Tuning Language Models as Training Data Generators for
Augmentation-Enhanced Few-Shot Learning

Yu Meng! Martin Michalski' Jiaxin Huang'! Yu Zhang' Tarek Abdelzaher' Jiawei Han'

Abstract

Recent studies have revealed the intriguing few-
shot learning ability of pretrained language mod-
els (PLMs): They can quickly adapt to a new task
when fine-tuned on a small amount of labeled
data formulated as prompts, without requiring
abundant task-specific annotations. Despite their
promising performance, most existing few-shot
approaches that only learn from the small training
set still underperform fully supervised training
by nontrivial margins. In this work, we study
few-shot learning with PLMs from a different per-
spective: We first tune an autoregressive PLM on
the few-shot samples and then use it as a gener-
ator to synthesize a large amount of novel train-
ing samples which augment the original training
set. To encourage the generator to produce label-
discriminative samples, we train it via weighted
maximum likelihood where the weight of each
token is automatically adjusted based on a dis-
criminative meta-learning objective. A classifi-
cation PLM can then be fine-tuned on both the
few-shot and the synthetic samples with regular-
ization for better generalization and stability. Our
approach FewGen achieves an overall better re-
sult across seven classification tasks of the GLUE
benchmark than existing few-shot learning meth-
ods, improving no-augmentation methods by 5+
average points, and outperforming augmentation
methods by 3+ average points.

1. Introduction

Recent research has demonstrated the appealing few-
shot learning potential of pretrained language models
(PLMs) (Brown et al., 2020; Clark et al., 2020; Devlin
et al., 2019; He et al., 2021; Liu et al., 2019; Meng et al.,

"University of Illinois Urbana-Champaign. Correspondence to:
Yu Meng <yumeng5 @illinois.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2021a; 2022b) on natural language understanding (NLU)
tasks (Wang et al., 2019; 2018): Instead of relying on abun-
dant task-specific annotations, PLMs can effectively lever-
age a small set of training samples to quickly learn a new
task. Such training data efficiency is usually achieved by for-
mulating downstream tasks as prompts (Brown et al., 2020;
Gao et al., 2021; Scao & Rush, 2021; Schick & Schiitze,
2021a;d), allowing the PLM to adapt its language modeling
ability acquired through pretraining to downstream tasks.

The success of prompt-based methods has stimulated nu-
merous explorations along the line of effective few-shot
learning with PLMs: The training samples converted to
natural language prompts can be used to directly fine-tune
PLMs (Gao et al., 2021; Schick & Schiitze, 2021a) or as
in-context demonstrations to facilitate better inference (Liu
et al., 2022b; Min et al., 2022b). Recent approaches aim to
automate the design of prompts by gradient-based search-
ing (Shin et al., 2020) or parameterizing prompts as con-
tinuous learnable embeddings (Lester et al., 2021; Zhang
et al., 2022; Zhong et al., 2021). Other studies investigate
and address specific issues in prompt-based few-shot learn-
ing (Liu et al., 2022a; Tam et al., 2021; Zhao et al., 2021).
While remarkable, the model performance still has a non-
trivial gap from fully supervised models trained on massive
labeled data. Indeed, training deep models is inherently data
demanding—model generalization usually benefits from
more training samples (Baum & Haussler, 1988).

In this work, we study few-shot learning with PLMs from
a different perspective: Instead of proposing new methods
for fine-tuning on few-shot samples, we focus on the gen-
eration of quality training data based on few-shot samples
and using these synthesized training samples to fine-tune
the classification models. Motivated by the strong text gen-
eration power of autoregressive PLMs (Brown et al., 2020;
Keskar et al., 2019; Raffel et al., 2019), a few previous
studies enlarge the training set by generating new texts as
training samples. They either fine-tune the generator on the
initial training set with the standard maximum likelihood
objective (Anaby-Tavor et al., 2020; Kumar et al., 2020)
or use the training samples as demonstrations (Yoo et al.,
2021). However, these methods do not explicitly model
the distinction across different labels and may struggle to

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

generate accurate training samples pertaining to the desired
labels for challenging NLU tasks.

In this paper, we explore how to effectively use few-shot
samples to tune PLMs for generating high quality label-
discriminative training samples. Our contributions are as
follows: (1) We analyze the issues of using standard max-
imum likelihood for tuning the generator and propose a
meta-weighted maximum likelihood objective by automati-
cally learning token weights that emphasize label discrimi-
nativeness. (2) We propose a simple and effective training
procedure for fine-tuning classification PLMs on generated
data by mitigating label noise. (3) Under the same few-shot
learning setting, our method FewGen outperforms existing
methods by 3+ average points on seven classification tasks
of the GLUE benchmark (Wang et al., 2018). Ablation stud-
ies validate the effectiveness of our proposed meta-weighted
training objective and classifier fine-tuning method.!

2. Related Work

Few-Shot Learning with PLMs. Few-shot learning has
gained much attention recently due to its minimal resource
assumption—Without requiring massive annotated data but
only leveraging a few training samples (e.g., 16 per label),
few-shot methods can be widely adopted in many prac-
tical scenarios where obtaining large-scale annotations is
unaffordable. Standard fine-tuning of PLMs for few-shot
learning usually performs poorly because the limited train-
ing samples may not be sufficient for optimizing the pa-
rameters in the newly introduced classification head. To
reuse the language modeling ability of PLMs without in-
troducing randomly initialized parameters, prompt-based
approaches (Brown et al., 2020; Gao et al., 2021; Hu et al.,
2022; Logan IV et al., 2021; Min et al., 2022a; Schick &
Schiitze, 2021a;b;d; Tam et al., 2021) formulate training
samples as natural language prompt templates so that var-
ious downsteam tasks can be solved as a token prediction
problem. They enjoy improved training data efficiency over
standard fine-tuning in low-data regimes (Scao & Rush,
2021) and achieve remarkable few-shot learning perfor-
mance. Later developments in prompt-based methods re-
place the manual design of prompt templates with automatic
search or learning (Cui et al., 2022; Hambardzumyan et al.,
2021; Lester et al., 2021; Liu et al., 2021b; Zhang et al.,
2022; Zhong et al., 2021). There are also studies focusing
on specific issues (Liu et al., 2022a; Tam et al., 2021; Zhao
et al., 2021) in prompt-based methods. Instead of proposing
fine-tuning methods for few-shot learning, we study how
to generate quality training samples as augmentations by
learning from the few-shot samples.

'Code can be found at

yumeng5/FewGen

https://github.com/

Data Augmentation. Data augmentation methods (Chen
et al., 2020; Huang et al., 2022; Lee et al., 2021; Meng
et al., 2021b; Miyato et al., 2017; Xie et al., 2020) aim to
create similar samples to the existing ones so that the en-
larged training set can benefit model generalization. Early
approaches simply use manually designed rules (e.g., swap-
ping or inserting tokens) for word-level alterations over the
given samples to create new ones (Wei & Zou, 2019). Later
methods leverage the strong generation power of PLMs to
synthesize novel samples from scratch. Given a training set,
the PLMs can be either fine-tuned on the labeled samples to
learn label-conditioned generation probability (Kumar et al.,
2020; Lee et al., 2021; Yang et al., 2020) or take the labeled
data as demonstrations (Wang et al., 2021; Yoo et al., 2021)
to generate similar samples pertaining to the same label. In
this work, we study how to effectively tune generators on
few-shot training data for creating new data—standard fine-
tuning of PLMs on a small set of training data is prone to
overfitting, and the resulting model may struggle to generate
accurate, diverse and novel training data. We address this
challenge by leveraging prefix-tuning and proposing a new
meta-weighted generator tuning objective that emphasizes
label-distinctive tokens.

Controlled Text Generation. Generating training sam-
ples for different labels can be viewed as a form of con-
trolled text generation (Hu et al., 2017), whose goal is to
generate textual contents of desired semantics, styles or
attributes. Such control can be realized through different
stages of PLM training and deployment: During pretraining,
control codes (Keskar et al., 2019) can be used as explicit
guidance for training the model to generate domain/attribute-
specific texts; fine-tuning PLMs with attribute-specific data
can also grant high-level control (e.g., certain topics or sen-
timents (Ziegler et al., 2019)), fine-grained control (e.g.,
specific words or phrases (Chan et al., 2021)) or both (Khal-
ifa et al., 2021); at inference time, control over desired
attributes can also be enforced without updating the PLM
parameters (Dathathri et al., 2020; Krause et al., 2021; Ku-
mar et al., 2021; Liu et al., 2021a; Pascual et al., 2021; Yang
& Klein, 2021). More specifically related to the idea of
generating training data with language models, early meth-
ods in text classification use bag-of-words or LSTM-based
language models (Meng et al., 2018; 2019) to generate class-
conditioned texts as training data. Recently, a few studies
explore fine-tuning autoregressive PLMs (Anaby-Tavor
et al., 2020; Yang et al., 2020) with the standard language
modeling objective on the training set or using label-specific
prompts (Gao et al., 2023; Meng et al., 2022a; Schick &
Schiitze, 2021c; Wang et al., 2021; Ye et al., 2022) to steer
text generation towards the desired label. In this work, we
analyze issues with directly tuning PLMs on few-shot sam-
ples with the standard maximum likelihood objective and
propose a weighted variant of the objective that encourages

https://github.com/yumeng5/FewGen
https://github.com/yumeng5/FewGen

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

the PLM to focus on label-discriminative tokens.

Meta-Learning for Sample Weighting. The idea of
weighting training samples in the loss calculation originates
from the class imbalance (Wang et al., 2017) and noisy
label (Hendrycks et al., 2018) learning scenarios—By as-
signing higher weights to the samples from minority classes
or lower weights to the noisy samples, the learning pro-
cess is less impacted by the imbalance/label noise issues.
Meta-learning (Andrychowicz et al., 2016; Finn et al., 2017,
Franceschi et al., 2018; Wu et al., 2018) is one way to auto-
matically learn the weight for each sample. Specifically, a
meta objective, usually defined as the loss on a clean unbi-
ased validation set (Ren et al., 2018; Shu et al., 2019), can
be used to learn the sample weights which become hyperpa-
rameters that control the optimization of model parameters.
Our work has a different motivation and formulation of the
meta objective for token-wise weighted training: Not all
tokens in a training sample are equally label-discriminative.
We thus design a meta objective to emphasize distinction
across different labels (instead of using the validation loss
as the meta objective) for learning the token weights.

3. Method

3.1. Preliminaries

Overview. We consider the strict few-shot learning set-
ting (Perez et al., 2021): The training set Dyun = {(2,y)i}
consists of K training samples per label where * =
[x1,22,...,2,] is a text sequence with n tokens. The de-
velopment set Dgey is of the same size as Dy,in. There is
no access to additional task-specific unlabeled data. The
number of training samples K is assumed to be very small
(e.g., K = 16), making it challenging to train a classifi-
cation model Cy that generalizes well to unseen data. To
mitigate the training data scarcity issue, we first train an
autoregressive PLM on Dy.in, and then use it as a generator
Gl to synthesize more novel samples Dyen, = {(Z, 9); } that
augment the original training set. Finally, a classification
PLM C} is fine-tuned on both Dyyin and Dge, to perform
the task. An overview of FewGen is shown in Fig. 1.

Text Generation with Autoregressive PLMs. In standard
fine-tuning for text generation, an autoregressive PLM Gy
is trained via the maximum likelihood generation loss of
each token in a sequence x conditioned on previous tokens:

1
min —— leogpe(lewq%
iz
exp(ejThj)

= .
le/:'1 exp(e; h;)

po(zjlT<j) =

where the token generation probability pg(-) is usually pa-
rameterized using token embeddings e and hidden states h
of a Transformer (Vaswani et al., 2017) model. After train-
ing, Gg can be used to generate novel texts by iteratively
sampling tokens from its generation probability distribution.

Prefix-Tuning. Unlike fine-tuning which updates all
model parameters 6 of a PLM, prefix-tuning (Li & Liang,
2021) freezes all pretrained Transformer parameters and
only optimizes prefix vectors 8, that are prepended to each
Transformer layer. We use prefix-tuning for training Gg,
on Dy.in because (1) it offers better effectiveness than fine-
tuning for small datasets (Li & Liang, 2021) and (2) the
generation models for different labels can share the same
backbone Transformer parameters with only the prefix vec-
tors being different, significantly reducing the memory re-
quirement for multi-class classification tasks.

3.2. Label-Discriminative Text Generator Tuning

Motivation. To model the conditional text generation
probability p(x|y;) on different labels, a straightforward
way is to parameterize a generation model Gg, for each
label y; via a set of prefix vectors 8, = {6, }|, so that
p(x|y1) = pe,, (), and then tune @), on the training sam-
ples with label y;:

1 n
0 Loen, Lgen(Op,) = “n Zlogpgpl (zjlT<y). (D)

mi
65,

J=1

However, such an approach only optimizes the generative
likelihood p(z|y;) without accounting for label discrimina-
tiveness p(y;|x) which is essential for generating unambigu-
ous training samples to benefit the final classification task.
Challenging NLU tasks can have largely similar distribu-
tions across different labels, with very nuanced differences
reflected by a few key tokens. For example, a negative re-
view text “a movie where the ending feels like a cop-out”
may immediately become a positive one by just changing
the last word “cop-out” to “revelation”. Indeed, we find
that such subtle distinctions over different labels may not
be effectively captured using the standard generation objec-
tive in Eq. (1) where each token contributes equally to the
overall loss. As shown in Fig. 2, a discriminative loss Lgjs
(defined in Eq. (2)) can even increase during training—It is
possible that the dominating patterns in the training samples
are label-indiscriminate (e.g., a movie review dataset may
frequently mention “the movie”), making the generators of
different labels eventually converge to similar distributions,
especially when there are limited training samples per label.

To promote the generation of label-discriminative texts, we
encourage each token x; to be more likely generated under
the corresponding label y; instead of other labels (i.e., maxi-
mize pe,, (7;|Z<;) and minimize po, , (z;|x<;) for I' # 1)

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Dirain Generator Training
. ﬁw—gen
: J y wy,
e ' (,‘2\
1 n
7v£w—gou [’?;en ‘c?en [’gfen
Prefix Autoregressive PLM Generate
Op (frozen) [----- >
1 f
Lz)22) - (2]

Classifier Training

Step 2: Training with Regularization
and Sample Filtering on Dgen

Figure 1: Overview of FewGen. A generator PLM is first tuned on the few-shot samples with our proposed meta-weighted
training objective and then used to synthesize new training samples. A classification PLM is finally trained on both the

few-shot and the generated samples.

Logen
Lisc
.

0
0 100 200 300 400 0 100 200 300 400
Training Steps Training Steps
() Lgen during training (b) Laisc during training

Figure 2: (On MNLI) Training the generator via Ly, does
not automatically decrease Lgisc.

via a discriminative loss Lgis:

|
Edisc(ep) = T Z L(Jiisc(ap)’
=1 2)

; e, (zjlT<;)
’Ctjiisc(ep) = T - .
2ii=1Pe,, (zj|2<;)

Although one can directly combine Lgisc With Lge, to train
Ggp to enforce distinction across different labels, doing so
will result in two undesirable consequences: (1) A hyper-
parameter needs to be introduced to balance the weights
of the two losses, whose optimal value is likely to vary by
task; and (2) directly updating generator parameters with the
discriminative loss Lgisc will worsen the language modeling
quality of the generator, making it prone to generating less
fluent and coherent texts after training.

Weighted Maximum Likelihood Generator Tuning. To
preserve the generative learning of G'g, while emphasiz-
ing label-discriminative tokens, we assume each token is
associated with a weight in the maximum likelihood loss. In-
tuitively, when our goal is to generate distinctive texts across
different labels as training samples, not all tokens should
contribute equally to generator training. For example, for
sentiment classification tasks, one would expect “good/bad”

to be more label-discriminative than “the movie”, and the
former should be paid more attention to during training. It is
thus natural to generalize Lgeq in Eq. (1) to Ly,_gen as follows
by assuming a weight w; is given for each token.

min Ew-genv
Bi”l

Ew'gen(opl;w) = - Z wjﬁéen(apl)a (3)
j=1
‘Céen(epl) = logpgpl (xj|w<j)'

Note that in Ly._gen, w is assumed to be the hyperparameter
under which 6, is optimized. When wj is the same for
every token, Eq. (3) will be equivalent to Eq. (1). While it
is possible to manually design weighting rules for setting
w to promote label-discriminative learning, they will likely
necessitate task-specific knowledge and nontrivial tuning.
To facilitate the automatic learning of these weights w, we
propose to parameterize them as learnable hyperparameters
using the idea of meta-learning.

Meta Weight Learning Setup. To automatically learn
token weights as hyperparameters, we formulate a bi-level
optimization problem using the idea of meta-learning. The
inner objective Ly.gen Optimizes the generator parameters
0, given the token weights w;:

Ew-gen(ep; w) = - Z Wy (w)ﬁéen(gp)v
j=1

0, (w) = argmin Ly gen,
01’

where the token weights w;(w) are parameterized and
learned via a weighting network g,, (details about its im-
plementation are in Appendix A). The weighting network

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Algorithm 1 Meta-Weighted Generator Tuning.
Input: Dyin: Few-shot training set.
Parameter: 7: Number of training steps.
Output: 6,,: Prefix parameters for all labels.

Initialize 0](30) (with task-descriptive prompts) and w(®)

fort €[0,1,...,7 — 1] do

B + Sample a minibatch from Dy,

é;(,t) (w(t)) < Take one gradient step to descend
Ly-gen (9,@; w(t)) on B

wt*tD « Take one gradient step to descend
Lgise (éz(,t) (w(t))) on B

0;“1) < Take one gradient step to descend

Ly-gen (91(gt);w(t+1)) on BB

end
return 6, = 01(,T)

parameters w are trained with an outer objective Lgs.:

»Cdlsc(e* - Z £d15C 9 4
“)

w* = argmin L.
w

Under the above bi-level optimization formulation, the dis-
criminative loss Lgis. is not used to directly update generator
parameters, but to automatically learn token weights that
are used as hyperparameters by the inner objective Ly.gen.
As the token weights are trained to minimize Lg;s., the gen-
erator focuses more on label-discriminative tokens.

We use an online optimization strategy (Shu et al., 2019)
instead of nested optimization loops to optimize w™ and 6,
for training efficiency. It also guarantees convergence to the
critical points of both Ly._gen and Lgisc under mild conditions.
We initialize the prefix parameters 8, using natural language
prompts, and the details can be found in Appendix B. The
overall training procedure is shown in Algorithm 1.

Analysis of Meta Weight Learning. To study how the
token weights are learned during training, we analyze the
gradients of the weighting network parameters w which are
optimized via Eq. (4) (detailed derivation in Appendix C):

O Laie (éﬁ,“ (w))

~ ow; (w
x> od,

dw w=w(®) Jj=1 w=w(®
~) T
p aﬁdisc (ep) 8£éen(01))
i = X 90,
80;7 épzél()t) 8913 GP:GS)

Algorithm 2 Classifier fine-tuning on Dyrin and Dgep.

Input: Dy,ip: Few-shot training set; Dgen:
training set.

Parameter: 7": Number of training steps.
Output: ¢: Trained classification model parameters.
qb(o) <— Train on Dy, with standard supervised learning
zZ4+ 0 // Initialize ensembled prediction
fort €[0,1,...,7— 1] do

B < Sample a minibatch from Dy,

@'t « Take one gradient step to descend Lejqss in

Eq.(S)on B

Z < Accumulate the current model prediction

Update Dy, to exclude noisy samples based on 2z
end

return ¢ = ¢(7)

Synthesized

It can be seen that the gradient descent direction of w is de-
termined by a sum of token weight gradient ascent directions
(i.e., %‘E‘”)) weighted by a scalar d;, where d; character-
izes the similarity between the gradient of the discriminative
objective and the gradient of the generative objective on the
jth token. Therefore, the meta weights will be higher on
those tokens where optimizing their generative objective is
more beneficial for minimizing the discriminative objective,
so that label-distinctive information is better emphasized.

3.3. Classifier Fine-Tuning

With the trained generator Gg,, we can synthesize novel
training samples Dge, that augment Dy, for fine-tuning a
classification PLM C¢. The major challenge to effectively
leverage Dy, is that the label noise (i.e., some generated
samples may not accurately pertain to the corresponding
label) may deteriorate model performance if standard su-
pervised learning is directly used. We propose a simple
noise-robust training procedure to improve the generaliza-
tion and stability of training: First fine-tune Cy on Dyyin
with standard supervised training, and then continue fine-
tuning it on Dy, by applying label smoothing (Szegedy
et al., 2016) and temporal ensembling (Laine & Aila, 2017)
as regularization, following (Meng et al., 2022a). Specifi-
cally, given a training sample (&,) € Dgen, We minimize
the following classification loss:

clas< Z qi log pd) - A Z 2l log p¢
(5)

where ¢; = 1(I = §)(1 —€) 4+ ¢/ L and € is the label smooth-
ing weight; pe (&) is the model prediction on &; A is a
regularization weight for temporal ensembling; and Z is the
accumulated moving-average model predictions. We also
use the ensembled prediction z to filter out noisy synthe-
sized samples: We only include those samples for training

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

where Z strongly agrees with the label § (i.e., Z; > ¢ where
0 > 0 is a threshold parameter). In Eq. (5), the first classifi-
cation term is the cross-entropy loss with smoothed labels;
the second regularization term corresponds to temporal en-
sembling, which requires the current model prediction to
be close to its past accumulated predictions. This not only
neutralizes the fluctuation in model predictions for better
training stability when label noise is present (Nguyen et al.,
2020) but also helps prevent catastrophic forgetting (Kirk-
patrick et al., 2017) of the information learned previously
from the few-shot training set Dy,i,. Please refer to Ap-
pendix B for details about the temporal ensembling imple-
mentation. The overall procedure of classifier fine-tuning is
summarized in Algorithm 2.

4. Experimental Setup

Downstream Tasks and Metrics. We conduct evaluation
on all tasks of the GLUE benchmark (Wang et al., 2018)
(more details in Appendix D) except STS-B which is a re-
gression task. We follow the same data split and evaluation
protocol as (Gao et al., 2021): Both Dy, and Dy, con-
tain 16 samples per label and are sampled from the original
training set with 5 different random seeds. The original de-
velopment sets are used for testing. For all reported results,
we include the average and standard deviation over the 5
different Dyyin/Dyey splits. F1 score is used as the metric
for QQP and MRPC, Matthews correlation for CoLLA, and
accuracy for the remaining tasks.

Models and Training Settings. FewGen is a training data
generation method and can be used with any fine-tuning
method on any classification model. We use moderate-sized
PLMs to ensure our results are reproducible on typical re-
search hardware: CTRL (1.6B parameters) (Keskar et al.,
2019) as the generator Gy and RoBERTay 4 (356M pa-
rameters) (Liu et al., 2019) as the classifier Cy. We use
prefix-tuning for training Gy and prompt-based fine-tuning
for training C'. For simplicity, we use the most basic man-
ual prompt version of LM-BFF (Gao et al., 2021). The
only exception is CoLA for which we use the standard fine-
tuning since the input data might be out of the distribution
of Cy (Gao et al., 2021). The hyperparameter tuning is
performed on Dgey. More details are in Appendix B.

Compared Methods. No-augmentation baselines include
zero-shot prompting, standard fine-tuning, in-context learn-
ing, and the following strong few-shot learning methods:
Four versions of LM-BFF (Gao et al., 2021), P-Tuning (Liu
et al., 2021b) and DART (Zhang et al., 2022). We also com-
pare with data augmentation methods for few-shot learn-
ing: MixText (Chen et al., 2020), using back translation
systems to generate paraphrases (UDA-style (Xie et al.,
2020) augmentation), a few-shot demonstration method

GPT3Mix (Yoo et al., 2021), and standard fine-tuning of
generator on the few-shot samples with prompts. For fair
comparisons, all augmentation methods use LM-BFF (Man.)
to fine-tune a ROBERTay 4 classifier. We also include the
results of fully-supervised fine-tuning. More details about
augmentation baselines are in Appendix E.

5. Evaluation
5.1. Main Results

We present the results of FewGen and baselines in Table 1.
FewGen achieves overall better performance across the
GLUE tasks, on average 5+ points higher than the pre-
vious best few-shot method without augmentation, and 3+
points better than GPT3Mix? (Yoo et al., 2021) which uses
a 100 times larger generator model (175B) than FewGen.

Comparison with Back Translation. Using back transla-
tion to paraphrase the few-shot samples does not improve
the results—this is probably because it does not produce
samples that are sufficiently different from the few-shot
training set. The success of UDA (Xie et al., 2020) is
grounded in the augmentations from abundant unlabeled
data that improve the classifier generalization. However,
under the strict few-shot learning setup, there is no access
to additional task-specific unlabeled data (Gao et al., 2021),
making it challenging for paraphrase-based methods to cre-
ate sufficiently diverse training samples only based on the
small few-shot set. The new training samples produced by
our FewGen method are not limited to the paraphrases of
the few-shot samples, as the generator is trained via prefix-
tuning to preserve the PLM’s pretraining knowledge, based
on which novel training samples can be synthesized.

Comparison with GPT3Mix. The gigantic size of GPT3
makes it challenging for tuning on few-shot samples. There-
fore, GPT3Mix (Yoo et al., 2021) uses few-shot samples
as demonstrations for creating the augmentations. Such
an approach suffers from two limitations: (1) Without any
parameter update to the PLM, its learning ability is not fully
leveraged to adapt to the few-shot training set. (2) The
PLM can only use a small subset of the few-shot samples
at a time for creating each augmentation, as the number
of demonstrations received by the model is bounded by its
maximum input sequence length. This makes the quality of
the created augmentations more sensitive to the randomly
drawn training samples. Our FewGen method, on the other
hand, can use the entire few-shot set for tuning the PLM
and achieves overall even better classification results with
a much smaller PLM (< 1% the size of the GPT3 model)

>The original GPT3Mix paper uses accuracy as the metric
instead of Matthews correlation for CoLA; our reimplemented
GPT3Mix achieves 79.49.6 on CoLA if measured by accuracy.

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Table 1: Results on seven classification tasks of the GLUE benchmark. We report average and standard deviation (as
subscripts) performance over 5 different Dyin/Dgeyv splits defined in (Gao et al., 2021). t: Results from (Gao et al., 2021). *:
Results from (Zhang et al., 2022). Methods that use additional models apart from the final classification model are marked.

Method MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC AVG
(Acc.) (F1) (Acc.) (Acc.) (Matt.) (Acc.) (F1)
Methods without Augmentation: Few-shot samples are directly used for classifier tuning or as demonstrations for inference
Prompting| 50.8/51.7 49.7 50.8 83.6 2.0 51.3 61.9 50.1
Fine—TuningT 45.86,4/47.86‘8 60.74,3 60.26‘5 81.43,8 33.91443 54.4349 76.62,5 59.1
In—ContextT 52~00.7/53~4046 36.15.2 53.8044 84.813 —1.5244 60.4144 45~76.0 47.4
LM-BFF (Man.)Tl 68.32,3/70.5149 65.55,3 64.5442 92.7()‘9 9.37,3 69.1346 74.55,3 63.6
+ demonstration’ 70.71.3/72.01.2 69.818 69.219 92.605 18.T8s 68.72.3 77820 66.9
LM-BFF (Auto)! (w. 2.9B T5) 68.32.5/70.126 67.03.0 68374 92310 14.0141 73.922 76.223 65.8
+ demonstration® (w. 2.9B T5) 70.03.6/72.03.1 67.758 68554 93.006 21.8159 71.15.3 78.13.4 67.3
P-Tuning? 61.52.1/— 65.63.0 64.32.8 92.20.4 - — 74.57.6 —
DART? 67.52.6/— 67.832 66.737 93.50.5 - - 78.34.5 -
Methods with Augmentation: Few-shot samples are used for creating synthesized samples and for classifier tuning
MixText 65.126/66.228 60.639 68451 89.123 12.892 66.54.1 64.676 61.1
Back Translation (w. trained Marian) 66.94.6/68.33.8 59.846 67.849 91.119 7.53.7 62.453 68.011.2 60.6
GPT3Mix (w. 175B GPT3) 61.53.2/62.62.2 70.419 69.203 93.60.6 48919 70.4100 699124 69.2
Generator Fine—Tuning (W. 1.6B CTRL) 684951/70.85‘3 6044&7 70.941 91.212 18481()‘0 66.14(4 60.8154 62.6
FewGen (w. 1.6B CTRL) 75.716/77. 110 71517 76344 93.10s 40.075 T1.29.4 81.1.5 728
Fully Supervised Fine-Tuning’ 89.8/89.5 81.7 93.3 95.0 62.6 80.9 91.4 84.9
Table 2: Ablation studies by removing (—) or switching (w.) one component of FewGen.
Method MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC
FewGen 75716/77110 71.51,7 76.34,4 93-10.8 40.07,5 71.22_4 81.12,5
W. Lgen 74.91.0/76.21.0 70.719 75.048 92.597 37.8s2 69.522 80.830
W. Lgen + Laise 74.61.6/76.01.5 68.82.1 76.143 92408 412909 70.122 79.624
— label smooth 75.01,3/76.21,0 71~11.8 76.53,5 92.70,7 39~38.6 69.41,9 81.32,8
— temporal ensemble 72.25.5/74.02.9 65.821 7H.1s7 92117 33.944 66.624 80.432
w. fine-tune on Dtrain U Dgen 68.91,8/70.61,9 64.31,5 71.14,1 91.81,3 34.03,2 59.61,0 80.43,5

which can be deployed much more easily in practice.

5.2. Ablation Studies

The overall performance gain brought by FewGen over a
no-augmentation counterpart can be seen by comparing Few-
Gen with LM-BFF (Man.) which uses the same classifier
and fine-tuning method on Dy, only. We further analyze
the effectiveness of each important component in FewGen
via the following ablations: (1) Using the standard Lg, in
Eq. (1) instead of our proposed Ly.gen in Eq. (3) for genera-
tor tuning (w. Lgen); (2) using the directly combined Lgen
and Lgisc for generator tuning (W. Lgen + Laisc); (3) without
applying label smoothing in Eq. (5) (— label smooth); (4)
without applying temporal ensembling in Eq. (5) (— tem-
poral ensemble); (5) directly fine-tuning the classification
model on the combination of Dyey and Dygyin (W. fine-tune
on Dyain U Dgen)3. As shown in Table 2, (1) & (2) using the
standard maximum likelihood loss or the combination of

3For this ablation, we upsample Dyin by X 100 so that its size
is comparable with Dg,; otherwise, the result is much worse.

)

o
[=2 T <}

Dev Set Loss

)
-

2.2
0 100 200 300 100 0 100 200 300 400
Training Steps Training Steps

(a) Lgisc during training (b) Dev set loss during training

Figure 3: With different generator tuning objectives, (a)
Laisc and (b) language modeling loss on the dev set.

generative and discriminative losses to tune the generator
both yield lower-quality training data and lead to degraded
classification performance; (3) & (4) not applying regular-
ization techniques for fine-tuning the classifier is more prone
to label noise in the generated samples; (5) fine-tuning the
classifier on the combination of Dgey and Dy, significantly
underperforms our two-step fine-tuning method.

5.3. Analyses of Loss Functions for Generator Tuning

As shown in Table 2, the choice of generator loss has a
significant impact on the synthesized data quality and thus

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Table 3: Quantitative evaluation of generator training objectives. We use two metrics: Generated data accuracy (Acc; higher
is better) and generator’s perplexity on the test set (PPL; lower is better). The results are averaged over 5 Diin/Dyev Splits.

Objective MNLI QQP QNLI SST-2 CoLA RTE MRPC

J Acc. (1) PPL (}) Acc. (1) PPL (}) Acc. (1) PPL ({) Acc. (1) PPL (}) Acc. (1) PPL (J) Acc. (1) PPL (}) Acc. (1) PPL ({)
Lgen 69.4 13.1 87.5 10.9 57.0 23.4 91.5 43.8 59.1 85.6 82.9 9.3 87.6 5.0
Lyen + Laise 70.2 13.5 87.3 11.2 57.2 24.8 92.0 49.5 59.2 87.0 82.8 9.6 86.3 5.3
Lo-gen 72.3 11.9 89.5 10.7 60.1 23.2 93.2 43.5 60.7 83.8 83.4 8.9 90.5 4.9

Table 4: (For MNLI) Examples of generated second sequence (hypothesis) by generators tuned with three different objectives
conditioned on a given first sequence (premise) “In 2009, hair samples from 1,137 Taiji residents were tested for mercury by
the National Institute for Minamata Disease (NIMD)”. The true label of the generated sequence is marked at the end of the

sequence (if the generated sequence correctly pertains to the target label, it is marked in blue; otherwise, it is in red).

Objective Label Generated Second Sequence
entailment The NIMD found that hair samples from 1,137 Taiji residents had mercury in their hair. (neutral)
r The NIMD found that there was no evidence of a link between exposure to high levels
gen neutral .
of mercury and thyroid cancer. (neutral)
contradiction ~ There was no evidence of mercury in hair samples from Taiji. (neutral)
entailment The number of hairs in a sample is equal to the number of people who lived in Taiji. (neutral)
Loen + Laisc neutral The results showed that there was no significant difference in levels of mercury. (neutral)
contradiction Hair samples from 1,137 Taiji residents were not tested. (contradiction)
entailment The NIMD tested hair samples from 1,137 residents of Taiji. (entailment)
r There was no significant difference in levels between people who lived near a nickel mine
w-gen neutral ..
and those living far away. (neutral)
contradiction ~ The NIMD did not test any of the hair samples. (contradiction)

the final model performance. We conduct further analyses
to compare the training processes of the generator under the
following three loss functions and the resulting generated
samples: (1) Lge, Which is the standard language modeling
loss; (2) Lgen + Laisc Which directly adds the discriminative
loss to generator training; and (3) Ly.gen Which is our meta-
weighted objective. Fig. 3 shows the discriminative loss
Lgisc and the standard language modeling loss on the held-
out development set throughout training. Although using
Lgen + Laisc helps reduce the discriminative loss, it comes at
the cost of hindering language modeling—the generator loss
on the development set is high. Using our meta-weighted
objective Ly.gen Nt only encourages discriminativeness but
also mitigates overfitting, yielding the lowest validation set
loss. This is likely because the model receives contrastive in-
formation from other labels which facilitates more accurate
modeling of the texts with the target label.

Quantitative Analyses. Apart from the final classification
model performance which indirectly reflects the synthetic
data quality, we additionally conduct more direct quantita-
tive analyses of different generator training objectives. We
use two metrics: (1) The accuracy of generated texts, which
is judged by fully-supervised ROBERTay 4 models fine-
tuned on the original training sets of each task. We choose
to adopt such an automatic evaluation instead of human eval-
uation because it is efficient and reliable—fully-supervised
RoBERTa 4, models have comparable or better accuracy

than human baselines according to the GLUE benchmark®.
(2) The generator’s perplexity on the test sets, which re-
flects how well the generator models the task distribution.
As shown in Table 3, using Ly.gen for generator training
consistently outperforms using Leeq OF Lgen + Laisc, both in
generated text accuracy and in language modeling ability.

Comparing Ly.gen With Lgeq, the meta weights automati-
cally learned emphasize discriminative tokens in generator
training and help the generator capture subtle semantic dif-
ferences across different labels, resulting in better language
modeling quality and more distinctive synthetic data.

Comparing Ly.gen With Leen + Lgisc, the generator train-
ing objective is not directly impacted by the discriminative
objective, thus avoiding the gradient interference issue in
multi-task learning (Standley et al., 2019)—the gradient for
optimizing the generative probability p(x|y;) will be inter-
fered by the gradient optimizing the discriminative probabil-
ity p(yi|@) if Lgen + Laisc is used. Therefore, using Ly._gen
results in better language modeling quality and more fluent
and coherent generation results.

Qualitative Analyses. We showcase concrete generation
results for the three labels of MNLI by models trained with
the three different loss functions in Table 4. The model
trained with L4, produces fluent and coherent sentences,
but the generated sentences do not accurately pertain to

*nttps://gluebenchmark.com/leaderboard

https://gluebenchmark.com/leaderboard

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Sentence 1: But prophecy is always strongest when based on coincidence--that is a prime rule.

Label: Contradiction

Sentence 2: Prophecies based on coincidences are widely known to be weak and unreliable.

Sentence 1: But Rodgers did tell Lewis that he despises Amelio because Amelio supported

Clinton, so it is Rodgers' mistake, not our author's, that we are correcting.

Sentence 2: Rodgers told Lewis he hates Amelio.

Label: Entailment

Figure 4: Visualization of learned token weights on two samples from MNLI’s few-shot training set. The generator is trained
given the first sentence to generate the second. The tokens associated with higher weights are more label indicative.

the desired label (i.e., the “entailment” and “contradiction”
generation results are in fact neutral with respect to the
given sentence), lacking label discriminativeness. When
Loen + Laisc 1s used, the generated samples of different
labels are more distinctive, but also become less natural and
coherent due to the model’s language modeling ability being
hampered. The generator tuned with Ly_gen produces both
coherent and label-discriminative samples. More concrete
generation results for each task can be found in Appendix F.

5.4. Visualization of Learned Token Weights

To understand how token weights are automatically learned
during generator tuning, we visualize the learned weights in
Fig. 4. The tokens with higher weights (e.g., “weak” in the
first example and “hates” in the second example) are learned
to be important tokens that decide the relation of the second
sentence to the first sentence (i.e., the label of the training
sample). With such tokens emphasized during training,
the generator is encouraged to capture label-discriminative
information that facilitates the generation of unambiguous
training samples.

6. Discussions and Conclusions

Ethical Considerations. Despite the impressive text
generation and representation power of PLMs, they can
also come with the risk (Bender et al., 2021; Bender &
Koller, 2020; Brown et al., 2020) of generating disinfor-
mation (Pagnoni et al., 2021) or exacerbating biases (Prab-
humoye et al., 2018). Instead of improving upon PLM
architectures or generation techniques, our work focuses on
using existing PLMs to create training data for NLU tasks.
In practice, our method can be combined with any bias re-
duction and correction strategies (Gehman et al., 2020; Ma
et al., 2020) to reduce the adverse effects of PLMs.

Limitations. Compared to few-shot learning methods that
directly train classification models on the small training
set, FewGen requires tuning a generator PLM and using
it to synthesize novel training samples, resulting in higher
computation costs and longer running time. Still, we believe
that our method may bring more good than harm—when the
small training data size becomes the performance bottleneck

for NLU tasks, a simple yet costly solution is to obtain more
human annotations. Our method may replace or reduce the
human efforts in such training data creation processes.

Conclusions. In this work, we propose FewGen, which
leverages few-shot training samples to tune a generator PLM
for synthesizing novel training data. The generated data can
be then used in combination with few-shot samples to fine-
tune a classification model for better generalization. To
emphasize label-discriminative information during gener-
ator tuning, we propose a weighted maximum likelihood
objective where the token weights are automatically learned
via a discriminative meta objective. Since the generated
samples may contain label noise, we propose a simple train-
ing procedure that first trains classifiers on the few-shot
training set and then on the generated set by applying regu-
larization for noise-robustness. Across seven classification
tasks from the GLUE benchmark, FewGen significantly
outperforms existing approaches under the same few-shot
learning setting. The effectiveness of each important com-
ponent in FewGen is validated via ablation studies. Future
directions may include: Using larger PLMs as the generator
and the classifier, jointly training both models with each
other’s high-confident predictions, improving the robustness
of models trained on synthetic data, and developing sys-
tematic metrics to evaluate the quality of generated training
samples.

Acknowledgments

Research was supported in part by US DARPA KAIROS
Program No. FA8750-19-2-1004 and INCAS Program No.
HRO001121C0165, National Science Foundation IIS-19-
56151, I1S-17-41317, and IIS 17-04532, and the Molecule
Maker Lab Institute: An Al Research Institutes program
supported by NSF under Award No. 2019897, and the In-
stitute for Geospatial Understanding through an Integrative
Discovery Environment (I-GUIDE) by NSF under Award
No. 2118329. Any opinions, findings, and conclusions or
recommendations expressed herein are those of the authors
and do not necessarily represent the views, either expressed
or implied, of DARPA or the U.S. Government. Yu Meng
was supported by the Google PhD Fellowship. We thank
anonymous reviewers for valuable and insightful feedback.

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

References

Anaby-Tavor, A., Carmeli, B., Goldbraich, E., Kantor, A.,
Kour, G., Shlomov, S., Tepper, N., and Zwerdling, N. Do
not have enough data? deep learning to the rescue! In
AAAI 2020.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman,
M. W., Pfau, D., Schaul, T., and de Freitas, N. Learning
to learn by gradient descent by gradient descent. In NIPS,
2016.

Baum, E. and Haussler, D. What size net gives valid gener-
alization? In NIPS, 1988.

Bender, E. M. and Koller, A. Climbing towards NLU: On
meaning, form, and understanding in the age of data. In
ACL, 2020.

Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. On the dangers of stochastic parrots: Can
language models be too big? In ACM Conference on
Fairness, Accountability, and Transparency, 2021.

Bentivogli, L., Clark, P., Dagan, 1., and Giampiccolo, D.
The fifth pascal recognizing textual entailment challenge.
In TAC, 2009.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T. J., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In NeurIPS, 2020.

Chan, A., Ong, Y., Pung, B. T. W., Zhang, A., and Fu, J.
CoCon: A self-supervised approach for controlled text
generation. In ICLR, 2021.

Chen, J., Yang, Z., and Yang, D. MixText: Linguistically-
informed interpolation of hidden space for semi-
supervised text classification. In ACL, 2020.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
ELECTRA: Pre-training text encoders as discriminators
rather than generators. In ICLR, 2020.

Cui, G., Hu, S., Ding, N., Huang, L., and Liu, Z. Prototypi-
cal verbalizer for prompt-based few-shot tuning. In ACL,
2022.

Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine Learning
Challenges Workshop, 2005.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. In /CLR, 2020.

10

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT, 2019.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In International
Workshop on Paraphrasing (IWP), 2005.

Finn, C., Abbeel, P.,, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimization
and meta-learning. In ICML, 2018.

Gao, J., Pi, R, Lin, Y., Xu, H., Ye, J., Wu, Z., Zhang, W.,
Liang, X., Li, Z., and Kong, L. Self-guided noise-free
data generation for efficient zero-shot learning. In ICLR,
2023.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-
guage models better few-shot learners. In ACL, 2021.

Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith,
N. A. RealToxicityPrompts: Evaluating neural toxic
degeneration in language models. In EMNLP Findings,
2020.

Giampiccolo, D., Magnini, B., Dagan, 1., and Dolan, B.
The third pascal recognizing textual entailment challenge.
In ACL-PASCAL workshop on textual entailment and
paraphrasing, 2007.

Haim, R. B., Dagan, 1., Dolan, B., Ferro, L., Giampiccolo,
D., Magnini, B., and Szpektor, I. The second pascal
recognising textual entailment challenge. In PASCAL
Challenges Workshop on Recognising Textual Entailment,
2006.

Hambardzumyan, K., Khachatrian, H., and May, J. WARP:
Word-level adversarial reprogramming. In ACL, 2021.

He, P, Liu, X., Gao, J., and Chen, W. DeBERTa: Decoding-
enhanced BERT with disentangled attention. In /ICLR,
2021.

Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K.
Using trusted data to train deep networks on labels cor-
rupted by severe noise. In NeurIPS, 2018.

Hu, S., Ding, N., Wang, H., Liu, Z., Li, J.-Z., and Sun, M.
Knowledgeable prompt-tuning: Incorporating knowledge
into prompt verbalizer for text classification. In ACL,
2022.

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., and Xing,
E. P. Toward controlled generation of text. In /CML,
2017.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. ArXiv,
abs/2210.11610, 2022.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H. T., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Aji, A. F., Bogoychev, N., Martins, A. F. T,,
and Birch, A. Marian: Fast neural machine translation in
C++. In ACL System Demo, 2018.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong,
C., and Socher, R. CTRL: A conditional transformer
language model for controllable generation. ArXiv,
abs/1909.05858, 2019.

Khalifa, M., ElSahar, H., and Dymetman, M. A distribu-
tional approach to controlled text generation. In /CLR,
2021.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 2017.

Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S.,
Joty, S. R., Socher, R., and Rajani, N. GeDi: Generative
discriminator guided sequence generation. In EMNLP,
2021.

Kumar, S., Malmi, E., Severyn, A., and Tsvetkov, Y. Con-
trolled text generation as continuous optimization with
multiple constraints. In NeurIPS, 2021.

Kumar, V., Choudhary, A., and Cho, E. Data augmentation
using pre-trained transformer models. In Workshop on
Life-long Learning for Spoken Language Systems, 2020.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. In /CLR, 2017.

Lee, K., Guu, K., He, L., Dozat, T., and Chung, H. W. Neu-
ral data augmentation via example extrapolation. arXiv
preprint arXiv:2102.01335, 2021.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning. In EMNLP,
2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. In ACL, 2021.

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula,
C., Smith, N. A., and Choi, Y. DExperts: Decoding-time
controlled text generation with experts and anti-experts.
InACL, 2021a.

11

Liu, H., Tam, D., Mugeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. In
NeurlPS, 2022a.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out, 2022b.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., and
Tang, J. GPT understands, too. ArXiv, abs/2103.10385,
2021b.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

Logan IV, R. L., Balazevi¢, 1., Wallace, E., Petroni, F., Singh,
S., and Riedel, S. Cutting down on prompts and param-
eters: Simple few-shot learning with language models.
arXiv preprint arXiv:2106.13353, 2021.

Ma, X., Sap, M., Rashkin, H., and Choi, Y. PowerTrans-
former: Unsupervised controllable revision for biased
language correction. In EMNLP, 2020.

Meng, Y., Shen, J., Zhang, C., and Han, J. Weakly-
supervised neural text classification. In CIKM, 2018.

Meng, Y., Shen, J., Zhang, C., and Han, J. Weakly-
supervised hierarchical text classification. In AAAI, 2019.

Meng, Y., Xiong, C., Bajaj, P., Tiwary, S., Bennett, P, Han,
J., and Song, X. COCO-LM: Correcting and contrast-
ing text sequences for language model pretraining. In
NeurlPS, 2021a.

Meng, Y., Zhang, Y., Huang, J., Wang, X., Zhang, Y., Ji,
H., and Han, J. Distantly-supervised named entity recog-
nition with noise-robust learning and language model
augmented self-training. In EMNLP, 2021b.

Meng, Y., Huang, J., Zhang, Y., and Han, J. Generating
training data with language models: Towards zero-shot
language understanding. In NeurIPS, 2022a.

Meng, Y., Xiong, C., Bajaj, P., Tiwary, S., Bennett, P, Han,
J., and Song, X. Pretraining text encoders with adversarial
mixture of training signal generators. In ICLR, 2022b.

Min, S., Lewis, M., Hajishirzi, H., and Zettlemoyer, L.
Noisy channel language model prompting for few-shot
text classification. In ACL, 2022a.

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
In EMNLP, 2022b.

Miyato, T., Dai, A. M., and Goodfellow, I. J. Adversarial
training methods for semi-supervised text classification.
In ICLR, 2017.

Nguyen, D. T., Mummadi, C. K., Ngo, T.-P.-N., Nguyen, T.
H. P, Beggel, L., and Brox, T. SELF: Learning to filter
noisy labels with self-ensembling. In ICLR, 2020.

Pagnoni, A., Balachandran, V., and Tsvetkov, Y. Understand-
ing factuality in abstractive summarization with FRANK:
A benchmark for factuality metrics. In NAACL, 2021.

Pascual, D., Egressy, B., Meister, C., Cotterell, R., and
Wattenhofer, R. A plug-and-play method for controlled
text generation. In EMNLP Findings, 2021.

Perez, E., Kiela, D., and Cho, K. True few-shot learning
with language models. In NeurIPS, 2021.

Prabhumoye, S., Tsvetkov, Y., Salakhutdinov, R., and Black,
A. W. Style transfer through back-translation. In ACL,
2018.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

2019.

Ren, M., Zeng, W., Yang, B., and Urtasun, R. Learning to
reweight examples for robust deep learning. In ICML,
2018.

Scao, T. L. and Rush, A. M. How many data points is a
prompt worth? In NAACL, 2021.

Schick, T. and Schiitze, H. Exploiting cloze-questions for
few-shot text classification and natural language infer-
ence. In EACL, 2021a.

Schick, T. and Schiitze, H. Few-shot text generation with
natural language instructions. In EMNLP, 2021b.

Schick, T. and Schiitze, H. Generating datasets with pre-
trained language models. In EMNLP, 2021c.

Schick, T. and Schiitze, H. It’s not just size that matters:
Small language models are also few-shot learners. In
NAACL, 2021d.

Shankar, I., Nikhil, D., and Kornél, C.
dataset release: Question pairs, 2017.
https://www.quora.com/qg/quoradata/

First Quora
URL

Shin, T., Razeghi, Y., IV, R. L. L., Wallace, E., and Singh,
S. Eliciting knowledge from language models using auto-
matically generated prompts. In EMNLP, 2020.

Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., and
Meng, D. Meta-weight-net: Learning an explicit mapping
for sample weighting. In NeurlIPS, 2019.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C.D.,Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
EMNLP, 2013.

Standley, T. S., Zamir, A. R., Chen, D., Guibas, L. J., Ma-
lik, J., and Savarese, S. Which tasks should be learned
together in multi-task learning? In ICML, 2019.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In CVPR, 2016.

Tam, D., Menon, R. R., Bansal, M., Srivastava, S., and
Raffel, C. Improving and simplifying pattern exploiting
training. In EMNLP, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Wang, A., Singh, A., Michael, J., Hill, E., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
EMNLP Workshop BlackboxNLP, 2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F,, Levy, O., and Bowman, S. R. Su-
perGLUE: A stickier benchmark for general-purpose lan-
guage understanding systems. In NeurIPS, 2019.

Wang, Y.-X., Ramanan, D., and Hebert, M. Learning to
model the tail. In NIPS, 2017.

Wang, Z., Yu, A. W, Firat, O., and Cao, Y. Towards zero-
label language learning. ArXiv, abs/2109.09193, 2021.

Warstadt, A., Singh, A., and Bowman, S. R. Neural network
acceptability judgments. In TACL, 2019.

Wei, J. and Zou, K. EDA: Easy data augmentation tech-
niques for boosting performance on text classification
tasks. In EMNLP, 2019.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In NAACL-HLT, 2018.

Wu, L., Tian, F,, Xia, Y., Fan, Y., Qin, T., Lai, J., and Liu,
T.-Y. Learning to teach with dynamic loss functions. In

First—-Quora-Dataset—-Release—-Question—-PairsNeurlPS, 2018.

12

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Xie, Q., Dai, Z., Hovy, E. H., Luong, M.-T., and Le, Q. V. GPT3Mix: Leveraging large-scale language models for
Unsupervised data augmentation for consistency training. text augmentation. In EMNLP Findings, 2021.
In NeurIPS, 2020.
Zhang, N., Li, L., Chen, X., Deng, S., Bi, Z., Tan, C., Huang,
Yang, K. and Klein, D. FUDGE: Controlled text generation F, and Chen, H. Differentiable prompt makes pre-trained
with future discriminators. In NAACL, 2021. language models better few-shot learners. In /CLR, 2022.
Yang, Y., Malaviya, C., Fernandez, J., Swayamdipta, S., Zhao, T., Wallace, E., Feng, S., Klein, D., and Singh, S.
Bras, R. L., ping Wang, J., Bhagavatula, C., Choi, Y., and Calibrate before use: Improving few-shot performance of
language models. In ICML, 2021.

Downey, D. G-daug: Generative data augmentation for
commonsense reasoning. In EMNLP Findings, 2020.) o
Zhong, Z., Friedman, D., and Chen, D. Factual probing is
[mask]: Learning vs. learning to recall. In NAACL, 2021.

Ye, J., Gao, J., Li, Q., Xu, H., Feng, J., Wu, Z., Yu, T,
and Kong, L. ZeroGen: Efficient zero-shot learning via))
dataset generation. In EMNLP, 2022. Ziegler, D. M.,' Stlennon,’N:, Wu, J., Brown, T B., Radff)rd,
A., Amodei, D., Christiano, P., and Irving, G. Fine-
tuning language models from human preferences. ArXiv,

Yoo, K. M., Park, D.-H., Kang, J., Lee, S.-W., and Park, W.
abs/1909.08593, 2019.

13

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

A. Details of Weighting Network Implementation

Since the token weights w used in Eq. (4) need to characterize the discriminativeness of each token, we use the value of
discriminative objective at each token £, . as the input to the weighting network, and we use softmax to normalize the
weights:

exp (90(Lh))
Shorexp (90(Lh))

wj(w) =

Following (Shu et al., 2019), we instantiate g, to be a feedforward network (FFN) with only one 100-dimension hidden
layer by default.

B. Implementation Details

Table 5: Prompts used for initializing the prefix vectors and control codes (required by CTRL (Keskar et al., 2019)) used in
generator training. The control codes are selected to approximiate the task domain. For single-sequence tasks, denotes the
training sample; for sequence-pair tasks, ; and x5 denote the first and second sequence in the training sample, respectively.

Task Task Type Control Code Label Initialization Prompt

SST-2 single-scquence Reviews positive Raqngf 5.0 posﬁlye movie rev1.ew:. x
negative Rating: 1.0 negative movie review:
grammatical Linguistically correct sentence: x

CoLA single-sequence Links not grammatical ~ Linguistically incorrect sentence: x

entailment Sentence 1 implies Sentence 2. Sentence 1: ; Sentence 2: x2
MNLI sequence-pair Wikipedia neutral Sentence 2 supplements Sentence 1. Sentence 1: 1 Sentence 2: 2
contradiction Sentence 2 contradicts Sentence 1. Sentence 1: x1 Sentence 2: @2
. . entailment Paragraph is relevant to Question. Question: 1 Paragraph:
QNLI sequence-pair Links . graph s 1 Q n. Q el graph: &2
not entailment Paragraph is irrelevant to Question. Question: & Paragraph: a2
. e ntailmen ntence 1 impli ntence 2. Sentence 1: ntence 2:
RTE sequence-pair Wikipedia enta ent Sentence plies Sentence 2. Sentence 1: 1 Sentence 2: x>
not entailment Sentence 2 supplements Sentence 1. Sentence 1: 1 Sentence 2: x2
. . . equivalent Sentence 1 is equivalent to Sentence 2. Sentence 1: x; Sentence 2: x>
MRPC sequence-pair Wikipedia not equivalent Sentence 1 is different from Sentence 2. Sentence 1: @1 Sentence 2: x5
. . equivalent Question 1 is equivalent to Question 2. Question 1: &1 Question 2: a2
P nce-pair Link . . R . . .
QQ sequence-pa s not equivalent Question 1 is different from Question 2. Question 1: 1 Question 2: a2

Details of Initialization Prompts Used for Generator Tuning on Different Tasks. For generator tuning, we find it
beneficial to initialize the prefix vectors with task-descriptive prompts, similar to the observations in (Li & Liang, 2021).
The prefix lengths (i.e., number of trained prefix token positions) are equal to the number of tokens in the prompts. We
present details about the prompts used for initializing the prefix vectors for different tasks in Table 5. For sequence-pair
tasks, an additional infix prompt is used between the two sequences, and we also tune the embeddings of the infix (i.e.,
prompt-tuning (Lester et al., 2021)) for generator training.

Details of Generator Tuning. The meta-weighted generator tuning procedure (Algorithm 1) involves three forward and
backward passes, and thus its time complexity is approximately 3 times of standard generator training without meta learning.
However, since the few-shot training sets have a small amount of training data, the extra time cost is usually affordable.
In practice, our generator tuning with meta weight learning takes 10 minutes to train on each task (the standard generator
training time without meta-learning is 3.5 minutes). We use a fixed set of hyperparamters for all tasks without task-specific
hyperparamter tuning: In Algorithm 1, we set the batch size to be 2, the learning rate for optimizing ép to be 2e — 2, the
learning rate for optimizing w to be le — 2, the learning rate for optimizing 6, to be 5e — 3, and training epoch to be 20.
We also experiment with larger batch sizes (e.g., 16/32) and/or training for more epochs, but they result in worse language
modeling quality than the default hyperparamters.

Details of Generating Training Data. Following (Meng et al., 2022a), for sequence-pair tasks (MNLI, QQP, QNLI, RTE
and MRPC), we randomly sample the first sequence from the pretraining corpus (e.g., Wikipedia) and use greedy sampling

14

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

for generating the second sequence. For single-sequence tasks (SST-2 and CoLA), we use top-k sampling with temperature
to generate training data from scratch where k£ = 10. For all tasks, we generate 5, 000 samples per label.

For SST-2, we use one of the following tokens to start generation: “a”, “one”, “the”, “this”, “that”, “i”, “you”, “it”, “what”.
For CoLLA, we use a random stop word to start generation.

We apply repetition penalty (Keskar et al., 2019) to the logits of tokens
that have already appeared in the sequence. Overall, the token probability Table 6: Hyperparameters for generating

distribution is post-processed as follows before conducting sampling: training data for different tasks. 7: Temper-
ature during sampling (7 = 0 means greedy
pol@i|zes) = exp(e;'— hi/w) sampling); o: Repetition penalty.
i b<i) — vV 9
IV exp(e] hi/w)
Task Label T «a
T X € Ty .
w= X , SST-2 positive 05 1.1
T else negative 1.1
CoLLA grammatical 03 1.1
where T is the temperature hyperparameter, and « is the repetition penalty not grammatical 10 1.1
hyperparameter. For labels that favor token repetitions between the first entailment 11
and the second sequences (e.g., paraphrase or entailment), we set « to be MNLI neutral 0 15
a smaller value (e.g., 1.0), and vice versa. contradiction 1.1
The hyperparameter values for training data generation on all tasks can be QNLI entailment o 10
. not entailment 1.5
found in Table 6.
entailment 1.0
) RTE not entailment 0 1.5
Hyperparameters for Fine-Tuning Classifier PLMs. For fine-tuning -
.. . equivalent 1.0
on the few-shot training samples Dy,in, We search among the following MRPC not equivalent 0 s
hyperparameter ranges based on development set (Dqey) model performance ol 0
and pick the best performing model for futher fine-tuning on synthesized QQpP ig?g(?u?g;len ¢ U 5

data: Learning rate in [le — 5, 2e — 5] and batch size in [4, 8]. The number
of training steps is fixed to be 1000. We also find it beneficial to apply label
smoothing (smoothing weight set to 0.15) for fine-tuning on the few-shot
training set.

For fine-tuning on the synthesized training samples Dye,, we use the following hyperparameters: 5¢ — 6 as the learning rate;
16 as the batch size; label smoothing weight e = 0.15 ; temporal ensemble momentum v = 0.9; temporal ensemble loss
weight A = 20; training steps 7' = 6, 000.

Details of Temporal Ensembling for Fine-Tuning Classifier PLMs on Synthetic Data. We update ensembled predictions
Zz as follows where pg is the current model prediction, y is the momentum parameter, Z is the accumulated model prediction
before bias correction, z is the accumulated model prediction after bias correction, and ¢ is the number of updates z has
received:

22+ (1—7)py, 2+ 2/(1—~").

The accumulated model prediction 2 has a zero initialization; the division (1 — ~*) is for bias correction (Laine & Alila,
2017). After each update of 2, it will be compared to a threshold value d; each synthesized sample (&, ¢) will be included in
training only if Zz > .

We update the ensembled predictions z on all samples in D, every 200 steps, and set the threshold value for sample
filtering § = 0.8.

Computation Environment. The experiments are conducted on NVIDIA A100 GPUs.

C. Derivation of Meta Weight Gradient Update

We first write out the gradient update of 6. (w®) and w1 according to Algorithm 1 as follows:

15

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

R OLygen (Op; w0 ® n J
O;t) (w(t)) _ 9;,5) Ca g 5(9p) _ 05:) — ij (w(t)) Gﬁgaeng(ep) (6)
P e =1 " Loy =af
8£disc é(t) (w)
Wt — o, _ g —(#))
Oow
w=w(®)
where a and [are step sizes.
The gradient in Equation (7) is calculated as:
8[,‘1150 (é;()t) (w))
Oow
w=w(t)
_ O%ux (6)) 96, ()
00, 6,=0" wew(®)
OLac (0,) " OLia0,)] w; ()
= — -« Z —= P — Plugging in Eq. (6)
99, 6,64 j=1 06, 0,=05" 0w umw
n) j T
x| () OLin(6,) ow; (w)
j=1 96, 6,-6L" 96y 0,=04" 0w pmw®
édj
Therefore,
(6w . (s _ .
9Lu (0 () Ow; ()) OLien(6)
- e <D d = » b= e 08,
w=w® 71 w=w P le,=6 " le,=0f”
D. GLUE Tasks

We provide the details of the seven classification tasks included in the GLUE benchmark.

MNLI: Multi-genre Natural Language Inference (Williams et al., 2018) requires predicting whether a given premise sentence
entails, contradicts or neutral with respect to a given hypothesis sentence.

QQP: Quora Question Pairs (Shankar et al., 2017) requires judging whether a pair of questions asked are semantically
equivalent.

QNLI: Question Natural Language Inference requires predicting whether a given sentence contains the answer to a given
question sentence.

SST-2: Stanford Sentiment Treebank (Socher et al., 2013) requires determining if a movie review has positive or negative
sentiment.

CoLA: Corpus of Linguistic Acceptability (Warstadt et al., 2019) requires determining whether a given sentence is
linguistically acceptable or not.

RTE: Recognizing Textual Entailment (Bentivogli et al., 2009; Dagan et al., 2005; Giampiccolo et al., 2007; Haim et al.,
2006) requires predicting whether a given premise sentence entails a given hypothesis sentence or not.

MRPC: Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) requires predicting whether two sentences are
semantically equivalent or not.

16

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Table 7: Prompts used for GPT3Mix augmentation. For sequence-pair tasks, 1 and x5 denote the first and second input
sequence, respectively. For single-sequence tasks, x denotes the input sequence. y denotes the label name. Only one
example is shown in the template for clarity; in practice, we concatenate k = 4 samples according to the optimal setting in
GPT3Mix (Yoo et al., 2021).

Task Template Label name

Each item in the following list contains a movie review and the respective sentiment. positive: positive
SST-2 The sentiment is one of ‘positive’ or ‘negative’. negative: negative

Movie review: x (Sentiment: y) . . .

Each item in the following list contains a text and the respective grammar. grammatical: correct
CoLA The grammar is one of ‘correct’ or ‘incorrect’. not grammatical: incorrect

Text: (Grammar: y) ...

Each item in the following list contains a premise, a hypothesis and their logical relation. entailment: entailment

MNLI The logical relation is one of ‘entailment’, ‘neutral’ or ‘contradiction’. neutral: neutral
Premise: 1 Hypothesis: 2 (Logical relation: y) . .. contradiction: contradiction
Each item in the following list contains a question, an answer and their logical relation. entailment: entailment
QNLI The logical relation is one of ‘entailment’ or ‘neutral’. not entailment: neutral

Question: x; Answer: 2 (Logical relation: y) . ..

Each item in the following list contains a premise, a hypothesis and their logical relation. entailment: entailment
RTE The logical relation is one of ‘entailment’ or ‘neutral’. not entailment: neutral
Premise: @1 Hypothesis: @2 (Logical relation: y) . ..

Each item in the following list contains two sentences and their semantic relation. equivalent: equivalent
MRPC The semantic relation is one of ‘equivalent’ or ‘different’. not equivalent: different

Sentence 1: @1 Sentence 2: x2 (Semantic relation: y) . ..

Each item in the following list contains two questions and their semantic relation. equivalent: equivalent
QQP The semantic relation is one of ‘equivalent’ or ‘different’. not equivalent: different

Question 1: x; Question 2: x2 (Semantic relation: y) . ..

E. Data Augmentation Baseline Details

Details About MixText (Chen et al., 2020). We use the TMix version of MixText to perform data interpolation on
the few-shot labeled dataset (since there is no access to unlabeled task-specific data under the strict few-shot learning
setting (Gao et al., 2021)). We adapt the label mix-up operation to fit prompt-based fine-tuning by interpolating the label
words instead of categorical labels; we observe that this results in better few-shot performance than the original TMix,
probably analogous to why prompt-based fine-tuning outperforms standard fine-tuning for few-shot learning. We train the
classifier with supervised loss combined with consistency loss over the interpolated samples as in the original paper. We
follow the default hyperparameters in MixText.

Details About Back Translation. We use two trained Marian (Junczys-Dowmunt et al., 2018) models to perform data
augmentation via back translation. We translate our labeled examples from English to French, and then back to English. As
in UDA (Xie et al., 2020), we employ random sampling with a tunable temperature to generate a diverse set of derivative
examples. We generate 32 examples from each few-shot training example and let the synthesized samples share the same
label with the original few-shot training sample. After combining with the original examples, we fine-tune the classifier and
observe performance.

Details About GPT3Mix (Yoo et al., 2021). We use the 175B GPT3 model for generating the augmentations. For creating
each augmentation, we randomly sample k£ = 4 (the optimal setting according to GPT3Mix) examples from the few-shot
training set as demonstrations. The prompts follow the suggested format proposed in the original paper (Yoo et al., 2021)
and are shown in Table 7. We create 5,000 augmented samples per label to make the resulting training set size equal to
that of FewGen. After obtaining the augmented examples and their pseudo labels (the probability predictions over all
labels by GPT3), we use them along with the real few-shot samples for fine-tuning the classifier, following the setting in
GPT3Mix (Yoo et al., 2021).

17

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Details About Standard Generator Fine-Tuning. We fine-tune the same 1.6B CTRL (Keskar et al., 2019) model as
used in FewGen with the standard maximum likelihood objective. Different from previous studies (Anaby-Tavor et al.,
2020; Kumar et al., 2020) that prepend categorical labels to the training samples, we enhance the generator fine-tuning with
label-descriptive prompts (shown in Table 5) used in FewGen. We create 5, 000 augmented samples per label to make the
resulting training set size equal to that of FewGen.

F. Concrete Generation Results

We present some concrete generation results (from Dg,) for all tasks in Tables 8, 9, 10, 11, 12, 13, and 14. To compare Dy,
with Dyin, we also show the few-shot training samples (Dyin) of SST-2 in Table 15,

Comparing Tables 8 with 15, it can be seen that the synthetic samples are accurate and quite different from the given training
samples to serve as effective augmentations. For sequence-pair tasks, because we randomly sample the first sequence from
the pretraining corpus and let the generator create the second sequence given certain labels, the resulting generated samples
will be certainly different from the given training samples.

Table 8: Examples of concrete generations for SST-2.

Example Label Generated Text

positive i was a bit skeptical when i first saw the trailer for this movie, but after watching it, it was quite enjoyable.

negative i was expecting a fun and entertaining movie with some nice special effects, but instead it was just plain boring.
positive that is, a film that has the potential to move an audience to tears, or at least to a state of mind where
42 you feel something.
necative film that has the potential to be one of the most moving and powerful experiences ever made
€ is instead marred by an unfocused script, bad acting and a lack of emotional depth.
43 positive this is a good movie — it’s not just for people who like to see things blow up or have explosions or shoot guns.
negative i am a big fan of the first two movies but this one is just plain bad.
Table 9: Examples of concrete generations for CoLA.
Example Label Generated Text
grammatical Between the two of us, I think you have a good chance to make it to the finals.
#1 . A few weeks later we saw them on television. We thought there were a hundred more.
not grammatical , .
It wasn’t that they came out one at time.
49 grammatical Doing the dishes is a task that I have to do because I am not allowed to go out and play with my friends.
not grammatical ~ Only those whose lives depend on it, but only when you are at its mercy do it harm.
u3 grammatical To be able to speak the language of the other person is a prerequisite for communication.

not grammatical ~ The only good way to avoid getting into trouble for being too friendly would to let me go on a trip.

18

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Table 10: Examples of concrete generations for QQP. The first question (italicized) is randomly sampled from the pretraining
corpus; the second question (underlined) is generated by G, .

Example Label Generated Text

equivalent Question 1: How long does it take for a project to be completed?

41 q Question 2: How long does it take to complete a project?
uestion 1: How long does it take for a project to be completed.:
ion 1: How long does it taki proj b pleted?

not equivalent
q Question 2: What is the total cost of completing this project?

Question 1: What mascots or characters would you like to see included as
Super Mario Maker DLC in the future?

Question 2: What would you like to see in Super Mario Maker DLC that

#2 you did not see in the game?

equivalent

Question 1: What mascots or characters would you like to see included as
not equivalent Super Mario Maker DLC in the future?
Question 2: How do I get a copy of this game?

Table 11: Examples of concrete generations for MNLI. The first sentence (italicized) is randomly sampled from the
pretraining corpus; the second sentence (underlined) is generated by Gé, .

Example Label Generated Text

Sentence 1: Air is provided for the combustion by an electric blower.

entailment . . .
Sentence 2: The blower provides air to a combustion chamber.
41 neutral Sentence 1: Air is provided for the combustion by an electric blower.
Sentence 2: Electric blowers are available in most gas stations.
contradiction Sentence 1: Air is provided for the combustion by an electric blower:

Sentence 2: The blower does not work.

Sentence 1: Since its base is almost at sea level, it is only the 15th highest light
entailment in the United States, the first 14 being built on higher ground.
Sentence 2: It is the 15th highest light in the United States.

Sentence 1: Since its base is almost at sea level, it is only the 15th highest light
in the United States, the first 14 being built on higher ground.
Sentence 2: The lighthouse was originally constructed to be a beacon for ships
passing by and as such has been used since before World War II.
Sentence 1: Since its base is almost at sea level, it is only the 15th highest light
contradiction in the United States, the first 14 being built on higher ground.
Sentence 2: It is located on a mountain top.

#2 neutral

Table 12: Examples of concrete generations for QNLI. The question (italicized) is randomly sampled from the pretraining
corpus; the answer (underlined) is generated by G, .

Example Label Generated Text

Question: What makes you want to step up to the next level?
Answer: I want to be the best player I can be.
#1 Question: What makes you want to step up to the next level?
not entailment ~ Answer: The new program will be called “Project 10” and it is expected that a total
of $450 million in federal funding would go toward it.

entailment

Question: How do all those shops know what you would like to buy?
entailment Answer: The stores are able to track your preferences and provide you with a list

49 of products that are best for you.
Question: How do all those shops know what you would like to buy?
not entailment ~ Answer: The stores are not required by law or regulation in the United States and Canada
but they have been known for years as a source of illegal sales on eBay.

19

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Table 13: Examples of concrete generations for RTE. The first sentence (italicized) is randomly sampled from the pretraining
corpus; the second sentence (underlined) is generated by G,

Example

Label

Generated Text

#1

entailment

not entailment

Sentence 1: In 1970, the Science Council of Canada recommended that the government

of Canada immediately invest in industrial development of the aviation industry,
including construction of aircraft, navigation aids, and regulation of air traffic.

Sentence 2: The government of Canada has invested in the aviation industry.
Sentence 1: In 1970, the Science Council of Canada recommended that the government

of Canada immediately invest in industrial development of the aviation industry,
including construction of aircraft, navigation aids, and regulation of air traffic.

Sentence 2: The Aviation Industry was established by a Royal Decree on June 1, 1970.

#2

entailment

not entailment

Sentence 1: All of the Centre’s staff are fluently bilingual in both English and Chinese

and are familiar with the traditions of the Chinese culture.

Sentence 2: The Centre is a bilingual institution.
Sentence 1: All of the Centre’s staff are fluently bilingual in both English and Chinese

and are familiar with the traditions of the Chinese culture.

Sentence 2: The Centre is a cultural centre for learning about China.

Table 14: Examples of concrete generations for MRPC. The first sentence (italicized) is randomly sampled from the
pretraining corpus; the second sentence (underlined) is generated by G, .

Example

Label

Generated Text

#1

entailment

not entailment

Sentence 1:

Sentence 2:

Sentence 1:

Sentence 2:

It embodies the aesthetic ideals of the Queen Anne style through its design
and detailing and shows the type of house that attracted prosperous Napans
at the end of the Victorian era.

It is a fine example of the Queen Anne style of architecture through its design
and detailing and shows the type of house that attracted prosperous Napans

at the end of the Victorian era.
It embodies the aesthetic ideals of the Queen Anne style through its design
and detailing and shows the type of house that attracted prosperous Napans

at the end of the Victorian era.

The building is a fine example in this style, with an elegant facade reminiscent
to those found on many grand mansions built by wealthy merchants during
America’s Gilded Age.

#2

entailment

not entailment

Sentence 1:

Sentence 2:

Sentence 1:

Sentence 2:

Crosbie ran unsuccessfully for the leadership of the Liberal Party of Newfoundland
and Labrador in 1969, losing to Smallwood, and was also a candidate in the
Progressive Conservative Party of Canada’s 1983 leadership election, placing third.
Crosbie was a candidate in the Progressive Conservative Party of Canada’s 1983

leadership election, placing third.
Crosbie ran unsuccessfully for the leadership of the Liberal Party of Newfoundland
and Labrador in 1969, losing to Smallwood, and was also a candidate in the

Progressive Conservative Party of Canada’s 1983 leadership election, placing third.
He lost his bid as leader after he failed twice at running against John Diefenbaker.

20

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Table 15: 16-shot training samples of SST-2.

Label Example Review Text

#1 (ramsay) visually transforms the dreary expanse of dead-end distaste the characters inhabit into a poem of art ,
music and metaphor .

#2 the film jolts the laughs from the audience — as if by cattle prod .

43 the film presents visceral and dangerously honest revelations about the men and machines behind the curtains
of our planet .

#4 a film that will enthrall the whole family .

£5 serious movie-goers embarking upon this journey will find that the road to perdition leads to a satisfying
destination .

#6 sweet and memorable film .

47 shyamalan takes a potentially trite and overused concept (aliens come to earth) and infuses it into a
rustic , realistic , and altogether creepy tale of hidden invasion .

48 a crisp psychological drama (and) a fascinating little thriller that would have been perfect for an old

positive “ twilight zone " episode .

£9 my big fat greek wedding is not only the best date movie of the year , it ’s also a — dare i say it twice
— delightfully charming — and totally american , i might add — slice of comedic bliss .

£10 a comedy-drama of nearly epic proportions rooted in a sincere performance by the title character undergoing
midlife crisis .

#11 diggs and lathan are among the chief reasons brown sugar is such a sweet and sexy film .

#12 you ’re not merely watching history , you ’re engulfed by it .

#13 the concept is a hoot .

414 the filmmakers ’ eye for detail and the high standards of performance convey a strong sense of the
girls > environment .

#15 a haunting tale of murder and mayhem .

£16 neil burger here succeeded in ... making the mystery of four decades back the springboard for a more
immediate mystery in the present .

#1 nothing happens , and it happens to flat characters .

#2 as lively an account as seinfeld is deadpan .

43 so we got ten little indians meets friday the 13th by way of clean and sober , filmed on the set of carpenter ’s
the thing and loaded with actors you 're most likely to find on the next inevitable incarnation of the love boat .
the plot is nothing but boilerplate cliches from start to finish , and the script assumes that not only would

#4 subtlety be lost on the target audience , but that it ’s also too stupid to realize that they ’ve already seen this
exact same movie a hundred times

#5 ultimately , sarah ’s dedication to finding her husband seems more psychotic than romantic , and nothing in
the movie makes a convincing case that one woman ’s broken heart outweighs all the loss we witness .

#6 the big finish is a bit like getting all excited about a chocolate eclair and then biting into it and finding
the filling missing .
this picture is mostly a lump of run-of-the-mill profanity sprinkled with a few remarks so geared toward

negative #7 engendering audience sympathy that you might think he was running for office — or trying to win over a
probation officer .

48 just because a walk to remember is shrewd enough to activate girlish tear ducts does n’t mean it ’s good enough

for our girls .
g

#9 often lingers just as long on the irrelevant as on the engaging , which gradually turns what time is it there ?

#10 this movie , a certain scene in particular , brought me uncomfortably close to losing my lunch .

#11 but it would be better to wait for the video .

£12 a rude black comedy about the catalytic effect a holy fool has upon those around him in the cutthroat world
of children ’s television .

#13 just a collection of this and that — whatever fills time — with no unified whole .

414 although god is great addresses interesting matters of identity and heritage , it ’s hard to shake the feeling
that it was intended to be a different kind of film .

#15 the chocolate factory without charlie .

#16 in that setting , their struggle is simply too ludicrous and borderline insulting .

21

