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C2-LUSIN APPROXIMATION OF STRONGLY CONVEX BODIES

DANIEL AZAGRA, MARJORIE DRAKE, AND PIOTR HAJLASZ

ABSTRACT. We prove that, if W C R™ is a locally strongly convex body (not necessarily
compact), then for any open set V'O OW and & > 0, there exists a C? locally strongly
convex body W,y such that H"~1(OW. yAOW) < ¢ and OW. y C V. Moreover, if W is
strongly convex, then W, y is strongly convex as well.

1. INTRODUCTION

The aim of this note is to prove the following result.

Theorem 1.1. Let W C R™ be a locally strongly convezr body (not necessarily compact),
e > 0, and the set V. O OW be open. There exists a C* locally strongly convex body Wy
such that H* 1 (OW.yAOW) < e and OW.y C V. Moreover, if W is strongly conver,
then Wy y is strongly convex as well.

Here, H"! denotes the (n — 1)-dimensional Hausdorff measure, and AAB is the sym-
metric difference of the sets A and B, that is, AAB := (A\ B)U(B\ A). Throughout this
paper, we say that W C R" is a convex body if it is closed, convex, and has nonempty inte-
rior; if its boundary OW can be represented locally (up to a suitable rotation) as the graph
of a strongly convex function, then we say W is a locally strongly convex body. We say that
W is a strongly convex body if it is a compact locally strongly convex body. One can prove
that W is a strongly convex body if and only if it is the intersection of a family of closed
balls of the same radius; see Proposition 2.4 for this and other equivalent characterizations
of strongly convex bodies. Note that the epigraph of a strongly convex function is never
a strongly convex body (though it is always a locally strongly convex body). However, if
u: R™ — R is locally strongly convex and coercive, then for every ¢ > mingern{u(z)} the
level set u™'((—o0,t]) is compact and locally strongly convex, hence also strongly convex;
again, see Proposition 2.4.

A function u : U — R defined on an open convex set is strongly convez if there is n > 0,
such that u(z) — 2|x|? is convex (in which case we say that u is 7-strongly convex). Note
that, if u is of class C?, then this is equivalent to saying that, for all z, the minimum
eigenvalue of D?u(x) is greater than or equal to 1. We say that u is locally strongly convex
if for every x € U there is r, > 0, such that the restriction of u to B(x,r,) is strongly
convex.
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Theorem 1.1 was stated without proof in [1] as a corollary to the main result of that
paper, which we recall next.

Let G, represent the graph of a function u : U — R, where U C R™.

Theorem 1.2 (See [1]). Let U C R™ be open and convez, and u : U — R be locally strongly
convez. Then for every e, > 0 and for every continuous function ¢ : U — (0, 1] there is a
locally strongly convex function v € C*(U), such that

(a) {z € U= u(x) # v(x)}| < eo;
(b) |u(z) —v(z)| < e(x) for all x € U;
(c) H" (G, AG,) < &,.

Also, if u is n-strongly convex on U, then for every 1 € (0,n) there exists such a function
v which is n-strongly convex on U.

Part (a) of this result says that we can approximate a locally strongly convex function by
a C? locally strongly convex function in the Lusin sense. For motivation and background

about this kind of approximation we refer the reader to the introductions of the papers
3, 1].

The rest of this note is organized as follows. In Section 2 we review some basic facts of
convex analysis, provide multiple characterizations of strongly convex bodies, and detail
useful technical estimates for the metric projection onto a compact convex body and onto
the boundary of a C'%! convex body. For more details and omitted proofs regarding convex
functions and convex bodies we refer to |7, 8, 9]. While most of the results of Section 2 are
well known, some of the equivalent conditions in Proposition 2.4 are new, and Lemma 2.7
is new. In Section 3, we complete the proof of Theorem 1.1.

2. PRELIMINARIES FOR THE PROOF OF THEOREM 1.1.

Every closed convex set W C R™ is the intersection of all closed half-spaces that contain
W. In fact, for every x € OW there is a half-space H, such that W C H, and z € T, "W,
where T, = OH,. The hyperplane T, is called a hyperplane supporting W at x. For every
x € OW, there is a hyperplane supporting W at x, but such a hyperplane is not necessarily
unique. We define the normal cone to W at z as the set of all vectors perpendicular to
some supporting hyperplane of W at x and pointing outside W:

Ny (z) :={CeR": ((,y—x) <O0forally e W}.

Because there must be a hyperplane supporting W at z for every x € 9W, we have
Ny (x) # 0 for every x € OW.

It follows that given an open convex set U C R"™ and a convex function f : U — R,
we have that for every = € U there is v € R" such that f(y) > f(z) + (v,y — z) for all
y € U. Indeed, on the right hand side we have an equation of a supporting hyperplane of
the convex epigraph epi(f) = {(x,t) e U x R: x € U, t > f(z)}. The (nonempty) set of
all such v is denoted by 0f(z) and called the subdifferential of f at x:

Of(x) :={veR": f(y) > f(z) + (v,y —x) for all y € U}.
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For every ¢ € df(x), we have that ng € R"™! defined by
1
ng i= —=——x(§, —1) (1)
V1€

is a unit normal vector to epi(f) at (z, f(x)) that points outside epi(f); that is,
ne € Nopi(f) (l’, f(l’)) nsS”.

A convex function f is differentiable at a point xg if and only if Jf(x) is a singleton,
in which case we have 0f(zy) = {V f(zo)}, meaning that the tangent hyperplane to the
graph of f at xy is the unique hyperplane supporting the epigraph of f at (zo, f(zo)).
Convex functions are locally Lipschitz continuous, and it easily follows that if f is Lipschitz
continuous with Lipschitz constant L in a neighborhood of x and & € df(x), then

§l < L. (2)

Also, it follows from Rademacher’s theorem that convex functions are differentiable almost
everywhere, so 0f(z) = {V f(z)} for almost every x € U.

The following lemma is well known; for a proof see, for instance, [1, Lemma 3.4].

Lemma 2.1. Let u: U — R be a conver function defined on an open convex set U C R™.
Then u is n-strongly convex if and only if

uly) > ue) + (& y —2) + 2y — o’ 3)
forall z,y € U and £ € Ju(zx).

Remark 2.2. The proof of (<) in [1, Lemma 3.4] also shows that if (3) holds for all
x,y € U and some £ € du(x), then u is n-strongly convex, and therefore, by the proof of
(=), (3) is also true for all £ € Ou(x).

For any convex body W C R” with 0 € int(W), the Minkowski functional (also known
as gauge) of W is a map pw : R" — [0, 00) defined by

pw () := inf {)\ >0: ix € W}

The Minkowski functional is a positive homogeneous, subadditive convex function such
that 11;;/([0,1]) = W and pyy (1) = OW. Because 0 € int(W), there exists € > 0 such that

B(0,e) C W; hence, for all x € R, % € W. Thus,

2
lw (2) = pw (y)] < max{pow (@ = y), pw (y — 2)} < |z —yl,
implying gy is Lipschitz.

As a consequence of the implicit function theorem and the positive homogeneity of u,
we have W is a l-codimension submanifold of class C*(R") if and only if uy is C* on
R™ \ 11,/ (0). Note that if W is compact, then puy; (0) = {0}.

Lemma 2.3. Gwen a convex body W C R"™, for any selection

OW 3z — ((2) € Nw(z)NS* 1,
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we have
W= (1 {zeR": ({(y),x—y) <0} (4)
yeow
Proof. Since ((y) is an outward unit normal vector to W at y, the halfspace H, := {z :

(C(y), x —y) < 0} contains W for every y € OW, so we have that W C V := (), H, . If
W # V, since both W and V' are convex bodies, and we already know that W C V', we must
have y € int(V) for some y € OW. But then y € int(H,) = {z € R" : (((y),z —y) < 0},
which is absurd. O

Most of the equivalences provided by the following result are well known (see [10] for
instance), except, perhaps, for condition (d) and the definition of a locally strongly convex
body as a closed convex set whose boundary can be locally represented as the graph of
a strongly convex function (which is not standard). We provide a complete proof for the
reader’s convenience.

Proposition 2.4. Let W C R™ be a compact convex body satisfying 0 € int(W), and let
o R — [0,00) denote the Minkowski functional of W. The following statements are
equivalent:

(a) W is strongly convez.

(b) There is R > 0, such that for every x € OW, there is a closed ball B(y, R), such
that W C B(y, R) and x € 0B(y, R).

(c) W is the intersection of a family of closed balls of the same positive radius.

(d) p? is strongly conver.

(e) There exists a coercive, locally strongly conver function g : R" — R such that
W = g }((—o0,t]) for some t € R with t > mingegn g(x).

Proof. (a) = (b):

Let z € OW, because W is locally strongly convex, W in a neighborhood of z is the
graph of a strongly convex function. By translation and rotation if necessary, we can find
r. > 0 and a function g, : B"(0,2r,) — R that satisfies g,(0) = 0, g, is 1,-strongly
convex, L,-Lipschitz and

Waor, i ={(t,9:(t)) : t € B"1(0,2r,)} C oW,

where the coordinates on the right hand side for R"~! x R depend on z. More generally,
for s € (0,2r,] we define

W,o=1{(t,g.(t)): t € B*1(0,5)}.
Because OW is compact, OW C |J,con W, has a finite subcover, that is OW C U;nzl ij,mj )

Let z € OW. Then there exists j € {1,..,m} and z € B"'(0,r;) such that z =
(z,g(x)), where we let g; (resp. r;) stand for g,, (resp. ;). We will show there exists
R > 0 such that for all j € {1,...,m} and 2 € B"'(0,7;), and any £ € dg;(z) we have

W € B((z,g;(z)) — Rng, ), (5)
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where ng is defined in (1), implying at once W C B (2 — Rng, R) and z € 0B (2 — Rng, R),
and thus (b) holds. Proceeding, our aim is to prove (5).
For j€1,....,m,let n; :=mn,, and L; := L. Let L,n,7,r9 > 0 be
L :=max{Ly,..., Ly},
n = min{n, ..., Y },
r:=max{ry, ..., m}, and
ro = min{ry, ..., 7 }.

Let R > 0 be
2

1
R :=+V1+ L?max {— (1 + %7’2 + L* + nLr) , diam(W),
Ui

diam (V)2 } | -

2
nro

To verify (5) holds with R as in (6), fix j € {1,...,m}, z € B *(0,r;), and £ € dg;(x).
Let (y,s) € W in coordinates provided by g;. Then we want to show

(y,5) = (x,9(2)) + Rne|* < R?, (7)
where ng¢ is defined in (1). We consider two cases.

Case 1. Suppose |y — x| < r;. Since W N {(y,s) : ly —z| <r;} T {(y,s) : s> g;(y)}
and g; is n-strongly convex, Lemma 2.1 yields

9i(@) + &y — o) + Jly — 2” < g;(y) < . ®)
Note that s — g;(z) < diam(W) and in light of (2), |{] < L, so our choice of R in (6) yields
R R
— 4 gi(r) — s > —— — diam(W) > 0.
i T T2 g~ et

In combination with (8),

<__§__+g@,_%2<<__5___
VItleR T AWVIHIEP

Using (1) we get

2
<§,y—x>—g|y—x\2) .

2

0:5) = @y 00) + Rnel* = |(0:8) = (y(0) + e (61
B Y S R B
sy 2R ReP
2
R
+ (W—<§ay—$>—g\y—$\2> : (9)
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Expanding the square in (9) and noting by the Cauchy-Schwarz inequality (£,y — x)? <
€12 |y — z|*, we have:

|(y. 5)—(x, g;(x)) + Rng|’

L+ ¢ n?
< oy — 72 2 T 4 N2
< |y — x| +Rl+‘£‘2+4ly z|t + (& y — )
Ryly — «f?
+n(&,y — o)y — 2]’ - —(—=
( ) | e
2
n 2 9 Rn
<SR Aly—af (1+ e —yP+ P+ y—2) - ——— | .  (10)
4 V1+ €2

To see the quantity in parentheses is bounded by 0, apply the Cauchy-Schwarz inequality
to the inner product, the bounds || < L and |z — y| < r; < r, and the lower bound on R
in (6) to estimate:
2 2 (6) R
n 2 2 " 2 2 U
1+ —lz—yl*+ |+ y—2) <1+ —r"+ L +nlr < ———.
4 4 V1+EP

Subsituting this into (10), we see |(y,s) — (z, g;(z)) + R?’Lgf < R? as desired.
Case 2. Now suppose |y — x| > r;. Using (1) and |n¢| = 1, we estimate
{y =, &) +g;(x) = s
V1+I[EP
y—x,8) +g(z)—s
V1t [P
2R [1rin
§32+7<9—+ —z,8) + -a:—s), 11
(P u-no v (1)
where the last inequality follows because the choice of R in (6) and |{] < L ensure

diam(W)? < r2n ilEIZ' Since (y,s) € W and |y — z| > r;, we have

[(y.5) = (2.95(x)) + Rne|” = B>+ |(y5) = (. 9(2))" + 2R

< R? + diam(W)? + 2R<

2

SZQj(x)—i-(g,y—x)—F%. (12)

To see this, let uw = r;(y — x)/ly — x|, so & + v € B"1(0,2r;) and convexity of W along
with Lemma 2.1 imply

s—gi(x) _gile+u)—gi(x) _Suw+gu® / y—= n
|y—]x| >~ T : = rj2 <£’ >+§Tj

ly — x|
and (12) follows, because |y — x| > ;.

Substituting (12) into (11), we conclude |(y,s) — (z, g;(z)) + Rng‘z < R%. The proof of
(7) and thus (a) = (b) is complete.

(b) = (c): By assumption, there is R > 0 such that for every y € W there exists
x, € R" so that y € 0B(z,, R) and

W C B(z,, R). (13)
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This implies that
1
CY) = 77—
ly — x|

for every y € OW, and from Lemma 2.3 we deduce that

() Bz, R)= (| Bly—R¢(y).R) C () {z: {(y).z—y) <0} =W.

yeow yeow yeow
In combination with (13), we have [, .oy B(x,,R)=W.
( ) (d): For some nonempty set A C R", we may write W = (1, ., Ba, where
:= B(a, R), R > 0. Since 0 € int(WW) we have |a| < R for all a € A, and in fact there
eX1st O such that

(y — zy) € Nw(y)nS*!

=
F

B(0,r) CW C B, C B(0,2R),
which implies that
la| < R—rforall a € A, (14)
and also that . .
ﬁm < pa(z) < ;\x| for all x € R", (15)
where, for any a € A,
o () ::inf{)\>0 X € B, }

is the Minkowski functional of the ball B, (with respect to the origin, not necessarily the
center a of B,). Since W = (1.4 Ba, we have for 2 € R",

pu(x) = inf A>0:2 ¢ ﬂBa <sup1nf{)\>0 —€B, }:sup,ua(a:)
A a€A A acA
and W C B, implies p,(z) < p(z) for all @ € A. Thus, for z € R", pu(z) = sup,e.4 ta(2),
and p? : R" — [0, 00) satisfies

p2 () = sup pa* ().
acA

Because the supremum of a family of n-strongly convex functions is n-strongly convex, to
prove p? is strongly convex, we need only show that there exists > 0 such that p? is
n-strongly convex for all a € A.

A straightforward calculation yields

—(@,0) + (2, 0)° + ka|2]?
k,, ’

fa() =

where
ko == R*— |a]* > 0.
Differentiating p,(x), for every x € R" \ {0} we obtain

Vile) = i |-at o @) - pa(o)a)

where A, : R"\ {0} — R is defined by
1

Aal@) = NACROEEN AR
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Then we have
Dpta(@) = VAa(2) ® (2 = pta(@)a) + Aa(2) (I — a ® Vpta(2)),
where I denotes the identity operator. Since D?u,(z) is symmetric, we also have
D211y (2) = (7 — pta(2)a) @ Va(z) + No(2) (I — Vite(7) @ a).

Thus,
Dzui(x) = QVNa(x) ® V:ua(x) + 2ua(l’)D2ua(I).

Recalling that Vi, (z) = A\ (z) (2 — pa(x)a), the above expressions tell us that

Vo = Via(2) _ T~ fa()a

Via(2)] |2 = pa(2)al
is an eigenvector of both D2y, (x) and D?*u2(z) (here we are using the easy facts that, for
any vectors b, ¢ € R", we have b® c(b) = (b, ¢)b; hence b is an eigenvector of b® ¢, and that
any vector is an eigenvector of the identity). Since p is convex we have D%y, > 0, so we

estimate

o D220 > o] (2V () © Vpia(a)) v

2
|| ~ 2R%
where in the two last inequalities we used convexity of y, and (15). On the other hand,
for every v € S"7! with (vg,v) = 0 we also have (x — y,(z)a,v) = 0 = (Vu,(z),v), hence
" D (x)v = 0" (2pa(2) Ao (z) )V

_ 2pta() > 2pta() _ 2pta() > i

V0w, ) + kol 7 ]aPla + ko[22 Rle| T R
Let ag be the eigenvalue associated to the eigenvector vy, and let aq, ..., a,,_1 be the rest
of eigenvalues of D?u2(z) (possibly repeated). Because D?u2(x) is symmetric and vy is
an eigenvector of norm 1, we can find eigenvectors vy, ..., v,_; of D?u?%(z) with associated

eigenvalues aj, ..., a,,_1 so that {vg,v1,...,v,_1} is an orthonormal basis of R™. The last
two inequalities imply

=%v%@xwfzvasz2(

1
O{] = vaDzlui(x)vj Z 2—R2
for all j = 0,1,...,n, z # 0. We deduce that the minimum eigenvalue of D?12(x) is greater
than or equal to #, and therefore p? is #—strongly convex on any convex subset of
R"\ {0}. Finally, if x = 0, since j, is positive homogeneous, 2 is 2-homogeneous, and we

compute

T 2,2 _d2 2 _d22 2 _ 2>|U|2_ 1

0" D7 pg(x)o = @Mu(t?’) =0 = at 1a (V) |i=0 = 240 (v)” = R

for every v € S*71. We conclude 2 is ﬁ—strongly convex on all of R", and thus p?(x) =
SUP,e 4 H2(2) IS 33z-strongly convex on R™.

(d) = (e) is trivial (let g = p2, t = 1).

(e) = (b): We assume the function g : R — R is locally strongly convex and coercive
(and W = g7'((—o0,t]) for some t > mingegn g(7)), implying ¢ attains a minimum at
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) > 0 such that the level

a unique xg € R™. We show for ¢ > g(zg), there exists R(c
“1((—o00,t]) satisfies (b) with

set K, := g7 '((—o0, c]) satisfies (b), and, therefore, W = ¢
R = R(t).

Notice the set K. is compact because g is coercive, and therefore g is L-Lipschitz for
some L > 0 on an open set U DO K.. Since g is locally strongly convex, up to taking a
smaller U we may assume that g is n-strongly convex on U. Let R := %; fix y € 0K, and
¢y € 09(y); then g(y) = c. Because g is coercive, xy must lie in the interior of K.. Since
y # o, we have ¢, # 0, and by the strong convexity of g described in (3), for x € K,

n
c=9(y) 2 9(x) 2 9(y) + (G x —y) + Fle =yl
which implies

<P
Us

completing the proof that K. satlsﬁes (b), and therefore, W satisfies (b) with R = R(t) =
L

n

(b) = (a): Let z € OW. Since 0 € int(W) there exists r > 0 such that B(0,r) C int(W).
Let T, be a hyperplane supporting W at = and (, € Ny (z) satisfy (, is perpendicular to
T,.. Then the ray {z—t(, : t > 0} intersects int(W), so there are t; > 0 and > 0 such that
B(x —toC,,r) C int(W). For every y € T, with |y —z| < r, the ray {y —t(, : t > 0} passes
through the ball B(z — t¢(,,r) and, therefore, intersects dWW at exactly two points; the
first defines a function whose graph coincides with OW in a neighborhood of z. Precisely,
we define the function g : T, N B(z,r) — [0,00) by g(y) := min{t > 0 : y + t(, € OW}.
This function is convex because its graph coincides with W on U, a neighborhood of z,
and W is convex. We will show that ¢ is strongly convex, proving (a).

.fll'—y+ Cy )

showing that

By assumption, there exists R > 0 such that for every y € U, NOW there is v, € S"* so
that W C B(y — Ruy, R). In particular v, € Ny (y) N N, Roy,1)(Y), and OB(y — Ruy, R)N
U, is the graph of a C*° convex function f, : T,, N B(z,r) — R such that

fy<g. () =9), V(y) € 0g(y), and v, = (&, s,), (16)

where . 1
y = \Y Y 9 d y — — :
=R E W = e T

In the coordinates given by the hyperplane 7, and its normal vector —(,, we have
f(2) = g(y) = Rs, — \JR? — |z — y + R, .

and a straightforward calculation shows that

(: -yt RE) @ -y + RE) + (R — |z —y+ R&P) I
(B2 — |2 =y + R ™

D2fy(z) =

)
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where [ is the identity operator. Clearly,

1
wy = ————(z2—y+ RE
T lz—y+ R, ( )
is an eigenvector of D?f,(z), and we have
R? 1

wgszy(z)wo =

>

(R?— |z —y+RE, P — R

On the other hand, for all w € "' with (w,wy) = 0 we have (z —y + R, w) =0, so
R |z gt Re, i i

wTD2f 2w = = > .
+(2) (R?— |z —y+ R&H)?  (R2—|z—y+Rg)? R

Hence

1
min w' D fy(z)w >

and f, is %-strongly convex. Now, by (16) and Lemma 2.1 it follows that
1
9(2) 2 fy(2) 2 fyw) + (Vo) 2 = ) + 5p1z — ol (17)

= 4() + (VAy(9).2 ) + 5l — o (15)

so by Remark 2.2 we conclude that g is %—strongly convex too. The proof is complete. [

A self-evident local variant of the proofs of (a) = (b) and (b) = (a) in Proposition 2.4
shows the following:

Lemma 2.5. For any (possibly unbounded) convex body W C R"™ the following statements
are equivalent:

(1) W is locally strongly convex (in the sense that OW is locally, up to a rigid change
of coordinates, the graph of a strongly convex function).

(2) For every x € OW there exist an open neighborhood U, > = and a number R, > 0
such that, for ally € U,NOW there is v, € S"~ such that WNU, C B(y—R,v,, R).

Moreover, if (in appropriate coordinates) W is the epigraph of a convez function f and
one of the conditions is satisfied, then f is locally strongly convex.

For any closed convex set C' C R"™ the metric projection 7¢ : R" — C' (defined, for every
x € R", as the unique point m(z) € C such that dist(x, 7(x)) = dist(z, C') ) is 1-Lipschitz;
see |7, (3.1.6)] for a proof. Clearly, m(z) € OC if x ¢ int(C'). When the boundary 0C' is
of class O™, a bit more is true: the metric projection onto the (not necessarily convex)
boundary OC' is also well defined and Lipschitz on an open neighborhood of 9C.

For W C R" satisfying OW is of class C1!, let ngy : OW — S"~! be the outward unit
normal vector to OW. Recall,

Lip(nasw) := sup { |(naw(|$x)_—;l|aw(y)\ s,y € OW,x # y} )
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Lemma 2.6. Let W C R" be a closed convex set with nonempty interior such that OW
is of class CYt. Then the metric projection m : Q@ — OW is well defined and 2-Lipschitz,
where

1
Q=<zeR":dz,0W) < ———— s UW¢°.
{ ( ) 2L1p(naw)}

Proof. See, for instance, [4, Theorem 2.4|, or the references therein. O

We intend to apply the following lemma when W,V C R"™ are compact but include the
more general result:

Lemma 2.7. Let W,V be (possibly not bounded) convex bodies such that W C V. C R",
and H" 1 (OV \ OW) < co. Then the projection my : R" — W maps OV onto OW .

Proof. We consider two cases:

Case 1. Suppose that OV does not contain any lines.! We will show for all z € W,
there is z € JV such that mw(z) = z. Let v € Ny /(x). It suffices to show that the ray
R, :={x+tv: t >0} intersects OV at some point z, implying my (z) = .

Suppose not; then R, N9V = (), implying R, C intV. Let T, C R"™ be a supporting
hyperplane for W at x € oW

T, ={z+v:{(v,v) =0}

Then the open half space H, := {x + v : (v,v) > 0} satisfies H, N OW = (). Because x €
int(V'), there exists § > 0 such that B(x,20)NT, C int(V'). Further, (B(z,20)NT,)UR, C
int(V') and V' is convex, so C, C int(V'), where C,, :={p+tv: p € 0B(z,d) NT,, t > 0}
is the side surface of a half-cylinder. Since OV does not contain a line, the set V does
not contain a line. Therefore, for p € R,, v € S"~! satisfying v is parallel to T, the line
L,, = {p+tv:teR} must intersect OV. Let A C H, be

A= |J Lynov;
PER:,(v,v)=0
Let 7 be the radial projection of A onto C, along lines L, ,; 7 is 1-Lipschitz and hence
HHA) > H  (7(A) > H"(C,)/2 = co. Since H, NOW = (), we have A C OV \ OW,
implying H"~1(0V \ OW) = 00, a contradiction.

Case 2. Suppose that 0V contain at least one line. Because V' # R", V must have a
cylindrical structure: up to isometry, V = Vi x Ej, where V] is line-free, convex, and at
least 1-dimensional, and Fj is a linear subspace. By an argument similar to the proof of
[3, Proposition 1.10], we deduce that 9V = W because H" 1 (OV \ OW) < oo. O

Let us conclude our preliminaries with a restatement of |1, Cor. 3.10].

Lemma 2.8. If u : R" — R is n-strongly convezx, then for every 0 < n < n and every
£ > 0, there is a 7j-strongly convex function v € CLH(R™), such that v > u and |{x € R™ :

u(z) #v(@)}| <e.

IThis case was shown in an argument inside the proof of [2, Theorem 1.6]; we reproduce it here for
completeness.
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3. PROOF OF THEOREM 1.1.

We are now fully equipped to proceed with the proof of Theorem 1.1. We begin with an
auxiliary C'*! version of it.

Lemma 3.1. Let W be a compact convex body in R™, and V be an open set containing
OW . Then for every e > 0 there exists a compact convex body W. C W of class C*' such
that H"=1 (OW AOW,) < & and OW. C V. Moreover, if W is a strongly convez body, then
W, is a strongly convex body as well.

Proof. Next, we recall and adapt the proof of [3, Corollary 1.7|, or |2, Theorem 1.4], to our
context, showing the bound on the (n—1)-dimensional Hausdorff measure of the symmetric
difference OW AOW,, that W, is a strongly convex body if W is a strongly convex body,
and oW, C V.

We assume that 0 € int(W); recall the Minkowski functional of W, u : R™ — [0, 00)
defined by
Tewh
satisfies i is convex and Lipschitz. Let L be the Lipschitz constant of p. By Lemma 2.8,
there exists a convex function g = g. € CL! (R™) such that

o e2W : p(@) # g@)} < 7

p(x) :=inf{\>0:

Let CLQ, A C R" be
Cio:=2W\W ={x e R": 1< u(zr) <2}, and
A={zeCiy:p(z) #gx)}

By the coarea formula for Lipschitz functions (see |6, Section 3.4.2], for instance) we have

2
e>L|A| > /|V,u(x)|dx = /’H"‘l (Anp~'(t)) dt,
A 1

implying |{s € (1,2] : H* " (AN u~'(s)) > €}| < 1. Because g € CL'(R™) is convex and

loc

does not attain a minimum in ¢7'((1,2]), we have |[Vg(z)| > 0 for all z € Cy 5. Together,
these results imply that there exists a regular value of g, ty € (1,2), where

H (AN () <e. (19)
Then, we define
1 _
W. = —g (=00, o).

to
: 1,1 : . . :
Because g is convex and C ., and ty is a regular value of this function, W, is a convex

body of class C’llo’i with boundary

lvi
implying - B
to(OV \ OW2) = AN i (t):
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With inequality (19), this yields
HHOW \ OWL) < tpYH L (OW \ OW,) = H" (A N ,u_l(to)) <e.
Since g > p, we have W, C W. In particular, W, is compact and, therefore, of class C11.

Because the metric projection 7 : R™ — W, is 1-Lipschitz and maps 0W onto OW., we
also have

H L (OWN\OW) =H" 1 (m (OW \ OWL)) < H" 1 (OW \ OWL) < e.
Therefore H" ™1 (OW AOW,.) < 2e.

If we further assume that W is a strongly convex body, then by Proposition 2.4, ;2 is a
strongly convex function, and applying Lemma 2.8, we obtain a strongly convex function
g € CH1(R™) such that p? < g, and

loc
(e 2W - 12(@) £ g@)}] < £
where L = Lip(u). Thus,

{oe2W : p(a) # ha)}| < 7,

where h : R* — R is defined by h(z) := |g(z)|"/2. Because |Vg(z)| > 0 for € C} 4, we
have h € C"(C12). There exists a regular value of h, to € (1,2) satisfying an analog of
(19). Let W. C R™ be

1

W, = —h~((—o0, tg));

to
then, %g‘l(t%) = %h_l(to) = OW.. Because h is coercive, by Proposition 2.4 (e) = (a), we
deduce W, is a strongly convex body. Further, the inequality p? < ¢ implies that W, C W.
The proof that H" ™! (JW AOW.) < 2¢ is completed exactly as above.

Finally, given an open set V' O W, we want to show 0W. C V if € is small enough.
Suppose not; then there exists a sequence of Ch! (strongly) convex bodies (Uy)zen such
that

H*"H(OW AOUL) < 1/k and Uy C W for all k € N,
Because W is compact, V D {z € R™ : dist(z,0W) < 2r} for some r > 0. Thus, there is
sequence (zg)reny With zx € OU}, for each k € N such that
dist(zg, OW) > 2r > 0

Since (zx)reny C W, up to taking a subsequence, we may assume that (zx)ren converges to
some zg € W, and, necessarily, dist(zg,0W) > 2r > 0. Hence, there exists ky € N such
that for k > ko, we have B(zx,r) C B(20,2r) C W. Let Hy denote the tangent hyperplane
to Uy at z, and H, and H, denote the open halfspaces with common boundary Hy.

Suppose U C H—k_; observe that the metric projection = : OW — 0B(z,r) is 1-Lipschitz
and maps 0W N H," onto 0B (z,r) N H;". We deduce

%7—["‘1(83(0, r) = H"" (0B (zr, 1) N H)

<H'H(OW N HF) < H'TH(OWAIUY) < 1/k
for all k& > ky, which is absurd. Thus for & small enough, we must have 0W. C V. O
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Proof of Theorem 1.1. Let W C R™ be a locally strongly convex body, ¢ > 0, and the set
V D OW be open. We want to show there exists a C? locally strongly convex body W.
such that H" 1 (OW.yAOW) < e and OW.y C V. Moreover, if IV is a strongly convex
body, then W,y can be chosen to be a strongly convex body as well. We consider two
cases:

Case 1. Suppose that W is not bounded. Because W is locally strongly convex,
OW can be regarded, up to a suitable rotation, as the graph of a convex function f : U C
R™! — R such that limyey jy/—00 f(y) = 00 (if U is not bounded) and lim,_,, f(y) = oo for
every x € OU (if U # R"™1); see |5] for instance.? According to Lemma 2.5 the function f is
locally strongly convex. Hence the result is a straightforward consequence of Theorem 1.2.
(Notice (b) of Theorem 1.2 can be used to ensure OW,.y C V)

Case 2. Suppose that I is bounded. Then W is compact and thus a strongly convex
body. By Lemma 3.1, there exists a strongly convex body W, ,, € W of class C! such that
HHOW AOW, ;) < /2. We will prove there exists a C* strongly convex body We o v,
satisfying H" 1 (OW,2AOW,j2.v) < €/2. Then because

OWNOW, jay C (OWAOW,j2) U (OW, )2 AOW, 2.y ),
we deduce
H (8WA8W€/27V) < H'H (8WA8W5/2) +H! (8W5/2A8W5/2,V) <e€
Hence, from now on, we assume W is a C! strongly convex body.

By Lemma 2.6 we know that there exists an open neighborhood 2 of OW such that the
metric projection 7 : Q — AW is well defined and 2-Lipschitz. Without loss of generality
we may assume that V' C Q and 0 € int(W). Let u : R" — [0,00) be the Minkowski
functional of W; recall

u(x) =inf{\A >0 : %x e W}
The function g is convex and Lipschitz on R", and of class C*! on R™ \ B(0,r) for every
r > 0. Let L be the Lipschitz constant of y, and let R > 0 be large enough so that
2W C B(0, R).
We may assume our given ¢ is in (0,1/4) and small enough so that
(1= 56,1+ 5¢]) C V C Q.

Applying Lemma 2.4 (a) = (d) to W, we deduce u? is strongly convex on R™. By Theo-
rem 1.2 there exists a strongly convex function g € C?(R™) such that

o € BO.R) - pla) # 90} < - e

2
8L’R + 42/ R)2" (20)

and for all z € R",
1 (2) — g(z)] <e. (21)
Because p is L-Lipschitz, we have

—e < g(z) <p(x)*+e <4(LR)*+¢ (x € B(0,2R)).

2We warn the reader that what in this paper we call a locally strongly convex function is called a strongly
convex function in [5].
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Applying [1, Lemma 3.3], we deduce

, 4(LR)* + 2¢
Llp <g\B(0,R)> < T
Let h : R” — R be defined as h(z) := |g(z)|*/?; thenforz € R~ ([1,1 +¢]) € g7 ([1,1 +¢]),

_ [Vg(a)]
2|g(x)['/?
<2L’R+¢/R.
Further from (21), for x € h™*([1,1 + €]), we have
h*(x) — e < p?(z) < h?*(x) + ¢, implying
1 —¢e < p?(z) <1+ 4e, and thus,
l—e<p(z) <144 (zeh (1,1+¢])).

[Vh(z)]

This shows that
R (L, 1+¢)) cp (1 —5e,1+5¢]) CV C Q.

Now counsider the set

A={zeh™([I,1+e])  u(@)* # g(2)} ={z € k7 ([1,1+e]) : ulw) # h(x)}.
By the coarea formula for Lipschitz functions (see |6, Theorem 3.10, Section 3.4.2| for
instance) we have
1+e
> (2L°R+¢/R) |A| > /|Vh(x)| dr = /H"—l (Ann~'(t)) dt.
A

1

2

2n+2

This inequality implies that there exists ty € (1,1 + ¢) such that
H' T (ANK™ () < /2",

and because g is convex and cannot have a minimum in ¢7'((1,2]), the number #y* is a
regular value of g. Then, we define

W, = %h‘l((—oo,to]).

Since W, = %h_l(to) = %g_l(tﬁ) is a hypersurface of class C?, and h is coercive, we

apply Proposition 2.4 to deduce that W, is a strongly convex body of class C?, and
to(OW. \ OW) = AN h™ (o).
This yields
HHOW N\ OW) < tg7"H (W \ OW) = H" ' (ANh (L)) < /2"
Further,
OW.Cut([l—el14¢g)))cVcCq,
and, consequently, the metric projection 7 : OW, — OW is well-defined and 2-Lipschitz.
Hence,
HHOW \ OWL) < 2" 'H L (OW. \ OW) < /4.
Therefore, we conclude H" 1 (W AOW,.) < . O
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