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Abstract

Pretrained language models (PLMs) have demonstrated remarkable performance
in various natural language processing tasks: Unidirectional PLMs (e.g., GPT) are
well known for their superior text generation capabilities; bidirectional PLMs (e.g.,
BERT) have been the prominent choice for natural language understanding (NLU)
tasks. While both types of models have achieved promising few-shot learning
performance, their potential for zero-shot learning has been underexplored. In this
paper, we present a simple approach that uses both types of PLMs for fully zero-shot
learning of NLU tasks without requiring any task-specific data: A unidirectional
PLM generates class-conditioned texts guided by prompts, which are used as
the training data for fine-tuning a bidirectional PLM. With quality training data
selected based on the generation probability and regularization techniques (label
smoothing and temporal ensembling) applied to the fine-tuning stage for better
generalization and stability, our approach demonstrates strong performance across
seven classification tasks of the GLUE benchmark (e.g., 72.3/73.8 on MNLI-m/mm
and 92.8 on SST-2), significantly outperforming zero-shot prompting methods and
achieving even comparable results to strong few-shot approaches using 32 training
samples per class'.

1 Introduction

Pretrained language models (PLMs) [5, 8, 11, 19, 34, 40, 41] have achieved human-level performance
on natural language understanding (NLU) tasks [66, 67] when fine-tuned on a large amount of
task-specific training data. However, such a supervised fine-tuning paradigm is drastically different
from how humans perform these tasks: We barely need to see many task-specific training samples
to perform well. Recently, many studies have revealed the intriguing few-shot learning potential of
PLMs: By converting task descriptions to natural language prompts and injecting them into PLMs,
prompt-based approaches [5, 13, 55, 56, 59] leverage task-specific information for better training
data efficiency and have achieved remarkable few-shot results.

When prompt-based methods are applied to the zero-shot setting, however, the PLMs’ predictions
are much less accurate. For example, GPT-3’s zero-shot performance is much degraded relative to
its few-shot performance [5], especially on challenging tasks like natural language inference (NLI).
Without any task-specific samples, it is indeed challenging for PLMs to effectively interpret the
prompts that come in different formats and are unseen in the pretraining data. To familiarize PLMs
with various prompts for zero-shot generalization to unseen tasks, a recent study proposes instruction
tuning [70], which fine-tunes PLMs on a large collection of different tasks described by instructions.
Despite its strong performance, its success is grounded in the large number of cross-task annotated
datasets (e.g., train on many non-NLI tasks and transfer to NLI tasks) and the gigantic model size
(e.g., hundreds of billions of parameters), posing great challenges for training and using them.

'Code can be found at https://github.com/yumeng5/SuperGen.
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In this work, we study zero-shot learning of PLMs on NLU tasks without any task-specific or cross-
task data. Motivated by the strong text generation power of recent PLMs [5, 23, 30, 52], we propose
SuperGen, a Supervision Generation approach, wherein training data are created via a unidirectional
PLM (i.e., the generator) which generates class-conditioned texts guided by label-descriptive prompts.
A bidirectional PLM (i.e., the classifier) is then fine-tuned on the generated texts to perform the
corresponding task. Both PLMs can be of moderate size to fit in typical research hardware (e.g., a
GPT-2-sized [51] generator and a ROBERTay g -sized [34] classifier). With supervision automatically
created by the generator, SuperGen eliminates the need for task-specific annotations and provides the
classifier PLM with a larger amount of training data than in few-shot scenarios. We call such a setting
zero-shot because the entire process does not need any human annotated data, either from the target
task or other tasks. The major difference from previous methods is that we synthesize training data
for the target task, whereas existing zeros-shot methods do not use any form of training data from the
test domain (but may train on other domains) and directly perform inference on the target task.

Across seven classification tasks of the GLUE benchmark [66], SuperGen significantly outperforms
the prompt-based zero-shot method and even achieves an overall better result in both average
performance and stability than strong few-shot approaches that use 32 annotated samples per class.
We identify several key factors to the strong performance of SuperGen through ablation studies: (1)
selecting quality training data based on their generated probability, and (2) using label smoothing and
temporal ensembling to regularize fine-tuning on generated data.

2 Related Work

2.1 Few-Shot and Zero-Shot Learning with PLMs

Instead of using a large amount of annotated training data for fine-tuning PLMs on downstream tasks,
few-shot learning studies how to better leverage only a small amount of task-specific training data,
a more realistic scenario in many applications. The most strict few-shot learning setting does not
assume access to any unlabeled data or large validation sets for hyperparameter tuning [48], where
prompt-based methods [5, 13, 33, 35, 55-57, 59, 63, 84] are prominently deployed to inject task
descriptions into PLMs and make effective use of their language modeling capability for improved
training data efficiency in low-data regimes. More broadly, semi-supervised learning additionally
leverages unlabeled task-specific data, where data augmentation [7, 73], regularization [43] and
bootstrapping [56] methods are commonly used.

Zero-shot learning, on the other hand, is a much more challenging setting with absolutely no access
to any task-specific data. When prompt-based methods are directly used to obtain predictions from
PLMs without any training, their zero-shot performance can be much worse [5, 13]—difficult NLU
tasks can be barely formulated as prompts that resemble the format of pretraining data, posing great
challenges for PLMs to accurately interpret and leverage the prompts without given any training
samples. The current mainstream of zero-shot learning is based on transfer learning: By converting
a set of tasks with abundant annotations into instruction templates [42, 54, 70, 74], entailment
pairs [79, 80] or question-answer formats [50, 86] and fine-tuning PLMs on them, the PLMs acquire
the cross-task transfer ability [78] to execute unseen tasks when they are formulated in a similar
format. Our work proposes a different approach from these studies: We use a unidirectional PLM to
generate training data for fine-tuning another PLM on the target task. This not only removes the need
for a large amount of cross-task annotations, but also eliminates the task difference in training and
inference. Moreover, different from previous studies [1, 76] that rely on labeled data to fine-tune the
generative PLM, we directly use prompts to guide data generation without fine-tuning.

2.2 Controlled Text Generation with PLMs

Controlled text generation [22] aims to steer the generated texts of language models towards desired
contents, styles or domains. Through fine-tuning PLMs on attribute-specific data, high-level control
(e.g., generating certain topics or sentiments [88]), fine-grained control (e.g., generating specific words
or phrases [6]) or both [24] can be achieved. Adapting PLMs to generate texts of specific attributes
can also be realized at inference time without any further training of the PLMs [10, 26, 27, 32, 47, 75].
Different text attributes can also be represented during pretraining time as control codes [23] which
later can serve as explicit guidance for generating domain/attribute-specific texts.

The idea of generating category-conditioned texts as training data has been explored for topic
classification with bag-of-words or LSTM-based language models [38, 39], which may not have
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Figure 1: Overview of SuperGen for zero-shot learning of NLU tasks. A unidirectional PLM generates
training data guided by label-descriptive prompts. Quality training samples are selected based on
average log generation probability. A bidirectional PLM is fine-tuned on the selected training set
with label smoothing and temporal ensembling as regularization to perform the classification task.

enough capacity to generate quality training data for challenging NLU tasks. With more powerful
PLMs, the idea of using prompts as guidance has emerged recently: Since natural language generation
is largely based on contexts, using certain prompts to start a sequence can effectively steer the
subsequent texts to be generated. The prompts can be either in natural language [57] or as learnable
parameters [31]. In this work, we also guide text generation via prompts, but for the novel purpose of
creating training data for NLU tasks. There have been studies with similar goals, such as generating
similar/dissimilar sentences for training sentence embeddings [58] and using labeled samples as
demonstrations to prompt large PLMs [81] for creating novel training data. In this work, we explore
generating training data without using any labeled samples for a wide range of different NLU tasks.
The similar setting is also explored in a concurrent study [77]. Compared to annotated task-specific
data, the generated texts may contain noise and have domain difference from the downstream task.
We introduce several important strategies for effective fine-tuning on generated data.

3 Method

3.1 Preliminaries

Problem Formulation. We consider solving a classification problem? where we are only given the
label space ) and a mapping M : ) — W that converts each label y € ) into a label-descriptive
prompt (i.e., a short phrase) w, € ¥V. We assume access to a unidirectional PLM Gy as the generator
and a bidirectional PLM C, which will be fine-tuned as the classifier®. We also assume the pretraining
corpus D (e.g., Wikipedia) is available. Fig. 1 shows an overview of our proposed SuperGen method.

Text Generation with Unidirectional PLMs. A unidirectional PLM GY is pretrained to maximize
the generation probability of each token in a sequence « = [x1, =3, . .., Z,] conditioned on previous
tokens:
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Here, py(-) is usually parameterized using token embeddings e and contextualized embeddings h
given by a Transformer [65] encoder.

After pretraining, Gy can be directly used to generate new texts by recursively sampling tokens from
its output probability distribution. Typically, a temperature hyperparameter 7 > 0 is introduced
during sampling [20] to adjust the sharpness of the probability distribution:
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2We do not consider regression tasks in this work due to the difficulty of generating texts conditioned on
a continuous label space. However, there exist approaches [14, 53] that solve regression tasks by training
on classification tasks. We leave the integration of SuperGen with these methods as future work for solving
regression tasks.

3We assume the classifier to be bidirectional PLMs since they generally work better than unidirectional
PLM:s in NLU tasks; we can in principle use any PLM as the classifier.
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where 7 — 0 approximates greedily picking the most probable next token; 7 — oo induces a uniform
distribution. Additionally, sampled tokens can be confined to the top-k most probable ones to avoid
low-quality tokens. In this work, we find such top-k sampling with temperature is sufficient to
produce coherent and meaningful texts as training data for NLU tasks. Exploring more sophisticated
sampling strategies [21] is left for future work.

3.2 Training Data Generation

When given a label-descriptive prompt such
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For syntactic tasks like linguistic acceptabil-

ity classification (e.g., CoLA) which requires generating both linguistically acceptable and unaccept-
able sequences, we start the sequence with random stop words and use varying sampling temperatures
for generating different sequences. A smaller temperature (e.g., 7 = 0.1 in Equation (1)) sharpens
the sampling probability distribution towards the most probable tokens, thus the resulting sequence is
more likely to be linguistically acceptable. Using a larger temperature (e.g., 7 = 10 in Equation (1))
flattens the sampling probability distribution to be more uniform, and the generated tokens will be
nearly random, which can create linguistically incorrect sequences.

Generating Sequence Pairs. Sequence-pair classification tasks require generating two sequences
of specific relationships (e.g., entailment, contradiction). We sample* the first sequence =* from the
pretraining corpus D, concatenate the prompt w, with £, and generate the second sequence x7:

z? +— Gy ([x%;w,y]), ° ~ D.

The sequence pair training sample will then be formed as (x*, 29, y).

Rewarding and Penalizing Repetitions for Sequence Pair Generation. A common issue in text
generation is degenerate repetition [21, 23, 51, 71] where generated texts get stuck in repetition loops.
To address this issue, one approach is to discourage repetition by reducing the logits of tokens that
are already in the sequence before performing sampling [23]. In sequence pair generation, however,
it is sometimes desirable to encourage the second sequence to repeat some words in the first sentence
(e.g., for generating an entailment or a paraphrase). Therefore, we propose a simple modification of

*“In principle, we can also generate the first sequence using G, but we find sampling from D improves the
diversity of texts.



Eq. (1) that rewards/penalizes repetition based on whether the token has appeared in x*/x9:
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and @ > 0,8 > 0 are hyperparameters. By setting o < 1 and § > 1, we can promote tokens in
x® that have not appeared in 29 to have a higher chance of being generated, and discourage the
generation of repetitive tokens in ¢ to mitigate degenerate repetition. The parameters used for
different tasks are listed in Appendix B Table 9.

po(xilT<i) =

3.3 Effective Fine-Tuning on Generated Texts

With the generated training data, one can fine-tune a bidirectional PLM Cy as the classifier to perform
the NLU task. However, training Cy via standard supervised training on all generated texts is likely
to yield suboptimal performance on downstream tasks because (1) the generated texts may contain
noise as GGy may not always produce texts pertaining to the desired class, especially for challenging
sequence pair tasks with subtle semantic relationships; and (2) the generated texts can be considered
as originated from the domain of GGy’s pretraining data, with a potentially different distribution from
the downstream task; straightforward application of supervised training will result in overfitting
to the pretraining domain and diminishing generalization ability, a common challenge in transfer
learning [64, 87]. To address these challenges, we next introduce several simple and important
strategies for more effective and stable fine-tuning on generated texts.

Selecting Quality Training Data. We aim to select generated texts a9 that are most likely to
pertain to the desired label y (i.e., with the highest p(?|y)). The true probability p(x?|y) is unknown
and we estimate it via the generation probability given by G conditioned on the prompt w,,:

n
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Since the above measure is biased towards shorter sequences, we instead use the geometric mean
of the above conditional generation probability (or equivalently, the average log probability) of all
tokens in @9 as the ranking score, following [82]:
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To construct a training set consisting of N samples per class, we will generate more samples (e.g.,
10N), and select training data based on the score r in Eq. (3): For all tasks except CoLA, the top-N
ones of each class are selected; for CoLA, the top-N ones are used as linguistically acceptable
training samples, and the bottom- N ones as linguistically unacceptable sequences.

Regularization for Better Generalization and Stability. Even with the above training data
selection procedure, the resulting training set may still contain noise and there exists domain difference
from the downstream tasks. We apply two regularization techniques, label smoothing [62] and
temporal ensembling [28] for better fine-tuning stability and generalization.

Given a training sample (29, y), label smoothing trains the classifier Cy, to minimize the standard
cross-entropy loss between the label and the classifier’s prediction py (), except that the label is a
weighted average of the one-hot vector and a uniform distribution over all labels:

v
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where ¢; = 1(j = y)(1 — €) + ¢/|Y| and € is the smoothing weight. By forcing the classifier to be
less confident on training data, label smoothing improves robustness to label noise [36] and prevents
overfitting to the training set [44], thus improving generalization to different domains.

The motivation for temporal ensembling is that neural networks usually first pick up easy and general
patterns in the data before learning more sophisticated and dataset-specific features [83], and thus the



earlier states of the network offer better generalizability to different domains. We therefore record the
predictions p, = py(x9) of Cy on each training sample (x?, y) at different training steps, and use
the accumulated moving-average predictions Z to regularize the latest model training. This also helps
suppress the fluctuation in model predictions due to data noise, offering better noise-robustness [45].
We update ensembled predictions z once every B batches:

272+ (1 —7)pg, 2+ 2/(1—7), )

where 2 has a zero initialization; 7 is the momentum parameter; ¢ is the number of updates z has
received; the division (1 — fyt) is for bias correction [28]. We also use the ensembled prediction 2 as
a reliable signal to filter out noisy training samples: Only those samples on which 2 strongly agrees
with the label y (i.e., Z, > ¢ where § > 0 is a threshold parameter) will be used for training.

We regularize model training by extending Eq. (4) to add a KL divergence regularization term from

the model prediction to the ensembled prediction weighed by A:
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We follow [28] to slowly ramp-up A during training.

3.4 Overall Algorithm

We summarize SuperGen for single-
sequence NLU tasks in Algorithm 1. Solv-
ing sequence-pair problems follows the
same algorithm except the pretraining cor-
pus D is needed for sampling the first se-
quence x°.

4 Experimental Setup

Downstream Tasks and Metrics. We
use all the tasks included in GLUE [66]
except STS-B which is a regression task.
Please refer to Appendix C for more de-
tails about GLUE tasks. We follow the
evaluation protocol of [13]: We use F1
score as the metric for QQP and MRPC,
Matthews correlation for CoLA, and accu-
racy for the rest of the tasks. The original
development sets of these tasks are used
for testing. For all reported results, we in-
clude the average and standard deviation
over 5 different random seeds.

Models. Unless specified otherwise, we
use CTRL (1.63B parameters) [23] as the
generator Gp and COCO-LM g (367M
parameters) [40] as the classifier Cy. We
also show the results using similar-sized
PLMs (GPT-2 [51]/RoBERTa [34]) as the
generator/classifier in Section 5.6.

Fine-Tuning Settings and Hyperparam-
eters. We note that SuperGen is compat-
ible with any fine-tuning method; while us-
ing more sophisticated methods may grant

Algorithm 1: SuperGen for Zero-Shot Learning.

Input: V: Label space; P: Label-descriptive prompts; Gg:
Unidirectional PLM; Cy: Bidirectional PLM.
Parameter: N: Number of training samples per class to
generate; M (> N): Number of total
training samples to generate; 7": Number of
training steps; B: Ensemble prediction
update interval; : Threshold parameter.
Output: C3: Classifier that classifies input texts into ).
for y € YV do
Ty < {}
// Class y train set init.
fori e [1,2,...,M]do
z? — Go(wy)
Ty < Ty U{(2?,9)}

end
end
T+ {}
// Selected train set.
for y € YV do
Sort 7, in descending order by Eq. (3)
T+ TUTy[: N

end
2+ 0
// Ensembled prediction init.
T T
// Filtered train set.
fori € [1,2,...,T] do
Fine-tune C via Eq. (6) on a minibatch of 7~
if i¢%B = 0 then
Update 2, z via Eq. (5)
T A=, y)zy > 6,(x%,y) € T}
end
end
return C; = C

further performance improvement, we use the basic prompt-based fine-tuning with manual templates
approach for simplicity and clarity. For all tasks, we use the same templates and label words as in
[13]. Under the zero-shot learning setting, it is not possible to tune hyperparameters due to the lack



Table 2: Results on seven GLUE classification tasks. We report average and standard deviation (as
subscripts) performance over 5 different random seeds. f: Results from LM-BFF [13].

MNLI-(m/mm)  QQP QNLI  SST-2 CoLA RTE MRPC AVG

Method (Acc.) (F1)  (Acc) (Acc)  (Matt)  (Acc)  (F1)

Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).

PromptingT 50.80(0/51.70(0 49.70,0 50.80,0 83.60,0 2.00,0 51.30,0 61.90(0 50.1

SupCI'GCIl 72.30‘5/73.80,5 66.11‘1 73.31‘9 92.80‘6 32.75‘5 65.31‘2 82‘20‘5 69.4
— data selection 63.71.5/64.21.¢ 62.32.9 63.93.9 91.32.9 30.558.8 62.41 5 81.60.2 65.1
— label smooth 70.70.8/72.10.7 65.1g9 T71l.425 91.00.9 9.51.0 64.81.1 83.007r 65.2

— temporal ensemble  62.04.6/63.648 63.90.3 72420 92.50.9 23.57.0 63.510 78822 653
Few-Shot Setting: Use 32 labeled samples/class (half for training and half for development).

Fine-tuningT 45.8&4/47.86‘8 60.74,3 60.26,5 81.43,8 33.914(3 54.43,9 76.62‘5 59.1
Manual prompt! 68.32.3/70.51.9  65.55.3 64.542 92709 9.37.3 69.136 74.553 63.6
+ demonstration’ 70.71.5/72.012 69815 69.219 92.605 18.7s5 68.723 7T7.820 66.9
Auto pI‘OIIlpt}r 68.32.5/70.12.¢ 67.03.9 68.37.4 92.31.9 14.014.1 73.95 5 76.22.3 65.8
+ demonstrationT 70.03.6/72.03.1 67.758 68.55.4 93.00.6 21.815.9 71.15.3 78.13.4 67.3
Fully supervised' 89.8/89.5 81.7 93.3 95.0 62.6 80.9 91.4 84.9

Table 3: Results with different groups of prompts. CoLA does not use prompts for generation. The
number of prompt groups is equal to the number of the task labels.

Prompt Group MNLI-(m/mm) QQp QNLI SST-2 RTE MRPC
#O (Original) 72.30_5/73.80_5 66.11,1 73.31,9 92.80,6 65.31_2 82.20,5

#1 70.71.4/72.41 5 65.51.4 T71.917 92209 64.416 81.904
#2 70.80.6/72.10s 65.611 72.200 92.40s 64.71.8 81.80s
#3 70.91.4/72.21 4 - - - - -

Mixed 72.20.7/73.406 66915 73.017 928p9 66310 81.320

of validation sets. Therefore, we keep all fine-tuning hyperparameters (e.g., learning rate, batch size,
training epochs, number of generated training samples, label smoothing and temporal ensembling
hyperparameters) the same across all tasks. See Appendix B Table 10 for details.

Compared Methods and Ablations. We include the results of zero-shot prompting, standard
few-shot fine-tuning and the four few-shot prompt-based fine-tuning methods proposed in [13]. We
also conduct ablation studies by removing the following three techniques from SuperGen one at a
time: (1) not using Eq. (3) for training data selection but randomly selecting the same amount of
training data (— data selection); (2) not using label smoothing (— label smooth) but using one-hot
labels; and (3) not using temporal ensembling (i.e., using Eq. (4) instead of Eq. (6) as the training
objective) (— temporal ensemble). Lastly, we include the fully supervised fine-tuning results trained
on the entire training sets.

5 Evaluation

5.1 Main Results

We present the results of SuperGen, its ablations and compared methods in Table 2. Overall, SuperGen
significantly outperforms zero-shot prompting and achieves an overall better result than all few-shot
methods. Notably, SuperGen results in much smaller variance over different random seeds than
few-shot approaches on most tasks—with access to more training data, fine-tuning of PLMs becomes
much more stable. The ablation results demonstrate that all three strategies (i.e., quality training
data selection, label smoothing and temporal ensembling) play important roles in improving and
stabilizing the final performance, especially on challenging tasks like MNLI.

5.2 Using Different Prompts

One important factor of SuperGen is the choice of label-descriptive prompts as they directly influence
the quality of generated training samples. To study the impact of different prompt choices on the
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final model performance, we create different groups of prompts other than the original ones. We
replace the prompt for one label used in Table 1 with a synonymous one and keep other prompts
unchanged when forming a different prompt group (Please refer to Appendix A Table 8 for details).
We also experiment with mixing the generated data by different prompt groups (mixed). The results
are shown in Table 3. Overall, the model performance under different prompts is quite close, except
on RTE whose test set is very small, potentially resulting in the higher variance. In this work, we
manually choose simple prompts that make intuitive sense, and we leave the automatic searching of
optimal prompts as future work.

5.3 Results with Different Amount of Generated Data

With training data automatically created by the generator, we can have a virtually infinite amount of
training samples. We show the results of using different amount of generated data (after quality data
selection) for fine-tuning the classifier Cy in Fig. 2 on MNLI-m and SST-2. When the number of
training data is small (e.g., 100), the fine-tuning variance is high, resulting in the similar instability
issue with few-shot settings. With more generated data used, both average performance and training
stability improve, yielding comparable results (with smaller variance) to fine-tuning using few-shot
task-specific data. However, when too many generated data (e.g., 10, 000) are used, the classifier’s
performance slightly drops, probably due to increased label noise—recall that the training data are
selected based on the ranking score in Eq. (3), so using more data results in the inclusion of more
lower-ranking texts in the training set and reduced data quality. One way to address this issue is to
use a fixed selection ratio and increase the total number of generated texts to obtain a larger number
of high-quality training data. However, this comes at a greater computation cost in the generation
step. An important future direction is thus to develop better data selection strategies.

5.4 Using SuperGen in Few-Shot Settings

We present a simple extension of SuperGen to few-shot settings and show that the generated data of
SuperGen may also improve the few-shot performance. When few-shot samples are available, we
first fine-tune the classifier on the few-shot training set (standard prompt-based fine-tuning without
regularization), and then continue fine-tuning the classifier on the generated data by SuperGen as
described in Section 3.3. This allows the classifier to effectively leverage the knowledge from
the few-shot training set to filter out noisy samples in the generated data, as temporal ensembling
regularizes the classifier to remember the predictions learned previously and only keeps samples on
which the model predictions agree with the label. We show the benefits of incorporating generated
data for different few-shot sample sizes on MNLI in Fig. 3 (we use half labeled samples for classifier
training and half for development): When the few-shot training and validation sets are rather small
(32 — 64 samples per label in total), fine-tuning the classifier on the SuperGen generated set further
(after fine-tuning on the few-shot samples) brings notable performance improvements. However,
such benefits diminish with more few-shot training samples: The generated data fail to improve
the few-shot performance when there are 128 samples per label, and even worsen the classifier
performance with 256 samples per label. This is probably because our synthetic data generation
process is zero-shot and does not leverage any few-shot samples; the resulting generated samples may
not be of high enough quality to boost the few-shot performance when there are relatively abundant
annotated samples. Possible ways to use few-shot samples for generation include using them as
demonstrations [5], for creating augmentations [29] and for tuning the generators. We leave the
explorations of generating higher quality data by leveraging few-shot samples for future work.



Table 4: Comparisons with using CTRL for zero- Table 5: Results with different genera-
shot prompting and for knowledge distillation. T:  tor/classifier PLMs.
The entire training set is used as unlabeled data.

PLMs (G4/Cy) MNLI-(m/mm)  SST-2

Method MNLI-(m/mm) _SST-2 CTRL/COCO-LM  72.30.5/73.805  92.80.
SuperGen 72.30.5/73.805  92.806 CTRL/RoBERTa 69.00.8/70.60.9  93.01.5
CTRL Prompting 38.50.0/39.20.0 72.50.0 GPT-2/COCO-LM  69.512/71.31.3 88.218
Knowledge DistillT 40.80,5/41.50‘6 73.60‘8 GPT-2/RoBERTa 68.30,9/69.70,7 88.60,8

5.5 Using Generators for Knowledge Distillation

Apart from using unidirectional PLMs G for training data generation, one could also directly apply
them to unlabeled data formulated as prompts to obtain zero-shot predictions (i.e., prompting [5, 13]),
which can then be used as soft labels to train the classifier Cs. In Table 4, we show (1) the zero-shot
prediction accuracy of CTRL (the best out of three different prompts, details in Appendix D) and (2)
the classifier performance trained from CTRL’s predictions on the entire unlabeled training set as
soft labels (i.e., knowledge distillation). Similar to the observations in previous studies [5, 70, 85],
the zero-shot predictions of unidirectional PLMs are quite inaccurate and directly using them as
soft labels to train classifiers does not yield good results. We hypothesize that the advantages of
using unidirectional PLMs for training data generation over using them for zero-shot predictions are
twofold: (1) Better flexibility in prompt formats. When unidirectional PLMs are used for zero-shot
predictions, the prompts have to be designed so that the label word is the last token in the sequence to
be predicted, as unidirectional PLMs cannot attend to subsequent tokens. Such constraints may result
in the prompt being dissimilar to the pretraining data distribution and worsen the prediction quality
of the PLMs. On the contrary, using unidirectional PLMs for generation is not subject to any prompt
format constraints. (2) More direct uses of PLMs’ language modeling ability. Using unidirectional
PLMs for training data generation directly leverages the PLMs’ output token probability. Applying
PLMs for zero-shot prediction, however, requires an additional step to convert token predictions to
label predictions (i.e., the verbalizer [56]), and such a mapping process usually necessitates manual
curation and can hardly be optimal [13] especially without abundant task-specific data.

5.6 Using Different PLMs

The final performance of SuperGen is relevant to the choice of PLMs as the generator/classifier. Apart
from the default PLM choice, we report the results of using GPT-2xy aree (1.54B parameters) [51]
as the generator and RoBERTay ;e (356M parameters) [34] as the classifier in Table 5 with every-
thing else unchanged. When using GPT-2, we change the prompt used for SST-2 to “The film is
bad/terrible/awful.” for the negative label and “The film is good/great/excellent.” for the positive
label, since the original prompts used for SST-2 in Table 1 are a part of the control codes of CTRL and
cannot be effectively leveraged by GPT-2. Overall, both CTRL and GPT-2 are able to generate quality
training data for good fine-tuned classifier performance; CTRL consistently yields better results
than GPT-2 regardless of the choice of the classifier PLM, probably because CTRL is pretrained
with control codes which provide explicit guidance for generating texts of certain domains and
attributes. We also observe that the generated text quality is strongly correlated to the generator’s
model size—using a smaller version of GPT-2 (e.g., with 117M parameters) results in significantly
less coherent texts and can hardly serve as training data. An interesting future direction is to try larger
generator PLMs (e.g., GPT-3) which may create training data of better quality.

5.7 Case Studies

We present concrete examples of generated texts guided by prompts of different labels in Table 6. The
generated sequences are not only coherent, but also pertain to the corresponding labels. For easier
tasks like SST-2, the generated texts almost always correctly reflect the desired sentiment polarity
specified by the prompt. For more difficult tasks like MNLI, sometimes the generated texts are not of
the correct label (Appendix E Table 13 shows some negative results). The existence of such label
noise motivates our use of the regularization techniques in the fine-tuning stage. In the future, it will
be interesting to develop new methods to better control text generation towards the desired label.



Table 6: Example generated texts for SST-2, MNLI and QQP. Sampled sequences from pretraining
corpus (x®) are italicized; generated sequences (x9) are underlined; prompts (w?) are in bold.

Task Label Generated Text
SST-2 positive Rating: 5.0 The film is a great example of the kind of movie that you can watch over and over.
negative Rating: 1.0 The film was a total waste of time. I would not recommend this movie to anyone.

The construction of the station began in 2016, when the opening date was estimated to mid-2020.
In other words, the station was to open in 2020.
The construction of the station began in 2016, when the opening date was estimated to mid-2020.

entailment

MNLI  neutral . . . . . .
Furthermore, it is expected that a new bus terminal will be built at this station.

There is a rumor that The construction of the station began in 2016, when the opening date was estimated to mid-2020.

contradiction . . . . . .
However, the truth is: The construction started in 2017, and the official opening date was set for March 31, 2018.

QQP equivalent What are the most wear resistant steels? In other words, what are the most durable steels?

not equivalent ~ What are the most wear resistant steels? Furthermore, what is the best way to clean them?

6 Discussions and Conclusions

Ethical Considerations. While PLMs have demonstrated remarkable text generation and un-
derstanding capability, they can come with potential risks or harms [2, 3, 5] such as generating
misinformation [46] or amplifying harmful biases [49]. The focus of our work is on utilizing exist-
ing PLMs to generate training data for NLU tasks instead of developing new PLMs or generation
methods. Therefore, our method can be used in company with any bias reduction and correction
techniques [15, 37] to mitigate the risks of PLMs.

Limitations. One inherent limitation with zero-shot learning is the lack of access to task-specific
samples for hyperparameter tuning, whereas the performance of neural networks is usually heavily
dependent on the choice of hyperparameters even when the training algorithm and training set are
fixed [48]. Also, without access to any labeled data, the generated training data quality may not be
high enough to achieve good performance on challenging tasks, especially when the task distribution
is significantly different from the pretraining data distribution (e.g., the “linguistically incorrect” label
of CoLA requires generating sequences with grammar mistakes — a different distribution from the one
used to train PLMs). A promising direction to address the above limitations is extending SuperGen to
few-shot settings (e.g., the setting studied in Section 5.4) and leveraging a small amount of labeled
data for generating better quality data and for hyperparameter tuning.

Conclusions. We propose SuperGen, an automatic supervision generation approach for zero-shot
learning of NLU tasks. By providing label-descriptive prompts as guidance to a unidirectional
PLM, training data can be automatically created for fine-tuning a bidirectional PLM. Our framework
differs from previous transfer-learning-based zero-shot methods in that SuperGen does not rely on
cross-task annotations and eliminates the task difference in training and inference. We show that
several strategies are important for effective and stable fine-tuning on generated data, including
quality training data selection, label smoothing and temporal ensembling. SuperGen achieves strong
performance on seven classification tasks of the GLUE benchmark, even yielding comparable or
better results than sophisticated few-shot learning methods and offering better stability. There is large
room for future work, including but not limited to: Extension to few-shot learning settings, exploring
larger generator models [25, 68], better fine-tuning techniques to leverage generated data and better
strategies for selecting quality training data.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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