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Figure 1. We propose VOccl3D, a large-scale synthetic video dataset specifically designed for training and evaluating algorithms for 3D

human pose and shape estimation (HPS) in realistic occlusion scenarios. VOccl3D comprises over 250,000 frames, with a total runtime

exceeding 2 hours and 30 minutes. Compared to previous occlusion-based datasets, VOccl3D has diverse body shapes, textures, and most

importantly, significant and realistic occlusions within the scenes. In addition to body shape and pose, VOccl3D provides other necessary

ground truth information, such as bounding boxes, body part segmentations, and human silhouettes. The top row illustrates various frames

from our dataset, showcasing diverse occlusions, clothing textures, and motions, while the bottom row represents a sequence of frames

from a video sequence within our dataset.

Abstract

Human pose and shape (HPS) estimation methods have

been extensively studied, with many demonstrating high

zero-shot performance on in-the-wild images and videos.

However, these methods often struggle in challenging sce-

narios involving complex human poses or significant oc-

clusions. Although some studies address 3D human pose

estimation under occlusion, they typically evaluate perfor-

mance on datasets that lack realistic or substantial occlu-

sions, e.g., most existing datasets introduce occlusions with

random patches over the human or clipart-style overlays,

which may not reflect real-world challenges. To bridge

this gap in realistic occlusion datasets, we introduce a

novel benchmark dataset, VOccl3D, a Video-based human

Occlusion dataset with 3D body pose and shape annota-

tions. Inspired by works such as AGORA and BEDLAM, we

constructed this dataset using advanced computer graphics

rendering techniques, incorporating diverse real-world oc-

clusion scenarios, clothing textures, and human motions.

Additionally, we fine-tuned recent HPS methods, CLIFF

and BEDLAM-CLIFF, on our dataset, demonstrating sig-

nificant qualitative and quantitative improvements across

multiple public datasets, as well as on the test split of our

dataset, while comparing its performance with other state-

of-the-art methods. Furthermore, we leveraged our dataset

to enhance human detection performance under occlusion

by fine-tuning an existing object detector, YOLO11, thus

leading to a robust end-to-end HPS estimation system un-

der occlusions. Overall, this dataset serves as a valuable

resource for future research aimed at benchmarking meth-

ods designed to handle occlusions, offering a more realistic

alternative to existing occlusion datasets. See the Project

page for code and dataset:https://yashgarg98.

github.io/VOccl3D-dataset/

† Currently at NASA MSFC IMPACT. ‡ Currently at Dolby Labora-

tories. Work done while the authors were at UCR.
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1. Introduction

Monocular 3D human pose and shape (HPS) estimation is

a complex yet essential task in computer vision. It has

applications in surveillance [8, 20], autonomous robotics

[3, 46, 56], human motion analysis [10, 11], and clinical

assessment [9, 26, 37]. Since the introduction of the neu-

ral network-based Human Mesh Recovery Network (HMR)

[21], numerous approaches have advanced the field by en-

abling accurate estimation of SMPL[32] pose and shape

from a single RGB image. Recent methods [2, 24, 27, 28,

33, 48] demonstrate impressive zero-shot HPS performance

on in-the-wild RGB images and video sequences. However,

these methods still face limitations in achieving high per-

formance in challenging scenarios, such as complex human

poses and under significant occlusions.

Achieving robust HPS under occlusion remains a chal-

lenging problem due to the contextual ambiguity of the oc-

cluded body parts. Several methods [25, 44, 55, 59] have

been proposed to address the challenges caused by occlu-

sions. Methods like PARE [25] focus on using visible body

parts to infer occluded areas, enhancing estimation accu-

racy with partial views. Temporal models like HuMoR [44]

and GLAMR [55] use generative frameworks to ensure pose

continuity over time. HuMoR predicts pose distributions,

while GLAMR incorporates global trajectory data to fill in

missing poses. Recent methods, like STRIDE [27], lever-

age a large-scale pre-trained motion prior model to achieve

temporally coherent pose reconstruction under occlusions.

While these methods effectively leverage visible informa-

tion and temporal continuity, they still struggle under severe

occlusions due to limited exposure to occluded scenarios in

their training data.

Evaluations of the existing methods are often limited

to occluded datasets that lack scene diversity [38], involve

moderate or lower levels of occlusion [16, 49], or use patch-

based occlusion datasets for training and inference [59], as

illustrated in Figure 2. Most importantly, there remains an

urgent need for a realistic, diverse, and significantly oc-

cluded human pose and shape dataset to advance the task

of 3D HPS estimation. To address this gap, our work pro-

poses VOccl3D, a large-scale video dataset with synthetic

humans in real scenes for 3D human pose and shape esti-

mation. Following prior works such as BEDLAM [4] and

Synthmocap [14], we use an advanced computer graphics

engine to render a highly realistic synthetic dataset. Prior

research has shown that fine-tuning models on synthetic

datasets can significantly improve HPS estimation perfor-

mance on real-world datasets [4]. Synthetic datasets pro-

vide “perfect” ground-truth annotations and eliminate the

need for costly sensors, making it computationally efficient

to generate large-scale datasets.

Our proposed dataset includes approximately 250,000

images and 400 video sequences. To introduce diversity, we

Figure 2. Samples from various occlusion-based HPS datasets.

The top row displays datasets with artificial, patch-based oc-

clusions applied to existing datasets, including 3DPW-AdvOcc

[49, 59], Occluded Human3.6M [18, 27], and Synthetic Occlusion

Human3.6M [18, 58]. The bottom row presents samples from

two datasets with natural occlusions: OCMotion [16] and 3DPW

[49]. Notably, the top-row images exhibit unrealistic occlusions,

which lack the realism of naturally occurring occlusions. The bot-

tom row images contain natural occlusions but are sparse and in-

frequent. Compared to existing datasets, our proposed VOccl3D

dataset features more realistic occlusions.

incorporate human motion samples from the AMASS [34]

dataset, over 200 distinct clothing textures for sequences

containing both male and female genders, and 40 real back-

ground scenes with occlusions. Additionally, we provide

occlusion labels for each body joint. Unlike prior meth-

ods [4, 39] which render synthetic environments, we uti-

lize 3D Gaussian splatting (3DGS) [22] to create 3D repre-

sentations of background scenes. This approach enhances

the realism of rendered scenes, making them closely resem-

ble real-world captured data. Reconstructing background

scenes using 3DGS offers the flexibility to create domain-

specific datasets, such as for agriculture, street or indoor

environments using raw RGB video captures without rely-

ing on costly or limited graphic assets. Figure 1 showcases

samples from our dataset, illustrating the diversity in cloth-

ing, environments, human motions, and occlusions.

We fine-tuned the CLIFF [28] and BEDLAM-CLIFF [4]

models on our dataset to demonstrate that training with

synthetic data enhances the performance of existing HPS

estimation methods under occlusion. We evaluated state-

of-the-art HPS estimation methods on the test split of

our dataset across three occlusion levels: high, medium,

and low. The results show that existing methods perform

poorly under high occlusion, whereas our fine-tuned mod-

els achieve significant improvements. To assess perfor-

mance on real-world data, we perform evaluations on the

3DPW and OCMotion datasets, which contain low-level oc-

clusions. Additionally, we created a variant of the 3DPW

dataset by adding black patches to evaluate the robustness
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against high-occlusion real scenarios. Our fine-tuned mod-

els outperformed recent HPS methods on these real-world

datasets. Furthermore, our experiments highlight the im-

portance of an effective human object detector for improv-

ing HPS performance under occlusion. To address this,

we fine-tuned the YOLO11[19] object detector using our

dataset, enhancing its performance under occluded scenar-

ios. VOccl3D is available for researchers to benchmark and

evaluate occlusion-aware methods.

In summary, we make the following key contributions:

1. We propose VOccl3D, a novel large-scale, realistic

video-based dataset of occluded synthetic humans in real

scenes for 3D human pose and shape estimation.

2. We demonstrate both qualitatively and quantitatively

that existing HPS estimation methods fine-tuned

with VOccl3D outperform other methods on real-world

datasets with occlusions.

3. We improved the performance of the human ob-

ject detector under occlusion scenarios by leveraging

the VOccl3D dataset which is a crucial component for

a robust HPS estimation.

4. VOccl3D can serve as a benchmark dataset for evaluat-

ing methods specifically designed to perform under oc-

clusion across various tasks, including human and body-

part segmentation, 2D/3D pose estimation, and human

bounding box detection.

2. Related Works

Synthetic Data Generation for Human Pose Estimation.

Human pose estimation is crucial in computer vision, but

state-of-the-art methods depend on costly, labor-intensive

labeled datasets. Several notable synthetic datasets have ad-

vanced research in human pose estimation. SynBody [53]

provides a large-scale synthetic dataset for human mesh re-

covery and view synthesis, while RePoGen [42] enables

fine-grained control over pose and viewpoint to generate

rare, complex poses. Human3.6m [18] provides additional

small mixed reality dataset by inserting 3D animation mod-

els with background scenes. BEDLAM [4] further high-

lights that models trained solely on synthetic data can out-

perform real-data-trained counterparts, emphasizing the im-

portance of high-quality synthetic datasets for transferable

models. Further, PressurePose [7] simulates interactions

between articulated and soft bodies, capturing fine-grained

contact dynamics. SynthMocap [14] extends this by pro-

viding expressive synthetic data with detailed body, hand,

and face movements. Despite their success, these synthetic

datasets lack emphasis on significant occlusions, a key real-

world challenge. Addressing this limitation, our work pro-

poses a synthetic dataset tailored to 3D pose estimation un-

der heavy and realistic occlusion, aiming to bridge this gap

and enhance robustness in occlusion-prone environments.

Image and Video based Human Pose Estimation. Esti-

mating 2D/3D pose and shape from single RGB image has

widely been explored in previous research [4, 28, 47, 51,

54]. Methods such as [47] use a conditional variational

autoencoder for 2D-to-3D lifting in pose estimation. The

pose estimation approach proposed in [51] applies normal-

izing flows [45] for 2D-3D mapping. Large-scale datasets

like BEDLAM [4] have improved pose estimation models

like CLIFF [28] and HMRNet [21]. However, these models

struggle with generalizing to unseen scenarios with severe

occlusions due to limited training on such cases.

In addition, video-based human pose estimation has sig-

nificantly improved challenging datasets. Early works like

[60] use the EM algorithm to estimate the 3D pose from

monocular video through 2D joint uncertainty maps. The

method in [41] employs dilated temporal convolutions and

semi-supervised learning for 3D pose estimation, while [2]

uses the SMPL model [32] to extract pose and shape param-

eters, refining models like HMR with bundle adjustment.

VIBE [24] applies adversarial learning with AMASS [34]

for 3D pose extraction, while MEVA [33] improves accu-

racy and smoothness using a variational autoencoder to ad-

dress VIBE’s high acceleration error. Owing to these draw-

backs, HuMoR employs a conditional variational autoen-

coder for robust pose estimation, while the state-of-the-art

method WHAM [48] integrates 2D-3D lifting and SLAM

for accurate global motion estimation. While these meth-

ods perform well on various datasets, studies like [27] high-

light performance drops under significant occlusions, as

most datasets contain only sparse occlusions, making mod-

els struggle with unseen heavy or prolonged occlusions.

Human Pose Estimation under Occlusion. Despite sig-

nificant progress in HPS estimation, handling occlusions

remains a major challenge. This is because, in 3D pose es-

timation, missing depth cues make reconstruction far more

ambiguous than in 2D. Early works like [6] used data aug-

mentation with occlusion labels to enhance robustness in

pose estimation. Latest methods like GLAMR [55] use a

deep generative motion infiller to handle missing poses un-

der severe occlusions and a global optimization framework

to refine motion trajectories. Additionally, some methods

[23, 33, 57] approach the issue of missing poses as a pose

refinement problem, leveraging temporal smoothness to ad-

dress it effectively. SmoothNet [57] introduced a temporal

motion refinement network for refining the poses obtained

from the image-based pose estimators to alleviate jitters.

These methods perform well under sparse, infrequent occlu-

sions across frames but struggle with natural, prolonged oc-

clusions, as they lack training for such instances. All these

works evaluate their methods on datasets with sparse occlu-

sions, as no existing datasets contain significant occlusions.

To address this gap, we introduce VOccl3D, a novel dataset

designed specifically for 3D HPS estimation under signifi-

cant occlusions.

3



3. VOccl3D Dataset

In this section, we outline the key components required to

construct the VOccl3D dataset. Section 3.1 details the cre-

ation of individual assets, including background scenes, hu-

man motions, and texture maps. Sections 3.2 describe the

rendering process and attributes of the dataset.

3.1. Dataset Assets

Background Scenes. In recent years, neural networks

have significantly advanced 3D scene representation, en-

abling novel-view image synthesis. Notable approaches in-

clude Neural Radiance Fields (NeRF) [36], which learn a

joint representation of geometry and appearance for novel-

view synthesis. Another method, 3D Gaussian Splatting

(3DGS) [22], represents a scene using 3D Gaussians and

adopts a differentiable rasterizer for real-time rendering.

These methods use multiview images to learn 3D represen-

tations, avoiding extensive capture setups. To develop our

dataset, we use the 3DGS method to learn the 3D represen-

tation of the background scene.

Preliminaries: 3D Gaussian Splatting We represent the

i-th Gaussian in 3DGS as:

G(p) = oi e
�

1

2
(p�µi)

T
Σ

−1

i
(p�µi), (1)

where p∈R
3 is a xyz location, oi ∈ [0, 1] is the opac-

ity modeling the ratio of radiance the Gaussian absorbs,

µi ∈R
3 is the center/mean of the Gaussian, and the co-

variance matrix Σi is parameterized by the scale Si ∈R+
3

along each of the three Gaussian axes and the rotation

Ri ∈SO(3) with Σi = RiSiS
>

i R
>

i . Each Gaussian is

also paired with spherical harmonics [43] to model the ra-

diance emitted towards various directions. During render-

ing, the 3D Gaussians are projected onto the image plane

and form 2D Gaussians [62] with the covariance matrix

Σ
2D
i = JWΣiW

>J>, where J is the Jacobian of the

affine approximation of the projective transformation and

W is the viewing transformation. The color of a pixel is

calculated via alpha blending the N Gaussians contributing

to a given pixel:

C =

NX

j=1

cjµj

j�1Y

k=1

(1− µk), (2)

where the Gaussians are sorted from close to far, cj is the

color obtained by evaluating the spherical harmonics given

viewing transform W , and µj is calculated from the 2D

Gaussian formulation (with the covariance Σ2D
j ) multiplied

by its opacity oj .

We collected RGB videos from the large-scale open-

source DL3DV dataset [31], which contains over 10,000

videos across diverse domains, including natural and out-

door settings, educational institutions, shopping complexes,

parks, hubs, cafes, and restaurants. We selected videos

based on the presence of natural occlusions, such as gar-

lands, chairs, benches, statues, cars, and bins. Our dataset

captures 3D representations of approximately 40 distinct

scenes, each incorporating real-world occlusions. This ap-

proach to learning 3D representation closely resembles real-

world data compared to conventional methods that rely on

rendering from 3D graphic asset scenes.

SMPLX body/Human Animations. We represent the hu-

man body using the SMPL-X [40] 3D human model, de-

fined by the function M(7,�, ), where 7 represents the

pose parameters, � the shape parameters, and  the facial

expression parameters. This function outputs a body mesh

M ∈ R
10475å3 with 10,475 vertices. We sample approx-

imately 400 SMPL-X 3D human motion models from the

AMASS mocap dataset [34], which contains over 11,000

motion sequences with diverse body shapes and poses. Fol-

lowing previous work [52], we use the pre-trained human

pose prior model VPoser [40] to assess pose difficulty.

VPoser is a Variational Auto-Encoder model that evaluates

a pose 7 to be challenging if its embeddings /θ have larger

norm, i.e. ||/θ||2 > ' , where ' is empirically set to 40.

We classify a challenging pose using VPoser to avoid sim-

ple movements such as walking, standing, jogging, etc. To

prepare human animations for rendering, we use Blender

graphics software to efficiently bake complex geometric an-

imations over time into the Alembic format for subsequent

use in rendering engines.

We ensured that motion sequences contained at least 180

frames to maintain a minimum animation duration of six

seconds at 30 fps. For sequences exceeding 400 frames,

we discarded the first 100 frames to remove static poses

at the start. To ensure that human motion remains consis-

tently within the occluded scene, we implemented boundary

constraints that stop the motion if it moves beyond these

limits. These conditions prevent humans from moving too

far from the occlusion area. Additionally, we applied ran-

dom rotations and translations to each sequence. We store

the applied transformations to further calculate the effective

global orientation of the human body with respect to the

world coordinates.

Human Textures. We sourced human body texture scans

from the open-source dataset provided by the SMPLitex

method [5], which estimates and manipulates the full 3D

appearance of humans captured from a single image. The

SMPLitex dataset provides a diverse range of human tex-

ture scans, covering various skin tones, clothing styles, and

genders. To ensure sample diversity in VOccl3D, we select

approximately 200 distinct texture scans. Figure 4 illus-

trates the different clothing textures applied to the SMPL-X

human model in our dataset.
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Figure 3. An overview of our proposed dataset creation pipeline. We generate 3D representations of natural scenes with real occlusions

using 3D Gaussian Splatting [22]. Human motion sequences from the AMASS MoCap dataset [34] are processed in Blender to generate

baked animation files. The generated scene representations, animation files, human texture maps, and camera extrinsic parameters are

imported into the Unity rendering engine to generate video sequences of human motion under occlusion.

Figure 4. Diversity of human texture in VOccl3D. We use ap-

proximately 200 human texture maps from the SMPLitex dataset

[5], encompassing diverse clothing styles, genders, skin tones, and

ethnicities.

3.2. Dataset Rendering and Attributes

Rendering As shown in Figure 3, we used Unity Engine

to render synthetic scenes by integrating background Gaus-

sian splats, human animations, and body texture assets. We

rendered video sequences at 30 fps with a resolution of

720×720, varying the camera field of view between 25 and

50 across different scenes. For each sequence, we stored

ground-truth camera extrinsic and intrinsic parameters and

saved the rendered RGB images in lossless PNG format.

We positioned the camera to capture occluded views within

the scene and applied motion constraints to human ani-

mation assets to maintain consistent occlusion throughout

each sequence. To achieve realistic lighting, we employed

Unity’s built-in DirectionalLight asset to simulate natural

illumination on the human mesh.

Dataset Attributes. Our proposed dataset, VOccl3D, in-

cludes over 250,000 images and 400 video sequences with

a total runtime exceeding 2 hours and 30 minutes. The

dataset features 40 background scenes with various occlu-

sions, such as cars, garlands, benches, chairs, bins, and

trees. Each scene contains 10 video sequences with vari-

ations in human motions and clothing textures. The ren-

dered sequence exhibit diversity in body shapes, skin tones,

and camera poses. We provide ground-truth annotations,

including camera extrinsic and intrinsic parameters, pose,

shape, global orientation, translation, gender, 2D keypoints,

and a binary occlusion label for each keypoint.

Different Modalities. In addition to 3D pose and shape

annotations, VOccl3D provides annotations for multiple

modalities, including human silhouettes, body-part segmen-

tation, 2D keypoint estimation, and human bounding box

detection under occlusion. Researchers can use our dataset

to train and evaluate methods designed to handle occlusion

across these modalities.

4. Experiments and Results

In this section, we highlight the need and significance of our

proposed VOccl3D dataset. We fine-tune the state-of-the-

art pose estimation methods using our dataset and report the

qualitative and quantitative results. Our results demonstrate

improved performance on the HPS estimation task (Sec-

tion 4.1) using both our proposed synthetic dataset and real-

world datasets with occlusions. In Section 4.2, we show the

enhanced performance of the human object detector and its

impact on HPS estimation under occlusion.

4.1. Human Pose and Shape Estimation

Dataset and Implementation Setup. We use approxi-

mately 200k and 50k images for training and testing re-

spectively in our proposed VOccl3D dataset. We fine-tune
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Method
Hard-Occlusion Medium-Occlusion Low-Occlusion

MPJPE PA-MPJPE PVE MPJPE PA-MPJPE PVE MPJPE PA-MPJPE PVE

CLIFF [28] 192.22 114.35 247.41 121.70 78.56 158.46 98.82 67.64 126.92

BEDLAM-HMR [4] 167.35 102.92 214.39 102.55 68.13 134.59 86.55 54.48 110.15

BEDLAM-CLIFF [4] 154.86 99.53 199.95 90.97 65.03 119.63 74.95 52.65 96.60

HMR2.0 [13] 169.71 100.49 215.17 113.88 71.78 145.62 88.53 59.08 114.39

STRIDE with BEDLAM-CLIFF [27] 155.64 100.44 - 91.14 65.38 - 75.02 53.21 -

WHAM [48] 152.15 102.14 177.07 110.97 76.81 127.45 93.90 66.68 106.51

VOccl3D-B-CLIFF 136.34 89.94 175.92 82.48 58.78 106.84 69.46 46.32 88.19

STRIDE with VOccl3D-B-CLIFF 136.43 90.28 - 82.37 58.98 - 69.65 46.86 -

Table 1. 3D HPS estimation results on the test-split of VOccl3D. The results show that VOccl3D-B-CLIFF and STRIDE, when us-

ing pseudo-labels from VOccl3D-B-CLIFF, significantly outperform other image- and video-based HPS estimation methods across hard,

medium, and low occlusion categories. As expected, all HPS estimation methods exhibit a decline in performance as occlusion severity

increases from low to medium to high. For evaluation, we use ground-truth bounding boxes. The best results are in bold.

Method
3DPW OcclType1-3DPW OcclType2-3DPW

MPJPE PA-MPJPE PVE MPJPE PA-MPJPE PVE MPJPE PA-MPJPE PVE

CLIFF [28] 73.9 46.4 87.6 98.15 62.27 118.47 99.49 62.16 119.82

BEDLAM-HMR [4] 79.0 47.6 93.1 108.62 66.53 128.05 106.19 64.05 125.66

BEDLAM-CLIFF [4] 72.0 46.6 85.0 98.71 64.26 117.41 96.80 61.32 115.33

HMR2.0 [13] 81.2 54.3 143.7 103.40 69.66 164.55 99.01 66.17 158.79

VOccl3D-B-CLIFF 72.0 47.3 84.5 95.89 63.43 114.28 94.36 60.44 112.01

VOccl3D-CLIFF 71.10 45.98 84.25 95.17 61.83 114.95 93.74 59.66 112.59

Table 2. 3D HPS estimation results on 3DPW, OcclType1-3DPW, and OcclType2-3DPW. Since 3DPW is a real-world dataset with

minimal occlusions, VOccl3D-CLIFF outperforms all other methods but shows only a marginal improvement over BEDLAM-CLIFF.

However, on OcclType1-3DPW and OcclType2-3DPW, which contain significant occlusions on real-world dataset, our method demon-

strates a notable improvement over existing approaches. The best results are noted in bold.

Figure 5. Fine-tuning an off-the-shelf pose estimator. We fine-

tune a CLIFF [28] pose estimation model using our proposed

VOccl3D dataset. We observe a significant improvement in the

estimated mesh when using a fine-tuned CLIFF model using our

dataset. Note: The pose estimator can be any off-the-shelf pose

estimator, here we show results with the CLIFF model [28].

two versions of state-of-the-art model, CLIFF (trained on

Human3.6M [18], MPI-INF-3DHP [35], and COCO [30]

dataset) and BEDLAM-CLIFF (trained on BEDLAM and

AGORA datasets) using our rendered VOccl3D dataset,

resulting in VOccl3D-CLIFF and VOccl3D-B-CLIFF, re-

spectively (refer to Figure 5). To benchmark perfor-

mance, we evaluate on the test split of VOccl3D, comparing

against multiple image and video based baselines, including

CLIFF [28], BEDLAM-HMR [4], BEDLAM-CLIFF [4],

HMR2.0 [13], STRIDE [27], and WHAM [48]. We report

the mean performance by evaluating the model using a five-

fold cross-validation on our dataset. To quantify occlusion

levels, we annotate each 3D joint with a binary occlusion la-

bel, marking it as occluded if its corresponding 2D keypoint

lies within the ground-truth segmentation mask of the visi-

ble human region. Based on the number of visible keypoints

(out of 22 total), we categorize images into three occlusion

levels: hard occlusion (4-9 visible keypoints), medium oc-

clusion (10-15 visible keypoints), and low occlusion (16-20

visible keypoints).

Beyond evaluations on synthetic datasets, we assess the

performance of VOccl3D fine-tuned models on real-world

datasets, including 3DPW [50] and OCMotion [15]. It is

noteworthy that these datasets do not contain significant oc-

clusions. Hence, we introduce two occlusion-augmented

variants of 3DPW to evaluate robustness under severe oc-

clusions. In OcclType1-3DPW, we overlay a black patch on

a randomly selected keypoint, while in OcclType2-3DPW,

we occlude two random keypoints. Further details on oc-
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Figure 6. Qualitative comparison of HPS estimation methods on VOccl3D dataset. The first and second column shows RGB image and

ground-truth human mesh. Column third and fourth compare HPS estimation using the BEDLAM-CLIFF [4] and HMR2.0 [13] methods.

The final column (VOccl3D-B-CLIFF) presents results obtained by fine-tuning the CLIFF model on the VOccl3D dataset. These results

demonstrate superior performance, particularly in scenarios with heavy occlusion.

clusion variants of 3DPW and implementation details are

provided in the supplementary material.

Results. We present benchmarking results on the test split

of our proposed VOccl3D dataset in Table 1. Our fine-

tuned VOccl3D-B-CLIFF significantly outperforms exist-

ing state-of-the-art image and video-based methods across

all occlusion categories. Notably, the performance of all

previous methods degrades as occlusion severity increases,

highlighting the inherent challenges of HPS estimation un-

der occlusions. We also compare our approach with the

plug-and-play method STRIDE [27], which performs 3D

pose estimation and reports only MPJPE and PA-MPJPE

errors. Our results show that STRIDE achieves supe-

rior performance when leveraging pseudo-labels from the

VOccl3D-B-CLIFF model compared to those from the orig-

inal BEDLAM-CLIFF model, further validating the effec-

tiveness of our dataset. In Table 2 and Table 3, we re-

port performance on the 3DPW [49] and OCMotion [16]

datasets, respectively. We observe that both VOccl3D-B-

CLIFF and VOccl3D-CLIFF outperform all the previous

methods, demonstrating their effectiveness in real-world

scenarios. However, since these datasets contain minimal

occlusions, the improvements over CLIFF remain marginal.

To further assess robustness under heavy occlusion, we

evaluate on OcclType1-3DPW and OcclType2-3DPW, real-

world datasets with significant occlusions. Table 2 demon-

strates that our fine-tuned model achieves substantial im-

provements, underscoring its robustness in occluded en-

vironments. Table 3 presents results on the OCMotion

dataset, which features lower levels of occlusion. We

can observe that VOccl3D-CLIFF outperforms all compar-

ison methods and demonstrates performance comparable

to CLIFF [28]. This is expected, as both models are pre-

trained on large-scale real-world datasets captured in con-

trolled lab environments similar to OCMotion. Figure 6

presents the qualitative results on VOccl3Ddataset, show-

casing the improvement of our fine-tuned model against

other state-of-the-art HPS estimation methods. Additional

results are provided in supplementary material.

4.2. Impact of Human Detector on HPS Estimation

Dataset and Implementation Setup. Human object detec-

tors play a crucial role in HPS estimation tasks, particularly
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Method
OCMotion

MPJPE PA-MPJPE PVE

CLIFF [28] 64.15 40.16 79.80

BEDLAM-HMR [4] 73.96 41.94 92.70

BEDLAM-CLIFF [4] 66.80 41.79 83.86

HMR2.0 [13] 69.94 43.00 87.07

VOccl3D-B-CLIFF 65.96 40.59 81.96

VOccl3D-CLIFF 64.29 39.64 78.56

Table 3. Qualitative results of HPS estimation on OCMotion.

Our results show that VOccl3D-CLIFF outperforms all HPS esti-

mation methods except CLIFF [28]. Both CLIFF and VOccl3D-

CLIFF exhibit comparable performance, as both are pre-trained on

real-world datasets captured in controlled lab environments, simi-

lar to OCMotion [16]. The best results are in bold.

Method
3DPW OCMotion

mAP50 mAP75 mAP50 mAP75

YOLO11 58.99 47.14 98.84 91.80

VOccl3D-YOLO11 59.89 48.26 99.10 91.95

Table 4. Quantitative results of YOLO11 on 3DPW and OC-

Motion datasets. The first row presents the human object de-

tection performance of the pre-trained YOLO11 model, while the

second row shows the results after fine-tuning with the VOccl3D

dataset. The best results are in bold. We observe an improvement

in detection accuracy across both datasets after fine-tuning.

when inferring from in-the-wild RGB images [4, 27, 28].

Ideally, HPS estimation performs optimally with ground-

truth bounding boxes; however, most human object detec-

tors struggle significantly under occlusion. To address this,

we fine-tune the recent YOLO11 detector [19] on the com-

bined training split of VOccl3D and MS COCO, referring

to the fine-tuned model as VOccl3D-YOLO11. We show

evaluations on 3DPW [49] and OCMotion [16] datasets.

Results. Table 4 compares the detection performance of the

pre-trained YOLO11 and VOccl3D-YOLO11 models on the

real-world 3DPW [49] and OCMotion [16] datasets. Since

OCMotion is a single-human dataset with minimal occlu-

sions, the detector achieves high mAP scores. This is likely

because most body parts remain visible, making box detec-

tion easier. However, due to the presence of multiple indi-

viduals in 3DPW, the overall mAP scores remain lower. In

short, VOccl3D-YOLO11 shows significant improvement

on datasets with high occlusions. We provide qualitative

results in the supplementary material.

Table 5 further evaluates the impact of human detec-

tion on HPS estimation. The first, second, and third rows

represent the performance of VOccl3D-CLIFF when hu-

man detections are sourced from ground truth, YOLO11,

and VOccl3D-YOLO11, respectively. As expected, the best

performance is achieved when using ground-truth detec-

tions. However, fine-tuning the detector with VOccl3D sig-

nificantly improves HPS estimation compared to detections

Method
3DPW OCMotion

MPJPE PA-MPJPE PVE MPJPE PA-MPJPE PVE

VOccl3D-CLIFF

w/GT
71.10 45.98 84.25 64.29 39.64 78.56

VOccl3D-CLIFF

w/YOLO11
116.52 63.35 139.74 67.16 41.30 83.00

VOccl3D-CLIFF

w/VOccl3D-YOLO11
114.85 62.66 137.19 66.65 41.15 82.40

Table 5. 3D HPS estimation results using the VOccl3D-

CLIFF model with different bounding box sources. This ta-

ble presents HPS estimation performance on the 3DPW and OC-

Motion datasets. The first row reports results using ground-truth

bounding boxes, achieving the highest accuracy. The second and

third rows show performance when detections are obtained from

the pre-trained YOLO11 and fine-tuned VOccl3D-YOLO11 mod-

els, respectively. Notably, the third row demonstrates a significant

improvement over the second, highlighting the impact of detec-

tions on HPS estimation.

from the pre-trained YOLO11. These results underscore the

critical role of human detection quality in enhancing HPS

performance under occlusion.

Our experiments show that fine-tuning an existing HPS

estimation model with a large synthetic dataset containing

occlusions enhances its performance on both real and syn-

thetic datasets. We observe significant improvements over

baseline methods, particularly in scenarios with heavy oc-

clusions. Additionally we demonstrate that the poor results

are not solely due to HPS estimations errors but also stem

from failures in bounding box detection. The VOccl3D

dataset proves effective in refining pose estimation methods

and bounding box predictions under occlusions.

5. Conclusion

We introduce VOccl3D, a novel large-scale video dataset

with synthetic humans in real-world scenes under occlu-

sions for 3D human pose and shape estimation. By lever-

aging a rendering-based approach, VOccl3D eliminates the

need for costly and labor-intensive data collection while

providing a diverse and realistic dataset for occlusion-aware

research. Through extensive qualitative and quantitative

evaluations, we demonstrate that fine-tuning existing HPS

estimation methods with VOccl3D significantly enhances

their performance on real-world datasets with occlusions

and on the test split of VOccl3D dataset. Furthermore,

we improve the human object detector, YOLO11 under

occluded conditions using VOccl3D, highlighting the im-

pact of detections in achieving robust HPS estimation in

occluded scenarios. Beyond HPS estimation, VOccl3D

serves as a comprehensive benchmark for evaluating meth-

ods across multiple occlusion-aware tasks, including human

body-part segmentation, 2D/3D pose estimation, and hu-

man bounding box detection. Hence, VOccl3D sets a new

standard for occluded human benchmarks, offering a valu-

able dataset for advancing occlusion-robust research.
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Supplementary Material

A. Implementation details.

A.1. Human Pose and Shape estimation.

We fine-tune CLIFF [28] and BEDLAM-CLIFF [4] for

HPS estimation using approximately 200k images from our

VOccl3D dataset. CLIFF is trained on real 2D datasets

such as COCO [30] and MPII [1], as well as 3D datasets

like Human3.6M [17] and 3DHP [35], while BEDLAM-

CLIFF is originally trained on synthetic datasets such as

BEDLAM [4] and AGORA [39]. We fine-tune these models

on a single NVIDIA GeForce RTX 3090 Ti GPU. We adopt

hyperparameters and loss functions from [4] for fine-tuning.

We optimize the models using the Adam optimizer with a

learning rate of 0.00005 and zero weight decay. To prevent

overfitting, we employ early stopping. We use a batch size

of 64 and resize input images to 224× 224 dimension.

We report errors after converting SMPL-X bodies to

SMPL using a pre-trained joint regressor mapping and

aligning the pelvis of these bodies. We evaluate CLIFF,

BEDLAM-CLIFF, BEDLAM-HMR, HMR2.0, WHAM,

and STRIDE by re-running their evaluations using the of-

ficial code repositories.

We create two variants of the 3DPW dataset, OcclType1-

3DPW and OcclType2-3DPW, by overlaying black patches

to evaluate performance on highly occluded real-world

datasets. OcclType1-3DPW is generated by randomly

adding a black patch over a single 2D keypoint from the 22

openpose joints, while OcclType2-3DPW contains images

with two black patches placed on random 2D keypoints.

The added patches are square-shaped, with dimensions

covering 60% of the human height in OcclType1-3DPW

and 40% of the human height in OcclType2-3DPW. Fig-

ure 8 illustrates sample images from OcclType1-3DPW and

OcclType2-3DPW. We follow the same evaluation proce-

dure for real-world datasets, including 3DPW, OcclType1-

3DPW, OcclType2-3DPW, and OCMotion, as we do for the

VOccl3D dataset.

Evaluation metrics. Following prior works, we use stan-

dard metrics to report the performance of human pose and

shape estimation. MPJPE and PVE represent the average

error in joints and vertices respectively after aligning the

pelvis. PA-MPJPE reports the average error after aligning

the rotation and scale. All errors are in mm.

A.2. Human detector.

We conduct our experiments on the YOLO11 detector using

the official Ultralytics codebase [19]. The original YOLO11

model is pre-trained on the MS COCO dataset [30]. To

enhance its performance under occlusions, we fine-tune

YOLO11 on the combined train split of VOccl3D and MS

COCO, resulting in VOccl3D-YOLO11. We fine-tune the

YOLO11 VOccl3D-YOLO11

Figure 7. Human detection under occlusion on OCMotion us-

ing YOLO11. The left image illustrates detection performance

with the pre-trained YOLO11, while the right image shows im-

proved detection after fine-tuning YOLO11 with the VOccl3D

dataset, resulting in VOccl3D-YOLO11.

model for 50 epochs with a batch size of 32 on a single

NVIDIA GeForce RTX 3090 Ti GPU. Following [19], we

resize input images to 640× 640 and train using a learning

rate of 0.01 with a weight decay of 0.0005. Additionally,

we set the loss function weights to 7.5 for the bounding box

component and 0.5 for the classification component to opti-

mize detection performance.

Figure 7 shows the qualitative performance of YOLO11

and VOccl3D-YOLO11, where we show an improved per-

formance of VOccl3D-YOLO11 under high occlusions.

Evaluation metrics.We evaluate detector performance us-

ing mean Average Precision (mAP) at Intersection over

Union (IoU) thresholds of 0.50 and 0.75, referred to as

mAP50 and mAP75, respectively. Unlike standard bound-

ing box labels that include only visible human regions, we

provide bounding box annotations that cover the entire hu-

man body, including both visible and occluded parts.

B. Additional related works.

Datasets for Pose Estimation Previous works have pro-

posed several datasets for HPSE, which are either video-

based or image-based. One of the pioneers in this field

is the CMU Motion Capture dataset which primarily con-

tained 3D skeletal data without RGB images. This dataset

included a wide range of activities like dancing, walking,

and sports and served as a cornerstone for tasks like an-

imation, pose estimation, and gaming. Further, in 2016,

the MSCOCO dataset [30] was released which initially con-

tained over 200,000 labeled images covering 80 object cate-

gories, including humans. The scale of this dataset provided

a wealth of data that was unprecedented for pose estimation

tasks at the time. Additionally, MSCOCO introduced key-

point annotations for human pose estimation, providing 17

key points per person. The Archive of Motion Capture As

Surface Shapes (AMASS) dataset [34], introduced in [34],

is a large human motion database that unifies various opti-
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Figure 8. Samples of OcclType1-3DPW (top row) and OcclType2-3DPW (bottom row) dataset.

cal marker-based motion capture datasets under a common

framework and parameterization. This dataset contains 40

hours of human motion data, spanning over 300 subjects,

and motivated large-scale pre-training in a variety of follow-

up HPS works [12, 24, 29, 61]. The recent 3D Poses in

the Wild (3DPW) dataset [49] is a widely-used benchmark

for evaluating 3D human pose estimation methods in natu-

ral, unstructured environments, providing accurate 3D pose

annotations derived from synchronized video and inertial

measurement unit (IMU) data. This dataset comprises over

51,000 frames and across 60 video sequences. Although

these datasets fueled the state-of-the-art methods but con-

tain limited occlusions in their samples. This makes meth-

ods trained on these datasets vulnerable to occlusions, lim-

iting their ability to generalize to unseen scenarios with sig-

nificant occlusions.

C. Qualitative examples

In this section, we present the qualitative results of our

fine-tuned model, VOccl3D-B-CLIFF, in comparison with

other HPS estimation methods. Figure 9 illustrates quali-

tative results on the OcclType2-3DPW dataset, while Fig-

ure 10 provides additional qualitative comparisons on the

test split of VOccl3D. We observe the superior performance

of VOccl3D-B-CLIFF across multiple datasets. Addition-

ally, Figure 11 showcases further sample images from the

VOccl3D dataset.

D. Limitations and Future Work

Our work highlights the need and importance of a large-

scale, realistic occluded human dataset for performing the

task of human pose and shape estimation. By releasing this

dataset and the associated tools for repopulation, we aim to

enable the research community to systematically evaluate

their algorithms under challenging occlusion scenarios.

Currently, the visual quality of our synthetic humans is

limited by the lack of open-source high-fidelity assets, such

as garments, hairstyles, footwear, and diverse human mo-

tions, which are constrained by the AMASS dataset. More-

over, our rendering pipeline relies on predefined camera

poses to generate images with substantial occlusions. A

promising direction for future work would be to develop

an end-to-end framework that can automatically generate

occlusion-rich sequences without requiring externally pro-

vided camera parameters.

Although the VOccl3D dataset offers realistic occlusion

scenarios, a noticeable gap remains between synthetic and

real-world data. Bridging this sim-to-real gap represents an

important avenue for future research in realistic human pose

estimation. Additionally, our dataset holds potential util-

ity for broader research efforts focused on occlusion-aware

learning across various modalities, including human silhou-

ette extraction, body-part segmentation, 2D keypoint esti-

mation, and bounding box detection
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Figure 9. Qualitative comparison of HPS estimation methods on OcclType2-3DPW dataset. Column 1 represents input RGB im-

age. Columns 2–4 compare HPS estimation using the CLIFF [28], BEDLAM-CLIFF [4], and HMR2.0 [13] methods. The final column

(VOccl3D-B-CLIFF) presents results obtained by fine-tuning the CLIFF model on the VOccl3D dataset.

Figure 10. Qualitative comparison of HPS estimation methods on VOccl3D dataset. Column 1 and 2 represents input RGB image

and ground truth pose. Columns 3 and 4 compare HPS estimation using the BEDLAM-CLIFF [4], and HMR2.0 [13] methods. The final

column (VOccl3D-B-CLIFF) presents results obtained by fine-tuning the CLIFF model on the VOccl3D dataset.
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Figure 11. Samples of VOccl3D dataset. The samples from VOccl3D dataset illustrates various diversity in real occlusions, human

motions, and clothing textures.

Datasets #Sub #Frames Image Subj/image Motion Ground-Truth Occlusion Multi-level Occlusion Video data

SURREAL 145 ∼6.5M composite 1 >2k SMPL No No No

MPI-INF-3DHP-Train 8 >1.3M mixed/composite 1 8+ 3D joints No No Yes

AGORA >350 ∼18k rendered 5-15 n/a SMPL-X Yes No No

BEDLAM 217 380k rendered 1-10 2311 SMPL-X No No Yes

SynthMoCap ∼200 ∼100k rendered 1-4 n/a SMPL-X No No No

OCMotion 8 300k captured 1 43 SMPL Yes No Yes

VOccl3D ∼200 ∼250k rendered 1 400 SMPL-X Yes Yes Yes

Table 6. Comparison of synthetic datasets and real dataset with occlusion for 3D human pose estimation.
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