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Abstract—Recent foundry-based integration of Resistive Ran-
dom Access Memory (RRAM) with standard CMOS drives inter-
est in developing high-density, low-power Edge-Al accelerators.
1TnR RRAM arrays have shown promise for realizing very low-
energy Vector Matrix Multiplication (VMM) computation in the
analog domain. On the other end of the spectrum, spiking neural
networks (SNNs) promise low-power computing by eliminating
energy-expensive data converters. However, mixed-signal circuit
designers must account for RRAM nonidealities and innovate
circuits that bridge the performance gap between digital ANNs
and analog SNNs. This article reviews this area and presents
novel multi-level spiking CMOS neurons that easily interface
with RRAMs while providing higher-resolution encoding.

Index Terms—Artificial Intelligence (AI), CMOS Neurons, non-
volatile memory (NVM), Neuromorphic computing, Resistive
RAM (RRAM).

I. INTRODUCTION

IXED-signal CMOS circuits built around crossbar ana-

log compute arrays have emerged as a promising
enabler for low-power Edge-Al accelerators. A wide range
of circuits and devices have been proposed for performing
vector-matrix multiplication (VMM) in these arrays, leading to
convergent paradigms such as compute in memory (CIM) and
neuromorphic computing. The overarching goal of these archi-
tectures is to perform computation inside or close to memory
to minimize energy consumed in data transfers between pro-
cessor and memory, i.e. the von Neumann bottleneck.

CIMs using on-chip SRAMs with switched capacitor [1]] or
continuous-time VMM [2] circuits have demonstrated close to
GPU-like inference accuracy while allowing hardware re-use
for executing a large artificial neural network (ANN) model,
such as CIFAR-10/100. Here, the model weights are loaded,
and VMM is performed using charge sharing in capacitors,
as each ANN layer is partially or fully processed. On the
other hand, non-volatile memory arrays (NVMs) seek the
persistence of model weights with energy consumed only for
data movement [3]], [4]. Since each model layer needs to be
physically manifested in hardware, high-density and ultra-low
power operation of these arrays becomes necessary.

While floating gate NVMs have shown proven multi-level
weights, Resistive random access memory (RRAM), also
known as memristors, have been intensely investigated over
the past decade [S]—[8]. A foremost challenge with mixed-
signal VMMs is the energy and area overhead introduced
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Fig. 1. A spike-based mixed-signal AI accelerator architecture based on
signed-1T1R (i.e., 2T2R) RRAM cross-point arrays: (a) A deep SNN with
input, Convnet, and output layers of spiking neurons, (b) the 2T2R array for
realizing a single fully-connected or CNN layer.

by digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs) [9]]. Secondly, these VMMs incur precision
loss due to the PVT-dependent non-linear I-V characteristics
of the NVM cells [3]], [4]], (8], [10].

A neural-inspired or Neuromorphic computing architecture
eliminates the need for data converters by using ‘spikes’
for information encoding, computation, and communication.
The resulting spiking neural networks (SNNs) employ NVMs
as ’synapses’ that realize the ANN weights and potentially
allow for localized on-chip learning [4]], [11]. Recently, asyn-
chronous digital Neuromorphic ICs such as Loihi2 [12]] have
demonstrated significant gains in energy per inference [13]].
These can potentially benefit from mixed-signal realizations
should they alleviate the aforementioned challenges.

In this paper, we increase the information capacity of the
spiking neurons to represent higher-resolution activation. The
rest of the manuscript is organized as follows: Section II briefly
describes CMOS-RRAM circuits for spike-domain VMM
computation; Section III presents the novel high-resolution
spiking CMOS neuron. Finally, Section IV presents simulation
results followed by the conclusion.

II. CMOS-RRAM HARDWARE SNN DESIGN
A. Spike-based Encoding for Linear Synapses

In NVM arrays employed as analog-domain VMMs, each
cell must perform four-quadrant analog multiplication with
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Fig. 2. Illustration of a conventional leaky integrate and fire (LIF) neuron.

sufficient dynamic range. The RRAM cell’s I-V nonlinearity
distorts this multiplication, thereby reducing the classification
accuracy of the ANN [4]. Calibrating the nonlinearity or
training around it is challenging due to strong process, voltage,
and temperature (PVT) dependence.

Pulse or spike-based encoding of ANN activations is em-
ployed to mitigate the impact of cell nonlinearity on the
accuracy of ANN. Here, an input activation, z, is represented
as

2= Vornp(t —tn) + € (1)

V,, and p(t) are the spike pulse amplitude and normalized pulse
shape. z,, € [0,1] is a binary sequence of length with spike
times, ¢, and € is the quantization error.

Signed weights (or synapses) are formed by using a 2T2R
pair. The select transistor facilitates individual access to the
RRAM devices and/or sets the current for forming, Set/Reset,
and readout of individual weights.

B. Array Architecture

A mixed-signal ANN accelerator architecture is shown in
Fig. [T using CMOS-RRAM crossbar arrays. Spike-coded acti-
vations not only help linearize the synapses but also eliminate
the need for DACs and ADCs. The input spikes to the VMM
are either generated using a digital integrate and fire neuron
(IFN) or buffered spikes from the previous layer. The tensor
computation for a CNN layer is mapped to the architecture
by time multiplexing the VMM array. While all the feature
maps are computed in parallel in the crossbar array [9], [14],
array utilization is optimized by implementing the strides by
employing rotating input buffers and a barrel shifter; VMM
outputs are accumulated in the digital buffers.

C. Spiking Neurons

In the VMM array, the neuron sums and integrates the
weighted cell currents on the capacitor, C,,, which results
in membrane potential, v,,, that is equivalent to the weighted
sum, y; = Zi w;jx;, in a standard ANN. Leakiness of the
IFN is not necessary for frame-based computation but can
be easily incorporated [15]. The additive noise, 7, allows
modeling the IFN using a differentiable activation function,
zj = 0(Um,; — Vinr,j +1), to compute surrogate gradients for

backpropagation based training in SNNs, where Vt(,fz, ; is the
firing threshold and equivalent to the bias term in ANNSs [16].
While IFNs replace data converters in an SNN, understand-
ing their effective bit resolution is important. IFNs with a
zero refractory period perform lossless spike encoding from
which information can be recovered using non-linear methods
[17], [18]. However, a finite refractory period introduces non-
uniform quantization noise, and a low-pass filter (LPF) can
be used for the lossy reconstruction of inputs. IFN paral-
lels asynchronous delta-sigma modulators (ADSM) where an
asynchronous comparator with hysteresis is utilized but suffers
from limit cycles and doesn’t perform noise-shaping [18].

D. SNN Training

Although SNNs can be realized with low-power hardware
in the analog domain, the classification accuracy for inference
should be comparable with that of digital Edge-Al accel-
erators. While 4-bit weight resolution is adequate for large
models with quantization-aware training, at least 8-bit fixed-
point resolution is desired [4]. An early approach was to
train the ANN model on GPU using standard Backprop, with
techniques including Dropout, and then the weights were
normalized and transferred to the equivalent rate-based SNN
[19]. Later, surrogate gradients were employed to train SNNs
natively using Backprop [16]]. In recent work, we demonstrated
that autograd in PyTorch can directly train SNNs with non-
differentiable activation and achieve accuracy within 2% of
the state-of-the-art on CIFAR10 [14].

III. SNN ACCELERATOR WITH MULTI-BIT NEURONS
A. Prior Multibit Spiking Neurons

Recently, multi-level neurons were conceptualized to reduce
the quantization loss and thus enhance the information content
in spike encoding. In a first such effort, M LIF neurons with
different threshold voltages were combined to form a single

multi-bit neuron unit, and their outputs are summed [20]. This
resulted in integer-valued spikes in the range {0,1,--- ,M}.

Soutj

Fig. 3. Conceptual illustration of a multibit spiking neuron [21]].
Another recent proposal of multibit neurons is illustrated in

Fig.|3| where binary (and also fractional) encoding is employed
[21]. To analytically understand this, the membrane potential
in a LIF neuron is normally distributed in the integration phase.
Its probability density function (PDF) is expressed as f(u) =

—u*/2_ The associated entropy is then given by

H{U) = 7/7 f(u) In(u)du = %logQ(Qwe) (2)



which is a constant or value 2.047 [21]]. When the membrane
potential is quantized into spikes, the probabilities of no-spike
(0) and spike (1) are given by

po = P(u < Vipr) = @(Vinr) 3
pP1= P(U > Vth'r) =1- (I)(VthT) 4

where ® is the upper quantile of the normal distribution.
Consequently, the entropy of spike encoding is [21]]

H(S) == pilogyp; = —(pology po + p1logyp1) (5)
i=0,1

The information loss of a LIF is

1
L=H{U)-H(S) = B log, (2me) + po logs po + p1 logs p1
(6)
which can only be improved by maximizing the spike entropy,

H(S) [21].

N-1
H(Sy) ==Y _ pilog, p; (7
i=0

A careful distribution of firing thresholds can result in 2-
bit entropy of 1.36 and 3-bit entropy of 1.998 as opposed
to the LIF entropy of 0.848 [21]. This promises a significant
reduction in quantization loss in spike encoding.

B. Proposed Multibit Spiking Neuron

We propose multi-bit leaky integrate and fire (LIF) neurons
to increase the information capacity or the effective number of
bits (Np;) in SNN computation. Similar to previous IFNs, this
design is asynchronous but with multilevel thresholds. An M-
bit asynchronous quantizer with unit-weighted outputs, Dy €
{0,1,...,2™ — 1} can be realized either in the voltage or
time domain. The core idea is to provide a more granular
representation of the membrane potential using M integer-
weighted spikes with different firing thresholds. The equations
can describe the resulting IFN:

N
U, (t) = Vist + Zi:l wij - pi(t) ®)

where p(t) = fot s(t) ® h(t)dt is the post-synaptic potential
(PSP) due to a single spike, and h(t) = e~*/™mu(t) is the
impulse response that incorporates neuron’s leaky behavior.

The neuron’s binary-coded state, k, depends upon the
threshold crossed as &k : Viefr < U j(t) < Viegit1. For
example, a 2-bit neuron could be in one of the following states:

State 00 (k=0):
State 01 (k=1):
State 10 (k=2):
State 11 (k=3):

Voot < Um,j (t> < Vref,O 9
Vies,0 < Um,j(t) < Viera

Viera < vmj(t) < Vier2

Vref,Z < Um,j (t) < ‘/top

After the neuron spikes and a threshold V. is crossed,

the membrane potential is reset as per the bit encoding, and
the multibit output spike is generated at time t; :
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Fig. 4. (a) Schematic of the multi-bit spiking CMOS neuron, (b) reference
generation ladder. Opamp reconfiguration in the (c) integration phase and (d)
firing phases.

5;(t) k- g(t =)
Uy, j(t) = Vigt for k=2M — 1
(10

Here, g(t) is the unit spike pulse shape. For higher input
spike density, the neuron will likely stay in higher states
and fire with higher values spikes. Conversely, without input
spikes, the membrane potential decays to V,.ro and the
neuron climbs down the ladder of states. Also, the membrane
potential is reset to V., only if the highest index comparator
(k =2M — 1) has an output.

This design also alleviates the issue of diminishing spikes
in SNNs, where the number of spikes becomes increasingly
sparse as they propagate forward through the layers. As
discussed earlier, the 1T1R cells are driven with bilevel pulses,
and the thermometer-coded outputs of the M = 2-bit IFN are
directly used as inputs to the crossbar array. The IFN is reset
after each input frame of 2Vvit=M Jength.

Um,j(t) ,2 V;’ef,k : {

C. IFN Circuit Design

Fig. E] shows a 2-bit, or 4-level (0 to 3), neuron de-
sign. The design re-uses the opamp for inference and array
programming and can also be adapted for on-chip learning.
This design employs 2/ — 1 = 3 aynchronous comparators
and uniform thresholds, V;;, .02, using a resistor ladder with
Viop = 1.2V and Vj,, = 300mV. The membrane rest potential
is Vst = 100mV. The asymmetric thresholds allow for
the inherent rectified linear unit (ReLLU) as the non-linear
activation function. The integer-coded quantizer outputs, Dg-
Dy, can be used directly or combined to form binary-coded
output. The integrator is reset only when the spike output, Do,
goes high.
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Fig. 6. Transient simulation for the circuit in Fig. E demonstrating multi-
bit output spikes with 2MHz input spike rate. Here, input spikes are current
pulses of 2A with 20ns pulse width.
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Fig. 7. Transient simulation for multi-bit output spikes with 10MHz input
spike rate.

The integrator opamp uses folded-cascode topology with a
unity-gain frequency, f,,=10MHz, consuming only 6uW of
power. Compared with neurons intended for driving resistive
RRAM array [13]], the G,,-based VMMs require the neuron
to only drive the input capacitances of the select transistors,
resulting in a simpler digital drive. The asynchronous com-
parators, shown in Fig. [5] is designed using cross-coupled
latches with hysteresis, and a pre-amp with offset storage and
cancellation. The pre-amp uses a 1A bias current.

D. Simulation Results

The CMOS neuron shown in Fig. [ is designed in TSMC
65nm LP CMOS process with a Vpp = 1.2V supply voltage.
Cadence Spectre transient simulation result is shown Fig. [6]
where the output spikes can be seen for a multi-bit neuron

with a spiking current input of 2A at an input spike rate
of 2 MHz. We can observe that for lower input pike rate,
more Dy spikes are seen and D is sparse. In contrast in
Fig. [7} for a 10 MHz input spike rate, all D outputs are
busy. The analog equivalent output obtained by summing Dy’s,
Vout = Zi:o k - Dy. We see that v,y provides a multi-bit
representation of the membrane voltage, with higher accuracy
than a single-bit neuron. The performance of the multibit
neuron is benchmarked in Table [I] The energy figure-of-merit
is expressed in fJ/spike/synapse for a fan-in and fan-out of
3000 synapses. Thanks to 3-spikes generated per integrator at
a maximum output spike rate of IMHz, the estimated inference
energy consumption is 5 fJ/synapse/spike.

While the focus of this work is the multi-bit neuron,
preliminary PyTorch-based simulations were performed using
the 7-layer convolutional SNN seen in Fig. [ These show
a 98.5% accuracy for MNIST and 77.2% accuracy for the
CIFARI10 dataset, which improves upon the conventional SNN
by 2%.

TABLE I
PERFORMANCE COMPARISON WITH RECENT CMOS NEURONS.

[ Design [ Type [ Tech. | Synapse | Bits [ Ii,s | FoM* |
[115] Opamp 180nm 1R 1b 13uA 1401
Ring
[22]) VCO 65nm None — 1b -
R3l | €T 6sam | Digital | 1b - 74
sum
24] Sub-vT 65nm None 1b - 4fJ
[25] Opamp 180nm ITIR 1b IuA 8.11]
This work | Opamp 65nm 2T2R 2b 10pA 511
2 Energy figure-of-merit is expressed as fJ/spike/synapse.

IV. CONCLUSION

While RRAM arrays present a high-density and energy-
efficient pathway for designing mixed-signal Al accelerators,
the impact of device idealities must be carefully consid-
ered. A multi-bit asynchronous spiking neuron increases the
quantization resolution or minimizes the information loss in
spike encoding while retaining the benefits of spike-based
computing. SNNs employing multi-bit neurons exhibit lower
accuracy loss than conventional single-bit neurons.
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