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C2-LUSIN APPROXIMATION OF STRONGLY CONVEX BODIES

DANIEL AZAGRA, MARJORIE DRAKE, AND PIOTR HAJŁASZ

Abstract. We prove that, if W ⊂ Rn is a locally strongly convex body (not necessarily
compact), then for any open set V ⊃ ∂W and ε > 0, there exists a C2 locally strongly
convex body Wε,V such that Hn−1(∂Wε,V △ ∂W ) < ε and ∂Wε,V ⊂ V . Moreover, if W is
strongly convex, then Wε,V is strongly convex as well.

1. Introduction

The aim of this note is to prove the following result.

Theorem 1.1. Let W ⊂ Rn be a locally strongly convex body (not necessarily compact),
ε > 0, and the set V ⊃ ∂W be open. There exists a C2 locally strongly convex body Wε,V

such that Hn−1(∂Wε,V△ ∂W ) < ε and ∂Wε,V ⊂ V . Moreover, if W is strongly convex,
then Wε,V is strongly convex as well.

Here, Hn−1 denotes the (n − 1)-dimensional Hausdorff measure, and A△B is the sym-
metric difference of the sets A and B, that is, A△B := (A\B)∪ (B \A). Throughout this
paper, we say that W ⊂ Rn is a convex body if it is closed, convex, and has nonempty inte-
rior; if its boundary ∂W can be represented locally (up to a suitable rotation) as the graph
of a strongly convex function, then we say W is a locally strongly convex body. We say that
W is a strongly convex body if it is a compact locally strongly convex body. One can prove
that W is a strongly convex body if and only if it is the intersection of a family of closed
balls of the same radius; see Proposition 2.4 for this and other equivalent characterizations
of strongly convex bodies. Note that the epigraph of a strongly convex function is never
a strongly convex body (though it is always a locally strongly convex body). However, if
u : Rn → R is locally strongly convex and coercive, then for every t > minx∈Rn{u(x)} the
level set u−1((−∞, t]) is compact and locally strongly convex, hence also strongly convex;
again, see Proposition 2.4.

A function u : U → R defined on an open convex set is strongly convex if there is η > 0,
such that u(x)− η

2 |x|
2 is convex (in which case we say that u is η-strongly convex). Note

that, if u is of class C2, then this is equivalent to saying that, for all x, the minimum
eigenvalue of D2u(x) is greater than or equal to η. We say that u is locally strongly convex
if for every x ∈ U there is rx > 0, such that the restriction of u to B(x, rx) is strongly
convex.
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Theorem 1.1 was stated without proof in [1] as a corollary to the main result of that
paper, which we recall next.

Let Gu represent the graph of a function u : U → R, where U ⊂ Rn.

Theorem 1.2 (See [1]). Let U ⊆ Rn be open and convex, and u : U → R be locally strongly
convex. Then for every εo > 0 and for every continuous function ε : U → (0, 1] there is a
locally strongly convex function v ∈ C2(U), such that

(a) |{x ∈ U : u(x) ̸= v(x)}| < εo;
(b) |u(x)− v(x)| < ε(x) for all x ∈ U ;
(c) Hn (Gu△Gv) < εo.

Also, if u is η-strongly convex on U , then for every η̃ ∈ (0, η) there exists such a function
v which is η̃-strongly convex on U .

Part (a) of this result says that we can approximate a locally strongly convex function by
a C2 locally strongly convex function in the Lusin sense. For motivation and background
about this kind of approximation we refer the reader to the introductions of the papers
[3, 1].

The rest of this note is organized as follows. In Section 2 we review some basic facts of
convex analysis, provide multiple characterizations of strongly convex bodies, and detail
useful technical estimates for the metric projection onto a compact convex body and onto
the boundary of a C1,1 convex body. For more details and omitted proofs regarding convex
functions and convex bodies we refer to [7, 8, 9]. While most of the results of Section 2 are
well known, some of the equivalent conditions in Proposition 2.4 are new, and Lemma 2.7
is new. In Section 3, we complete the proof of Theorem 1.1.

2. Preliminaries for the proof of Theorem 1.1.

Every closed convex set W ⊂ Rn is the intersection of all closed half-spaces that contain
W . In fact, for every x ∈ ∂W there is a half-space Hx such that W ⊂ Hx and x ∈ Tx ∩W ,
where Tx = ∂Hx. The hyperplane Tx is called a hyperplane supporting W at x. For every
x ∈ ∂W , there is a hyperplane supporting W at x, but such a hyperplane is not necessarily
unique. We define the normal cone to W at x as the set of all vectors perpendicular to
some supporting hyperplane of W at x and pointing outside W :

NW (x) := {ζ ∈ Rn : ⟨ζ , y − x⟩ ≤ 0 for all y ∈ W}.
Because there must be a hyperplane supporting W at x for every x ∈ ∂W , we have
NW (x) ̸= ∅ for every x ∈ ∂W .

It follows that given an open convex set U ⊂ Rn and a convex function f : U → R,
we have that for every x ∈ U there is v ∈ Rn such that f(y) ≥ f(x) + ⟨v, y − x⟩ for all
y ∈ U . Indeed, on the right hand side we have an equation of a supporting hyperplane of
the convex epigraph epi(f) = {(x, t) ∈ U × R : x ∈ U, t ≥ f(x)}. The (nonempty) set of
all such v is denoted by ∂f(x) and called the subdifferential of f at x:

∂f(x) := {v ∈ Rn : f(y) ≥ f(x) + ⟨v, y − x⟩ for all y ∈ U}.
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For every ξ ∈ ∂f(x), we have that nξ ∈ Rn+1 defined by

nξ :=
1

√
1 + |ξ|2

(ξ,−1) (1)

is a unit normal vector to epi(f) at (x, f(x)) that points outside epi(f); that is,

nξ ∈ Nepi(f)(x, f(x)) ∩ Sn.

A convex function f is differentiable at a point x0 if and only if ∂f(x0) is a singleton,
in which case we have ∂f(x0) = {∇f(x0)}, meaning that the tangent hyperplane to the
graph of f at x0 is the unique hyperplane supporting the epigraph of f at (x0, f(x0)).
Convex functions are locally Lipschitz continuous, and it easily follows that if f is Lipschitz
continuous with Lipschitz constant L in a neighborhood of x and ξ ∈ ∂f(x), then

|ξ| ≤ L. (2)

Also, it follows from Rademacher’s theorem that convex functions are differentiable almost
everywhere, so ∂f(x) = {∇f(x)} for almost every x ∈ U .

The following lemma is well known; for a proof see, for instance, [1, Lemma 3.4].

Lemma 2.1. Let u : U → R be a convex function defined on an open convex set U ⊆ Rn.
Then u is η-strongly convex if and only if

u(y) ≥ u(x) + ⟨ξ, y − x⟩+ η

2
|y − x|2 (3)

for all x, y ∈ U and ξ ∈ ∂u(x).

Remark 2.2. The proof of (⇐) in [1, Lemma 3.4] also shows that if (3) holds for all
x, y ∈ U and some ξ ∈ ∂u(x), then u is η-strongly convex, and therefore, by the proof of
(⇒), (3) is also true for all ξ ∈ ∂u(x).

For any convex body W ⊂ Rn with 0 ∈ int(W ), the Minkowski functional (also known
as gauge) of W is a map µW : Rn → [0,∞) defined by

µW (x) := inf
{
λ > 0 :

1

λ
x ∈ W

}
.

The Minkowski functional is a positive homogeneous, subadditive convex function such
that µ−1

W ([0, 1]) = W and µ−1
W (1) = ∂W . Because 0 ∈ int(W ), there exists ε > 0 such that

B(0, ε) ⊂ W ; hence, for all x ∈ Rn, εx
2|x| ∈ W . Thus,

|µW (x)− µW (y)| ≤ max{µW (x− y), µW (y − x)} ≤ 2

ε
|x− y|,

implying µW is Lipschitz.

As a consequence of the implicit function theorem and the positive homogeneity of µ,
we have ∂W is a 1-codimension submanifold of class Ck(Rn) if and only if µW is Ck on
Rn \ µ−1

W (0). Note that if W is compact, then µ−1
W (0) = {0}.

Lemma 2.3. Given a convex body W ⊂ Rn, for any selection

∂W ∋ z → ζ(z) ∈ NW (z) ∩ Sn−1,
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we have

W =
⋂

y∈∂W

{x ∈ Rn : ⟨ζ(y), x− y⟩ ≤ 0}. (4)

Proof. Since ζ(y) is an outward unit normal vector to W at y, the halfspace H−
y := {x :

⟨ζ(y), x−y⟩ ≤ 0} contains W for every y ∈ ∂W , so we have that W ⊆ V :=
⋂

y∈∂W H−
y . If

W ̸= V , since bothW and V are convex bodies, and we already know thatW ⊆ V , we must
have y ∈ int(V ) for some y ∈ ∂W . But then y ∈ int(H−

y ) = {x ∈ Rn : ⟨ζ(y), x− y⟩ < 0},
which is absurd. !

Most of the equivalences provided by the following result are well known (see [10] for
instance), except, perhaps, for condition (d) and the definition of a locally strongly convex
body as a closed convex set whose boundary can be locally represented as the graph of
a strongly convex function (which is not standard). We provide a complete proof for the
reader’s convenience.

Proposition 2.4. Let W ⊂ Rn be a compact convex body satisfying 0 ∈ int(W ), and let
µ : Rn → [0,∞) denote the Minkowski functional of W . The following statements are
equivalent:

(a) W is strongly convex.
(b) There is R > 0, such that for every x ∈ ∂W , there is a closed ball B(y, R), such

that W ⊂ B(y, R) and x ∈ ∂B(y, R).
(c) W is the intersection of a family of closed balls of the same positive radius.
(d) µ2 is strongly convex.
(e) There exists a coercive, locally strongly convex function g : Rn → R such that

W = g−1((−∞, t]) for some t ∈ R with t > minx∈Rn g(x).

Proof. (a) ⇒ (b):

Let x ∈ ∂W , because W is locally strongly convex, ∂W in a neighborhood of x is the
graph of a strongly convex function. By translation and rotation if necessary, we can find
rx > 0 and a function gx : Bn−1(0, 2rx) → R that satisfies gx(0) = 0, gx is ηx-strongly
convex, Lx-Lipschitz and

Wx,2rx := {(t, gx(t)) : t ∈ Bn−1(0, 2rx)} ⊂ ∂W,

where the coordinates on the right hand side for Rn−1 × R depend on x. More generally,
for s ∈ (0, 2rx] we define

Wx,s := {(t, gx(t)) : t ∈ Bn−1(0, s)}.

Because ∂W is compact, ∂W ⊂
⋃

x∈∂W Wx,rx has a finite subcover, that is ∂W ⊂
⋃m

j=1Wxj ,rxj
.

Let z ∈ ∂W . Then there exists j ∈ {1, ..., m} and x ∈ Bn−1(0, rj) such that z =
(x, gj(x)), where we let gj (resp. rj) stand for gxj

(resp. rxj
). We will show there exists

R > 0 such that for all j ∈ {1, ..., m} and x ∈ Bn−1(0, rj), and any ξ ∈ ∂gj(x) we have

W ⊆ B ((x, gj(x))−Rnξ, R) , (5)



APPROXIMATION OF CONVEX BODIES 5

where nξ is defined in (1), implying at onceW ⊆ B (z −Rnξ, R) and z ∈ ∂B (z − Rnξ, R),
and thus (b) holds. Proceeding, our aim is to prove (5).

For j ∈ 1, ..., m, let ηj := ηxj
and Lj := Lxj

. Let L, η, r, r0 > 0 be

L := max{L1, ..., Lm},
η := min{η1, ..., ηm},
r := max{r1, ..., rm}, and

r0 := min{r1, ..., rm}.

Let R > 0 be

R :=
√
1 + L2 max

{
1

η

(
1 +

η2

4
r2 + L2 + ηLr

)
, diam(W ),

diam(W )2

ηr20

}
. (6)

To verify (5) holds with R as in (6), fix j ∈ {1, ..., m}, x ∈ Bn−1(0, rj), and ξ ∈ ∂gj(x).
Let (y, s) ∈ W in coordinates provided by gj. Then we want to show

|(y, s)− (x, gj(x)) +Rnξ|2 ≤ R2, (7)

where nξ is defined in (1). We consider two cases.

Case 1. Suppose |y − x| < rj . Since W ∩ {(y, s) : |y − x| < rj} ⊂ {(y, s) : s ≥ gj(y)}
and gj is η-strongly convex, Lemma 2.1 yields

gj(x) + ⟨ξ, y − x⟩+ η

2
|y − x|2 ≤ gj(y) ≤ s. (8)

Note that s−gj(x) ≤ diam(W ) and in light of (2), |ξ| ≤ L, so our choice of R in (6) yields

R
√

1 + |ξ|2
+ gj(x)− s ≥ R√

1 + L2
− diam(W ) ≥ 0.

In combination with (8),
(

R
√
1 + |ξ|2

+ gj(x)− s

)2

≤
(

R
√
1 + |ξ|2

− ⟨ξ, y − x⟩ − η

2
|y − x|2

)2

.

Using (1) we get

∣∣(y, s)− (x, gj(x)) +Rnξ

∣∣2 =
∣∣∣∣(y, s)− (x, gj(x)) +

R
√

1 + |ξ|2
(ξ,−1)

∣∣∣∣
2

=

∣∣∣∣∣
y − x+

Rξ
√
1 + |ξ|2

∣∣∣∣∣

2

+

∣∣∣∣∣
s− gj(x)−

R
√

1 + |ξ|2

∣∣∣∣∣

2

≤ |y − x|2 + 2R
√

1 + |ξ|2
⟨ξ, y − x⟩ + R2|ξ|2

1 + |ξ|2

+

(
R

√
1 + |ξ|2

− ⟨ξ, y − x⟩ − η

2
|y − x|2

)2

. (9)
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Expanding the square in (9) and noting by the Cauchy-Schwarz inequality ⟨ξ, y − x⟩2 ≤
|ξ|2|y − x|2, we have:

∣∣(y, s)−(x, gj(x)) +Rnξ

∣∣2

≤ |y − x|2 +R2 1 + |ξ|2

1 + |ξ|2 +
η2

4
|y − x|4 + ⟨ξ, y − x⟩2

+ η⟨ξ, y − x⟩|y − x|2 − Rη|y − x|2
√
1 + |ξ|2

≤ R2 + |y − x|2
(

1 +
η2

4
|x− y|2 + |ξ|2 + η⟨ξ, y − x⟩ − Rη

√
1 + |ξ|2

)

. (10)

To see the quantity in parentheses is bounded by 0, apply the Cauchy-Schwarz inequality
to the inner product, the bounds |ξ| ≤ L and |x− y| ≤ rj ≤ r, and the lower bound on R
in (6) to estimate:

1 +
η2

4
|x− y|2 + |ξ|2 + η⟨ξ, y − x⟩ ≤ 1 +

η2

4
r2 + L2 + ηLr

(6)

≤ Rη
√
1 + |ξ|2

.

Subsituting this into (10), we see
∣∣(y, s)− (x, gj(x)) +Rnξ

∣∣2 ≤ R2, as desired.

Case 2. Now suppose |y − x| ≥ rj. Using (1) and |nξ| = 1, we estimate

∣∣(y, s)− (x, gj(x)) +Rnξ

∣∣2 = R2 + |(y, s)− (x, gj(x))|2 + 2R
⟨y − x, ξ⟩+ gj(x)− s

√
1 + |ξ|2

≤ R2 + diam(W )2 + 2R
⟨y − x, ξ⟩+ gj(x)− s

√
1 + |ξ|2

≤ R2 +
2R

√
1 + |ξ|2

(
r2jη

2
+ ⟨y − x, ξ⟩+ gj(x)− s

)
, (11)

where the last inequality follows because the choice of R in (6) and |ξ| ≤ L ensure
diam(W )2 ≤ r2j η

R√
1+|ξ|2

. Since (y, s) ∈ W and |y − x| ≥ rj, we have

s ≥ gj(x) + ⟨ξ, y − x⟩ +
ηr2j
2

. (12)

To see this, let u = rj(y − x)/|y − x|, so x + u ∈ Bn−1(0, 2rj) and convexity of W along
with Lemma 2.1 imply

s− gj(x)

|y − x| ≥ gj(x+ u)− gj(x)

rj
≥

⟨ξ, u⟩+ η
2 |u|

2

rj
=

〈
ξ,

y − x

|y − x|

〉
+

η

2
rj

and (12) follows, because |y − x| ≥ rj.

Substituting (12) into (11), we conclude
∣∣(y, s)− (x, gj(x)) + Rnξ

∣∣2 ≤ R2. The proof of
(7) and thus (a) ⇒ (b) is complete.

(b) ⇒ (c): By assumption, there is R > 0 such that for every y ∈ ∂W there exists
xy ∈ Rn so that y ∈ ∂B(xy , R) and

W ⊆ B(xy, R). (13)
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This implies that

ζ(y) :=
1

|y − xy|
(y − xy) ∈ NW (y) ∩ Sn−1

for every y ∈ ∂W , and from Lemma 2.3 we deduce that
⋂

y∈∂W

B(xy, R) =
⋂

y∈∂W

B(y − Rζ(y), R) ⊆
⋂

y∈∂W

{x : ⟨ζ(y), x− y⟩ ≤ 0} = W.

In combination with (13), we have
⋂

y∈∂W B(xy, R) = W .

(c) ⇒ (d): For some nonempty set A ⊂ Rn, we may write W =
⋂

a∈ABa, where
Ba := B(a, R), R > 0. Since 0 ∈ int(W ) we have |a| < R for all a ∈ A, and in fact there
exists r > 0 such that

B(0, r) ⊆ W ⊆ Ba ⊆ B(0, 2R),

which implies that
|a| ≤ R − r for all a ∈ A, (14)

and also that
1

2R
|x| ≤ µa(x) ≤

1

r
|x| for all x ∈ Rn, (15)

where, for any a ∈ A,

µa(x) := inf
{
λ > 0 :

x

λ
∈ Ba

}

is the Minkowski functional of the ball Ba (with respect to the origin, not necessarily the
center a of Ba). Since W =

⋂
a∈ABa, we have for x ∈ Rn,

µ(x) = inf

{

λ > 0 :
x

λ
∈

⋂

a∈A

Ba

}

≤ sup
a∈A

inf
{
λ > 0 :

x

λ
∈ Ba

}
= sup

a∈A
µa(x)

and W ⊂ Ba implies µa(x) ≤ µ(x) for all a ∈ A. Thus, for x ∈ Rn, µ(x) = supa∈A µa(x),
and µ2 : Rn → [0,∞) satisfies

µ2(x) = sup
a∈A

µa
2(x).

Because the supremum of a family of η-strongly convex functions is η-strongly convex, to
prove µ2 is strongly convex, we need only show that there exists η > 0 such that µ2

a is
η-strongly convex for all a ∈ A.

A straightforward calculation yields

µa(x) =
−⟨x, a⟩ +

√
⟨x, a⟩2 + ka|x|2
ka

,

where
ka := R2 − |a|2 > 0.

Differentiating µa(x), for every x ∈ Rn \ {0} we obtain

∇µa(x) =
1

ka

[
−a +

⟨x, a⟩a+ kax

(⟨x, a⟩2 + ka|x|2)1/2

]
= λa(x)(x− µa(x)a),

where λa : Rn \ {0} → R is defined by

λa(x) :=
1

√
⟨x, a⟩2 + ka|x|2

.
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Then we have

D2µa(x) = ∇λa(x)⊗ (x− µa(x)a) + λa(x) (I − a⊗∇µa(x)) ,

where I denotes the identity operator. Since D2µa(x) is symmetric, we also have

D2µa(x) = (x− µa(x)a)⊗∇λa(x) + λa(x) (I −∇µa(x)⊗ a) .

Thus,
D2µ2

a(x) = 2∇µa(x)⊗∇µa(x) + 2µa(x)D
2µa(x).

Recalling that ∇µa(x) = λa(x)(x− µa(x)a), the above expressions tell us that

v0 :=
∇µa(x)

|∇µa(x)|
=

x− µa(x)a

|x− µa(x)a|
is an eigenvector of both D2µa(x) and D2µ2

a(x) (here we are using the easy facts that, for
any vectors b, c ∈ Rn, we have b⊗ c(b) = ⟨b, c⟩b; hence b is an eigenvector of b⊗ c, and that
any vector is an eigenvector of the identity). Since µ is convex we have D2µa ≥ 0, so we
estimate

vT0 D
2µ2

a(x)v0 ≥ vT0
(
2∇µa(x)⊗∇µa(x)

)
v0

= 2⟨∇µa(x), v0⟩2 = 2|∇µa(x)|2 ≥ 2

(
µa(x)

|x|

)2

≥ 1

2R2
,

where in the two last inequalities we used convexity of µa and (15). On the other hand,
for every v ∈ Sn−1 with ⟨v0, v⟩ = 0 we also have ⟨x− µa(x)a, v⟩ = 0 = ⟨∇µa(x), v⟩, hence

vTD2µ2
a(x)v = vT

(
2µa(x)λa(x)I

)
v

=
2µa(x)√

⟨x, a⟩2 + ka|x|2
≥ 2µa(x)√

|a|2|x|2 + ka|x|2
=

2µa(x)

R|x| ≥ 1

R2
.

Let α0 be the eigenvalue associated to the eigenvector v0, and let α1, ...,αn−1 be the rest
of eigenvalues of D2µ2

a(x) (possibly repeated). Because D2µ2
a(x) is symmetric and v0 is

an eigenvector of norm 1, we can find eigenvectors v1, ..., vn−1 of D2µ2
a(x) with associated

eigenvalues α1, ...,αn−1 so that {v0, v1, ..., vn−1} is an orthonormal basis of Rn. The last
two inequalities imply

αj = vTj D
2µ2

a(x)vj ≥
1

2R2

for all j = 0, 1, ..., n, x ̸= 0. We deduce that the minimum eigenvalue of D2µ2
a(x) is greater

than or equal to 1
2R2 , and therefore µ2

a is 1
2R2 -strongly convex on any convex subset of

Rn \ {0}. Finally, if x = 0, since µa is positive homogeneous, µ2
a is 2-homogeneous, and we

compute

vTD2µ2
a(x)v =

d2

dt2
µa(tv)

2|t=0 =
d2

dt2
t2µa(v)

2|t=0 = 2µa(v)
2 ≥ |v|2

2R2
=

1

2R2

for every v ∈ Sn−1. We conclude µ2
a is 1

2R2 -strongly convex on all of Rn, and thus µ2(x) =
supa∈A µ2

a(x) is
1

2R2 -strongly convex on Rn.

(d) ⇒ (e) is trivial (let g = µ2
a, t = 1).

(e) ⇒ (b): We assume the function g : Rn → R is locally strongly convex and coercive
(and W = g−1((−∞, t]) for some t > minx∈Rn g(x)), implying g attains a minimum at
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a unique x0 ∈ Rn. We show for c > g(x0), there exists R(c) > 0 such that the level
set Kc := g−1((−∞, c]) satisfies (b), and, therefore, W = g−1((−∞, t]) satisfies (b) with
R = R(t).

Notice the set Kc is compact because g is coercive, and therefore g is L-Lipschitz for
some L > 0 on an open set U ⊃ Kc. Since g is locally strongly convex, up to taking a
smaller U we may assume that g is η-strongly convex on U . Let R := L

η ; fix y ∈ ∂Kc and
ζy ∈ ∂g(y); then g(y) = c. Because g is coercive, x0 must lie in the interior of Kc. Since
y ̸= x0, we have ζy ̸= 0, and by the strong convexity of g described in (3), for x ∈ Kc,

c = g(y) ≥ g(x) ≥ g(y) + ⟨ζy, x− y⟩+ η

2
|x− y|2,

which implies
∣∣∣∣x− y +

1

η
ζy

∣∣∣∣
2

≤ |ζy|2

η2
,

showing that

Kc ⊆ B

(
y − 1

η
ζy,

|ζy|
η

)
⊆ B

(
y − R

|ζy|
ζy, R

)
,

completing the proof that Kc satisfies (b), and therefore, W satisfies (b) with R = R(t) =
L
η .

(b) ⇒ (a): Let x ∈ ∂W . Since 0 ∈ int(W ) there exists r > 0 such that B(0, r) ⊂ int(W ).
Let Tx be a hyperplane supporting W at x and ζx ∈ NW (x) satisfy ζx is perpendicular to
Tx. Then the ray {x−tζx : t > 0} intersects int(W ), so there are t0 > 0 and r > 0 such that
B(x− t0ζx, r) ⊂ int(W ). For every y ∈ Tx with |y−x| < r, the ray {y− tζx : t ≥ 0} passes
through the ball B(x − t0ζx, r) and, therefore, intersects ∂W at exactly two points; the
first defines a function whose graph coincides with ∂W in a neighborhood of x. Precisely,
we define the function g : Tx ∩ B(x, r) → [0,∞) by g(y) := min{t ≥ 0 : y + tζx ∈ ∂W}.
This function is convex because its graph coincides with ∂W on Ux a neighborhood of x,
and W is convex. We will show that g is strongly convex, proving (a).

By assumption, there exists R > 0 such that for every y ∈ Ux∩∂W there is vy ∈ Sn−1 so
that W ⊆ B(y−Rvy, R). In particular vy ∈ NW (y)∩NB(y−Rvy ,R)(y), and ∂B(y−Rvy, R)∩
Ux is the graph of a C∞ convex function fy : Tx ∩B(x, r) → R such that

fy ≤ g, fy(y) = g(y), ∇fy(y) ∈ ∂g(y), and vy = (ξy, sy), (16)

where

ξy :=
1

√
1 + |∇fy(y)|2

∇fy(y), and sy =
−1

√
1 + |∇fy(y)|2

.

In the coordinates given by the hyperplane Tx and its normal vector −ζx, we have

fy(z) = g(y)− Rsy −
√
R2 − |z − y +Rξy|2,

and a straightforward calculation shows that

D2fy(z) =
(z − y +Rξy)⊗ (z − y +Rξy) + (R2 − |z − y +Rξy|2) I

(R2 − |z − y +Rξy|2)3/2
,
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where I is the identity operator. Clearly,

w0 :=
1

|z − y +Rξy|
(z − y +Rξy)

is an eigenvector of D2fy(z), and we have

wT
0 D

2fy(z)w0 =
R2

(R2 − |z − y +Rξy|2)3/2
≥ 1

R
.

On the other hand, for all w ∈ Sn−1 with ⟨w,w0⟩ = 0 we have ⟨z − y +Rξy, w⟩ = 0, so

wTD2fy(z)w =
R2 − |z − y +Rξy|2

(R2 − |z − y +Rξy|2)3/2
=

1

(R2 − |z − y +Rξy|2)1/2
≥ 1

R
.

Hence

min
|w|=1

wTD2fy(z)w ≥ 1

R
,

and fy is 1
R -strongly convex. Now, by (16) and Lemma 2.1 it follows that

g(z) ≥ fy(z) ≥ fy(y) + ⟨∇fy(y), z − y⟩+ 1

2R
|z − y|2 (17)

= g(y) + ⟨∇fy(y), z − y⟩+ 1

2R
|z − y|2, (18)

so by Remark 2.2 we conclude that g is 1
R -strongly convex too. The proof is complete. !

A self-evident local variant of the proofs of (a) ⇒ (b) and (b) ⇒ (a) in Proposition 2.4
shows the following:

Lemma 2.5. For any (possibly unbounded) convex body W ⊂ Rn the following statements
are equivalent:

(1) W is locally strongly convex (in the sense that ∂W is locally, up to a rigid change
of coordinates, the graph of a strongly convex function).

(2) For every x ∈ ∂W there exist an open neighborhood Ux ∋ x and a number Rx > 0
such that, for all y ∈ Ux∩∂W there is vy ∈ Sn−1 such that W∩Ux ⊂ B(y−Rxvy, R).

Moreover, if (in appropriate coordinates) W is the epigraph of a convex function f and
one of the conditions is satisfied, then f is locally strongly convex.

For any closed convex set C ⊂ Rn the metric projection πC : Rn → C (defined, for every
x ∈ Rn, as the unique point π(x) ∈ C such that dist(x, π(x)) = dist(x, C) ) is 1-Lipschitz;
see [7, (3.1.6)] for a proof. Clearly, π(x) ∈ ∂C if x /∈ int(C). When the boundary ∂C is
of class C1,1, a bit more is true: the metric projection onto the (not necessarily convex)
boundary ∂C is also well defined and Lipschitz on an open neighborhood of ∂C.

For W ⊂ Rn satisfying ∂W is of class C1,1, let n∂W : ∂W → Sn−1 be the outward unit
normal vector to ∂W . Recall,

Lip(n∂W ) := sup

{
|(n∂W (x)− n∂W (y)|

|x− y| : x, y ∈ ∂W,x ̸= y

}
.
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Lemma 2.6. Let W ⊂ Rn be a closed convex set with nonempty interior such that ∂W
is of class C1,1. Then the metric projection π : Ω → ∂W is well defined and 2-Lipschitz,
where

Ω :=

{
x ∈ Rn : d(x, ∂W ) <

1

2 Lip(n∂W )

}
∪W c.

Proof. See, for instance, [4, Theorem 2.4], or the references therein. !

We intend to apply the following lemma when W,V ⊂ Rn are compact but include the
more general result:

Lemma 2.7. Let W,V be (possibly not bounded) convex bodies such that W ⊂ V ! Rn,
and Hn−1 (∂V \ ∂W ) < ∞. Then the projection πW : Rn → W maps ∂V onto ∂W .

Proof. We consider two cases:

Case 1. Suppose that ∂V does not contain any lines.1 We will show for all x ∈ ∂W ,
there is z ∈ ∂V such that πW (z) = x. Let ν ∈ NW (x). It suffices to show that the ray
Rx := {x+ tν : t ≥ 0} intersects ∂V at some point z, implying πW (z) = x.

Suppose not; then Rx ∩ ∂V = ∅, implying Rx ⊂ int V . Let Tx ⊂ Rn be a supporting
hyperplane for W at x ∈ ∂W :

Tx := {x+ v : ⟨v, ν⟩ = 0}
Then the open half space Hx := {x+ v : ⟨v, ν⟩ > 0} satisfies Hx ∩ ∂W = ∅. Because x ∈
int(V ), there exists δ > 0 such that B(x, 2δ)∩Tx ⊂ int(V ). Further, (B(x, 2δ)∩Tx)∪Rx ⊂
int(V ) and V is convex, so Cx ⊂ int(V ), where Cx := {p+ tν : p ∈ ∂B(x, δ) ∩ Tx, t > 0}
is the side surface of a half-cylinder. Since ∂V does not contain a line, the set V does
not contain a line. Therefore, for p ∈ Rx, v ∈ Sn−1 satisfying v is parallel to Tx, the line
Lp,v := {p+ tv : t ∈ R} must intersect ∂V . Let A ⊂ Hx be

A :=
⋃

p∈Rx,⟨v,ν⟩=0

Lp,v ∩ ∂V ;

Let π be the radial projection of A onto Cx along lines Lp,v; π is 1-Lipschitz and hence
Hn−1(A) ≥ Hn−1(π(A)) ≥ Hn−1(Cx)/2 = ∞. Since Hx ∩ ∂W = ∅, we have A ⊂ ∂V \ ∂W ,
implying Hn−1(∂V \ ∂W ) = ∞, a contradiction.

Case 2. Suppose that ∂V contain at least one line. Because V ̸= Rn, V must have a
cylindrical structure: up to isometry, V = V1 × E0, where V1 is line-free, convex, and at
least 1-dimensional, and E0 is a linear subspace. By an argument similar to the proof of
[3, Proposition 1.10], we deduce that ∂V = ∂W because Hn−1(∂V \ ∂W ) < ∞. !

Let us conclude our preliminaries with a restatement of [1, Cor. 3.10].

Lemma 2.8. If u : Rn → R is η-strongly convex, then for every 0 < η̃ < η and every
ε > 0, there is a η̃-strongly convex function v ∈ C1,1

loc (R
n), such that v ≥ u and |{x ∈ Rn :

u(x) ̸= v(x)}| < ε.
1This case was shown in an argument inside the proof of [2, Theorem 1.6]; we reproduce it here for
completeness.
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3. Proof of Theorem 1.1.

We are now fully equipped to proceed with the proof of Theorem 1.1. We begin with an
auxiliary C1,1 version of it.

Lemma 3.1. Let W be a compact convex body in Rn, and V be an open set containing
∂W . Then for every ε > 0 there exists a compact convex body Wε ⊆ W of class C1,1 such
that Hn−1 (∂W△∂Wε) < ε and ∂Wε ⊂ V . Moreover, if W is a strongly convex body, then
Wε is a strongly convex body as well.

Proof. Next, we recall and adapt the proof of [3, Corollary 1.7], or [2, Theorem 1.4], to our
context, showing the bound on the (n−1)-dimensional Hausdorff measure of the symmetric
difference ∂W△∂Wε, that Wε is a strongly convex body if W is a strongly convex body,
and ∂Wε ⊂ V .

We assume that 0 ∈ int(W ); recall the Minkowski functional of W , µ : Rn → [0,∞)
defined by

µ(x) := inf{λ > 0 :
x

λ
∈ W},

satisfies µ is convex and Lipschitz. Let L be the Lipschitz constant of µ. By Lemma 2.8,
there exists a convex function g = gε ∈ C1,1

loc (R
n) such that

|{x ∈ 2W : µ(x) ̸= g(x)}| < ε

L
.

Let C1,2, A ⊂ Rn be

C1,2 := 2W \W = {x ∈ Rn : 1 < µ(x) ≤ 2}, and

A := {x ∈ C1,2 : µ(x) ̸= g(x)}.

By the coarea formula for Lipschitz functions (see [6, Section 3.4.2], for instance) we have

ε > L |A| ≥
∫

A

|∇µ(x)| dx =

2∫

1

Hn−1
(
A ∩ µ−1(t)

)
dt,

implying |{s ∈ (1, 2] : Hn−1 (A ∩ µ−1(s)) > ε}| < 1. Because g ∈ C1,1
loc (R

n) is convex and
does not attain a minimum in g−1((1, 2]), we have |∇g(x)| > 0 for all x ∈ C1,2. Together,
these results imply that there exists a regular value of g, t0 ∈ (1, 2), where

Hn−1
(
A ∩ µ−1(t0)

)
< ε. (19)

Then, we define

Wε =
1

t0
g−1((−∞, t0]).

Because g is convex and C1,1
loc , and t0 is a regular value of this function, Wε is a convex

body of class C1,1
loc with boundary

∂Wε =
1

t0
g−1(t0),

implying
t0(∂W \ ∂Wε) = A ∩ µ−1(t0).
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With inequality (19), this yields

Hn−1(∂W \ ∂Wε) ≤ tn−1
0 Hn−1 (∂W \ ∂Wε) = Hn−1

(
A ∩ µ−1(t0)

)
< ε.

Since g ≥ µ, we have Wε ⊂ W . In particular, Wε is compact and, therefore, of class C1,1.
Because the metric projection π : Rn → Wε, is 1-Lipschitz and maps ∂W onto ∂Wε, we
also have

Hn−1 (∂Wε \ ∂W ) = Hn−1 (π (∂W \ ∂Wε)) ≤ Hn−1 (∂W \ ∂Wε) < ε.

Therefore Hn−1 (∂W△∂Wε) < 2ε.

If we further assume that W is a strongly convex body, then by Proposition 2.4, µ2 is a
strongly convex function, and applying Lemma 2.8, we obtain a strongly convex function
g ∈ C1,1

loc (R
n) such that µ2 ≤ g, and

∣∣{x ∈ 2W : µ2(x) ̸= g(x)}
∣∣ <

ε

L
,

where L = Lip(µ). Thus,

|{x ∈ 2W : µ(x) ̸= h(x)}| < ε

L
,

where h : Rn → R is defined by h(x) := |g(x)|1/2. Because |∇g(x)| > 0 for x ∈ C1,2, we
have h ∈ C1,1(C1,2). There exists a regular value of h, t0 ∈ (1, 2) satisfying an analog of
(19). Let Wε ⊂ Rn be

Wε :=
1

t0
h−1((−∞, t0]);

then, 1
t0
g−1(t20) =

1
t0
h−1(t0) = ∂Wε. Because h is coercive, by Proposition 2.4 (e) ⇒ (a), we

deduce Wε is a strongly convex body. Further, the inequality µ2 ≤ g implies that Wε ⊂ W .
The proof that Hn−1 (∂W△∂Wε) < 2ε is completed exactly as above.

Finally, given an open set V ⊃ ∂W , we want to show ∂Wε ⊂ V if ε is small enough.
Suppose not; then there exists a sequence of C1,1 (strongly) convex bodies (Uk)k∈N such
that

Hn−1 (∂W△∂Uk) < 1/k and Uk ⊆ W for all k ∈ N.

Because W is compact, V ⊃ {x ∈ Rn : dist(x, ∂W ) ≤ 2r} for some r > 0. Thus, there is
sequence (zk)k∈N with zk ∈ ∂Uk for each k ∈ N such that

dist(zk, ∂W ) ≥ 2r > 0

Since (zk)k∈N ⊂ W , up to taking a subsequence, we may assume that (zk)k∈N converges to
some z0 ∈ W , and, necessarily, dist(z0, ∂W ) ≥ 2r > 0. Hence, there exists k0 ∈ N such
that for k ≥ k0, we have B(zk, r) ⊂ B(z0, 2r) ⊂ W . Let Hk denote the tangent hyperplane
to ∂Uk at zk, and H−

k and H+
k denote the open halfspaces with common boundary Hk.

Suppose Uk ⊂ H−
k ; observe that the metric projection π : ∂W → ∂B(zk, r) is 1-Lipschitz

and maps ∂W ∩H+
k onto ∂B(zk, r) ∩H+

k . We deduce

1

2
Hn−1(∂B(0, r)) = Hn−1

(
∂B(zk, r) ∩H+

k

)

≤ Hn−1
(
∂W ∩H+

k

)
≤ Hn−1 (∂W△∂Uk) ≤ 1/k

for all k ≥ k0, which is absurd. Thus for ε small enough, we must have ∂Wε ⊂ V . !
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Proof of Theorem 1.1. Let W ⊂ Rn be a locally strongly convex body, ε > 0, and the set
V ⊃ ∂W be open. We want to show there exists a C2 locally strongly convex body Wε,V

such that Hn−1(∂Wε,V△ ∂W ) < ε and ∂Wε,V ⊂ V . Moreover, if W is a strongly convex
body, then Wε,V can be chosen to be a strongly convex body as well. We consider two
cases:

Case 1. Suppose that W is not bounded. Because W is locally strongly convex,
∂W can be regarded, up to a suitable rotation, as the graph of a convex function f : U ⊆
Rn−1 → R such that limy∈U,|y|→∞ f(y) = ∞ (if U is not bounded) and limy→x f(y) = ∞ for
every x ∈ ∂U (if U ̸= Rn−1); see [5] for instance.2 According to Lemma 2.5 the function f is
locally strongly convex. Hence the result is a straightforward consequence of Theorem 1.2.
(Notice (b) of Theorem 1.2 can be used to ensure ∂Wε,V ⊂ V .)

Case 2. Suppose that W is bounded. Then W is compact and thus a strongly convex
body. By Lemma 3.1, there exists a strongly convex bodyWε/2 ⊆ W of class C1,1 such that
Hn−1(∂W△∂Wε/2) < ε/2. We will prove there exists a C2 strongly convex body Wε/2,V ,
satisfying Hn−1(∂Wε/2△∂Wε/2,V ) < ε/2. Then because

∂W△∂Wε/2,V ⊂ (∂W△∂Wε/2) ∪ (∂Wε/2△∂Wε/2,V ),

we deduce

Hn−1
(
∂W△∂Wε/2,V

)
≤ Hn−1

(
∂W△∂Wε/2

)
+Hn−1

(
∂Wε/2△∂Wε/2,V

)
< ε

Hence, from now on, we assume W is a C1,1 strongly convex body.

By Lemma 2.6 we know that there exists an open neighborhood Ω of ∂W such that the
metric projection π : Ω → ∂W is well defined and 2-Lipschitz. Without loss of generality
we may assume that V ⊂ Ω and 0 ∈ int(W ). Let µ : Rn → [0,∞) be the Minkowski
functional of W ; recall

µ(x) = inf{λ ≥ 0 :
1

λ
x ∈ W}.

The function µ is convex and Lipschitz on Rn, and of class C1,1 on Rn \ B(0, r) for every
r > 0. Let L be the Lipschitz constant of µ, and let R > 0 be large enough so that

2W ⊆ B(0, R).

We may assume our given ε is in (0, 1/4) and small enough so that

µ−1 ([1− 5ε, 1 + 5ε]) ⊂ V ⊂ Ω.

Applying Lemma 2.4 (a) ⇒ (d) to W , we deduce µ2 is strongly convex on Rn. By Theo-
rem 1.2 there exists a strongly convex function g ∈ C2(Rn) such that

∣∣{x ∈ B(0, R) : µ(x)2 ̸= g(x)}
∣∣ <

ε2

(8L2R + 4ε/R)2n
(20)

and for all x ∈ Rn,

|µ2(x)− g(x)| < ε. (21)

Because µ is L-Lipschitz, we have

−ε ≤ g(x) ≤ µ(x)2 + ε ≤ 4(LR)2 + ε (x ∈ B(0, 2R)).

2We warn the reader that what in this paper we call a locally strongly convex function is called a strongly
convex function in [5].
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Applying [1, Lemma 3.3], we deduce

Lip
(
g|B(0,R)

)
≤ 4(LR)2 + 2ε

R
.

Let h : Rn → R be defined as h(x) := |g(x)|1/2; then for x ∈ h−1 ([1, 1 + ε]) ⊂ g−1 ([1, 1 + ε]),

|∇h(x)| = |∇g(x)|
2|g(x)|1/2

≤ 2L2R + ε/R.

Further from (21), for x ∈ h−1([1, 1 + ε]), we have

h2(x)− ε ≤ µ2(x) ≤ h2(x) + ε, implying

1− ε ≤ µ2(x) ≤ 1 + 4ε, and thus,

1− ε ≤ µ(x) ≤ 1 + 4ε
(
x ∈ h−1([1, 1 + ε])

)
.

This shows that
h−1 ([1, 1 + ε]) ⊂ µ−1 ([1− 5ε, 1 + 5ε]) ⊂ V ⊂ Ω.

Now consider the set

A := {x ∈ h−1([1, 1 + ε]) : µ(x)2 ̸= g(x)} = {x ∈ h−1([1, 1 + ε]) : µ(x) ̸= h(x)}.
By the coarea formula for Lipschitz functions (see [6, Theorem 3.10, Section 3.4.2] for
instance) we have

ε2

2n+2
>

(
2L2R + ε/R

)
|A| ≥

∫

A

|∇h(x)| dx =

1+ε∫

1

Hn−1
(
A ∩ h−1(t)

)
dt.

This inequality implies that there exists t0 ∈ (1, 1 + ε) such that

Hn−1
(
A ∩ h−1(t0)

)
< ε/2n+2,

and because g is convex and cannot have a minimum in g−1((1, 2]), the number t02 is a
regular value of g. Then, we define

Wε :=
1

t0
h−1((−∞, t0]).

Since ∂Wε = 1
t0
h−1(t0) = 1

t0
g−1(t02) is a hypersurface of class C2, and h is coercive, we

apply Proposition 2.4 to deduce that Wε is a strongly convex body of class C2, and

t0(∂Wε \ ∂W ) = A ∩ h−1(t0).

This yields

Hn−1(∂Wε \ ∂W ) ≤ tn−1
0 Hn−1 (∂Wε \ ∂W ) = Hn−1

(
A ∩ h−1(t0)

)
< ε/2n+2.

Further,
∂Wε ⊂ µ−1 ([1− ε, 1 + ε])) ⊂ V ⊂ Ω,

and, consequently, the metric projection π : ∂Wε → ∂W is well-defined and 2-Lipschitz.
Hence,

Hn−1(∂W \ ∂Wε) ≤ 2n−1Hn−1 (∂Wε \ ∂W ) < ε/4.

Therefore, we conclude Hn−1(∂W△∂Wε) < ε. !
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