics over the space of probability measures aimed at minimizing
some criterion, a task which is ubiquitous in applied mathematics,
statistics, and beyond; see Chapter 6.

A quick calculation using the definition of the Wasserstein gradient
flow (µt)t⇔0

of F yields

▷tF(µt) = ′∀∀F(µt), vt∞µt = ↑↘∀∀F(µt)↘2µt
(5.10)

where vt = ↑∀∀F(µt) is the tangent vector at time t. This equality,
which states that the objective functional is dissipated at a rate equal
to the squared norm of the gradient, is a generic fact about gradient

7 This is the negative of the thermodynamic entropy.
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flows. In particular, if F is bounded below, it implies that any limit
point of the gradient flow must be a stationary point of F.

However, we can say more once we have a quantitative lower bound
on the rate of dissipation. The simplest such condition is the Polyak–
#Lojasiewicz (P#L) inequality.

Definition 5.15(Polyak–!Lojasiewicz (P!L) inequality). We say
that F : P2,ac(Rd) ↔ R satisfies a P)L inequality with constant 3 > 0 if
for all µ ↗ P2,ac(Rd),

↘∀∀F(µ)↘2µ ∈ 23 (F(µ)↑ inf F) .

The P)L inequality over Rd is discussed in Appendix A.2; the above
definition adapts this concept to the present setting. From (5.10), the
P)L inequality yields

▷t(F(µt)↑ inf F) → ↑23 (F(µt)↑ inf F) .

Let φ(t) := F(µt) ↑ inf F, so that φ̇(t) → ↑23φ(t). If this inequality
were an equality, then we could solve the di”erential equation to obtain
φ(t) = φ(0) exp(↑23t). In general, when we have a di”erential inequality,
we can bound φ by the solution to the di”erential equation; this is
formalized as Grönwall’s inequality.

Lemma 5.16(Grönwall’s inequality). Let c ↗ R. Let φ : [0, T ] ↔ R
be di!erentiable, satisfying φ̇(t) → cφ(t) for all t ↗ [0, T ]. Then,

φ(t) → φ(0) exp(ct) ≃ t ↗ [0, T ] .

Proof. It holds that

▷t[exp(↑ct)φ(t)] = exp(↑ct) [↑cφ(t) + φ̇(t)] → 0 .

This implies exp(↑ct)φ(t) → exp(↑c · 0)φ(0) = φ(0). ↙∝

On the other hand, applying the same argument as in Lemma A.11,
one can show that F satisfies the P)L inequality with constant 3 as soon
as F is 3-geodesically convex. We deduce the following useful corollary.

Corollary 5.17. Let F : P2,ac(Rd) ↔ R be 3-geodesically convex. Then,
along the Wasserstein gradient flow (µt)t⇔0

for F, it holds

F(µt)↑ inf F → e→2▷t (F(µ0)↑ inf F) .
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5.5 Bures–Wasserstein

It is illuminating to specialize the concepts in the previous section to
the submanifold of Wasserstein space consisting of Gaussian measures.

Definition 5.18. The Bures–Wasserstein space BW(Rd) is the space of
non-degenerate Gaussians on Rd, equipped with the Wasserstein metric.

Concretely, since Gaussians are parameterized by the mean and
covariance matrix, we can think of BW(Rd) ↓= Rd ⇒ Sd

++, where Sd
++ is

cone of symmetric positive definite d⇒ d matrices. Recall from Exam-
ple 1.19 that for any µ0, µ1 ↗ BW(Rd), the optimal transport map T
from µ0 to µ1 is an a!ne map, and the Wasserstein geodesic joining µ0

to µ1 is

µt = [(1↑ t) id + t T ]  
a%ne

#µ0 , t ↗ [0, 1] .

Since the pushforward of a non-degenerate Gaussian by a non-singular
a!ne map is also a non-degenerate Gaussian, the Wasserstein geodesic
from µ0 to µ1 lies entirely in BW(Rd), or in other words:

Proposition 5.19. BW(Rd) ⇔ P2,ac(Rd) is geodesically convex.

Recall that a functional F on a Riemannian manifold M is 3-
geodesically convex if the mapping [0, 1] ↔ M, t △↔ F(pt) is 3-convex for
all geodesics (pt)t↑[0,1] on M. The geodesic convexity of BW(Rd) means

that the intrinsic geodesics of BW(Rd) coincide with the Wasserstein
geodesics, which immediately furnishes the following corollary.

Corollary 5.20. Let F : P2,ac(Rd) ↔ R be an 3-geodesically convex
functional. Then, F is also 3-geodesically convex when viewed as a
functional over BW(Rd).

We make use of this fact in Subsection 6.1.2.
The Riemannian structure of P2,ac(Rd) descends to BW(Rd) and

endows the Bures–Wasserstein space with the structure of a bona
fide finite-dimensional Riemannian manifold. The tangent space at
µ ↗ BW(Rd) is

TµBW(Rd) = {ϱ (Tµ↗ω ↑ id) | ϱ > 0, ε ↗ BW(Rd)}
= {x △↔ Sx+ a | a ↗ Rd, S ↗ Sd} ,
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where Sd is the space of symmetric d ⇒ d matrices. Actually, it is
convenient to reparametrize the tangent space as

TµBW(Rd) = {x △↔ S (x↑m) + a | a ↗ Rd, S ↗ Sd} ,

where m = EX△µ[X].
By definition, the Riemannian structure induced on BW(Rd) is

the restriction of the inner product on TµP2,ac(Rd) to the subspace
TµBW(Rd) ⇔ TµP2,ac(Rd), i.e., the L2(µ) inner product. Using this, we
could compute the BW gradient of a functional F from scratch. However,
since we have already computed the Wasserstein gradient of F at µ to be
the vector field ∀∀F(µ) = ∀ϑF(µ) (Proposition 5.10), a more expedient
approach is to now compute the orthogonal projection of ∀∀F(µ) onto
TµBW(Rd).

Theorem 5.21. Let F : P2,ac(Rd) ↔ R be a functional with first
variation ϑF(µ) at µ. Then, the Bures–Wasserstein gradient of F at
µ ↗ BW(Rd) is the a”ne mapping

x △↔
(∫

∀2ϑF(µ) dµ
)
(x↑m) +

∫
∀ϑF(µ) dµ ,

where m =
∫
xµ(dx) is the mean of µ.

Proof. Recall that ∀∀F(µ) = ∀ϑF(µ) (Proposition 5.10). The BW
gradient at µ is the orthogonal projection of ∀ϑF(µ) onto TµBW(Rd);
by definition, this is the element ∀BWF(µ) ↗ TµBW(Rd) which satisfies

′∀BWF(µ), v∞µ = ′∀ϑF(µ), v∞µ ≃v ↗ TµBW(Rd) . (5.11)

We can write out this condition more explicitly. Since ∀BWF(µ), v ↗
TµBW(Rd), they are of the form

∀BWF(µ) = S (·↑m) + a ,

v = S̃ (·↑m) + ã .

On one hand,

′∀BWF(µ), v∞µ = EX△µ′S (X ↑m) + a, S̃ (X ↑m) + ã∞
= ′S,$ S̃∞+ ′a, ã∞ , (5.12)

where $ is the covariance matrix of µ. On the other hand,
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′∀ϑF(µ), v∞µ = EX△µ′[∀ϑF(µ)](X), S̃ (X ↑m) + ã∞
= ′EX△µ[∀ϑF(µ)(X) (X ↑m)T], S̃∞ (5.13)

+ ′EX△µ∀ϑF(µ)(X), ã∞ . (5.14)

Also, integration by parts yields

EX△µ[∀ϑF(µ)(X) (X ↑m)T] =

∫
∀ϑF(µ) ($$→1 (·↑m))

T
dµ

= ↑
∫

∀ϑF(µ) (∀ logµ)T dµ$

= ↑
∫

∀ϑF(µ) (∀µ)T$

=

∫
∀2ϑF(µ) dµ$ .

Hence,

′EX△µ[∀ϑF(µ)(X) (X ↑m)T], S̃∞ =
∫

∀2ϑF(µ) dµ$, S̃


=

$

∫
∀2ϑF(µ) dµ, S̃



=
∫

∀2ϑF(µ) dµ,$ S̃

. (5.15)

Since (5.11) is supposed to hold for all ã ↗ Rd and all S̃ ↗ Sd, by
comparing (5.12), (5.13), (5.14), and (5.15), we can identify

S =

∫
∀2ϑF(µ) dµ and a =

∫
∀ϑF(µ) dµ .

This completes the derivation. ↙∝

Once we have identified the BW gradient, we can use the Lagrangian
interpretation of the continuity equation to implement the gradient flow
via the dynamics

Ẋt = ↑∀BWF(µt)(Xt)

= ↑
(∫

∀2ϑF(µt) dµt

)
(Xt ↑mt)↑

∫
∀ϑF(µt) dµt ,

where Xt ↓ µt and we denote the mean and covariance of µt by mt

and $t respectively. However, since µt is a Gaussian for each t ∈ 0,
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it is expedient to instead track µt exactly through the mean mt and
covariance $t. They follow the dynamics:

ṁt = EẊt = ↑
∫

∀ϑF(µt) dµt ,

and

$̇t = ▷tE[(Xt ↑mt) (Xt ↑mt)
T]

= E[Ẋt (Xt ↑mt)
T] + E[(Xt ↑mt) Ẋ

T
t ]

= ↑E
[(∫

∀2ϑF(µt) dµt

)
(Xt ↑mt)

+

∫
∀ϑF(µt) dµt


(Xt ↑mt)

T
]
+ · · ·

= ↑
(∫

∀2ϑF(µt) dµt

)
E[(Xt ↑mt) (Xt ↑mt)

T] + · · ·

= ↑
(∫

∀2ϑF(µt) dµt

)
$t ↑ $t

(∫
∀2ϑF(µt) dµt

)
,

where above, A+ · · · is shorthand for the expression A+AT. Finally,
we have arrived at an explicit system of equations.

Theorem 5.22. The BW gradient flow of the functional F is the curve
(µt = N(mt,$t))t⇔0

, where

ṁt = ↑E∀ϑF(µt)(Xt) ,

$̇t = ↑E∀2ϑF(µt)(Xt)$t ↑ $t E∀2ϑF(µt)(Xt) ,
(5.16)

and Xt ↓ µt.

5.6 Gaussian mixtures

Building on top of the ideas introduced in Section 5.5, we now consider
gradient flows over the space of Gaussian mixtures, which is a far richer
space. In fact, as explained below, any measure over Rd can be viewed
as a Gaussian mixture when viewed through the right lens.

Before doing so, we first note that simply constraining the Wasser-
stein gradient flow to lie on the space of Gaussian mixtures, similarly
to how we proceeded in Section 5.5, does not work. The problem is
that we cannot explicitly compute the optimal transport map between
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two Gaussian mixtures, even infinitesimally, and so we cannot identify
the tangent space—unless each Gaussian mixture has one component,
or one dimension. Nevertheless, following [CGT19, DD20], there is a
natural geometric structure we can consider: Wasserstein over Bures–
Wasserstein.

Gaussian mixtures are typically introduced as distributions of the
form


K

k=1
wkN(mk,$k) for mixing weights wk ∈ 0,


K

k=1
wk = 1,

but we can define a Gaussian mixture more broadly as a measure
of the form

∫
N(m,$) ε(dm,d$). The finite Gaussian mixture above

corresponds to a discrete mixing measure ε: ε =


K

k=1
wkϑ(mk,&k)

.
This new, broader definition of a Gaussian mixture, is nearly useless,
since any measure µ can be represented thus: µ =

∫
ϑx µ(dx), where

ϑx = N(x, 0) is a degenerate Gaussian. Also, the representation of a
Gaussian mixture by a mixing measure ε is “overparametrized”, i.e., ε
is highly non-unique: consider the equality N(0, I) =

∫
N(x, ↽I) ε(dx)

where ε = N(0, (1 ↑ ↽)I), valid for any ↽ ↗ [0, 1]. Nevertheless, the
utility of this perspective is that it leads to a natural interpretation: a
mixing measure for a Gaussian mixture is simply a probability measure
over the Bures–Wasserstein space. Let us see how this leads to the
definition of a geometric structure.

The Bures–Wasserstein space is a Riemannian manifold. As noted
earlier, the space BW(Rd) is isometric to the manifold Rd⇒Sd

++ equipped
with a certain Riemannian metric. Hereafter we consider the metric
arising from Otto calculus but any metric, including the Euclidean one
could be used here.

We can consider the space of probability measures (with finite second
moment) over any metric space, and endow it with the 2-Wasserstein
distance. Indeed, recall from Section 1.1 that the optimal transport
problem can be defined with more general costs, so we can take the
squared distance function over the metric space as our cost.

When the metric space in question is a Riemannian manifold, the
results from Sections 5.1–5.4 continue to hold with appropriate modifi-
cations. We do not justify this in detail here, but we invite the reader
to revisit these sections with a fresh perspective. For example, the
ODE (5.1) still makes sense, keeping in mind that a vector field v on a
manifold M is an assignment x △↔ v(x) of a tangent vector v(x) ↗ TxM

at each point x ↗ M. The continuity equation still makes sense in its
weak form (5.3), where ∀ now refers to the Riemannian gradient, and
even (5.2) makes sense if we interpret µt as a density with respect to the
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volume measure, etc. In fact, this geometric setting is the source of some
of the deepest developments in optimal transport theory; see [Vil09b].

Crucially, for our purposes, the formula for the Wasserstein gradient
given in Proposition 5.10 still holds, where we again interpret ∀ as the
Riemannian gradient.

Putting this discussion together, we can derive the Wasserstein
gradient flow which lives in the space (P2(BW(Rd)),W2).

Theorem 5.23. Given ε ↗ P2(BW(Rd)), let Gω denote the correspond-
ing Gaussian mixture Gω =

∫
N(m,$) ε(dm, d$). Let F be a functional

over P2(Rd), and let G be the corresponding functional over P2(BW(Rd))
given by ε △↔ F(Gω). Then, the Wasserstein gradient flow of G is the
curve (εt)t⇔0

described as follows: εt = law(mt,$t), where

ṁt = ↑E∀ϑF(Gωt)(Xt) ,

$̇t = ↑E∀2ϑF(Gωt)(Xt)$t ↑ $t E∀2ϑF(Gωt)(Xt) ,

and Xt ↓ N(mt,$t).

Proof. The first variation of G is computed as follows. If (εt)t↑R is a
curve in P2(BW(Rd)), then ▷tGωt =

∫
N(m,$) ▷tεt(dm, d$). Hence,

▷tG(εt) = ▷tF(Gωt) =

∫
ϑF(Gωt) ▷tGωt

=

∫∫
ϑF(Gωt) dN(m,$) ▷tεt(dm, d$) .

This implies that the first variation is

ϑG(ε) : (m,$) △↔
∫

ϑF(Gω) dN(m,$) .

Based on our identification of BW(Rd) with Rd ⇒ Sd
++, the Rieman-

nian gradient of ϑG(ε), evaluated at (m,$), is the same as the Bures–
Wasserstein gradient of µ △↔

∫
ϑF(Gω) dµ, evaluated at µ = N(m,$),

and we computed the latter in Theorem 5.21. Therefore, the result
follows from Theorem 5.22. ↙∝

5.7 Wasserstein–Fisher–Rao

We now describe a variation of the Wasserstein geometry that is often
useful in applications as illustrated in Chapter 6. This variation, known
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as the Wasserstein–Fisher–Rao (WFR) or Hellinger–Kantorovich dis-
tance, was originally proposed and studied as a model of unbalanced
optimal transport , that is, optimal transport between positive measures
not necessarily containing the same total mass. A notable example is the
cellular trajectory reconstruction application mentioned in the Preface,
in which measures are used to represent snapshots of the cell population
at di”erent times, and for which the total mass indeed changes due to
the birth and death of individual cells.

From the static perspective, WFR defines a variant of the optimal
transport problem, and its various properties such as the cost, metric
properties, duality, etc. can all be investigated in a similar vein as we
did in Chapter 1. We refer to the references [LMS16, KMV16, CPSV18,
LMS18] for detailed investigations in this direction. In this section, we
follow [LCB+22, Appendix H] and focus on the Riemannian structure
of the resulting metric space for the purpose of deriving gradient flows.

Fisher–Rao

Before turning toward Wasserstein–Fisher–Rao, we first describe one of
its key components: the Fisher–Rao metric. This is a metric over the
space M+(Rd) of positive measures over Rd, defined via

d
2

FR(µ0, µ1) :=

∫
(
⊤
µ0 ↑

⊤
µ1)

2 ,

where as usual we identify measures with their Lebesgue densities,
assuming that they exist.8 When µ0, µ1 are probability measures, then
dFR coincides with the statistician’s Hellinger distance.9

Geometrically, dFR is the metric over (say) non-negative densities
obtained by demanding that µ △↔ ⊤

µ be an isometry into the Hilbert
space L2(Rd). Therefore, the geometry of (M+(Rd), dFR) is flat, and we
can obtain a Riemannian structure through the isometry. Namely, if µ̇
denotes the derivative in time of a curve of densities, then the derivative
of the square root is

⊤̇
µ = µ̇/(2

⊤
µ). If we measure the “length” of the

latter in the L2(Rd) norm, we arrive at the induced Riemannian metric

gµ(µ̇, µ̇) := ↘⊤̇µ↘2
L2(Rd)

=

∫
µ̇2

4µ

8 When the densities do not exist, we can define the distance via d2FR(µ0, µ1) :=
∫
(
√

dµ0
dλ ↑

√
dµ1
dλ )2 dς with respect to any common dominating measure ς.

9 This explains the competing naming conventions for the WFR metric; note that
{Wasserstein,Fisher–Rao} →= {Hellinger,Kantorovich}.
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over the tangent space TµM+(Rd) of functions µ̇ : Rd ↔ R.
This geometry is set over the space of all positive measures, including

measures with di”ering amounts of mass, and indeed this geometry
proves useful for modeling physical situations in which change of mass
naturally occurs. A canonical example is when µ represents the concen-
tration of a chemical substance, and the concentration changes over time
due to chemical reactions. This is modelled by the reaction equation
▷tµt = 3tµt, where 3t : Rd ↔ R dictates the rate of reaction at each
point in space. Note that in this notation, 3 = µ̇/µ, which amounts to
a reparametrization of the tangent space. In other words, we can equiv-
alently think of the tangent space as consisting of functions 3 : Rd ↔ R
equipped with the metric

gµ(3,3) := gµ(3µ,3µ) =
1

4

∫
32 dµ . (5.17)

Going forward, we adopt this as our definition of the metric, and hence
we write ↘3↘2µ := gµ(3,3).

We can draw comparisons with the definition of the Wasserstein
geometry: at each measure µ, the “tangent space” TµM+(Rd) at µ is
now defined to be the space of all functions 3 : Rd ↔ R, equipped
with the metric (5.17), and the continuity equation is replaced by the
reaction equation ▷tµt = 3tµt. Compared to the Wasserstein metric, the
Fisher–Rao metric is based on an entirely di”erent intuition: rather than
transportation of mass, the reaction equation now describes spontaneous
creation and destruction of mass.

Despite motivating the Fisher–Rao geometry for problems involving
change of mass, we may also wish to apply it to problems in which we
want to maintain a flow on the space of probability measures. To do so,
we consider the induced geometry over P(Rd). The equation ▷tµt = 3tµt

preserves the total mass if and only if
∫
3t dµt = 0 for all t ∈ 0, so we

restrict the tangent space to TµP(Rd) = {3 : Rd ↔ R |
∫
3 dµ = 0},

equipped with the metric (5.17).10 The preservation of mass ensures
that any mass that is destroyed is also instantly created elsewhere.
To adhere to the lexicon of transport, this phenomenon is sometimes
referred to as teleportation; however, it should be noted that it merely
corresponds to a reweighting.

10 A discrete analogy: endow the space of probability measures on {1, . . . , d} (i.e.,
the simplex in Rd) with a geometry via an isometry p ⇐↔ ⇒

p, where
⇒
p is an

element of the unit sphere S
d↑1. See Exercise 13.
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What about gradient flows? Given a functional F : M+(Rd) ↔
R or F : P(Rd) ↔ R, the gradient by definition satisfies ▷tF(µt) =
′∀FRF(µt),3t∞µt along every curve ▷tµt = 3tµt. By unpacking the
definitions, one checks (see Exercise 14) that

∀FRF(µ) = ϑF(µ) or ∀FRF(µ) = ϑF(µ)↑
∫

ϑF(µ) dµ (5.18)

depending on whether we are working over M+(Rd) or P(Rd) respec-
tively; here, ϑF denotes the first variation of F (Definition 5.9). To
disambiguate the two cases and to emphasize the original motivation
of the WFR metric from unbalanced optimal transport, we refer to
the former case as unbalanced Fisher–Rao and the latter as simply
Fisher–Rao. The Fisher-Rao gradient flow of F follows the tangent
vector ↑∀FRF(µt) at time t and is given by

▷tµt = ↑∀FRF(µt)µt . (5.19)

Wasserstein–Fisher–Rao

We now combine both the Wasserstein and Fisher–Rao geometries
into a hybrid geometry that incorporates both mass transport and
creation/destruction (a.k.a. reweighting, a.k.a. teleportation). The idea
is to simply consider the continuity equation with reaction, ▷tµt +
div(µtvt) = 3tµt. The governing equation is parameterized by a function
3 and a vector field v, which together form a tangent vector. It is then
natural to consider the metric11

↘(3, v)↘2µ =

∫
(32 + ↘v↘2) dµ . (5.20)

However, similarly to our discussion in Section 5.1, this does not uniquely
define a tangent vector because there is too much freedom to choose the
pair (3, v) while maintaining the same evolution of measures (µt)t⇔0

. It
can be shown that the optimal pair (3, v), in the sense of minimizing
the norm (5.20) (c.f. the discussion in Section 5.1) can be characterized
as follows: 3 = 0 and v = ∀0 for some function 0 : Rd ↔ R. Hence,
we can define the WFR tangent space at µ to be

TµM+(Rd) = {(0,∀0) | 0 : Rd ↔ R compact supp., smooth}
L
2
(µ)

11 Strictly speaking, to add the Wasserstein and Fisher–Rao geometries, we should
add a factor of 1

4
in front of the φ2 term, and this is indeed the convention adopted

in some works. We omit this factor for parsimony.
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equipped with the norm

↘(0,∀0)↘2µ :=

∫
(02 + ↘∀0↘2) dµ . (5.21)

This has the pleasing interpretation of “completing” the Wasserstein
metric ↘∀0↘2

L2(µ)
to the full Sobolev norm of 0. Note also that the

governing equation becomes

▷tµt + div(µt∀0t) = 0tµt . (5.22)

As before, we can also restrict to the space of probability measures
P(Rd), in which case we restrict to pairs (0,∀0) such that

∫
0 dµ = 0,

endowed with the same metric (5.21). We refer to WFR over the full
space M+(Rd) as unbalanced WFR, henceforth reserving the use of
WFR for the restriction to P(Rd).

The following theorem computes the WFR gradient.

Theorem 5.24. Let F be a functional over M+(Rd) or P(Rd). Then,
unbalanced WFR gradient of F, denoted ∀∀FRF, is given by

∀∀FRF(µ) =
(
ϑF(µ),∀ϑF(µ)

)

and the WFR gradient by

∀∀FRF(µ) =

ϑF(µ)↑

∫
ϑF(µ) dµ,∀ϑF(µ)


.

Proof. Let (µt)t⇔0
satisfy (5.22). Then, by integration by parts,

▷tF(µt) =

∫
′∀ϑF(µt),∀0t∞ dµt +

∫
ϑF(µt)0t dµt .

In the unbalanced case, we can identify this as

′(ϑF(µ),∀ϑF(µ)), (0t,∀0t)∞µt

according to the definition of the metric (5.21). In the balanced case,
we have

∫
0t dµt = 0, and since the WFR gradient is by definition an

element of the tangent space its first component must also have mean
zero, so the claim follows. ↙∝

The WFR gradient flow is therefore given by

▷tµt = div
(
µt∀ϑF(µt)

)
↑

ϑF(µt)↑

∫
ϑF(µt) dµt


µt . (5.23)
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5.8 Mean-field particle systems

We conclude this chapter by describing Wasserstein and WFR gradient
flows from a particle systems perspective. These arise naturally when
these gradient flows are initialized at finite measures. Indeed, a key
observation is that since both gradient flows can be implemented using
ordinary di”erential equations, if µ0 is a finite measure, µt remains a
finite measure at all times t along these gradient flows.

5.8.1 Particle Wasserstein gradient flow

To illustrate this point, let F be a function over P(Rd) and recall from
Definition 5.14 that the Wasserstein gradient flow of F is the continuity
equation associated with the ODE

Ẋt = ↑∀∀F(µt)(Xt) , (5.24)

where µt denotes the law of Xt. In particular, we only need to describe
these dynamics on the support of µt.

Assume now that the Wasserstein gradient flow is initialized at

µ0 :=
1

N

N∑

j=1

ϑ
X

j
0

,

for a given collection of points X1

0
, . . . , XN

0
↗ Rd. We get that

µt :=
1

N

N∑

j=1

ϑ
X

j
t
,

where for i ↗ [N ],
Ẋi

t = ↑∀∀F(µt)(X
i

t) . (5.25)

These dynamics describe an interacting particle system where particles
(X1

t , . . . , X
N
t ) are subject to dynamics of the form

Ẋi

t = V i

t (X
1

t , . . . , X
N

t ) , i ↗ [N ] . (5.26)

Note that in the case of Wasserstein gradient flows, we further have
that:

(a) each particle Xi
t interacts with the others only through the e”ect of

their distribution µt, and
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(b) these interactions have the same form for all the particles.

Slightly overloading notation, this means that the general dynamics
in (5.26) simplify to

Ẋi

t = V i

t (X
1

t , . . . , X
N

t )
(a)

= V i

t (X
i

t , µt)
(b)

= Vt(X
i

t , µt) , i ↗ [N ] .

These two properties are precisely captured by (5.24): the first one
is obvious and the second one is manifest due to the absence of a
superscript i, which indicates that each particle is subject to the same
vector field. Such a system is said to exhibit mean-field interactions.
Both the Wasserstein and WFR gradient flows are of this form.

Mean-field interaction systems are convenient because it is strictly
equivalent to describe the dynamics of each particle and that of their
distribution. The latter takes the form of a PDE given by the continuity
equation (5.2).

Since the Wasserstein gradient flow only moves particles, the weights
in µ0 do not change over time: if the Wasserstein gradient flow is
initialized at

µ0 :=
N∑

j=1

wj

0
ϑ
X

j
0

, (5.27)

where wj

0
∈ 0, j ↗ [N ] and


N

j=1
wj

0
= 1, then

µt :=
N∑

j=1

wj

0
ϑ
X

j
t
,

where X1
t , . . . , X

N
t evolve according to (5.25). To also impose dynamics

on the weights, we employ instead a WFR gradient flow.

5.8.2 Particle WFR gradient flow

Recall that tangent vector fields for the Wasserstein space are dis-
placement maps of the form ∀0. The Wasserstein–Fisher–Rao (WFR)
geometry reinterprets the tangent space by replacing the governing
continuity equation (5.2) with the reaction-transport equation (5.22).
In particular, it o”er the possibility of traversing the space of probabil-
ity measures, say from initial distribution to target distribution, more
e!ciently by reweighting particles rather than having to move them
across the space in a continuous fashion. When initialized at a finite



5.8 Mean-field particle systems 161

measure of the form (5.27), this e”ect manifests itself in the form of
time-varying weights:

µt :=
N∑

j=1

wj

t
ϑ
X

j
t
,

where wj

t
∈ 0, j ↗ [N ] and


N

j=1
wj

t
= 1.

The particle updates follow the Wasserstein geometry, and the weight
updates follow the Fisher–Rao geometry: for i ↗ [N ],

Ẋi

t = ↑∀ϑF(µt)(X
i

t) ,

ẇi

t = ↑

ϑF(µt)(X

i

t)↑
∫

ϑF(µt) dµt


wi

t .
(5.28)

5.8.3 Gaussian particles

Following Section 5.6, we can also take a finite Gaussian mixture with
mixing measure

εt =
1

K

K∑

k=1

ϑ(mk,&k)

that evolves according to the Wasserstein gradient flow for the functional
ε △↔ G(ε) = F(Gω). By Theorem 5.23, this flow takes the following form:
for each k ↗ [K],

ṁk

t = ↑E∀ϑF(Gωt)(X
k

t ) ,

$̇k

t = ↑E∀2ϑF(Gωt)(X
k

t )$
k

t ↑ $k

t E∀2ϑF(Gωt)(X
k

t ) ,
(5.29)

where Xk
t ↓ N(mk

t ,$
k
t ). Note that this is an interacting system of “par-

ticles” (mk
t ,$

k
t ), but each particle corresponds to a Gaussian component

N(mk
t ,$

k
t ), and the collection thereof to the Gaussian mixture εt. We

therefore refer to N(mk
t ,$

k
t ) as a Gaussian particle.

We emphasize that these dynamics do not implement the Wasserstein
gradient flow for F. Nevertheless, these dynamics are perfectly valid for
minimizing F over the space of K-component Gaussian mixtures.

Recall that in Section 5.6, we equipped the space of probability
measures over BW(Rd)—i.e., the space of mixing measures—with the
Wasserstein geometry. But we could have equally well considered equip-
ping this space with the WFR geometry. The corresponding particle
dynamics evolves the finite Gaussian mixture
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εt =
K∑

k=1

wk

t ϑ(mk
t ,&

k
t )

with changing weights, governed by

ṁk

t = ↑E∀ϑF(Gωt)(X
k

t ) ,

$̇k

t = ↑E∀2ϑF(Gωt)(X
k

t )$
k

t ↑ $k

t E∀2ϑF(Gωt)(X
k

t ) ,

ẇk

t = ↑

EϑF(Gωt)(X

k

t )↑
1

K

K∑

k↔=1

EϑF(Gωt)(X
k
↔

t )

wk

t ,

where Xk
t ↓ N(mk

t ,$
k
t ).

5.8.4 Implementation strategies for gradient flows

For both the Wasserstein gradient flow and the WFR gradient flow,
one needs to compute the Wasserstein gradient ∀∀F

(
µt

)
= ∀ϑF(µt) on

the support of µt. When µt is a discrete measure, this quantity may
not be well-defined. This is the case for example when F is the entropy
functional which is itself not defined on discrete measures, let alone its
Wasserstein gradient. (Note, however, that it may be well-defined when
we use Gaussian particles.)

In practice, the particle implementations discussed here typically
needs to be combined with other tricks (e.g., “kernelization” as in
Subsection 6.1.4). These implementation strategies are described in the
next chapter.

5.9 Discussion

§5.1. Detailed treatments of the metric derivative and the continuity
equation can be found in [AGS08, Vil09b, San15]. In particular, a
rigorous version of Theorem 5.3 can be found in [AGS08, Chapter 8]
or [San15, Chapter 5].
§5.2. There are many excellent textbooks covering Riemannian geome-
try, e.g., [dC92].
§5.3. The Benamou–Brenier formula is often called the “dynamical”
formulation of optimal transport (as opposed to Chapter 1, which
describes the “static” picture). There is also a dynamical version of
the dual problem, in which the dual potentials evolve according to
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the Hamilton–Jacobi equation; see [Vil03, Section 8.1]. The dynamical
version of entropic optimal transport, introduced in Chapter 4, is closely
tied to the well-known Schrödinger bridge problem [Léo14, CGP21].
§5.4. The formal calculation rules described in this section were first laid
out by Otto [Ott01], although some of the ideas were already anticipated
in the earlier work of [Laf88].

The tangent space at a measure µ, together with its metric, can
be viewed as a linearization of the geometric structure at µ. This
gives rise to “linearized optimal transport” which has formed the basis
for numerous applications [WSB+13, BKR14, KR15, SC15, KTOR16,
BGKL17, PT18, CCCC20].

Besides gradient flows, there have also been proposals for adaptations
of other optimization algorithms to the Wasserstein space, e.g., [CLZ20,
WL20, WL22, Tan23, CLTW24].
§5.5. The Bures–Wasserstein geometry is named after Donald Bu-
res [Bur69], who introduced this metric over the PSD cone in his work
on quantum information theory. BW geometry is further explored
in [Mod17, BJL19, HMJG21, vO22]. The connection with the Burer–
Monteiro factorization, as described in Exercise 12, has been explored
in the context of low-rank matrix recovery [LGT22, MLGR23].
§5.6. As mentioned in the main text, the geometry described in this
section was first considered in [CGT19, DD20], although the gradient
flow equations were obtained in [LCB+22].
§5.7. The Fisher–Rao geometry is well-studied in information geome-
try [AN00, AJLS17].
§5.8. In some sources, such as [LMS16], WFR gradient flows are written
in terms of the square root of the weights, i.e., in terms of r :=

⊤
w. This

convention is motivated by the fact that the FR distance corresponds
to the Euclidean distance between the square roots of the weights,
and the WFR distance can therefore be interpreted as a coupling
cost on the space of (r, x) pairs equipped with a “cone” metric (c.f.
Subsection 7.3.3). Since we do not cover this perspective here, we adopt
the more straightforward parametrization in terms of w.

The use of Gaussian particles was first advocated in [LCB+22].

5.10 Exercises

In the following exercises, you may use the following formula for the
Wasserstein gradient of the squared Wasserstein distance:



164 5 Wasserstein gradient flows: theory

[∀∀W 2

2 (·, ε)](µ) = 2 (id↑ Tµ↗ω) . (5.30)

We do not give the full proof of (5.30) here, but it is straightforward to
establish the upper bound (Exercise 3).

1. Let X0 ↓ µ0, where µ0 is the standard Gaussian over R2. For t ∈ 0,
let Xt = RtX0 where Rt is a rotation by 6(t) radians. Compute the
vector field vt such that Ẋt = vt(Xt) and show that div(µ0vt) = 0
for all t ∈ 0 (and hence that Xt ↓ µ0 for all t ∈ 0).

2. Show that the set of product measures over Rd is a geodesically
convex subset of P2(Rd).

3. Suppose that (Xt)t↑R follows the ODE Ẋt = vt(Xt), so that
µt = law(Xt) evolves according to the continuity equation ▷tµt +
div(µtvt) = 0, and suppose that µ0 = µ. Prove that

lim sup
h∋0

W 2

2
(µh, ε)↑W 2

2
(µ0, ε)

h
→ 2 ′id↑ Tµ↗ω , v0∞µ .

Hint: Let X0 ↓ µ and Y ↓ ε be optimally coupled.
4. Let F : P2,ac(Rd) ↔ R ∃ {⇑} be a geodesically convex functional

which is minimized at ↼. Let (µt)t⇔0
denote the Wasserstein gradient

flow for F. By di”erentiating t △↔ 2tF(µt) +W 2

2
(µt,↼), prove

F(µt)↑ inf F → W 2

2
(µ0,↼)

2t
.

5. Let F : P2,ac ↔ R ∃ {⇑} be a functional. We saw that 3-strong
convexity of F implies the Polyak–)Lojasiewicz (P)L) inequality

↘∀∀F(µ)↘2µ ∈ 23 (F(µ)↑ inf F) , ≃µ ↗ P2,ac(Rd) . (5.31)

a) Show that (5.31) implies the quadratic growth inequality

F(µ)↑ inf F ∈ 3

2
W 2

2 (µ,↼) , ≃µ ↗ P2,ac(Rd) , (5.32)

where ↼ is the minimizer of F. This is known as the Otto–Villani
theorem after [OV00].
Hint : Di”erentiate t △↔


▷

2
W2(µt, µ0) +


F(µt)↑ inf F along

the Wasserstein gradient flow of F. You may assume that the
gradient flow converges to ↼, which is a consequence of (5.32) if
F is uniquely minimized.
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b) In general, (5.32) does not imply (5.31). However, prove that
when F is geodesically convex, then (5.32) implies (5.31) but
with 3 replaced by 3/4.

6. Suppose that instead of the PL inequality (5.31), we instead have
the inequality

↘∀∀F(µ)↘pµ ∈ c (F(µ)↑ inf F) , ≃µ ↗ P2,ac(Rd) ,

for some power 0 < p < 2. Show that the Wasserstein gradient flow

dissipates F at a polynomial rate: F(µt)↑ inf F = O(1/t
2

p→1). What
happens in the case p > 2?

7. Consider F : P2,ac(Rd) ↔ R which is the operator norm of the
second moment matrix:

F(µ) :=

∫

xxT µ(dx)

op

.

Prove that F is geodesically convex.
8. a) Compute the Wasserstein gradient of the chi-squared divergence

ς2(· ↘ ↼) at µ. Recall that ς2(µ ↘ ↼) :=
∫

dµ

d⇁
dµ↑ 1. Also, write

down the equation for the Wasserstein gradient flow of the chi-
squared divergence.

b) Prove that when ↼ is log-concave, then ς2(· ↘ ↼) is geodesically
convex.

9. We say that a functional F : P2,ac(Rd) ↔ R ∃ {⇑} is 3-convex
along generalized geodesics if for all triples µ0, µ1, ε ↗ P2,ac(Rd), if
we define the generalized geodesic joining µ0 to µ1 with base ε via

µω

t
:= [(1↑ t)Tµ0↗ω + t Tµ1↗ω ]#ε ,

then it holds:

F(µω

t ) → (1↑ t)F(µ0) + tF(µ1)↑
3 t (1↑ t)

2
W 2

2 (µ0, µ1) .

a) Explain why, if F is 3-convex along generalized geodesics, then
it is 3-strongly convex. Also, explain why being 3-convex along
generalized geodesics is equivalent to the mapping F ◦expω being
3-strongly convex on the tangent space TωP2,ac(Rd).

b) Show that for ↼ B exp(↑V ) where V is 3-strongly convex, then
KL(·↘↼) is 3-convex along generalized geodesics (this strengthens
the convexity result of Corollary 6.4).
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c) Show that for any µ0, µ1, ε ↗ P2,ac(Rd), there exists at least one
generalized geodesic joining µ0 to µ1, along which 1

2
W 2

2
(·, ε) is

1-strongly convex.
Remark : Generalized geodesics play an important role in studying
the geometry of the Wasserstein space. The result of the third
part of this question was used to show existence of the minimizing
movements scheme, which in turn is used to rigorously construct
Wasserstein gradient flows; see [AGS08] for further reading.

10. Compute the Wasserstein geodesic joining two Gaussians.
11. Use (5.30) to show that if (µt)t⇔0

is the Wasserstein gradient flow

of 1

2
W 2

2
(·, ε), then t △↔ µ1→exp(→t) is the constant-speed Wasserstein

geodesic joining µ0 to ε.
12. Let F be a functional over P2(Rd), and consider the functional

(m,U) △↔ F (m,U) := F(N(m,UUT)). Show that the Euclidean
gradient flow for F over Rd ⇒ Rd↓d yields the same dynamics (up
to rescaling time) as the Bures–Wasserstein gradient flow (5.16)
where $ = UUT. Similarly, show that the Euclidean gradient flow of
(m1, . . . ,mK , U1, . . . , UK) △↔ F( 1

K


K

k=1
N(mk, Uk(Uk)T)) recovers

the Gaussian mixture flow (5.29) (up to rescaling time).
Remark : The parametrization $ = UUT is often referred to as
the Burer–Monteiro parametrization, especially when it is used to
constrain $ to have low rank [BM03, BM05].

13. Let p be an element in the interior of the simplex, i.e., a strictly
positive probability distribution over the finite alphabet {1, . . . , d}.
Consider the isometry f : p △↔ ⊤

p that maps p to an element of the
sphere:

⊤
p ↗ S

d→1. Show that under this isometry, a tangent vector
ṗ on the simplex is mapped to v = ṗ/(2

⊤
p) and conclude that ṗ is

tangent to the simplex (i.e.,


i↑[d] ṗi = 0) if and only if v is tangent
to the sphere (i.e.,

⊤
p K v).

14. Verify the expressions (5.18) for the (unbalanced) Fisher–Rao gradi-
ent of a functional.

15. Compute the FR and WFR gradients of the functionals listed in
Examples 5.11, 5.12, and 5.13.

16. Show that the FR gradient flow (5.19) and the WFR gradient
flow (5.23) maintain the property that µt is a probability measure
for all t ∈ 0.

17. Show that (5.28) indeed follows the WFR gradient flow (5.23).



6

Wasserstein gradient flows: applications

In the previous chapter, we developed a Riemannian structure on the
space (P2(Rd),W2) in order to define Wasserstein and WFR gradient
flows. In this chapter, we use these gradient flows as optimization
algorithms over the space of probability measures for various tasks
arising in statistics and machine learning. Each task corresponds to
choosing a specific functional F over this space. In particular, akin to
the notion of convexity in classical optimization (see, e.g., [Bub15]),
the notion of geodesic convexity is instrumental in deriving rates of
convergence.

6.1 Variational inference

As our first application of gradient flow theory, we consider a rich source
of optimization problems over the space of measures arising from the bur-
geoning field of variational inference (VI) [JGJS99, WJ08, BKM17]. In
VI, we posit access to a probability measure ↼ over Rd via an expression
for its density, and our goal is to perform inference. A typical example
arises when ↼ is the posterior distribution from a Bayesian inference
problem, in which case VI is also known as variational Bayes, and it
has gradually emerged as an appealing computational counterpoint to
traditional Markov chain Monte Carlo (MCMC) methods, which we
study in Section 6.2.

The idea of VI is to approximate ↼ with an element of a simpler
class Q of probability measures by solving the optimization problem

q- = argmin
q↑Q

KL(q ↘ ↼) . (VI)
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Although a plethora of variants have been proposed which replace
the KL divergence with other objectives1, the one we present here is
particularly popular in practice. This is because typically we do not
have access directly to ↼ but rather to an unnormalized density ↼̃,
and the unknown normalization constant Z =

∫
↼̃ does not a”ect the

optimization objective in (VI).
This modelling choice also has fortuitous consequences for the con-

vexity of the VI problem over the Wasserstein space, leading to the
development of flow-based algorithms.

6.1.1 Convexity of the VI problem

In order to apply the gradient flow machinery to (VI), we are inexorably
led to our next undertaking: studying the geodesic convexity of the KL
divergence over the Wasserstein space.

Henceforth, we always assume that ↼ admits a density of the form
↼ B exp(↑V ), where V : Rd ↔ R is called the potential function. The
first observation is that the KL divergence decomposes into a sum of
two functionals:

F(µ) := KL(µ ↘ ↼) =
∫

µ log
µ

↼
=

∫
V dµ

  
=:V(µ)

+

∫
µ logµ

  
=:H(µ)

+ const. (6.1)

where V is the potential energy, H is the entropy, and “const.” denotes
an additive constant that does not depend on µ (and hence is irrelevant
for studying properties of the gradient flow).

In Examples 5.11 and 5.12, we have already computed the Wasser-
stein gradients ∀∀V(µ) = ∀V and ∀∀H(µ) = ∀ logµ. Adding these
together, we obtain ∀∀F(µ) = ∀ logµ+∀V = ∀ log(µ/↼). From Defi-
nition 5.14, the Wasserstein gradient flow of F solves

▷tµt = div
(
µt∀ log

µt

↼

)
. (6.2)

Leveraging (6.1), we can study the convexity of the two functionals
V and H separately. The potential energy is straightforward.

Theorem 6.1. Suppose that V : Rd ↔ R is 3-convex on Rd. Then, the
corresponding potential energy functional V defined by V(µ) :=

∫
V dµ

is 3-geodesically convex on P2,ac(Rd).
1 Including the KL divergence with the order of arguments swapped, which is closer
to the statistician’s concept of maximum likelihood.
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Proof. We use the second-order condition from Section 5.2. Namely, let
Xt ↓ µt for t ↗ [0, 1], where (µt)t↑[0,1] is a Wasserstein geodesic; thus,
Xt = (1↑ t)X0 + t T (X0) where T is the optimal transport map from
µ0 to µ1. We compute

∀∀2
V(µ0)[T ↑ id, T ↑ id] = ▷2

t V(µt)
∣∣
t=0

= ▷2

t EV (Xt)
∣∣
t=0

= E′T (X0)↑X0,∀2V (X0) (T (X0)↑X0)∞
∈ 3E[↘T (X0)↑X0↘2]
= 3 ↘T ↑ id↘2µ0

,

where we used the assumption ∀2V ℜ 3I. ↙∝

Next, we show that the entropy H is geodesically convex. For this,
we invoke the change of variables formula.

Lemma 6.2(Change of variables). Let µ be a density on Rd, let
T : Rd ↔ Rd be a di!eomorphism, and let ε := T#µ. Then, ε has
density given by

ε(T (x)) =
µ(x)

| det∀T (x)| .

Recall the mnemonic for memorizing this rule: under the change of
variables y = T (x), one has dy = | det∀T (x)|dx, since the Jacobian
determinant | det∀T (x)| measures the volume distortion of the map T .
The pushforward satisfies, by definition,

∫
ϕ ◦ T dµ =

∫
ϕ dε for all test

functions ϕ. We can write this as
∫

ϕ(T (x))µ(x) dx =

∫
ϕ(y) ε(y) dy

=

∫
ϕ(T (x)) ε(T (x)) | det∀T (x)| dx

and Lemma 6.2 follows. In applications, we do not always know that
optimal transport maps are di”eomorphisms, but nevertheless a variant
of Lemma 6.2 still holds, and we refer to [Vil03, Theorem 4.8] for the
technical details.

The change of variables formula furnishes the quickest proof of
geodesic convexity of H.

Theorem 6.3. The entropy functional H, given by H(µ) :=
∫
µ log µ,

is geodesically convex on P2,ac(Rd).
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Proof. Again let (µt)t↑[0,1] be a Wasserstein geodesic and let Tt :=
(1↑ t) id + t T , so that µt = (Tt)#µ0. Then, by Lemma 6.2 (which we
apply blithely despite not knowing that Tt is a di”eomorphism),

H(µt) =

∫
(logµt) dµt =

∫
log(µt ◦ Tt) dµ0 =

∫
log

µ0

det∀Tt

dµ0

= H(µ0)↑
∫

log det∀Tt dµ0 .

It is a standard exercise to show that ↑ log det is convex over the
positive definite cone, and t △↔ ∀Tt is a!ne; therefore, the composition
t △↔ ↑ log det∀Tt is convex. In turn, it shows that t △↔ H(µt) is convex,
which is what we wanted to show. ↙∝

Corollary 6.4. Let ↼ B exp(↑V ) be a density, where V : Rd ↔ R is
3-convex. Then, the functional F := KL(· ↘ ↼) is 3-geodesically convex
on P2,ac(Rd).

Distributions ↼ B exp(↑V ) for which V is strongly convex are known
as strongly log-concave distributions. Therefore, we have shown that
the KL divergence w.r.t. a (strongly) log-concave measure is (strongly)
geodesically convex.

For (VI), our goal is to minimize the KL divergence over a subset
Q ⇔ P2,ac(Rd). If Q is geodesically convex (see Section 5.2), then we
immediately obtain the following corollary.

Corollary 6.5. Let ↼ B exp(↑V ) be a density on Rd, where V is 3-
convex. Let Q ⇔ P2,ac(Rd) be geodesically convex. Then, KL(· ↘ ↼) is
3-geodesically convex over Q.

In particular, the solution q- to (VI) is unique.

Recall from Lemma A.11 and Section 5.4 that 3-convexity implies a
PL inequality, which in turn implies rapid convergence for the gradient
flow:

Corollary 6.6. Let ↼ B exp(↑V ) be a density on Rd, where V is 3-
convex. Let Q ⇔ P2,ac(Rd) be geodesically convex. Then, the Wasserstein
gradient flow (qt)t⇔0

of KL(· ↘ ↼) constrained to lie in Q satisfies

KL(qt ↘ ↼)↑ KL(q- ↘ ↼) → e→2▷t {KL(q0 ↘ ↼)↑ KL(q- ↘ ↼)} .

In the sequel, our aim is show how the constrained Wasserstein
gradient flow can be implemented in several important cases.
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6.1.2 Gaussian VI

In this section, we study the problem of Gaussian VI , in which the
variational family Q consists of all non-degenerate Gaussian measures
over Rd. This family is simple yet abundantly motivated: if we can
approximate ↼ B exp(↑V ) by a Gaussian N(m,$), then the parameters
(m,$) of the Gaussian are a reasonable guess for the mean and covari-
ance matrix of ↼, which already su!ce to construct credible regions.
The Laplace approximation takes m = 6- and $ = [∀2V (6-)]

→1
where

6- = argminV is the mode of ↼. When ↼ is a Bayesian posterior, the
validity of this approximation can be justified in the large-sample limit
by the Bernstein–von Mises theorem.

To go beyond the Laplace approximation, we can ask for the optimal
Gaussian approximation, which is formulated as the VI problem

q- = argmin
q↑BW(Rd)

KL(q ↘ ↼) (GVI)

where BW(Rd) is the Bures–Wasserstein space introduced in Section 5.5.
Note that if we had considered the KL divergence with the arguments
swapped, q △↔ KL(↼ ↘ q), then the optimal solution is the one that
matches the mean and covariance of ↼, which defeats the purpose of VI
since they are precisely the parameters we are trying to compute.

Following [LCB+22], our approach to solve (GVI) is to follow the
Wasserstein gradient flow constrained to lie in the Bures–Wasserstein
space, see Section 5.5. By Corollary 5.20, BW(Rd) is geodesically convex,
and hence the guarantee of Corollary 6.6 applies. It remains to derive
the form of the BW gradient flow using Theorem 5.21 in order to arrive
at an implementable algorithm.

For the KL divergence F = KL(· ↘ ↼), ∀ϑF(q) = ∀V +∀ log q and
∀2ϑF(q) = ∀2V +∀2 log q. Hence,

∀BWF(q)(x) =
∫

(∀2V +∀2 log q) dq

(x↑mq)

+

∫
∀V dq +

∫
∀ log q dq

  
=0

=
∫

∀2V dq ↑ $→1

q


(x↑mq) +

∫
∀V dq .

By setting the BW gradient equal to zero, we also deduce the first-
order stationarity conditions, which are both necessary and su!cient
by convexity.
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Proposition 6.7. Suppose that ↼ B exp(↑V ), where V is 3-convex for
some 3 > 0. Then, the unique minimizer q- in (GVI) is characterized
by the conditions

∫
∀V dq- = 0 and

∫
∀2V dq- = $→1

q⇁
.

We can now write down the BW gradient flow using Theorem 5.22.
Note that there is a slight simplification since the covariance matrix $t

cancels with the Hessian of the first variation of the entropy.

Theorem 6.8.The BW gradient flow of the functional KL(· ↘↼), where
↼ B exp(↑V ), is the curve (qt = N(mt,$t))t⇔0

, where

ṁt = ↑E∀V (Xt) ,

$̇t = ↑E∀2V (Xt)$t ↑ $t E∀2V (Xt) + 2I ,
(6.3)

and Xt ↓ qt.

To implement the gradient flow, the system of ODEs (6.3) can be
discretized in time. At each iteration t, since we keep track of the
mean mt and covariance $t, the expectations E∀V (Xt) and E∀2V (Xt)
can be approximated via Monte Carlo averages by drawing samples
from qt = N(mt,$t), or via quadrature rules. Furthermore, [DBCS23]
observed that the splitting (6.1) of the KL divergence naturally suggests
a proximal gradient method for (GVI).

We mention two appealing features of the gradient flow perspective.
First, it comes with principled guarantees: by mimicking optimization
proofs over the Bures–Wasserstein space, the papers [LCB+22, DBCS23]
translate Corollary 6.6 into non-asymptotic convergence rates for the
stochastic gradient-based implementations of (6.3). Second, it readily
leads to an extension to variational inference over the richer class
of mixtures of Gaussians by applying either of the Gaussian particle
methods from Subsection 5.8.3; see [LCB+22] for details.

6.1.3 Mean-field VI

Another important variational family is the class Q = P2,ac(R)̸d of
product measures over Rd, in which case the problem (VI) is known as
mean-field VI :

q- = argmin
q↑P2,ac(R)⇐d

KL(q ↘ ↼) . (MFVI)
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This form of VI has its roots in product measure approximations of
spin systems from statistical physics and can be motivated statistically
by the desire to compute integrals of separable test functions φ(x) =

d

i=1
φi(xi) against the posterior.

Since the family of product measures is geodesically convex (Exer-
cise 2 in Chapter 5), Corollary 6.6 once again shows that the constrained
Wasserstein gradient flow converges rapidly. One can also show that
for a functional F, the component of the Wasserstein gradient ∀∀F(µ)
which is tangential to the space of product measures takes the form

x △↔
d∑

i=1

∫
∀∀F(µ)(x)µ(dx1, . . . , dxi→1, dxi+1, . . . , dxd)


ei , (6.4)

where ei is the i-th standard basis vector; see Exercise 2.
Note that the particle approach of Subsection 5.8.1 does not apply

because the Wasserstein gradient of the KL divergence is not defined
for discrete measures. One way to circumvent this issue is via stochastic
dynamics, see Subsection 6.3. In this section, we instead describe the
approach of [JCP24] which, similarly to the previous subsection, is based
on finite-dimensional parameterization. Key to this approach is that for
mean-field VI, the measure q- is not intrinsically high-dimensional due
to the product structure, which allows for e!cient parameterization.

The idea is to parameterize an element q ↗ P2,ac(R)̸d via the Brenier
map T2↗q from the standard Gaussian measure φ. Since both φ and
q are product measures, one sees that the transport map is separable,
i.e., it is of the form T2↗q(x) = (T1(x1), . . . , Td(xd)) for some univariate
(and increasing, by Theorem 1.14) maps Ti : R ↔ R. However, the
class of such maps is still infinite-dimensional and needs to be further
restricted for implementation purposes.

To do so, we take a finite family M of optimal transport maps—
called the dictionary—and take as our eventual family of maps the set
cone(M) of all conic combinations of elements of M:

cone(M) =
∑

T↑M
ϱTT

∣∣∣ ϱ ↗ RM

+


.

We denote T ϑ :=


T↑M ϱTT and φϑ := (T ϑ)#φ. This set is now finite-
dimensional, and in fact is parameterized by the positive orthant RM

+ .
Therefore, we can now optimize the functional ϱ △↔ KL(φϑ ↘ ↼) over RM

+ .

Note that we have replaced our original variational family P2,ac(R)̸d
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with the smaller set cone(M)#φ, but the hope is that for an appropriate
choice of M, the family cone(M)#φ is expressive enough to approxi-

mately capture all of P2,ac(R)̸d. In [JCP24], this is indeed shown to
be the case, e.g., when M consists of increasing and piecewise linear
functions which act on a single coordinate, and that the total size of M
is polynomially bounded in the problem parameters.

We have the following lemma, whose proof we leave as Exercise 4.

Lemma 6.9. Assume that M consists of maps T which are separable,
in the sense that T (x) = (T1(x1), . . . , Td(xd)) for increasing univariate
maps T1, . . . , Td : R ↔ R. Then, cone(M)#φ is geodesically convex.

Moreover, the map (RM
+ , ↘ · ↘Q) ↔ (cone(M)#φ,W2), ϱ △↔ φϑ is an

isometry, where ↘x↘2
Q
:= ′x,Qx∞ and Q is the |M| ⇒ |M| matrix with

entries

QT,T ↔ := ′T, T ⇒∞2 , T, T ⇒ ↗ M . (6.5)

The first statement of Lemma 6.9 shows that under strong log-
concavity for ↼, the problem of minimizing KL(· ↘ ↼) over cone(M)#φ
is a strongly convex problem in the Wasserstein geometry, and in
particular, that Corollary 6.6 applies. The second statement shows that
implementing the Wasserstein gradient flow in this case amounts to
implementing a Euclidean gradient flow up to preconditioning by Q→1.
Indeed, the isometry implies that the Wasserstein gradient flow of the
KL divergence over cone(M)#φ is equivalent to the gradient flow of
ϱ △↔ KL(φϑ ↘↼) over (RM

+ , ↘ ·↘Q), and the gradient operator in the ↘ ·↘Q
norm is simply the Euclidean gradient operator premultiplied by the
matrix Q→1. In particular, we can write down the resulting algorithm
explicitly.

Theorem 6.10.The Wasserstein gradient flow of KL(· ↘ ↼) restricted
to cone(M)

#
φ is given by (φϑ(t))

t⇔0
, where

ϱ̇T = ↑
∑

T ↔↑M
(Q→1)

T,T ↔

∫ 
′∀V ◦ T ϑ, T ⇒∞ ↑ ′(∀T ϑ)→1,∀T ⇒∞

]
dφ

and the matrix Q is given in (6.5).

Proof. Lemma 6.9 implies that the Wasserstein gradient flow is given
by ϱ̇t = ↑Q→1∀ϑ KL(φϑt ↘ ↼). We compute

▷ϑTV(φ
ϑ) = ▷ϑT

∫
V ◦ T ϑ dφ =

∫
′∀V ◦ T ϑ, T ∞ dφ
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and

▷ϑTH(φϑ) = ▷ϑT

∫
φϑ log φϑ

= ↑▷ϑT

∫
log det∀T ϑ dφ

= ↑
∫

′(∀T ϑ)→1,∀T ∞ dφ ,

where we used respectively Lemma 6.2 and a classical result of matrix
calculus to compute the gradient of the log det function. ↙∝

As in the previous subsection, the expectations can be estimated
using Monte Carlo averages.

6.1.4 Stein variational gradient descent

We now ask whether we can minimize the KL divergence over the family
Q of empirical measures—measures of the form 1

N


N

i=1
ϑxi . Unlike the

preceding two subsections, this class is arbitrarily expressive: as N ↔ ⇑,
we can always find a sequence of empirical measures that converges
weakly to ↼, as a consequence of the law of large numbers; see Chapter 2.

Recall from Section 5.8 that the Wasserstein gradient flow of a
functional F over the full Wasserstein space can be represented via

Ẋt = ↑∀∀F(µt)(Xt) , Xt ↓ µt , (6.6)

provided that ∀∀F(µt) makes sense. Note also that unlike the previous
two subsections, we do not have to do anything special to ensure that
µt remains an empirical measure for all t ∈ 0: the gradient flow (6.6)
automatically preserves the space of empirical measures.

If we specialize this to F = KL(· ↘ ↼), then (6.2) leads to

Ẋt = ↑∀ log
µt

↼
(Xt) , Xt ↓ µt . (WGF)

Unfortunately, the expression ∀ log(µt/↼) does not make sense when
µt is an empirical measure.

The next idea that springs to mind is to replace µt in (WGF) with a
smoothed version via a kernel density estimator (KDE). More precisely,
let us initialize N particles X1

0
, . . . , XN

0
, and let k : Rd ↔ R+ be a

symmetric kernel with
∫
k = 1. At time t, we replace µt by the KDE

µ̂t =
1

N


N

i=1
k(·↑Xi

t), which leads to an interacting system of particles:
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Ẋi

t = ↑∀V (Xi

t)↑
[
∀ log

1

N

N∑

j=1

k(·↑Xj

t
)
]
(Xi

t) , i ↗ [N ] .

In the mean-field limit N ↔ ⇑, we expect that 1

N


N

j=1
k(·↑Xj

t
) ↔∫

k(·↑ y)µt(dy) = k 2 µt, where µt = law(Xt), leading to the dynamics

Ẋt = ↑∀V (Xt)↑∀ log(k 2 µt)(Xt)

or equivalently

▷tµt = div
(
µt (∀V +∀ log(k 2 µt))

)
.

However, these dynamics do not necessarily converge to the target
↼ B exp(↑V ). This issue can be fixed by introducing a bandwidth
parameter to the kernel k which tends to zero as N ↔ ⇑, but there is an
alternative which stems from the RKHS literature (recall the discussion
in Subsection 2.8.2) which we describe next. The Stein variational
gradient descent (SVGD) algorithm, due to [LW16], manages to use a
fixed kernel k but still admits ↼ as a stationary solution.

We define the integral operator

Kµ : f △↔
∫

f(y) k(·↑ y)µ(dy) ,

and we follow the dynamics

▷tµt = div

µtKµt∀ log

µt

↼


, (SVGD)

where the integral operator acts on vector fields coordinate-wise. Clearly
these dynamics leave ↼ stationary. Let us calculate the e”ect of the
integral operator above. First,

Kµ∀ log
1

↼
= Kµ∀V =

∫
∀V (y) k(·↑ y)µ(dy) . (6.7)

For the other term, we use integration by parts:

Kµ∀ logµ =

∫ ∀µ(y)

µ(y)
k(·↑ y)µ(dy) =

∫
∀µ(y) k(·↑ y) dy

=

∫
∀k(·↑ y)µ(dy) . (6.8)
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Both (6.7) and (6.8) are expectations w.r.t. µ, so they can be replaced
by empirical averages over N particles. This leads to the algorithm

Ẋi

t = ↑ 1

N

N∑

j=1

[k(Xi

t ↑Xj

t
)∀V (Xj

t
) +∀k(Xi

t ↑Xj

t
)] .

Although SVGD has been an active subject of research, many theoretical
questions regarding its convergence remain open.

Recall that we motivated SVGD with the idea of approximating ↼
by an empirical measure, noting that the class of empirical measures
over N atoms is arbitrarily expressive as N ↔ ⇑. But if our ultimate
goal is fidelity with respect to ↼, we may as well ask if we can directly
output samples from ↼ itself. In the next section, we discuss the problem
of sampling via MCMC methods, which can be viewed as stochastic
implementations of the Wasserstein gradient flow.

6.2 Sampling

One of the most compelling applications of the theory of Wasserstein
gradient flows is to provide a geometric interpretation of the Langevin
di”usion, as put forth in the seminal work of Jordan, Kinderlehrer, and
Otto [JKO98]. As before, let V : Rd ↔ R be a smooth potential with∫
exp(↑V ) < ⇑ and let ↼ denote the probability measure over Rd with

density ↼ B exp(↑V ).
Suppose that we wish to sample from the distribution ↼. In other

words, we want to design an algorithm for producing a random variable
whose law is close to ↼. For example, ↼ could be the posterior distribu-
tion in a Bayesian inference problem, in which case basic downstream
tasks such as constructing credible regions or point estimates are often
intractable in non-conjugate models. Nevertheless, we can usually solve
these tasks approximately and e!ciently, given a subroutine for drawing
approximate samples from the posterior. Beyond the application to
computational Bayesian statistics, sampling also plays an important
role in scientific computing through Monte Carlo integration and for
the design of randomized algorithms.

The predominant approach to this problem, dubbed Markov chain
Monte Carlo (MCMC), is to design a Markov chain whose unique
stationary distribution is, or at least is close to, the target ↼. When
↼ admits a positive and smooth density, as we assume in this section,
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then we can write ↼ B exp(↑V ) without loss of generality (with V =
log(1/↼)+const.). In this case, a canonical MCMC algorithm is obtained
by discretizing the Langevin di!usion, which is the solution to the
stochastic di”erential equation (SDE)

dXt = ↑∀V (Xt) dt+
⊤
2 dBt ,

where (Bt)t⇔0
is a standard Brownian motion. As soon as ∀V is, e.g.,

Lipschitz continuous, there is a unique strong solution to this SDE for
any prescribed initial condition, and its stationary distribution is ↼.

In the next section, we show that when we track the evolution of
the marginal law µt := law(Xt) of the Langevin di”usion, then (µt)t⇔0

follows the Wasserstein gradient flow of the KL divergence KL(· ↘ ↼).
More broadly, this story is the starting point of a fruitful literature
which has blossomed in recent years on an optimization perspective
(i.e., the application of optimization algorithms such as gradient flows)
on the problem of sampling.

6.2.1 The Langevin di”usion as a Wasserstein gradient flow

To spoil the surprise, the fundamental reason why (6.2) admits a stochas-
tic implementation is because we can rewrite

div(µt∀ logµt) = div
(
µt

∀µt

µt

)
= div(∀µt) = (µt

where (f =


d

i=1
▷2

i
f is the Laplacian of f . On the other hand,

second-order parabolic PDEs—the heat equation ▷tµt = (µt being the
most fundamental example—classically describe the evolution in law of
stochastic di”erential equations driven by Brownian motion. The rest
of this subsection aims to make this connection precise.

Using the computation above, we rewrite the Wasserstein gradient
flow of the KL divergence, given in (6.2), as

▷tµt = (µt + div(µt∀V ) . (6.9)

We next compute the marginal evolution of the Langevin di”usion
in order to compare with (6.9). The usual method for doing so is to
use Itô’s formula from stochastic calculus, but we instead proceed more
informally. First, let us condition on X0 = x0, and write the Langevin
di”usion in integral form.
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Xt = x0 ↑
∫

t

0

∀V (Xs) ds+
⊤
2Bt .

Recall also that Bt ↓ N(0, tI). In particular, ↘
∫
t

0
∀V (Xs) ds↘ = OP(t)

and ↘Bt↘ = OP(t1/2) for small t, so the Brownian motion term dominates
and ↘Xt↑x0↘ = OP(t1/2). By duality, to calculate the evolution of µt, it
su!ces to compute the evolution of the expectation of any test function
ϕ : Rd ↔ R. A Taylor expansion yields

ϕ(Xt) = ϕ

x0 ↑

∫
t

0

∀V (Xs) ds+
⊤
2Bt



= ϕ(x0) +

∀ϕ(x0),↑

∫
t

0

∀V (Xs) ds+
⊤
2Bt



+
1

2


∀2ϕ(x0),


↑
∫

t

0

∀V (Xs) ds+
⊤
2Bt

̸2

+OP(t

3/2) .

The first-order term equals

↑t ′∀ϕ(x0),∀V (x0)∞+
⊤
2 ′∀ϕ(x0), Bt∞+OP(t

3/2) .

The second-order term equals

′∀2ϕ(x0)Bt, Bt∞+OP(t
3/2) .

Therefore,

ϕ(Xt) = ϕ(x0)↑ t ′∀ϕ(x0),∀V (x0)∞++
⊤
2 ′∀ϕ(x0), Bt∞

+ ′∀2ϕ(x0)Bt, Bt∞+OP(t
3/2) .

Taking expectations and using E[Bt] = 0, E[BtBT
t ] = tI,

Eϕ(Xt) = ϕ(x0) + t
(
tr∀2ϕ(x0)↑ ′∀ϕ(x0),∀V (x0)∞

)
+OP(t

3/2)

= ϕ(x0) + t
(
(ϕ(x0)↑ ′∀ϕ(x0),∀V (x0)∞

)
+OP(t

3/2) .

Subtracting ϕ(x0), dividing by t, and letting t G 0,

▷tEϕ(Xt)
∣∣
t=0

= (ϕ(x0)↑ ′∀ϕ(x0),∀V (x0)∞ . (6.10)

In the language of Markov semigroup theory, we have computed the
generator of the Langevin di”usion to be the second-order di”erential
operator L, defined by Lϕ := (ϕ↑ ′∀ϕ,∀V ∞.
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More generally, by first conditioning on the value of Xt and using
the Markov property and (6.10), it holds that

▷tEϕ(Xt) = ELϕ(Xt) .

Expressed in terms of the marginal law µt, it reads
∫

ϕ▷tµt =

∫
((ϕ↑ ′∀ϕ,∀V ∞) dµt .

In order to identify an equation for ▷tµt, we must compute the adjoint
(w.r.t. Lebesgue measure) of L. This is accomplished through integration
by parts, which shows that the right-hand side equals

∫
ϕ
(
(µt + div(µt∀V )

)
.

We have established the following theorem.

Theorem 6.11(Fokker–Planck equation). The marginal law µt :=
law(Xt) of the Langevin di!usion with potential V is given by the
solution to the Fokker–Planck equation

▷tµt = (µt + div(µt∀V ) .

Comparing with (6.9), it yields:

Corollary 6.12. The marginal law of the Langevin di!usion with po-
tential V is the Wasserstein gradient flow of KL(· ↘ ↼), where ↼ has
density proportional to exp(↑V ).

As a special case when V = 0, we also obtain the following corollary.

Corollary 6.13. If (µt)t⇔0
is the marginal law of a (rescaled) Brownian

motion (
⊤
2Bt)t⇔0

, then (µt)t⇔0
solves the heat equation ▷tµt = (µt,

and it is the Wasserstein gradient flow of the entropy functional H.

We showed in Corollary 6.6 that the strong log-concavity of ↼ implies
rapid convergence of the Wasserstein gradient flow of the KL divergence.
Therefore, we immediately obtain the following elegant convergence
result for the Langevin di”usion.

Corollary 6.14. Let ↼ be an 3-strongly log-concave measure, and let
(µt)t⇔0

denote the marginal law of the Langevin di!usion with stationary
distribution ↼. Then,

KL(µt ↘ ↼) → e→2▷t
KL(µ0 ↘ ↼) .
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To conclude this section, we take stock of the situation at hand.
Recall that the Wasserstein gradient flow of the KL divergence can be
implemented via the deterministic evolution (WGF). On the other hand,
in this subsection, we started with the Langevin di”usion, which is a
stochastic evolution:

dXt = ↑∀V (Xt) dt+
⊤
2 dBt . (LD)

We showed in Theorem 6.11 that the marginal law µt := law(Xt) evolves
according to the Fokker–Planck equation

▷tµt = (µt + div(µt∀V ) , (FP)

and moreover that this evolution coincides with the Wasserstein gradient
flow of KL(·↘↼). Note that (FP) is strictly coarser than (LD) because (LD)
also includes information about correlations between di”erent time
points of the stochastic process.

Ultimately, we have the equivalence (FP) ∋ (LD) ∋ (WGF) in the
sense that they correspond to the same curve on the space of probability
measures—clearly at the particle level, they are di”erent—but these
three di”ering perspectives provide new avenues for algorithm design
and theoretical study.

6.2.2 Sampling as optimization

The gradient flow perspective on the Langevin di”usion is the starting
point of a flourishing literature on an optimization perspective on sam-
pling. In this subsection, we study the basic properties of KL divergence
minimization as an optimization problem, inspired by the treatment
in [Wib18]. Then, in the next subsection, we provide a glimpse of the
recent impact of this perspective on the theory of log-concave sampling.
We refer to the monograph [Che24] for a detailed exposition.

Let V : Rd ↔ R be a potential which is 3-convex, 3 > 0, and recall
that our goal is to output a sample from the target ↼ B exp(↑V ).
Corollary 6.14 then ensures that the continuous-time Langevin di”usion
converges rapidly to ↼, but in order to obtain algorithmic guarantees
we must discretize the process, and for this we also impose the dual
assumption of smoothness, ∀2V D ,I, to ensure stability.

Error estimates for discretizations of the Langevin di”usion are
by now well-established. Under our assumptions of strong convexity
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and smoothness of V , non-asymptotic convergence guarantees can be
established for the Euler–Maruyama scheme

Xk+1 = Xk ↑ h∀V (Xk) +N(0, 2hI) , k = 0, 1, 2, . . . , (6.11)

which parallels the complexity theory for optimization [Nes18]. Unlike
the situation in optimization, however, the discretization (6.11) is asymp-
totically biased: the stationary distribution of the Markov chain (6.11)
does not equal the target ↼. This leads to slower rates of convergence,
as the step size h must be chosen small to mitigate the bias. We now
explain how an optimization perspective sheds light on the source of
asymptotic bias and suggests a proximal scheme for removing it.

As in (6.1), we write the KL divergence as the sum of the potential
energy and the entropy,

KL(µ ↘ ↼) =
∫

V dµ+

∫
µ logµ+ const. = V(µ) +H(µ) + const.

The problem of sampling from ↼ is cast as the minimization of this
objective functional over P2,ac(Rd), and we have already begun studying
its properties. Namely:

• The potential energy is strongly convex and smooth, 3 → ∀∀2
V → ,.

We proved the lower bound in Theorem 6.1, and the upper bound
follows by a similar computation.

• The entropy is convex, 0 → ∀∀2
H. We proved this as Theorem 6.3.

However, the entropy is non-smooth.2

The situation at hand is one that is commonly encountered in optimiza-
tion, known as composite optimization: minimize the sum f + g, where
f is (strongly) convex and smooth, and g is convex but non-smooth.
The prototypical example is the ⇁1-penalized least squares objective (or
LASSO), 6 △↔ ↘y↑X6↘2+ϱ ↘6↘1. In optimization theory, the canonical
algorithm designed for such problems is the proximal gradient method

xk+1 = proxhg(xk ↑ h∀f(xk)) , (6.12)

where

proxhg(y) := argmin
x↑Rd


hg(x) +

1

2
↘y ↑ x↘2


. (6.13)

2 One can in fact show that ⇑⇑2
H(µ)[v, v] =

∫
↘⇑v ↑ I↘2HS dµ and there is no

constant C > 0 such that ⇑⇑2
H(µ)[v, v] ⇓ C ↘v↘2µ for all v ≃ TµP2,ac(Rd).
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When g has a simple structure, such as the ⇁1 norm, then the proximal
mapping sometimes admits a closed-form solution.

The proximal gradient algorithm is unbiased, meaning that its only
fixed points are minimizers of f + g. Moreover, one can show that the
iteration (6.12) converges at the same rate that gradient descent would
for a convex and smooth objective, despite the non-smoothness of g.

More broadly, we have introduced two discretization schemes: gradi-
ent descent, and the proximal step (6.13). Each has its relative merits.
Whereas gradient descent is cheaper to implement (especially for func-
tions which do not have a simple structure like ↘ · ↘1), the proximal
scheme converges even without smoothness. Therefore, we are motivated
to apply one discretization method to f , and the other to g; this is
known as a splitting scheme. Not all splitting schemes are unbiased,
however, and the combination of gradient descent and the proximal
map is an especially auspicious match.3

With these principles from optimization in mind, let us now consider
the situation for sampling. The discretization (6.11) can be viewed as
the splitting scheme

Xk+1/2 = Xk ↑ h∀V (Xk) ,

Xk+1 = Xk+1/2 +N(0, 2hI) .

The two steps correspond, respectively, to gradient descent4 for V and
the gradient flow of H; the latter statement is Corollary 6.13. The
combination of gradient descent and gradient flow does not produce an
unbiased splitting scheme.

The intuition from optimization suggests to replace the gradient flow
for H with the proximal map for H. Generalizing the definition (6.13)
to the Wasserstein space, we arrive at

proxhH(µ) := argmin
ω↑P2,ac(Rd)


hH(ε) +

1

2
W 2

2 (µ, ε)

. (6.14)

(In fact, the proximal operator on the Wasserstein space was the device
through which [JKO98] first made precise the Wasserstein gradient flow
interpretation of the Langevin di”usion in Subsection 6.2.1.) The result-
ing proximal gradient algorithm on the Wasserstein space can indeed

3 In numerical analysis, these two discretizations are so-called “adjoints” to each
other, see [Wib18, Appendix B].

4 Check that if µk = law(Xk), µk+1/2 = law(Xk+1/2), and h ⇓ 1/↼, then µk+1/2 =
expµk

(↑h⇑⇑V(µk)), which is the Riemannian analogue of gradient descent.
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be shown to converge rapidly to ↼ [SKL20]. However, the proximal
map (6.14) is in general intractable, so the proximal gradient algorithm
is merely wishful thinking.

Actually, it is not just proxhH that is intractable; gradient descent
on H is also impractical because it requires knowing the entire prob-
ability density (this is the motivation for our discussion of SVGD in
Section 6.1.4). It seems that the only operation we can reasonably
implement for minimizing H is the gradient flow, due to the fortuitous
link with Brownian motion. This can be considered both as a blessing
and curse. The blessing is that the routine we can implement—gradient
flow—succeeds despite the non-smoothness of H, which explains why
sampling is possible at all. The curse, however, is that the gradient
flow is “mismatched” with our discretization for V, and hence the
discretization (6.11) incurs asymptotic bias.

This is perhaps representative of the subject as a whole: although
optimization theory suggests a huge number of algorithmic paradigms
which we hope to port over to the world of sampling, the execution of
these ideas requires care. In the next subsection, we survey a number
of examples in which this philosophy has been successfully carried out,
including a surprising “proximal” algorithm for sampling.

6.2.3 Some recent developments

Algorithms

Open any modern book on convex optimization to find a formidable
arsenal of methods: coordinate descent, gradient descent, interior point,
mirror descent, Newton’s method, Nesterov’s fast gradient method,
proximal gradient, stochastic gradient descent, etc. In recent years, a
substantial research e”ort has been devoted to developing sampling
analogues of all of these methods and more, of which we describe only
a select few.

Our first example is the aforementioned proximal algorithm for
sampling. Since it is easier to motivate a posteriori, we begin by defining
the algorithm. Augment the target distribution ↼ to form a distribution
ω over Rd ⇒ Rd with density given by

ω(x, y) B exp

↑V (x)↑ 1

2h
↘y ↑ x↘2


.

The proximal sampler , introduced in [LST21], applies Gibbs sampling
to the new target ω. Explicitly, repeat the following steps:
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1. Given X = x, resample Y ↓ ωY |X=x = N(x, hI).
2. Given Y = y, resample X ↓ ωX|Y=y, where the conditional distri-

bution ωX|Y=y, called the restricted Gaussian oracle (RGO), has
density ωX|Y=y(x) B exp(↑V (x)↑ 1

2h
↘y ↑ x↘2).

A few simple properties can be verified immediately. First, the X-
marginal of ω is the original target ↼ B exp(↑V ), so it su!ces to sample
from the augmented target. Second, the proximal sampler is unbiased—
its stationary distribution is ω—because Gibbs sampling is so. As stated,
however, it is still an idealized algorithm, since it is unclear how to
implement step two. But notice the following analogy: if minimizing V
(optimization) corresponds to sampling from ↼ B exp(↑V ) (sampling),
then computing the proximal map (6.13) for V corresponds to sampling
from ωX|Y=y; it is in this sense that the proximal sampler resembles a
“proximal” algorithm for sampling.

But perhaps the most convincing justification is based on the adage
“if it looks like a duck. . . ”: the convergence analyses in [LST21, CCSW22]
show that the convergence rates for the proximal sampler exactly repli-
cate the rates for the proximal point method from convex optimization.
Through careful implementations of the RGO, the proximal sampler
has played an essential role in extending sampling guarantees to both
non-log-concave and non-log-smooth settings [FYC23, AC24].

Our next example is the adaptation of mirror descent. Recall that
the mirror descent algorithm for minimizing V , originally introduced
in [NY83] for optimization w.r.t. non-Euclidean norms, starts by choos-
ing a strictly convex function (the “mirror map”) φ : Rd ↔ R ∃ {⇑}
and iterating

∀φ(xk+1) = ∀φ(xk)↑ h∀V (xk) , k = 0, 1, 2, . . . .

It turns out that the “mirror” analogue of (LD) is the so-called mirror
Langevin di!usion [ZPFP20, CLGL+20b]:

Yt := ∀φ(Xt) , dYt = ↑∀V (Xt) dt+

2∀2φ(Xt) dBt .

The mirror Langevin di”usion can also be suitably interpreted as a
Wasserstein “mirror” flow of the KL divergence.5 An important special
case is obtained when V is strictly convex and we take the mirror

5 More specifically, it is the gradient flow of KL(·↘↽) with respect to the Wasserstein
geometry induced by the Hessian metric induced by ⇀.
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map φ = V , leading to the Newton–Langevin di!usion—the sampling
analogue of Newton’s method:

Yt := ∀V (Xt) , dYt = ↑Yt dt+

2∀2V (Xt) dBt .

The Newton–Langevin di”usion inherits some appealing properties of
Newton’s method, such as its a!ne invariance. However, discretization of
the Newton–Langevin di”usion (or of the more general mirror Langevin
di”usion) is currently less well-understood than for (LD).

Finally, our last example is the adaptation of Nesterov’s accelerated
gradient descent [Nes83], which is an optimal first-order method for
convex smooth minimization. The corresponding SDE system, called
the underdamped (or kinetic) Langevin di!usion, dates back at least
to [Kol34] and is given by

dXt = Pt dt , dPt = ↑∀V (Xt) dt↑ ϖPt dt+

2ϖ dBt .

Here, P represents a momentum variable, and ϖ > 0 is the “friction”
parameter. This di”usion has already formed the basis for numerous
state-of-the-art guarantees for log-concave sampling. But in the world
of optimization, Nesterov’s method is best known for improving the
complexity of strongly convex and smooth minimization to O(

⊤
.),

where . is the “condition number”. This remarkable result, which saves
a factor of

⊤
. over the basic rate for gradient descent, has been dubbed

the acceleration phenomenon, and it remains an intriguing open question
to establish such a phenomenon for sampling.

Complexity

Since the work of [NY83], a major goal of optimization research has
been to precisely characterize the minimax complexity of optimization
over various function classes and oracle models. With the advent of
this mindset to MCMC, it became natural to do the same for sampling,
starting with the non-asymptotic upper bounds in works such as [Dal17,
DM17, CB18, DMM19]. The similarities are striking: both fields consider
similar choices for the function classes (e.g., strongly convex and smooth
functions) and for the oracle models. This connection also motivated
the search for oracle lower bounds which could certify the optimality of
our existing algorithms. This has proven to be a challenging problem,
with some modest progress made recently.

Another example of the transfer of ideas is the development of
a sampling analogue of “approximate first-order stationarity” which
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provides an alternative approach to the quantitative study of sampling
in general non-log-concave settings [BCE+22].

Despite rapid progress in this direction, there are still many funda-
mental unresolved questions regarding the complexity of log-concave
sampling. We refer to the monograph [Che24] for an introduction to
this active field and for further references.

6.3 Interacting particle systems

The SDE systems we encountered in Section 6.2 all involve evolving
a single particle (possibly over an expanded state space) at a time.
More generally, we can consider an interacting system of particles,
either deterministic or stochastic. This is highly relevant because as
we discussed in Subsection 5.8.1, Wasserstein gradient flows initialized
at discrete measures can be implemented using mean-field interacting
particle systems. Indeed, recall that if we initialize the Wasserstein
gradient flow (6.6) at

µN

0 =
1

N

N∑

j=1

ϑ
X

j
0

,

then µt is given by the empirical measure

µN

t =
1

N

N∑

j=1

ϑ
X

j
t
,

where

Ẋi

t = ↑∀∀F
( 1

N

N∑

j=1

ϑ
X

j
t

)
, i ↗ [N ] . (6.15)

This is true whenever the Wasserstein gradient is defined at the discrete
measure µN

t , and in this case, it is generally expected (and can be
rigorously established under assumptions on F) that as N ↔ ⇑ and
µN
0

↔ µ0 ↗ P2,ac(Rd), the dynamics (6.15) converges to (6.6) initialized
at µ0. Using additional tools, one may also show that if µ0 ↗ P2,ac(Rd)
then µt ↗ P2,ac(Rd) for all t ∈ 0.
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6.3.1 McKean–Vlasov equations

In this subsection, we consider other examples of interacting systems
arising from Wasserstein gradient flows. Recall that in Section 5.4, we
gave three fundamental examples of functionals over the Wasserstein
space: potential energy, internal energy, and interaction energy. What if
we consider the sum of the three?

F(µ) :=

∫
V dµ+

∫∫
W (x↑ y)µ(dx)µ(dy) +

◁2

2

∫
µ logµ , (6.16)

where W is even. By using the trick at the beginning of Subsection 6.2.1
and by computing Wasserstein gradients, convince yourself of the fol-
lowing theorem.

Theorem 6.15.The Wasserstein gradient flow (µt)t⇔0
of (6.16) can

be described as follows: µt = law(Xt), where (Xt)t⇔0
solves the SDE

dXt = ↑∀V (Xt) dt↑
∫

∀W (Xt ↑ y)µt(dy) dt+ ◁ dBt . (6.17)

Note that the coe!cients of the SDE system (6.17) depend on
the law of the process. Such systems are called McKean–Vlasov pro-
cesses [McK66]. To approximate (6.17) by an interacting particle system,
we replace the integral over µt with an average over particles:

dXi

t = ↑∀V (Xi

t) dt↑
1

N ↑ 1

∑

j↑[N ]\i

∀W (Xi

t ↑Xj

t
) dt+ ◁ dBi

t , (6.18)

where {Bi}
i↑[N ]

is a collection of independent Brownian motions. A
natural question that arises is to quantify how close the finite-particle
system (6.18) is to its mean-field limit (6.17). This problem is addressed
by the mathematical theory of propagation of chaos [Szn91].

More generally, suppose that we have the general entropically-
regularized functional

F(µ) := F0(µ) +
◁2

2

∫
µ logµ . (6.19)

One can show that the Wasserstein gradient flow (µt)t⇔0
of (6.19) can

be described as the marginal law µt = law(Xt) of the SDE system

dXt = ↑∀∀F0(µt)(Xt) dt+ ◁ dBt .
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This system is known as the mean-field (or interacting) Langevin dy-
namics [CRW23, SNW23]. The corresponding finite-particle system,

dXi

t = ↑∀∀F0

( 1

N

N∑

j=1

ϑ
X

j
t

)
(Xi

t) dt+ ◁ dBi

t , i ↗ [N ] ,

is actually the Langevin di”usion corresponding to the target

↼̂N (x1, . . . , xN ) B exp

↑2N

◁2
F0

( 1

N

N∑

j=1

ϑ
x
j
t

)
.

The complexity of sampling from the minimizers of the functionals (6.16)
and (6.19) was studied in [KZC+24].

We conclude this section with an application to the mean-field VI
problem introduced in Subsection 6.1.3. By writing down the stochastic
implementation of the Wasserstein gradient flow therein, [Lac23] arrived
at the McKean–Vlasov SDE

dXt = ↑
∫

∀1W (Xt, y)µt(dy) dt+
⊤
2 dBt ,

where µt = law(Xt), ∀1 denotes the gradient taken with respect to the
first argument, and

W (x, y) :=
d∑

i=1

V (y1, . . . , yi→1, xi, yi+1, . . . , yd) .

When this SDE is initialized at X0 ↓ µ0 which is a product measure,
µt remains a product measure for all t ∈ 0 so that (µt)t⇔0

is indeed the
constrained Wasserstein gradient flow.

The corresponding interacting particle system is given by

dXj

t
= ↑ 1

N ↑ 1

∑

j↔↑[N ]\i

∀1W (Xj

t
, Xj

↔

t
) dt+

⊤
2 dBj

t
, j ↗ [N ] .

One then expects that if we take N su!ciently large and run the particle
system, then the law of (say) the first particle X1

t will be close to the
mean-field minimizer q-.
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6.3.2 Birth-death sampling

We return to the sampling problem from Section 6.2. Instead of following
the Wasserstein gradient flow of the KL divergence, what if we follow
the WFR gradient flow introduced in Section 5.7? The fundamental
di”erence between these approaches is that the Langevin di”usion is
a local algorithm and hence struggles to jump between well-separated
modes. This manifests itself in the convergence rate in Corollary 6.14,
which depends on the log-Sobolev constant of the target ↼. On the other
hand, the “teleportation” e”ect of the Fisher–Rao component gives rise
to a universal exponential convergence rate [DEP23].

The main challenge is to implement the flow. Recall that a particle
implementation for the WFR gradient flow was presented in Subsec-
tion 5.8.2, but it does not apply to the choice of functional F = KL(·↘↼)
since it assumed there that the first variation ϑF can be evaluated at
an empirical measure. An implementation was provided in [LLN19b]
under the name of “birth-death” sampling, which we now describe.

The implementation is based on an interacting system of N particles,
which at time t are denoted X1

t , . . . , X
N
t . The approach of Subsec-

tion 5.8.2 would associate with each particle Xi
t a weight wi

t which
evolves via ẇi

t = ↑3t(Xi
t)w

i
t, where 3t(x) := ϑF(µt)(x)↑

∫
ϑF(µt) dµt.

Here, 3t(x) represents an exponential rate of decay/growth (according
to 3t(x) > 0 or 3t(x) < 0) of the density at x. We instead replace the
use of weights with a procedure that “kills” or “duplicates” the particle
after a random wait time. More precisely, associate with each particle
Xi

t an independent clock which rings in the next instantaneous time
interval [t, t + dt] with probability 3t(Xi

t) dt. Whenever one of these
clock rings—corresponding to, say, Xi

t—we either remove Xi
t from the

system (if 3t(Xi
t) > 0) or we duplicate Xi

t (if 3t(Xi
t) < 0). To keep the

total number of particles constant, in the former (resp. latter) case we
randomly duplicate (resp. kill) one of the other particles.

The birth-death process implements the Fisher–Rao component of
the WFR gradient flow. To implement the Wasserstein component,
we stipulate that each particle evolves independently according to a
Langevin di”usion between birth-death events.

The preceding discussion is ambiguous: what is the measure µt?
Ideally it should be the marginal law of Xi

t (which is independent of
i due to exchangeability), but we do not have access to this marginal
law for implementation purposes. The methodology from the previous
subsection suggests to replace µt by the empirical measure µN

t
:=
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1

N


N

i=1
ϑ
Xi

t
over the particles, but for the KL divergence the first

variation is not well-defined at such a measure. Therefore, as suggested
in [LLN19b], we resort to a kernel density estimator, replacing µt with
k 2 µN

t for an appropriate kernel function k : Rd ↔ R. This leads to the
following algorithm.

1. Associate with each particle Xi
t an independent clock that rings

with instantaneous rate 3̂t(Xi
t), where

3̂t(x) := log
k 2 µN

t

↼
(x)↑ 1

N

N∑

j=1

log
k 2 µN

t

↼
(Xj

t
) .

Note that when ↼ is given as an unnormalized density ↼ B exp(↑V ),
the computation of 3̂t does not require knowledge of the normaliza-
tion constant for ↼.

2. When one of the clock rings, kill or duplicate the corresponding par-
ticle Xi

t , and randomly duplicate or kill another particle, according
to 3̂t(Xi

t) > 0 or 3̂t(Xi
t) < 0.

3. Between the rings of the clocks, each particle evolves according to a
Langevin di”usion:

dXi

t = ↑∀V (Xi

t) dt+
⊤
2 dBi

t , i ↗ [N ] ,

where {Bi}
i↑[N ]

are i.i.d. Brownian motions.

As shown in [LLN19b], the marginal laws of this process converge to
the WFR gradient flow as N ↔ ⇑ and the bandwidth of the kernel
tends to zero appropriately.

6.4 Non-parametric maximum likelihood

We have just seen that sampling can be viewed as optimization over
the space of probability measures using the perspective originally put
forward in [JKO98] and [Wib18]. In this section we study a classical
statistical problem that is readily of this nature.

Consider a Gaussian mixture on Rd with density given by:

G2 =

∫

Rd
φ(·↑ y) φ(dy) = φ 2 φ ,

where φ(z) = (2↼)→d/2 exp(↑↘z↘2/2) denotes the density of the standard
isotropic Gaussian distribution N(0, I) and φ is the mixing distribution
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of interest. Note that in comparison with the general Gaussian mixtures
introduced in Section 5.6, we constrain all the Gaussian components to
have identity covariance matrix for simplicity.

Let φ- be an unknown mixing distribution on Rd. Given n indepen-
dent observations X1, . . . , Xn drawn from G2⇁ , our goal is to estimate
φ-. This is a Gaussian deconvolution problem, for which the rates of con-
vergence are known to be very slow [RNW19]. When φ- is assumed to be
smooth, a classical approach that leads to optimal rates of convergence
uses kernel smoothing [Fan91]. In this section, we explore a di”erent ap-
proach called non-parametric maximum likelihood estimation following
the paper [YWR24].

The negative log-likelihood for this problem is defined as:

⇁n(φ) := ↑ 1

n

n∑

i=1

logG2(Xi) = ↑ 1

n

n∑

i=1

log φ 2 φ(Xi) .

The non-parametric maximum likelihood estimator, or NPMLE, is
defined as any minimizer of ⇁n:

φ̂ = argmin
2↑P(Rd)

⇁n(φ) . (6.20)

Before turning to the computational aspects of this problem, we first
note a surprising connection with entropic optimal transport, highlighted
in [RNW18]. Writing µn for the empirical measure 1

n


n

i=1
ϑXi , it turns

out that the NPMLE satisfies

φ̂ = argmin
2↑P(Rd)

S2ϱ2(µn, φ) , (6.21)

where S2ϱ2(·, ·) is the entropic optimal transport cost with regularization
parameter ω = 2◁2. In other words, the NPMLE precisely minimizes
the entropic OT cost to the data µn.

This connection arises from duality. A version of the Gibbs variational
principle (see Proposition 4.2) tailored to probability measures rather
than general positive measures implies that for suitable h : Rd ↔ R, it
holds

log

∫
exp(h) dQ = sup

P↑P(Rd)

∫
h dP ↑ KL(P ↘Q)


.

This result can be found for example as Proposition 1.4.2 in [DE97]. We
can use this expression to obtain a variational formulation of logG2(Xi):
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↑ logG2(Xi) = (2↼)d/2 ↑ log

∫
exp


↑↘Xi ↑ y↘2

2◁2


φ(dy)

= (2↼)d/2 + inf
Pi↑P(Rd)

∫
1

2◁2
↘Xi ↑ y↘2 Pi(dy) + KL(Pi ↘ φ) .

This shows that the optimization problem in (6.20) is equivalent to

φ̂ = argmin
2↑P(Rd)

inf
P1,...,Pn↑P(Rd)

1

n

n∑

i=1

[∫
↘Xi ↑ y↘2 Pi(dy) + 2◁2

KL(Pi ↘ φ)
]
.

The minimization problem over P1, . . . , Pn can be equivalently rewritten
as a minimization over measures of the form ϖ = 1

n


n

i=1
ϑXi ⇓Pi, which

are precisely joint measures whose first marginal is µn. It can be shown
that the second marginal can be taken to be φ, which leads to the
representation in (6.21).

The convex infinite-dimensional optimization problem (6.20) has
primarily been studied in the case where d = 1 where it can be
shown that the solution is unique and supported on a small number of
atoms [Lin83, PW24]. Using these properties, various computational
schemes have been proposed by restricting the set of measures to ones
with a small support. In higher dimensions, much less is known.

The definition (6.20) of the NPMLE is precisely an optimization
over probability measures and in the rest of this section we describe
algorithms based on Wasserstein gradient flows to solve it.

We first compute the Wasserstein gradient. To that end, we need
the first variation of ⇁n. Fix ω > 0 and 4 be a perturbation such that
φ+ ω4 is a probability measure and observe that

⇁n(φ+ ω4) = ↑ 1

n

n∑

i=1

log(φ 2 φ+ ωφ 2 4)(Xi)

= ↑ 1

n

n∑

i=1

log(φ 2 φ)(Xi)↑
ω

n

n∑

i=1

φ 2 4(Xi)

φ 2 φ(Xi)
+O(ω2) .

Hence

lim
ε∋0

⇁n(φ+ ω4)↑ ⇁n(φ)

ω
= ↑ 1

n

n∑

i=1

φ 2 4(Xi)

φ 2 φ(Xi)
= ↑ 1

n

n∑

i=1

∫
φ(·↑Xi) d4

φ 2 φ(Xi)
,

and we readily identify that the first variation is given by



194 6 Wasserstein gradient flows: applications

ϑ⇁n(φ) = ↑ 1

n

n∑

i=1

φ(·↑Xi)

φ 2 φ(Xi)
.

The Wasserstein gradient flow of ⇁n correspond to the following ODE:

6̇t = ↑∀∀⇁n(φt)(6t)

=
1

n

n∑

i=1

∀φ(6t ↑Xi)

φ 2 φt(Xi)

= ↑ 1

n

n∑

i=1

(6t ↑Xi)φ(6t ↑Xi)

φ 2 φt(Xi)
, (6.22)

where φt = law(6t). In light of the continuity equation (5.2), we see that
the Wasserstein gradient flow of ⇁n is the curve described by the PDE:

▷tφt =
1

n

n∑

i=1

div

φt

(·↑Xi)φ(·↑Xi)

φ 2 φt(Xi)


.

Since the velocity field in (6.22) depends on φt, we use a particle
implementation of this gradient flow: given N particles 61t , . . . , 6

N
t with

marginal distribution φt, we replace φt with the empirical distribution
N→1


N

j=1
ϑ
0
j
t
. It results in the system of coupled ODEs: for j ↗ [N ],

6̇j
t
= ↑ 1

n

n∑

i=1

(6j
t
↑Xi)φ(6

j

t
↑Xi)

1

N


N

k=1
φ(6k

t
↑Xi)

.

Unfortunately, this Wasserstein gradient flow is di!cult to analyze.
Moreover, time-discretizations of this Wasserstein gradient flow do
not perform well in practice. Instead, [YWR24] propose to study the
Wasserstein–Fisher–Rao gradient flow of ⇁n. In this context, the measure
φt is approximated by

N∑

j=1

wj

t
ϑ
0
j
t

where for any j ↗ [N ], we use the following dynamics:

6̇j
t
= ↑ 1

n

n∑

i=1

(6j
t
↑Xi)φ(6

j

t
↑Xi)

N

k=1
wk
t
φ(6k

t
↑Xi)

,

ẇj

t
=

[ 1
n

n∑

i=1

φ(6j
t
↑Xi)

N

k=1
wk
t
φ(6k

t
↑Xi)

↑ 1
]
wj

t
.
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Under some conditions, the convergence guarantees of this system can
be established but they are entirely driven by the Fisher–Rao part
and the proof largely consists in finding conditions under which the
Wasserstein part does not get in the way of convergence.

6.5 Mean-field neural networks

A two-layer6 neural network is a parameterized function

f(x; 6) =
1

m

m∑

j=1

aj◁(′wj , x∞+ bj) , (6.23)

where 6 := {(aj , wj , bj), j ↗ [m]} represents the parameters (or weights)
of the network, and ◁(·) is a non-linearity, e.g., the common ReLU
activation ◁(·) = (·)

+
= max(0, ·).

The first layer is the map ⇁1 : Rd ↔ Rm defined by

⇁1(x) =
(
◁(′w1, x∞+ b1), . . . ,◁(′wm, x∞+ bm)

)T
=: ◁(Wx+ b) . (6.24)

It produces an internal representation of the vector x that is more
suitable for the subsequent task; e.g. classification or regression. This
representation is then passed on to the second and terminal layer
⇁2 : Rm ↔ R which collapses the representation z := ⇁1(x) into a scalar
prediction using a linear projection:

⇁2(z) =
1

m

m∑

j=1

ajzj =
1

m
′a, z∞ .

This terminal layer is tailored to a regression task but it is also common
to employ terminal layers that are tailored to classification. For binary
classification for example, it is desirable to have the output of the
neural network lie in the interval [0, 1] so further process the output
y = ⇁2 ◦ ⇁1(x) using

logistic(y) =
ey

1 + ey
.

The reader will recognize here the logistic function employed in gener-
alized linear models. In the rest of this section we focus on two-layer

6 In other words, the network has one hidden layer.
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neural networks of the form ⇁2 ◦ ⇁1 and leave the study of logistic◦ ⇁2 ◦ ⇁1
as an exercise for the reader.

The parametrization (6.23) is called the mean-field parametrization,
and it lends itself to passing to the limit m ↔ ⇑.

Consider a simple regression task in which we have n data points
{(Xi, Yi), i ↗ [n]} with Xi ↗ Rd and Yi ↗ R. To train the neural
network, we can minimize the squared error

L(6) :=
n∑

i=1

(
Yi ↑ f(Xi; 6)

)
2
. (6.25)

The training dynamics for minimizing the objective (6.25) are com-
plex because the parametrization 6 △↔ f(·; 6) is non-linear and conse-
quently the loss L is non-convex. One approach to study these dynamics
is to lift the optimization problem to one set over the space of probability
measures, with the hope that the lifted problem a”ords simplifications.
In doing so, we must preserve the connection with the original dynamics,
and this leads naturally to Wasserstein gradient flows.

The lifting is carried out as follows. Let % = R⇒ Rd ⇒ R denote the
space of (a,w, b) triples, and let µ be a measure over %. Set

f(x;µ) =

∫
φ(x;5)µ(d5) , φ(x;5) := a◁(′w, x∞+ b) ,

where 5 = (a,w, b). One can check that if we encode parameters 6 =
{(ai, wi, bi)}mi=1

via the empirical measure µ0 :=
1

m


m

i=1
ϑ(ai,wi,bi)

, then
f(·;µ0) = f(·; 6), so this definition indeed generalizes (6.23). However,
we can now formulate the problem of optimizing, over the space P2(%)
of probability measures over %, the objective

L(µ) :=
n∑

i=1

(
Yi ↑ f(Xi;µ)

)
2
. (6.26)

As discussed above, we require that the dynamics of minimizing
µ △↔ L(µ) over P2(%) be compatible with the original dynamics of
minimizing 6 △↔ L(6) over %m. Herein lies the utility of the Wasserstein
geometry, as it was set up precisely to ensure that dynamics over the
base space % lift gracefully to dynamics over P2(%). More precisely:

Proposition 6.16. The Wasserstein gradient flow (µt)t⇔0
of (6.26),

when initialized at a measure of the form µ0 = µ0, is such that µt = µ0t

for all t ∈ 0, where (6t)t⇔0
is the (time-rescaled) Euclidean gradient

flow of (6.25) initialized at 6.
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We can also rewrite the objective (6.26) as follows:

L(µ) =
n∑

i=1


Y 2

i ↑ 2Yi

∫
φ(Xi;5)µ(d5)

+

∫∫
φ(Xi;5) φ(Xi;5

⇒)µ(d5)µ(d5⇒)


= const.↑ 2

∫ n∑

i=1

Yi φ(Xi;5)µ(d5)

+

∫∫ n∑

i=1

φ(Xi;5) φ(Xi;5
⇒)µ(d5)µ(d5⇒) .

We can recognize the second term as a potential energy (in the sense of
Example 5.11) and the third term as an interaction energy (in the sense
of Example 5.13), albeit a generalized version in which the interaction
is not of the form (x, y) △↔ K(x↑ y). As expected, the loss L is not in
general geodesically convex.

Since the Wasserstein perspective is essentially a reformulation of
the original neural network problem, a skeptic may ask what advan-
tages it brings. The answer is that we can now consider more general
initializations than empirical measures (measures of the form µ0), and
in particular, a well-known result of Chizat and Bach [CB18] uses this
approach to establish global convergence in the mean-field regime, under
certain assumptions. Their result requires the initialization to be abso-
lutely continuous, and since such a measure can only be approximated
by empirical measures in the limit m ↔ ⇑, this corresponds in some
sense to “infinitely wide” neural networks. The error incurred for finite
m can be controlled and leads to insights for finite-width networks in
various settings [MMN18, ABAM22, ABAM23].

It has also been proposed to add an entropic regularization term to
the loss (6.26) and to train the network via the mean-field Langevin
dynamics from Subsection 6.3.1 [CRW23, SNW23, TR24].

6.6 Transformers

Since their introduction in 2017 in the paper “Attention is all you
need” [VSP+17], transformers have profoundly transformed practical
deep neural networks, most notably in natural language processing
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(NLP), but also in computer vision and robotics. Central to this new ar-
chitecture is the so-called attention mechanism, a layer that is markedly
di”erent from a perceptron (a.k.a. feed-forward) layer such as the one
in (6.23).

Unlike the neural networks that we have seen in the previous sections
that are functions f : Rd ↔ R, an attention layer is a sequence-to-
sequence map

g : (Rd)N ↔ (Rd)N ,

(x1, . . . , xN ) △↔
(
g1(x1, . . . , xN ), . . . , gN (x1, . . . , xN )

)
.

More specifically, a input (a sentence in NLP or an image in computer
vision) is broken into tokens x1, . . . , xN ↗ Rd and processed through an
attention layer g = (g1, . . . , gN ) where for each i ↗ [N ],

gi(x1, . . . , xN ) = xi + V


N

j=1
xje↖Qx

i
,Kx

j↙


N

j=1
e↖Qxi,Kxj↙

,

where K, Q, and V are three d⇒ d matrices called key, query, and value
respectively.

While practical transformers combine perceptron layers with atten-
tion layers—and also normalization layers that are briefly discussed
below—we focus here on composing multiple attention layers with the
same matrices (K,Q, V ). This composition results in a iterative scheme
where tokens are updated as:

xit+1 = xit + V


N

j=1
xj
t
e↖Qx

i
t,Kx

j
t ↙


N

j=1
e↖Qxi

t,Kx
j
t ↙

, i ↗ [N ] .

In turn, taking the same perspective as in neural ODEs [CRBD18], we
can view the above iterations as a time discretization of the following
dynamical system of interacting particles:

ẋit = V


N

j=1
xj
t
e↖Qx

i
t,Kx

j
t ↙


N

j=1
e↖Qxi

t,Kx
j
t ↙

, i ↗ [N ] . (6.27)

The above equation describes a system of N ordinary di”erential equa-
tions (ODEs), one for each token/particle, that are called self-attention
dynamics by [GLPR23, GLPR24]. The way these tokens interact is not
completely wild: each token evolves according to its own position and
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the empirical distribution of all the tokens. Indeed, let µt denote this
empirical distribution at time t:

µt =
1

N

N∑

i=1

ϑ
xi
t
.

We can rewrite (6.27) as

ẋit = V

∫
ye↖Qx

i
t,Ky↙ µt(dy)∫

e↖Qxi
t,Ky↙ µt(dy)

, i ↗ [N ] .

It becomes now clear that the tokens all have the same mean-field
dynamics so we can drop the index i:

ẋt = V

∫
ye↖Qxt,Ky↙ µt(dy)∫
e↖Qxt,Ky↙ µt(dy)

, (6.28)

where µt = law(xt). Using the continuity equation, we get that µt

evolves according to the following PDE:

▷tµt + div

µtV

∫
ye↖Q·,Ky↙ µt(dy)∫
e↖Q·,Ky↙ µt(dy)


= 0 .

This perspective on transformers was first put forward in [SABP22]
which raised the question of whether this curve could be viewed as a
Wasserstein gradient flow. To investigate this question, assume that
K = Q = V = I so that (6.28) becomes:

ẋt =

∫
ye↖xt,y↙ µt(dy)∫
e↖xt,y↙ µt(dy)

= ∀
[
log

∫
e↖·,y↙ µt(dy)

]
(xt) .

The form of the velocity field is suggestive and readily begs the question
of whether there exists a functional F such that its first variation is
given by

ϑF(µ) = log

∫
e↖·,y↙ µt(dy) .

Unfortunately, [SABP22] also show that this is not the case due to a lack
of symmetry. To overcome this limitation, one may consider instead the
unnormalized self-attention dynamics introduced in [GLPR24]. These
dynamics are of the form

ẋt =

∫
ye↖xt,y↙ µt(dy) = ∀

[∫
e↖·,y↙ µt(dy)

]
(xt) .
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We readily get that these dynamics describe the Wasserstein gradient
flow of the interaction energy

F(µ) := ↑
∫∫

e↖x,y↙ µ(dx)µ(dy) .

Unfortunately, it is easy to see that this functional does not admit a
global minimum over the space of probability measure, indeed, for any
Dirac delta µ = ϑx, we have F(ϑx) = ↑e⇑x⇑

2 ↔ ↑⇑ as x ↔ ⇑. In
particular this suggests that tokens undergoing these dynamics will
simply diverge to infinity.

In practice however, tokens are restricted to live on the unit sphere
S
d→1 of Rd using a procedure know as layer normalization (or simply

“layernorm”). With layernorm, the unnormalized self-attention dynamics
then become

ẋt = Pxt

∫
ye↖xt,y↙ µt(dy) = ∀xt

∫
e↖xt,y↙ µt(dy) ,

where for any x ↗ S
d→1, y ↗ Rd, we write Pxy := y ↑ ′x, y∞x for the

projection of y onto the tangent space of the sphere S
d→1 at x and

∀x := Px∀ denotes the spherical (Riemannian) gradient at x ↗ S
d→1.

Using the version Otto calculus on Riemannian manifolds alluded to in
Section 5.6, we get that these dynamics correspond to a Wasserstein
gradient flow of the interaction energy F now defined on the sphere. In
fact, since for x, y ↗ S

d→1, it holds that ↘x ↑ y↘2 = 2 (1 ↑ ′x, y∞), we
can write F as

F(µ) := ↑e

∫∫

Sd↑1↓Sd↑1

e→
↗x↑y↗2

2 µ(dx)µ(dy) . (6.29)

It can be readily seen that the maximizers of this functional are
precisely Dirac deltas ϑx for any x ↗ S

d→1. Hence unnormalized self-
attention is a Wasserstein gradient flow of a functional minimized
at Dirac deltas, which correspond to states where all the tokens are
clustered. Unfortunately, this functional is not geodesically convex and
admits many stationary points where the Wasserstein gradient vanishes.
Using this framework [CRMB24, GLPR24] show that these points are
in fact saddle points, guaranteeing asymptotic convergence to a single
cluster when dynamics are initialized in a generic position.
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6.7 Discussion

§6.1. Another natural geometric approach to VI is natural gradient
descent, which is motivated by the parametrization invariance of the
Fisher–Rao geometry [Ama98, AN00]. However, it has been challenging
to analyze this approach since the VI problem is often non-convex.
See [AR15] for an early work on algorithmic guarantees for VI.

Our discussion of Gaussian VI follows [LCB+22]. Algorithms for
Gaussian VI which are closely related to (6.3) have been proposed and
studied in works such as [AR20, Dom20, GFPO21]; here, our emphasis is
on the derivation via Otto calculus. There have been many subsequent
works on Gaussian VI, both on the computational (e.g., [DBCS23,
DGG23, KOW+23, BLB24]) and statistical ([KR24]) aspects, as well
as applications to bandits [CHD24] and control [LBB23, LBB24].

The potential application of Wasserstein geometry to mean-field
VI was noticed by several authors [GLNZ22, Lac23, YY23]. The
works [GLNZ22, Lac23] also wrote down interacting SDE implemen-
tations of the gradient flow described in Subsection 6.3.1. The wider
literature on mean-field VI, which usually focuses on coordinate ascent
variational inference (CAVI), is vast and we do not survey it here, but
see [AL24, LZ24] for analyses leveraging Otto calculus.

SVGD was introduced in [LW16], and geometric interpretations of
SVGD are given in [Liu17, CLGL+20a, DNS23]. Convergence theory
remains underdeveloped, see, e.g., [LLN19a, KSA+20, SSR22, DN23,
SM23, PBS24].

Corollary 6.4 can be generalized to measures over Riemannian mani-
folds, in which case the strong convexity parameter of the KL divergence
captures information about the Ricci curvature. The seminal work of
Lott and Villani [LV09] and Sturm [Stu06a, Stu06b] leverages this to
define a synthetic notion of Ricci curvature lower bounds for measured
geodesic spaces (see Chapter 7) that recover classical Ricci curvature
lower bounds when specialized to the Riemannian setting. These ideas
were later extended to discrete settings, e.g., [Oll10, OV12, Oll13].

Finally note that while the KL divergence plays a preponderant
role in variation inference, other distances between measures can be
considered for this task; see, e.g., [AKSG19] who use Maximum Mean
Discrepancy.
§6.2. As mentioned in the main text, the interpretation of the Langevin
di”usion as a Wasserstein gradient flow goes back to the seminal work
of [JKO98]. Otto calculus was first applied to obtain quantitative results
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for the Langevin di”usion, as in Exercise 6 below, in [OV00]; in this
context, Exercise 4 from Chapter 5 can be sharpened by a factor of
2 [BGL01, OV01]. See also [CE02] for proofs in this spirit which do
not require as much di”erential structure. For textbook treatments on
stochastic calculus, see [Ste01] or [Le 16]. The Wasserstein PL inequality
for the KL divergence functional is known as the log-Sobolev inequality
and it plays a key role in the study of high-dimensional probability
and Markov processes. Crucially, although we have presented strong
log-concavity as a su!cient condition for the validity of the log-Sobolev
inequality, it is not necessary. See [BGL14] for further detail and [OT11,
OT13, BB18] for generalizations.

The optimization perspective on sampling dates back to early works
such as [DT12]; our discussion largely follows [Wib18]. For an exposition
to the modern complexity theory of log-concave sampling and further
references, see [Che23, Che24]. Recent works also apply this perspective
for parameter estimation [ACG+23, CKPJ24].

The proximal sampler has been applied to structured log-concave sam-
pling [LST21], to non-Euclidean [GLL+23] and heavy-tailed [HMHBE24]
sampling, and to sampling from convex bodies [KVZ24].

As noted in [CLGL+20b], the Newton–Langevin di”usion converges
to any strictly log-concave target with a universal exponential rate as a
consequence of the Brascamp–Lieb inequality [BL76]. There is a sense
in which it is an optimal preconditioning of Langevin [CTZ24].

Convergence of the underdamped Langevin di”usion requires heavier
machinery than Wasserstein gradient flows and is based on the theory
of hypocoercivity, for which the standard reference is [Vil09a].
§6.3. Analysis of birth-death sampling was first carried out in [LLN19b]
and improved in [LSW23].
§6.4. The WFR gradient flow for NPMLE can be adapted to more
general mixtures. Usually, asymptotic convergence of the gradient flow
to the NPMLE is only established conditionally on convergence to a
limit point. In fact, it is shown in [YWR24] that the NPMLE is the
only stationary point of the gradient flow initialized at a measure that
is absolutely continuous.
§6.5. The study of training dynamics of two-layer neural networks from
the mean-field perspective was proposed in four independent papers
that were released within about a month period in 2018: [MMN18] on
April 18, [SS20] and [RVE22] both on May 2, and [CB18] on May 24. It
is worth noting that the normalization 1/m in (6.23) is critical for the
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mean-field interpretation of the problem. Other works have proposed
to use the normalization 1/

⊤
m which results in the so called neural

tangent kernel (NTK) (a.k.a. lazy training) regime. In this regime, which
will remind the reader of the normalization employed in the central limit
theorem, it can be shown that the parameters do not move far away from
a random initialization and the neural network can be studied using
linear approximation around initialization [JGH18]. For more details
on NTK and its relationship with the mean-field regime see [MM23].
§6.6. The functional F defined in (6.29) has appeared in the literature
on optimal configuration. In this line of work, the maximizers of this
functional are of interest. It is know that F is maximized by the uniform
distribution on the sphere [Tan17]. Finding maximizers subject to a
cardinality constraint on the support of µ is directly connected to
questions arising in sphere packing; see [CK07].

6.8 Exercises

1. Let K : Rd ↔ R be a symmetric function on Rd, and consider
the corresponding interaction energy as defined in Example 5.13:
F(µ) := 1

2

∫∫
K(x↑ y)µ(dx)µ(dy).

• Show that if K is convex, then F is geodesically convex on
P2,ac(Rd). Hint : let Xt = (1↑t)X0+tT (X0), so that (µt)t↑[0,1] :=
(law(Xt))t↑[0,1] is a Wasserstein geodesic, then apply (5.6).

• Show that F is never 3-geodesically convex for any 3 > 0.
Hint : Consider the geodesic (N(tv, I))t↑[0,1] for a nonzero vector

v ↗ Rd.
2. Show that the tangent space to the space of product measures at µ

is given by the space of separable vector fields:

TµP2,ac(R)̸d

= {x △↔ (0⇒
1
(x1), . . . ,0⇒

d
(xd)) | 01, . . . ,0d : R ↔ R}L

2
(µ)

,

where 01, . . . ,0d are smooth and compactly supported. Then, show
that the Wasserstein gradient projected to this subspace takes the
form (6.4).

3. Compute the gradient of the KL divergence restricted to the space
of product measures. From the first-order optimality condition,
write down a fixed-point equation for the density of the solution q-
to (MFVI).
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4. Prove Lemma 6.9. Hint : Use the separability of the transport maps
to reduce to one-dimensional optimal transport, for which we can
apply the results of Section 1.3 and Proposition 1.18.

5. Compute the derivative of t △↔ KL(µt ↘ ↼) when (µt)t⇔0
evolves

according to (SVGD).
6. Interpret Exercises 4 and 5 from Chapter 5 for the Langevin di”usion.
7. Consider the Euler–Maruyama scheme (6.11) where the initial dis-

tribution is N(m,$) and the target distribution is ↼ = N(0, I).
Compute the law of Xk for each k ∈ 0. Use this to compute the
stationary distribution ↼̂ of (6.11), and compute the KL divergence
KL(↼̂ ↘ ↼). How small should we choose the step size h if we want to
ensure KL(↼̂ ↘ ↼) → ω2?

8. Let µ = N(m,$) be a Gaussian measure with $ L 0. Evaluate
proxhH(µ), where proxhH is the proximal map for the entropy defined
in (6.14). This computation is used as the basis for the Gaussian VI
algorithm of [DBCS23].

9. For F := 1

2
W 2

2
(·, ε), compute the iterations µn+1 = proxhF(µn) of

the JKO scheme, where

proxhF(µ) := argmin
µ↔↑P2(Rd)


hF(µ⇒) +

1

2
W 2

2 (µ, µ
⇒)

.

Letting h G 0 while nh ↔ t, show that one recovers the gradient
flow from Exercise 11 from Chapter 5.

10. Consider the proximal sampler with initial distribution N(m,$) and
target distribution ↼ = N(0, I). Compute the law of the k-th iterate
Xk for each k ∈ 0 and estimate the rate of convergence to ↼.

11. Let V (x) = 1

2
′x,Ax∞ and W (x) = ϑ

2
↘x↘2, where A L 0 and ϱ ∈ 0.

Compute the stationary distributions ↼ and ↼̂N of the McKean–
Vlasov SDE (6.17) and the finite-particle system (6.18) respectively.

12. Prove Proposition 6.16. Also, generalize to the case of a two-layer
neural network composed with a logistic function when the training
data satisfies Yi ↗ {0, 1} for each i ↗ [n] and we use the cross-entropy
loss: L(µ) = ↑


n

i=1
{(1↑ Yi) log(1↑ f(Xi;µ)) + Yi log f(Xi;µ)}.
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Metric geometry of the Wasserstein space

In the previous two chapters, we studied the space W2 = (P2(Rd),W2)
through the lens of Riemannian geometry. Although such an approach
yields considerable geometric insight and can even be treated rigorously
(see [AGS08]), it is important to keep in mind that W2 is not a bona
fide Riemannian manifold, and consequently technical issues abound.

Despite what its name suggests, metric geometry requires a bit more
structure than simply a metric space. Indeed, in the rest of this chapter,
we will talk about length/geodesic spaces which have a continuous
flavor. In particular it is possible to take derivatives of functions along
smooth curves. This primitive di”erential structure is often su!cient to
understand questions about curvature which we will employ to establish
rates of convergence for Wasserstein barycenters in the next chapter.

The goal of this chapter is to gather basic material from metric
geometry for a general metric space (S, d) following the classical book
[BBI01]; see also [AKP22] for a more advanced coverage. Main concepts
(curvature, tangent cone, logarithmic map, etc.) are instantiated to the
(2-)Wasserstein space.

7.1 Geodesics

We already appealed to an intuitive notion of geodesics in Chapter 5.
In this chapter we properly define these objects as length minimizing.

7.1.1 Length and geodesic spaces

Let (S, d) be a metric space. A path in S is a continuous map 5 : I ↔ S
where I ↖ R is an interval. The length L(5) ↗ R ∃ {⇑} of a path
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5 : I ↔ S is defined by

L(5) := sup
n→1∑

i=1

d(5(ti),5(ti+1)) , (7.1)

where the supremum is taken over all n ∈ 1 and all n-tuples t1 < · · · < tn
in I.

A path is called rectifiable if it has finite length.
For any path 5 and any interval J ↖ R, we write 5J to denote the

restriction of 5 to I ¬ J . The following lemma holds.

Lemma 7.1. For any rectifiable path 5 : I ↔ S, the function t △↔
⇁(t) = L(5(→↘,t]) is continuous on I.

Proof. We prove left continuity, i.e., that for any ω > 0, there exists
ϑ > 0 such if t↑ ϑ < t⇒ → t, we have

⇁(t)↑ ω → ⇁(t⇒) → ⇁(t) .

By continuity of 5, there exists ϑ1 > 0 such that t⇒ ↗ (t↑ϑ1, t] implies

d(5(t⇒),5(t)) → ω

2
. (7.2)

Next, let n and t1 < · · · < tn = t be such that

⇁(t)↑ ω

2
→

n→1∑

i=1

d(5(ti),5(ti+1)) → ⇁(t) , (7.3)

define ϑ2 = mini=1,...,n→1 |ti+1 ↑ ti| > 0, and let ϑ = min(ϑ1, ϑ2) > 0.
Observe that for any t⇒ such that t ∈ t⇒ > t↑ ϑ it holds tn→1 < t⇒ → t so
that

⇁(t⇒) ∈
n→2∑

i=1

d(5(ti),5(ti+1)) + d(5(tn→1),5(t
⇒))

∈
n→1∑

i=1

d(5(ti),5(ti+1))↑ d(5(t⇒),5(t))

∈ ⇁(t)↑ ω

where we used the triangle inequality in the second line and (7.2)–(7.3)
in the third. This completes the proof of left continuity. Right continuity
follows using the same argument. ↙∝
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Two paths 51 : I1 ↔ S and 52 : I2 ↔ S are equivalent if there exists
a continuous, non-decreasing, and surjective function ϕ : I1 ↔ I2 such
that 51 = 52 ◦ ϕ. In this case, 52 is a reparametrization of 51 (and
vice-versa) and it is easy to check that L(51) = L(52).

Finally a path 5 : [a, b] ↔ S is said to have constant speed if for all
a → s → t → b,

L(5[s,t]) =
t↑ s

b↑ a
L(5) . (7.4)

Proposition 7.2.Any rectifiable path 5 : [a, b] ↔ S has a constant-
speed reparametrization 5̄ : [0, 1] ↔ S.

Proof. Let us first reparametrize 5 so that it is never locally constant
meaning that there exists no interval [c, d] ↖ [a, b] such that 5[c,d] is
constant. If such an interval exists, define ↼ : R ↔ R to be such that

↼(t) =






t if t → c ,

c if c < t → d ,

t↑ (d↑ c) if t > d .

Observe that ↼([a, b]) = [a, b ↑ (d ↑ c)] is an interval and that ↼ is
continuous and non-decreasing on this interval. Then reparametrize 5
into 5⇒ : [a, b↑ (d↑ c)] ↔ S such that 5 = 5⇒ ◦↼ holds, which is possible
since 5 is constant on [c, d].

By repeating this operation, we may assume that 5 is never locally
constant and, in particular, that the map t △↔ ϕ(t) := L(5[a,t])/L(5) is
strictly increasing on [a, b] and continuous by Lemma 7.1 and therefore
invertible. In particular, ϕ→1 is also continuous, strictly increasing, and
defined over [0, 1]. We define 5̄ : [0, 1] ↔ S by 5̄ = 5 ◦ ϕ→1 which is a
constant-speed reparametrization of 5. ↙∝

Given x, y ↗ S, a path 5 : [a, b] ↔ S is said to connect (or join) x to
y if 5(a) = x and 5(b) = y. By construction of the length function L,
d(x, y) → L(5) for any path 5 connecting x to y. The space S is called
a length space if for all x, y ↗ S,

d(x, y) = inf
◁

L(5), (7.5)

where the infimum is taken over all paths 5 connecting x to y. A length
space is said to be a geodesic space if for all x, y ↗ S, the infimum on
the right hand side of (7.5) is attained.
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Definition 7.3. Let (S, d) be a length space. A geodesic between x and
y is any path 5 : [0, 1] ↔ S attaining the infimum in (7.5).

In other words, a geodesic is a shortest path between two points. It
follows from the minimizing property of a geodesic 5 that

d(5(s),5(t)) = L(5[s,t]) ,

for all 0 → s → t → 1. Together with (7.4) it yields the following useful
characterization of constant-speed geodesics.

Proposition 7.4. A path 5 : [0, 1] ↔ S is a constant-speed geodesic if
and only if

d(5(s),5(t)) = (t↑ s) d(5(0),5(1)) ,

for all 0 → s → t → 1.

7.1.2 Midpoints

We now obtain a characterization of geodesic spaces in terms of mid-
points. For any two points x, y in a metric space, a midpoint of (x, y) is
any z ↗ S such that

d(x, z) = d(y, z) =
1

2
d(x, y) .

Proposition 7.5. Let (S, d) be a complete metric space. Then the fol-
lowing are equivalent:

(i) (S, d) is a geodesic space.
(ii) Any two points x, y ↗ M admit a midpoint.

Proof. We begin with the easy direction: (i) ∅ (ii). Let 5 be a geodesic
that connects x to y, then clearly 5(1/2) is a midpoint.

To prove (ii) ∅ (i), we construct a path 5 : [0, 1] ↔ S such that
5(0) = x, 5(1) = y and L(5) = d(x, y). To that end, we first define 5
on the set D of dyadic rationals of [0, 1] defined by

D = {k/2m : m ∈ 1, k ∈ 0} ¬ [0, 1] .

We proceed in a recursive fashion. Let z be a midpoint of (x, y) =
(5(0),5(1)) and define 5(1/2) = z. Given Hm := {5( k

2m
), k ↗ [2m]},

define Hm+1 = {5( k

2m+1 ), k ↗ [2m+1]} by setting 5( k

2m+1 ) = 5(k/2
2m

) ↗
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Hm if k is even and letting 5( k

2m+1 ) be the midpoint of (5 (k↑1)/2
2m

,5 (k+1)/2
2m

)

when k is odd. The union of Hm, m ∈ 0 defines 5 on D.
From our construction, for t, t⇒ ↗ D, it holds

d(5(t),5(t⇒)) = |t↑ t⇒| d(x, y) (7.6)

so that 5 is d(x, y)-Lipschitz on D. We now show that 5 can be extended
to a continuous function on [0, 1] that connects x to y. To that end,
fix t ↗ [0, 1] and let (tn)n⇔0 ⇔ D be a sequence of dyadic integers that
converges to t. Observe that (5(tn))n⇔0 forms a Cauchy sequence in
(S, d) since by (7.6) it holds

d(5(tn),5(tm)) → |tn ↑ tm| d(x, y) ↔ 0 , n,m ↔ ⇑ .

Therefore since S is complete, (5(tn))n⇔0 converges and we set 5(t)
to be its limit. To see that such an 5 is continuous, note that for
any t, u ↗ [0, 1], there exists sequences (tn)n⇔0, (un)n⇔0 ⇔ D such that
tn ↔ t, un ↔ u and

d(5(t),5(u)) = lim
n↗↘

d(5(tn),5(un)) → lim
n↗↘

|tn ↑ un| d(x, y)

= |t↑ u| d(x, y)

where we used (7.6) in the equality. Therefore, we have constructed a
path that connects x to y.

To conclude the proof, it su!ces to observe that (7.1) and (7.6)
imply that L(5) = d(x, y) as desired. ↙∝

7.1.3 Geodesics in Wasserstein space

We are now in a position to place the Wasserstein space W2 within the
framework of metric geometry. Compare the following theorem with
Theorem 5.7.

Theorem 7.6. The Wasserstein space W2 is a geodesic space. Moreover,
let ↼t(x, y) := (1↑t)x+t y, t ↗ [0, 1], and for any µ, ε ↗ W2 let ϖ ↗ #µ,ω

be an optimal transport plan in the sense that
∫

↘x↑ y↘2 ϖ(dx, dy) = W 2

2 (µ, ε) .

Then the path 5 given by 5(t) = (↼t)#ϖ is a constant-speed geodesic in
W2 connecting 5(0) = µ to 5(1) = ε.
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Proof. For any 0 → s → t → 1, define the coupling ϖs,t := (↼s,↼t)#ϖ ↗
#◁(s),◁(t). Then

W 2

2 (5(s),5(t)) →
∫

↘x↑ y↘2 ϖs,t(dx, dy)

=

∫
↘↼s(x, y)↑ ↼t(x, y)↘2 ϖ(dx, dy)

=

∫
↘(1↑ s)x+ s y ↑ ((1↑ t)x+ t y)↘2 ϖ(dx, dy)

= (t↑ s)2
∫

↘x↑ y↘2 ϖ(dx, dy)

= (t↑ s)2W 2

2 (5(0),5(1)) .

We have proved that

W2(5(s),5(t)) → |t↑ s|W2(5(0),5(1)) .

To show that this inequality is in fact an equality, note that together
with the triangle inequality, it yields

W2(5(0),5(1)) → W2(5(0),5(s)) +W2(5(s),5(t)) +W2(5(t),5(1))

→ (s+ |t↑ s|+ |1↑ t|)W2(5(0),5(1))

= W2(5(0),5(1)) .

Therefore, the above inequalities are equalities and in particular,

W2(5(0),5(s)) +W2(5(s),5(t)) +W2(5(t),5(1))

= sW2(5(0),5(1)) + |t↑ s|W2(5(0),5(1)) + |1↑ t|W2(5(0),5(1)) .

Since each term on the left-hand side is smaller than its corresponding
part in the right-hand side, we have that

W2(5(s),5(t)) = |t↑ s|W2(5(0),5(1)) ,

and the conclusion follows from Proposition 7.4. This explicit construc-
tion of geodesics joining any pair µ, ε ↗ W2 readily implies that W2 is
indeed a geodesic space. ↙∝

For any constant-speed geodesic 5 connecting two measures µ, ε ↗
W2 and any t ↗ [0, 1], the measure 5(t) is often called displacement
interpolation after [McC97]. Crucially, if µ and ε have densities fµ and
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fω , this interpolation di”ers from the usual interpolation given by the
mixture with density (1 ↑ t) fµ + t fω . This is a manifestation of the
geometry of W2.

Note that the proof of Theorem 7.6 above implies the following
interesting corollary.

Corollary 7.7. Let 5 be any constant-speed geodesic in W2 and let ϖ be
an optimal coupling between 5(0) and 5(1). Then for any 0 → s → t → 1,
the coupling ϖs,t := (↼s,↼t)#ϖ ↗ #◁(s),◁(t), where ↼t(x, y) := (1↑t)x+t y,
t ↗ [0, 1], is optimal in the sense that

∫
↘x↑ y↘2 ϖs,t(dx, dy) = W 2

2 (5(s),5(t)) .

Finally, in the case where the geodesic emanates from a distribution
that admits a density, we get from Brenier’s Theorem 1.16 the following
useful corollary, which justifies Definition 5.8.

Corollary 7.8. Let µ, ε ↗ W2 be two probability measures such that µ
has a density and let T : Rd ↔ Rd be the (unique) Brenier map such
that T#µ = ε. Then, the constant-speed geodesic 5 : [0, 1] ↔ W2 such
that 5(0) = µ and 5(1) = ε is unique and given by

5(t) =
(
(1↑ t) id + t T

)
#
µ , ≃ t ↗ [0, 1] .

where id : Rd ↔ Rd denotes the identity map.
In other words, if X ↓ µ, then (1↑ t)X + t T (X) ↓ 5(t).

7.2 Curvature

7.2.1 Alexandrov curvature

Given a real number . ↗ R, a geodesic space of special interest is the
(complete and simply connected) 2-dimensional Riemannian manifold
with constant sectional curvature .. For given . ↗ R, this metric space
(M3, d3) is unique up to an isometry, and called a model space. For
each . ↗ R, we use the following representative of the equivalence class
generated by the group of isometries.

• If . < 0, (M3, d3) is the hyperbolic plane of constant curvature
. < 0.
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• If . = 0, (M0, d0) is the Euclidean plane R2 equipped with its
Euclidean metric.

• If . > 0, (M3, d3) is the 2-dimensional Euclidean sphere of radius
1/
⊤
. equipped with the angular metric.

These model spaces play a central role in metric geometry. As described
below, curvature bounds in general metric spaces are formulated by
comparison arguments involving these model spaces as benchmarks.

The fundamental device allowing for this comparison is that of
comparison triangles. Given a metric space (S, d), we define a triangle
as any set of three distinct points {p, x, y} ↖ S. For . ↗ R, a comparison
triangle for {p, x, y} in M3 is an isometric embedding of {p, x, y} in M3,
i.e., a set {p̄, x̄, ȳ} ↖ M3 such that

d3(p̄, x̄) = d(p, x) , d3(p̄, ȳ) = d(p, y) , and d3(x̄, ȳ) = d(x, y) .

When . → 0, such a comparison triangle always exists (and is unique
up to an isometry). When . > 0, such a triangle exists (and is unique
up to an isometry) provided it fits on the sphere of radius .→1/2. This
condition may be specified in terms of its perimeter:

peri{p, x, y} := d(p, x) + d(p, y) + d(x, y) <
2↼⊤
.
. (7.7)

For . > 0 say that a triangle {p, x, y} that satisfies (7.7) is admissible.
When . → 0, all triangles are admissible.

We are now in a position to define curvature bounds for general
geodesic spaces.

Definition 7.9. Let . ↗ R and (S, d) be a geodesic space.

•We say that curv(S) ∈ . if for any admissible triangle {p, x, y} ↖ S
and any comparison triangle {p̄, x̄, ȳ} ↖ M3, the following holds.
For any constant-speed geodesics 5 : [0, 1] ↔ S and 5̄ : [0, 1] ↔ M3

joining x to y and x̄ to ȳ respectively, it holds

d
(
p,5(t)

)
∈ d3

(
p̄, 5̄(t)

)
, ≃ t ↗ [0, 1] . (7.8)

•We say that curv(S) → . if for any admissible triangle {p, x, y} ↖ S
and any comparison triangle {p̄, x̄, ȳ} ↖ M3, the following holds.
For any constant-speed geodesics 5 : [0, 1] ↔ S and 5̄ : [0, 1] ↔ M3

joining x to y and x̄ to ȳ respectively, it holds

d
(
p,5(t)

)
→ d3

(
p̄, 5̄(t)

)
, ≃ t ↗ [0, 1] . (7.9)
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The previous definition admits a natural geometric interpretation: if
curv(S) ∈ . (resp. curv(S) → .), a triangle {p, x, y} looks thicker (resp.
thinner) than a corresponding comparison triangle {p̄, x̄, ȳ} in the model
space M3.

The case . = 0 is of special interest since the model space of
reference is flat. In that case, one compares our geometry to a familiar
Euclidean one. We say that S is a space of non-positive curvature (NPC)
when curv(S) → 0, and a space of non-negative curvature (NNC) when
curv(S) ∈ 0.

In the flat case the following lemma holds.

Lemma 7.10. Let H be a Hilbert space equipped with inner product ′·, ·∞
and norm ↘ · ↘. Then, for any p, x, y ↗ H, the constant-speed geodesic
joining x to y is unique and given by 5(t) = (1↑ t)x+ t y and for any
p ↗ H,

↘p↑5(t)↘2 = (1↑t) ↘p↑x↘2+t ↘p↑y↘2↑t (1↑t) ↘x↑y↘2 , ≃ t ↗ [0, 1] .

In particular, this holds for the model space M0 = R2.

Proof. It can be easily checked that 5 is indeed a constant-speed geodesic
joining x to y. Fix t ↗ [0, 1]. To check the equality, observe that on the
one hand

↘p↑ 5(t)↘2 = ↘p↑ (1↑ t)x↑ t y↘2

= ↘(1↑ t) (p↑ x) + t (p↑ y)↘2

= (1↑ t)2 ↘p↑ x↘2 + t2 ↘p↑ y↘2 + 2t (1↑ t) ′p↑ x, p↑ y∞ .

On the other hand,

↘x↑ y↘2 = ↘x↑ p+ p↑ y↘2 = ↘p↑ x↘2 + ↘p↑ y↘2 ↑ 2 ′p↑ x, p↑ y∞ .

Putting the above two displays together yields

↘p↑ 5(t)↘2 = (1↑ t)2 ↘p↑ x↘2 + t2 ↘p↑ y↘2

+ t (1↑ t)

↘p↑ x↘2 + ↘p↑ y↘2 ↑ ↘x↑ y↘2

]

= (1↑ t) ↘p↑ x↘2 + t ↘p↑ y↘2 ↑ t (1↑ t) ↘x↑ y↘2 .

It remains to show that 5 is unique. To that end, let 5⇒ by any constant-
speed geodesic joining x to y and fix t ↗ [0, 1]. Apply the above identity
to p = 5⇒(t) to get
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↘5⇒(t)↑5(t)↘2 = (1↑ t) ↘5⇒(t)↑x↘2+ t ↘5⇒(t)↑y↘2↑ t (1↑ t) ↘x↑y↘2 .

Since 5⇒ is a constant-speed geodesic joining x to y, we have by Propo-
sition 7.4 that ↘5⇒(t)↑ x↘ = t ↘x↑ y↘ and ↘5⇒(t)↑ y↘ = (1↑ t) ↘x↑ y↘.
Therefore

↘5⇒(t)↑ 5(t)↘2 =
(
(1↑ t) t2 + t (1↑ t)2 ↑ t (1↑ t)

)
↘x↑ y↘2 = 0 ,

so that 5⇒ = 5. ↙∝

Lemma 7.10 involves only squared distances and can be directly
stated in geodesic spaces. It turns out that this generalization gives a
useful characterization of NNC or NPC spaces. Note that this charac-
terization does not extend to the cases where the reference space is not
flat (i.e., curvature bounded by a non-zero quantity).

Proposition 7.11. Let (S, d) be a geodesic space. Then curv(S) ∈ 0 if
and only if for triangle {p, x, y} ↗ S and any constant-speed geodesic 5
joining x to y, we have

d
2(p,5(t)) ∈ (1↑ t) d2(p, x) + t d2(p, y)↑ t (1↑ t) d2(x, y) ≃ t ↗ [0, 1] .

(7.10)
We have curv(S) → 0 if and only if the same statement holds with the
opposite inequality.

Proof. Consider a triangle {p, x, y} together with a comparison triangle
{p̄, x̄, ȳ} ↗ R2.

Assume that curv(S) ∈ 0 in the sense of Definition 7.9. Then for
any constant-speed geodesic 5 that connects x to y and 5̄ the unique
constant-speed geodesic that connects x̄ to ȳ, we have by Definition 7.9
and Lemma 7.10 respectively that

d
2(p,5(t)) ∈ ↘p̄↑ 5̄(t)↘2

= (1↑ t) ↘p̄↑ x̄↘2 + t ↘p̄↑ ȳ↘2 ↑ t (1↑ t) ↘x̄↑ ȳ↘2

= (1↑ t) d2(p, x) + t d2(p, y)↑ t (1↑ t) d2(x, y) .

To prove the converse, note that (7.10) yields

d
2(p,5(t)) ∈ (1↑ t) d2(p, x) + t d2(p, y)↑ t (1↑ t) d2(x, y)

= (1↑ t) ↘p̄↑ x̄↘2 + t ↘p̄↑ ȳ↘2 ↑ t (1↑ t) ↘x̄↑ ȳ↘2

= ↘p̄↑ 5̄(t)↘2 ,

by Lemma 7.10 so that Definition 7.9 holds. ↙∝
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Remark 7.12. Comparing with the definition of 3-convexity in Ap-
pendix A, we see that 1

2
↘p↑·↘2 is 1-strongly convex in any Hilbert space.

Similarly, (S, d) is an NPC space if and only if 1

2
d
2(p, ·) is 1-strongly

convex along the geodesics of (S, d). The notion of geodesic convexity
was also used in Section 5.2, but here we work in the more general
setting of geodesic spaces.

A geodesic space (S, d) with any curvature bound is called an Alexan-
drov space. If curv(S) → . for some . ↗ R, then (S, d) is sometimes
called a CAT(.) space in reference to E. Cartan, A. D. Alexandrov,
and V. A. Toponogov. As noted before, a CAT(0) space is also referred
to as an NPC (non-positively curved) or sometimes Hadamard space.
If curv(S) ∈ 0 we call the space non-negatively curved or NNC. It is
worth noting that the previous definitions are of global nature as they
require comparison inequalities to be valid for all triangles (that admit
a comparison triangle in the relevant model space). Some definitions
of curvature require the previous comparison inequalities to hold only
locally. The local validity of these comparison inequalities is known,
under suitable conditions depending on the value of ., to imply their
global validity (globalization theorems).

We conclude this subsection by giving a third equivalent definition
of non-negative curvature.

Proposition 7.13. Let (S, d) be a geodesic space. Then curv(S) ∈ 0 if
and only if for any triangle {p, x, y} ↖ S, comparison triangle {p̄, x̄, ȳ} ↖
M0, and any constant-speed geodesics 5,5⇒, 5̄, 5̄⇒ joining p to x, p to y,
p̄ to x̄, and p̄ to ȳ respectively, we have

d
2(5(s),5⇒(t)) ∈ ↘5̄(s)↑ 5̄⇒(t)↘2 , ≃ s, t ↗ [0, 1] . (7.11)

We have curv(S) → 0 if and only if the same statement holds with the
opposite inequality.

Proof. Assume first that curv(S) ∈ 0 and observe that by Proposi-
tion 7.11 and Definition 7.9 respectively, it holds

d
2(5(s),5⇒(t)) ∈ (1↑ s) d2(p,5⇒(t)) + s d2(x,5⇒(t))↑ s (1↑ s) d2(p, x)

∈ (1↑ s) ↘p̄↑ 5̄⇒(t)↘2 + s ↘x̄↑ 5̄⇒(t)↘2 ↑ s (1↑ s) ↘p̄↑ x̄↘2 .

The right-hand side of the above inequality is precisely ↘5̄(s)↑ 5̄⇒(t)↘2
by Lemma 7.10. We have proved (7.11).
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Conversely, let 5x,5⇒
x be constant-speed geodesics joining x to y and

x to p, respectively, and let 5̄x̄, 5̄⇒
x̄ be constant-speed geodesics joining

x̄ to ȳ and x̄ to p̄ respectively. Then, taking s = 1 in (7.11), we get for
any t ↗ [0, 1],

d
2(p,5x(t)) = d

2(5⇒
x(1),5x(t))

∈ ↘p̄↑ 5̄x̄(t)↘2

= (1↑ t) ↘p̄↑ x̄↘2 + t ↘p̄↑ ȳ↘2 ↑ t (1↑ t) ↘x̄↑ ȳ↘2

= (1↑ t) d2(p, x) + t d2(p, y)↑ t (1↑ t) d2(x, y) ,

which is the characterization of curv(S) ∈ 0 from Proposition 7.11.
The proof for curv(S) → 0 follows using the same argument. ↙∝

7.2.2 Curvature of the Wasserstein space

Note that if d = 1, the space P2(R) equipped with the Wasserstein
distance is actually flat.

Proposition 7.14.The space W2(R) is flat in the sense that

curv(W2(R)) → 0 and curv(W2(R)) ∈ 0

and it can be isometrically embedded into a Hilbert space.

Proof. Recall from Proposition 1.18 that for any µ, ε ↗ W2,ac, it holds

W 2

2 (µ, ε) =

∫
1

0

|F †
µ(u)↑ F †

ω (u)|2 du = ↘F †
µ ↑ F †

ω↘2 ,

where ↘ · ↘ := ↘ · ↘L2([0,1]). In particular, the map µ △↔ F †
µ is an isometry

from W2,ac to L2([0, 1]).
Let now 5 be a constant-speed geodesic that connects µ to ε and

recall from Proposition 1.18 and Theorem 7.6 that 5 is uniquely char-
acterized by the fact that if V = (1 ↑ t)F †

µ(U) + t F †
ω (U), where

U ↓ Unif([0, 1]), then W ↓ 5(t). It yields that for any v ↗ R,

P(V → v) = P
(
(1↑ t)F †

µ(U) + t F †
ω (U) → v

)
=

(
(1↑ t)F †

µ + t F †
ω

)†
(v) .

Hence,
F †
◁(t)

= (1↑ t)F †
µ + t F †

ω .
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Next, let φ ↗ W2 and t ↗ [0, 1]. Since L2(R) is a Hilbert space, we
get from Lemma 7.10 that

W 2

2 (φ,5(t)) = ↘F †
2 ↑ F †

◁(t)
↘2 = ↘F †

2 ↑ (1↑ t)F †
µ ↑ t F †

ω↘2

= (1↑ t) ↘F †
2 ↑ F †

µ↘2 + t ↘F †
2 ↑ F †

ω↘2 ↑ t (1↑ t) ↘F †
µ ↑ F †

ω↘2

= (1↑ t)W 2

2 (φ, µ) + tW 2

2 (φ, ε)↑ t (1↑ t)W 2

2 (µ, ε) .

This completes the proof that curv(W2,ac(R)) = 0. In turn, one can
show that this implies curv(W2(R)) = 0 as well. ↙∝

More generally, for any d ∈ 1, W2(Rd) is positively curved as indi-
cated by the theorem below.

Theorem 7.15. The 2-Wasserstein space W2 is non-negatively curved,

curv(W2) ∈ 0 ,

i.e., for any µ, ε, φ ↗ W2 and any constant-speed geodesic 5 that connects
µ to ε, it holds

W 2

2 (φ,5(t)) ∈ (1↑ t)W 2

2 (φ, µ) + tW 2

2 (φ, ε)↑ t (1↑ t)W 2

2 (µ, ε) .

Proof. Let ϖ ↗ #µ,ω be an optimal coupling and recall from Theorem 7.6
that for any t ↗ [0, 1], 5(t) = (↼t)#ϖ where ↼t(x, y) = (1↑ t)x+ t y. In
particular, if (X,Y ) ↓ ϖ, then Vt := (1 ↑ t)X + t Y ↓ 5(t). Next, let
ϖt ↗ #◁(t),2 be an optimal coupling between 5(t) and φ. In particular, it
induces a conditional distribution on Z ↓ φ given Vt. We have described
a joint distribution * for (X,Y, Z) that has marginals µ, ε, and φ
respectively (the reader will have recognized a variant of the gluing
lemma, Lemma B.5).

With this notation, we have

W 2

2 (φ,5(t)) =

∫
↘z ↑ v↘2 ϖt(dx, dv)

=

∫
↘z ↑ (1↑ t)x↑ t y↘2*(dx, dy, dz) .

Next, observe that by Lemma 7.10 applied to H = Rd, we have

↘z↑ (1↑ t)x↑ t y↘2 = (1↑ t) ↘z↑ x↘2 + t ↘z↑ y↘2 ↑ t (1↑ t) ↘x↑ y↘2 ,

so that
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W 2

2 (φ,5(t)) =

∫ 
(1↑ t) ↘z ↑ x↘2 + t ↘z ↑ y↘2

↑ t (1↑ t) ↘x↑ y↘2
]
*(dx, dy, dz)

∈ (1↑ t)W 2

2 (φ, µ) + tW 2

2 (φ, ε)

↑ t (1↑ t)

∫
↘x↑ y↘2*(dx, dy, dz)

= (1↑ t)W 2

2 (φ, µ) + tW 2

2 (φ, ε)↑ t (1↑ t)W 2

2 (µ, ε) ,

where in the inequality, we used the suboptimality of the first two
couplings and in the last equality, we used the optimality of the coupling
between µ and ε induced by *. ↙∝

7.3 Tangent cones

A geodesic space has a priori no di”erentiable structure but a surrogate
for it may be built. It starts from the notion of angle which can be
defined on any metric space by analogy to the Hilbert case, akin to
our definition of curvature bounds. When applied to a geodesic space,
angles allow us to define the notion of direction, which can be thought
of as the initial velocity of a constant-speed geodesic. The collection of
such directions forms the tangent cone.

7.3.1 Angles

We first define angles on a metric space and show that they provide
alternative characterizations of curvature bounds for geodesic spaces.

Recall that for any three points p, x, y ↗ R2, the cosine of the angle
↬p(x, y), formed by vectors ↑↔p x and ↑↔p y is given by

cos↬p(x, y) =
′x↑ p, y ↑ p∞
↘x↑ p↘ ↘y ↑ p↘ .

Note that

↑2 ′x↑ p, y ↑ p∞ = ↘(x↑ p)↑ (y ↑ p)↘2 ↑ ↘x↑ p↘2 ↑ ↘y ↑ p↘2

= ↘x↑ y↘2 ↑ ↘x↑ p↘2 ↑ ↘y ↑ p↘2 .

Therefore, we can rewrite this definition only in terms of squared
distances to obtain
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cos↬p(x, y) =
↘x↑ p↘2 + ↘y ↑ p↘2 ↑ ↘x↑ y↘2

2 ↘x↑ p↘ ↘y ↑ p↘ .

This definition generalizes to any metric space.

Definition 7.16. Let (S, d) be a metric space and for any triangle
{p, x, y} in S, define the angle ↬p(x, y) ↗ [0,↼] at p by

cos↬p(x, y) :=
d
2(p, x) + d

2(p, y)↑ d
2(x, y)

2 d(p, x) d(p, y)
.

Similar comparisons may be made with model spaces M3 for . ⇐= 0
but are beyond the scope of these lectures.

The next result presents a characterization of positively curved spaces
in terms of the angle monotonicity.

Proposition 7.17(Angle monotonicity). Let (S, d) be a geodesic
space. Then, curv(S) ∈ 0 in the sense of Definition 7.9, if and only if
for any triangle {p, x, y} in S and any geodesics 5 and 5⇒ joining p to
x and p to y respectively, the function

(s, t) ↗ [0, 1]2 △↔ ↬p(5(s),5
⇒(t))

is non-increasing in each variable when the other is fixed.

Proof. Assume first that curv(S) ∈ 0 and consider a triangle {p, x, y}
in S and constant-speed geodesics 5 and 5⇒ joining p to x and p to y
respectively. It is enough to prove that, for all (s, t) ↗ [0, 1]2,

cos↬p(5(s),5
⇒(t)) → cos↬p(x, y) .

Let {p̄, x̄, ȳ} be a comparison triangle for {p, x, y} in M0 = R2 and let
5̄ and 5̄⇒ be constant-speed geodesics in M0 connecting p̄ to x̄ and ȳ
respectively. It holds

cos↬p(5(s),5
⇒(t)) =

d
2(p,5(s)) + d

2(p,5⇒(t))↑ d
2(5(s),5⇒(t))

2 d(p,5(s)) d(p,5⇒(t))

=
s2 d2(p, x) + t2 d2(p, y)↑ d

2(5(s),5⇒(t))

2st d(p, x) d(p, y)

=
s2 ↘p̄↑ x̄↘2 + t2 ↘p̄↑ ȳ↘2 ↑ d

2(5(s),5⇒(t))

2st ↘p̄↑ x̄↘ ↘p̄↑ ȳ↘

→ s2 ↘p̄↑ x̄↘2 + t2 ↘p̄↑ ȳ↘2 ↑ ↘5̄(s)↑ 5̄⇒(t)↘2

2st ↘p̄↑ x̄↘ ↘p̄↑ ȳ↘



220 7 Metric geometry of the Wasserstein space

=
↘p̄↑ 5̄(s)↘2 + ↘p̄↑ 5̄⇒(t)↘2 ↑ ↘5̄(s)↑ 5̄⇒(t)↘2

2 ↘p̄↑ 5̄(s)↘ ↘p̄↑ 5̄⇒(t)↘
= cos↬p̄(5̄(s), 5̄

⇒(t))

= cos↬p̄(x̄, ȳ)

= cos↬p(x, y) ,

where in the inequality we used the fact that curv(S) ∈ 0 and Propo-
sition 7.13. This completes the proof that the curvature lower bound
implies angle monotonicity.

Conversely, assume that for any triangle {p, x, y} in S, any constant-
speed geodesics 5 and 5⇒ connecting p to x and p to y respectively, and
all (s, t) ↗ [0, 1]2, we have

cos↬p(5(s),5
⇒(t)) → cos↬p(x, y) .

Then, the first part of the proof implies that

d
2(5(s),5⇒(t)) ∈ ↘5̄(s)↑ 5̄⇒(t)↘2 , ≃ (s, t) ↗ [0, 1]2

with the same notation as above, which is the characterization of
curv(S) ∈ 0 from Proposition 7.13. ↙∝

7.3.2 Directions

From the notion of angles between points, we can readily define an
angle between constant-speed geodesics.

Let (S, d) be a geodesic space such that curv(S) ∈ 0, p ↗ S, and 5,
5⇒ two constant-speed geodesics connecting p to x and y respectively.
We define the angle between 5 and 5⇒ as

↬(5,5⇒) := lim
s,t∋0

↬p(5(s),5
⇒(t)) .

It follows from Proposition 7.17 that this limit exists under the assump-
tion curv(S) ∈ 0. In fact, under the same assumption,

↬(5,5⇒) = lim
t∋0

↬p(5(t),5
⇒(t)) .

Given a third constant-speed geodesic 5⇒⇒ : [0, 1] ↔ S such that
5⇒⇒(0) = p and 5⇒⇒(1) = z, it can be shown (see Exercise 4) that we have
the triangular inequality
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↬(5,5⇒) → ↬(5,5⇒⇒) + ↬(5⇒⇒,5⇒) , (7.12)

so that ↬ is a pseudo-metric on the set G(p) of all constant-speed
geodesics emanating from p. Next, we define the equivalence relation ↓
on G(p) by

5 ↓ 5⇒ ∋ ↬(5,5⇒) = 0 .

We can turn ↬ into a proper metric (still denoted ↬) on the quotient
G(p)/↓.

Definition 7.18. The space of directions emanating from p is the com-
pletion ($p,↬) of (G(p)/↓,↬). An element of $p is called a direction.

7.3.3 Tangent cone

An analog of a tangent space for geodesic spaces is provided by the
notion of a tangent cone.

Definition 7.19(Tangent cone). Let (S, d) be a geodesic space with
positive curvature and fix p ↗ S. The tangent cone TpS at p is the
Euclidean cone over the space of directions ($p,↬). In other words, TpS
is the metric space:

• whose underlying set consists in equivalence classes in $p ⇒ [0,+⇑)
for the equivalence relation ↓ defined by

(5, s) ↓ (5⇒, t) ∋
{

s = t = 0
or 5 = 5⇒ and s = t

• and whose metric dp is defined

dp((5, s), (5
⇒, t)) :=


s2 + t2 ↑ 2st cos↬(5,5⇒) .

For u = (5, s) and v = (5⇒, t) ↗ TpS, we write ↘u↑ v↘p := dp(u, v),
↘u↘p := dp(op, u), where op = (5, 0) ↗ TpS is the tip of the cone and

′u, v∞p := ↘u↘p ↘v↘p cos↬(5,5⇒) =
1

2

(
↘u↘2p + ↘v↘2p ↑ ↘u↑ v↘2p

)
.

The terminology cone and the notation ↘ · ↘p and ′·, ·∞p introduced
above is justified by the fact that the cone TpS possesses a Hilbert-like
structure described below. As often the case in metric geometry, the
definition of dp comes from rewriting a Euclidean notion using only
notions that exist on a geodesic space, namely distances and angles in
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this case. Indeed, if 5,5⇒ are points on the sphere and (5, s) := s · 5,
(5⇒, t) := t · 5⇒ then it follows from the law of cosines that their squared
distance is given by

↘s · 5 ↑ t · 5⇒↘2 = s2 + t2 ↑ 2st cos↬(5,5⇒) . (7.13)

For a point u = (5, t) and ϱ ∈ 0, we define ϱ ·u := (5,ϱt). Moreover,
it may be checked using the previous definitions that, for any u, v ↗ TpS
and any ϱ ∈ 0, we get

↘ϱ · u↘p = ϱ ↘u↘p and ′ϱ · u, v∞p = ′u,ϱ · v∞p = ϱ ′u, v∞p .

Note that the tangent cone may not be geodesic but in cases when
it is, the sum of points u, v ↗ TpS is defined as the midpoint of 2 · u
and 2 · v as defined in Definition 7.5. In this case, TpS is indeed a cone.

An example to keep in mind is when S is a filled-in square in the
plane R2. Then, the tangent cone at one of the corners of S is “missing”
some directions (the ones that would lead out of S) and is therefore not
a vector space, hence why we do not call it the tangent “space”.

The logarithmic map plays an important role in the sequel. For
all x ↗ S, we denote Mx

p ↖ $p the set of all equivalence classes of
constant-speed geodesics connecting p to x in S. Then for every x ↗ S,
we arbitrarily choose one direction Nxp ↗ Mx

p .

Definition 7.20(Logarithmic map). Let (S, d) be a positively curved
geodesic space. Then, having chosen Nxp ↗ Mx

p for every x ↗ S, the
associated logarithmic map is defined by

logp : x ↗ S △↔ (Nxp , d(p, x)) ↗ TpS .

At this level of generality, the definition of logp(x) depends on the
choice of directions {Nxp , x ↗ S}. This ambiguity may be removed by
restricting the logp map to an appropriate subset, namely the set of
points x ↗ S for which there is only one equivalence class of directions of
constant-speed geodesics connecting p to x. This set might be specified
even more accurately by observing that, in an NNC space S, if constant-
speed geodesics 5 and 5⇒ from p to x satisfy ↬(5,5⇒) = 0, then 5 = 5⇒.
In other words, the set of points x ↗ S for which there is more than
one equivalence class of constant-speed geodesics connecting p to x
is exactly the set of points x connected to p by at least two distinct
constant-speed geodesics. This set of points is denoted C(p) and called
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the cut-locus of p. Then, for any x ↗ S \C(p), logp(x) is defined without
ambiguity as

logp(x) = (5x, d(p, x)) ,

where 5x denotes the unique constant-speed geodesic from p to x there-
fore identified to its direction. With this notation, we get in particular,
for all t ↗ [0, 1] and all x ↗ S \ C(p), that

logp 5x(t) = t logp x .

More generally, if 5 : [0, 1] ↔ S is a constant-speed geodesic in S and p
is such that p = 5(t) for some t ↗ [0, 1], i.e., p is on the geodesic, then

logp 5(s) = (1↑ s) logp 5(0) + s logp 5(1) . (7.14)

In other words, the logarithmic maps turns geodesics into straight lines.
The following result shows that the logp map is expanding in a space

of positive curvature.

Proposition 7.21. Let (S, d) be a geodesic space and p ↗ S be fixed. If
curv(S) ∈ 0, then the logarithmic map is expansive in the sense that
then for all x, y ↗ S,

d(x, y) → ↘logp(x)↑ logp(y)↘p ,

with equality if x = p or y = p.

Proof. Let 5,5⇒ be two constant-speed geodesics connecting p to x and
y respectively. Then if p ⇐= x and p ⇐= y, we have by definition of ↘ · ↘p
and angle monotonicity that for all s, t ↗ [0, 1], it holds

↘logp(x)↑ logp(y)↘2p = d
2

p(logp(x), logp(y))

= d
2(p, x) + d

2(p, y)↑ 2 d(p, x) d(p, y) cos↬(5,5⇒)

∈ d
2(p, x) + d

2(p, y)↑ 2 d(p, x) d(p, y) cos↬p(5(s),5
⇒(t)) .

Applying Definition 7.16, we get

↘logp(x)↑ logp(y)↘2p

∈ d
2(p, x) + d

2(p, y)↑ s2d2(p, x) + t2d2(p, y)↑ d
2(5(s),5⇒(t))

st
.

Letting s = t = 1 yields

↘logp(x)↑ logp(y)↘2p ∈ d
2(x, y) .

It is easy to check the equality cases from the definition of dp. ↙∝
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7.3.4 Tangent cone of the Wasserstein space

Going to the very definition of the tangent cone, we can show that
it takes a very simple form in the Wasserstein case. To that end, let
µ, ε, φ ↗ W2 be three probability distributions. Moreover, let 5ω and 52

be two geodesics in the 2-Wasserstein space W2 joining µ to ε and µ to
φ respectively and recall that the tangent cone at µ is the metric space
of directions at µ equipped with distance dµ such that

d
2

µ

(
(5ω , d(µ, ε)), (52, d(µ, φ))

)

= W 2

2 (µ, ε) +W 2

2 (µ, φ)↑ 2W2(µ, ε)W2(µ, φ) cos↬(5ω ,52) .

What is the angle ↬(5ω ,52) between these two Wasserstein geodesics?
We can carry out a calculation assuming that µ has a density so that
Brenier’s theorem ensures the existence of two optimal transport maps
Tµ↗ω and Tµ↗2 so that

cos↬(5ω ,52) = lim
t∋0

W 2

2
(µ,5ω(t)) +W 2

2
(µ,52(t))↑W 2

2
(5ω(t),52(t))

2W2(µ,5ω(t))W2(µ,52(t))

= lim
t∋0

t2W 2

2
(µ, ε) + t2W 2

2
(µ, φ)↑W 2

2
(5ω(t),52(t))

2t2W2(µ, ε)W2(µ, φ)

=
W 2

2
(µ, ε) +W 2

2
(µ, φ)↑ limt∋0

W
2

2
(◁ω(t),◁ρ(t))

t2

2W2(µ, φ)W2(µ, ε)
.

Lemma 7.22. Let µ ↗ P2,ac(Rd) and denote by Tµ↗ω and Tµ↗2 the
Brenier maps from µ to ε and µ to φ respectively. Then

lim
t∋0

W 2

2
(5ω(t),52(t))

t2
= ↘Tµ↗ω ↑ Tµ↗2↘2L2(µ)

.

Proof. It is easy to show one of the required inequalities. Indeed, let
X ↓ µ and observe that

Xω

t
:= (1↑ t)X + t Tµ↗ω(X) ↓ 5ω(t) ,

X2

t
:= (1↑ t)X + t Tµ↗2(X) ↓ 52(t) .

Therefore,

W 2

2 (5ω(t),52(t)) → E↘Xω

t ↑X2

t
↘2

= t2 E↘Tµ↗ω(X)↑ Tµ↗2(X)↘2
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= t2 ↘Tµ↗ω ↑ Tµ↗2↘2L2(µ)
. (7.15)

To prove the converse, for any t ↗ [0, 1], let *t be the following
coupling between five random variables: (X,Y, Z, Yt, Zt) ↓ *t if

1. X ↓ µ and Y = Tµ↗ω(X) ↓ ε are optimally coupled,
2. Yt = (1↑ t)X + t Y ↓ 5ω(t),
3. Zt ↓ 52(t) and Yt ↓ 5ω(t) are optimally coupled,
4. Zt ↓ 52(t) and Z ↓ φ are are optimally coupled,
5. Zt ↓ 52(t) and X ⇒ ↓ µ are are optimally coupled.

Figure 7.1 indicates that this joint coupling can be realized using the
gluing lemma since the resulting graph is acyclic. Note in particular
that Zt = (1↑ t)X ⇒ + t Z.

X → µ

Y → ϖ Z → ε

Yt → ⇁ω(t) Zt → ⇁ρ(t)

X
↔ → µ

Fig. 7.1. The coupling ”t between (µ, ϖ, ε,⇁ω(t),⇁ρ(t)). Solid lines indicate optimal
couplings. Dashed lines and missing lines indicate potentially suboptimal ones.

We have

W 2

2 (5ω(t),52(t)) = E↘Yt ↑ Zt↘2 = E↘(1↑ t)X + t Y ↑ Zt↘2

= (1↑ t)E↘X ↑ Zt↘2 + tE↘Y ↑ Zt↘2 ↑ t (1↑ t)E↘X ↑ Y ↘2 ,
(7.16)

where we used Lemma 7.10 for H = Rd. Now note that X and Zt are
potentially coupled in a suboptimal way so that

(1↑ t)E↘X ↑ Zt↘2 ∈ (1↑ t)W 2

2 (µ,52(t)) = t2 (1↑ t)W 2

2 (µ, φ) .

Moreover, using Lemma 7.10 again, we get

tE↘Y ↑ Zt↘2 = tE↘Y ↑ (1↑ t)X ⇒ + t Z↘2

= t (1↑ t)E↘Y ↑X ⇒↘2 + t2 E↘Y ↑ Z↘2 ↑ t2 (1↑ t)E↘X ⇒ ↑ Z↘2

∈ t (1↑ t)E↘Y ↑X↘2 + t2 E↘Y ↑ Z↘2 ↑ t2 (1↑ t)E↘X ⇒ ↑ Z↘2 ,
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where in the above inequality, we used the fact that X and Y are
optimally coupled.

Plugging the above two displays in (7.16), we see that the terms in
E↘Y ↑X↘2 can cancel out. We get

W 2

2 (5ω(t),52(t))

∈ t2 (1↑ t)W 2

2 (µ, φ) + t2 E↘Y ↑ Z↘2 ↑ t2 (1↑ t)E↘X ⇒ ↑ Z↘2

= t2 E↘Y ↑ Z↘2 .

Recall from (7.15) that W2(5ω(t),52(t)) = O(t), so that E↘Yt ↑ Zt↘2 =
O(t2). Since

X = (Yt ↑ tY )/(1↑ t) and X ⇒ = (Zt ↑ tZ)/(1↑ t) ,

it implies E↘X ↑X ⇒↘2 = O(t2) as well. Assuming (without justification)
that Tµ↗2 is Lipschitz1

E↘Y ↑ Z↘2 = E↘Tµ↗ω(X)↑ Tµ↗2(X
⇒)↘2

= E↘Tµ↗ω(X)↑ Tµ↗2(X)↘2 ↑O(t) .

This readily yields

lim
t∋0

W 2

2
(5ω(t),52(t))

t2
∈ ↘Tµ↗ω ↑ Tµ↗2↘2L2(µ)

,

which concludes the proof of our Lemma. ↙∝

It follows from Lemma 7.22 that

cos↬(5ω ,52) =
W 2

2
(µ, ε) +W 2

2
(µ, φ)↑ ↘Tµ↗ω ↑ Tµ↗2↘2L2(µ)

2W2(µ, ε)W2(µ, φ)

=
↘Tµ↗ω ↑ id↘2

L2(µ)
+ ↘Tµ↗2 ↑ id↘2

L2(µ)
↑ ↘Tµ↗ω ↑ Tµ↗2↘2L2(µ)

2 ↘Tµ↗ω ↑ id↘L2(µ) ↘Tµ↗2 ↑ id↘L2(µ)

= cos↬(Tµ↗ω ↑ id, Tµ↗2 ↑ id) , (7.17)

where the last cos is understood in the Hilbert space L2(µ).
In turn, the law of cosines (7.13) implies that the metric on the

tangent cone at µ is given by

1 This assumption be lifted via approximation arguments, at the cost of additional
technicalities.
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d
2

µ

(
(5ω , s), (52, t)

)
= s2 + t2 ↑ 2st cos↬(5ω ,52)

= s2 + t2 ↑ 2st cos↬(Tµ↗ω ↑ id, Tµ↗2 ↑ id)

= ↘s (Tµ↗ω ↑ id)↑ t (Tµ↗2 ↑ id)↘2
L2(µ)

.

We have shown that the tangent cone equipped with the metric dµ is
isometric to a Hilbert space. We have proved the following theorem which
we had identified using the formalism of Otto calculus in Section 5.4.

Theorem 7.23. Let µ ↗ P2,ac(Rd). Then the tangent cone TµW2(Rd)
at µ is a convex subset of L2(µ). Moreover, for any ε ↗ P2(Rd), we have

logµ(ε) = Tµ↗ω ↑ id ↗ L2(µ) ,

where Tµ↗ω is the Brenier map from µ to ε.

In cases such as the one above, where the tangent cone TµW2

equipped with ′·, ·∞ from Definition 7.18 is, in fact, a convex subset of a
Hilbert space, we call it, by abuse of notation, the tangent space at µ.
It follows readily from the definition of the logarithmic map that the
inner product ′·, ·∞µ is given for any ε, φ ↗ P2(Rd) by

′logµ(ε), logµ(φ)∞µ = ′Tµ↗ω ↑ id, Tµ↗2 ↑ id∞L2(µ)

=

∫ 〈
Tµ↗ω(x)↑ x, Tµ↗2(x)↑ x

〉
µ(dx) .

7.4 Discussion

§7.1. Wasserstein geodesics are discussed in detail in [Vil03, Chapter
5] and [AGS08, Chapter 7]. More generally, the Wasserstein space over
any length space is also a length space.
§7.2. The non-negative curvature of the Wasserstein space is proven
in [AGS08, Section 7.3]. More generally, the Wasserstein space over a
non-negatively curved Alexandrov space is also non-negatively curved.

The curve in Exercise 2 is called a generalized geodesic and it plays
an important role in the theory of Wasserstein gradient flows, as well
as occasionally in other applications of optimal transport.

As mentioned in the discussion notes for Section 6.1, there is a
notion of synthetic Ricci curvature lower bounds which makes sense
on geodesic spaces. It is a natural to ask whether this notion recovers
the non-negative Alexandrov curvature of the Wasserstein space when
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equipped with an appropriate measure. Unfortunately, [Cho12] shows
that does not yield any finite lower bound even for even for the (flat)
Wasserstein space on the real line.
§7.3. The tangent cone of the Wasserstein space and its relationship to
the tangent space is discussed in [AGS08, Section 12.4].

7.5 Exercises

1. Show that the space of probability measures endowed with MMD
(Definition 2.20) defines a flat geometry.

2. Let µ, ε, φ ↗ P2(Rd). Prove that there exists a curve 5 : [0, 1] ↔
P2(Rd) with 5(0) = µ, 5(1) = ε such that the opposite inequality
to Theorem 7.15 holds, i.e.,

W 2

2 (φ,5(t)) → (1↑ t)W 2

2 (φ, µ) + tW 2

2 (φ, ε)↑ t (1↑ t)W 2

2 (µ, ε) .

Hint : for Xµ ↓ µ, Xω ↓ ε, X2 ↓ φ, optimally couple (Xµ, X2) and
(Xω , X2). Define 5(t) to be the law of a suitable interpolation of Xµ

and Xω . Compare with Exercise 9 from Chapter 5.
3. Generalize the proof of Theorem 7.6 to show that for any p ∈ 1,

the space Pp(Rd) of probability measures with finite p-th moment,
equipped with the p-Wasserstein metric Wp, is a geodesic space.
What are the geodesics?

4. Generalizing Definition 7.19, use the following outline to show that
if (S, d) is a metric space with diameter at most ↼, and cone(S) is
the set X ⇒ [0,⇑) with all points of the form (x, 0) identified, then

d((x, s), (y, t)) :=


s2 + t2 ↑ 2st cos d(x, y)

defines a metric on cone(S). To do so, let (x1, r1), (x2, r2), (x3, r3)
be three points in the cone and construct three points y1, y2, y3 ↗ R2

so that their distances from the origin equal r1, r2, r3 respec-
tively, and so that the angles between y1 and y2, and between
y2 and y3, equal d(x1, x2) and d(x2, x3) respectively. Show that
↘y1 ↑ y2↘ = d((x1, r1), (x2, r2)) and ↘y2 ↑ y3↘ = d((x2, r2), (x3, r3)).
(Caution: ↘y1 ↑ y3↘ does not necessarily equal d((x1, r1), (x3, r3)).)
Now establish the triangle inequality for the cone metric, splitting
into two cases according to whether or not d(x1, x2) + d(x2, x3) → ↼.
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Wasserstein barycenters

Averaging data is among the most fundamental of the statistician’s
tools, but its implementation on non-Euclidean spaces, capturing data
modalities that di”er from the typical vector-valued covariates common
in traditional statistical literature, often requires care. Suppose, for
instance, that our dataset consists of images and we wish to define
a suitable notion of an average image which captures representative
aspects of the whole. This model problem arises in situations such as
the aggregation of information from repeated MRI scans.

We can represent a p-pixel image via its values in the R, G, B
channels for each pixel, thereby considering it as a vector taking values
in {0, 1, . . . , 255}3p. A näıve approach to the averaging problem would
be to simply compute the usual average of these vector representations
of the image. Attempting this method on a few images, however, should
readily convince the reader that this notion of average is unsatisfactory.

A closer inspection of the näıve approach reveals the nature of the
problem: when we average the vector representations of the image, we
tacitly endow the space R3p with the Euclidean geometry, and there is
no reason to expect that this geometry should be compatible with our
embedding of images into R3p. Indeed, the representation of an image
as a vector in R3p is an engineering choice, not an intrinsic quality of
the image. A perhaps more principled approach would be to regard the
images as living in an abstract space S endowed with a metric d which
captures closeness with respect to the attributes we regard as important
for the data under consideration. Our task can then be formulated as
follows: given points x1, . . . , xn inside a metric space (S, d), what is a
suitable notion for the average of x1, . . . , xn?



230 8 Wasserstein barycenters

Fortunately there is a general and useful answer to this question,
which is motivated as follows. It is not hard to see that for x1, . . . , xn
belonging to a Hilbert space H, the average 1

n


n

i=1
xi is characterized

as the unique minimizer of the functional

x △↔ 1

n

n∑

i=1

↘xi ↑ x↘2 .

This formulation only involves squared distances and is amenable to
generalization to metric spaces.

Definition 8.1(Barycenter). Given any probability measure P over
a metric space (S, d), we say that b is a barycenter of P if it is a
minimizer of the functional

b △↔
∫

d
2(b, x)P (dx) .

In particular, if we take P to be an empirical measure 1

n


n

i=1
ϑxi ,

then a barycenter of P is an average of the points x1, . . . , xn. Note that
at this level of generality, a barycenter may not exist, and even if one
exists, it may not be unique.

The case when (S, d) is the Wasserstein space is already of interest
and provides motivation for the theory we develop in this chapter. For
example, Wasserstein barycenters provide a geometrically meaningful
solution to the image averaging problem with which we opened, as well
as to many other problems such as curve registration; see [RPDB12,
CD14, GPC15, SdGP+15, BPC16, PZ16, SLD18, PC19b, LGLR20] and
the references therein. However, since the framework we develop fits
naturally within metric geometry, as developed in Chapter 7, we work
in this setting and specialize later.

Here, we develop statistical theory to justify the use of geometric
averaging methods in practice. Namely, assume that we have i.i.d. data
X1, . . . , Xn drawn from a distribution P over (S, d), and let b- denote
the barycenter of P . This population barycenter is our quantity of
interest and is unknown. In order for the statistical problem to be
well-posed, we always work under assumptions which guarantee that b-

exists and is unique.
There is a natural plug-in estimator for this problem: the barycenter

bn of the empirical measure or the empirical barycenter, defined as the
minimizer of the functional
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b △↔ 1

n

n∑

i=1

d
2(b,Xi) .

Our goal is to quantify the error d(bn, b-) based on natural geometric
features of the space (S, d).

8.1 The Hilbert case

In the case where (S, d) is a Hilbert space, the empirical barycenter
converges at the so-called parametric rate. This is easy to see. To that
end, let H be a Hilbert space and recall that in this case

bn =
1

n

n∑

i=1

Xi , b- = EX =

∫
xP (dx) ,

where we used a Pettis integral to define b-. We have

E↘bn ↑ b-↘2 = 1

n2

n∑

i,j=1

E′Xi ↑ EX,Xj ↑ EX∞

=
1

n
var(X) , where var(X) = E↘X ↑ EX↘2 ,

where we used the independence of the Xi’s and bilinearity of the inner
product. Unfortunately, this proof, while concise and leading to an
equality (!) is not very instructive since it makes crucial use of the
closed form for the barycenter, as well as the inner product structure,
which do not extend beyond Hilbert spaces.

Remarkably, the same parametric rate of estimation for the barycen-
ter continue to hold in NPC spaces, see Exercise 2. Unfortunately, as we
saw in Theorem 7.15, our main space of interest, namely the Wasserstein
space, is an NNC space. Therefore, our goal is to develop statistical
theory for the more di!cult setting of curv ∈ 0.

Returning to the Hilbert case for inspiration, we propose a second
proof which still leads to qualitatively the same result but is o” by a
factor 4. By definition of bn, we have

Pn↘bn ↑ !↘2 → Pn↘b- ↑ !↘2 .
Here and in the sequel, we use the shorthand operator notation: for any
integrable function f , Pf( !) = ∫

f(x)P (dx) and in particular
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Pnf( !) = 1

n

n∑

i=1

f(Xi) , where Pn =
1

n

n∑

i=1

ϑXi

denotes the empirical distribution of the Xi’s.
Next, note that

↘bn ↑ !↘2 = ↘bn ↑ b-↘2 + ↘b- ↑ !↘2 + 2 ′bn ↑ b-, b- ↑ !∞ .
Therefore, applying operator Pn, we get

↘bn ↑ b-↘2 + Pn↘b- ↑ !↘2 + 2Pn′bn ↑ b-, b- ↑ !∞ → Pn↘b- ↑ !↘2 ,
so that

↘bn ↑ b-↘2 → 2Pn′bn ↑ b-, ! ↑ b-∞ .

Now the above inequality simply says that ↘bn ↑ b-↘2 → 2 ↘bn ↑ b-↘2,
which is not very useful but we are going to keep going with it for the
sake of argument.

Note first that by linearity of the inner product

P ′bn ↑ b-, ! ↑ b-∞ = 0 .

Therefore, we have

↘bn ↑ b-↘2 → 2 (Pn ↑P )′bn ↑ b-, !↑ b-∞ = 2 ′bn ↑ b-, (Pn ↑P )( !↑ b-)∞ .

Dividing on both sides by ↘bn ↑ b-↘ and applying the Cauchy–Schwarz
inequality, we get

E↘bn ↑ b-↘2 → 4E↘(Pn ↑ P )( ! ↑ b-)↘2 = 4

n
var(X) . (8.1)

What did we learn in this proof? First we have only an inequality
and lost a factor 4. Our major gain was that we never used the closed
form for bn. Instead, we only used the fact that

E↘(Pn ↑ P )( ! ↑ b-)↘2 → var(X)/n ,

which applies more broadly. On the downside, we used the linearity
of the inner product and more generally the Hilbert structure quite
extensively. It turns out that this is quite necessary to obtain our results.
Therefore, we force the Hilbert structure in through the tangent space
of W2 and keep track of how much we lose.
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8.2 Barycenters on positively curved spaces

Let P be a probability measure on a positively curved geodesic space
(S, d). Let b- be any barycenter of P and let bn be an empirical barycenter
built from n independent copies X1, . . . , Xn of X ↓ P :

b- ↗ argmin
b↑S

∫
d
2(b, x)P (dx) , bn ↗ argmin

b↑S

n∑

i=1

d
2(b,Xi) .

Before we proceed, we discuss our overall approach. The argument
in the Hilbert case rests on the inequality Pnd

2(bn, !) → Pnd
2(b-, !),

which holds true by definition of bn and highlights that the empirical
barycenter is an instance of the empirical risk minimization (ERM)
framework within the statistical estimation literature. Using ERM
techniques, we could hope to control the estimation error via measures
of the “complexity” of the space (S, d), and this approach has been
pursued in the literature (see [ACLGP20]). However, for our application
of interest in which (S, d) is taken to be the Wasserstein space, the
complexity is prohibitively large and it leads to non-parametric rates of
estimation; in particular, they su”er from the curse of dimensionality,
similarly to what we saw in Chapter 2.

However, we have just seen that the rates of estimation in a Hilbert
space escape the curse, despite the fact that Hilbert spaces can even
be infinite-dimensional. Our intuition therefore leads us to believe that,
even if we are working over a curved space (S, d), as long we can restrict
ourselves to su!ciently “flat” parts of S, then perhaps we could recover
the Hilbertian rates. In the sequel, we seek natural geometric conditions—
morally, they encode curvature bounds—which enable fast, parametric
rates of estimation.

8.2.1 Master theorem

We begin with a general result that mimics the proof of Section 8.1 in
the Hilbert case.

Before stating it, we introduce a quantity that measures how much
the tangent space at the barycenter “hugs” the original space at the
barycenter b-.

Definition 8.2(Hugging). Let (S, d) be a geodesic space such that
curv(S) ∈ 0. For any b-, b ↗ S, let hb

b⇁
be the hugging function of S at

b- in direction b defined by
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hbb⇁(x) = 1↑
↘logb⇁(x)↑ logb⇁(b)↘2b⇁ ↑ d

2(x, b)

d2(b, b-)
, x ↗ S . (8.2)

Note that it follows from Proposition 7.21 that hb
b⇁
(x) → 1 for all

x ↗ S. Moreover, if S is a Hilbert space, then ↘logb⇁(x)↑ logb⇁(b)↘2b⇁ =
d
2(x, b) and hb

b⇁
I 1. In general, hb

b⇁
(x) may be negative when there

is a lot of curvature around b- but it remains non-negative in average
when computed at barycenter b-. This result follows from the following
simple but important observation.

Theorem 8.3(Variance equality). Let (S, d) be a geodesic space
with curv(S) ∈ 0. Let Q ↗ P2(S) be a probability distribution on S with
barycenter b-. Assume further that the tangent cone of S at b- equipped
with ′·, ·∞b⇁ is a convex subset of a Hilbert space. Then, for all b ↗ S,

d
2(b, b-)

∫
hbb⇁(x)Q(dx) =

∫
(d2(x, b)↑ d

2(x, b-))Q(dx) , (8.3)

where hb
b⇁

is the hugging function defined in (8.2).

Proof. By definition of hb
b⇁
, we have

d
2(b, b-)hbb⇁( !) = d

2(b, b-) + d
2( !, b)↑ ↘logb⇁ b↑ logb⇁ !↘2b⇁

= d
2(b, b-) + d

2( !, b)
↑ ↘logb⇁ b↘2b⇁ ↑ ↘logb⇁ !↘2b⇁ + 2 ′logb⇁ !, logb⇁ b∞b⇁

= d
2(b, b-) + d

2( !, b)
↑ d

2(b, b-)↑ d
2(b-, !) + 2 ′logb⇁ !, logb⇁ b∞b⇁

= d
2( !, b)↑ d

2( !, b-) + 2 ′logb⇁ !, logb⇁ b∞b⇁ .
Therefore applying the linear operator Q, we get

d
2(b, b-)Qhbb⇁( !) = Qd

2( !, b)↑Qd
2( !, b-) + 2 ′logb⇁ b-, logb⇁ b∞b⇁ ,

where we use the fact that Q logb⇁ ! = logb⇁ b
- or, in other words, that

logb⇁ b
- is the barycenter of (logb⇁)#Q. Indeed, we have by Proposi-

tion 7.21 that for all b ↗ S,

Q↘logb⇁ !↑ logb⇁ b
-↘2b⇁ = Qd

2( !, b-) → Qd
2( !, b) → Q↘logb⇁ !↑ logb⇁ b↘2b⇁

with equality if b = b- so that logb⇁ b
- is a barycenter for (logb⇁)#Q and

therefore Q logb⇁ ! = logb⇁ b
-.

Finally since logb⇁ b
- = ob⇁ is the tip of the tangent cone, we have

↘logb⇁ b-↘b⇁ = 0, which, in turn, yields ′logb⇁ b-, logb⇁ b∞b⇁ = 0. This
completes the proof. ↙∝
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A direct consequence of the variance equality is that if
∫
hb
b⇁
dQ > 0,

then b- is the unique barycenter of Q. Moreover, since the right-hand
side of the variance equality is non-negative by definition of a barycenter
b-, we readily get the following corollary.

Corollary 8.4. Under the same assumptions as Theorem 8.3, we have
for any b ↗ S,

0 →
∫

hbb⇁(x)Q(dx) → 1 .

Moreover, for any b, x ↗ S, we have hb
b⇁
(x) → 1.

It turns out the hugging function at b- plays a key role in obtaining
parametric rates of convergence for empirical barycenters.

Theorem 8.5(Master theorem). Let P be a probability measure on
a NNC geodesic space (S, d) and denote by b- and bn a barycenter of
P and an empirical barycenter respectively. Assume further that the
tangent cone of S at b- equipped with ′·, ·∞b⇁ is a convex subset of a
Hilbert space. Then, the following holds: if for any b ↗ S,

hbb⇁( !) ∈ hmin > 0 , (8.4)

then bn and b- are both unique and

Ed2(bn, b-) →
4◁2

h2
min

n
,

where ◁2 denotes the variance of P defined by

◁2 =

∫
d
2(b-, x)P (dx) . (8.5)

Proof. Note first that uniqueness follows directly from the variance
equality and (8.4).

Next, we start as in the Hilbert case by observing that

Pnd
2(bn, !) → Pnd

2(b-, !) .
It yields

Pnd
2(bn, !)↑ Pn↘logb⇁ bn ↑ logb⇁ !↘2b⇁
+ Pn↘logb⇁ bn ↑ logb⇁ !↘2b⇁ ↑ Pnd

2(b-, !) → 0 .
(8.6)
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We now make use of the fact that the tangent cone has a Hilbert
structure so that

↘logb⇁ bn ↑ logb⇁ !↘2b⇁
= ↘logb⇁ bn↘2b⇁ + ↘logb⇁ !↘2b⇁ ↑ 2 ′logb⇁ bn, logb⇁ !∞b⇁
= d

2(b-, bn) + d
2(b-, !)↑ 2 ′logb⇁ bn, logb⇁ !∞b⇁

where in the second identity, we used twice the equality case in Propo-
sition 7.21. Plugging this into (8.6) yields

d
2(b-, bn) → Pn


↘logb⇁ bn↑logb⇁ !↘2b⇁↑d

2(bn, !)]+2Pn′logb⇁ bn, logb⇁ !∞b⇁ .
Next, by definition of the hugging function, we get

↘logb⇁ bn ↑ logb⇁ !↘2b⇁ ↑ d
2(bn, !) = (1↑ hbn

b⇁
( !)) d2(bn, b-) .

It yields
hmin d

2(bn, b
-) → 2Pn′logb⇁ bn, logb⇁ !∞b⇁ .

The right-hand side is simply an average in a Hilbert space so, dividing
by ↘logb⇁ bn↘b⇁ = d(bn, b-) on both sides and applying Cauchy–Schwarz,
we get

h
2

min Ed2(bn, b-) →
4◁2

n
,

where

◁2 =

∫
↘logb⇁ x↘2b⇁ P (dx) =

∫
d
2(b-, x)P (dx)

as desired. ↙∝

It follows from inspecting the proof of the master theorem that
in order to obtain parametric rates of estimation for b-, it su!ces to
have the weaker condition Pnh

bn
b⇁
( !) ∈ hmin > 0. Since Pn is a random

measure, we prefer not to impose conditions on it and focus instead on
the stronger condition (8.4). We are going to obtain such results using
the notion of extendable geodesics.

8.2.2 Extendable geodesics

We now present a compelling synthetic geometric condition that implies
this lower bound in the context of NNC spaces: the extendability, by
a given factor, of all geodesics emanating from and arriving at the
barycenter b-.
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Definition 8.6(Extendable geodesic). Consider a constant-speed
geodesic 5 : [0, 1] ↔ S. For (ϱin,ϱout) ↗ [0,⇑]2, we say that 5 is
(ϱin,ϱout)-extendable if there exists a path 5+ : [↑ϱin, 1 + ϱout] ↔ S
which agrees with 5 on [0, 1], called an extension of 5, which remains a
geodesic between its endpoints 5+(↑ϱin) and 5+(1 + ϱout).

Before we state the main result of this subsection, we need the
following fact.

Theorem 8.7. Suppose that curv(S) ∈ 0. Let Q ↗ P2(S) be a prob-
ability measure on S with a barycenter b-. Suppose that, for each
x ↗ supp(Q), there exists a constant-speed geodesic 5x : [0, 1] ↔ S
connecting b- to x which is (0,ϱ)-extendable for ϱ > 0. Suppose in
addition that b- remains a barycenter of the distribution Qϑ = (eϑ)#Q
where eϑ(x) = 5+

x (1 + ϱ). Then for all b ↗ S,

Qhbb⇁( !) ∈ ϱ

1 + ϱ
. (8.7)

In particular, it implies that b- is the unique barycenter of Q.

Proof. Fix y ↗ supp(Q) and define yϑ = eϑ(y). Let 5 : [0, 1] ↔ S be a
constant-speed geodesic connecting b- to yϑ. By definition, 5(↽) = y for
↽ = 1/(1 + ϱ). Since curv(S) ∈ 0, we have for any b ↗ S,

d
2(b, y) ∈ (1↑ ↽) d2(b, b-) + ↽ d2(b, yϑ)↑ ↽ (1↑ ↽) d2(b-, yϑ)

=
ϱ

1 + ϱ
d
2(b, b-) +

1

1 + ϱ
d
2(b, yϑ)↑

ϱ

(1 + ϱ)2
d
2(b-, yϑ) .

Next, observe that

d
2(b-, yϑ) = (1 + ϱ)2 d2(b-, y)

so that

ϱ

1 + ϱ
d
2(b, b-) → d

2(b, y) + ϱ d
2(b-, y)↑ 1

1 + ϱ
d
2(b, yϑ)

=
(
d
2(b, y)↑ d

2(b-, y)
)
+ (1 + ϱ) d2(b-, y)↑ 1

1 + ϱ
d
2(b, yϑ) .

(8.8)

Moreover,

(1 + ϱ) d2(b-, y)↑ 1

1 + ϱ
d
2(b, yϑ)
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=
1

1 + ϱ

(
(1 + ϱ)2 d2(b-, y)↑ d

2(b, yϑ)
)

=
1

1 + ϱ

(
d
2(b-, yϑ)↑ d

2(b, yϑ)
)
.

Thus, writing Qϑ := (eϑ)#Q, we get
∫ 

(1 + ϱ) d2(b-, y)↑ 1

1 + ϱ
d
2(b, yϑ)


Q(dy)

=
1

1 + ϱ

∫ (
d
2(b-, y)↑ d

2(b, y)
)
Qϑ(dy) → 0 ,

where in the last inequality, we used the fact that b- remains a barycenter
of Qϑ. Together with (8.8) integrated with respect to Q, we get

ϱ

1 + ϱ
d
2(b, b-) →

∫ (
d
2(b, y)↑ d

2(b-, y)
)
Q(dy) . (8.9)

Combined with the variance equality (Theorem 8.3), this completes the
proof. ↙∝

The above notion of extendable geodesics gives a lower bound on
Phb

b⇁
( !) uniformly in b. While this is already an attractive feature that

implies uniqueness of the barycenter, it su”ers from two deficiencies.
First, we need to control Pnh

bn
b⇁
( !) and bn is data-dependent, and it is

unclear how to control the deviation |Pnh
bn
b⇁
↑Phbn

b⇁
| in a suitable fashion.

Second, the condition that Pϑ = (eϑ)#P keeps the same barycenter is
di!cult to check and appears to be restrictive.

To overcome both limitations, we allow for geodesics emanating from
b- to be extendable in both directions.

Theorem 8.8. Suppose that curv(S) ∈ 0 and let x, b, b- ↗ S. Suppose
that there exist ϱin,ϱout > 0 and a geodesic connecting b- to x which is
(ϱin,ϱout)-extendable. Then

hbb⇁(x) ∈ hmin =
ϱout

1 + ϱout

↑ 1

ϱin

.

Proof. Let 5x : [0, 1] ↔ S be a (ϱin,ϱout)-extendable geodesic connect-
ing b- to x and denote by 5+

x : [↑ϱin, 1 + ϱout] ↔ S its extension. Let
z = 5+

x (↑4) where 4 = ϱin/(1 + ϱout) and consider the measure Q
defined by

Q :=
4

1 + 4
ϑx +

1

1 + 4
ϑz .



8.2 Barycenters on positively curved spaces 239

Since Q is supported on 5+ we can easily compute its barycenter. Indeed,
note that x = 5+

x (1) so the barycenter of Q is given by

5+

x

(
1 · 4

1 + 4
↑ 4 · 1

1 + 4

)
= 5+(0) = b- .

Now, we wish to apply Theorem 8.7 to Q. To that end, note that
the constant-speed geodesics 5x connecting b- to x and ◁ connecting b-

to z and defined by ◁(t) = 5+
x (↑t4) are both (0, 1 + ϱout)-extendable

by assumption and by construction respectively.
Finally, we check that b- remains a barycenter of the probability

measure Qϑout
= (eϑout

)#Q where eϑout
(x) = 5+

x (1 + ϱout). Indeed, by
construction, Qϑout

is the two-point probability measure given by

Qϑout
=

4

1 + 4
ϑ◁+(1+ϑout)

+
1

1 + 4
ϑ◁+(→ϑin)

.

Therefore, the barycenter is given by

5+
(
(1 + ϱout) ·

4

1 + 4
↑ ϱin ·

1

1 + 4

)

= 5+
( (1 + ϱout)ϱin

1 + ϱin + ϱout

↑ ϱin (1 + ϱout)

1 + ϱin + ϱout

)
= 5+(0) = b- .

As a result, Theorem 8.7 implies that

ϱout

1 + ϱout

→ Qhbb⇁( !) = 4

1 + 4
hbb⇁(x) +

1

1 + 4
hbb⇁(z)

→ 4

1 + 4
hbb⇁(x) +

1

1 + 4
,

where we used Corollary 8.4 to bound hb
b⇁
(z) → 1 for all b, z ↗ S.

Hence, we obtain

hbb⇁(x) ∈
1 + 4

4

 ϱout

1 + ϱout

↑ 1

1 + 4



=
1 + 4

4

ϱout

ϱin

4 ↑ 1

1 + 4



=
ϱout

ϱin

(1 + 4)↑ 1

4

=
ϱout

ϱin

+
ϱout

ϱin

· ϱin

1 + ϱout

↑ 1 + ϱout

ϱin

=
ϱout

1 + ϱout

↑ 1

ϱin

,

which completes the proof. ↙∝
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Note that Theorem 8.8 gives a lower bound on hb
b⇁
(x) that is uniform

in both b and x. It is of course possible to make this result depend on x
only and get a result of the form

hbb⇁(x) ∈
ϱout(x)

1 + ϱout(x)
↑ 1

ϱin(x)
.

If we assume that

P
 ϱout( !)
1 + ϱout( !) ↑ 1

ϱin( !)

> 0 ,

then standard concentration tools ensure that Pnh
bn
b⇁
( !) > 0 for n large

enough as desired.
Instead of going into these details, let us inspect the uniform bound

more closely. From the master theorem, and Theorem 8.8, we get the
following corollary.

Corollary 8.9. Let P be a probability measure on an NNC geodesic
space (S, d) and denote by b- and bn a barycenter of P and an empirical
barycenter respectively. Assume that the tangent cone of at b- equipped
with ′·, ·∞b⇁ is a convex subset of a Hilbert space. Moreover, let ϱin,ϱout ↗
[0,⇑] be such that

h :=
ϱout

1 + ϱout

↑ 1

ϱin

> 0

and assume further that for any x ↗ supp(P ), there exists a geodesic
connecting b- to x that is (ϱin,ϱout)-extendable. Then b- is unique and
the empirical barycenter satisfies

E

d
2(bn, b

-)
]
→ 4◁2

hn

where ◁2 denotes the variance of P that is defined in (8.5).

As a result, we get parametric rates when geodesics may be su!-
ciently extended. In particular, if S is a Hilbert space, then all geodesics
are infinitely extendable. Therefore h = 1 and we recover (8.1).

8.3 Parametric rates for Wasserstein barycenters

To conclude these notes, we study Wasserstein barycenters as an example.
Note that our result readily applies to this case. One may ask the
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question: how does the condition of extendable geodesics translate in
terms of optimal transport? It turns out that it can be characterized in
terms of regularity conditions on the Brenier maps.

Theorem 8.10. Let µ, ε ↗ W2 be two probability measures such that
µ has a density and let ϕ : Rd ↔ R be the convex function defined by
ϕ(x) = (↘x↘2 ↑ f(x))/2, where f is the Kantorovich potential given
in Definition 1.15. In particular, ∀ϕ is defined µ-almost surely and
is the Brenier map. Recall that the unique constant-speed geodesic 5
connecting µ to ε is given by 5(t) = ((1 ↑ t) id + t∀ϕ)#µ. Then, for
any ϱ > 0, 5 is (0,ϱ)-extendable if and only if ϕ is ϑ

1+ϑ
-strongly convex.

Proof. Assume first that 5 is (0, 1 + ϱ)-extendable and let

5+ : [0, 1 + ϱ] ↔ W2

denote its extension. Let Yϑ ↓ 5+(1 + ϱ) and observe that there exists
a convex function ϕϑ defined µ-almost everywhere such that Yϑ =
∀ϕϑ(X), where X ↓ µ. Moreover, since 5+ is a geodesic and ∀ϕ(X) ↓
5+(1), we also have

∀ϕ(X) =
ϱ

1 + ϱ
X +

1

1 + ϱ
Yϑ ,

so that Yϑ = ∀ϕϑ(X) = (1 + ϱ)∀ϕ(X)↑ ϱX. In particular, it means
that we can choose

ϕ(x) =
1

1 + ϱ
ϕϑ(x) +

ϱ

2 (1 + ϱ)
↘x↘2 .

Since ϕϑ is convex, so is ϕϑ/(1 + ϱ) and the above display implies that
ϕ is ϑ

1+ϑ
-strongly convex.

Conversely, assume that ϕ is ϑ

1+ϑ
-strongly convex and define Yϑ =

(1 + ϱ)∀ϕ(X)↑ ϱX where X ↓ µ. We are going to show that Yϑ and
X are optimally coupled. To that end, note that Yϑ = ∀ϕϑ(X) where

ϕϑ(x) = (1 + ϱ)ϕ(X)↑ ϱ

2
↘x↘2 .

Since ϕ is ϑ

1+ϑ
-strongly convex, ϕϑ is convex and thus ∀ϕϑ is the

Brenier map. It follows that Yϑ and X are optimally coupled so that
5+ : [0, 1 + ϱ] ↔ W2 defined by



242 8 Wasserstein barycenters

5+(t) =

id +

t

1 + ϱ
(∀ϕϑ ↑ id)



#

µ

is a geodesic connecting µ and the distribution of Yϑ such that 5+(t) =
5(t) for t ↗ [0, 1]. Therefore 5 is (0, 1 + ϱ)-extendable. ↙∝

Recall that if µ and ε both have a density such that the Brenier map
from µ to ε is given by ∀ϕ, then the Brenier map from ε to µ is given
by ∀ϕ⇓. Therefore, if ϕ is ,-smooth in the sense that for any x, y ↗ Rd,

ϕ(x)↑ ϕ(y) → ′∀ϕ(y), x↑ y∞+ ,

2
↘x↑ y↘2 ,

then ϕ⇓ is 1/,-strongly convex (see Lemma A.9), which, in turn implies
that the geodesic connecting ε to µ is (0, 1

4+1
)-extendable.

These facts yield the following theorem but we provide an alternate,
more direct, proof.

Theorem 8.11. Let P be a probability measure on W2 with a barycenter
b- that admits a density. Assume further that for any µ ↗ supp(P ) the
Brenier map from b- to µ is 3-strongly convex and ,-smooth with ,↑3 ↗
[0, 1). Then b- is unique and the empirical Wasserstein barycenter bn
satisfies

E

W 2

2 (bn, b
-)
]
→ 4◁2

(1↑ (, ↑ 3))2 n
.

Proof. For any µ ↗ supp(P ), let ϕ be such that ∀ϕ is the Brenier map
from b- to µ. For any b, µ ↗ W2, let X,X ⇒ ↓ µ, Y, Y ⇒ ↓ b and Z,Z ⇒ ↓ b-.
In view of the gluing lemma, we may assume that (X,Z) and (Y, Z)
are optimally coupled whereas we assume that (X ⇒, Y ⇒) and (X ⇒, Z ⇒) are
optimally coupled.

Note that rearranging terms in the definition of the hugging function,
our goal is to prove that

E↘X ↑ Y ↘2 → E↘X ⇒ ↑ Y ⇒↘2 + (, ↑ 3)E↘Y ↑ Z↘2 . (8.10)

By assumption, for b--almost all z ↗ Rd and any y ↗ Rd, we have

3

2
↘y ↑ z↘2 → ϕ(y)↑ ϕ(z)↑ ′∀ϕ(z), y ↑ z∞ → ,

2
↘y ↑ z↘2 . (8.11)

It holds

E↘X ↑ Y ↘2 = E↘X ↑ Z↘2 + E↘Y ↑ Z↘2 + 2E′X ↑ Z,Z ↑ Y ∞
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= E↘X ↑ Z↘2 + E↘Y ↑ Z↘2 ↑ 2E′Z,Z ↑ Y ∞+ 2E′∀ϕ(Z), Z ↑ Y ∞ .
(8.12)

Next, note that on the one hand, it follows from (8.11) that

2E′∀ϕ(Z), Z ↑ Y ∞ → 2Eϕ(Z)↑ 2Eϕ(Y ) + , E↘Y ↑ Z↘2

= 2Eϕ(Z ⇒)↑ 2Eϕ(Y ⇒) + , E↘Y ↑ Z↘2

→ 2E′∀ϕ(Z ⇒), Z ⇒ ↑ Y ⇒∞ ↑ 3E↘Y ⇒ ↑ Z ⇒↘2 + , E↘Y ↑ Z↘2

= 2E′X ⇒, Z ⇒ ↑ Y ⇒∞ ↑ 3E↘Y ⇒ ↑ Z ⇒↘2 + , E↘Y ↑ Z↘2 .

Since E↘Y ⇒ ↑ Z ⇒↘2 ∈ E↘Y ↑ Z↘2, we get,

2E′∀ϕ(Z), Z ↑ Y ∞ → 2E′X ⇒, Z ⇒ ↑ Y ⇒∞+ (, ↑ 3)E↘Y ↑ Z↘2 .

On the other hand,

E↘Y ↑ Z↘2 ↑ 2E′Z,Z ↑ Y ∞ = E↘Y ↘2 ↑ E↘Z↘2 = E↘Y ⇒↘2 ↑ E↘Z ⇒↘2 .

Together, with (8.12), the above two displays yield

E↘X ↑ Y ↘2 → E↘X ⇒ ↑ Z ⇒↘2 + E↘Y ⇒↘2 ↑ E↘Z ⇒↘2

+ 2E′X ⇒, Z ⇒ ↑ Y ⇒∞+ (, ↑ 3)E↘Y ↑ Z↘2

= E↘X ⇒ ↑ Y ⇒↘2 + (, ↑ 3)E↘Y ↑ Z↘2 ,

which completes the proof of (8.10).
We have proved that hb

b⇁
(µ) ∈ 1↑ (, ↑ 3) which, together with the

master theorem, completes the proof. ↙∝

Barycenters are the equivalent of averages on curved spaces. As
such they are the building block of many statistical tools including
regression [CLM23], analysis of variance [DM19], change-point detec-
tion [DM20], discriminant analysis [FCCR18], and principal component
analysis [BGKL17, CSB+18]. Despite initial work, many questions about
the statistical properties of these statistical objects remain to be under-
stood.

8.4 Discussion

§8.1. Beyond the setting of Hilbert spaces, quantitative laws of large
numbers are obtained over Banach spaces in relation to the theory of
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type and cotype, see [LT91]. Also, see the excellent exposition [Stu03]
for barycenters over NPC spaces, from which Exercise 2 is taken.
§8.2. The material in this section is taken from [ACLGP20, LGPRS22].
§8.3. The basic theory of Wasserstein barycenters (existence, duality,
etc.) was developed in [AC11]; see Exercise 3. Statistical consistency
for Wasserstein barycenters was established in [LGL17]. The variance
inequality in Exercise 4 is from [CMRS20].

Substantial attention has also been devoted to the computation of
barycenters. For discrete distributions, the work of [ABA21, ABA22]
established polynomial-time tractability of Wasserstein barycenters
in fixed dimension, and NP-hardness in general dimension; see the
references therein for other approaches, such as parametrization via
neural networks and application of continuous optimization methods.

Another line of work, more closely related to Chapter 5, develops
algorithms for computing the barycenter via gradient methods in the
Wasserstein space [AEdBCAM16, ZP19, CMRS20, ACGS21, BVFRT22,
KDLY22, BRT24]. The descent lemma in Exercise 5 is from [ZP19],
which interpreted the fixed-point approach of [AEdBCAM16] as Wasser-
stein gradient descent.

Barycenters for Gaussians were studied earlier than the general
case, dating back to [KS94, RU02]. Statistical estimation was studied
in [KSS21], and non-asymptotic computational guarantees for Wasser-
stein gradient descent were given in [CMRS20, ACGS21].

Similarly to Chapter 4, one can add entropic regularization to the
Wasserstein barycenter, at the level of the Wasserstein distance or the
barycenter objective or both; see [Kro18, BCP19b, LGYS20, CEK21,
Chi23, VC23].

8.5 Exercises

1. Let P be a distribution over P2(R). Give a closed-form expression
for the W2 barycenter of P in terms of the CDFs of the measures in
suppP .

2. Suppose that P is a probability measure over an NPC space (S, d)
with barycenter b-. It turns out that statistical estimation of barycen-
ters over NPC spaces is far easier, as we demonstrate in this exercise.
a) Show that for any b ↗ S,

P [d2(b, !)↑ d
2(b-, !)] ∈ d

2(b, b-) . (8.13)
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b) Suppose that (Xi)
n

i=1
is an i.i.d. sequence drawn from P and

form the following estimator bn inductively: set b1 = X1, and
for n ∈ 2 let bn := 5bn↑1,Xn(1/n) where 5x,y : [0, 1] ↔ S is the
constant-speed geodesic joining x to y. Prove by induction that
for all n ∈ 1,

Ed2(bn, b-) →
◁2

n
, where ◁2 = Pd

2(b-, !) .
Hint: Apply the NPC inequality from Proposition 7.11 together
with the inequality (8.13).

3. Let µ1, . . . , µn ↗ P2(Rd) and let #(µ1, . . . , µn) denote the set of cou-
plings of µ1, . . . , µn. Consider the multi-marginal optimal transport
problem

min
ε↑!(µ1,...,µn)

∫ n∑

i=1

xi ↑
1

n

n∑

j=1

xj
2 ϖ(dx1, . . . , dxn) .

Let ϖ- denote an optimal solution. Prove that if (X1, . . . , Xn) ↓
ϖ-, then the law of 1

n


n

i=1
Xi is the Wasserstein barycenter of

µ1, . . . , µn.
4. Due to Theorems 8.7 and 8.10, in the case of the Wasserstein space

we know that as long as the transport maps from the barycenter b-

to elements in the support of P are obtained from 3-strongly convex
potentials, and the barycenter of the extended distribution is still
b-, then Phb

b⇁
( !) ∈ 3. It turns out that due to the structure of the

Wasserstein space, the second condition is unnecessary.
To prove this, use the following dual characterization of the Wasser-
stein barycenter: for each µ ↗ supp(P ), ϕµ is such that (∀ϕµ)#b- =

µ, and
∫
(⇑·⇑

2

2
↑ϕµ)P (dµ) = 0. Assume that each ϕµ is 3(µ)-strongly

convex. Use this to show that

ϕ⇓
µ(x) + ϕµ(y) ∈ ′x, y∞+ 3(µ)

2
↘y ↑∀ϕ⇓

µ(x)↘2 .

By integrating this inequality, prove that (8.9) holds with ϑ

1+ϑ

replaced by
∫
3(µ)P (dµ).

5. Let P be a probability measure over W2 and let F : P2(Rd) ↔ R
denote the barycenter functional F(b) := 1

2
PW 2

2
(b, !). Using (5.30),

the Wasserstein gradient of F is given by ∀∀F(b) = id↑PTb↗ !, and
a Wasserstein gradient descent step with step size h > 0 is given by
the iteration b+ := (id↑ h∀∀F(b))#b. Prove the descent lemma
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F(b+)↑ F(b) → ↑h
(
1↑ h

2

)
↘∀∀F(b)↘2b ,

which quantifies the progress made in one step of GD on F. Deduce
that h = 1 is a reasonable choice of step size and write out the form
of the GD updates in this case.

6. Specialize the GD updates (with step size h = 1) from the previous
exercise to the case when P is supported on centered, non-degenerate
Gaussians. In particular, when initialized at a centered Gaussian,
show that all of the iterates are centered Gaussians, and write down
the update equations for the covariance matrix.
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Convex analysis

In this appendix, we provide a quick review of convex analysis. We refer
to the book [Roc97] for a comprehensive treatment.

A.1 Convex functions, subdi”erentials, and duality

Definition A.1. A function f : Rd ↔ R ∃ {⇑} is convex if for all
x, y ↗ Rd and all t ↗ [0, 1],

f((1↑ t)x+ t y) → (1↑ t) f(x) + t f(y) .

Also, a set C ⇔ Rd is convex if for all x, y ↗ Rd and all t ↗ [0, 1],

(1↑ t)x+ t y ↗ C .

The domain of f , dom(f), is the set {f < ⇑} of points where f
takes finite values. If f is convex, then dom(f) is a convex set.

We say that f is proper if it does not take the value ↑⇑ (note that
this is already assumed in the definition of convexity given above) and
it is not identically +⇑. We assume without further mention that the
convex functions we work with are proper. We say that f is closed or
lower semicontinuous if for any sequence xk ↔ x in Rd, it holds that
lim infk↗↘ f(xk) ∈ f(x); equivalently, all of the sublevel sets {f → t}
for t ↗ R are closed.

Suppose that f takes values in R. Then, convexity of f implies
that f is automatically continuous, and in fact locally Lipschitz, hence
di”erentiable almost everywhere by Rademacher’s theorem. If f is
continuously di”erentiable, then convexity of f is equivalent to f always
lying above its tangent line:
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f(y) ∈ f(x) + ′∀f(x), y ↑ x∞ , ≃x, y ↗ Rd . (A.1)

If f is twice continuously di”erentiable, then convexity of f is equivalent
to a condition on its Hessian:

∀2f(x) ℜ 0 , ≃x ↗ Rd .

In general, a convex function may not be di”erentiable. One reason
why di”erentiability can fail is simply because f takes on infinite values
(dom(f) ⇐= Rd). However, as discussed above, f is always di”erentiable
almost everywhere on the interior of its domain. Moreover, we can find a
useful substitute for di”erentiability through the notion of a subgradient,
which is based on the “above tangent line” property encapsulated
in (A.1).

Definition A.2(Subdi”erential). Let f : Rd ↔ R ∃ {⇑} be convex
and let x ↗ Rd. We say that g is a subgradient of f at x if

f(y) ∈ f(x) + ′g, y ↑ x∞ , ≃ y ↗ Rd .

The set of all subgradients of f at x is called the subdi”erential of f at
x, denoted ▷f(x). Also, ▷f := {(x, g) : x ↗ Rd, g ↗ ▷f(x)} is called the
subdi”erential of f .

Importantly, the following lemma holds:

Lemma A.3. If f : Rd ↔ R∃{⇑} is convex and x lies in the interior of
dom(f), then ▷f(x) is non-empty. Also, if f is di!erentiable at x, then
the subdi!erential at x is single-valued and satisfies ▷f(x) = {∀f(x)}.

We next turn towards the crucial concept of duality.

Definition A.4(Convex conjugate). For any function f : Rd ↔
R ∃ {⇑}, we define its convex conjugate1 f⇓ via

f⇓(y) := sup
x↑Rd

{′x, y∞ ↑ f(x)} , y ↗ Rd .

Example A.5. Let A L 0 be a positive definite matrix. Then, the con-
vex conjugate of x △↔ 1

2
′x,Ax∞ is the function y △↔ 1

2
′y,A→1 y∞. See

Lemma A.13 for the proof. The reader is invited to write down other
examples of convex functions and to compute their conjugates.

1 The convex conjugate is also known as the Fenchel–Legendre transform, the Fenchel
dual or variations of these terms.
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As a supremum of a!ne functions, the convex conjugate of f is
always a closed convex function, even if f is not. Conversely, if f is
closed and convex, then f = f⇓⇓.

The inequality f(x) + f⇓(y) ∈ ′x, y∞ is trivial from the definition
of the convex conjugate. However, it is important enough to deserve a
name, and we need the equality case for later use.

Theorem A.6(Fenchel–Young inequality). For a convex function
f : Rd ↔ R ∃ {⇑} and any x, y ↗ Rd,

f(x) + f⇓(y) ∈ ′x, y∞ .

Equality holds if and only if y ↗ ▷f(x).

Note that by symmetry, equality holds if and only if x ↗ ▷f⇓(y). In
particular, when f and f⇓ are di”erentiable, then the subdi”erentials
are single-valued, so that the equality condition reads y = ∀f(x) and
x = ∀f⇓(y). This says that the gradient mappings are inverse to each
other: ∀f⇓ = (∀f)→1.

We conclude this section by proving Rockafellar’s theorem (Theo-
rem 1.10), which characterizes subdi”erentials of closed convex functions
as maximally monotone subsets of Rd ⇒ Rd. In Section 1.4.1, we show
that if ϕ : Rd ↔ R is convex, then its subdi”erential ▷ϕ is cyclically
monotone. Here, we prove the converse.

Proof of Theorem 1.10. Let A be cyclically monotone and fix (x0, y0) ↗
A. Define for any x ↗ Rd the function

ϕ(x) = sup
k⇔0

sup
(xi,yi)↑A
i=1,...,k

{
′x1 ↑ x0, y0∞+ ′x2 ↑ x1, y1∞+ · · ·+ ′x↑ xk, yk∞

}
.

Clearly ϕ is closed and convex as a supremum of a!ne functions.
Moreover, ϕ(x0) → 0 by cyclical monotonicity2 and ϕ(x0) ∈ 0 (take
k = 1 and (x1, y1) = (x0, y0)) so that ϕ(x0) = 0 and ϕ is a proper
convex function. Finally note that for any (x, y) = (xk+1, yk+1) ↗ A
and any z ↗ Rd, it holds

ϕ(z) ∈ sup
k⇔0

sup
(xi,yi)↑A, i=1,...,k

{
′x1 ↑ x0, y0∞+ ′x2 ↑ x1, y1∞+ · · ·

+ ′x↑ xk, yk∞+ ′z ↑ x, y∞
}

= ϕ(x) + ′z ↑ x, y∞ .

Therefore, y ↗ ▷ϕ(x). ↙∝
2 This is in fact the only place we use cyclical monotonicity!
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A.2 Strong convexity and smoothness

Definition A.7.A function f : Rd ↔ R ∃ {⇑} is called 3-convex (for
3 ↗ R) if for all x, y ↗ Rd and all t ↗ [0, 1],

f((1↑ t)x+ t y) → (1↑ t) f(x) + t f(y)↑ 3 t (1↑ t)

2
↘y ↑ x↘2 .

The case when 3 = 0 corresponds to convexity, as in Definition A.1.
When 3 > 0, then f is called strongly convex, and the above inequality
strengthens the usual convexity inequality. When 3 < 0, then f is called
semi-convex.

When f is continuously di”erentiable, 3-convexity is equivalent to
the first statement below. When f is twice continuously di”erentiable,
3-convexity is equivalent to both statements below.

1. f(y) ∈ f(x) + ′∀f(x), y ↑ x∞+ ▷

2
↘x↑ y↘2, for all x, y ↗ Rd.

2. ∀2f(x) ℜ 3I for all x ↗ Rd.

We also formulate the dual property of an upper bound on the second
derivative.

Definition A.8.A continuously di!erentiable function f : Rd ↔ R is
called ,-smooth (, ∈ 0) if for all x, y ↗ Rd,

f(y) → f(x) + ′∀f(x), y ↑ x∞+ ,

2
↘y ↑ x↘2 .

When f is twice continuously di”erentiable, then this is equivalent
to ∀2f(x) D ,I for all x ↗ Rd. If, in addition, f is convex, then
∀2f(x) ℜ 0, so in particular the operator norm of ∀2f(x) is at most
,. In turn, this is equivalent to the ,-Lipschitzness of the mapping
∀f : Rd ↔ Rd (thus, convex and smooth functions are often referred to
as gradient Lipschitz ).

The properties of strong convexity and smoothness are dual. For
simplicity, we state the following lemma assuming that f is continuously
di”erentiable, but the assumptions can be somewhat relaxed.

Lemma A.9. Let f : Rd ↔ R be continuously di!erentiable, convex,
and ↘∀f(x)↘ ↔ ⇑ as ↘x↘ ↔ ⇑. Let 3 > 0. Then, f is 3-strongly
convex if and only if its convex conjugate f⇓ is 1

▷
-smooth.
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Proof. From classical results in convex analysis (see [Roc97, Theorem
25.5, Theorem 26.6, and Lemma 26.7]), under our assumptions, ∀f :
Rd ↔ Rd is a di”eomorphism with inverse ∀f⇓.

(∅) By taking the first-order condition for strong convexity and
adding it to the inequality with x and y interchanged, we obtain

′∀f(x)↑∀f(y), x↑ y∞ ∈ 3 ↘x↑ y↘2 .

Let x = ∀f⇓(x⇒) and y = ∀f⇓(y⇒) and recall also that ∀f ◦ ∀f⇓ = id.
The above inequality yields, for all x⇒, y⇒ ↗ Rd,

′x⇒ ↑ y⇒,∀f⇓(x⇒)↑∀f⇓(y⇒)∞ ∈ 3 ↘∀f⇓(x⇒)↑∀f⇓(y⇒)↘2 .

Applying Cauchy–Schwarz to the left-hand side and rearranging, it
follows that ∀f⇓ is 1

▷
-Lipschitz, which is equivalent to f⇓ being 1

▷
-

smooth, as discussed above.
(F) By smoothness of f⇓,

f(y) = sup
y↔↑Rd

{′y, y⇒∞ ↑ f⇓(y⇒)}

∈ sup
y↔↑Rd


′y, y⇒∞ ↑ f⇓(x⇒)↑ ′∀f⇓(x⇒), y⇒ ↑ x⇒∞ ↑ 1

23
↘y⇒ ↑ x⇒↘2



= ↑f⇓(x⇒) + ′y, x⇒∞+ 3

2
↘y ↑∀f⇓(x⇒)↘2 .

Choose x⇒ = ∀f(x⇒) so that ∀f⇓(x⇒) = x and recall that f(x)+f⇓(x⇒) =
′x, x⇒∞. It yields

f(y)↑ f(x)↑ ′∀f(x), y ↑ x∞ ∈ 3

2
↘y ↑ x↘2 ,

completing the proof. ↙∝

Note that if f , f⇓ are twice continuously di”erentiable, then f
is 3-strongly convex i” ∀2f ℜ 3I, and f⇓ is 1

▷
-smooth i” ∀2f⇓ =

(∀2f)→1 ◦ ∀f⇓ D 3→1I, which provides a more transparent proof.
Strong convexity also implies the following property, which can be

viewed as a strong quantitative form of the principle that locally optimal
points are globally optimal under convexity.

Definition A.10(Polyak–!Lojasiewicz inequality). We say that a
continuously di!erentiable function f : Rd ↔ R satisfies a Polyak–
)Lojasiewicz (P)L) inequality with constant 3 > 0 if for all x ↗ Rd,

↘∀f(x)↘2 ∈ 23 (f(x)↑ inf f) .
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Lemma A.11. If f : Rd ↔ R is continuously di!erentiable and 3-
convex for 3 > 0, then it satisfies a P#L inequality with constant 3.

Proof. Let x- denote the minimizer of f . Then,

inf f = f(x-) ∈ f(x) + ′∀f(x), x- ↑ x∞+ 3

2
↘x- ↑ x↘2 .

By Cauchy–Schwarz and Young’s inequality,

′∀f(x), x- ↑ x∞ ∈ ↑↘∀f(x)↘ ↘x- ↑ x↘

∈ ↑ 1

23
↘∀f(x)↘2 ↑ 3

2
↘x- ↑ x↘2 .

Substituting and rearranging finishes the proof. ↙∝

We also note that strong convexity implies quadratic growth around
the minimizer.

Lemma A.12. If f : Rd ↔ R∃ {⇑} is 3-convex, and if x- denotes the
minimizer of f , then for all x ↗ Rd,

f(x)↑ f(x-) ∈
3

2
↘x↑ x-↘2 . (A.2)

Proof. The strong convexity inequality gives

f((1↑ t)x- + t x) → (1↑ t) f(x-) + t f(x)↑ 3 t (1↑ t)

2
↘x↑ x-↘2 ,

or

0 → f((1↑ t)x- + t x)↑ f(x-)

→ t
[
f(x)↑ f(x-)↑

3 (1↑ t)

2
↘x↑ x-↘2

]
.

Rearranging, dividing by t, and letting t G 0 proves the result. ↙∝

Actually, in Exercise 5 in Chapter 5, we refine this statement to
show that the P)L inequality itself implies the growth inequality (A.2).
We refer the reader to [KNS16, Appendix A] for a concise exposition of
the interplay between these inequalities.
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A.3 Convex conjugate of a quadratic function

In this section we establish the following useful lemma which states that
the convex conjugate of a quadratic function is an explicit quadratic
function.

Lemma A.13. If f(x) = 1

2
xTAx+ bTx for A L 0, then

f⇓(y) =
1

2
(y ↑ b)TA→1(y ↑ b) . (A.3)

If A is not invertible, the same expression holds if we interpret A→1(y↑b)
as the solution to y = Ax+ b if it exists, and f⇓(y) = +⇑ otherwise.

Proof. The definition of f⇓(y) implies

f⇓(y) = sup
x↑Rd


yTx↑ 1

2
xTAx↑ bTx


.

Di”erentiating the objective yields that if a maximizer x- exists, then
it satisfies

y = Ax- + b ,

which yields x- = A→1(y↑ b) if y↑ b ↗ span(A). In this case, we obtain

f⇓(y) = yTx- ↑ 1

2
(x-)TAx- ↑ bTx- =

1

2
(y ↑ b)TA→1(y ↑ b) .

On the other hand, if y ↑ b ⇐↗ span(A), then we can find a vector
z ↗ ker(A) such that zT(y ↑ b) ⇐= 0. Considering x = ϱz for ϱ ↗ R, we
obtain

f⇓(y) ∈ sup
ϑ↑R


yT(ϱz)↑ 1

2
(ϱz)TA(ϱz)↑ bT(ϱz)



= sup
ϑ↑R

ϱzT(y ↑ b) = +⇑ ,

as claimed. ↙∝





B

Probability

In this appendix, we gather together some background material on
probability theory. See, e.g., the textbook [Bil99] for further discussion.

We begin with the notion of convergence of probability measures.

Definition B.1. A sequence of probability measures (µn)n on Rd is
said to converge (weakly) to a probability measure µ if for all bounded
continuous functions f : Rd ↔ R, it holds that

∫
f dµn ↔

∫
f dµ .

For the topology of Rd, we know exactly which subsets are compact:
namely, a set A is compact if and only if it is closed and bounded
(Heine–Borel theorem). This provides a useful criterion for when a
sequence (xn)n in A converges, upon passing to a subsequence, to a
point in A. The following definition and theorem characterize compact
sets of probability measures in the topology of weak convergence.

Definition B.2.A set A of probability measures on Rd is tight if for
all ω > 0, there is a compact set K such that µ(Kc) → ω for all µ ↗ A.

Theorem B.3(Prokhorov’s theorem). Any weakly convergent se-
quence of probability measures is tight. Conversely, any tight sequence
of probability measures has a subsequential weak limit.

Equivalently, a set A of probability measures on Rd is compact if
and only if it is closed and tight.

We omit the proof, but the intuition can be gleaned via a simple
example: on R, let µn = ϑxn for all n, where xn ↔ ⇑; then, (µn)n
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clearly has no weakly convergent subsequence. The condition of tightness
ensures that the mass does not run o” to infinity, and once this is ensured
then a weakly convergent subsequence is guaranteed.

The following theorem provides useful reformulations of weak con-
vergence of measures.

Theorem B.4(Portmanteau theorem). Let (µn)n be a sequence
in P(Rd) and let µ ↗ P(Rd). The following are equivalent.

1. µn ↔ µ weakly.
2.

∫
f dµn ↔

∫
f dµ for all bounded Lipschitz continuous f : Rd ↔ R.

3.
∫
f dµ → lim infn↗↘

∫
f dµn for all lower semicontinuous functions

f : Rd ↔ [0,⇑].
4.

∫
f dµ ∈ lim supn↗↘

∫
f dµn for all upper semicontinuous functions

f : Rd ↔ [↑⇑, 0].
5. µ(G) → lim infn↗↘ µn(G) for all open G ⇔ Rd.
6. µ(F ) ∈ lim supn↗↘ µn(F ) for all closed F ⇔ Rd.
7. limn↗↘ µn(A) = µ(A) for all Borel A ⇔ Rd such that µ(▷A) = 0.

Proof. (1) ∅ (2) is trivial. Also, it is easy to see that (3) is equivalent
to (4) by replacing f by ↑f , and that (5) is equivalent to (6) by taking
complements.

(2) ∅ (3): It is known that one can approximate f from below by a
sequence (fk)k of Lipschitz continuous functions Rd ↔ [0,⇑). For any
k, n ↗ N, it holds that

∫
fk dµn →

∫
f dµn. Taking the limit n ↔ ⇑,

we get
∫
fk dµ → lim infn↗↘

∫
f dµn. Then, take k ↔ ⇑ using the

monotone convergence theorem.
(3) ∅ (5): The indicator function G is lower semicontinuous. Sim-

ilarly, we obtain (4) ∅ (6) since the indicator function F is upper
semicontinuous.

(5) and (6) ∅ (7): The condition µ(▷A) = 0 means that µ(intA) =
µ(A) = µ(A). Applying (5) to the open set intA and (6) to the closed
set A proves (7).

(7) ∅ (1): Let f be bounded and continuous; we may as well assume
f is non-negative. Observe that for t ↗ R, it holds that ▷f→1([t,⇑)) ⇔
f→1({t}), and this set can have positive µ-measure for at most countably
many values of t. Applying (7), we obtain

∫
f dµn =

∫ ↘

0

µn{f ∈ t} dt ↔
∫ ↘

0

µ{f ∈ t} dt =
∫

f dµ ,

where to justify the convergence we can use, e.g., bounded convergence
(since the integral can actually be taken over a finite interval). ↙∝
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The following lemma, as the name suggests, allows us to “glue”
together couplings which share a marginal and is useful for some con-
structions in optimal transport (e.g., the proof of the triangle inequality
for Wasserstein distances in Proposition 1.3).

Lemma B.5(Gluing lemma). Let ϖ and ϖ⇒ be two measures on
Rd ⇒ Rd such that for any Borel set A ↖ Rd, it holds ϖ(Rd ⇒ A) =
ϖ⇒(A⇒Rd), i.e., the second marginal of ϖ coincides with the first marginal
of ϖ⇒. Then there exists three random variables X,Y, Z ↗ Rd such that
(X,Z) ↓ ϖ and (Z, Y ) ↓ ϖ⇒.

Proof. We are going to explicitly construct such a triplet (X,Y, Z). To
that end, let Z be distributed according the second marginal of ϖ (which
corresponds to the first marginal of ϖ⇒ by assumption). Then ϖ (resp.
ϖ⇒) determines the conditional distribution of X (resp. Y ) given Z. For
example, we may draw X and Y to be conditionally independent given
Z. This gives a valid triplet (X,Y, Z). ↙∝

X Z Y
opt opt

Fig. B.1. The diagram above is a convenient way to represent couplings between
multiple random variables. An edge represent the constraint that the coupling needs
to be optimal. In general, any coupling described as a graph with no cycle can be
realized using the gluing lemma.
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can be computed in polynomial time in fixed dimension, Journal of
Machine Learning Research 22 (2021), 1–19.

ABA22. J. M. Altschuler and E. Boix-Adserà, Wasserstein barycenters
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Rodŕıguez-Rodŕıguez, Tests of goodness of fit based on the L2-
Wasserstein distance, Ann. Statist. 27 (1999), 1230–1239.

dBSLNW23. E. del Barrio, A. G. Sanz, J.-M. Loubes, and J. Niles-Weed,
An improved central limit theorem and fast convergence rates for
entropic transportation costs, SIAM J. Math. Data Sci. 5 (2023),
639–669.

BKR14. S. Basu, S. Kolouri, and G. K. Rohde, Detecting and visualizing
cell phenotype di!erences from microscopy images using transport-
based morphometry, Proceedings of the National Academy of Sciences
111 (2014), 3448–3453.

BJL19. R. Bhatia, T. Jain, and Y. Lim, On the Bures–Wasserstein distance
between positive definite matrices, Expo. Math. 37 (2019), 165–191.

BCP19a. J. Bigot, E. Cazelles, and N. Papadakis, Central limit theo-
rems for entropy-regularized optimal transport on finite spaces and
statistical applications, Electron. J. Stat. 13 (2019), 5120–5150.



262 References

BCP19b. J. Bigot, E. Cazelles, and N. Papadakis, Penalization of barycen-
ters in the Wasserstein space, SIAM J. Math. Anal. 51 (2019),
2261–2285.

BGKL17. J. Bigot, R. Gouet, T. Klein, and A. López, Geodesic PCA in
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BPC16. N. Bonneel, G. Peyré, and M. Cuturi, Wasserstein barycentric
coordinates: histogram regression using optimal transport, ACM
Trans. Graph. 35 (2016), 10.

Bon13. N. Bonnotte, Unidimensional and evolution methods for optimal
transportation, Theses, Université Paris Sud – Paris XI; Scuola nor-
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Léo14. C. Léonard, A survey of the Schrödinger problem and some of its
connections with optimal transport, Discrete Contin. Dyn. Syst. 34
(2014), 1533–1574.

LGYS20. L. Li, A. Genevay, M. Yurochkin, and J. M. Solomon, Con-
tinuous regularized Wasserstein barycenters, in Advances in Neural
Information Processing Systems (H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, eds.), 33, Curran Associates,
Inc., 2020, pp. 17755–17765.

Lia21. T. Liang, How well generative adversarial networks learn distribu-
tions, J. Mach. Learn. Res. 22 (2021), Paper No. 228, 41.

LMS16. M. Liero, A. Mielke, and G. Savaré, Optimal transport in compe-
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SP18. S. Singh and B. Póczos, Minimax distribution estimation in Wasser-
stein distance, arXiv preprint 1802.08855 (2018), 1–34.



References 279

SUL+18. S. Singh, A. Uppal, B. Li, C.-L. Li, M. Zaheer, and B. Poc-
zos, Nonparametric density estimation under adversarial losses, in
Advances in Neural Information Processing Systems (S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, eds.), 31, Curran Associates, Inc., 2018.

SS20. J. Sirignano and K. Spiliopoulos, Mean field analysis of neu-
ral networks: a law of large numbers, SIAM Journal on Applied
Mathematics 80 (2020), 725–752.

SdGP+15. J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher,
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E. B. Fox, and R. Garnett, eds.), 2019, pp. 9086–9097.

vdVW23. A. W. van der Vaart and J. A. Wellner, Weak convergence and
empirical processes—with applications to statistics, 2 ed., Springer
Series in Statistics, Springer, Cham, 2023.

vdV98. A. W. van der Vaart, Asymptotic statistics, Cambridge Series in
Statistical and Probabilistic Mathematics 3, Cambridge University
Press, Cambridge, 1998.

VMB+24. A. Vacher, B. Muzellec, F. Bach, F.-X. Vialard, and A. Rudi,
Optimal estimation of smooth transport maps with kernel SoS, SIAM
J. Math. Data Sci. 6 (2024), 311–342.

VC23. T. Vaskevicius and L. Chizat, Computational guarantees for dou-
bly entropic Wasserstein barycenters, in Advances in Neural Infor-
mation Processing Systems (A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, eds.), 36, Curran Associates,
Inc., 2023, pp. 12363–12388.

VSP+17. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin, Attention is all
you need, in Advances in Neural Information Processing Systems
(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), 30, Curran Associates,
Inc., 2017.

Ver18. R. Vershynin, High-dimensional probability, Cambridge Series in
Statistical and Probabilistic Mathematics 47, Cambridge University
Press, Cambridge, 2018, An introduction with applications in data
science, With a foreword by Sara van de Geer.

Vil03. C. Villani, Topics in optimal transportation, Graduate Studies in
Mathematics 58, American Mathematical Society, Providence, RI,
2003.

Vil09a. C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009),
iv+141.

Vil09b. C. Villani, Optimal transport, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]
338, Springer-Verlag, Berlin, 2009, Old and new.

Wai19. M. J. Wainwright, High-dimensional statistics: a non-asymptotic
viewpoint, Cambridge Series in Statistical and Probabilistic Mathe-
matics, Cambridge University Press, 2019.

WJ08. M. J. Wainwright and M. I. Jordan, Graphical models, exponen-
tial families, and variational inference, Foundations and Trends in
Machine Learning 1 (2008), 1–305.



References 281
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