
Promoting Fairness Among Dynamic Agents in
Online-Matching Markets under Known Stationary

Arrival Distributions

Will Ma
Graduate School of Business

Columbia University
New York, NY 10027

wm2428@gsb.columbia.edu

Pan Xu
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ 07102
pxu@njit.edu

Abstract

Online (bipartite) matching under known stationary arrivals is a fundamental model
that has been studied extensively with the objective of maximizing the total number
of customers served. We instead study the objective of maximizing the minimum
matching rate across all online types, which is referred to as long-run (individual)
fairness. For Online Matching under long-run Fairness (OM-LF) with a single
offline agent, we show that the first-come-first-serve (FCFS) policy is 1-competitive,
i.e., matching any optimal clairvoyant. For the general case of OM-LF: We present
a sampling algorithm (SAMP) and show that (1) SAMP is of competitiveness of at
least 1� 1/e and (2) it is asymptotically optimal with competitiveness approaching
one in different regimes when either all offline agents have a sufficiently large
matching capacity, or all online types have a sufficiently large arrival rate, or highly
imbalance between the total offline matching capacity and the number of online
arrivals. To complement the competitive results, we show the following hardness
results for OM-LF: (1) Any non-rejecting policy (matching every arriving online
agent if possible) is no more than 1/2-competitive; (2) Any (randomized) policy is
no more than (

p
3 � 1)-competitive; (3) SAMP can be no more than (1 � 1/e)-

competitive suggesting the tightness of competitive analysis for SAMP. We stress
that all hardness results mentioned here are independent of any benchmarks. We
also consider a few extensions of OM-LF by proposing a few variants of fairness
metrics, including long-run group-level fairness and short-run fairness, and we
devise related algorithms with provable competitive performance.

1 Introduction

In online (bipartite) matching problems, nodes on one side of a bipartite graph are given in advance,
while nodes on the other side arrive one-by-one. We refer to the two sets of nodes as offline and
online agents, respectively. The edges incident to an online agent, which indicate the offline agents
eligible to serve it, are revealed upon its arrival. An online matching algorithm must immediately
serve each arriving agent using up to one eligible and unmatched offline agent; matches once made
cannot be rearranged. The performance of an algorithm is typically evaluated as the total number of
matches made, taking expectations as necessary if there is randomness in the arrivals or the algorithm.
In this paper, we study online matching problems where performance is instead determined by the
fairness in service provided to different online agent types.

Online Matching under Long-Run Fairness (OM-LF). Suppose there is a bipartite graph G =

(I, J, E), where I and J denote the sets of types for offline and online agents, respectively. Here each

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

online type is defined based on certain attributes, e.g., race and/or gender identity, which are observed
upon arrival. For an offline agent (of type) i 2 I , let Ni ✓ J denote the “neighboring” online types
that i is eligible to serve. Similarly, for an online agent (of type) j 2 J , let Nj ✓ I denote the offline
agent types eligible to serve j.1 Each offline type i 2 I has an integer capacity bi � 1 indicating the
maximum number of online agents (with types in Ni) that i can serve.2 (Arriving Process). Agents
of each online type j 2 J arrive according to an independent Poisson process with homogeneous rate
�j > 0, over a time horizon scaled to be [0, 1].3 When an online agent arrives in the time horizon
[0,1], its type j is revealed, and an online algorithm (or policy) ALG must make an immediate and
irreversible decision from two options: either reject j or serve j by assigning it to an offline agent
i 2 Nj that still has available capacity. For the latter choice, i’s matching capacity will be reduced
by one. (Fairness Metric). For each online type j 2 J , let Xj be the number of agents j served by
ALG and Aj the number of j’s arrivals by the end of the time horizon. For any � > 0, let Pois(�)
denote a Poisson random variable with mean �. By our assumption, Aj is distributionally identical to
a Pois(�j) for every j 2 J . Let A = (Aj)j2J , which is referred to as the (random) arrival vector
with each Aj ⇠ Pois(�j). We define a long-run fairness as follows.

FAIR-L (Long-Run Fairness) = min
j2J

EA,ALG[Xj]

EA[Aj]
= min

j2J

EA,ALG[Xj]

�j
. (1)

We aim to design an online algorithm ALG such that the achieved fairness is maximized. Note that all
the information mentioned earlier, such as the graph G = (I, J, E), the capacities of offline agents
{bi|i 2 I}, and the arrival rates of online agents {�j |j 2 J}, are accessible to the algorithm ALG

as part of the input. We refer to our problem as Online Matching under Long-Run Fairness (among
online types) (OM-LF).

Remarks on FAIR-L. (1) Random variables {Xj |j 2 J} are dependent on both the arrival vector
A and any random bits used in the algorithm ALG itself. (2) For the long-run fairness FAIR-L, the
time horizon typically represents one single day, and the algorithm is audited for fairness over a large
number of days. In this case, the total number of agents (of type) j served over all the days will be
statistically close to T times the numerator in (1), while the total number of arrivals of type j over all
the days will be statistically close to T times the denominator. As a result, the audited performance is
the minimum of this fraction over all types j 2 J .

2 Preliminaries and Main Contributions

Competitive Ratio. Consider a given instance, characterized as
I =

�
G = (I, J, E), (bi)i2I , (�j)j2J)

�
, an online algorithm ALG, and a given fairness metric. We

overload notation and let ALG(I) denote the expected performance of ALG on I. Similarly, we use
OPT(I) to denote an optimal clairvoyant algorithm and its corresponding performance when the
context is clear. Note that OPT can set the values of (Xj)j with advance knowledge of A. With a
fixed objective in mind, an algorithm ALG is said to be at least c-competitive if ALG(I) � c ·OPT(I)
for any possible instance I. The maximum possible value over c  1 for which the above holds is
called the competitiveness of ALG. The maximum possible competitiveness within a class of online
algorithms is called the competitive ratio for that class.

Holistic Nature of an Optimal Clairvoyant Algorithm. Consider the classical (edge-weighted)
online bipartite matching under KIID where the goal is to maximize the total weight of all matches. In
that case, an optimal clairvoyant algorithm OPT will aim to optimize the objective on every realized
instance and it can always find a deterministic strategy to do so. However, this may not be true
in our problem. To see this, consider a simple example under FAIR-L where there is one single
offline agent with b = 1 and two online types with �1 = ✏ and �2 = 1. For any realized arrival
vector A = (A1, A2) with A1 � 1 and A2 � 1, we can show that the strategy of OPT on A can be
characterized as follows: serve j = 1 and j = 2 with respective probabilities p and 1 � p, where

1In this paper, we refer to an agent of type i (j) as agent i (j) for simplicity when the context is clear.
2The capacity bi for offline type i can be understood as the collective service capacity of all agents belonging

to that particular type. In other words, it represents the total capacity available from serving agents of type i.
3Observe that our arrival setting is essentially equivalent to the Know Identical Independent Distributions

(KIID), which is a discrete counterpart commonly assumed among studies of online matching under known
distributions; see detailed discussions regarding “Online Bipartite Matching” in Section 3.

2

p � (e � 2)/(e � 1) ⇡ 0.418. This suggests that OPT has to resort to a randomized strategy on
A, and it does not suffice to simply maximize the objective of min

�
E[X1]/✏,E[X2]/1

�
on every

realization of A. More detailed discussions and clarifications can be seen in Appendix A.

Benchmark Linear Program (LP). To guide the choice between offline agents, we write the
following LP with variables {xij |(ij) 2 E} and s, where the variable xij can be interpreted as the
expected number of online type j served by offline agent i in an optimal clairvoyant algorithm (OPT),
while s can be interpreted as the “scale” of demand that can be served.

max s (2)
X

j2Ni

xij  bi 8i 2 I (3)

X

i2Nj

xij � s · �j 8j 2 J (4)

s, xij � 0 8(i, j) 2 E (5)

Throughout this paper, we refer to the linear program described above as LP (2). We utilize the
notation OPT to denote both an optimal clairvoyant policy and its corresponding performance when
the context is clear.
Lemma 1. LP (2) is a valid benchmark for OM-LF, i.e., the optimal value of LP (2), denoted
by s

⇤, is a valid upper bound for the performance of a clairvoyant algorithm. Therefore, OPT 
min{s⇤, 1}.

Note that it is important in Lemma 1 that we also upper bound OPT by 1; this will allow us to later
establish asymptotic optimality in s

⇤.

Proof. Consider any clairvoyant algorithm OPT. Let Xij be the random variable for the number of
times it uses i to serve j, with Xj =

P
i2Nj

Xij . Recall that OPT = minj2J E[Xj]/�j . It can be
checked that setting xij = E[Xij], s = OPT constitutes a feasible LP solution with objective value
OPT. Therefore, LP � OPT, and 1 � OPT holds by definition, completing the proof.

Remarks on LP (2). Among existing studies of online matching under known distributions, all
benchmark LPs are designed solely for outputting an upper bound on the performance of an optimal
clairvoyant (OPT), which is then used to establish a lower bound on the resulting competitiveness
by comparing the performance of an online algorithm against it. In contrast, the benchmark LP (2)
proposed here serves dual purposes. The optimal value s

⇤ of LP (2), not only offers an upper bound
on OPT but also plays a crucial role in scaling online sampling distributions (e.g., in Algorithm
SAMP of Theorem 1). This means that benchmark LP (2) actively participates in the online algorithm
design, serving as a key component in shaping the online decision-making process of the algorithms.

2.1 Main Contributions

In this paper, we introduce a fairness metric among online types, defined in (1), and propose a model,
called online matching under long-run fairness among online types (OM-LF). Our contributions are
summarized as follows.

2.1.1 A Warm-Up for OM-LF with a Single Offline Agent.

We observe that when there is a single offline agent, the optimal online algorithm is First-Come-First-
Serve (FCFS), which assigns all incoming agents to the offline agent as long as capacity is available.
We demonstrate that FCFS is 1-competitive.
Proposition 1. For OM-LF with one single offline agent, FCFS is 1-competitive, making it optimal
among all algorithms.

Proof. Suppose that I consists of a single offline agent with capacity b. Let A be the random
variable for the total number of online arrivals, in which case FCFS serves the first min{A, b} arrivals.
Conditioned on any value A > 0, the distribution of online types served is proportional to the

3

arrival rates �j . That is, for any online type j 2 J , the expected number of type-j agents served is
E
h
min{Pois(

P
j2J �j), b}

i
· �jP

j2J �j
. All in all, FCFS achieves a fairness of

E
h
min{Pois(

P
j2J �j), b}

i
/
P

j2J �j , which cannot be beaten even by a clairvoyant algorithm

since the total number of agents served cannot exceed E
h
min{Pois(

P
j2J �j), b}

i
. This shows that

FCFS is 1-competitive and is also the optimal clairvoyant algorithm.

2.1.2 General Cases of OM-LF.

We consider OM-LF with multiple offline agents, where each offline agent may have a different
capacity.
Theorem 1 (Section 4). There is an algorithm (SAMP) for OM-LF, whose competitiveness is
lower-bounded by (b, s

⇤
)

.
= E[min(Pois(b/s

⇤
), b)] · max(s

⇤
, 1)/b � (1, 1) = 1 � 1/e, where

b = mini2I bi and s
⇤ 2 (0,1) is the optimal value to benchmark LP (2) that measures the inverse of

the overall demand saturation in the system. Meanwhile, the competitiveness of SAMP approaches 1
when either b ! 1 or s⇤ ! 0

+ (demand dominates supply) or s⇤ ! 1 (supply dominates demand).
Theorem 2 (Section 5). For OM-LF, the following hardness results hold: (1) Any non-rejection
algorithm (possibly randomized) that serves an incoming agent whenever possible is no more than
1/2-competitive. (2) Any algorithm (possibly randomized) is no more than (

p
3� 1)-competitive. (3)

The competitive analysis of SAMP is tight, as it cannot be more than (1� 1/e)-competitive. All the
hardness results mentioned in (1), (2), and (3) are independent of any benchmarks.4

2.1.3 Extension of OM-LF to Group-Level Fairness.

We consider an extension of OM-LF when each online type belongs to some pre-defined protected
groups. Specifically, suppose there is a collection of protected groups G, where each group g 2 G is a
subset of J , indicating the online agent types that fall under group g. We assume w.l.o.g. that every
type j 2 J is contained in at least one group (otherwise we could discard and never serve that type);
note however that groups can overlap with each other. We generalize long-run fairness (FAIR-L), as
defined in Equation (1), to a group-level version with respect to groups of G as follows:

FAIR-L(G) = min
g2G

EA,ALG[X(g)]P
j2g �j

, (6)

where X(g) =
P

j2g Xj denotes the (random) number of types in g served in an algorithm ALG.

Comparison between (Individual) Long-Run Fairness FAIR-L in (1) and Group-Level Long-
Run Fairness in (6). The original long-run fairness FAIR-L, as defined in (1), can be considered
a special case of group-level long-run fairness in (6) with respect to G = {g = {j}|j 2 J}, where
each group consists of a single online type. Therefore, FAIR-L in (1) can be interpreted as individual
long-run fairness with respect to every single type, as opposed to group-level fairness with respect to a
pre-defined set of groups G. We emphasize that overlaps among groups can potentially doom classical
policies, such as first-come-first-serve (FCFS), even under very simple settings. Proposition 1 states
that FCFS is 1-competitive (i.e., matching the performance of a clairvoyant optimal) for individual
long-run fairness when there is a single offline agent. In contrast, Example 1 (see below) demonstrates
that FCFS is zero-competitive for group-level long-run fairness, as defined in (6), under the same
setting of a single offline agent.
Example 1 (FCFS is zero-competitive for group-level fairness). Consider the following example:
There is a single server with unit capacity. There are n+1 online types, indexed as j = 0, 1, 2, . . . , n,
each with an arrival rate of 1, and n groups such that each group k = 1, 2, . . . , n consists of two
types (0, j) with j = k. We can verify the following: (1) Any clairvoyant optimal (OPT) can achieve
a group-level (long-run) fairness of at least (1� 1/e)/2. For any offline policy prioritizing serving
arriving online types of j = 0, it achieves a group-level fairness of at least (1� 1/e)/2. (2) FCFS
achieves a group-level fairness of 1/(n+ 1): Note that each group has one agent served by FCFS

4When we state that all hardness results provided in the paper are independent of any benchmarks, we mean
that all competitiveness results are computed directly against the performance of a clairvoyant optimal policy
(OPT), rather than any upper bound on OPT (e.g., the optimal value of a benchmark LP, as claimed in Lemma 1).

4

only when the first arriving agent belongs to one of the two types in that group, which occurs with
probability 2/(n + 1). Thus, we conclude that FCFS is zero-competitive for group-level fairness
(when n ! 1).
Theorem 3 (Appendix G). For OM-LF with group-level long-run fairness: (1) There exists an
algorithm (SAMP-G) that achieves a competitive ratio of at least 1� e

�b
b
b
/b! with b = mini2I bi,

which is increasing over b 2 {1, 2, . . .} and approaches 1 as b ! 1; (2) There exists an algorithm
(RESERVE) that achieves a competitive ratio of at least 1� e

��
�
�
/�! with � = minj2J �j , which

approaches 1 as � ! 1.

Remarks on Results in Theorems 1, 2, and 3. (1) Ma et al. [28] considered both long-run individual
and group-level fairness maximization, but their focus was on fairness among offline agents. This
is in contrast to the emphasis on fairness among online types. Another difference is that the work
of [28] assumed integral arrival rates among online types and utilized this assumption to propose
a strengthened benchmark LP. Additionally, they claimed that each online type could be made to
admit a unit arrival rate (�j = 1) by creating multiple copies. In our paper, however, we do not
make any assumptions regarding the arrival rates among online types: They can take any fractional or
integer values, allowing for a more general analysis of fairness among online types. A more detailed
discussion can be seen in Appendix B. (2) As noted before, our arrival setting is essentially equivalent
to the Know Identical Independent Distributions (KIID), which is a discrete arrival setting commonly
assumed in the study of online matching under known distributions. For Online Matching under
KIID (OM-KIID), the most commonly studied objective is the maximization of the total weight of all
matches under different weight settings, including unweighted, vertex-weighted (offline-side), and
edge-weighted scenarios. To date, there have been only two known hardness results for OM-KIID
with general arrival rates: one is 0.823 for unweighted and vertex-weighted due to [31] and the
other is 0.703 for edge-weighted due to [21]. Our hardness result of

p
3 � 1 ⇡ 0.732 contributes

to this short list of hardness results for OM-KIID. Notably, our analysis focuses on the objective
of maximizing long-run fairness among online types, which adds a new dimension to the study of
OM-KIID and expands the understanding of the inherent challenges and limitations in achieving
fairness in online matching scenarios.

2.1.4 Another Fairness Metric: Short-Run Fairness.

We propose a second fairness metric, called Short-Run Fairness, which is defined as follows:

FAIR-S = EA


min

j2J:Aj>0

EALG[Xj |A]

Aj

�
, (7)

where A = (Aj)j2J is the (random) arrival vector with Aj ⇠ Pois(�j) being the number of arrivals
of type j 2 J .5

Remarks on FAIR-S. (a) In the numerator of FAIR-S, EALG[Xj |A] is a conditional expectation
taken over only the randomness in the algorithm ALG. (b) In FAIR-S, types j with no realized arrivals
(for which the denominator Aj = 0) are ignored. Also, we assume that FAIR-S = 1 in case all
Aj = 0, i.e., no online agents arrive. (c) No inherent relation can be imposed on FAIR-L and FAIR-S.
There are examples supporting both possibilities that FAIR-L > FAIR-S and FAIR-L < FAIR-S;
see details in Appendix C. (d) For the short-run fairness, the algorithm is audited for fairness based
on the realized arrivals every single day. To avoid impossibility results, evaluation in the numerator
of (7) is based on the expected service over any randomness in the algorithm.6 Interpreted another
way, when evaluating Short-Run Fairness, we are allowing for fractional allocations to be made
on a given day. The overall performance (7) then takes the expectation of the daily audit scores
over a large number of days. (e) Note that the definitions of long-run and short-run fairness, as

5Note that we can define the group-level short-run fairness following the same way as FAIR-L:
FAIR-S(G) = EA

h
ming2G:A(g)>0

EALG[X(g)|A]
A(g)

i
, where A(g) =

P
j2g Aj denotes the number of arrivals of

types in g, and X(g) =
P

j2g Xj the number of types in g served by ALG. We can verify that all the analysis
and results obtained for FAIR-S in this paper, as shown in Theorem 4, also apply to group-level short-run
fairness for any collection of groups G.

6Observe that any deterministic algorithm will yield fairness of zero during peak hours when the total number
of online agent arrivals significantly exceeds the serving capacity of offline agents.

5

shown in equations (1) and (7) respectively, bear similarities to two other concepts known as ex-ante
and ex-post fairness. These concepts have been extensively studied in the field of online resource
allocation [2, 15, 30]. Specifically, our notion of long-run fairness aligns more closely with the idea
of ex-ante fairness, which focuses on the minimum expectation, while the short-run fairness aligns
more closely with the concept of ex-post fairness, which emphasizes the expectation of the minimum
outcome.

Unlike FAIR-L, online matching under FAIR-S is quite technically challenging, even for upper-
bounding the performance of an optimal clairvoyant policy (OPT). So far, we have not found any
appropriate linear program that can serve as a valid benchmark for OPT as we did for FAIR-L. That
being said, we take an initial stab by focusing on a simple case when there is a single offline agent
with a service capacity of b. Even in this special case, characterizing the optimal online algorithm
that maximizes FAIR-S is technically challenging. This contrasts with Proposition 1, which states
that FCFS is 1-competitive under FAIR-L with a single offline agent.
Theorem 4 (Appendix H). For online matching under FAIR-S with a single offline agent of capacity
b and a total online arrival rate of � :=

P
j2J �j: (1) FCFS is 0.863-competitive when �  1; (2)

No algorithm can achieve a competitive ratio greater than 0.942 when b = � = 1; (3) There exists an
algorithm (Prob-Rej) that achieves a competitive ratio of at least 1� o(1), where o(1) is a vanishing
term as � ! 1.

3 Other Related Work

Online Bipartite Matching. Online bipartite matching was pioneered by Karp et al. [24] and its
variants have gained interest during the past two decades in the CS community. Based on the arrival
setting of online agents, there are three major categories: (1) Adversarial, the arrival sequence is
fully unknown but fixed, see, e.g., [7, 33]; (2) Random arrival order, the full arrival sequence forms a
random permutation over a set of unknown agents, see, e.g., [36, 29, 23, 17, 13]; (3) known/unknown
distributions, the stochastic arrivals of online agents follow certain known/unknown distributions.
A special case here is when online arrivals follow Known Independent and Identical Distributions
(KIID), see, e.g., [14, 18, 31, 22]. Our arrival setting shares the spirit of KIID, though we consider a
continuous version instead of discrete. Huang and Shu [19] considered the same arrival setting as
ours and show that under mild assumptions,7 the performance of an online algorithm is almost the
same under the two arrival settings (i.e., KIID and independent Poisson process).

There is an interesting connection between our model under Long-Run fairness and the online-side
vertex-weighted online matching under KIID. So far, studies about vertex-weighted online matching
all focus on the setting of the offline side, i.e., all edges incident to any given offline agent share a
weight. Examples include [19] and [6] under KIID, [20] under random arrival order, and [1] under
adversarial arrival order. By contrast, we believe that our analysis and results can be applied to the
online-side vertex-weighted online matching problem, which we leave as future work.

Fair Operations. Fairness in operations is a topic of increasing interest and we aim to provide a brief
literature review. Classical works in this area include [4] and [5] which define the price of fairness
and efficiency-fairness tradeoff, respectively, in an axiomatic fashion. Gig platforms have motivated
many studies on balancing multiple objectives [26], including fair allocation on the rider side [34] and
income equality on the driver side [38] in rideshare. Fair pricing to the customer side has been more
generally studied in [12], while fair allocation has been studied in transportation problems [10, 9, 35]
and COVID-19 vaccine distributions [37]. We note that in the application of [10], the authors justify
prioritizing transportation for certain groups (e.g. seniors), instead of balancing fairness across all
groups as we do.

More generally, online resource allocation frameworks that can capture fairness have been considered
in [3, 25, 11]. These papers all derive regret bounds which are sublinear in the number of arrivals,
while we derive competitive ratio bounds which hold universally and establish asymptotic optimality

7Specifically, as stated in the paper [19], for any algorithm, its competitiveness can be translated between the
two models up to a multiplicative factor of 1 � O(⇤

�1/2
), where ⇤ :=

P
j2J �j represents the total arrival

rate of all online types. Note that, it is a common practice to consider ⇤ ! 1 or n ! 1 (the counterpart of ⇤
in the KIID setting) in competitive analysis for online matching models under known distributions, which is
assumed in this paper as well.

6

in regimes (involving the demand saturation) not previously captured. However, we should note that
our techniques appear to be reliant on the max-min objective function, while these papers allow for
more general functions.

4 Proof of Theorem 1: Online Matching Under Long-Run Fairness (OM-LF)

4.1 Algorithm SAMP and Intuitions

In this section, we present an LP-based sampling algorithm, denoted by SAMP, which is (1� 1/e)-
competitive and asymptotically optimal in many parameter regimes. Let {x⇤

ij , s
⇤} be an optimal

solution to the benchmark LP (2). For all j 2 J , WLOG assume that x⇤
j

.
=

P
i2Nj

x
⇤
ij = s

⇤ · �j .8

SAMP is formally stated in Algorithm 1.

ALGORITHM 1: An LP-based Sampling Algorithm (SAMP)
1 Solve LP (2) to get an optimal solution {x⇤

ij , s
⇤}.

2 Let an online agent (of type) j arrive at time t.
3 Sample a neighbor i 2 Nj with probability x

⇤
ij/(s

⇤ · �j).
/* This is a valid distribution since

P
i2Nj

x
⇤
ij/(s

⇤ · �j) = x
⇤
j/(s

⇤ · �j) = 1. */
4 If i is safe, i.e., i has remaining capacity, then assign i to serve j; otherwise, reject j.

SAMP does not re-sample an offline agent if the first one sampled is unavailable, so it does not share
the property of FCFS that an incoming agent is served whenever possible. The property that SAMP

sometimes “rejects” an incoming agent is imperative for it to surpass the barrier of 1/2, as suggested
by Theorem 2.

4.2 Proof of Theorem 1: Competitive Analysis of SAMP

First, we use two lemmas to analyze the number of times each online type is served by SAMP.
Lemma 2. For each i 2 I and t 2 [0, 1], let SFit indicate if offline agent i is safe at
the instantaneous point in time t in algorithm SAMP, i.e., i still has remaining capacity at t.
E[SFit] � Pr[Pois(bit/s

⇤
) < bi], for all i 2 I and t 2 [0, 1].

Proof. An offline agent i is safe at time t if and only if there have been fewer than bi arrivals before t
which sampled i. Such arrivals are Poisson with total rate

P
j2Ni

�j ·
x⇤
ij

s⇤·�j
, which is at most bi/s⇤

by LP constraints (3). Therefore, the number of such arrivals is Poisson with mean at most bi · t/s⇤,
completing the proof.

Lemma 3. Let XS
j be the random number of times type j is serviced in SAMP. Then for all j 2 J ,

E[XS
j]

�j
� s

⇤ ·min
i2I

E[min{Pois(bi/s⇤), bi}]
bi

. (8)

Proof. Consider any i, j for which an offline agent i is eligible to serve online type j. Let XS
ij be

the random variable for the number of times SAMP uses i to serve j. XS
ij is incremented whenever:

(1) type j arrives (occurring following Poisson process of rate �j); (2) i is sampled (occurring with
probability x

⇤
ij/(s

⇤ · �j)); and (3) i is safe (occurring with probability at least Pr[Pois(bit/s⇤) < bi],
by Lemma 2). Since these events are mutually independent, we have

E[XS
ij] �

Z 1

0
�j ·

x
⇤
ij

s⇤ · �j
· Pr[Pois(bi · t/s⇤) < bi]dt

=
x
⇤
ij

bi

Z 1

0

bi

s⇤
· Pr[Pois(bi · t/s⇤) < bi]dt =

x
⇤
ij

bi
· E[min{Pois(bi/s⇤), bi}].

8This is because if
P

i2Nj
x
⇤
ij > s

⇤ · �j , then we can re-scale the values of x⇤
ij by (s

⇤ · �j)/(
P

i2Nj
x
⇤
ij),

without violating feasibility.

7

The final equality holds because the integral “counts” an arrival from a Poisson process of rate bi/s
⇤

whenever the number of arrivals thus far is less than bi; this equals, in expectation, the number of
arrivals from such a process truncated by bi.

Now, for any online type j 2 J , let XS
j =

P
i2Nj

X
S
ij be the random variable for the number of

times SAMP serves j. The previous derivation for XS
ij implies that

E[XS
j] �

X

i2Nj

x
⇤
ij ·

E[min{Pois(bi/s⇤), bi}]
bi

� s
⇤ · �j · min

i2Nj

E[min{Pois(bi/s⇤), bi}]
bi

,

where the second inequality uses LP constraint (4). This completes the proof.

Having derived the expression on the RHS of (8), we aim to lower bound it in terms of simpler
expressions of bi and s

⇤. Recall that (b, s) .
= max{s, 1} · E[min{Pois(b/s),b}]

b for any integer b � 1

and s > 0. For any � > 0 and s > 0, define ⌘(�, s) =
E[minPois(�),�s]

�·min(s,1) , a related function we will
later use in our analysis. We can verify that (b, s) = ⌘(b/s, s) and ⌘(�, s) = (�s, s). Below are a
few properties of (b, s).
Lemma 4 (Appendix D). (1) For any fixed s > 0, (b, s) is increasing over b 2 {1, 2, . . .}; (2)
For any fixed integer b � 1, (b, s) is minimized at s = 1; (3) For all integers b � 1 and s > 0,
(b, s) � (1, 1) = 1� 1/e; (4) When s > 1, (b, s) � 1� exp

�
� b ln s · (1� o(1))

�
, where o(1)

vanishes when s ! 1; (5) When s = 1, (b, 1) � 1� 1p
2⇡(b�1)

with b > 1; (6) When 0 < s < 1,

(b, s) � 1� exp
�
� b

2s (1� s)
2
�
.

Proof of Theorem 1. By Lemma 3, the fairness of SAMP under FAIR-L is at least

E[XS
j]

�j
� s

⇤ ·min
i2I

E[min{Pois(bi/s⇤), bi}]
bi

� s
⇤ · E[min{Pois(b/s⇤), b}]

b
,

where b = mini bi, and the last inequality follows from Part (1) of Lemma 4. By Lemma 1,
OPT  min{s⇤, 1}. Putting these statements together, we see that the competitive ratio is lower
bounded by

s
⇤

min{s⇤, 1} · E[min{Pois(b/s⇤), b}]
b

= (b, s
⇤
).

All of the properties about (b, s⇤) follow directly from Lemma 4, with the asymptotic behavior when
b ! 1, s⇤ ! 0

+, or s⇤ ! 1 following from the bounds given in parts (4)–(6) of Lemma 4.

5 Proof of Theorem 2

Example 2 (Bad Example). J consists of a large number of “rare types” t = 1, . . . , n each with
�t = 1/n and a single “common type” 0 with �0 = n � 1. I consists of n unit-capacity servers
such that each rare type t = 1, . . . , n can only be served by a server t, but all servers can serve the
common type. The graph structure is shown in Figure 1.

We can verify that the optimal clairvoyant algorithm gives priority to rare types, and uses each server
t 2 {1, 2, . . . , n} for which type t never arrived to serve the common type. The expected amount of
each rare type t served is 1� e

�1/n � 1/n�O(1/n
2
), while the expected number of the common

type served is at least n� 1�n(1� e
�1/n

) � n� 2. Thus, we claim any optimal clairvoyant (OPT)
can achieve a long-run fairness of 1�O(1/n) under FAIR-L.

5.1 Proof of Part (1) of Theorem 2: 1/2-Upper Bound for Non-Rejecting

We first use Example 2 to show that non-rejecting algorithms cannot be better than 1/2-competitive.
Lemma 5. On Example 2, any non-rejecting online algorithm is no more than 1/2-competitive
relative to the best clairvoyant algorithm.

8

i1

i2

in

�0 = n� 1

�1 = 1/n

�2 = 1/n

�n = 1/n

j0

j1

j2

jn

|I| = n, |J | = n+ 1;

�0 = n� 1,�t = 1/n, 81  t  n;

OPT = 1�O(1/n).

Figure 1: A bad example used to show hardness results for any randomized and non-rejecting
algorithms and the tightness of competitive analysis for SAMP.

Proof. An online algorithm that serves incoming agents whenever possible must have a (randomized)
order for available servers to use on the common type. The rare type which is in position P 2 [n]

in this order must have an arrival before the P ’th arrival of the common type 0, to have any chance
of being served. For a given rare type t, let Pt denote the (randomized) position of type t in this
order. For any position P 2 [n], let Arr(P) 2 [0, 1] denote the arrival time of the P ’th arrival of the
common type 0. By independence of the Poisson processes for the arrivals of different types, the
probability of a rare type t being served is at most

E[1� exp(�Arr(Pt)/n)]  E[Arr(Pt)/n], (9)

which in turn is at most (E[Pt]+1
n)/n for sufficiently large n.9 Recall that for each rare type t =

1, 2, . . . , n, Pt 2 {1, 2, . . . , n} denotes the position of type t in a randomized order adopted by a
non-rejecting policy. Thus, we claim that

Pn
t=1 E[Pt] = n(n+ 1)/2. This implies that at least one

rare type t must satisfy E[Pt]  (n+ 1)/2. Therefore, the fairness of this online algorithm cannot
exceed 1/2 +O(1/n).

Remarks. In Appendix E, we present a proof of Lemma 6, which can be viewed as a stronger
version of Lemma 5. The alternative proof, though more technically involved, provides a foundational
framework for analyzing a much broader class of online policies and is more self-explanatory.
Additionally, in Appendix F, we focus on the bad example (Example 2) to conduct a quantitative
study on the tradeoff between competitiveness and the number of rejected agents.

5.2 Proof of Part (2) of Theorem 2: (
p
3� 1)-Upper Bound for Any Randomized

Proof. On Example 2, any online algorithm that is going to reject the common type is better off doing
so sooner rather than later, since an earlier rejection allows more time to observe which rare types
arrive, and give those types priority. For any ⌧ 2 [0, 1], suppose that the online algorithm, denoted by
ALG(⌧), starts accepting common types after time ⌧ .

The online algorithm must have some (possibly randomized) order of offline servers to use when it
wants to serve the common type. The rare type whose corresponding offline server is in position
P 2 [n] in this order must have an arrival before the P ’th arrival of the common type after time ⌧ , to
have any hope of being served. Counting from time ⌧ , the P ’th arrival of the common type will occur
before ⌧ + P+1

n w.h.p. as n ! 1. As a result, the probability of this rare type being served is at most

1� exp(�
min{⌧ +

P+1
n , 1}

n
) 

min{⌧ +
P+1
n , 1}

n
.

As n ! 1, the average value of the RHS expression over P = 1, . . . , n is

1

n

Z 1

0
min{⌧ + z, 1}dz =

1

n
(⌧ +

1

2
� 1

2
⌧
2
).

9This is because as n ! 1, the arrivals of a Poisson process of rate n are evenly spaced in [0, 1] w.h.p.

9

Therefore, even using a randomized order, there must exist a rare type whose probability of being
served is at most 1

n (⌧ +
1
2 � 1

2⌧
2
). Meanwhile, for any ⌧ , the expected number of common types

served can be at most (n� 1)(1� ⌧). Since the arrival rates for rare and common types are 1
n and

n� 1 respectively, the fairness of the online algorithm cannot exceed min{⌧ +
1
2 � 1

2⌧
2
, 1� ⌧}.

We can verify that the fairness of the online algorithm is maximized at ⌧ = 2�
p
3, in which case it

equals
p
3� 1. Meanwhile, for Example 2, a clairvoyant algorithm can achieve a fairness of 1. This

completes the proof.

5.3 Proof of Part (3) of Theorem 2: Tightness of Competitive Analysis of SAMP

Proof. For each t 2 {1, 2, . . . , n} and t̃ 2 {0, 1, 2, . . . , n}, let x⇤
t,t̃

denote the value set by an optimal
solution of LP (2) on the edge (it, jt̃) in Example 2. We can verify that the optimal LP solution
sets x

⇤
t,t = 1/n and x

⇤
t,0 = 1 � 1/n for each t = 1, . . . , n, and s

⇤
= 1. As a result, each offline

agent t 2 [n] serves a demand with a total arrival rate of one. Thus, each offline agent t successfully
serves a demand with probability 1 � 1/e since no demand arrives otherwise (which occurs with
probability 1/e). Conditioned on offline agent t serving a demand, the probability of that demand
being of rare type t (instead of the common type 0) is 1/n. Therefore, for any rare type t 2 [n], we
have E[Xt]/�t = 1� 1/e, where Xt denotes the random number of times type t is serviced. Thus,
and under FAIR-L, SAMP achieves a fairness of at most 1 � 1/e. Meanwhile, in Example 2, we
show that a clairvoyant algorithm can achieve a FAIR-L of 1�O(1/n), completing the proof.

6 Conclusion and Reservations

We propose algorithms for maintaining statistical parity in the service rates provided to different
online types or groups when agents arrive dynamically. We believe this has the potential to make
a positive impact on e.g., sharing economy platforms, where our algorithms will give priority to
under-served groups when matching agents, thereby boosting their rates of service. However, we
admit that our algorithms do not address any underlying discrimination issues of why those groups
were less commonly served by hosts/drivers in the first place. Also, our algorithms are only “fair”
with respect to the fairness metrics we defined: Our model does not necessarily guarantee fairness
over all arriving individuals. Relatedly, our algorithms could have the negative consequence of
causing “unfairness” by violating the first-come-first-serve principle, since sometimes earlier-arriving
agents are rejected in order to preserve capacity for later-arriving agents who may belong to protected
groups.

10

Acknowledgments and Disclosure of Funding

Pan Xu was partially supported by NSF CRII Award IIS-1948157. The authors gratefully acknowledge
the valuable comments provided by the anonymous reviewers.

References
[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted

bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264. SIAM, 2011.

[2] Haris Aziz. Simultaneously achieving ex-ante and ex-post fairness. In International Conference
on Web and Internet Economics, pages 341–355. Springer, 2020.

[3] Santiago R. Balseiro, Haihao Lu, and Vahab S. Mirrokni. Regularized online allocation
problems: Fairness and beyond. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 630–639, 2021.

[4] Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. The price of fairness. Operations
research, 59(1):17–31, 2011.

[5] Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. On the efficiency-fairness trade-off.
Management Science, 58(12):2234–2250, 2012.

[6] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. Online
stochastic matching: New algorithms and bounds. Algorithmica, pages 1–47, 2020.

[7] Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for maxi-
mizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–264. Springer,
2007.

[8] Clément Canonne. A short note on poisson tail bounds. http://www.cs.columbia.edu/
~ccanonne/files/misc/2017-poissonconcentration.pdf, 2020. Accessed: 2020-02-
01.

[9] Xinwei Chen, Tong Wang, Barrett W Thomas, and Marlin W Ulmer. Same-day delivery with
fairness. arXiv preprint arXiv:2007.09541, 2020.

[10] Yiwei Chen and Hai Wang. Why are fairness concerns so important? lessons from a shared
last-mile transportation system. Lessons from a Shared Last-Mile Transportation System (April
25, 2018), 2018.

[11] Wang Chi Cheung, Guodong Lyu, Chung-Piaw Teo, and Hai Wang. Online planning with
offline simulation. Available at SSRN 3709882, 2020.

[12] Maxime Cohen, Adam N Elmachtoub, and Xiao Lei. Price discrimination with fairness
constraints. Available at SSRN 3459289, 2019.

[13] Nikhil R Devanur and Thomas P Hayes. The adwords problem: online keyword matching with
budgeted bidders under random permutations. In Proceedings of the 10th ACM conference on
Electronic commerce, pages 71–78. ACM, 2009.

[14] Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. Online stochastic
matching: Beating 1-1/e. In 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’09, pages 117–126, 2009.

[15] Rupert Freeman, Nisarg Shah, and Rohit Vaish. Best of both worlds: ex-ante and ex-post
fairness in resource allocation. In Proceedings of the 21st ACM Conference on Economics and
Computation, pages 21–22, 2020.

[16] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms. Journal of the ACM (JACM), 53(3):
324–360, 2006.

[17] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 982–991. Society for Industrial and Applied Mathematics, 2008.

11

http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf

[18] Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online stochastic
weighted matching: Improved approximation algorithms. In Internet and Network Economics -
7th International Workshop, WINE ’11, pages 170–181, 2011.

[19] Zhiyi Huang and Xinkai Shu. Online stochastic matching, poisson arrivals, and the natural
linear program. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 682–693, 2021.

[20] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals. In 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

[21] Zhiyi Huang, Xinkai Shu, and Shuyi Yan. The power of multiple choices in online stochastic
matching. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pages 91–103, 2022.

[22] Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds.
Mathematics of Operations Research, 39(3):624–646, 2013.

[23] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
unknown distributions. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 587–596. ACM, 2011.

[24] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-
line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 352–358, 1990.

[25] Xin Liu, Bin Li, Pengyi Shi, and Lei Ying. Pond: Pessimistic-optimistic online dispatch. arXiv
preprint arXiv:2010.09995, 2020.

[26] Guodong Lyu, Wang Chi Cheung, Chung-Piaw Teo, and Hai Wang. Multi-objective online
ride-matching. Available at SSRN 3356823, 2019.

[27] Will Ma, David Simchi-Levi, and Jinglong Zhao. Dynamic pricing (and assortment) under a
static calendar. Management Science, 2020.

[28] Will Ma, Pan Xu, and Yifan Xu. Fairness maximization among offline agents in online-matching
markets. ACM Transactions on Economics and Computation, 10(4):1–27, 2023.

[29] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing lps. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 597–606. ACM, 2011.

[30] Vahideh Manshadi, Rad Niazadeh, and Scott Rodilitz. Fair dynamic rationing. In Proceedings
of the 22nd ACM Conference on Economics and Computation, pages 694–695, 2021.

[31] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching:
Online actions based on offline statistics. Mathematics of Operations Research, 37(4):559–573,
2012.

[32] Enrico Masina. Useful review on the exponential-integral special function. arXiv preprint
arXiv:1907.12373, 2019.

[33] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. Journal of the ACM (JACM), 54(5):22, 2007.

[34] Vedant Nanda, Pan Xu, Karthik Abhinav Sankararaman, John Dickerson, and Aravind Srini-
vasan. Balancing the tradeoff between profit and fairness in rideshare platforms during high-
demand hours. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 2210–2217, 2020.

[35] Anik Pramanik, Pan Xu, and Yifan Xu. Equity promotion in public transportation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 11890–11898,
2023.

[36] GS Sankar, A Louis, M Nasre, and P Nimbhorkar. Matchings with group fairness constraints:
Online and offline algorithms. In IJCAI International Joint Conference on Artificial Intelligence,
pages 377–383. International Joint Conferences on Artificial Intelligence, 2021.

[37] Pan Xu and Yifan Xu. Equity promotion in online resource allocation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 9962–9970, 2022.

12

[38] Yifan Xu and Pan Xu. Trade the system efficiency for the income equality of drivers in rideshare.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, pages 4199–4205, 2020.

13

A Further Discussions on the Holistic Nature of an Optimal Clairvoyant

We emphasize that in our problem, any clairvoyant optimal policy (OPT) needs to consider the entire
input instance as a whole when optimizing its decisions for each specific arrival sequence of online
agents. (Recall that any clairvoyant optimal policy has the advantage of optimizing its decisions
after observing the full arrival sequence.) This stands in contrast to clairvoyant optimal policies for
existing, well-studied online matching problems when the objectives are to maximize the (expected)
total weight of all matches. In these cases, any clairvoyant optimal policy only needs to optimize its
decisions for each specific arrival sequence of online agents without considering any information or
consequences of other possible arriving sequences.

Now, let us revisit the toy example of OM-LF, as mentioned before, where there is one single
offline agent with b = 1 and two online types with �1 = ✏ and �2 = 1. According to the arrival
setting, agents of j = 1 and 2 each arrive following an independent Poisson process of rate 1 and ✏,
respectively. OPT expects the following four possible scenarios. Let A1 and A2 denote the numbers
of arrivals of j = 1, 2, respectively.

• Case 1: A1 = 0, A2 � 1, which occurs with probability equal to e
�✏

(1� 1/e);
• Case 2: A1 � 1, A2 = 0, which occurs with probability equal to (1� e

�✏
)(1/e);

• Case 3: A1 � 1, A2 � 1, which occurs with probability equal to (1� e
�✏

)(1� 1/e);
• Case 4: A1 = 0, A2 = 0, which occurs with probability equal to e

�✏�1.

Observe that since we have one single offline agent i with a unit capacity, OPT has one single choice
in Cases 1, 2, and 4. For example, in Case 1, OPT will match one arrival of j = 2 with i, and in Case
2, OPT will match any arrival of j = 1 with i, and in Case 4, OPT can do nothing since no arrivals.
The only tricky issue arises in Case 3 since OPT can choose to match the only offline agent with one
arrival either from j = 1 or j = 2. Consider the following two strategies.

The first policy, denoted by ALG-A, which aims to maximize min(E[X1]/✏,E[X2]/1) on every
arrival instance. Thus, in Case 3, ALG-A should match the only offline agent with one arrival of
j = 1 and j = 2 with respective probabilities of ✏/(1 + ✏) and 1/(1 + ✏). Note that the expected
number of matches of j = 1 by ALG-A should be

E[X1] = Pr[Case 2] · 1 + Pr[Case 3] · ✏

1 + ✏
= (1� e

�✏
) · (1/e) · 1 + (1� e

�✏
)(1� 1/e) · ✏

1 + ✏
.

This suggests that
E[X1]

�1
=

E[X1]

✏
! 1

e
(when ✏ ! 0).

Similarly, the expected number of matches of j = 2 by ALG-A should be

E[X2]

�2
= E[X2] ! 1� 1/e (✏ ! 0).

Thus, we claim that ALG-A above achieves a long-run fairness of min

⇣
E[X1]
�1

,
E[X2]
�2

⌘
= 1/e.

Now, we consider a second strategy, denoted by ALG-B, which in Case 3 matches the only offline
agent with one arrival of j = 1 and j = 2 with respective probabilities of p and 1� p, respectively,
with p 2 (0, 1) being a constant independent of ✏. Note that the expected number of matches of j = 1

by ALG-B should be

E[X1] = Pr[Case 2] · 1 + Pr[Case 3] · p = (1� e
�✏

) · (1/e) · 1 + (1� e
�✏

)(1� 1/e) · p.

Thus,
E[X1]

�1
=

E[X1]

✏
! 1

e
+ (1� 1/e) · p (✏ ! 0).

Similarly, we have
E[X2]

�2
= E[X2] ! 1� 1/e (✏ ! 0).

14

Thus, the long-run fairness achieved by ALG-B is equal to

min

⇣E[X1]

�1
,
E[X2]

�2

⌘
= min

⇣
1/e+ (1� 1/e) · p, 1� 1/e

⌘
,

which is equal to 1�1/e when p � (1�2/e)/(1�1/e) ⇡ 0.418. That is strictly better than ALG-A.
We can verify that ALG-B with p � (1� 2/e)/(1� 1/e) is a clairvoyant optimal policy.

B A Detailed Comparison of Our Work and Ma et al. [28]

Let us detail the differences between the two studies in the following two aspects.

Model: As pointed out on lines 155 to 162, the model of [28] assumes integral arrival rates for
all online types and then further assumes, without loss of generality, that each online type has a
unit arrival rate. In contrast, we do not make that assumption. Importantly, the integral-arrival-rate
assumption among online types allows them to propose a significantly stronger benchmark LP than
ours. Specifically, the extra constraint

P
j2S xij  1 � e

��(S)
= 1 � e

�|S| in the LP [28] is
crucial for overcoming the 1 � 1/e barrier for algorithms in [28], where �(S) denotes the total
arrival rates among all online types in S. As acknowledged there, their algorithms cannot surpass
1� 1/e without that constraint. In our case, while the constraint remains valid, it becomes ineffective
compared to its role in [28], which is particularly evident when most online types are rare. For
instance, when each online type in S has an arrival rate as small as 1/n2, this constraint reduces toP

j2S xij  1 � e
�|S|/n2

, where the right-hand side approaches one as n ! 1 regardless of the
size of S.

Techniques. Inspired by the insights above, we can no longer exploit any extra constraint to surpass
the 1�1/e barrier. Instead, we conduct a parameter-dependent competitive analysis for our sampling-
based policies and explore various scenarios where our algorithm can exceed 1 � 1/e or even
approach one. Specifically, we incorporate two parameters—the optimal LP value and the minimum
offline serving capacity—into the analysis and the final competitive ratio. In contrast, Ma et al.
[28] conducted a traditional parameter-free analysis, neglecting the potential impact of different
parameters in the input instance on the final competitiveness.

C Examples Showing the Possibilities of FAIR-S > FAIR-L and
FAIR-S < FAIR-L

Below are examples showing it is possible that FAIR-S > FAIR-L and FAIR-S < FAIR-L.
Example 3. Consider a simple example where we have one single offline agent and one single online
type with b = � = 1. Consider the algorithm FCFS: serve the online agent whenever it arrives.

Let A ⇠ Pois(1) be the number of arrivals of online agents. Observe that FAIR-L = E[X] =

Pr[A � 1] = 1� 1/e. Note that when A = 0, we have FAIR-S = 1. Thus, we can verify that

FAIR-S = Pr[A = 0] +

1X

k=1

Pr[A = k]

k
> e

�1
+

1X

k=1

e
�1

k!

1

k + 1

= e
�1

⇣
1 +

1X

k=2

1

k!

⌘
= e

�1
⇣
1 + e� 2

⌘
= 1� 1/e = FAIR-L .

Thus we claim that it is possible that FAIR-S > FAIR-L.
Example 4. Consider a simple example where we have one single offline agent and one single online
type with b = 1 and an online arrival rate of �. Consider such an algorithm featured by a threshold
k as follows: serve the online agent only when it arrives for the kth time. In other words, ignore it for
the first k � 1 arrivals. Let A ⇠ Pois(�) denote the number of online arrivals.

Take � = 10 and k = 11. We can verify that (1) FAIR-L =
Pr[A�k]

� ; (2)

FAIR-S = Pr[A = 0] +

1X

`=k

Pr[A = `]/` < e
��

+ Pr[A � k]/k < Pr[A � k]/� = FAIR-L .

Thus, we claim that it is possible that FAIR-S < FAIR-L.

15

D Proof of Lemma 4

Proof. Part (1) follows from the fact (see e.g., [27]) that E
⇥
min{Pois(b/s), b}

⇤
/b is increasing in b.

Part (2) is valid since: if s  1, then (b, s) = E
⇥
min{Pois(b/s), b}

⇤
/b which is decreasing in s; if

s � 1, then (b, s) = s · (E
⇥
min{Pois(b/s), b}

⇤
/b), which is increasing in s. Furthermore, we can

derive that

E[min{Pois(b/s), b}]
b

= 1� 1

b
E[max{b� Pois(b/s), 0}] = 1�

b�1X

k=0

e
�b/s b

k�1

skk!
(b� k);

if s = 1 then this equals

E[min{Pois(b/s), b}]
b

= 1�
b�1X

k=0

e
�b b

k

k!
+

b�1X

k=1

e
�b b

k�1

(k � 1)!
= 1� e

�b b
b�1

(b� 1)!
= (b, 1).

It can be verified that (b, 1) gets minimized at b = 1 with (1, 1) = 1� 1/e. For b > 1,

(b, 1) � 1� e
�b b

b�1

(b�1)b�1

eb�1

p
2⇡(b� 1)

= 1� 1

e
(1 +

1

b� 1
)
b�1 1p

2⇡(b� 1)
� 1� 1p

2⇡(b� 1)
,

where we use Stirling’s approximation in the first inequality. This establishes Part (3) and Part (5).

Now, we show Parts (4) and (6). Recall that ⌘(�, s) =
E[minPois(�),�s]

�·min(s,1) and (b, s) = ⌘(b/s, s).
Consider the first case when s > 1. We see that

⌘(�, s) =
E[min(Pois(�),�s)]

�
� 1

�

�sX

k=1

e
��

�
k
k

k!
=

�s�1X

k=0

e
��

�
k

k!
= 1� Pr[Pois(�) � �s]

� 1� exp

⇣
� � · ln s · (s� 1)

2

s
· (1� o(1))

⌘
.

The last inequality is due to the upper tail bound of a Poisson random variable as shown by [8],
where o(1) = ⇥(1/ ln s) is vanishing when s ! 1. Thus, since (b, s) = ⌘(b/s, s), we see
(b, s) � 1� exp(�b · ln s · (1� 1/s)

2
(1� o(1))), completing Part (4).

Similarly, for s < 1, we have

⌘(�, s) =
E[min(Pois(�),�s)]

�s
� �s

�s

1X

k=�s

e
��

�
k

k!
= 1� Pr[Pois(�) < �s]

� 1� exp

⇣
� �(1� s)

2

2

⌘
.

The last inequality is due to [8]. Thus, by replacing � with b/s, we establish Part (6).

E An Alternative Proof for a Stronger Version of Lemma 5

Consider Example 2. We present an alternative proof for a stronger version of Lemma 5 below.
Lemma 6. For Example 1, the optimal non-rejecting policy (Non-Rej) achieves a long-run fairness
of 1/2 + o(1) and 1 � o(1) for the rare type and the common type, respectively, where o(1) is a
vanishing term when n ! 1.

Since the clairvoyant optimal achieves a long-run fairness of 1�O(1/n) for both common and rare
types, the above lemma immediately implies that Non-Rej achieves a competitiveness of 1/2 + o(1).

We claim that Non-Rej above is an optimal non-rejecting algorithm for the bad example. This can
be justified as follows: When a common type arrives, the best strategy is to sample an available
offline neighbor (server) uniformly at random since each rare type has an equal chance of arriving
subsequently.

16

ALGORITHM 2: An Optimal Non-Rejecting Policy for Example 2 (Non-Rej)
1 Let an online agent j arrive at time t.
2 if j is of the common type then
3 Sample an available neighbor uniformly at random, if any, and assign j to it;
4 else
5 Assign j to its unique offline neighbor, if it is available then.

Proof of Lemma 6. For each k with 0  k  n and t 2 [0, 1], let ⇡k(t) be the probability that there
are k available servers at time t. By the nature of Non-Rej, the update on the number of available
servers follows a pure death process: The system starts at state k = n at time t = 0, i.e., ⇡n(0) = 1;
given the system has 1  k < n free servers at time t, it leaves the state whenever either a common
type arrives or any rare type uniquely served by any of the k free servers arrives, with a total arrival
rate of n� 1 + k/n. Thus,

d⇡k(t)

dt
= �⇡k(t) · n,⇡k(0) = 1 k = n;

d⇡k(t)

dt
= �⇡k(t) ·

⇣
n� 1 +

k

n

⌘
+ ⇡k+1(t)

⇣
n� 1 +

k + 1

n

⌘
,⇡k(0) = 0 1  k < n;

⇡0(t) = 1�
nX

k=1

⇡k(t).

From the above ordinary-differential-equation system, we can solve that

⇡k(t) =

⇢
Pr[Pois(tn) = n� k](1 + o(1)), if 1  k  n;

Pr[Pois(tn) � n](1 + o(1)), if k = 0.

Let X be the (random) numbers of rare type agents that arrive and get served in Non-Rej. Therefore,

E[X] =

Z 1

0

nX

k=1

⇡k(t) · (k/n)dt =
Z 1

0

nX

k=1

⇣
Pr[Pois(tn) = n� k](1 + o(1))

⌘
· (k/n)dt

We can verify that E[X] = 1/2+ o(1), where o(1) vanishes as n ! 1. By symmetry, the number of
each rare type served equals E[X]/n, leading to a long-run fairness of (E[X]/n)/(1/n) = E[X] =

1/2 + o(1). Similarly, let Y be the number of common type agents that arrive and are served in
Non-Rej. Thus, the long-run fairness achieved for the common type is

E[Y]

n� 1
=

1

n� 1

Z 1

0

nX

k=1

⇡k(t) · (n� 1)dt =

Z 1

0

nX

k=1

⇣
Pr[Pois(tn) = n� k](1 + o(1))

⌘
dt

=

Z 1

0
Pr[Pois(tn)  n� 1]dt+ o(1) =

1

n

Z 1

0
Pr[Pois(tn)  n� 1] · n dt+ o(1)

=
1

n
· E

h
min

⇣
Pois(n), n

⌘i
� o(1) = 1� o(1).

Thus, we establish the claim.

F A Quantitative Study on the Tradeoff between Competitiveness and the
Number of Rejected Agents

We use the bad example (Example 2) to conduct a case study on the trade-off between competitiveness
and the number of rejected arriving agents (when the serving capacity remains). We hope this case
study can provide insights for a comprehensive study of this trade-off in general cases. The proof
of Lemma 6 in Section E offers a foundational framework for analyzing a general class of online
policies. Consider an updated version of Non-Rej, denoted by Rej(↵), where we reject each arriving
common-type agent with a preset constant probability ↵ 2 [0, 1]. We expect the parameter ↵ to serve
as a useful moderator in balancing competitiveness and the number of rejected common-type agents.

17

ALGORITHM 3: An Updated Policy Parameterized by ↵ 2 [0, 1]: Rej(↵)
1 Let an online agent j arrive at time t.
2 if j is of the common type then
3 With probability 1� ↵, reject j; With probability ↵, sample an available neighbor uniformly at random,

if any, and assign j to it;
4 else
5 Assign j to its unique offline neighbor, if it is available then.

Note that: (1) When ↵ = 1, Rej(↵) reduces to Non-Rej; (2) The expected number of arriving
common-type agents rejected in Rej(↵) is at least (1� ↵)(n� 1).
Lemma 7. The policy Rej(↵) achieves a long-run fairness of 1� ↵/2 + o(1) and ↵� o(1) for the
rare and common types, respectively, where o(1) is a vanishing term as n ! 1. Additionally, it
rejects at least (1� ↵)(n� 1) arriving common-type agents in expectation.

Proof. For each k with 0  k  n and t 2 [0, 1], let ⇡k(t) be the probability that there are k available
servers at time t. Following the same analysis as in the proof of Lemma 6, we have

⇡k(t) =

⇢
Pr[Pois(tn↵) = n� k](1 + o(1)), if 1  k  n;

Pr[Pois(tn↵) � n](1 + o(1)), if k = 0.

Let X be the (random) numbers of rare type agents that arrive and get served in Rej(↵). Therefore,

E[X] =

Z 1

0

nX

k=1

⇡k(t) · (k/n)dt =
Z 1

0

nX

k=1

⇣
Pr[Pois(tn↵) = n� k](1 + o(1))

⌘
· (k/n)dt

=

Z 1

0

n�1X

`=0

Pr[Pois(tn↵) = `] · (1� `/n)dt+ o(1)

=

Z 1

0

n�1X

`=0

Pr[Pois(tn↵) = `]dt� `

n

Z 1

0

n�1X

`=0

Pr[Pois(tn↵) = `]dt+ o(1)

=

Z 1

0
Pr[Pois(tn↵)  n� 1]dt�

Z 1

0
(t↵) · Pr[Pois(tn↵)  n� 2]dt+ o(1)

= 1� ↵/2 + o(1).

By symmetry, the number of each rare type served is equal to E[X]/n, leading to a long-run fairness
of (E[X]/n)/(1/n) = E[X] = 1 � ↵/2 + o(1). Similarly, let Y be the number of common type
agents that arrive and are served in Rej(↵). The long-run fairness achieved for the common type is

E[Y]

n� 1
=

1

n� 1

Z 1

0

nX

k=1

⇡k(t) · (n� 1) · ↵ dt = ↵

Z 1

0

nX

k=1

Pr[Pois(tn↵) = n� k]dt+ o(1)

= ↵

Z 1

0
Pr[Pois(tn↵)  n� 1]dt+ o(1) = ↵ · 1

n↵

Z 1

0
Pr[Pois(tn↵)  n� 1] · (n↵) dt+ o(1)

= ↵ · 1

n↵
· E

h
min

⇣
Pois(n↵), n

⌘i
� o(1) = ↵� o(1).

Thus, we establish the claim.

G Proof of Theorem 3: Extension of OM-LF to Group-Level Fairness

In this section, we consider the extension of OM-LF to group-level fairness. Recall that we have
a collection of protected groups G = {g|g ✓ J}, where each group g 2 G is a subset of J that
indicates the online agent types in group g. The updated long-run fairness with respect to G is defined

18

as FAIR-L(G) = ming2G
EA,ALG[X(g)]P

j2g �j
, as shown in (6). Below is an updated version of Benchmark

LP for the long-run group-level fairness.

max s (10)
X

j2Ni

xij  bi 8i 2 I

X

j2g

X

i2Nj

xij � s ·
X

j2g

�j 8g 2 G (11)

X

i2Nj

xij  �j 8j 2 J (12)

s, xij � 0 8(i, j) 2 E

Note that we add a new set of constraints (12), which are clearly valid for any clairvoyant algorithm
since the constraints hold on every sample path based on the realized number of arrivals and services.
Therefore, OPT  s

⇤, where s⇤ represents the optimal value of LP (10), following the same argument
as presented in the proof of Lemma 1.

G.1 Proof of Part (1) of Theorem 3: SAMP-G and Competitive Analysis

The algorithm SAMP-G for OM-LF under long-run group-level fairness is formally stated in
Algorithm 4. Note that SAMP-G will reject an online agent immediately with probability
1 �

P
i2Nj

x
⇤
ij/�j , and will also reject it if the first sampled offline agent has reached capacity.

ALGORITHM 4: A Sampling Algorithm for OM-LF under Long-Run Group-Level Fairness (SAMP-G)
1 Solve LP (10) to get an optimal solution {x⇤

ij}.
2 Let an online agent (of type) j arrive at time t.
3 Sample a neighbor i 2 Nj with probability x

⇤
ij/�j .

/* This is a valid distribution due to Constraint (12). */
4 If i is safe, i.e., i has remaining capacity, then assign i to serve j; otherwise, reject j.

Proof of Part (1) of Theorem 3. We provide a terse argument since detailed logic can be found in
Lemmas 2–3. The incoming demand flow to an offline agent i 2 I is Poisson with rate

P
j2Ni

�j
x⇤
ij

�j
,

which is at most bi by LP feasibility. Therefore, the capacity of any offline agent i has not been
reached at time t with probability at least Pr[Pois(bit) < bi]. Using this fact, the expected number of
times offline agent i serves online type j is at least

Z 1

0
�j

x
⇤
ij

�j
Pr[Pois(bit) < bi]dt =

x
⇤
ij

bi
·
Z 1

0
bi · Pr

⇥
Pois(bit) < bi

⇤
dt

= x
⇤
ij ·

E[min{Pois(bi), bi}]
bi

.

Applying Lemma 4 twice, the expected total number of times a group g 2 G is served is at least
X

j2g

X

i2Nj

x
⇤
ij ·

E[min{Pois(bi), bi}]
bi

� E[min{Pois(b), b}]
b

·
X

j2g

X

i2Nj

x
⇤
ij

= (1� e
�b b

b

b!
) ·

X

j2g

X

i2Nj

x
⇤
ij .

The proof is completed by using the LP inequality that
P

j2g

P
i2Nj

x
⇤
ij/

P
j2g �j � s

⇤.

Remarks on the Missing Role Played by s
⇤ in the Final Competitiveness. Below are a few notes

on why the competitiveness should no longer depend on s
⇤. Recall that in Theorem 1, when the focus

19

is the fairness among all possible online types, s⇤ was interpreted as the "scale" of demand that can
be served, and the competitiveness approached 1 if s⇤ ! 1 or s⇤ ! 0

+. However, in the context
of group-level fairness, s⇤ no longer has this interpretation, and the statements about asymptotic
optimality no longer hold. To illustrate this, we provide two examples below.

First, s⇤ ! 1 is no longer possible, because s
⇤  1 is implied by Constraints (11) and (12). On the

other hand, if we do not add these constraints, then the LP has an unbounded gap, as demonstrated by
the following example. There is a single group consisting of n types with arrival rates 1. One type
is connected to an offline agent with capacity n; the other types are connected to no offline agents.
Without constraints (12), the LP would be able to “overserve” the first type and achieve a fairness of
1; any actual algorithm would have a fairness at most 1/n. All in all, in the generalized model, it is
no longer possible to allow an s which is greater than 1.

Second, if s⇤ ! 0
+, it is no longer the case that online algorithms can achieve a fairness of s⇤, as

demonstrated by the following example. There is a single group consisting of 2 types; one with
arrival rate 1 and the other with arrival rate � ! 1. Each type is connected to its own offline agent
with capacity 1. In this case s

⇤
= 2/(1 + �), which approaches 0. However, an online algorithm

makes in expectation only 1 + (1� 1/e) services, achieving fairness (2� 1/e)/(1 + �).

G.2 Algorithm RESERVE when All Online Types are Common

In this section we introduce another regime, in which algorithms are 1-competitive—the regime
where all online types are common, i.e., all have high arrival rates. However, this regime requires a
different algorithm, which we now motivate using the following example.

Example 5. J consists of a single type a with �a = n and I consists of n separate servers each
with unit capacity. Using SAMP-G, each server faces a separate demand according to a Poisson
process of rate 1 and successfully serves demand with probability 1 � 1/e. The total expected
demand served is n(1� 1/e). However, an algorithm that adaptively chooses an available server
and never rejects incoming demand as long as a server is available serves a total expected demand
of E[min{Pois(n), n}]. As n ! 1, the FAIR-L of the adaptive algorithm approaches 1, while the
FAIR-L of SAMP-G is stuck at 1� 1/e.

SAMP-G did not improve on this example even when the arrival rate approached 1 because it did
not “pool” the servers in order to reduce the variance in demand served. Motivated by this example,
we now introduce an algorithm RESERVE, which pre-assigns the capacity that will be used to serve
each online type. In general, offline agents could be adjacent to many online types and may not be as
straightforward to assign as in Example 5; however, we make use of the updated LP (10) along with
the dependent rounding procedure [16] to generate a randomized assignment. We state RESERVE in
Algorithm 5 and leave the proof of Part (2) of Theorem 3 to Appendix.

ALGORITHM 5: Alternate Algorithm that Pre-reserves Capacities (RESERVE)
1 Split and re-index offline agents as necessary so that bi = 1 for all i 2 I .
2 Solve LP (10) to get an optimal solution {x⇤

ij , s
⇤}, and define x

⇤
j =

P
i2Nj

x
⇤
ij for all j 2 J . Note that

x
⇤
j  �j for all j 2 J , by Constraint (12).

3 Apply dependent rounding [16] to the LP solution {x⇤
ij}, and let {XR

ij} be the rounded binary vector such
that

P
j2Ni

X
R
ij  1 for all i 2 I .

4 For each online type j, reserve the offline agents {i : XR
ij = 1} exclusively for serving j, and match them

to incoming type-j agents in a first-come-first-serve manner.

G.3 Proof of Part (2) of Theorem 3

Proof. For all j, let Serve(j) denote the set {i : XR
ij = 1}, which is generally randomized. By the

work of [16], it is possible to do the rounding in Step 3 so that the sets {Serve(j) : j 2 J} are always
mutually disjoint, and | Serve(j)| 2 {bx⇤

jc, dx⇤
je} for all j with E[| Serve(j)|] = x

⇤
j . Serve(j) is

fixed in advance, and hence independent of the number of arrivals of type j, for any j 2 J . Therefore,

20

the expected number of an online type j served is

E[min{Pois(�j), | Serve(j)|}]
= E[Pois(�j) · 1(Pois(�j)  bx⇤

jc) + | Serve(j)| · 1(Pois(�j) > bx⇤
jc)]

= E[Pois(�j) · 1(Pois(�j)  bx⇤
jc)] + E[| Serve(j)|] Pr[Pois(�j) > bx⇤

jc]
= E[Pois(�j) · 1(Pois(�j)  bx⇤

jc)] + x
⇤
j Pr[Pois(�j) > bx⇤

jc]
= E[min{Pois(�j), x

⇤
j}],

where the first equality uses the property that | Serve(j)| 2 {bx⇤
jc, dx⇤

je}, the second equality uses
independence, and the third equality uses the property that E[| Serve(j)|] = x

⇤
j .

For any group g 2 G, the expected fraction served is

P
j2g E[min{Pois(�j), x

⇤
j}]P

j2g �j
�

P
j2g

E[min{Pois(�j),�j}]
�j

· x⇤
jP

j2g �j

� E[min{Pois(�),�}]
�

·
P

j2g x
⇤
jP

j2g �j
= (1� e

���
�

�!
) ·

P
j2g x

⇤
jP

j2g �j
,

where the first inequality holds because 1 � x⇤
j

�j
, and the second inequality holds because

E[min{Pois(�),�}]
� is increasing in �. Finally,

P
j2g x⇤

jP
j2g �j

� s
⇤ by LP feasibility, where s

⇤ is in turn an
upper bound on OPT. Since this holds for all groups g 2 G, the proof is complete.

H Proof of Theorem 4: Short-Run Fairness with a Single Offline Type

H.1 Proof of Part (1) of Theorem 4: Competitive Analysis for FCFS

Proof. Let b be the serving capacity of the single offline agent and � be the total arrival rate
of online types. Thus, the fairness of FCFS under FAIR-S should be at least Pr[Pois(�)  b].
In contrast, the fairness of the offline optimal under FAIR-S should be OPT = Pr[Pois(�) 
b] +

P
k>b Pr[Pois(�) = k] · (b/k). By definition, the competitive ratio of FCFS under FAIR-S is

at least

f(b,�)
.
=

Pr[Pois(�)  b]

Pr[Pois(�)  b] +
P

k>b Pr[Pois(�) = k]b/k
.

We now show that the value of f(b,�), for all positive integers b and �  1, is lower-bounded by
f(1, 1), which equals approximately 0.863. We first show that for any given �  1, f(b,�) is an
increasing function of b when b � 1. Fix a � 2 [0, 1], Let f1(b) = Pr[Pois(�)  b] and f2(b) =

Pr[Pois(�)  b]+
P

k>b Pr[Pois(�) = k]b/k. Thus, we have f(b,�) = f1(b,)/f2(b). Observe that
(1) f1(b)�f1(b�1) = Pr[Pois(�) = b] = e

��
�
b
/b!; (2) f2(b)�f2(b�1) =

P1
k=b e

��
�
k
/(k ·k!).

Thus, for b � 2,

f1(b)� f1(b� 1)

f2(b)� f2(b� 1)
=

e
��

�
b
/b!P1

k=b e
���k/(k · k!)

� 1P1
k=b b!/(k · k!)

� 1P1
k=2 2!/(k · k!)

= 1.573.

Note that f1(b)/f2(b)  1. Thus, we claim that f(b,�) = f1(b)/f2(b) is an increasing function of
b � 1. So, f(b,�) � f(1,�).

Now we show f(1,�) is a decreasing function of � 2 [0, 1]. When b = 1, we have

f(1,�) =
e
��

(1 + �)

e��(1 + �) +
P1

k=2
e���k

k!k

=
1

1 +
�k

1+�

P1
k=2

1
k!k

.

Observe that �k
/(1 + �) increases over � > 0 for all given integer k � 1. Thus, we claim f(1,�) is

a decreasing function of � over � 2 [0, 1]. Therefore, f(1,�) � f(1, 1) ⇡ 0.863.

21

H.2 Proof of Part (2) of Theorem 4

Proof. Let b be the serving capacity of the single offline agent and � be the total arrival rate of online
types. Consider an instance with b = 1, and assume all online types are rare. In other words, with
probability one, every online type has at most one arrival. For each t 2 [0, 1], let �(�, t) be the
fairness achieved by an optimal online algorithm under FAIR-S when the online process is restricted
as Poisson process of rate �t. Thus, we care about the value �(�, 1), which is the fairness achieved
by the online optimal.

Consider an infinitesimally small period � during which at most one arrival can occur. Now we try to
upper bound �(�, t+ �). (Case 1) There is no arrival during (t, t+ �] which occurs with probability
e
��� . In the case, we have �(�, t+ �) = �(�, t). (Case 2) There is one arrival during (t, t+ �] which

occurs with probability 1�e
��� . In this case, we have �(�, t+�)  min(�(�, t), 1��(�, t)+e

��t
),

which is shown as below.

Let ↵t,k be the fairness achieved by an online optimal when there are k arrivals during [0, t]. Observe
that ↵t,0 = 1 for all t 2 [0, 1]. Therefore, by definition, �(�, t) =

P1
k=0 ↵t,k Pr[Pois(�t) = k].

Assume there is one arrival during (t, t+ �]. Note that

�(�, t+ �) =

1X

k=0

min(↵t,k, 1� k · ↵t,k) Pr[Pois(�t) = k]


1X

k=0

↵t,k Pr[Pois(�t) = k] = �(�, t),

�(�, t+ �) 
1X

k=0

(1� k · ↵t,k) Pr[Pois(�t) = k]

 1�
1X

k=1

↵t,k Pr[Pois(�t) = k] = 1� (�(�, t)� e
��t

).

Thus, we claim that �(�, t + �)  min(�(�, t), 1 � �(�, t) + e
��t

). Wrapping up all the above
analysis, we have �(�, t + �)  e

���
�(�, t) + (1 � e

���
)min(�(�, t), 1 � �(�, t) + e

��t
). This

suggests that @�(�, t)/@t  ���(�, t) + �min(�(�, t), 1� �(�, t) + e
��t

).

For each given � 2 [0, 1], let R�(t) be the unique function satisfying that dR�(t)/dt = ��R�(t) +

�min(R�(t), 1 � R�(t) + e
��t

) with R�(0) = 1. Thus, we claim that �(�, 1)  R�(1). Recall
that the offline optimal has a performance of e��

(1 + �) +
P1

k=2
e���k

k!k under FAIR-S. We can
numerically verify that R�(1)/

�
e
��

(1 + �) +
P1

k=2
e���k

k!k

�
gets its minimum value of 0.942 when

� = 1. Thus, we establish our result.

H.3 Proof of Part (3) of Theorem 4: Asymptomatically Optimal Algorithhm of Prob-Rej for
FAIR-S with a Single Offline Agent

Let I(b,�) denote an instance of online matching under short-run fairness FAIR-S with a single
offline agent of capacity b and a total online arrival rate of � � 1.
Lemma 8. Consider an instance I(b,�) with b/� < 1. We have OPT  (b/�) ·

�
1+1/�+o(1/�)

�
.

Proof. Let A =
P

j2J Aj be the total number of online arrivals. Observe that the performance
of an optimal clairvoyant under FAIR-S should satisfy (1) OPT(A) = 1 when A  b and (2)
OPT(A) = b/k when A = k > b. Therefore,

OPT = EA[OPT(A)]

= Pr[A  b] · 1 +
1X

k>b

Pr[A = k] · b
k

 Pr[A  �(1� (1� ))] + b ·
1X

k=1

e
��

�
k

k!

1

k

22

 exp

⇣
� �(1� )

2

2

⌘
+ b ·

⇣
1

�
+

1

�2
+ o

� 1

�2

�⌘
= 

⇣
1 +

1

�
+ o

� 1
�

�⌘
.

Note that the inequality on the last line is due to the lower tail bound of a Poisson random
variable as shown by [8]. Another trick involved is

P1
k=1

�k

k!
1
k = Ei(�) � ln� � � where

�
.
= limn!1

⇣Pn
k=1 1/k� lnn

⌘
⇡ 0.577 is a constant, and Ei is the Exponential integral function.

As shown by [32], Ei(�) = (e
�
/�)(1 + 1/�+ o(1/�)) when � � 1. Thus, we are done.

Now, we formally present the algorithm Prob-Rej in Algorithm 6, which shares the spirit as RESERVE
as shown in Section G.2. Part (3) of Theorem 4 shows that Prob-Rej is 1-competitive as the total
arrival rate � ! 1, even if the service capacity b is increasing at the same time. Depending on
whether b/� is greater than 1, the probabilistic rejection probabilities have to be chosen differently.
Also, note that due to dependent rounding, Prob-Rej is less likely to reject an agent if other agents
have already been rejected, distributing equal opportunity among the first K arrivals to be served.
This dependent rounding makes it different from SAMP, SAMP-G, and similar algorithms in the
literature.

ALGORITHM 6: Probabilistic-Rejection Algorithm for FAIR-S with a Single Offline Agent (Prob-Rej)

1 Set ✏ = b/�� 1 if b/� > 1 and ✏ =
p

ln�/� otherwise. let K = b�(1 + ✏)c.
2 Apply dependent rounding [16] to the vector x = (b/K) · 1, which has K identical entries each equal b/K.

Let (Yk)k 2 {0, 1}K be the random vector output.
3 Suppose an online agent (of type) j arrives, and let it be the kth arrival among all online arrivals.
4 If k  K and Yk = 1, then serve the incoming type-j agent if it is possible; otherwise, reject agent j.

Proof of Part (3) of Theorem 4. For notation convenience, we use I to denote I(b,�), which repre-
sents an instance under FAIR-S with a single offline agent of capacity b and a total online arrival
rate of �. Additionally, we use ALG to refer to the probabilistic-rejection algorithm Prob-Rej. By
definition, we have ALG(I) = EA

h
minj:Aj>0 EALG[Xj]/Aj

i
.
= EA[ALG(A)]. Consider a given

arrival vector A with A being the total number of online arrivals. By definition, we have ALG(A) = 1

when A = 0.

Now, we show that ALG(A) = b/K when (1) 0 < A  K and (2) b/K  1. Note that by
dependent rounding, we have (P1) Pr[Yj = 1] = b/K for all j 2 [K] := {1, 2, . . . ,K} and (P2)
Pr

⇥PK
j=1 Yj 

PK
j=1 b/K = b

⇤
= 1. Focus on a given j 2 J with Aj > 0. Consider a specific

online arrival of type j, which is counted as the kth arrival among all online arrivals. When A  K,
we see that k  K and the single offline agent will not reach the capacity upon arrival due to (P2).
Thus, we claim that the type-j agent will be served with probability equal to Pr[Yk = 1] = b/K for
each of its Aj arrivals. Thus, E[Xj] = Aj · b/K and ALG(A) = minj:Aj>0 EALG[Xj]/Aj = b/K.
Consider the following three cases.

(Case 1) b > �. In this case, K = b. If A = 0, ALG(A) = 1 and if 0 < A  K, ALG(A) = b/K =

1. Thus, we claim that ALG(A) = 1 when A  K.

ALG(I) = EA[ALG(A)] � Pr[A  K] = 1�Pr[Pois(�) > b] � 1�exp
�
��(b/��1)

2
/(2b/�)

�
.

Note that OPT(I)  1. Thus, ALG(I)/OPT(I) � ALG(I) and we are done.

(Case 2) b = �. In this case, when A  K, ALG(A) � b/K � 1/(1 + ✏). Thus,

ALG(I)/OPT(I) � ALG(I) = EA[ALG(A)] � Pr[A  K]

1 + ✏
�

⇣
1� exp

⇣
� �✏

2

2(1 + ✏)

⌘⌘
· 1

1 + ✏
.

Since ✏ =
p
ln�/�, we establish our claim.

(Case 3) b < �. We have ALG(A) � b/K � (b/�)/(1 + ✏) when A  K. Thus,

ALG(I) = EA[ALG(A)] � Pr[A  K] · b/�

1 + ✏
�

⇣
1� exp

⇣
� �✏

2

2(1 + ✏)

⌘⌘
· b/�

1 + ✏
.

23

By Lemma 8, we have that for any given instance I(b,�) with b < �,

ALG(I)
OPT(I) �

⇣
1� exp

⇣
� �✏

2

2(1 + ✏)

⌘⌘
· 1

1 + ✏
· 1

1 + 1/�+ o(1/�)
.

Since ✏ =
p
ln�/�, we establish our claim.

24

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

25

Justification:
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [NA]
Justification:
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

28

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

29

paperswithcode.com/datasets

Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Preliminaries and Main Contributions
	Main Contributions
	A Warm-Up for OM-LF with a Single Offline Agent.
	General Cases of OM-LF.
	Extension of OM-LF to Group-Level Fairness.
	Another Fairness Metric: Short-Run Fairness.

	Other Related Work
	Proof of Theorem 1: Online Matching Under Long-Run Fairness (OM-LF)
	Algorithm SAMP and Intuitions
	Proof of Theorem 1: Competitive Analysis of SAMP

	Proof of Theorem 2
	Proof of Part (1) of Theorem 2: 1/2-Upper Bound for Non-Rejecting
	Proof of Part (2) of Theorem 2: (3-1)-Upper Bound for Any Randomized
	Proof of Part (3) of Theorem 2: Tightness of Competitive Analysis of SAMP

	Conclusion and Reservations
	Further Discussions on the Holistic Nature of an Optimal Clairvoyant
	A Detailed Comparison of Our Work and ma2023fairness
	Examples Showing the Possibilities of FAIR-S >FAIR-L and FAIR-S <FAIR-L
	Proof of Lemma 4
	An Alternative Proof for a Stronger Version of Lemma 5
	A Quantitative Study on the Tradeoff between Competitiveness and the Number of Rejected Agents
	Proof of Theorem 3: Extension of OM-LF to Group-Level Fairness
	Proof of Part (1) of Theorem 3: SAMP-G and Competitive Analysis
	Algorithm RESERVE when All Online Types are Common
	Proof of Part (2) of Theorem 3

	Proof of Theorem 4: Short-Run Fairness with a Single Offline Type
	Proof of Part (1) of Theorem 4: Competitive Analysis for FCFS
	Proof of Part (2) of Theorem 4
	Proof of Part (3) of Theorem 4: Asymptomatically Optimal Algorithhm of Prob-Rej for FAIR-S with a Single Offline Agent

