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EPIGRAPH

One of the characteristics of modern biology is the breakdown of the boundaries which separate
its subdivisions, and nowhere is this more fruitful than in behavioural studies where mechanics

and physiology are integral to a more profound understanding.

J.W.S. Pringle (1957)
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ABSTRACT OF THE DISSERTATION

Springs and Wings: A robotic study of the insect flight system

by

James Edmund Lynch

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2023

Professor Nick Gravish, Chair

In the last decade, roboticists have had significant success building centimeter-scale
flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence
suggests that insects store and release energy in the thoracic exoskeleton to improve energy
efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged
resonance to improve efficiency, but they have discovered that operating at the resonant frequency
leads to issues with flight control. This research seeks to investigate the roles that elasticity,
aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying
elastic flapping spring-wing systems using dynamically-scaled robophysical models of spring-

wings. Studying the dynamics of a robot with comparable features enables the validation of

Xvii



models from biology that are otherwise difficult to test in living insects, the generation of new
hypotheses, and the development of novel FWMAYV designs.

In Chapter 1, the spring-wing system is characterized via a nonlinear spring-mass-damper
model. A robophysical model validates that such systems gain energetic benefits from operating
at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of
inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis
that any real system, living or robotic, must balance the mechanical advantage gained from
operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the
impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control
inputs is reduced and resistance to environmental perturbations is increased as the dimensionless
ratio increases. Together with calculations of Weis-Fogh number in insects, these studies
illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of
future FWMAVs with elastic energy exchange.

In the second half of the thesis, muscle dynamics are introduced in the form of a simplified
model of self-excited asynchronous insect muscle. In Chapter 3, a form of velocity feedback,
adapted from experiments on insect flight muscle, is developed and integrated with the spring-
wing model, producing a system that generates steady flapping via limit-cycle oscillations
despite the absence of periodic control inputs. The model is explored analytically, in simulation,
and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable
adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages
the asynchronous feedback model as part of an interdisciplinary study of the evolution of
asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and
experiments on the robophysical system show that evolutionary transitions between periodically-
forced and self-excited insect muscle were likely made possible by a ’bridge” in the dynamic
parameter space that could be traversed under specific conditions. The asynchronous spring-wing
model provides new insight into the flight and evolution of some of the most agile insects in

nature, and presents a novel adaptive control scheme for future FWMAVs.
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Introduction

0.1 Introduction & Background

Insects are the most speciose group of animals and are among the most successful and
diverse groups of flying animals in history. Insect flight first evolved 350-400 million years
ago during the Carboniferous period [1]. Since then, insect morphology has diversified such
that today we can observe flying insects that vary in size from near-microscopic featherwing
beetles (400 um, 2.3 pug)[2] to giant silk moths with wingspans exceeding 25 centimeters and
Goliath beetles whose mass exceeds 100 grams. Insects also feature a huge variety of wing sizes
and shapes [3], muscle and thorax structures [4], [S], and flight control strategies [6]. They are
ubquitous all over the world, in a large range of climates, and many are capable of impressive
aerial maneuvers, long-distance travel, and/or navigating complex 3D environments to find food
and avoid predation.

It is no surprise, then, that as roboticists sought to develop smaller and smaller flying
robots, they looked to insects for inspiration. Despite the success of fixed-wing and rotor-
based designs for larger unmanned aerial vehicles (UAVs), the scaling of electric motors and
aerodynamic effects as robots get smaller means that traditional aircraft may be less efficient
at the centimeter scale and smaller [7], [8]. On the other hand, as the mechanisms of flapping
aerodynamics became more well understood [9], [10] and advances in micro-fabrication [11] and
novel actuator designs [12] made miniaturization possible, the 2010’s saw an explosion of interest
in insect-scale, bioinspired flapping-wing micro-aerial vehicles (FWMAVs). Today, researchers

have achieved controlled flight on tethered [13], [14] and untethered [15]-[18] FWMAV5s at the



centimeter scale. They have integrated sensors [19]-[22] and implemented robots with a wide
range of actuators including piezoelectric bending actuators, mini DC motors [23]—[25], soft
DEA actuators [26], [27], and electromagnetic coils [28]. Others have developed autonomous
control algorithms that can achieve not just stable hovering, but also impressive feats of agility
[29].

However, the performance of insect-inspired FWMAUVss still lags significantly behind that
of insects in nature. This is due to limitations in fabrication, actuators, and battery power density,
but also due to the complexity of nonlinear, history-dependent aerodynamics surrounding the
flapping wing. Additionally, there remain gaps in the understanding of the insect flight system
itself, where neural control, muscle dynamics, thorax and wing structure, and environmental
interactions all influence flight behavior and performance. Measurement of individual elements
can be very difficult, and despite advances in high framerate cameras and techniques like time-
resolved microtomography [30] and in-vivo x-ray diffraction measurements on muscle [31], it is
often impossible to measure characteristics of the neuromuscular system that drives wingbeats.
Thus, other methods must be used.

The purpose of this thesis is to study the dynamics of flapping systems, both natural
and robotic, with the goal of advancing both fields. To achieve this, we have utilized a mode
of inquiry called robophysics that melds the fields of biology, physics, and robotics to test

hypotheses that otherwise are difficult or impossible to measure in living systems.

0.1.1 Robophysics

Robophysics is defined by Aguilar and colleagues [32] as “the pursuit of fundamental
principles governing movement and control of self-deforming entities... interacting with complex
environments.” A robophysical system differs from a bio-inspired robot in some important ways.
Bio-inspired robots usually mimic the entirety of an organism, i.e. a flying insect, swimming fish,
running cheetah, or slithering snake. Their success or failure is measured in terms of locomotion

performance: speed, efficiency, robustness, etc. Thus the design goals typically center around



finding a working example, and then optimizing the design and/or controller based on whatever
performance metrics the designers are using. However, optimizing a system for performance
can often lead to a situation where the system fails once it encounters a new environment, and
worse, it may fail for reasons that are not obvious to the designers, and therefore are difficult to
fix. What is needed is a better understanding of the principles of locomotion through the world;
armed with that deeper understanding, roboticists will be able to predict and avoid such issues.

A robophysical system is designed with the primary objective of learning the principles
that underlie movement through natural environments. It is a fundamentally interdisciplinary
approach, promoting a cycle wherein observations of animal (or robot) behavior lead to novel
hypotheses, which are tested on minimal representations of the mechanical and environmental
factors at play [33]. Results from those experiments can be used to develop and improve models
of organisms, which informs future observations and promotes better design of future robots. The
use of simplified systems promotes better understanding through abstraction, as opposed to more
complex models that can be informative, but are sometimes difficult to interpret. Additionally,
robophysical systems are able to survey the entirety of a parameter space, i.e. many different leg
morphologies and stiffnesses [34] or wingstroke shapes [35], including those that don’t occur in
nature. Such studies have been crucial in developing and improving models of swimming [36],
slithering locomotion [37], hopping, walking on granular media, and, critically for our study of

insect flight, flapping aerodynamics [38], [39]
Robophysical studies of flapping wing aerodynamics

Until the latter part of the 20/ century, the production of lift and control of flight by
insects was not well captured by aerodynamic theory. Not only were the aerodynamics involved
nonlinear, unsteady, history dependent, and three-dimensional, but the small body size and
high wingbeat frequencies (100-1000 Hz) of insects made it difficult even to measure. Thus,
a number of studies turned to physical models that used scaled-up versions of wings moving

through air [38], [40], [41] or viscous fluids [39], [42]-[46], which allowed them to match the



Reynolds number of wings moving at high speeds through air. Those studies produced a deeper
understanding of various phenomena unique to flapping flight, including delayed stall, wing-wake
interaction, and clap-and-fling [10]. For example, Dickinson & Sane [35], [39], [47], using their
dynamically-scaled wing, were able to build a deep understanding of how wing rotation timing
and rates could affect lift and drag production by studying the wingstroke kinematic parameter
space. Those findings provided greater understanding of the forces involved when insects fly,
and also helped to inform the development of computational fluid dynamics (CFD) methods
[7] and eventually centimeter-scale FWMAVs [8]. Indeed, their empirical measurements of
drag coefficients at intermediate Reynolds number were critical for our simplified aerodynamic
modeling in Chapter 1 of this thesis.

However, in the effort to simplify analysis of those robophysical models, previous
robophysical studies consisted of rigid, tightly controlled wings. This was important when
attempting to study force production due to wing motion, but it overlooks some critical aspects
of the real insect flight system. One important example is that the biological materials that make
up the anatomy of insect thoraces and wings is significantly less stiff than the steel and rigid
polymers that make up typical engineering systems. The flexibility of insect wings has become
a focus of recent research, where computational, experimental, and comparative studies have
shown their importance in lift production and robustness [48]. In the present study, we will seek to
understand the internal dynamics of the muscles, thorax, and wing joints which interact with the
complex aerodynamic environment and produce emergent wing kinematics that are not strictly
controlled by the inputs to the system. We name these systems that involve significant elastic
energy exchange in addition to nonlinear aerodynamic environmental interaction “spring-wing”

systems.

0.1.2 Resonant flapping in a robophysical spring wing system

Ever since wing-clipping experiments in the 1950s [49], [50] showed that insect flapping

frequency changes with the square root of wing inertia, it has been suggested that insects may



behave like a mechanical oscillator, storing and releasing elastic energy to improve efficiency
during flapping. Around the same time, Torkel Weis-Fogh discovered the elastic material that
could make it possible: resilin, a near-perfect elastic protein found in the thorax, joints, and
tendons of flying insects and other arthropods [51]-[53]. Later, Weis-Fogh further argued that,
indeed, elastic energy exchange is necessary for efficient flight in most insects, as well as
hummingbirds [54], [55]. However, after those studies, little additional progress was made in
understanding the dynamics and control implications of flight driven by such a resonant system.

Resonant systems are characterized by frequency-dependent dynamics where there exists
a particular resonant frequency at which some output is maximized given some periodic input
of constant magnitude. At the resonant frequency, a small input is magnified so that, for
example, a motor with a low effective torque can drive high-amplitude oscillations thanks to the
transformation of inertial (kinetic) energy into elastic (potential) energy and back. In engineering
design, resonance is often avoided because it is possible for inputs at the resonant frequency to be
magnified and potentially cause damage. For example, the resonant frequency of a wind turbine
must be higher than the rate at which the rotors spin, or else the small periodic forces on the tower
could be magnified and cause large, damaging oscillations. However, in a spring-wing system,
operating at resonance allows an insect or robot at hover to minimize the amount of energy it
uses to drive the wing and produce lift. This is easy to show in a linear spring-mass-damper
type system, but no one had studied the unsteady, nonlinear aerodynamic interactions with a
spring-wing in detail. We took a robophysical approach, creating a dynamically-scaled model of
a spring-wing system based on a template model [56] of flapping systems with elasticity. The
robotic spring-wing consists of a high-torque motor driven by commands from MATLAB, a
fine-resolution optical encoder, a rigid wing flapping in water, and, critically, custom molded
silicone torsion springs which provide high-strain, linear spring behavior during operation. The
system was designed for automation, making it possible to run many trials at once with consistent
results across batches of trials. The first half of this thesis deals with studies on the system when

driven by a constant torque input, similar to the neurally-driven periodic muscle actuation of



so-called synchronous insects [4].

In Chapter 1, we used the robotic spring wing to evaluate the simplified spring-wing
template model, testing to see to what degree it can be used to predict resonant behavior, despite
the complex fluid dynamics involved. We found that the model predicted the resonant frequencies
of the system, but underestimated the total aerodynamic and other non-conservative losses.
Through dimensional analysis, we discovered that those additional losses, characterized by
structural damping, scaled with the ratio of maximum inertial torque to maximum aerodynamic
torque, a parameter that we named the Weis-Fogh Number. We found that most flying insects
seemed to possess a Weis-Fogh number between 1 and 10 despite many orders of magnitude
size difference, suggesting that this ratio may be an important measure of tradeoffs insects must
make over evolutionary time between resonance, efficiency, and other performance metrics. In
Chapter 2, we use the same robophysical model to study those efficiency, controllability, and
robustness tradeoffs in systems flapping at resonance. We ran two sets of experiments to measure
the influence of Weis-Fogh number on 1) the responsiveness of a resonant spring-wing to control
inputs and 2) the robustness of a resonant spring-wing to external aerodynamic loads, as may be
experienced by an insect flying in wind. The collected results of Chapters 1 and 2 have impacts
both to the understanding of the factors driving evolutionary diversification in flying insects, and

serve as a guide for engineers designing FWMAVs that take advantage of resonance.

0.1.3 Beyond Resonance: Active feedback and limit-cycle oscillations in
asynchronous spring-wings

Having set a baseline of understanding of the periodically-driven spring-wing system,

we introduced an additional factor: the active muscle dynamics of asynchronous insects. While

many insects drive wingbeats using periodic signals from the nervous system that cause muscles

to contract, others, like flies, bees, and beetles, utilize muscles that feature a property called

delayed-stretch activation. These specialized muscles are flushed by the nervous system with

Ca?* jons to provide energy for contraction, and when they are stretched, they respond with a



relatively slow increase in tension that is “delayed” with respect to the stretch. The muscles are
paired antagonistically, so when one contracts, the other is stretched, which causes it to contract,
and thus the two muscles may oscillate 10-20 times per neural signal; the nerve pulses are not
correlated with the flapping frequency, and hence the muscles are called asynchronous [4].

Asynchronous (or fibrillar) insect flight muscles were first described by Pringle [57]
in flies, and in later detailed studies in beetles [58], [59]. In fact, Machin and Pringle used a
biohybrid apparatus, connecting load cells, actuators, and other measurement devices to a live
beetle muscle to study in detail the dynamic properties of asynchronous muscle. Since then, a
great deal of work has gone into the understanding of the microscopic biochemical mechanisms
that underlie the stretch activation and shortening deactivation of asynchronous muscle [60]-[70].
Today, it is not known with confidence exactly what mechanism drives stretch activation, other
than that the ratios of certain proteins involved in the attachment of actin-myosin bonds are
different in asynchronous muscles vs. synchronous [61], [71].

Despite that, there has been some work attempting to understand the stretch-activation
phenomenon at a conceptual level, characterizing it based on a three-phase exponential process
[59], [65], [72]-[74]. In those studies, the focus was to associate the phases of the phenomenon
with the biomolecular processes inside the muscle to better understand the mechanism of stretch
activation. Some had suggested that muscle dynamics should be associated with wingbeat
frequency and other mechanical properties of the insect flight system [63], [73], but no one had
attempted to integrate asynchronous muscle dynamics into a mechanical model of the insect
thorax. Armed with our spring-wing model and robophysical system, we set out to define
a feedback law that approximates asynchronous muscle dynamics and produces self-excited
flapping. In Chapter 3, we detail the conversion of the three-phase dynamics into a linear
transfer function. This conversion allowed us to use tools from dynamics, control theory, and
nonlinear systems analysis to create a model of asynchronous spring-wings that produces a
limit-cycle based, self-excited flapping oscillation that requires no periodic input. We analyzed

the system, identifying boundaries in the parameter space where Hopf bifurcations occur and



oscillations spontaneously grow, and we performed numerical simulations to study the emergent
dynamics. Then, we implemented the stretch-activation feedback law into our dynamically-
scaled robotic spring wing, and discovered adaptive behaviors that enable robustness to wing
damage or fabrication inconsistencies (in the case of a FWMAV) and protection against wing
damage during collisions. We also detail the process of implementing self-excited flapping on
small-scale FWMAVs that use both piezoelectric bending actuators and DC motors. Finally, in
Chapter 4, we use the same framework to explore the implications of the discovery of stretch-
activation in a supposedly synchronous - not asynchronous - insect. Previously, asynchronous
muscle was thought to have been derived from a single ancestor [75], but analysis of more recent
insect phylogenies found that insects transitioned to asynchronous from synchronous and back
several times. We were able to show, via simulations and robotic models, that in cases where
both synchronous and asynchronous forces are present, the two sets of dynamics can synchronize
and transition smoothly between these two ways of operating that had long been thought to be
functionally disconnected. Thus, this new model of asynchronous spring-wing flapping produces
new understanding in both biology and robotics; producing a new tool for studying asynchronous
dynamics which are so difficult to parse in living, flying insects, as well as introducing a new

world of oscillator-based flying robots.

0.1.4 A robophysical study of spring-wings has benefits for both biology
and robotics

Robophysics is all about the cycle of communication from biology to robotics and
back. In the field of insect biomechanics, robophysics has been part of the story since the
1950’s, when Machin & Pringle measured characteristics of beetle flight muscle using a complex
electromechanical system that could provide virtual elastic and viscous loads to the actual insect
muscle [59]. Later, motor-driven, dynamically-scaled flapping wings were critical to developing
the theory and numerical modeling of flapping wing aerodynamics. This set of studies adds

to this rich tradition by integrating elasticity, dimensional analysis, and linear and nonlinear



dynamics and control theory to build an understanding of the insect flight system as more than a
set of muscles and wings. Biological systems are inherently interconnected, many-dimensional,
and nonlinear; understanding the function of a system is rarely as simple as studying the separate
part and “‘stitching” them back together, as is often possible in engineered systems. That means
that in order to gain deep understanding of how animals move through the world, it’s important to
consider not just the observable kinematics, but also the internal forces, neural inputs, low-level
distributed feedback, and material properties that make their behavior possible. When we look
at the world of flying insects from this perspective, we gain the ability both to make sense of
observations of insect behavior and to ask exciting new questions about the way that insects
experience the world and move through it.

If we are able to develop a system-level understanding of how animals move, we will
also find abundant opportunities for novel robot designs. We have already seen this play out in
the field of walking robots, as well as in exoskeleton and prosthetics technology. Unlike the rigid,
stiff-legged robots and simple lower-limb prosthetics of the past, more and more designs are
incorporating lessons from nature, such as active stiffness modulation, variable proprioceptive
feedback, and soft materials. These designs are often under-actuated, which saves weight and
contributes to greater stability and robustness in natural environments, and their inherent softness
often contributes to a safer and more experience for the humans they interact with. The work
in this thesis is a step towards similar developments in the field of flapping wing micro-aerial
vehicles, which could benefit from the adaptive properties of asynchronous flapping, as well as
a deeper understanding of the tradeoffs that come with operating at resonance. Indeed, work
has already begun on transitioning the ideas described in Chapters 3 and 4 into an insect-scale
flying robot. The process of building and controlling that robot will produce a better robot, but
it is crucial to recall the robophysical cycle and use what we learn to pose new questions in
biology. If that happens, the rich interdisciplinary communities of engineers, biologists, and
physicists around this research will continue to thrive and together produce knowledge which

would otherwise be impossible to obtain alone.



Chapter 1

Dimensional Analysis of Spring-Wing
Systems

1.1 Introduction

Flapping flight is one of the most energetically demanding modes of locomotion in
nature and in engineered flying robotic systems. Actuators must provide power to overcome
aerodynamic forces on the wings, generate inertial forces for oscillatory acceleration and de-
celeration, and counteract internal energy losses from imperfect power transmission [76]. If an
oscillating wing is coupled to an elastic element such as a spring, the kinetic energy from the
wing could be stored as elastic energy at the end of the wing-stroke and returned after stroke
reversal. Many insects [51], [54], [76]-[78], birds [54], [79], and even bats [80] have spring-like
elements in the form of elastic materials in their thoraxes, muscles, and tendons that may aid in
reducing the energetic demands of flapping flight and improving flight efficiency (resonance)
(Fig. 1.1a). However, the evidence that insects and birds operate near resonance largely relies
on corelational observations of wingbeat frequency and wing inertia [50], [81], or energetics
arguments comparing metabolic and aerodynamic power [54], [55], [82].

If animals do rely on elastic energy storage for improved efficiency, then there are
implications for the dynamics and energetics of those systems. One major example is that, to
benefit from a spring, flapping wings must be actuated at a specific resonance frequency governed

by the spring stiffness, body morphology, and other factors such as aerodynamics and damping.
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Figure 1.1. a) Flapping wing insects have elastic components in their thorax and wing hinge
which can potentially act as spring elements to reduce the energetic demands of flapping wing
flight. The left side of the image in a) shows an illustration of the muscle, thorax wall, and
wing hinge of an insect. The right side of the image interprets it as a spring in parallel with the
actuation source and a spring in series with the actuator, with aerodynamic and inertial forces
that act on the rotating wing. b) Weis-fogh introduced a convenient way to visualize the relative
magnitudes of torque acting on the wing hinge by normalizing all values to the peak aerodynamic
torque. The units of both axes are dimensionless. The angle and velocity of the insect wing over
the downstroke is shown by the lines above the plot. Image in (a) adapted from [84].

Flapping at a higher or lower frequency leads to inevitable reduction in flight performance.
Early experiments on the relationship between wingbeat frequency and wing inertia provided
compelling evidence that insects do oscillate their wings at resonance [50], [81]. However,
these experiments relied only on the manipulation of wing inertia (without accompanying
measurements of thorax stiffness) and thus do not provide direct comparison of the spring-wing
system’s resonant frequency and the wingbeat frequency. Recently, there has been some effort to
measure insect thorax elasticity and frequency response [83], but experimental limitations leave
room for questions about whether insects are, in fact, flapping at a resonant frequency.

The impact of operation on or off resonance is directly related to how much a particular
flapping wing system benefits from the inclusion of a spring. A flyer with small wing inertia
would have less excess kinetic energy to store and return in a spring than one with large wing
inertia, but also would be less impacted by changes in wingbeat frequency. The question of

where insects fall on this spectrum was first address by Weis-Fogh in his analysis of flapping
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flight efficiency [55]. He introduced the dynamic efficiency (1) as the ratio of aerodynamic work
to the combined inertial and aerodynamic work, which serves as a measure of how much energy
is expended on useful aerodynamic work versus wasteful inertial work. Weis-Fogh provided
an analysis of the scaling of 1 in the absence of elasticity by introducing the non-dimensional
variable N, which is the ratio of peak inertial force to peak aerodynamic force over a wing-stroke.
In flapping-wing flight without springs, 11 was shown to monotonically decrease with increasing
N, thus requiring larger energy input at larger N to sustain flight. In subsequent text we refer to
N as the Weis-Fogh number to reflect his contributions to flight energetics.

Examination of the sinusoidal motion of a wing in the absence of elasticity, reveals two
sources of reaction force: inertial and aerodynamic forces. During a half-stroke of a wing, the
inertial force associated with wing acceleration is at a maximum when the wing position is at
its point of reversal, and inertial force decreases linearly with wing position and reaches zero at
mid-stroke (Fig. 1.1b). At reversal, the wing speed is zero and thus the aerodynamic force at this
point is zero, while at mid-stroke the aerodynamic force is maximum. Plotting these forces as a
function of wing position (Fig. 1.1b) and normalized by peak aerodynamic force reveals that the
inertial force has a maximum value of N, the Weis-Fogh number. Furthermore, the integration of
these forces over the wing displacement provides the total inertial and aerodynamic work. As
can be seen in Figure 1.1b an ideal spring exactly matched to the inertial force of the wing would
exactly cancel out the inertial work over a cycle in a parallel spring-wing system. In such a
case the dynamic efficiency of the system would be 1 = 1 and the system would be operating at
resonance. However, it is less clear how internal damping, frequency modulation, and different
spring arrangements modulate the dynamic efficiency.

The primary mechanism of elastic energy storage in insects is resilin, a highly-resilient
elastic material first identified in patches of the locust exoskeleton was discovered and char-
acterized in the 1960’s by Weis-Fogh [51], [54], [77] (and subsequently identified in many
other arthropods [53], [85]). It was shown to return greater than 97% of stored elastic energy,

suggesting that insects have resilient components within their thorax that can facilitate efficient
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energy exchange and return. Thus, the historical choice not to include internal losses in the
computation of dynamic efficiency appears to be a simplification based on the assumption that
the losses due to aerodynamic forces are significantly larger.

However, recent experiments to characterize the energy storage and return in the hawk-
moth (Manduca sexta) thorax have also demonstrated that small but significant energy loss
occurs from internal structural damping [76]. Similar structural damping was also observed in
cyclic oscillation of cockroach legs [86], possibly suggesting a general character of energy loss
in exoskeleton deformations. Structural damping is a form of energy loss different from the more
familiar velocity-dependent viscous damping. Materials that are structurally damped exhibit
energy loss that is frequency independent and is instead governed by oscillation amplitude and
elastic coefficient [87]. This is consistent with the interpretation of structural damping as a result
of internal, microscopic friction that is not dependent on velocity. While the presence of highly
elastic resilin suggests significant potential benefits from elastic materials, internal damping may
preclude the energetic benefits of elasticity in spring-wing systems.

Despite the more than sixty years of focus on resonance in insect flight, previous efforts
at modeling or measuring spring-wing resonance in insects have fallen short by: 1) assuming
that quasi-steady assumptions on aerodynamic forces in spring-wing resonance are valid, 2) not
including the effect of energetic losses from imperfect elasticity, and 3) focusing predominantly
on the contributions of parallel system elasticity while disregarding contributions or limitations of
series-elastic elements. Most importantly, we lack a common modeling and analysis framework
to compare and contrast the energetic benefits of resonance across insects and man-made systems
such as robots. Inspired by the original calculations of Weis-Fogh, we seek in this paper to
develop a set of equations that govern the dynamics of parallel and series spring-wing systems
using non-dimensional parameters that allow for comparative examination.

In experiments we will measure how unsteady aerodynamic effects, specifically added
mass and wing-wake interaction, influence the resonant behavior of a flapping wing at hover.

In order to achieve this, we compare simulations of a spring-wing oscillator subject to quasi-
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steady aerodynamic forces to a robophysical model of a flapping wing with known mechanical
parameters subject to real fluid forces. Here we draw upon the work of van den Berg and Ellington
[88], Sane and Dickinson [35], and others to use a flapping wing robot that is dynamically scaled
to that of flying insects. Unlike those studies, we do not prescribe the wing kinematics, instead
using an elastic element in series between the wing and motor to observe resonant dynamics and
emergent wing kinematics produced by varying actuation parameters. From our experiments
we will develop a model to understand how structural damping influences spring-wing dynamic
efficiency using non-dimensional parameters. These efforts will provide a general understanding
of how springs, wings, and body mechanics converge to enable energy efficient flapping motion

as a function of morphology and wing kinematics.

1.2 Theoretical preliminaries: Assumptions and Motivation

To contextualize our study of spring-wing dynamics we first seek to outline the basic
concepts of spring-wing systems. We will derive the equations of motion in the presence of
aerodynamic and internal damping forces. We conclude this section with a non-dimensional
representation of the equation of motion which produces two important parameters in spring-wing

systems.

1.2.1 Undamped parallel and series wing-spring systems

The anatomies of flapping wing animals feature a wide range of elastic element configu-
rations that contribute to their flapping wing dynamics. These arrangements can be expressed as
combinations of springs in series and parallel with a moving inertial element, the wing (Fig. 1.1a).
In both cases, the wing interacts with a time- and history-dependent nonlinear force from the
surrounding fluid. To simplify the modeling of spring-wing systems, we consider the system as a
one degree of freedom rotational joint (to emulate the wing hinge), where the joint angle 6 is the

wing angle along the stroke plane. If we neglect internal damping, the equation of motion for a
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parallel spring-wing system about this joint is

Ite(t)+kp9(t)+Qaero(t):Tm<t> (1.1)

where /; is the total system inertia, k), is the stiffness of the parallel elastic element, Qe is the
aerodynamic drag torque, and 7,,(¢) is the time dependent torque applied to the wing. In the
parallel configuration, the spring undergoes the same displacement as the wing and the muscle
(actuator) acts directly on both the mass and spring. Nearly all spring-wing modeling of the
insect thorax [55] and micro-aerial vehicles [8], [23], [89]-[91] have considered the parallel
spring arrangement where muscle (actuator) is in parallel arrangement with the spring.

In a series-elastic spring-wing system, a spring is placed between the actuator and the
wing. Series elastic elements are well studied in vertebrate biomechanics as muscle-tendon units
where a tendon is placed between the muscle and output [92]. Series elastic elements in flapping
wing flight may similarly be found in the muscle tendon units of birds [79], [93]. In insects,
series elasticity can arise from elastic tendons [94], elasticity in the wing hinge [51] or within
the flight power muscle [4]. For simplicity of experiment design and to examine the differences
between series and parallel systems, we analyze the series elastic spring-wing configuration. The

equation of motion for a simple series elastic system may be written:

L6(1) + Quero(t) = ks(9(t) — 6(1)) (1.2)

where the force acting on the wing arises from the displacement of input angle ¢ (z) relative to
the wing angle 0 (Fig 1.2a). The difference between the angles is the deflection of the series
spring with stiffness k;. When the system is at steady-state (hovering), the series and parallel

cases can be treated equivalently by rearranging equation 1.2 to reflect the parallel configuration:
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L0(t) +ksO(t) 4+ Quero(t) = ks (1) (1.3)

1.2.2 Aerodynamic drag torque and added mass inertia

The wing experiences an aerodynamic resisting torque, Qqer, that opposes wing move-
ment through the fluid. To make analysis of this system tractable, we will use a quasi-steady
blade element estimate of aerodynamic torque consistent with previous quasi-steady methods for
spring-wing systems [55] and micro-aerial vehicles [8], [23], [89]-[91]. Following the standard

conventions for the quasi-steady blade element method we express the aerodynamic drag torque:
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The variable I is the drag torque coefficient and is a function of wing geometry (span,
R; aspect ratio, 4?; non-dimensional radius of the third moment of wing area, 73); pitch angle,
o; drag coefficient, Cp(a); and fluid density, p. Since we are considering aerodynamic torque
about the wing hinge, Q.o has units of [N m] and I" has units of [N m s2].

In addition to aerodynamic torque, the acceleration of a wing within a fluid leads to an
additional inertia; an “added” or “virtual” mass, as it is sometimes called [95]. We use a method
from [95] for modeling the mean added mass inertia, I4 (See Appendix A.1). The total inertia
is computed as I; = Iy, + 14, where Ly, is the inertia of the wing and wing transmission. In the
insect flight system, the wing hinge acts as a mechanical transmission, converting linear muscle
actuation to angular wing motion. It is possible that additional inertial terms from the reflected

inertia of the oscillating muscle and thorax may be important. However, there is little known
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about the specific motion and inertia of the wing hinge transmission and the role of muscle and

thoracic inertia, so we will disregard their effects in this manuscript.

1.2.3 Structural damping in the insect thorax

Recent experiments to measure the damping response of the hawkmoth (Manduca
sexta) thorax [76] and cockroach (Blaberus discoidalis) leg joints [86] have both identified
structural a.k.a. hysteretic damping as the dominant source of energy loss. Consistent with
these observations, we seek to consider the effects of structural damping on spring-wing system
dynamics. Structural damping is a common source of energy loss in biomaterials [96] that differs
from viscous damping in that there is no velocity dependence in the structural damping force.
For general oscillatory motion, the structural damping force can be included as a modification to
the spring constant, K = k(1 + iy), where k represents either the parallel or series spring. The
coefficient 7y is the structural damping loss factor [87] which has been found to be y = 0.2 for
cockroach leg joints [86] and y = 0.1 for the hawkmoth thorax [76]. For constant sinusoidal
motion at a single frequency, m, the structural damping force can be represented as a viscous-like

force with a coefficient that scales with frequency:

k.
Qstruct == ’}/Eﬁ (15)

where the angular velocity B is the relative speed of spring compression (for parallel system
[3 — 0 and series systems B = (¢ — 6). The presence of @ in the denominator makes the
structural damping force frequency-independent, unlike typical viscous damping (See Appendix

A.2 for derivation).
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1.2.4 An organizational framework for spring-wing systems

In this final section of the motivation we introduce a set of non-dimensional variables that
govern general spring-wing dynamics. As discussed in the introduction, the Weis-Fogh number
N is the ratio of maximum inertial force compared to maximum aerodynamic force over a cycle.
Assuming sinusoidal wing motion with amplitude 6y and frequency ®, the maximum inertial
torque is 7, 6pw* and maximum aerodynamic torque is FQg o? resulting in the Weis-Fogh number

I,
N—

=~ T, (1.6)

This quantity should dictate how important a role spring elements can play in energetic efficiency
at hover. For N < 1, aerodynamic forces dominate and kinetic energy may be fully dissipated
into the surrounding fluid over each wing stroke; no elastic storage is needed. However, for
N > 1, excess kinetic energy from the wing can be recovered by a spring. Observations from
biological and robotic flapping wing flyers indicate that N roughly varies between 1 and 10 for a
broad range of insects [55].

In order to compare across insect species, we non-dimensionalize the dynamics, assuming
the wing oscillates sinusoidally at a frequency @, and with amplitude 8y. We begin with the full

dynamics equation for the parallel spring-wing system including structural damping:

I;9+kp9—|—1—‘|9|0+%9:T(t) (1.7)

We introduce dimensionless wing angle ¢ and dimensionless time T and substitute into Eq.
1.7 (See Appendix A.3). We arrive at the following dimensionless equation of motion for the

spring-wing system

Gw + Kpgw + YKpGw + N‘QWMW =T,(1) (1.8)
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where we have defined the reduced parallel stiffness,

N k
K,=-"
P L w?

(1.9)

and the Weis-Fogh number, N is in the coefficient of the aerodynamic torque. The normalized

torque in the parallel system is

. T,(t)
Tp(t) = 2 1.10
p ) Il 90(1)2 ( )
Performing a similar substitution for the series system we arrive at the equation below
. LD 5., Lo A
QW+KSQW+7KsQW+N|6IW|CIW:Ts(t) (L.11)
where the normalized torque in the series system is
N K, Y,
i) =2 (6()+-16) 112
(0= (00)+ 29 (112)

We provide a full derivation of these equation in the Appendix (A.3).

Through the change of variables in the parallel and series spring arrangements we have
arrived at two nearly-identical non-dimensional dynamics equations in Equations 1.8 & 1.11.
The differences between the series and parallel systems in this form are all contained in the
actuation variables, Ty and Tp. Thus, while the forced actuation of these system may result in
different dynamics, the similar structure of the non-dimensional dynamics equations indicates
that in both systems three variables likely govern the behavior: N, K, and }. As an exemplary
demonstration of this, if either the series or parallel system is driven to steady-state oscillation
and then the external actuation is turned off (7' = 0 or ¢ = 0), both equations 1.8 & 1.11 become
equivalent. The objective of this paper is to seek to understand how N, K, and 7 influence

dynamic efficiency and resonance of a simple series spring-wing system.
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Figure 1.2. Schematic and details of the robophysical flapping wing experiments. a) A schematic
of the system showing the stepper motor in series with a torsional spring connected to a rigid
wing. b) A picture of the physical system. c) A diagram of the control and experimental operation
of the robophysical system.

1.3 Experimental and numerical methods
1.3.1 Robophysical experiment design

We developed an experimental spring-wing system to study flapping wing behavior in the
context of realistic fluid forces (Fig. 1.2). The quasi-steady modeling presented in the previous
section greatly simplifies the unsteady, history-dependent aerodynamic phenomena involved
in flapping flight. A dynamically-scaled physical wing serves as a reference against which we
can evaluate the performance of the quasi-steady model. The system consists of a servo motor
capable of accurate position control, a molded silicone torsional spring with linear elasticity
and structural damping, and a simple fixed-pitch wing element attached to a rotary shaft and
submerged in a 115-gallon plastic tank filled with water (30”x307x30”, Chem-Tainer). The tank
was selected to be large enough to minimize fluid interactions with the side walls, floor, and
water surface. The wing is situated near the center of the tank, such that the wing is always at
least 10 wing-chord-lengths from the walls and floor and 5 wing-chord-lengths from the surface
of the water. This is consistent with other studies of flapping wings that use water as a working

fluid [97]-[99] See Appendix A.4 for photos of components and further details.
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Motor selection and system friction reduction

A high-torque servo motor (Teknic Clearpath SDSK) was chosen to drive the system
under closed loop angular position control. The servo is able to provide substantially more
torque than that experienced by the wing in the fluid, effectively decoupling the motor and wing
dynamics. We monitor the motor and wing angle using two optical encoders (US Digital, 4096
CPR). To reduce the influence of friction on the wing motion we used two radial air bearings
(New Way, #S301201) which resulted in negligible bearing friction. The shaft was supported

vertically by an axial thrust bearing, which did contribute a small amount of friction.
Reynolds number scaling

To ensure that we match the aerodynamic behavior of small insect wings we chose
experimental parameters to dynamically scale our system. Consistent with previous dynamically-
scaled experiments [35], [39], we sought to maintain a Reynolds number in the range of that of
small flapping wing insects, Re = 100 — 10,000. We define Reynolds number based on standard
methods, using wingtip velocity as the flow speed and wing chord as the characteristic length
[39]. We choose water as a working fluid (p = 997kg/m?®) and chose wing geometry (rectangular,
10 x 3.6 x 0.5 cm) and a range of actuation parameters (10-64 deg amplitude, 0.5 to 4.1 Hz
frequency) where the resulting wing kinematics had Re ~ 103 — 10*. Note that since the wing
amplitude is an emergent property of the system due to the series spring configuration, so too is

the Reynolds number of an individual test.
Weis-Fogh number scaling

In order to achieve a wide range of Weis-Fogh number (Eqn. 1.6) in experiment, we
must be able to adjust the ratio of peak inertial torque to peak aerodynamic torque. We chose to
keep the drag torque coefficient I" constant, so we vary N by changing wing inertia and wing
amplitude 6p. Wing inertia, I; was varied by adding acrylic and aluminum discs to the wing

shaft, leading to total inertias of I, = [10.5, 15.9, 23.2]x 1074 kg mZ. Our experiments resulted in
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Figure 1.3. Characterization of silicone torsion springs. a) Photo of silicone torsion spring.
Acrylic shaft couplers at the top and bottom clamp to the flanged ends of the spring. b Dynamic
loading of the torsion spring (blue) results in a linear torque response with slight hysteresis
effects. c¢) Static load test results for three silicone springs. d) Spring stiffness increases with the
radius of the cylindrical region and follows an R* curve. e) Estimates of the hysteric loss factor
for the 3 springs.

arange of N between 1 and 5 when operating at the resonant frequency, consistent with many

insects [55].
Aerodynamic calculations

We used a rigid rectangular wing with a fixed vertical pitch (o = 0), which simplifies
modeling and motor control, and eliminates any energy storage and return from a flexible wing.
The drag torque coefficient for a rectangular wing from Equation 1.4 is ' = 1.07 x 1073 kg m?,
where the coefficient of drag is constant at Cp(0) = 3.4 (taking this value from [35]). We also
compute added mass inertia, I, for a calculated value of 3.465 x 10~* kg m? (See Appendix

A.1 for derivation).
Silicone spring fabrication and evaluation

We used custom fabricated silicone torsion springs for the series spring element (Fig. 1.3a).
Silicone was chosen because it can be cast into custom shapes and has a linear elastic response
over large strain. The springs were designed with a cylindrical profile with flanges on each end
to facilitate coupling to the motor and wing shafts (Fig. 1.3a). Detailed information about the
design and fabrication process may be found in §A.4.2.

We used three spring designs with torsional stiffness values of K = [0.163, 0.416,0.632]
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N m rad~!. Figure 1.3 shows the results of experiments to characterize the spring mechanical
properties. We subjected springs to both cyclic and static loading conditions (Fig. 1.3a-b) to
measure their elastic and damping properties. The spring torque response was linear over the
range of angles tested (Fig. 1.3b-c) with stiffness values that are consistent with the predicted
torsional stiffness (Fig. 1.3d). In dynamic testing we observed a small amount of hysteresis in
cyclic loading experiments indicating the presence of damping within the spring (Fig. 1.3b).
There is evidence that silicone rubber has a combination of viscous and structural damping [100],
[101], so we set out to test whether a viscous or structural model fits best. Following a similar
procedure as [76], we oscillated each spring sinusoidally across frequencies between 1 Hz and 10
Hz and amplitudes of 10, 20, and 30 degrees. We measured the angle-torque relationship during
these tests and fit a viscous and a structural damping model to the data for each spring. We
expected that the model that fit best would have the least variation in the fit coefficients across the
range of frequencies. We computed the mean and standard deviation of the fit coefficients across
the range of frequencies and found the standard deviation of the coefficients as a percentage of
the mean coefficient. The standard deviations in the viscous model coefficients were 74.8%,
83.2%, and 62.1% of the mean for springs K1, K2, and K3, respectively, whereas those of
the structural model were only 11.7%, 6%, 22.3%, respectively. Therefore, we chose to use
the structural model to model the damping, with the knowledge that the true damping is more
complex but outside the scope of this paper. We measured the structural loss moduli shown in
(Fig. 1.3e). For comparison, the loss modulus is Y = 0.1 in Hawkmoths [76] and ¥ = 0.2 in the
legs of Cockroaches [86].

Actuation and Data Acquisition

Each experiment consisted of driving the motor angle with a specified amplitude and
frequency, ¢ = @psin27 ft. We varied input amplitude across ¢gg =[10 - 65] deg, in increments
of 5° and frequency across f = [0.5 - 4] Hz in increments of 0.2 Hz. Digital step and direction

signals were used to set the angular position trajectory of the Clearpath servo. Each test was run
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for 30 seconds, during which encoder position readings were recorded from both the motor and
wing by a NI PCle board (#6323 Multifunction IO Device), sampled at 1kHz. Encoder readings

were saved as text files in Matlab and processed.

1.3.2 Simulation

We developed numerical simulations that modeled the parallel and series configurations
of the spring-wing system based off of Equations 1.1&1.2. The parameters of the simulations
were based on measured and calculated parameters from the experiment. Simulations were
performed in Matlab using the ODE45 numerical integration function. The integration algorithm
performs an adaptive step integration with absolute and relative error tolerances set at 10~ and

1076, respectively.
1.3.3 Data Analysis

We performed identical analysis of both simulation and experimental data. We collected
wing and motor angle data, computed wing and motor angular velocity, and found the amplitude,

frequency, and relative phase of each by fitting the data to functions 6(¢) and ¢ (z), respectively:

(1) = 9, sin(wt) (1.13)

0(t) = 6, sin(wt + ) (1.14)

See §A.4.3 for details.
In order to identify the resonant peak, we define a non-dimensional term, kinematic gain,

which is the ratio of motor angle amplitude and wing angle amplitude:

6o
Gk = — (1.15)
Po

For a resonant system, kinematic gain is maximum at the resonant frequency, @, (Fig. 1.4 a & b).
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Figure 1.4. Overview of data processing method. a) Raw data in the form of encoder readings
of the motor (blue) and wing (orange) positions are collected for each combination of actuation
frequency and amplitude. The three graphs show that for the same motor actuation amplitude,
the wing amplitude changes with frequency. b) We define kinematic gain (Gg) as the ratio
between wing and motor amplitude, plot change in Gg over frequency, and identify peak Gk
and resonance frequency. The plot in (b) is the resonance curve for motor amplitude = 31 deg,
[K,I]=[0.416 Nmrad~!, 10.5x10~% kg m?]. ¢) Plot of G across all motor amplitudes and
frequencies with the same mechanical parameters. Peak Gg and resonance frequencies fall along
the purple line.

We also compute the quality factor of the oscillator dynamics, Q, using the following definition

o

0= (1.16)

)

Where ; is the resonant frequency and A is full width at half maximum. The quality factor is
a metric of the sharpness of the resonant peak: high Q means kinematic gain, Gg drops off as ®
moves away from the resonant frequency, while low Q means Gk changes slowly with varying
.

In order to identify @, for a set input amplitude experiment, we locate the frequency
that maximizes kinematic gain. We fit a 5th order polynomial to the 12 points closest to the
peak measured Gk to get a smooth approximation of the resonance curve. The maximum
value of the polynomial is the peak gain, and the frequency corresponding to it is the resonant
frequency. When reporting N, dynamic efficiency, etc. “on resonance,” we use the experimental

configuration with a frequency closest to the resonant frequency. As a result, some nominally
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resonant points are not exactly on the resonant peak, but may be off by as much as 0.1 Hz.
We use the position measurements, their derivatives, and the known mechanical parame-
ters of the system to estimate the torques on the system: Aerodynamic, inertial, elastic, motor,

and structural damping.

Tuero(t) = T16(1)[6(7) (1.17)
Tiners (1) = 16/(7) (1.18)
Tetast (t) = —Toror = ks(@ (1) — 6(1)) (1.19)

() =" (9(1) - (1)) (1.20)

Note that we compute the equivalent non-dimensional torques and kinematics using the terms
defined in Equations 1.8 & 1.11.

Lastly, we compute the dynamic efficiency of the oscillatory motion. Weis-Fogh’s
definition of dynamic efficiency from the introduction neglects elasticity and internal damping,
but for our purposes we need dynamic efficiency to take into account aerodynamic, inertial,
elastic, and damping work. A simple way of doing so is to define the dynamic efficiency as the

ratio of aerodynamic work to total work done by the actuator:

n= Waero
Waero + VVinert + Welast + Wd
Waero
_ (1.21)
Wiot

over a stroke (or equivalently a half-stroke). To calculate the aerodynamic and total work in

experiment we use the following equations

6,

Waero = Taero do (122)
900

Wi = [ R(Toer) d6 (1.23)
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Note that in the motor work integral, R(x) is a rectification function defined as R(x) = x for x > 0
and R(x) = 0 for x < 0. This rectification function accounts for the fact that negative mechanical
work in insect flight muscle does not contribute significantly to metabolic energy expenditure

[55], [82].

1.4 Results
1.4.1 Kinematic gain varies with actuation and system properties

We performed 3249 tests with varying input parameters (amplitude and frequency) and
mechanical system parameters (spring stiffness and inertia) and measured the emergent wing
kinematics (Fig 1.5). Results for the nine inertia and stiffness combinations are shown as
heatmaps with color indicating kinematic gain. The arrows on the right and top of the figure
denote the directions of increasing stiffness and inertia, respectively.

For all stiffness and inertia combinations, we observed that the peak G occurred at
the lowest actuation amplitudes. At low amplitudes, aerodynamic damping is minimized and
less energy is lost to the surrounding fluid, allowing for higher kinematic gain. The maximum
kinematic gain increased with increasing system inertia in all cases, reaching a maximum when
the system is a combination of a soft spring and high inertia (bottom right corner).

The resonant frequency decreased as the motor amplitude (and thus the emergent wing
amplitude) increased. The dashed purple line in Figure 1.5 shows peak kinematic gain for each
motor amplitude. This decrease in resonant frequency is consistent with simulation predictions
shown as solid black lines in Figure 1.5. We discuss this model in the first discussion section

below.

1.4.2 Flapping resonance with quasi-steady aerodynamics

Following the experiments, we sought to see how much of the observed dynamics is

predicted by the simplified, quasi steady equations of motion described in Section 2. The real
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Figure 1.5. Results across all springs, inertias, actuation parameters. Peak Gk are plotted in
purple dashed-lines. Peak Gk from simulation using measured system parameters and identical
actuation are shown in solid black lines.
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Figure 1.6. a) Comparison of system natural frequency from calculations to measured low-
amplitude resonant frequency in oscillation experiments. b) Comparison of simulated resonance
frequency to experimental. ¢) Comparison of simulated kinematic gain to experimental

aerodynamic loads on the wing are time- and history-dependent, so it is not clear to what degree

those unsteady loads affect the resonance properties of the system at steady state.
Natural frequency of the system matches lightly-damped resonant frequency

At low motor amplitude, the system dynamics are only weakly affected by the aerody-
namic force and thus the resonant frequency should be determined by the natural frequency
of the spring-wing system. Comparison of the experimentally measured resonance frequency
at the lowest amplitude with natural frequency computed from spring stiffness and inertia
displays extremely good agreement (Fig. 1.6a). Thus our intuition is confirmed that low ampli-
tude wing oscillation leads to small aerodynamic damping and the system better resembles a

weakly-damped spring-mass oscillator.
Quasi-steady simulation predicts experimental resonant frequency

As motor and wing amplitude increase, we observe reductions in both kinematic gain and
resonant frequency. This behavior is consistent with the quadratic velocity damping generated by
the aerodynamic force on the wing and has been observed in other spring-wing experiments [89].
We sought to determine if a quasi-steady aerodynamics model was sufficient to model the spring-
wing behavior observed in experiment. By performing numerical simulations with identical

parameters as the experiments of Fig. 1.5 we measured the simulated resonant frequency across
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all amplitudes. We find that the quasi-steady simulation resonant frequency agrees well with
the experimental resonance frequency (Fig. 1.6b). This suggests that quasi-steady aerodynamic
modeling is sufficient to capture the spring-wing relationship between amplitude and resonance

frequency across all motor amplitudes.
Quasi-steady simulation over-predicts kinematic gain

Despite the agreement in resonant frequency, we observed a difference between the
kinematic gain in the experiment and the simulation (Fig. 1.6c). The simulation over-predicted the
kinematic gain for all resonance experiments by a maximum of 20% at the highest experimental
gains. The over-prediction error grew with increasing gain, suggesting a systematic error in the
modeling of the spring-wing system. The combination of disagreement between simulation and
experiment in kinematic gain and the good agreement in resonant frequency suggests to us that
unmodeled dissipation from system friction is likely the cause. Coulomb friction in the bearings
would not influence the system resonant frequency, but would decrease the output amplitude,
consistent with our observations. We opted not to include friction in our modeling for two
reasons: 1) we kept only the biologically-relevant damping terms in the system equations, and 2)

modeling friction can be complicated due in part to highly-nonlinear stick-slip phenomena [102].

1.4.3 Dynamic efficiency is amplitude and frequency dependent

To determine the efficacy of elastic springs for energy reduction in a flapping wing
system, we calculated the dynamic efficiency, 7, across all system and actuation parameters
(Fig. 1.7). Generally we observe that dynamic efficiency is maximum along the resonance curves
for all experiments. These results are consistent with the interpretation that maximum kinematic
gain corresponds to maximum energetic benefits of having a spring, e.g. that the system is at
resonance. Notably the dynamic efficiency is very sensitive to oscillation frequency for low
motor amplitudes while higher motor amplitudes show a very broad dynamic efficiency. The

results at high amplitude are consistent with the broad dynamic efficiency versus frequency
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curves measured in experiments on a flapping wing robot in [23].

1.5 Discussion

In this discussion, we recall the preliminary framework established in Section 2. Through
a change of variables we were able to express the equations of motion of the series and parallel
spring-wing systems (Equations 1.1 & 1.2) with nearly identical expressions. In this discussion
we now seek to interpret the series elastic experiment and simulation results above in the context
of the non-dimensional variables: the reduced stiffness K, the Weis-Fogh number N, and the

structural damping coefficient 7.

1.5.1 The Weis-Fogh number, N governs resonant properties in spring-
wing systems

The frequency response and kinematic gain of the spring-wing system indicates that the
resonant behavior of the system is dependent on the flapping amplitude and frequency. In a
standard spring-mass system with a viscous damper, frequency dependent kinematic gain is to be
expected. However, the dependence of the system resonant frequency on oscillation amplitude in
the series spring-wing system (Fig. 1.5) is different than that of the standard viscously-damped
spring-mass system (unless the damping is close to a critical value). Similar to the way the spring-
mass system is often reduced to non-dimensional ratios (damping ratio, { and reduced frequency,
®/w,) that govern the oscillation behavior, we here seek to show how the non-dimensional

parameters of Equations 1.8 & 1.11 govern the resonance properties of the system.
N is a measure of aerodynamic damping in spring-wing resonance

An important metric of a resonant system is the quality factor, O, a measure of how
damped the oscillator is and which, in experiment, is the sensitivity of kinematic gain to frequency
change. For a linear spring-mass system, Q is independent of oscillation amplitude, but it is

inversely proportional to the damping ratio, {. In the non-dimensional spring-wing equations,
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Figure 1.8. a) The quality factor of the oscillation as a function of Weis-Fogh number, N, in
experiment with a linear fit and 95% confidence interval. b) Relationship between reduced
stiffness K and Weis-Fogh number, N in experiment. The line represents the optimal stiffness-
damping relationship (Eq. 1.25)

the two terms that govern system damping are the Weis-Fogh number, N (the prefactor of the
aerodynamic term) and the structural damping loss modulus y. We expect that for any useful
spring-wing system, the energy loss due to aerodynamic damping should be much larger than
the parasitic energy loss from internal structural damping. Thus, we are inspired to examine how
quality factor varies with the Weis-Fogh number.

Examining the dependence of Q on the Weis-Fogh number, we observe that the quality
factor grows approximately linearly with the Weis-Fogh number (Fig. 1.8a) across the ranges
observed in experiment. Simulations further reveal a linear relationship between Weis-Fogh

number and system quality factor given by
O=ciN+c; (1.24)

where ¢y =0.18£0.01 and ¢, = 1.11 £0.03 (95% CI). By analogy with the linear spring-mass
system, the linear relationship between Q and N reveals that the quantity ]%/ is comparable to the

damping ratio for linear spring-mass systems.
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The importance of this relationship is that Q has historically been used to evaluate the
ability of insects to benefit from elastic energy storage. Ellington, using a version of Q defined
as the ratio of peak kinetic energy versus energy dissipated per stroke, has reported Q values for
a variety of insects such as the fruit-fly, Drosophila melanogaster, hawkmoth Manduca sexta,
and the bumblebee Bombus terrestris [9]. Ellington uses those values to argue that insects would
benefit from resonant dynamics. While it is not possible to directly compare the values he reports
due to the use of different expressions for Q, we can use the functional relationship in equation
1.24, to also estimate quality factors for the fruit-fly (N < 1, Q =~ 1.2), the hawkmoth (N = 3.6,
Q =~ 1.7), and the bumblebee (N = 3.1, O ~ 1.6). Weis-Fogh numbers for the relevant animals
were provided by Weis-Fogh in [55]. Quality factors above 1, in this case, confirm that insects
may indeed benefit from resonance. By tying those values to N, however, we provide the added
benefit of showing how Q factor may scale across species and enable comparison of a wider

range of species of insect.
The resonant frequency of a series spring-wing system varies with N

Examination of the Weis-Fogh number shows that N grows inversely with wing amplitude
(Equation 1.6). Thus, experiments that were performed at low motor amplitude correspond
to spring-wing systems with large N. This observation, coupled with the insight from above,
immediately provides understanding for why the resonant frequencies at low amplitudes match
the system’s natural frequency (Fig. 1.6a). At low amplitude (high N) the influence of damping
is very small (scales as ]l\,) and thus increasing N in spring-wing systems results in minimizing
the the effects of aerodynamic nonlinearity and energy loss.

However, this insight does not fully explain why the resonance frequency should change
with amplitude. Examination of the relationship between the non-dimensional variables that
relate frequency (K) and damping (N) at resonance shows a tight locus of points that indicate a
potential relationship (Fig. 1.8b). To understand this relationship we follow the method originally

introduced by Bennett et al. for the analysis of series elasticity in whale flukes [103]. In that paper,
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the authors determine the instantaneous aerodynamic, inertial, and elastic power contributions in
the system and then minimize the total power consumption over a wing-stroke (see Appendix
A.5) to identify an optimal combination of parameters. The combination of parameters that

minimize total power is given by the following relationship:

K=4/1+4/N? (1.25)

We plot this relationship in Figure 1.8b and observe good agreement (R> = 0.868, RMSE =
0.22) between the predicted optimal series spring-wing relationship and observed relationship
at resonance. The observed differences between experiment and theory could result from
measurement error, or alternatively friction, structural damping, or aerodynamic effects that are
unmodeled in the original derivation. However, solving Eqn. 1.25 in terms of the actual resonant
frequency, @, and system parameters (see Appendix A.5) shows very good agreement over the
frequency, motor amplitude parameter space (Fig. 1.5, black line). For completeness, we note
that for a parallel spring-wing system, the resonance relationship is constant: K = 1 for all N
[103].

The overall intuition from this resonance analysis is that the Weis-Fogh number plays
an important role in determining the spring-wing system’s resonant behavior. Furthermore,
the relationship between N and K at resonance implies that these two variables likely define
a non-dimensional parameter space for general spring-wing systems of arbitrary morphology,
mechanical properties, and actuation. In the following sections we will expand that space by

exploring how N, K, and structural loss factor y influence dynamic efficiency.

1.5.2 Energy loss from structural damping scales with Weis-Fogh
number in real spring-wing systems

Recent discoveries that structural damping in hawkmoth thoraxes [76] and cockroach

legs [86] may cause significant energy loss prompts us to investigate how structural damping
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contributes to spring-wing energetics. To gain insight into energy loss scaling, we consider the
parallel arrangement of a spring and a wing (Fig. 1.1a). The parallel arrangement, as opposed to
the series arrangement, is convenient because the spring (and structural damper) are subject to
identical displacements as the wing hinge, and thus all forces (spring, damping, aerodynamic,
and inertial) can be represented as functions of wing angle. In the series case, the actuation and
wing trajectories are out of phase and therefore more complicated, if not impossible, to express
analytically. In the parallel system, we can conveniently visualize all the relevant forces acting
on the wing by plotting torque contributions versus wing angle (Fig. 1.1a and Fig. 1.9a).

We now consider the scaling of each of these forces with the non-dimensional system pa-
rameters. Following the method introduced by Weis-Fogh, we normalize all the non-dimensional
torques (Equations 1.8) by the peak aerodynamic torque at mid-stroke. The result is the following
set of non-dimensional torques, expressed as functions of normalized wing angle, g. The tilde

symbol represents torques normalized by peak aerodynamic torque:

Qaem - (1 _q2)
Qinertial = —N(] (1-26)
Qelastic = qu

Qstructuml = ’}/I%N V 1— q2

See Appendix A.6 for the full derivation of these terms and §A.7 for an additional derivation of
the torque due to viscous damping.

In the parallel system, the ideal spring torque is exactly opposite the inertial torque and
thus cancels the inertial work throughout the wing stroke, Q,jastic = Qinerriar- This relationship
implies that K = 1 in the ideal parallel system. Converting this expression back to dimensional
form returns the expected relationship that defines a parallel resonant system, k, = I; w?.

Critically for analysis of spring-wing energetics, all of these equations can be integrated
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Figure 1.9. a) Non-dimensional torques acting on the wing hinge during the upstroke or
downstroke. b) Theoretical dynamic efficiency (Eqn. 1.30) for a parallel spring-wing system.
Top curve is ¥ = 0 and curves below are increases of ¥ in increments of 0.05.

over the wing stroke to provide expressions for the non-dimensional work the wing has performed.
In the case of parallel resonance (K=1)we simply need to integrate the Ouero a0d Oy ructural
terms since the inertial and elastic work exactly cancel. Performing these integrals over the range
q =[-1, 1] results in the following expressions

~ 4
3

Waero - (1 -27)

T
Wtructural = E'yN (1.28)

Since aerodynamic and structural damping work are the only sources of energy loss (and thus the
only required energy input) in the system we can now express the dynamic efficiency in terms of

these two energy losses.

Waero

n=-— « (1.29)
Waem + Wstructural
1
- 1.30
1+ 3ZyN (130
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We now have an expression for the dynamic efficiency of a parallel spring-wing system
operating at the resonance frequency. The dynamic efficiency is a function of only the Weis-Fogh
number, N, and the structural damping y. Examination of this expression indicates that if there is
no structural damping in the system (y = 0) the dynamic efficiency is constant, n = 1, across all
N, indicating that all input work goes towards aerodynamic work at steady state. However, for
any non-zero structural damping in the transmission, the dynamic efficiency is a monotonically
decreasing function of NV, since a portion of the input work must be diverted to overcome the
internal structural damping.

This analysis of a parallel spring-wing system has provided insight into how structural
damping influences the mechanical efficiency of the flight transmission, i.e. dynamic efficiency.
We would like to consider the same theoretical analysis for a series spring-wing system, but
in this case the theoretical approach becomes intractable. In a series spring-wing system, the
relative phase difference between wing and actuator changes with actuation parameters and thus
the relative spring extension (and rate of extension) is not as easily determined. Bennett et. al.
[103] presented an elegant reformulation of the problem to generate a closed form expression
for the actuator power required in a series spring-wing system. However, this method cannot
be used to include structural damping because it would require knowledge of the actuator input
kinematics. Thus, to determine the influence of structural damping in a series spring-wing system

we will resort to numerical methods in the next section.

1.5.3 Structural damping reduces peak dynamic efficiency in series
spring-wing systems
The dynamic efficiency 1 for series spring-wing systems was determined through numer-
ical simulation of the non-dimensional equation of motion 1.11 across a range of N and K. As
expected in the case of no structural damping, ¥ = 0, the dynamic efficiency was 1 =1 for all
values of N and K along the series resonance curve, (Eqn. 1.25) (Fig. 1.10a). These simulations

also allow us to observe how 7 varies across the full (N, K) parameter space. In general, we
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observe stronger sensitivity of 17 to changes in K as N increases. Recalling our analysis of the
connection between quality factor and Weis-Fogh number N, it is clear that, for a spring-wing
system with fixed morphology and no structural damping, as N increases, the variation of 17 with
frequency becomes more significant.

For systems with non-zero structural damping, as expected in any real system (and as
observed recently [76], [86]), the dynamic efficiency in general decreases with increasing N for
all values of K. For small structural damping (y = 0.1; Fig. 1.10b) we observe a general similarity
of the dynamic efficiency to the undamped case. The gradient of the dynamic efficiency can be
observed by the spread of the contour lines, where a steep gradient is indicated by closely spaced
contour lines. In the undamped case, the resonance relationship follows the line of minimum
gradient in dynamic efficiency (minVn): the resonance curve exactly follows the contour line
of 1 =1 (and thus Vi = 0). Examination of 1 for increasing structural damping indicates the
curve of minimum V) likely differs from the undamped resonance as illustrated in Fig. 1.10a,
where the dashed lines represent estimates of the line of minimum gradient to guide the eye.

Evaluating the dynamic efficiency across the different values of y shows that 17 monoton-
ically decreases with N, consistent with our analysis of the parallel spring-wing system. In the
inset of Figure 1.10b, we show the dynamic efficiency results at resonance for the experimental
series spring-wing system. The experiment exhibits the same monotonically decreasing trend
of n with N. However the magnitude of 1 in the experiment differs from that predicted by
the simulation with structural damping alone. Thus, similar to the previous comparison of
simulation and experiment (Fig. 1.6) we observe qualitatively similar trends between experiment
and simulation, however the experiment exhibited lower 7, likely due to additional sources of
energy loss from friction and other unmodeled effects.

Overall, both the experimental and simulation results provide evidence that, for any
spring-wing system with structural damping, the dynamic efficiency decreases monotonically
with increasing N. Further, dimensional analysis of the viscous damping model (see Supplmental

§A.7) suggests that internal damping of many types has the same effect on dynamic efficiency.
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Figure 1.10. a) Simulation of dynamic efficiency in a series spring-wing system for four
values of structural damping. The solid black line is the undamped resonance relationship
between N and K. The dashed lines are drawn to guide the eye along the estimated minimum
of the dynamic efficiency gradient. b) Numerical calculations of dynamic efficiency along the
undamped resonance relationship curves for y = [0, 0.5] in increments of 0.05. Dashed lines
show results from a parallel spring-wing system at resonance for comparison. Inset shows the
dynamic efficiency of the experimental spring-wing system at resonance. ¢) Sum of squares
difference between the series simulation 17 and the parallel closed form 7 for varying amounts
of structural damping (7).

These results are a bit counter-intuitive from the discussion above, where quality factor is
observed to scale linearly with N (Fig. 1.8a). For a perfect spring-wing system (y = 0) it is true
that increasing N diminishes the relative energy loss from aerodynamic work compared to the
total energy of the oscillator (the definition of the quality factor). However, in the presence of
internal energy losses, the actuators have to do extra work to overcome internal body damping,
which scales with N. With internal damping, the quality factor might still be the same (since it is
a ratio of energies) but the internal damping decreases the useful energy of the oscillator and

thus dynamic efficiency.

1.5.4 Intermediate Weis-Fogh number may balance damping losses and
elastic benefits

The scaling of dynamic efficiency with N may help explain why flapping wing insects

and robots tend to have an N in the range of 1-10 across three orders of magnitude in body mass
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Figure 1.11. The Weis-Fogh number for flying insects and robots as a function of body mass
(left plot) and in fixed flapping wing robots (right boxplot). Biological data is reported from
[55], and robot data from [23], [24], [89], [104]. Most observed insects and robots lie within the
mass-independent range of N € [1,10].

(Fig. 1.11). A very low N means that aerodynamic forces dominate and wing kinetic energy
will be dissipated by aerodynamic work rather than be stored in a spring [82]. High N, however,
increases the internal energy losses from structural damping and reduces the benefits of elastic
energy storage. Thus, flapping wing insects and birds with Weis-Fogh number in an intermediate
range may balance the positive benefits of spring-wing energy exchange with the parasitic energy
losses of internal structural damping. In order to achieve high dynamic efficiency at hover, wing
geometries, flapping amplitudes, and wingbeat frequencies may be tuned to maintain operation
in this restricted regime of Ns.

In addition to the constraints of damping, high N biological spring-wing systems may
not be possible due to biomaterial or physiological constraints. For example, high N spring-wing
systems that are capable of hover (implying modest wingbeat amplitude, 6p) would require large
wing inertia which may be impractical due to the possible imposition of extra system weight.
Similarly, from the elastic materials perspective a high-N spring-wing system with large wing
inertia would require extremely stiff and resilient elastic elements to operate at resonance. It may
be that for extremely large N spring-wings the required elastic stiffness may exceed the practical

regime of biological materials. Both of these considerations however do not necessarily limit
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robotic systems from being developed with high N through appropriate inertial and stiffness
design considerations.

Lastly, it is unlikely that dynamic efficiency at hover is the only factor that dictates this
range of morphologies. Other factors, such as the effect of N on transient dynamics and control
of wing kinematics, are likely to be significant. For example, in a spring-wing system with
high-N the wing dynamics are dominated by inertial effects and thus wing kinematics are likely
insensitive to transient changes in aerodynamic forces. Such a high-N system may have wingbeat
kinematics that are relatively stable in the presence of gusts of wind. However, in the opposite
case of a low-N spring-wing system, the flyer would be able to more easily modulate wing
kinematics and possibly wingbeat frequency for control purposes. In these cases and others,
the Weis-Fogh number may provide a baseline for insight in broad comparative study of flying
insects, enabling identification of commonalities between species as well as exceptional cases

that merit further study.

1.6 Conclusion

Many flapping wing insects and birds possess elastic elements in their body that may
reduce the power demands of flapping wing flight. However, recent experiments have demon-
strated that insects are also subjected to internal power loss from the deformation of their thorax.
In this manuscript we have introduced three non-dimensional variables for general spring-wing
systems that govern oscillatory behavior and dynamic efficiency. Inspired by the foundational
work of Weis-Fogh, we re-introduce the ratio of maximum inertial force to aerodynamic force
as the Weis-Fogh number, N. Experiments and simulation illustrate that N is a fundamental
parameter of spring-wing systems, analogous to the quality factor of a linear spring-mass system.
However, when spring-wing systems have internal structural damping, we observe that dynamic
efficiency decreases with increasing N on resonance, reducing the potential for useful energy

storage and return. Overall, these results provide a generic framework to understand spring-wing
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systems which may enable us to learn more about the inter-relationships of morphology and

actuation in flapping wing insects and birds.
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Chapter 2

Energetic and Control Tradeoffs in Spring-
Wing Systems

2.1 Background & Motivation

Flapping flight is an extremely power-intensive mode of locomotion, requiring both high
frequency and large forces to produce lift and perform agile maneuvers. Flying insects achieve
efficient flight through a combination of specialized flight muscles [4] and elastic energy storage
in the thorax, ten [51], [55], [82]. However, there has been limited work towards understanding
the implications of this elastic energy storage and return for flight dynamics and control in flying

insects.

2.1.1 Flapping flight as a resonant system

A consequence of these “spring-wing”” dynamics is that there exist one (or more) resonant
wingbeat frequencies at which flapping efficiency is maximized [105]. Operating at a resonant
frequency that maximizes lift can enable mechanical advantage, allowing insects to produce
smaller muscle forces for a particular set of flapping kinematics. Indeed, roboticists designing
insect-scale flapping robots have found that incorporating elasticity and operating near resonance
enables higher lift and greater payloads [18], [22], [26], [89], [91]. However, there are tradeoffs
inherent in operating at resonance [89]. For example, the output wing amplitude is maximized

at the resonant frequency, but any deviation from that frequency peak will result in a decrease
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in wing amplitude, requiring more energy input per wingstroke, and thus potentially limiting
the flapper’s ability to quickly change wing kinematics. This means that a system with a sharp
resonant peak has the benefit of improved efficiency, but would require larger torques or a longer
time to change flapping amplitude or create wingbeat asymmetries to adjust the direction of
flapping thrust. These tradeoffs are likely to be different for insects or robots with different
physical characteristics, but it’s not immediately clear how they scale because of the nonlinearity

of flapping aerodynamics [106].

2.1.2 Hypothesis: Control and efficiency tradeoff scale with Weis-Fogh
number, N

What effect does N have on a system’s control authority? Consider two insects with the
same wing geometry and flapping at the same amplitude, but with different overall wing inertias.
The insect with a larger wing inertia would have to put more energy in to driving the wing to
full amplitude, and the greater momentum of the wing would resist changes to that amplitude
(Fig. 2.1b). Thus the insect with a larger N would tend to be more sluggish than an insect with
lower N, and thus lower wing inertia. On the other hand, consider if the insects are flying in
a crosswind and need to maintain their wingbeat amplitude to maintain hovering stably (Fig.
2.1c). This is a perturbation that acts through the aerodynamic damping term in Eq. 2.3, such
that the aerodynamic torque becomes Ty.;, = N~ '|% — v|(x — v). In this case, the insect with
higher N is less affected by the perturbation, whereas the asymmetrical velocity effects on other
insect may have a larger destabilizing affect. In summary, we hypothesize that the Weis-Fogh
ratio is a governing parameter of both wingbeat response timescale (increases with N), and
susceptibility to aerodynamic perturbations (decreases with N). These two performance metrics
impact maneuverability and stability in competing ways, and thus present a potential dilemma
for spring-wing resonant flight.

We set out to study the effects of Weis-Fogh number on 1) the responsiveness of a

flapping system to control inputs, i.e. starting from stop or changing amplitude, and 2) the ability
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of a flapper to maintain flapping kinematics when subjected to an asymmetrical aerodynamic
perturbation. The following section sets out expectations based on an analytically tractable
version of the spring-wing system with viscous damper. Then, we discuss two experiments on a
dynamically-scaled spring-wing robot that measure, respectively, the time it takes for systems
with different N to flap up to full amplitude and the ability of those systems to maintain sinusoidal
flapping kinematics in the presence of a constant flow perturbation. Finally, we discuss the
implications of these and prior results for the biomechanics of insect flight systems and the

design of flapping-wing micro aerial vehicles (FWMAV5).

2.2 Theoretical preliminaries
2.2.1 The Weis-Fogh number governs spring-wing resonance dynamics

The Weis-Fogh number is named for Torkel Weis-Fogh, a pioneer in insect flight biome-
chanics and discoverer of the elastic protein resilin [51], and is defined as the ratio between

maximum inertial and maximum aerodynamic torque during flapping:

_ max ( Tinertia )

02X Taero) @D

If a system has inertia /, aerodynamic drag coefficient I', and flaps sinusoidally with peak-to-peak
amplitude 6,, we can also write N = I/(I'6,). Weis-Fogh introduced this term as a part of an
argument about the necessity of elastic energy storage and return in the flight system of insects
[55]. It expresses the relative influence of inertial and aerodynamic effects on the dynamics of a
flapping wing; N < 1 means aerodynamic force dominates, whereas N > 1 means that inertial
force is dominant (See Fig. 2.1a).

We found, through dimensional analysis and dynamically-scaled robotic experiments, that
it also has a significant relationship to the resonant characteristics of spring-wing systems. We

can write an equation of motion of a spring-wing system with structural (frequency-independent)
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damping as defined in [106]:

ky

I,é+k6+69+r|9|9:rin (2.2)

where ; is the total inertia of the wing plus added mass inertia, k is the spring stiffness, y
is the structural damping loss modulus [87], @ is the forcing frequency, and 7;, is the input
torque. The system constitutes a forced harmonic oscillator with quadratic damping coefficient
I" and the aerodynamic term is typically much larger than the structural damping term [76]. The
expression can also be written in non-dimensional form in terms of the dimensionless sinusoidal
displacement ¢, the non-dimensinoal stiffness K (which is 1 when the system is driven at its

natural frequency), the structural damping factor 7, and the Wies-Fogh number N [106]:
G+Kq+Kyqg+N "4l = % (2.3)

Previously we found that the dynamic efficiency when flapping at resonance, a measure of the
amount of muscle work that goes directly to producing lift/overcoming drag, n = %, scales

with N in systems with any internal damping losses [106]

1

_ 2.4
1+3ZyN (24

n:

Therefore, while it is beneficial to have an N > 1 for elastic energy exchange and resonance,

higher values of N have diminishing returns in terms of peak efficiency.

2.2.2 Linear system analysis highlights stability and maneuverability
tradeoffs in resonant spring-wing flight

To gain insight into how we should expect the spring-wing to behave in our start up and
constant aerodynamic perturbation experiments, we start by studying the behavior of a linear

spring-mass-damper. We choose to use the linear equations because the quadratic aerodynamic
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Figure 2.1. Weis-Fogh number and flight performance. a) A Weis-Fogh diagram, which
illustrates the relationship between inertial, aerodynamic, elastic, and internal damping forces
over a wing stroke [55], [106]. The Weis-Fogh number is labeled on the vertical axis. We
hypothesize that increasing Weis-Fogh number correlates more sluggish take off from rest (b)
and better resiliencec to aerodynamic perturbations (c).

damping in the spring-wing equations prohibit closed-form solutions. However, we will show

that features of the linear system are analogous to the nonlinear version and draw conclusions

based on that.

2.2.3 Normalized linear spring-mass-damper

Consider the forced linear spring-mass-damper equation:

mi + bx + kx = Fysin(wr) (2.5)

We can normalize the differential equation here by dividing by the mass, creating the classic
2nd-order ODE.
&+ 2& i + 02x = Fy,sin(@r) (2.6)

where ®, is the natural frequency of the system and & is the damping ratio, which dictates

whether the system is over-, critically, or underdamped. The foring term F;,, is defined as F;,, = %
Another way to write 2.6 is by defining the quality factor Q = ﬁ:

.. Op ) .

X+ Ex-l— w;x = Fysin(or) (2.7)
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The quality factor here has a number of interpretations, but for our purposes, it represents the
“steepness” of the resonance peak. Q < 0.5 results in an overdamped system with no peak,

whereas high Q results in a tall and narrow resonance curve.
The time to full amplitude varies linearly with Q

The solution to Eq. 2.7 for Q > 0,5 is oscillatory motion that has an initial transient
response that depends on initial conditions (which determine oscillation amplitude X,, and phase

delay 0), followed by steady-state oscillatory behavior as t — oo

x(t) = Xpe M cos (gt — 8) + Rcos(wr — A) (2.8)
where
,
= 2.
A 20 (2.9)
0 = 02y |1 — —— (2.10)
d — n 4Q2 .
o, =1/ % Q2.11)
m
R= Fon (2.12)
\/(w,% —02)’ + % o2
0,0
tanA= ———— 2.13
A= 0l — oY) &1

The rate of decay of the transient portion of the ODE solution is

(2.14)
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which is inversely related to Q. To find the time it takes a forced system to achieve some

percentage p of full amplitude, we define a small parameter € = 1 — p and solve for 7,

£ =¢ iy (2.15)
—Ine
st = (2.16)
P Qe
—2lne
_ 2.17
o, 0 (2.17)

or, expressed in terms of the natural period 7, = 27/ w,

tﬁ—f _—ln8
=1, =
T, T

(2.18)

Thus we should expect to see that time it takes for transients to decay should be directly

proportional to the quality factor Q, as shown in Fig. 2.2. Notably, % represents a measure of
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Figure 2.2. Time to full amplitude is proportional to Q. a and b show startup to 45 degree
amplitude and an amplitude change from 45 to 90 deg for Q = 2 and Q = 8 respectively. The
rise time is slower with higher Q, as shown in ¢ for several values of p.

control bandwidth in the spring-wing flapping dynamics. An immediate change in oscillatory
actuation force (Fp) will result in a time-lagged increase in the wingbeat amplitude that scales as

% o< Q. Thus, a spring-wing system with large quality factor will be more “sluggish” because
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the control timescale will be large.
The relative influence of aerodynamic perturbations is inversely proportional to Q

Consider a wing flapping in a viscous flow such that the effective velocity at the wing is

X —v. Equation 2.7 can be rewritten

0
X+ 5"()&—V)+a),fx:Fm sin(@r) (2.19)
(0) ),
— ¥+ E”H @>x = Fsin(or) + E”v (2.20)

The effect of the perturbation after the transient has decayed is to introduce a torque that biases the
spring in the direction of the external flow. The magnitude of the spring deflection is proportional
to the flow velocity and is inversely proportional to Q. Thus the influence of an external flow ona

linear flapping system is maller in a spring-wing system with higher Q.

2.2.4 Resonance presents competing influences on wing maneuverability
and perturbation rejection

The previous two sections illustrated how the control timescale and susceptibility to
aerodynamic perturbations are influenced by the resonant properties of a linear spring-mass-
damper. The quality factor (Q) is an important metric in determining properties of a resonant
system, and highlights potential tradeoffs in wing maneuverability and stability. Higher Q will
result in a slower control response from actuation, yet external fluid forces acting on the wing
will result in smaller disruption to wing motion. Lower Q will result in fast control response
from actuation, however external fluid forces will cause disruption to the wingbeat kinematics.
This linear systems analysis provides motivation for examining the role of spring-wing resonance
in the timescales of control and susceptibility to aerodynamic perturbations in flapping wing

systems.
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2.2.5 The Weis-Fogh Number N is the quality factor of a spring-wing
system

To compare the spring-wing and spring-mass equations one trick is to approximate the
linear damping coefficient b with the aerodynamic damping coefficient I' multiplied by the
maximum velocity of the wing max(8) = 6. Thus, the damping term for both spring-mass
and spring-wing equations are equivalent at mid-stroke where the wing velocity is highest. This

is called the secant approximation and was used in [8]. We can define the following relationship

for the linear damping coefficient that models the spring-wing
bsyw =T'6p 2.21)

Substituting this expression into the equation for the damping ratio yields the following

_ b

N 2ma,
o I'6yw
- 2ma,
1l o
2N o,

g

(2.22)

Thus, we see that the Weis-Fogh number has a natural connection to the damping ratio of a
linear spring-mass system. If we make the assumption that the system is on resonance then the

relationship is as follows

E=— (2.23)
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We can push this analogy one step further if we consider how the quality-factor relates to the

damping coefficient, and by extension the Weis-Fogh number.

=N (2.24)

So here we have demonstrated that through the use of an approximation to model the spring-wing
system as a linear spring-mass system we demonstrate that the Weis-Fogh number is exactly the
quality factor. This corresponds to our measurements in [106].

We test the scaling relationship between Weis-Fogh number N and the dynamic behavior
of spring wings via two experiments in a robophysical model. The first measures response to
control inputs by measuring time to peak amplitude from rest, and the second measures the effect
of environmental perturbations via measuring the effect of constant cross-flow on symmetry of
flapping dynamics. The results suggest that in addition to its effect on peak dynamic efficiency,
N illustrates the scaling of agility and perturbation rejection among insects and other small-scale

flapping systems.

2.3 Experimental Methods

In a linear forced spring-mass-damper system, it is possible (as shown above) to derive
exact solutions for the transient response of the system during start up or just after a finite
perturbation. Those solutions show a clear relationship between the Q-factor, responsiveness,
and robustness to environmental effects. We expect that the nonlinear analogue of Q, the Weis-
Fogh number N, should have a similar relationship to the transient response of the spring-wings
system. However, due to aerodynamic drag, the spring-wing equations of motion do not admit an

exact solution. To demonstrate the relationship between N and the stability and agility of flapping
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in spring-wing systems, we perform a series of experiments on a dynamically-scaled robotic
spring-wing system. The robotic system is subject to real fluid forces at Reynolds numbers that

are scaled to those experienced by insects and insect-scale robots.
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Figure 2.3. The series-elastic spring-wing system. a) Conceptual diagram indicating the
angle input, linear spring with structural damping, and rigid fixed-pitch wing. b) Corresponding
photo of the roboflapper indicating the ClearPath servo (Teknic), silicone torsion spring, and
acrylic wing in a large tank of water. ¢) Diagram of the whole electromechanical system. See
Lynch2021-oc for the full details

2.3.1 Dynamically-scaled, series elastic robophysical model

The robotic spring-wing system used in this paper was described in detail in Lynch2021-oc
and is shown in Fig. 2.3. It consists of a high-torque servo motor (ClearPath) connected to a
rigid, fixed pitch acrylic wing in a large tank of water. The elasticity comes from a molded
silicone torsion spring in series with the wing 2.3. We created three springs from Dragon Skin

30 silicone (SmoothOn), varying the geometry so that they each had a different stiffness. We

Table 2.1. Inertia and spring stiffness values for the roboflapper

Inertia (kg m?) Springs (Nm rad ')
IA | 0.00105 K1 0.164
IB | 0.00149 K2 0.416
IC | 0.00233 K3 0.632
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vary the overall inertia of the system by attaching mass to the main shaft of the flapper (above
the water) in the form of acrylic and aluminum plates (Fig. 2.3c). See Table 2.1 for a list of the

discrete inertia and stiffness values.

2.3.2 Controlling N, an emergent property of spring-wing flapping
systems
We sought to compare the transient behavior of the flapper when it flaps with different
values of N. However, due to the dependence on flapping amplitude 6y, N is an emergent quality
of a system, and therefore is difficult to prescribe directly. The following section describes the
process of determining robotic system configurations for a range of N = 1 — 10 that are used for

robustness and agility experiments.

Determine constraints

Based on the range of N seen in insects and flapping robots (Fig. 1.11), we sought to
test 10 integer values of N, from N =1 to N = 10. Since we’re interested in resonant flapping
performance, we require the forcing frequency be at the resonant frequency, defined by Eq. A.15.
We previously validated that this expression accurately predicts the resonant frequency in a
series elastic system in [106]. Additionally, we seek to minimize the range of Reynolds number
(Re) across tests. The roboflapper is designed to operate within a range of Re that is similar to
insects and small birds (Re € [10? — 10%)), and significant deviations out of that range introduce
aerodynamic phenomena that may not be relevant to flapping flight at that scale.

Beyond those considerations, we are limited by constraints on the robotic system. Me-
chanically, we must use one of three silicone springs, one of four discrete inertial configurations,
and the same wing with I' = 1.07 x 10~3Nm. On the control side, we found that our system
works best when the flapping amplitude is between ~30 and 120° peak-to-peak and the flapping

frequency is between 0.5 and 3 Hz.
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Table 2.2. Configurations for each value of Weis-Fogh number. Amplitude is given as half of
the peak-to-peak wing stroke angle

N Spring | Inertia | Amplitude (deg) | Frequency (Hz)
1 K1 IA 56.2 1.33
2 K1 IB 40.0 1.40

3 K2 IA 18.7 289 |

4 K2 IB 20.0 2.51
5 K2 IC 25.0 2.05
6 K3 42.5 1.45
7 K3 36.8 1.45
8 K3 31.8 1.80
9 K3 28.3 1.81
10| | K3 25.5 1.82

Choosing configurations for values of N
With three springs and four inertias, we have a total of 12 configurations of springs and
inertia that are possible. We have continuous control of the amplitude and frequency within

functional bounds. The process of choosing a configuration for each value of N is as follows:

1. Given a particular value of N, compute 6, = ﬁ for each of the four inertias. Exclude any

configuration where 6, > 60°

2. Compute the resonant frequency f, based on the remaining inertias and the three available

springs. Exclude any configurations where f; is greater than 3 Hz or less than 1 Hz.

UtipE

3. Compute the Reynolds number, Re = ==,

of flapping based on that amplitude and
frequency as well as wing length and chord, 10 cm and 3.6 cm, respectively. Exclude
configurations with Re >~ 15000, which is near upper limit of Reynolds number for

insects and hummingbirds [107].
4. Select a configuration for each value of N from the non-excluded configurations

The final selections are given in Table 2.2.
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2.3.3 Experiment 1: Starting from Rest and Changing Amplitude

We sought to measure the effect of changing N on the time it takes for the system to
respond to a change in input. A straightforward way of doing so is to measure the time it takes to
flap up to full amplitude after startup. Furthermore, we measured the time it takes to reach a new
amplitude after a change in the input.

For each test, the spring stiffness and inertia were set based on the configurations above.
The system was driven by a sine wave position signal to the servo through Simulink Desktop
Real-Time (Mathworks) and a PCIe 6343 interface (NI). The frequency is also set based on the
configuration table, but the wing amplitude is not set explicitly because of the series-elasticity of
the roboflapper. We found previously that modeling does not fully predict the kinematic gain
between angular input and wing amplitude [106]. Therefore, for each configuration, we found
the proper input amplitude to achieve the desired wingbeat amplitude iteratively using a separate
Simulink Desktop Real-Time program, prior to the tests, and recorded the input amplitudes.
When we performed each experiment, we used the input amplitudes to drive the system in
open-loop, which was a fairly reliable way to dictate N (See 2.3).

Each test was run by starting the sinusoidal position signal and running for 15 flapping
periods, long enough for the amplitude to stabilize (Fig. 2.4a). After 15 periods, the sinusoidal
position signal was increased by 50%, and the experiment continued for a further 15 periods.
This was repeated five times for each value of N and sampled at a rate of 1000 samples per period.
Note that we refer to the number of periods and that each experiment was run at a different
frequency (Table 2.2), so the total runtime varied. The final amplitude 6, was determined by
fitting a sine curve to the last 5 periods of the each portion of the test using a bounded nonlinear
least squares method in MATLAB. Then an exponential curve (f(¢) = 6y(1 —e*) was fit to
the peaks of the absolute value of the wing angle in the start and step portions of the data, and
the time to 95% of 8y was computed using fg5 = —In (0.05)A ! £, (Fig. 2.4b&c). To create the

plots, N was recalculated based on actual experimental measurements, and mean and standard
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deviation of both N and 795 were calculated.

2.3.4 Experiment 2: Effect of constant cross-flow

For the second experiment, we wanted to see how N relates to the flapping wing’s ability
to reject environmental disturbances. We did this by subjecting the flapping wing to a constant
crossflow and measuring its deviation from a symmetrical sine wave. The flow was provided by a
submerged aquarium pump (Simple Deluxe LGPUMP400G 400 GPH) fitted with a 1/2” diameter
rubber tube. The outlet of the tube was positioned such that it was aligned with the acrylic wing
in the tank and created the maximal passive deflection (see Figure 2.5a) against the spring, but
did not interfere with flapping, i.e. there was no difference between flapping trajectory whether
the tube was in place or not. We measured the torque on the wing when the pump was on and the
flow was perpendicular with the wing. We found that the torque was approximately 0.01 Nm,
only enough to deflect the softest spring about 3.5 degrees. The maximum peak aerodynamic
torque across the experiments is for N = 1 and is Tumax = I'(80)?(27f)? = 0.072 mNm. Thus the
magnitude of the perturbation is significantly lower than the maximum drag induced by flapping
motion, but is still enough to induce asymmetry in flapping.

We ran the flapper with a constant sinusoidal input that produced a wing amplitude
consistent with the proper configuration at each value of N. We recorded the wing trajectory
with the pump off to set a baseline at each value of N, then turned the pump on. We analyzed the
impact of aerodynamic perturbation on the flapping kinematics by fitting a sine function to the
wing trajectory at steady state using MATLAB functions (Mathworks) and recording the fit error
(RMSE). The fit error was normalized to the flapping amplitude at that configuration so that it
represents the fraction of flapping amplitude and is unitless. Additionally, we noted a change in
steady flapping amplitude with the pump on, and plotted the relative change in amplitude from

the no flow case to the constant flow case.
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Table 2.3. Mean Experimental N values and standard deviations

Goal N | Actual N
1 1.0£0.01
2 2.04+0.01
3 3.0£0.01
4 4.0+0.01
5 5.0+£0.04
6 6.0+0.01
7 6.9+0.02
8 8.01+0.02
9 9.0£0.03
10 10.0£0.03

2.4 Results
2.4.1 Start time and step time increase linearly with N

Having computed the time it takes the system to start up and get to 95% of the final
flapping amplitude, we multiplied by the frequency of flapping, normalizing to the number of
wing strokes. The results across N are shown in Fig. 2.4b. We see that there is a clear relationship
between increasing N and increasing time to full amplitude. Configurations with N =1 or 2
are at full amplitude within a single wingstroke, whereas N = 8 — 10 systems take four or more
wingstrokes.

The relationship is linear (y,,+ = 0.486N — 0.243), but there is a small amount of spread
both vertically and horizontally (Appendix, B.1) for each value of N. The vertical spread is
to be expected due to fitting in the presence of noise, but we also found that the rise time was
sensitive to whether or not the system was at exactly the resonant frequency, maximizing the
kinematic gain (Gy = 6,/ 0inpu:). This was a more significant issue at higher N because of the
steeper resonant curve, and the added mass of the system would have made it susceptible to small
asymmetries and potentially larger friction, though that was mediated by thrust ball bearings.
The horizontal spread indicates that we were not always exactly at the desired value of N. The

means and standard deviations of N from 1-10 are shown in Table 2.3.
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Figure 2.4. Responsiveness Experiments. a) We drive the series-elastic system via servo
(blue) and measure the emergent flapping kinematics (orange). We fit exponential curves to the
flapping peaks during start up (yellow) and after an input step (purple) 15 cycles after start. The
exponential rates decrease with larger N. The measured time (in wing strokes) to full amplitude
is linearly related to N (b & c). However, the effective value for N is less than prescribed after
the step due to an increase in flapping amplitude (c).

The response time after a step increase in input also has a clear linear relationship with N
(Fig. 2.4c). The linear fit is slightly different from the startup data (zs4,+ = 0.503N — 0.376), but
they largely fall upon the same line. The major difference between the two is that because of
the change in amplitude after the step, the effective value of N is lower than it was before the
step. The effect is a compression of the datapoints along the diagonal, since the response time

decreases along with N.

2.4.2 Sinusoidality of wing kinematics decreases with increasing N

Figure 2.5 shows how increasing N results in more sinusoidal flapping kinematics in the
presence of perturbations. Asymmetrically warping of the wing trajectory by an external flow
leads to non-sinusoidal wing kinematics and a “lumpy” phase portrait (Fig. 2.5a). When there
is no flow across the wing, wingstrokes are very close to sinusoidal (circular in phase space)
regardless of N. When the flow is turned on, however the kinematics are affected significantly

and deviate from sinusoidal (Fig. 2.5b). Note that the trajectories are “lumpier” when N is small,
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but also that there’s a decrease in flapping amplitude overall at higher N.

When we fit a sine wave to each trajectory in MATLAB, we are provided with “goodness
of fit” metrics, including root mean squared error (RMSE), which quantify how well a sine wave
fits to the data. This error will never reach zero, but for the no-flow case, it is small - just 0.76%
of the flapping amplitude. We find that the error at low N is much higher than at high N, from
a maximum error near 8% of the flapping amplitude, to a minimum just above the baseline fit
error.

Based on Eq. 2.20 and our association of Q and N, we expect that the influence of
asymmetric flow should be inversely proportional to N. We used built-in MATLAB functions to
fit an inverse curve AN~ + C to the error data, setting C = 0.0076, the baseline no-flow error.
The optimal curve (P;,(N) = 0.053N ! +0.0076) based on the linear analysis does a fairly poor
job of fitting the data (R* = 0.80). Thus we relaxed the constraint on the power of N and fit the
curve AN—8 4 C, which produced a curve (P;;,(N) = 0.073N 743 4-0.0076) that fit the data
much more closely (R?> = 0.97). Noting the reduction in flapping amplitude in the flow cases, we
also measured the final amplitude for each N configuration and compared to the amplitude at that
value of N. We found that the amplitude was consistently reduced by about 16.4%, regardless of
N. This is unlike the expectation in the linear (viscous) case, where we would not expect to see a

decrease in amplitude, just a shift in the center of oscillation.
2.5 Discussion

2.5.1 Control authority and Weis-Fogh number

We have shown that the time it takes for an insect or flapping-wing robot to respond to a
control input is linearly related to N. Thus a flyer with a greater Weis-Fogh number - determined
by their wing mass, wing shape, wing-stroke kinematics, and wing pitch kinematics - will have
reduced control authority when it comes to starting, modulating, or stopping wing kinematics. In

order to perform high-speed agile maneuvers, insects need to be able to quickly modulate lift
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Figure 2.5. Description of the Constant flow experiments. a) Schematic of the orientation of
the water jet relative to the wing, and conceptual representation of the effects of flow on time
and phase domain plots. b) Variation in limit cycle plots across N. Plots show 2 periods of
steady oscillation with and without flow, at different values of N. c) Plots of fit error for flow
and no-flow cases across N, as well as fit lines for expected N ~! function and a best fit curve. d)
Ilustration of relative amplitude decrease across N, and mean at 84% of full amplitude.
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and drag forces, which they can do by modulating amplitude, frequency [108], wing rotation
[39], [109]. However, because of the increased inertial component of a high Weis-Fogh number,
control inputs are likely to be damped out to some degree, especially if those inputs come from
modulations of the flight muscle. Therefore, other methods, such as the modulation of wing
angle of attack or joint characteristics via steering muscles [5] may be more effective at high N
since they can modulate both amplitude and Weis-Fogh number by changing the aerodynamic
characteristics of the wing.

Our input step experiments demonstrate that, since NN is a function of flapping amplitude,
changes to amplitude also change the control authority. Figure 2.6 shows the degree to which
N and transient time shift due to the increase in amplitude. The arrows start at the points
corresponding to the start up time and point to the location in the plane where the step time is
located. The arrows more or less follow the trendline, and the length of the arrow is greater for
larger starting values of N.

In engineering, control authority is critical for ensuring that a system can meet perfor-
mance objectives like stabilization in the presence of disturbances and trajectory following. The
loss of control authority - stalling in an airplane, for example - can lead to catastrophic failures if
it is not regained in time. In insects, the ability to quickly maneuver through an array of obstacles
or out of the grasp of a predator is similarly important. Since N is relatively easy to measure
for a particular species of insect, requiring just estimates of wing mass, wing shape, and wing
kinematic data, it may serve as a useful metric for an insect’s relative ability to perform agile

maneuvers.

2.5.2 Higher N provides greater stability in unpredictable natural
environments

An insect that needs to be more agile may benefit from a lower N, but there is a tradeoff.
At lower N, the inertia of the wing during flapping is on the same order as the aerodynamic

forces, so environmental flow has a larger effect on flapping kinematics. This can pose issues for
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Figure 2.6. Amplitude increases due to a step increase in input amplitude lead to commensurate
decreases in N and transient time. Data points are shown in color, and gray arrows indicate the
movement due to increased control input. The arrows are all roughly aligned with the trendline.

an insect, since steady wingbeats are necessary to produce consistent lift. Our flow experiments
show that an insect or FWMAYV with body elasticity is less susceptible to disruptions from the
environment when it has a high Weis-Fogh number. This means that a flapper that needs to fly in
a windy environment may benefit from lower amplitude flapping, more massive wings, and/or

wing shapes that minimize drag.

2.5.3 Weis-Fogh number as the quality factor of spring-wing systems

In the beginning of this chapter, we performed a series of analyses looking at the transient
behavior of a linear spring-mass-damper as an analogue to the spring-wing system. We showed
that the quality factor Q was linearly related to the start up time of the system and inversely
related to the relative effect of external perturbations. Our experimental results with the nonlinear

spring-wing system show similar trends, but with some crucial differences
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Changing amplitude changes the transient time constant

As shown in Fig.2.6, the response time of the spring-wing to a control input depends not
just on the magnitude of the input, but also on the amplitude of flapping. This is an inherently
nonlinear phenomenon due to aerodynamic damping, and is not the case for the linear system.
However, since the shift induced by the amplitude change (gray arrows, Fig. 2.6) follows
the trendline fairly closely, it does seem that the relationship between N and response time is
maintained despite the transient changes in V.

The actual relationship we expect between response time (defined at 95% of the full

amplitude) and Q based on equation 2.18 is

. —In0.05
fos = HTQ —0.950~ 0 (2.25)

If we inspect the trendline we fit to the start up time, we find the relationship

f95 = 0.486N =~

N
5 (2.26)

Thus it appears that in this nonlinear case, N has the same effect on the transient response rate as
20.
Nonlinear aerodynamics results in more stability at higher N

In the beginning of this chapter, we argued that an external flow should affect a linear

spring-mass-damper less as Q increases, i.e.

Q)
Fflow = anv (2.27)

Thus we expected an inverse relationship between N and flapping non-sinusoidality. Additionally,
we expected that a flow should cause a consistent off-center stretch in the spring, i.e. a steady-state

offset in the positive x direction (Eq. 2.20), but maintain the same flapping amplitude.
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In fact, we found that an inverse (N ') relationship did not fit the data well. Instead, a
function with N~1-74 fit better, suggesting that the quadratic relationship between the system
and the flow asymmetry, I'|x — v|(x — v), introduces dynamics that result in greater kinematic
stability. Additionally, we see that unlike in the linear system, the flapping amplitude is affected
by the asymmetry, causing a decrease in overall amplitude. This would be detrimental to a
high-N flapping flyer’s ability to produce lift, but as long as it is not using maximum muscle
strength during normal flapping, it should be able to increase the force it uses to drive the wings
to achieve the necessary amplitude. This is in contrast with a low-N flyer, who would need to
control amplitude variations within a single wingstroke to maintain smooth flapping, regardless

of the strength of the muscle

2.5.4 Weis-Fogh number as a performance metric for flapping fliers -
living or engineered

In this and previous work [106], we have shown that the Weis-Fogh number is a metric
that encompasses important performance characteristics for flapping flight: dynamic efficiency,
responsiveness/agility, and stability. When we observe the distribution of Weis-Fogh Number
across a wide range of insects, we notice that, large or small, they seem to exist in the range of N =
1 — 8. There are some exceptions, of course, but they are characterized by the exceptionally small
flying insects who fly at extremely low Reynolds numbers, and butterflies, whose exceptionally
large wings an stuttering flight distinguish them from the controlled hovering of flies, bees, and
hawkmoths. The fact that other insects who rely on fast wingbeats exist in this constrained
range of parameters suggests that the variation in N reflects a balance of different performance
tradeoffs

This principle is one that is a fundamental aspect of engineering design. In optimal

control design, for example, the problem of finding an optimal controller for a particular linear
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Figure 2.7. Flapping system performance tradeoffs. a) Higher N means greater flapping
amplitude for a given actuator, b) but dynamic effiency decreases with higher N due to internal
losses. ¢) Lower N also leads to faster response times, but d) more vulnerability to aerodynamic
perturbations. e) This may point to an explanation for the number of insects (and FWMAV5)
across orders of magnitude of size that remain within the range of N = 1 — 8. Values of N for
insects are calculated based on data from Weis-Fogh [55], Ellington [95], and Farisenkov et al.
[2]. Two robots are also plotted, the Harvard Robobee[22] and a larger FWMAYV from Hines et
al. [104]. See Appendix B for methods of computing N from the Ellington and Farisenkov data.
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system with state x and input u is defined:

xX=Ax+Bu (2.28)

_ [Trr T
J= /0 [x" Ox+u" Ru| dt (2.29)

where J is a quadratic cost function that is weighted by matrices Q (unrelated to quality factor) and
R. The choice of those matrices is an important one because the relative weighting emphasizes
the importance of tracking a setpoint or trajectory (Q) vs the importance of minimizing control
effort (R). Designing, say, a flying robot to track a fast-moving trajectory is possible by weighting
the Q matrix heavily, but that may result in large control effort and energy use. Alternately,
if a designer is working with a limited power supply or power-limited motor, it may be more
important to emphasize control effort and sacrifice tracking speed or accuracy.

Similarly, mechanical system parameters can reflect tradeoffs between agility and stability.
Fighter aircraft with adjustable wings are one example of a system that can shift from a more
stable shape (wings extended) to a faster, more agile, but less stable configuration (wings folded).
This has been taken to an extreme with fighter jets with forward-swept wings, like the Grumman
X-29, which trades off high maneuverability for increased instability. Indeed, there is even some
evidence that wing morphing in birds similarly leverages aerodynamic instability to improve
flight performance [110].

Thus it makes sense that the evolutionary development of flapping flight should also
balance energetics, agility, and stability. Perhaps the restriction of flapping animals to this
region of N = 1 — 8 is the combined effect of 1) decreasing dynamic efficiency, 2) decreasing
responsiveness, and 3) increasing stability with N. Those, combined with the necessity of elastic

energy exchange to maintain efficient flight, may constitute a driver of evolutionary change.
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Chapter 3

Self-Excited flapping in Asynchronous
Spring-Wings

3.1 Introduction

Flying insects can be classified into one of two actuation strategies: synchronous and
asynchronous (Fig. 3.1). Wingbeats generated by insects such as moths and locusts are “syn-
chronous” with the periodic signals from the nervous system that cause muscles to contract;
the rate of the wingbeats is set by the nervous system. On the other hand, insects such as bees
and flies rely on the automatic response of the muscle to stretching. They are able to generate
self-excited wingbeats whose frequency is not correlated with signals from the nervous system
and are therefore “asynchronous” from the neural signals; the rate of wingbeats is set by muscle
and body mechanics. A key specialization in asynchronous muscle is a phenomenon called
delayed stretch activation (ASA). After the muscle is stretched, its tension increases, reaching a
peak that is delayed in time w.r.t. the stretch (Fig. 3.2). When the muscle contracts, it also under-
goes shortening deactivation, where the tension in the muscle similarly decreases in response
to shortening [4], [67]. Due the lag in stretch-activated peak force, two such muscles arranged
antagonistically in the insect thorax tend to naturally oscillate, flapping the wings with no direct
input from the nervous system while sufficient energy is present. Efficiency is further improved
by the shortening deactivation, since the agonist need not overcome the tension of the antagonist

during contraction [111] The overall effect has been described as being similar a system with
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Figure 3.1. a) Insects such as moths use synchronous actuation. This is characterized by a
periodic signal from an internal source with rate @,;,gpea:- b) Bumblebees are an example of
an insect using asynchronous actuation. This is characterized by feedback, where the rate of
the mechanical system @, interacts with the rate of the feedback @yeeqpack to produce the
wingbeat.

“negative viscosity””, which sustains oscillations by injecting energy to overcome internal and
external (aerodynamic) losses [59], [60] This adaptation is thought to enable the extremely high

frequency (100-1000 Hz) wingstrokes of small insects, and may help enable efficient flight [4]

3.1.1 Asynchronous muscle background

Biologists have studied asynchronous muscle in isolation by carefully removing the
muscles from the insect thorax and applying techniques adapted from materials science such as
measuring dynamic stretch responses and measuring cyclic force-strain curves [58], [65], [70],
[112], [113]. Their results have been used to characterize asynchronous muscle as an active
material and compare muscle behavior across species [73], [111] and between lines of transgenic
flies [71]. However, biologists have typically been interested in the elusive bio-molecular
dynamics from which the dSA phenomenon arises in insect muscle [61]. To date, few have
looked carefully at how asynchronous muscle dynamics affect the overall dynamics and control
of an asynchronous insect. To improve our understanding of the mechanics of the insect flight

system as a whole, it is necessary to characterize the system level behavior of asynchronous flight:

71



Muscle Fiber
ACa?* ¥ C

h
AL—=S=—=@——\F ‘ o0
AT %0 Giant Waterbug 3 Panamcan
Force 200 | 150 | ! |
Transducer 3 . | :
‘ 150 f wo | ! Crane Fly I
|
Piezo- b A
motor MS"'US:%S 100 | s0r ' )
s ol | (
e — - / L |
= 0
LeRgHi e 4 . . 2 + . ‘ ¥
=z 1 2 3 4 5 200 400 600 800 1000
Force S Time (s Time (ms)
o0
f o 300f 80 £
Ca?* Activation L 70k
c ¥A . ‘
1% muscle length 200 - | 60 -
| i
Phase 2 ‘: ! sof 1l i
ase Phase 4 r ! ! Fruit FI I
N el Hoverfly Ik"\"" 40 ﬂ;‘d y : o
100 + Paer P2
Phase 1 / Stretch activated t 30 _& Mﬁ,’y
~~ | Phase 3 tension t
r 4 . . # t . ‘ , 4
************************ 40 80 120 160 200 20 40 60 80 100
$ Ca?* tension Time  (ms) Time (s}

Figure 3.2. a) Diagram from Swank [74] illustrating the stretch-hold experiment. b) Example
data showing 1% stretch and sample data from Drosophila melanogaster, with each phase of the
transient dynamics labeled. b) Data from Molloy [73] illustrating the different rates of stretch
activation in four insect species. Note that phase 2 is not shown in the waterbug trace (upper left)
- this is due to limitations in the measurement setup, since the phase 2 dynamics are much faster
than phase 3 and 4

the dynamical interactions between asynchronous muscle, the elastic thorax [5], [76], [114] and
the complex aerodynamic forces on the wing [10], [107]. Asynchronous muscle actuation is
thought to provide several distinct advantages to flying insects, including high wingbeat frequency
(wbf), adaptive behavior after wing damage [50], [115], and separation of power and control
[4], [5], [73], [112]. In order to understand how these advantages emerge from the coupling of
muscle and mechanical dynamics, we have set out to generate a model that approximates the
complex physics involved. By studying the simplified version of the complex asynchronous
flight system and robotic models of the dynamics, we expect to glean insights into the dynamics
and control of agile, efficient, and robust insect flight. A deeper understanding of asynchronous
flight dynamics serves to help answer questions about the evolution and diversification of flying
insects, and may also help to develop novel designs and control schemes for bioinspired flapping

wing micro air vehicles (FWMAV5).
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3.1.2 FWMAYV Background

The field of bioinspired flapping-wing micro-air vehicles has seen major advancements
in the last decade. Researchers have achieved controlled flight on tethered [13], [14] and
untethered [15]-[18] FWMAUVs at the centimeter scale. They have integrated sensors [19]-[22]
and implemented robots with a wide range of actuators including piezo bending actuators, mini
DC motors [23]-[25], soft DEA actuators [26], [27], and electromagnetic coils [28]. Others have
developed autonomous control algorithms that (given sufficient knowledge of the state of the
robot) can achieve not just stable hovering, but also impressive feats of agility [29]. The design,
fabrication, and control tools now exist to design novel FWMAVs capable of flight.

However, the performance of such robots still lags behind that of their insect muses. The
agility and versatility of insects like flies, bees, and dragonflies is unmatched by any FWMAV at
similar scales. Untethered FWMAVs at the centimeter scale must be supplied with extremely
high-power energy sources—Ilasers [116] or high-wattage light sources [15]—while insects are
efficient enough to sustain flight over long distances during foraging and migration [117], [118].
Additionally, FWMAV5 are often much more delicate than insects, constructed of 100-micron-
thick carbon fiber, thin polymer sheets, and brittle piezoelectric materials. The dynamics of
flight are sensitive to changes in mechanical properties (wing geometry, inertia, etc.), and yet
insects are able to continue to fly despite damage caused by the environment or other animals
[119], [120]. There is still much for us to learn about how insects achieve their impressive
flight performance and translate these into advances in robotics. To the author’s knowledge, all
previous actuation of flapping wing robots have relied on synchronous actuation strategies. We
hypothesize that asynchronous actuation methods may provide adaptive behaviors that could be
beneficial for flapping wing robots.

In this chapter, we seek to establish principles of asynchronous actuation for flapping
wing robots and to demonstrate some unique properties of dSA actuation for adaptive and resilient

flapping wing dynamics. We will begin by deriving a differential equation for asynchronous
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muscle dynamics based on a common function used to measure the strength and rate of stretch
activation in muscle. We will then integrate it with the spring-wing equation of Chapter 1
to produce a nonlinear state-space model of asynchronous flapping that produces limit-cycle
oscillations. The state-space model enables us to study the stability properties of the system,
which determines the ranges of parameters that produce flapping. Through a combination
of analytical and numerical tools, we then discuss the flapping dynamics, the influence of
mechanical and muscle parameters, and potential methods for controlling oscillations. We
present experiments in the robophysical model that show that an asynchronously-actuated robot
has a compelling ability to rapidly adapt wingbeat properties and respond to collisions with
no direct control. We implement asynchronous actuation in an insect-scale flapping wing
as a proof of concept towards creating a full asynchronous FWMAV. Finally, we discuss the
application requirements for asynchronous flapping systems of any type, and describe a sensorless

implementation using a common DC motor.

3.2 A phenomenological input-output model of asyn-
chronous muscle

The first step towards integrating dSA into a robotic flapping system is to express the
observed behavior of asynchrononus muscle as a function of the state of the system. A typical
experiment for quantifying stretch activation in asynchronous insect muscle is described in [74].
The indirect flight muscle (IFM) is dissected from an insect a muscle fiber is isolated from the
muscle. The fiber is fixed between a load cell and a piezolectric actuator that can induce a step
strain in the muscle on the order of 1% of the muscle resting length. The muscle is activated by
the presence of Ca®™ ions in solution, and the load cell measures the tension in the muscle as the
muscle is stretched quickly and held at a particular strain (Fig 3.2a). The characteristic transient
behavior consists of four phases. First, the stretch causes a near-instantaneous rise in tension

(phase 1). Next, there is a fast decay in tension characteristic of stress relaxation (phase 2). In
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synchronous muscle, the tension continues to decay, but in asynchronous muscle, the tension
starts rising again (phase 3) before reaching a peak and finally decaying to a final tension value
(phase 4). Figure 3.2 shows the experiment setup and example data from Swank [74] and Molloy
et al. [73].

The data from the experiment is fitted to a sum of three exponents plus an offset, capturing

the relative strengths and rates of phase 2 through 4:

F=Ke " +K;(1—e ™) +Kee ™ +c¢ (3.1

3.2.1 Characteristics of the dSA fit function

It is helpful to pause here for a moment and consider the influence that the relative
magnitudes of the parameters have on the shape described by this equation. First, we’ll make

some slight modifications to equation 3.1,

F,=Kye V3" —Kze " + Kye X3 +C (3.2)

where we’ve defined y = ry/r3 and k = r4/r3, and we’ve redefined C = ¢ + K3 so that it
unambiguously represents the final tension in the muscle after the stretch. A representative curve

is shown in Fig. 3.3.
Parameter ranges

While many studies fit Eq. 3.2 to insect data [62], [73], [74], [111], [121], few report all
of the resulting fit parameters, typically only reporting the rates or tensions of interest, e.g. the
phase 3 stretch activation rate or peak stretch-activated (SA) tension. However, some general
trends are clear from studying the published data. See Appendix C.1 for a detailed look at curve
fits to data from [73].

First, the rates for each phase are related as r, > r3 > r4. The exact ratios vary, but y

is always greater than 1, and can be greater than 10 (see Appendix C.1). Additionally, « is
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Figure 3.3. Example step responses with 3 = 628 rad s~! (100 Hz), w = 5, and x = 0.1 based
on Equation 3.2. C is an offset caused by passive stiffness, and phase 2 has little effect on the
location of peak tension (yellow star)

defined on the range of (0,1), and is consistently less than 0.2. The phase 3 rate r3 is on the order
of the flapping frequency of the insect, as it has been shown to vary with wingbeat frequency
across insect species [63], [73]. The gains K>, K3, K4 and the offset C have units of tension,
and are likely to vary based on the strength of muscle and/or size of insect [111]. Their relative
magnitudes are harder to parse without a mechanistic model of the underlying mechanics, but we
can assume they’re similar in magnitude to each other. Some researchers have expressed these
dynamics as a generalized Maxwell material model with an active element, where springs and
dampers in series and parallel can express the elastic and viscous behavior of the muscle [59],
[65], [72], [74]. See Appendix C.2 for a theoretical examination of this formulation that relates

the fit parameters to material properties to help build intuition.
Peak Tension

The curve has two tension peaks - one immediately after the stretch (r = 0) and one a

short time later after the stretch-activation has reached a maximum. The first maximum has the
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value

F(0)=K,—Ks+K4+C (3.3)

The second peak (Fig. 3.3, yellow star) is a little trickier to compute. We’d like to first
solve for the time ¢t* at which the peak occurs, but that isn’t analytically tractable with three
exponential terms. However, if we assume that y >> 1, which is typically true, the phase two
dynamics should only have a small influence on peak tension time. Therefore, we drop the phase

2 term and solve for ¢*:

d
—F(t")=0
e

— Ky K'rgeiKrﬁ* = K3}"3eir3t*

— InKyKkr3 — K'r3t* =InKzr; — r3t*

ln(K4Kr3)

* K3r3

— 1l = —
Kr3 —r3
K.
ln(K—;‘K)

AT G

It can be shown that, given y is large (~ 10), the contribution of the phase 2 term is negligible at
t*, and in practice, Eq. 3.4 is very close to the actual value. This is an important characteristic
time of the stretch-activation dynamics, and it is relatively easily measured from data, so it may
be helpful to express the stretch-activation equation in terms of #*. First we give the relationship

between r3 and t*, using Eq. 3.4 and py = K4 /K3:

K—1 c3
— S 3.5
3 In(pgKc)t*  t* 3-5)
Then,
7ﬂl 76;31‘ — (;351‘
F=Ke 7' —Kze ¥ +Kye 3" +C (3.6)

is the stretch-activation transient in terms of the peak tension time.
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We can now proceed to derive an expression for the maximum tension, Fy,, = F;(t*).

Again, we’ll drop the phase 2 component:

Finax = _K3€7r3t* +Kpe M 4 C
1 K
= —K3(p4k) % + Ka(ps k) =% +C
— (K3 — K3pai) (P4 i) 7% +C

Fnax = Ka(1 — ) (pa ) % +C (3.7)

Note that F,,, is not a function of the stretch-activation rate, just the ratio of the phase 3 and
phase 4 rates, in addition to the passive stiffness C and the relative strengths of phase 3 and phase

4. When K3 = Ky, this expression simplifies to

K

Fuax = (1 —x)(x)T% +C (3.8)

3.2.2 A linear systems approach to modeling delayed stretch activation

The expression in Eq. 3.2 is the response of the system to a step in the muscle strain,
which is equivalent to an impulse in the strain rate. This implies that Eq. 3.2 is the impulse
response of the muscle given strain rate as the input. We can express the forcing function as a

convolution of the impulse response with the strain rate,

asa(t) ==g(0)+v(0) 2 [ “g(epit—)ar (3.9)

where g(1) = Kye V3" — Kze "' 4+ K4e¥"3' 4+ C Note the negative sign, which is included to
indicate that stretching in the positive direction induces a negative contraction force.

In the Laplace domain, convolution is a straightforward multiplication rather than an
integration, i.e. Fysa(s) = G(s)V (s). Since an impulse in Laplace domain is unity (1), the Laplace

transform of F; is the transfer function G(s) of the muscle. Obtaining the transfer function of the
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muscle will provide the ability to integrate the muscle dynamics with the spring-wing dynamics
using some straightforward linear systems analysis tools. Taking the Laplace transform of Eq.
3.2, we get

Kz K3 K4 C

— + + - (3.10)
S+rn s+r3 s+rqg s

_FdSA(S) =

Note that this expression takes the same form as use by biologists in the muscle literature [65],

[72]. Combining into a single rational function, we have quite a complex expression:

a3s3 +a2s2 +ais+ap
s* +b3s3 +bys? +bys

(3.11)

with coefficients

a3 =K, — K3+ K4+c

ay =Ky(rs+ry) —K3(ry+rq) + Ka(ra+r3) +c(ra+r3+ryg)
ay = Korarg — Ksrprg + Kyrpry + c(rars + rarg + r3ry))

ay = cryriry

b3=r+r3+ry

by =rar3+rara+r3ra

by = rarary

We know that the ¢ offset term is a result of the long term stiffness of the activated muscle. When
the muscle is inside the body of the insect, we could argue that this stiffness is lumped together
dynamically with the stiffness of the thorax itself. Therefore, if we assume that we can wrap it

into the stiffness term in the spring-wing equation, we can set ¢ = 0 and get a slightly simpler
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expression:

(Kz — K3+ K4)S2 + (K2(7'3 + }’4) — K3 (}’2 + r4) +K4(r2 + r3))s + (K2r3r4 — K3y +K4r2r3)
s34+ (ry+r3+14)s2 + (rar3 +rarg +r3rg)s +rarary

(3.12)
Still, though, this has third-order dynamics and six parameters, which makes interpretability a
challenge. Another simplification would be to wrap all of the gain terms into a single gain term,

i.e. defining a gain term U and setting K, = K3 = K4 = 1 gives us

s2—|—2r3s—|—(7’37’4—”2r4+r2r3) :| (3.13)

H L3 +(r2 413 +14)82 + (rar3 4 rarg +r3rg)s + rarsry

Now we have everything in terms of rates, which can be defined in relative terms: Yy =r4/r3, Kk =

ra/r3.

$2 4 2r35 4 (k= Ky + y)r2 } (3.14)

H [s3 +(1+y+K)r3s? + (Y + Yk + K)r3s + ykrs
However, this still isn’t as simple as we’d like. We make one last simplification to drop the phase
2 dynamics entirely. We justify this by noting that r3 is known to be related to the wingbeat
frequency of insects, and that typically r, is much larger than wingbeat frequency. Thus, r;
shouldn’t have a significant effect on the dynamics of basic steady flapping, and our studies of
the system dynamics should still be relevant. The form of the transfer function when we drop the

phase 2 dynamics entirely is

_ Fasals) _ —prs(1—x)
Gls) = v(s)  s24n(l4+K)s+ Kr%

(3.15)

Thus we have the transfer function that we’ll use to integrate muscle dynamics into the spring-
wing model. It still contains the rate of stretch activation, r3, the rate of decay r4 as the ratio Kk,
and a scaling term that captures the strength of the muscle, y. Based on the form of the transfer
function, the dSA phenomenon is qualitatively similar to a second-order low-pass filter on the

velocity, fed back to the muscle as a force command. The cutoff frequency, . is a function of r3
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and k: @. = r3y/K. The damping ratio of the filter, & = 12K is greater than 1 for all k, so the

2k’

filter is overdamped, and it has a DC gain of %

It’s also useful to define the transfer function from strain to force, Fyga(s) = G'(s)X (s),
which is just G'(s) = sG(s) since V(s) = sX (s) for strain X. Additionally, it may occasionally
be useful to define a function g that we can use to normalize the transfer function. For
example, we might define gq as the integral under the simplified force curve associated with 3.15,

F,=—e 3" 4 e " whichis
Kr3
1—-x

80 = (3.16)

When G(s) is normalized using go, it takes exactly the form of an overdamped lowpass filter

with cutoff frequency r3+/k and a gain of u

_ G(s) —uKr3

= 3.17
g0 s2+r3(1+1<)s—|—1<r§ @17

Armed with the Laplace transform of the muscle dynamics, we are able to reproduce
some results from the asynchronous muscle literature and, importantly for our purposes, integrate

asynchronous muscle into insect body mechanics to study the full asynchronous flight system.

3.2.3 Modeling other characteristics of muscle

Machin & Pringle [59] suggested that asynchronous muscle has linear dynamics given
that the amplitude of strain is suitably small, so the linear transfer function may be appropriate
in that context. However, we’ve simplified the dynamics quite a bit. Are the conclusions that
we draw from these simplified dynamics still going to be relevant in the context of biological
muscle? One way we can evaluate the question is by looking at the other methods (besides the
step-hold experiment) that biologists use to measure characteristics of muscle.

Swank [74] describes in detail a suite of methods that have been used to measure
muscle characteristics, including step-hold experiments, sinusoidal strain analysis, and work

loop experiments. Additionally, researchers have studied the frequency dependence of work and
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power production by asynchronous muscles [62], [71], [122] The following sections detail the

effects of our simplifications through the lens of such experiments.
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Figure 3.4. Dynamic Modulus Analysis. a) Real fly muscle data from Glasheen et al. [71]
collected from 0.5 Hz to 650 Hz. b) Curve from 1 Hz to 1000 Hz With K, = K3 = K4 =1,
r3 = 100Hz, y =5, and k¥ = 0.1. Zero crossing frequencies are between r4 and r3 and r3 and
ry, respectively. In between the crossings, the viscous modulus is negative, meaning that the
muscle does positive work. c¢) Effect of varying the phase 2 gain, K>. Note that there is no upper
frequency bound when K is small and that there are no zero crossings at all when Kj is large.

Sinusoidal analysis

Biologists borrow techniques from viscoelastic materials analysis to understand the
dynamic characteristics of insect flight muscle. An activated muscle is stretched via a low-
amplitude sine wave, and the tension response is measured. Different characteristics, including

viscoelastic behavior and work generated or dissipated by the muscle, can be measured over a
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range of frequencies.

Dynamic Modulus of Muscle One way to gain insight into the dynamics of muscle is to compute
the frequency-dependent complex modulus, which is also called the dynamic modulus. The
dynamic modulus E* is defined as the sum of the storage, E’, and loss, E” moduli, E* = E' +iE",
where i = /—1 [72]. The storage modulus captures the in-phase (elastic) components of the
dynamics, and the loss modulus captures the phase-shifted (viscous) components. In the muscle
experiments, these moduli are computed based on the amplitude and phase of the tension
response relative to the strain input and are plotted against each other (Fig. 3.4a). In linear
systems theory, the plot of loss and storage modulus is also known as a Nyquist plot, which, for a
transfer function G(s), plots the real and complex components over a range of frequencies. Thus,

: . . Fysal:
since we have a transfer function representation of asynchronous muscle, G'(s) = ‘}lg/(‘s(;)

, We can
simply generate the Nyquist plot to visualize the elastic (storage) and viscous (loss) components.

Figure 3.4b shows the Nyquist plot of G'(s) with K, = Kz = K4 = 1, r3 =27(100), v =
5, and k¥ = 0.1. At low frequencies, the muscle response is dominated by the passive stiffness C
and phase 4 dynamics, and the loss modulus is positive. However, when driven with a frequency
closer to r3, the loss modulus becomes negative, and the active force production of the muscle is
able to do positive work. There is a band of frequencies where this negative viscosity persists,
but eventually, the phase 4 dynamics take over, and the loss modulus becomes positive. The
frequencies over which the loss modulus is negative are roughly centered on r3 when all of the
gains are equal; this is still true when we add in the scaling term p, which uniformly scales the
elastic and loss moduli, but does not affect the frequency terms. However, the relative magnitude
of the gains is important, as is shown in Fig. 3.4c. If K5 is greater than the gains on phase 3 and
4, the band of frequencies where the loss modulus is negative becomes narrower, until eventually
it disappears altogether. Alternately, when Kj is scaled down towards zero, the upper bound on
frequencies that produce negative viscosity is increased until eventually at K, = 0 there is no
upper bound. This observation is important to consider, because it means that our simplified

muscle dynamics have no upper limit on frequencies at which the loss modulus is negative. Next,
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we will look at the consequences this has on the muscle’s ability to positive work.

Work Per Cycle and Cycle-Averaged Power
Using the same type of experiment, stretching muscle at small amplitudes over a range
of frequencies and measuring tension, it is possible to calculate the work done by the muscle

over a cycle, and the average power over that cycle. Work per cycle is defined as

T T
Wpcz/o Fm(t)dx:/o Fu(t)v(t)dt (3.18)

where T is the oscillation period, 1/f, and v(¢) is the strain rate. The average power over a cycle

is also simple to compute,

Py = 1/TF () (t)dt—Wpc—W f (3.19)
ca—T 0 m\l )V = T = Wpc .

In asynchronous muscles, work and power tend to be negative at low frequencies, positive at
intermediate frequencies, and negative again at high frequencies [62], [71], [122]. The center
frequency of those intermediate range also seems to be related to the wingbeat frequency of the
insect. In the example from Glasheen and colleagues [62] in Fig 3.5a, data from Lethocerus
(giant waterbug, wbf ~40 Hz [123] and Drosophila (fruitly, wbf ~218 Hz [124]), respectively,
show that peak power generation is at a much lower frequency for Lethocerus than Drosophila.

When we run a similar test on our asynchronous muscle transfer function with identical
parameters (K = K3 = K4 =1, y =35, and k¥ = 0.1), but two different values for r3 (40 Hz
and 218 Hz), we see something similar (Fig. 3.5b-i). Each power curve has two crossover
frequencies, between which positive power (and work, Fig. 3.5b-ii) is done by the muscle,
with a peak in between. The curve scales uniformly with the combined gain u, and the while
the frequencies at which peak work and peak power are different, they scale linearly with r3
(Fig. 3.5¢). The crossover frequency values are located between r4 and r3 and r3 and ry4 rates,

respectively, and actually match the crossover frequencies shown in the Nyquist plots in Fig. 3.4.

84



One can consider the range set by the upper and lower bounds as the range of frequencies at
which the muscle can drive flapping. The extent of that range, relative to r3, is set by the ratios y
and x (Fig. 3.5d-i,ii): Increasing ¥ means increasing the upper bound while having a relatively
small effect on the lower bound. If y is held constant and « is increased, the lower bound moves
closer to r3 and the upper bound decreases, leading eventually to a condition where no positive
power can be produced.

If the phase 2 gain, K>, is varied, as was done in Figure. 3.4, we see a corollary to the
result in the Nyquist plots (Fig. 3.6). While changing K> has little effect on the lower frequency
bound, as K, approaches zero, the upper bound approaches infinity. Thus when K is zero, there
is no upper limit on fregencies at which the muscle can generate positive work and power, just
as in the Nyquist plot there is no upper limit on the frequencies with negative viscous modulus.

Meanwhile, the frequency of maximum work increases slightly, but is still near r3.

3.2.4 Consequences of simplifications

Based on the analysis above, we can now evaluate the impact of our simplifications to
the muscle transfer function in Equation 3.15. First, eliminating the offset term, C, is equivalent
to lumping the muscle stiffness into the parallel stiffness. This has no effect on the power
production of the muscle, and simplifies the definition of the natural frequency of the system,
since it has just one lumped elastic element. Second, using a single gain u to capture the
strength of stretch activation does uniformly scale the magnitude of dynamic and work/power
characteristics without affecting the frequency dependence (crossover frequencies). The relative
ratios of the gains does have an effect on the frequency characteristics, but p will allow us to
modulate strength independently of muscle rate. Third, removing the phase 2 dynamics has the
effect of removing an upper bound on frequencies at which the muscle generates positive work.
There remains a frequency at which work is maximized, but average power has no maximum due
to the relationship P, = W, f. However, the peak work per cycle frequency is not significantly

effected when phase 2 is dropped. The frequencies at which work is done are largely dictated by
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Figure 3.5. Work and Power Curves. a) Data from Glasheen and colleagues [62], showing the
cycle-averaged power of Lethocerus and Drosophila when stretched (0.125% strain) at a range of
frequencies. Wingbeat frequency for each insect shown with an arrow. b) Simulated power and
work using the asynchronous transfer function with r3 = 27 x218 (black) and r3 = 27 x40 (red).
¢) u scales the maximum work peak uniformly, and power scales linearly with r3, implying that r3
scales the peak frequencies linearly. d) (i) Increasing y increases the upper frequency bound and
the peak and lower frequencies to a lesser extent. (ii) Increase k causes the range of frequencies
to decrease, until eventually positive work production is impossible. The critical value of k is
smaller when ¥ =5 (solid) than when y = 10 (dashed). Simulations with r3 = 100, u = 1.
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Figure 3.6. Effect of K> on work and power. Large phase 2 gain relative to phase 1 & 2 leads to
no positive work, while K, = 0 eliminates the upper bound on positive work. Simulations with
r3=100, u=1, y =5, k=0.1
r3, suggesting that our focus on r3 as the rate variable, independent of the strength variable p,
is justified. Finally, the choice of k appears to be important when phase 2 is included, in that
choosing a large k eventually leads to a condition where no positive work can be done because
the upper and lower bounds “pinch off” the negative viscosity range of the muscle. However,
when phase 2 is not present and there is no upper frequency, K is less critical. For the rest of this
work, we will choose k¥ < 0.5.

Beyond these simplifications, there are some significant factors in biological muscle that
we do not attempt to capture. The dynamics of real muscle are extremely sensitive to a variety
of conditions, including activation levels (Ca>* concentration), muscle preparation, and strain
amplitude [62], [74]. Comparison between measurements performed by different researchers
is often challenging because it is not always clear what differences are caused by differences
in experimental conditions and which are caused by differences in muscle characteristics. Ad-
ditionally, experiments in the lab are often performed in very different conditions than in-vivo.

Sinusoidal analysis is often performed at amplitudes well below the in-vivo muscle strain, which
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is significant because the tension magnitude scales with muscle strain, and nonlinearities in the
muscle are introduced when amplitudes are larger [59]. The difficulty of knowing exactly what
forces are produced by muscle, combined with the difficulty of predicting aerodynamic forces,
means that the following analysis will focus on the relative impact on varying muscle strength

and rate, rather than attempting to quantify exact muscle forces.

3.2.5 The asynchronous spring-wing system equations

Next, we will integrate the simplified muscle dynamics into our spring-wing equation
to produce an asynchronous spring wing system. As illustrated above, the force output is the

product of the transfer function and the velocity input:

—HO

_— 3.20
$2 4+ s+ o3 V(S> ( )

Fisa(s) = G(s)v(s) = [

Where we’ve defined oy = r3(1 — k), oo = r3(1 + k), a3 = Kr%. We can distribute the denomi-

nator of G(s) and take the inverse Laplace transform:

SdeSA (S) + OCQSFdSA (S) + a3FdSA (S) = —[lOC[V(S) (321)

o1 = Fasa+ 0F 50+ 03F 50 = — Loy v (3.22)

To connect the dSA actuation dynamics to the inertial, elastic, and aerodynamic elements of
the flight system, we use the nonlinear spring-wing equation to describe flapping systems with
internal elasticity.

The version we use here is slightly different than in Chapters 1 and 2, informed by the

indirect actuation of insect muscle, as described in [76], [108]. We define a transmission ratio
0
T==-=__ (3.23)

where 6 is the wing angle, € is the muscle strain, and L is the resting muscle length. The
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equations of motion in terms of inertia I, stiffness k, drag torque coefficient I', and the applied

torque Tuppiied> as wWell as transmission ratio 7 is:

16 +1'16|60 + —0 = — 3.24
+T6] +T2 T (3.24)

The asynchronous muscle dynamics dictate the torque applied to the system and are scaled by a

gain coefficient, u (units: Nm rad~!), so we may write the combined equations of motion:

.. . k Fy
164+T00/6+ 0= "4
Fy+ 0F, + 03Fy = If‘T Lo (3.25)

Note that we’ve used the fact that v = € and thus v = LiT. Solving these equations simultaneously
gives the trajectory of the flapping wing, 6(¢). The prevalence of asynchronous insects that
employ dSA actuation suggests that this system can produce stable limit cycle oscillations from
the balance between quadratic aerodynamic damping and strain-rate dependent muscle actuation.
However, this is not guaranteed. For example, there may exist combinations of feedback and
mechanical parameters that do not result in oscillations, or other regimes in which more exotic
dynamical behaviors appear (exponential growth, chaos, etc.). It is necessary to identify the

conditions under which a stable limit cycle can be expected to form.

3.2.6 Asynchronous wingbeats result from a linear instability

The stationary state, {9, 0,F,, Fd} =0, is a fixed point of the asynchronous dynamical system
(Eq. 3.25). We now seek to understand if this fixed point is stable or unstable. We ask the
following question: if there is a small perturbation to the closed-loop system with dSA feedback,
will oscillations tend to decay back to the origin or will they grow?

The system described in Eqs. 3.25 is nonlinear and so we can define a new state vector
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where we have defined " = I'/I and @, = % We next linearize about the point s = 0,

constructing the Jacobian and the linear dynamics about the stationary state:

0 1 0 0
2 1
) 0 = 0
§= " I s (3.26)
0 0 0 1
0 _fTal —03 —0h

The growth or decay of perturbations from the stationary state are determined by the eigenvalues

of the Jacobian. The characteristic equation for the linear system is

aru

o)A+ 0> =0 (3.27)

At d® + (0 + ) A + (el +

with eigenvalues A; = a; + iw;.

The sign of the real part of the largest eigenvalue dictates whether a perturbation away
from the stationary point will tend to decay (stable) or grow (unstable). Understanding the
conditions on the stability boundary will enable us to choose relevant feedback parameters to
induce oscillations.

We can determine the boundary between decaying and growing solutions by setting the

real part of the eigenvalue to zero, e.g. A = i@, where o is the frequency of oscillation. Plugging
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Figure 3.7. Plots of amplitude and frequency of dSA limit-cycle oscillations as a function of
r3/m, and p. Dashed lines indicate calculated stability boundaries separating stable limit-cycle
oscillations (large u, r3) from stationary behavior (small u, r3) from equation 3.31. Positive
u represents “pulling” when stretched, whereas negative u “pushes” when stretched. a) Peak-
to-peak amplitude of oscillation grows with increasing ¢ and non-monotonically varies with
r3. Output is saturated at 180 degrees. Amplitude is extremely sensitive to changes in u in the
negative regime. b) Wingbeat frequency (wbf) increases with r3 and p. It is always greater
than f, when u is positive,and less than f,, when u is negative. The white dots represent the
intersection of typical amplitude and frequency of a bumblebee.

in for A and separating the real and imaginary parts, we get two equations:

Real : o* — (0 + a3) 0> + o3> =0 (3.28)
Imag : (0 —0*)+ ot =0 (3.29)
where I = IL% We are specifically interested in how the parameters, ¢ and r3, influence the

onset of asynchronous oscillations due to the instability of the stationary point. Recall the
definitions of the coefficients, @) = r3(1 — k), i = r3(1 + k), a3 = Kr%.
The first equation is quadratic in @?. Solving, we get two solutions: ®* = Kr% and

®” = o?. Plugging each into the second equation, we get a pair of equations:
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0’=w— Q=0 (3.30)
—

%) 1+«
fL= a—(ag—w,%) = (1 - K) (k73 — @?) (3.31)

(1)2

o3

Eq. 3.30 gives the trivial conditions (zero feedback gain = no oscillations), but Eq. 3.31
defines a relationship between the strength of the dSA feedback and its rate parameter, plotted in
Fig. 3.7 (red line). The two equations define 4 quadrants in the 3 — u plane where perturbations

tend to either grow or decay. The two curves are plotted as dashed lines in Figure 3.7

3.2.7 Emergence and properties of dSA limit cycles

In the previous section we demonstrated that for certain dSA parameters the stationary
state is unstable and oscillations will grow. In a system with quadratic damping, a stable limit
cycle may form where the system oscillates such that the energy input from the muscle over
one period exactly balances the energy dissipated by the environment. In order to control
flapping oscillations, we need to understand how the amplitude and frequency of oscillations
vary with the system parameters. The nonlinear aerodynamic damping presents challenges to
deriving analytical solutions of the system. However, we can study the behavior of the system
via numerical simulation.

We simulated the nonlinear equations of motion in Matlab (R2022a, Mathworks) using
the ode45 solver. Parameters for elasticity, inertia, aerodynamic drag, and transmission ratio
were calculated to approximate values found in a bumblebee, which has asynchronous muscle
(Table 3.1. The transmission ratio 7 is based on a typical flapping amplitude of 140 degrees
peak-to-peak and an in-vivo muscle strain of 2% with a resting muscle length of 4mm.

We selected 0.1 as a value for k, informed by the results in Appendix C1. We computed

intercepts of Eq. 3.31,

w, s 1H+K 5
w}’l

l’; — , = —x (332)
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Table 3.1. Nonlinear simulation mechanical parameters

Parameter Value Units
Stiffness 5400 Nm™!
Inertia 24x1071 kg m?
Drag 1.4x1071"" kg m?
Transmission 30500 rad m~!

and defined ranges of u = ,a(ILTZ) and r3 that span the regions around those intercepts. r3 is
varied from O to S®,, and u from -40 to 200, each with 100 steps. We ran simulations at each
configuration and computed the amplitude and frequency of oscillations, which were typically
sinusoidal. The results are shown in Fig. 3.7.

Our simulations confirm that the stability boundary in Eq. 3.31 does divide the plane
into oscillatory and non-oscillatory regions. Systems in the region where p < 0 oscillate at
frequencies below the natural frequency, and show significant sensitivity to changes in yt. The
dark red regions show where oscillations are at their physical limit, 180 degrees peak-to-peak;
beyond this, pairs of wings would likely collide and/or joint limits would come into play. When
u > 0, however, amplitude and frequency vary more slowly. Systems in this region oscillate at
frequencies above the natural frequency, and while increasing p always increases amplitude,
amplitude changes non-monotonically with r3. The lines of constant amplitude and frequency
have varying curvature across the parameter space, but when r3 > ®, they overlap such that there
is a unique combination of r3 and u that produces a particular amplitude and frequency. The
white dot in Figure 3.7 indicates the in-vivo flapping amplitude (140 deg) and frequency (180
Hz) of a bumblebee, which is achieved when r3 = 2.55®,, and p = 175 (fi = 1.96 x 106) This
suggests a potential method of control for these systems where amplitude and frequency may be

set based on the strength and rate parameters of the muscle.
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Figure 3.8. a) Diagram of the dynamically-scaled robotic model and control scheme. b) A photo
of the system

3.3 Implementation in a scaled robotic model

In this section we describe experiments on a dynamically-scaled robotic flapping wing. The
robophysical system has well-characterized mechanical parameters and is easily modified thanks

to its modular design, enabling a range of tests that would be more difficult at a smaller scale.

3.3.1 Design of an asynchronous robotic spring-wing

The robophysical system we use in this study (Fig. 3.8) was adapted from a similar
system described in [106]. It consists of an elastic element (a molded silicone torsion spring), a
main shaft supported by a thrust bearing and radial air bearings, an optical rotary encoder (4096
CPR, US Digital), and a rigid, fixed-pitch acrylic wing in water. The inertia can be changed by
fixing one of a set of inertia plates to the main shaft. Data collection and control of the system
is done via a DAQ (PCle 6323, NI) and Simulink Desktop Real-Time (SLDRT) (Mathworks),
which enables hardware-in-the-loop control at a rate of 1000 samples/s.

The key feature of the asynchronous robotic model is the method of driving the system.
We use a brushless DC motor (D6374 150KV, ODrive Robotics) and a motor driver to capable of

closed-loop torque control at 10 kHz. The angular position of the wing is used as the input to a
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Figure 3.9. Results of increasing (t while keeping the mechanical parameters and r3 constant
(k=416Nm rad~!, I = 1.96 x 10_3kg m2, r3 = 35s~!, and ¥ = 0.5). a) Three representative
plots in the time domain: no oscillation (u too low), a borderline case, and stable oscillations
(u large enough). b) The amplitude of oscillation increases as y increases, and the frequency
decreases slightly.

SLDRT model that implements the dSA transfer function (Eq. 3.15), multiplies the output by
the strength, i, and sends a torque command to the motor via USB, as shown in Fig. 3.8a. The
direct torque control method eliminates the need to explicitly integrate the motor dynamics into

the asynchronous ODE.

3.3.2 Controlling amplitude and frequency in a real system

We tested the effect of changing the value of u in the robotic model while holding
r3 constant. The system parameters are as follows: Stiffness k = 0.416 Nm rad~', Inertia
I=1.96x 1073 kg m?, r3 =35s~! =2.4w,, and k¥ = 0.5. Since we are using a DC motor,
L =T =1 by definition. The value of r3 places this configuration on the side of the stability
boundary that should mean that it oscillates as long as u > 0. However, when we choose a small
value for i, we find that an initial perturbation actually tends to decay back to zero (Fig. 3.9a-1).

In this case, the dSA feedback is not strong enough to overcome the effects of friction in the
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bearings. We don’t model friction in our simulations, but we can see that as (I — 0 in Fig. 3.7a,
the oscillation amplitude approaches zero. When friction is present in the system, arbitrarily
small amplitudes are not possible, so the oscillation decays. Increasing ut leads to a “borderline”
case where the system oscillates for a few periods before decaying again (Fig. 3.9a-11). When
finally crosses the threshold, stable oscillations result from an initial perturbation. We observe a

roughly linear relationship between p and amplitude, as well as a subtle decrease in oscillation

frequency with increasing u (Fig. 3.9, b and c)

3.3.3 Exemplary behaviors of dSA flapping wing systems

Beyond the control of flapping amplitude and frequency, we are able to examine novel behaviors
of dSA flapping wing systems via the robophysical model. We observed that the asynchronous
system was able to naturally adapt to changes in its mechanical properties. Additionally, the
system features an extremely fast response to collisions with environmental obstacles, reducing

the potential for serious damage to the wings or wing transmission.
Adaptation to changing mechanical parameters

Figure 3.10a shows the results of an experiment where additional mass is added to an
inertia plate during an experiment. One might expect that the addition of extra inertia would
cause the amplitude to decrease, as the motor now needs to move more mass. However, we see
that as soon as the inertia of the system changes at r = t*, the asynchronous flapper adjusts to the
new loads on the system, actually increasing in amplitude and decreasing frequency. It adapts to
the new system properties. Keeping the same values of r3 and t, we measured amplitude and
frequency of oscillation for 4 different inertias. Figure 3.10b shows that this trend continues for
higher inertias, suggesting that the product of amplitude and frequency remains roughly constant.

A robot with an adaptive control scheme like this is able to respond to changes to its
mechanical properties automatically. This qualitatively has similarity to the adaptive oscillators

explored for legged-locomotion, in which robots adjust gait and frequency when loads are added
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Figure 3.10. The asynchronous spring-wing adapts to changes in its mechanical system prop-
erties. a) When extra mass is added to the inertia plate on the large-scale robot model, the
system transitions to a new amplitude and frequency. b) When we varied the inertia over a large
range, we saw that increasing inertia decreases the frequency and increases the amplitude of the
wingbeat

[125]. Damage to a wing or accumulation of debris may cause changes in wing inertia that
would seriously impact the performance of a synchronously driven robot whose frequency is
dictated by the resonance curve of the robot [89]. An asynchronously-driven robot, on the other
hand, would simply adapt to a new frequency and amplitude that would still enable it to fly.

As FWMAVs move from safe laboratory conditions to the more unpredictable world-at-large,

adaptation to new situations will be ever more critical.
Fast response to collisions with the environment

Another inevitable consequence of operating in unstructured environments is collisions.
The brittle actuator materials and delicate microstructures that make up typical FWMAVs make
it all the more important to avoid or mediate damage from collisions. We wanted to investigate

the response of the asynchronous system to a collision with a rigid object in the environment.
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Figure 3.11. When the system collides with an obstacle at = ¢*, it naturally stops thanks to
the dSA feedback law. It easily starts up again later as any small perturbation grows back to the
original limit cycle

We fixed an inertia plate to the robotic model that included vertical posts and set the
system to oscillate. At ¢ =r*, we interrupted the motion of the system by causing a post to
collide with an obstacle. We observed that the system stopped almost immediately, well within
a single period (Fig. 3.11). Very shortly after the angular velocity is reduced to zero, the dSA
feedback also goes to zero, causing the actuator to stop driving the wing.

In the synchronous forcing case, represented by the light-colored trace in Fig. 3.11,
the actuator is oblivious to the collision and continues to apply torque to the wing after it has
already stopped, potentially causing damage to the wing structure. The low-level feedback
inherent to asynchronous actuation enables the system to respond immediately, reducing the
potential for damage. In addition, as soon as the system is perturbed again, after it is clear of the
obstacle, it resumes flapping at the same amplitude and frequency. The asynchronous system
naturally avoids damage and does it within a single oscillation period with no need for an explicit
command to stop actuation. It may serve as a sort of distributed control, offloading some need

for the flight controller to respond to environmental disturbances.

3.4 Insect-scale asynchronous flapping wing

As a proof-of-concept demonstration, we implemented dSA feedback on an insect-scale robotic
wing. The wing apparatus, consisting of a thin polymer wing (15mm x Smm x 0.1mm) supported
by a carbon fiber frame, a PZT bimorph bending actuator, and a transmission, is based on the

design from [13] (see Fig. 3.12a). Here, we used just a single wing, supported by acrylic brackets
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instead of a carbon fiber airframe. We aligned a fiber optic displacement sensor (D21, Philtec)
with the tip of the actuator to track the actuator displacement. Oscillations were induced by
an aerodynamic perturbation provided by a toy vortex ring gun (Zero Blaster, zerotoys.com).
We recorded high speed video of the system from the top down as the vortex crossed the wing.
Frames from the video can be seen in Fig. 3.12b.

The output from the displacement sensor was fed into an NI DAQ (PCle 6343) and
used as input the same SLDRT model that implemented the dSA feedback law described in
previous Section III. Typically, PZT bimorph actuators are driven by providing 3 voltage signals:
a high-voltage bias (250V) on one side of the bimorph, a control signal (0V-250V) in the middle,
and ground on the other side. Bending in the actuator is driven by the electrical potential between
the signal and the two sides of the bimorph. To close the loop via dSA feedback, we took the
derivative of the displacement to get velocity and fed the velocity into the dSA transfer function
(Eq. 3.15) with r3 = 225 Hz (~ 3w,). The output was converted to voltage and fed through an
amplifier to the PZT control signal. As with the large-scale robotic model, we slowly increased
W until stable oscillations were observed. Fig. 3.12 shows the result of two tests: one with u too
small to overcome friction, and one with a large enough u to induce oscillations. Larger values
of 1 may have provided larger amplitudes, but we used this minimum u value in our testing to

avoid overloading the actuator and the robot.

3.5 Conclusion & Future Work

In this paper we derive and study the first dynamical system representation of asyn-
chronous wingbeat actuation in flapping wing robots and insects. The dSA feedback control law
that we have described here is a novel method of achieving flapping in robots. Asynchronous
actuation in current FWMAVs is simple to implement and requires only 1) a state estimate via
strain gauge, encoder, gyroscope, or other sensor and 2) knowledge of the internal dynamics of

the actuator. The method can be applied to a wide range of actuators using relatively simple
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analog hardware or simple digital logic. The resulting system naturally oscillates powered
and can be controlled by adjusting the feedback parameters OR by changing the mechanical
properties (e.g. wing inertia) of the robot.

While our implementation of asynchronous actuation relied on actuators, sensors, and a
feedback loop, the dSA response of insect flight muscle is “material” property of the muscle.
Thus asynchronous wingbeats emerge from the lowest level of mechanical feedback within
asynchronous insects. Future work to engineer such low-level feedback properties into active

materials and circuits will be of great interest for future FWMAVs.

Acknowledgements

Chapter 3, in part, is a reprint of the material as it appears in Lynch J, Gau J, Sponberg S,
Gravish N. Autonomous Actuation of Flapping Wing Robots Inspired by Asynchronous Insect
Muscle. In: 2022 IEEE International Conference on Robotics and Automation (ICRA). Philadel-

phia, PA; 2022. The dissertation author was the primary investigator and first author of this

paper.

101



Chapter 4

Transitions between Synchronous and
Asynchronous Flapping

4.1 Asynchronous Insect Flight Muscle Background &
Motivation

Unlike the many insects that power each wingstroke with one-to-one, “synchronous”
neural activation of flight muscles at up to ~100 Hz (Fig. 4.1a), some insect species require high
power output at even higher frequencies. In these asynchronous species, the flight power muscles
possess a delayed stretch activation (dSA) response [4], which causes wing oscillations to self-
excite without the need for regular timing from the nervous system (Fig. 4.1a). This delayed
stretch activation is a physiological property of some muscles in which an imposed stretch
causes a time-lagged rise in tension even under constant activation (Fig. 4.1b). Neural activation
potentiates asynchronous muscle through the sustained release of calcium, but oscillations arise
due to the antagonistic action of two muscles, both with delayed stretch activation properties.
Although insects with asynchronous muscle evolved from synchronous ancestors, these two
modes of flight have been widely thought of as distinct strategies, but with multiple transitions
between them [67], [75]. However, with new phylogenies of flying insects and dynamic systems
modeling of insect wing mechanics, we have the opportunity to reexamine this dichotomy and

why repeated transitions can occur.
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Figure 4.1. Phylogenetic comparative analysis of insect wingbeat actuation reveals a likely single
origin of asynchronous flight muscle. a) Synchronous muscle has a 1:1 relationship between neural
activation (blue dots) and muscle contraction. Asynchronous muscle contraction is independent of the
precise timing of neural activation (red dots), arising from delayed stretch activation (dSA) [4]. b) The
physiological signature of a aysnchronous muscle is that when impulsively stretched it produced a delayed
force of magnitude F, that peaks after a characteristic time, fy, determined by the rising and falling
rate constants r3 and r4 (see methods).c) Ancestral state reconstruction[126] reveals based on muscle
ultrastructure (not physiology) that a single evolutionary origin of asynchronous fiber types is most
likely using an insect-wide phylogeny resolved to the ordinal level [127]. Tip states were identified from
literature for orders with a conserved muscle type, and, in orders with known interspecific muscle type
variation (Hemiptera, Psocodea, Hymenoptera, see Methods). d) By iteratively constraining ancestral
nodes (see Methods), we find that the synchronous flight muscles of Lepidopterans (including M. sexta
are most likely evolved from a asynchronous ancestor (“secondarily synchronous”) as opposed to having
only synchronous ancestors (plesiomorphic).
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4.2 Asynchrony has likely evolved only once in flight muscle,
with many reversions to synchrony

4.2.1 Phylogenetic state reconstruction

We first examined the evolution of synchrony and asynchrony using maximum likelihood
phylogenetic state reconstruction [126] (see Methods). We find that there has most likely been
only one evolution of flight muscle asynchrony at the order level. There is an 86% likelihood of a
single transition from synchronous to asynchronous in the ancestor of the clade of Thysanoptera
+ Hemiptera + Psocodea + holometabolous insects (Node 200) occurring 407 million years ago
(Fig. 4.1c, Extended Data Figures D.1, D.2, D.3, Supp. Data Table 1, 2). Although asynchrony
was thought to have evolved 7-10 times throughout insect flight [4], [75], [128], earlier analyses
were not done using phylogenetic ancestral state reconstruction. Only recently has an insect-wide
phylogeny enabled resolution of the major orders [127]. We established the state of extant species
from existing literature on muscle ultrastructure and histology (see Supplementary Data Table
S1). We first assumed an equal rates model of evolution and utilized a Markov chain Monte
Carlo approach to estimate the state of ancient insects. In the most likely reconstruction, there
have been many independent reversions back to synchronous flight muscle from the single origin
of asynchrony at the order level. Species with this reversion are secondarily synchronous flyers
(Fig. 4.1c, Extended Data Figure D.3). We found that Mecoptera, Lepidoptera, Neuroptera,

Megaloptera, and Raphidoptera are all most likely secondarily synchronous orders.

4.2.2 Result is consistent across models of evolution

This pattern of transitions is consistent across alternative models of evolution. The best
fit model (all transition rates different with ambiguous coding of wingless species) actually
produced a 100% reconstruction of a single asynchronous origin at Node 200. However, even
if muscle structural data is available across most orders, we still only have samples from a

small number of all insect species. Therefore, we show the more conservative equal rates model
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(Fig. 4.1c). Incorporating heterogenous rates across the phylogeny [129], [130] did not produce
better model fits (see Supplementary Information IIA). Ancestral state reconstruction can change
with more sampling and different phylogenetic reconstructions, but the current best evidence
supports a single origin of asynchrony at the order level. Most importantly, our analysis raises
the possibility that the physiological properties associated with asynchrony, such as delayed
stretch activation, could be conserved in secondarily synchronous fliers. If so, this would provide
evidence that both modes can co-occur across the phylogeny even if the muscle ultrastructure

appears as a specific type.

4.3 Secondary synchronous fliers can maintain asyn-
chronous capacity

Previous tests of the synchronous flight muscle of locusts (Fig. 4.1b), found no evidence
for delayed stretch activation [4]. This contributed to the idea that delayed stretch activation
was a specialization restricted to asynchronous muscle and that there is a dichotomy in muscle
properties associated with the two flight modes. In the presence of tonic calcium levels maintained
by a relatively slow neural drive, asynchronous muscles exhibit delayed stretch activation and
also a delayed drop in force following shortening (delayed shortening deactivation) [4], [75].
These complementary effects enable power production by establishing a time delay between
force and displacement. However, because orthopterans (including the ancestors to modern
locusts) diverged from other insects before the first asynchronous fliers, the lack of delayed
stretch activation in locusts may not generalize to secondarily synchronous insects (Fig. 4.1c).
We next explored whether asynchronous muscle properties were conserved in the hawkmoth

species Manduca sexta — a secondarily synchronous lepidopteran (Fig. 4.1d).

4.3.1 Measurements of stretch-activation in Mandua sexta

Unlike in the locust example, we identified a delayed increase in force following stretch

in M. sexta flight muscle — the hallmark feature of delayed stretch activation (Fig. 4.2a,b). After
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Figure 4.2. Secondarily synchronous hawkmoth flight muscle exhibits delayed stretch activation —
a hallmark of asynchronous flight. a) M. sexta intact, downstroke flight muscle, (dorsolongitundinal
muscles, DLMs, N=9, 1 trial per individual), was mounted on an ergometer and electrically stimulated
at 150 Hz to establish tetanus. Muscle viability was maintained using a saline drip at a constant 35
°C. b) We applied stretch-hold-release-hold strains, matching in vivo strain amplitudes of 4.5% [131]
while measuring stress normalized to tetanus. Positive strain (€) and force are defined in the shortening
direction (opposite stretch). Experiments reveal delayed force increase characteristic of asynchrnous
muscle physiology. Black line denotes mean muscle stress normalized to tetanic stress, gray lines show
individual trials. c) Magnification of the box in (b) shows the delayed stretch activation (dSA) response. A
sum of exponentials mathematical formulation of delayed stretch activation (Eq. D.1 — red line) accurately
fits the mean normalized stress (black line). The initial transient is the viscoeleastic response of the muscle
and the subsequent rise and fall is the stretch activation d) Despite being synchronous, M. sexta’s delayed
stretch activation rising rate constant, r3, lies near the prior empirical finding of a linear relationship
between r3 and wingbeat frequency by Molloy[73] (123.4 4 52.6 s~ ! at 25 hz — black star, error bars
obscured). We scaled r3 values to ambient temperature using published relationships (Eq. 2 & 3 from
Molloy et al. [73]). Hemiptera, Diptera, and Hymenoptera data and black regression line plotted from
Molloy et al. [73]. e) Peak stress for M. sexta delayed stretch activation (F,), tetanus, and twitch. Delayed
stretch activation (dSA) stress is shown with (IIR) and without (Emp) infinite impulse response correction
(see Methods). Boxplots denote mean, quartiles, and range of the raw data; circles denote individual data
points.
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reaching 203 & 44 kN m~?2 during constant activation at 0% strain, we stretched the primary
flight downstroke muscles (DLMs) to 4.5% strain and observed a subsequent increase in stress
of 32.1 £ 9.9 kN m~? that was delayed by 29.0 4 6.6 ms after the conclusion of the stretch.
However, following shortening we did not observe delayed shortening deactivation. Many stretch-
hold-release-hold experiments on asynchronous muscle detect both delayed stretch activation
and delayed shortening deactivation [4], [73], [132], while others observe delayed stretch
activation without delayed shortening deactivation [64], [69]. Delayed shortening deactivation
may be driven by distinct molecular mechanisms and may not be a necessary feature for
asynchrony. Thus, while M. sexta is a synchronous flyer, their flight muscle exhibits the

necessary physiological properties to enable asynchronous flight.

4.3.2 The rate of delayed stretch activation in M. sexta is comparable to
asynchronous insects

The presence of delayed stretch activation in a synchronous insect creates a dilemma:
Why does delayed stretch activation not cause wingstrokes that are asynchronous in M. sexta?
This limitation could arise from ineffective timing or insufficient magnitude of the delayed
stretch activation. The timing of the delayed stretch activation response is typically characterized
by fitting a sum of three exponential terms with rate constants r,, r3, and r4 [73] (Red curve
Fig. 4.2c, and see Methods). The rate constants represent three phases of delayed stretch
activation: a fast drop in tension (r,) corresponding to the fall of the viscoelastic response (stress
relaxation), a delayed tension rise associated with stretch activation (r3), and a slow drop in
tension as stretch activation decays (r4). The rising rate of stretch activation tension (r3) is
linearly related to wingbeat frequency in asynchronous insects [73] and is linked to the rates of
crossbridge attachment and detachment [133]. These relationships suggest that r3 is the single
critical parameter that establishes the time delay necessary for self-excitation.

Although the rate of delayed stretch activation in M. sexta is sufficient for asynchrony,

the magnitude of delayed stretch activation is likely too low to generate self-excited oscillations.
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We found that the relationship between delayed stretch activation rate constant, 3, and wingbeat
frequency of 25 Hz in M. sexta is consistent with the broad scaling relationship observed by
Molloy across asynchronous insects [73], [134] (Fig. 4.2d, see Methods), which suggests that a

hawkmoth could be asynchronous (Fig. 4.2c).

4.3.3 The magnitude of delayed stretch activation is much smaller than
in asynchronous insects

However, the magnitude of delayed stretch activation was only 36.2 + 13.6% of the
tetanic force (Fig. 4.2e). Direct comparison to literature is difficult because of varying experi-
mental conditions [62], but the ratio of delayed stretch activation magnitude to tetanus is typically
between 100-300% in asynchronous beetles, waterbugs, and flies [73], [135]. Even correcting
for the non-instantaneous stretch used in the physiological experiment, the idealized delayed
stretch activation response (an infinite impulse response — IIR) is still far below tetanic force
in M. sexta (Fig. 4.2e). So M. sexta seems to be a synchronous flyer not because it lacks the
physiological capabilities for asynchronous activation, but rather because it occupies a region
of delayed stretch activation parameter space where asynchrononus forces are not sufficient to
dominate the neurally driven activation and relaxation of flight muscle (synchronous forcing).
Additionally, M. sexta muscle likely reuptakes calcium more quickly than most asynchronous
muscles further reducing the significance of the delayed stretch activation contribution to in vivo

flight conditions.

4.3.4 Molecular components of asynchronous muscle are conserved in
secondarily synchronous insects
However, if the delayed stretch activation magnitude were larger, then it is possible that
M. sexta could generate asynchronous wingbeats. It is not precisely known what mechanism
controls the magnitude and rate of delayed stretch activation [136], but it is dependent on
calcium levels and likely involves recruitment of additional myosin heads (crossbridges) through

stretch-sensitive myofilament proteins [69], [137]. In asynchronous insects, neural activation
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typically only recruits 30% of crossbridges which explains why the stretch activation can far
exceed tetanic activation [138]. One possible way this is regulated is by the ratio of isoforms
of the regulatory molecule troponin which promotes release of myosin-binding sites [61]. This
ratio is correlated with asynchronous force output [62], [139]. Surprisingly, the stretch-activated
troponin isoforms found in asynchronous insects and implicated in delayed stretch activation are
also found in M. sexta [139], [140]. This provides one possible mechanism for residual delayed
stretch activation in moths. Our physiological results indicate that delayed stretch activation
can be present in quite reduced magnitudes and it is already known that the rate constants can
vary widely [73]. The flight muscles of different asynchronous (and synchronous) orders may
have further specialized, especially in extreme cases of performance which may contribute to the
molecular differences observed in some groups [141]—[143]. Our dresults show that conserved
molecular components are potentially part of the same continuous dynamical parameter space

that spans across synchronous and asynchronous flight modes.

4.4 A single dynamics framework for asynchronous and
synchronous flight

The presence of delayed stretch activation in a synchronous insect, coupled with evidence
of many evolutionary transitions from asynchrony to synchrony, suggests that synchronous
and stretch-activated contractions can be two regimes of a single actuation strategy. Building
on the extensive characterization of synchronous and asynchronous flight muscle [67], [73],
quasi-steady flapping aerodynamics [134], [144], [145], and body mechanics [55], [76], [106],
we next developed a biologically grounded model of insect flight in which we can control the
relative contributions of synchronous and asynchronous forcing (Fig. 4.3a). We coupled models
of both synchronous and asynchronous forcing to an established mechanics model that includes
the elasticity of the deformable exoskeleton, wing inertia, and aerodynamic loads [76], [106]

(Fig. 4.3a).
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4.4.1 A feedback model of delayed stretch activation

We developed a model of delayed stretch activation that captures the strain-dependent
force output of asynchronous muscles (see Methods). Delayed stretch activation acts as a
filter (convolution) that transforms strain rate into force through a velocity impulse response
function. Furthermore, the force response to a stretch-hold-release-hold (step) strain input
approximates this response function to an impulsive stretch. This filter can then be applied to
continuously varying patterns of strain (such as during a wingstroke) provided it remains in
the linear regime (See Supplementary Information IIB). Prior experiments have demonstrated
that for low amplitudes the delayed stretch activation response is linear [146], justifying this

approach.
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Figure 4.3. Transitions between synchronous and asynchronous modes requires alignment of
synchronous and asynchronous rates a) The simulated hawkmoth with body mechanics (Eq. 4.2), a
model of delayed stretch activation based on a filter (convolution) of the muscle strain rate (Eq. D.6, D.7),
and an interpolation factor K, which changes the relative strength of stretch-activated (asynchronous)
forcing relative to the neurogenic (synchronous) force development in flight muscle (Eq. 4.1). b) The
cycle-averaged power of emergent wingbeats spanning K, and rate of delayed stretch activation normalized
to the natural frequency of the mechancis (tp/T,,). We observed high-power flapping at both extremes, but
intermediate modes only generated significant power along a bridge where the rate of stretch activation
produces asynchronous wingstrokes at the same frequency as the synchronous drive (25 Hz). M. sexta is
plotted on the same figure based on our measurements of 7y /7, and K. ¢) Emergent wingbeat frequencies
(f) normalized by the synchronous drive frequency (f5). Blue indicates regions where the emergent
wingbeat frequency is entrained to the synchronous driving frequency (f = f). The red regions indicate
where the asynchronous dynamics dominate and the forcing is predominantly stretch activated (f # f;).
The gray line indicates boundary between synchronous- and asynchronous-dominant dynamics. d) A
robophysical system (“roboflapper”) implementing delayed stretch activation feedback, plus real-world
fluid physics and friction. e) and f) are qualitatively similar to the simulations in b) and c), validating
our findings in a real system. However, at low K, and high #y/7,, emergent asynchronous wingbeats were
not able to be produced due to system friction (white region in upper left). Experiments were run on a
20x20 grid of parameters with outputs averaged over 15 seconds of steady-state data. g) A centimeter-
scale robotic wing modeled after the Harvard robobee [13] consisting of (1) wing, (2) transmission, (3)
carbon fiber frame, (4) piezoelectric bending actuator, and (5) displacement sensor for measuring wing
angle. h) and i) show the effects on oscillation kinematics of transitioning from synchronous (K, = 1)
to asynchronous (K, = 0) in real time on a single test platform. The blue and red colors indicate the
synchronous (blue) and asynchronous (red) regimes. Transitions are smooth when synchronous and
asynchronous frequencies are approximately equal (blue and red markers, respectively). However, when
the synchronous frequency substantially differs from the asynchronous frequency, interference between
synchronous and asynchronous dynamics causes the oscillation amplitude and emergent frequency to
fluctuate during the transition regime.
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We fit the convolution filter to the stretch-hold-release-hold response as Fygyc(€,1) =
WF,(—g=*€)(t), where F, is the magnitude of the asynchronous forcing (Fig. 4.1b), € is the
muscle strain rate, and g is the velocity impulse response (Fig. 4.3a, 4.4 and see Methods). We
include p as a scaling factor that tunes the kernel such that max(Fugync(t)) = F, in stretch-hold-
release-hold experiments (Fig. 4.1b, 4.2c). The negative sign in front of the convolution indicates
that a negative strain (muscle stretch) induces a positive (shortening) force response (muscle
physiology conventions define positive in the shortening direction). The muscle strain rate
scales with wing angular velocity by a factor of LT, where L is the resting length of the muscle,
and T is the transmission ratio of angular wing displacement to linear muscle displacement,
LT&(t) = ¢(t). Values of L and T are taken from the literature [131], [147]. To validate our
delayed stretch activation model, we showed that it could capture the asynchronous response of
M. sexta from our experiments and also that it could reconstruct the muscle power of Lethocerus
indicus and Vespula vulgaris, which are asynchronous species (see Supplementary Information

1IB).

4.4.2 Interpolation of synchronous and asynchronous dynamics

In the synchronous case, Fyy,c(t) = Fysin(2x fit) where Fy is the synchronous forcing
amplitude defined as the force necessary to elicit wingstrokes with a realistic sweep angle of 117
degrees in our model under purely synchronous activation (2720 mN in M. sexta, see Methods)
and f; is the synchronous wingbeat frequency (25 Hz). We then combined both types of forcing

via an interpolation factor, K, € [0, 1], to obtain the total muscle force, F,,, where

Fm(‘éat> = KrFsync(t) + (1 _Kr)FaAvync'(é,t)- (41)

The value of K, reflects the relative importance of synchronous versus asynchronous forcing in
the system. Biologically, a high K, means that the force change and crossbridge recruitment due

to neural activation is large compared to the crossbridge recruitment due to stretch activation.
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Figure 4.4. Details of simulation of delayed stretch activation. a) A two parameter model fit
(r3 and r4) of phases 3 and 4 of the M. sexta delayed stretch activation response (Eq. D.2). b)
Diagram of the muscle block alone. Output is a weighted sum of asynchronous feedback and
synchronous forcing, saturated such that it exerts force only in one direction. The sine generator
has a phase, 6y, of 0 for the upstroke muscle and 7 for the downstroke muscle so that together
the two muscles generate sinusoidal forcing. c¢) Block diagram of simulation of antagonistic
muscles under both delayed stretch activation and synchronous forcing.

The sensitivity of flight muscle to calcium compared to the stretch sensitivity of the myofilaments
gives a plausible mechanism for K, to vary across species and over evolutionary timescales.
Because in-flight measurements of F, and F; are unavailable, we approximate K, using the ratio
of asynchronous to synchronous forces measured from isolated muscle under static conditions
(see Supplementary Information). In M. sexta for example, K, is relatively high (0.6) reflecting
that the magnitude of the delayed stretch activation response is low compared to the forces
generated via neural activation alone. Asynchronous species produce a delayed stretch activation

force several times higher than isometric tetanus [4] and would have a very low K,.. By adjusting
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K, from fully synchronous (K, = 1) to fully asynchronous (K, = 0), we can explore the emergent

interactions of synchronous and stretch-activated forcing in the same system.

4.4.3 Incorporating passive spring-wing dynamics

The interactions between strain-dependent forcing and passive mechanics may play a key
role in establishing self-excited oscillations. To incorporate these interactions, we first modeled
aerodynamic damping using a quasi-steady approximation with aerodynamic torque equal to the
wing angular velocity squared, multiplied by a coefficient (I') that accounts for wing shape, air
density, and experimentally measured drag coefficients [134] (See Methods Eq. D.10). We then
used prior estimates of M. sexta wing inertia (I) [134], thorax elasticity (k) [76], and transmission

ratio (7') [147]. This yields our mechanics model which we refer to as a “spring-wing” system:
E, . .k
2 —Jo+T —0. 4.2
7 =16 +T1016+ 750 (42)

This equation captures the indirect actuation of synchronous and asynchronous insect flight
muscle, which act via the deformation of the thorax in parallel with the muscle to sweep the
wings back and forth. Measurements of the M. sexta thorax are well approximated by a linear
elastic spring in parallel with muscle [76].

To reduce the complexity of the delayed stretch activation model we combine (73, r4) to
one time scale #y (see Methods), which is the rise time to peak force (Fig. 4.1b). To compare
across systems we then nondimensionalize this time by normalizing to 7;,, the natural period of

the wing-thorax system. 7}, is determined by the body mechanics alone,

1
T, = zn\/; (4.3)

The interactions between synchronous forcing amplitude and frequency, delayed stretch

activation rates, and mechanical time constants define a parameter space that encompasses both
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synchronous and asynchronous oscillations. As expected, while M. sexta does have delayed
stretch activation, it is firmly in the synchronous regime (K, = 0.6, 1o /T, = 0.54). Its wingstrokes
are largely unaffected by delayed stretch activation (Fig. 4.3b). Delayed stretch activation,
while present in M.sexta, has been reduced to a point where it is less consequential at least at
steady-state, although it may still play a role under perturbed conditions with faster strains and

frequency modulation [108].

4.5 Simulation Results
4.5.1 Simulation parameter sweep with hawkmoth mechanics

Using these same hawkmoth mechanics, we simulated the rest of the parameter space
(Fig. 4.3b,c). The asynchronous regime is capable of generating large amplitude limit-cycle
oscillations even with hawkmoth mechanics, but would require much lower K,.. As the time to
reach peak force of the asynchronous muscle (#j) is increased we observe a bifurcation where
asynchronous wingbeats appear as #y/T, crosses a critical value (see Extended Data Figure
Fig. D.7). When t; is small the muscle tension increase is faster than the natural oscillation
frequency of the body, and thus the delayed stretch activation acts as a brake. However, when %,
is large enough (i.e. the muscle response is sufficiently slow), the delayed stretch activation force
is produced during the oscillatory contraction phase and self-excited oscillations occur. We found
that these regimes of qualitatively distinct oscillations, one periodically forced (synchronous)
and one self-excited (asynchronous), are both able to generate wing kinematics with comparable
amplitudes and frequencies. However, as we transition between these two regimes by varying

K, we observed complex dynamics where synchronous and asynchronous modes interact.

4.5.2 A bridge in parameter space enables smooth transitions between
synchrony and asynchrony

A major function of the flight musculature is to power flight. Therefore, a gradual transi-

tion between synchrony and asynchrony is only evolutionarily feasible if a set of high-power,
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steady periodic oscillations connects the two regimes. Based on our simulations, smooth transi-
tions between the synchronous and asynchronous modes are possible, but only with appropriate
matching of the muscular and mechanical timescales. Both synchronous and asynchronous
oscillations are capable of producing high power (Fig. 4.3b). However, at intermediate values of
K, synchronous and asynchronous dynamics are both present, and high-power oscillations only
occur along a “bridge” where the synchronous and asynchronous dynamics do not interfere (Fig.
4.3c). Thus, transitions in insect flight actuation modes are possible across this parameter space,
but cannot occur when the muscle parameters have diverged off of this bridge.

For the hawkmoth parameters, the origin of the bridge occurs at #y/7, ~ 0.2 along
the K, = 0 axis, which is the location in parameter space where the asynchronous emergent
frequency and the synchronous frequency exactly match (see Extended Data Figure D.7). As the
synchronous forcing becomes stronger relative to the asynchronous dynamics, we see that the
region near 7y /T, ~ 0.2 becomes entrained to the synchronous frequency [148]. Entrainment is
the process where a self-excited oscillating system is forced to oscillate exactly at the frequency
of an external driving frequency (a phenomenon called an Arnold tongue [148]). As we move
away from the bridge along the 7y /7, axis, there is a bifurcation and the the asynchronous and
synchronous frequencies diverge, ending the entrainment, and leading to emergent asynchronous
oscillations (Figure 4.5). Crossing between these two regimes leads to significant interference
between these oscillatory modes, thus leading to lower power, less smooth flapping trajectories
that are unsuitable for flight (see Supplemental Figure D.8 & D.5). The gray lines in Fig. 4.3
illustrate the boundary between the synchronous and asynchronous dynamics. Thus, while
complex aerodynamics phenomenal 149] and sensory-motor feedback systems[150] can exhibit
unpredictable flapping wing behavior, our results indicate that even simplified fluid and body
mechanics under combined synchronous and asynchronous actuation are sufficient to lead to
erratic wingbeat dynamics.

Matching muscular and mechanical timescales is evidently a critical requirement for

both synchronous and asynchronous power production. However, variation in the strength
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Figure 4.5. Emergent frequency and Fourier transform of wingbeats versus K, in simulation.
Left plot shows the normalized emergent frequency (f/ f;) from Fig. 4.3a using a continuous
colormap. Six horizontal lines correspond to values of 7y/7,, where we examined the Fourier
transform of the emergent wingbeats. The six plots in the right column show heatmaps of the
Fourier transform of wingbeat at each value of K. As fy decreases (from top to bottom), the
emergent asynchronous frequency varies, and we see mixing of asynchronous and synchronous
dynamics near the boundary between async and sync regions (shown in gray). The bridge
between synchronous and asynchronous regimes occurs when the emergent async frequency is
exactly equal to the synchronous driving frequency (Plot ¢ in right column).

of the delayed stretch activation response (changing K,), its timescale (¢y), or the resonant
mechanics of the thorax and wings (7},) could enable smooth, gradual transitions across the

bridge, especially over evolutionary timescales. Biologically these parameters will be closely tied
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to the molecular components of the delayed stretch activation, such as the crossbridging binding,
calcium responsiveness, and troponin isoforms mentioned earlier. Evolutionary transitions need
not necessarily be smooth, however our model and analysis reveals the existence of a pathway for
gradual transitions between a fully synchronous and asynchronous regime even while maintaining
high-power wing strokes. This bridge may have facilitated the many subsequent shifts between
asynchrony and synchrony (Fig. 4.1c). However clades like Lepidoptera, which appear uniformly
synchronous, may have subsequently specialized away from the bridge, reflected by M. sexta’s

location in the model simulation.

4.6 Robotic results
4.6.1 A robophysical model achieves both flapping regimes

To test the hypothesis that insects can realize both synchronous and asynchronous
oscillations simply by changing a ratio of timescales and an interpolation factor, we built a
dynamically scaled robophysical spring-wing system, the roboflapper (Fig. 4.3d, Supplemental
Figures 4.4 & D.4). Unlike previous robophysical investigations of flapping wing flight [38], [39],
we did not directly prescribe wing angle versus time in our roboflapper. Instead, we provided
torque commands to a motor that were either feedforward periodic (e.g. synchronous sinusoidal
forcing), or velocity feedback generated (e.g. real-time delayed stretch activation dynamics
model) and the wing angle versus time was an emergent property (see Methods). To mimic
aerodynamic damping and the body elasticity of indirect actuation the motor was in parallel with
a silicone molded torsional spring driving a dynamically scaled wing[106].

High-power synchronous and asynchronous regimes emerge in a single dynamically
scaled robophysical system as in the hawkmoth simulations (Fig. 4.3e,f and Movie S1). As in
simulation, these regions are connected by a narrow bridge that enables high-power transitions
between the two regimes where the synchronous frequency matches the asynchronous frequency.

Unlike the simulation, the fully asynchronous roboflapper K, = 0 does not oscillate when fy /T,
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exceeds ~ 0.3, likely due to friction and viscous damping (see Supplementary Information IID)

that are present in the experiment and not the simulation (Fig. 4.3f).

4.6.2 A robophysical model can transition from synchronous to asyn-
chronous regimes in real time

Having shown that the robotic system produced similar flapping behavior as the sim-
ulation, we wanted to see if the system could transition smoothly between synchronous and
asynchronous modes as K, varies in real time. We hypothesize that insects may have simi-
larly transitioned over evolutionary timescales, and that effective flapping can only occur when
stretch-activation and synchronous rates are matched.

To illustrate this, we chose stretch activation feedback parameters that produced f, =
3.2Hz and ~100 deg peak-to-peak flapping. We also defined a sinusoidal forcing Fiy,c =
F;sin(27x fit) that produces the same amplitude when f; = f,. The roboflapper was started in
a fully asynchronous state (K, = 0) for 3 seconds, transitioned to fully synchronous (K, = 1)
over 3 seconds, held again, and transitioned back and forth several times. The same process
was repeated for four ratios of f to f,: fs/f, =[0.5,1.0,1.1,1.5] The results of the experiments,
shown in Fig. 4.6, show that transitions across the parameter space are robust and reversible, but

only smooth when on the dynamical bridge.

4.6.3 A synchronous insect-scale robot can smoothly transition to
asynchrony

The robophysical model tested our dynamics framework over a wide range of parameters
in a real system. We next test whether these dynamics could produce both synchronous and
asynchronous oscillations at the scale of an insect. Demonstrating synchronous to asynchronous
transitions at the centimeter scale is important because unsteady aerodynamics do not necessarily
scale as quasi-steady phenomena and mechanical systems at small scales can have unexpected
emergent behavior [151]. Moreover, state-of-the-art insect-scale robots currently utilize a

time-periodic voltage input to excite a piezoelectric actuator at the resonance frequency of the
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Figure 4.6. Reversible transitions across the synch-asynch bridge. Smooth transitions occur
only when the synchronous and emergent asynchronous frequencies are matched. In all other
cases, including when the frequencies are nearly matched but not quite, we see interference as
the dynamics transition from one mode and frequency to another. There are also signs of phase
entrainment when the system goes from asynch to synch along the bridge (second plot, 3-5 sec).

mechanical system (i.e. the Harvard “robobee” [13], [152]). The robobee can achieve untethered
flight, but only if there is a sufficient power source [15]. It uses wingbeat frequencies (/= 50-
170 Hz)[13], [22] comparable to many asynchronous insects [73], yet relies on time-periodic
actuation. This prompted us to explore whether a similar platform can generate self-excited
oscillations with the addition of delayed stretch activation (Fig. 4.3g).

To generate delayed stretch activation in the robobee, we used a fiber-optic displacement
sensor to estimate wing velocity. The instantaneous wing velocity was supplied to a real-

time delayed stretch activation dynamics model (the same as for the robophysical system with
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parameters adapted for the robobee) and the output of this model was converted to a voltage that
was amplified and supplied to the piezoelectric actuator. Thus, we were able to establish a real-
time feedback loop between wing velocity and actuator voltage that could generate asynchronous
wingbeats of the robobee. By combining the outputs of feedforward synchronous actuation,
and delayed stretch activation (Eq. 4.1) in real-time experiments we were able to demonstrate
transitions between synchronous and asynchronous oscillations in this robot. We found that we
could generate stable oscillations in both the fully asynchronous and fully synchronous modes
(Fig. 4.3g,h, Fig. D.6, and Movies S2 and S3).

Having shown that we can generate asynchronous flapping in an insect-scale robot,
we wanted to see if the same system could transition smoothly between synchronous and
asynchronous modes as K, varies as shown in the dynamically-scaled roboflapper experiment
above. The synchronous forcing frequency, f, was set to either: 1) match the emergent oscillation
frequency of the fully asynchronous system with r3 = 225,r4 = 135, 67 Hz, (Movie S2), or 2)
not match the asynchronous system, i.e. fy = 20 Hz (Movie S3). Additional experiments at
other frequencies were also performed, as can be seen in Supplemental Fig. D.6 We started by
setting K, = 1 (fully synchronous) and allowing the system to reach a stable amplitude. Then,
we changed K, linearly from 1 to O over two seconds in the Simulink real-time control system.
When f; = f,, there is no appreciable change in amplitude, and high-power oscillations are
maintained across the full range of K, (Fig. 4.3h). However, when f; # f,, interference causes
the amplitude to decrease as the asynchronous and synchronous dynamics interfere (Fig. 4.31).
Eventually, oscillations develop in the fully asynchronous system, but only after interference

from synchronous dynamics is no longer present.

4.7 Discussion

By capturing one of the key evolutionary innovations that enabled high frequency in-

sect flight, this framework may unlock the potential for robotic systems to benefit from both

122



asynchronous and synchronous actuation modes. For insects, asynchronous muscle enabled the
decoupling between muscle contractions and neural input that enables wingbeat frequencies to
exceed the limits of neural firing frequency [4], [5], [75], [153]. An asynchronous flapping-wing
robot may benefit from this decoupling of power and control. Moreover, the ability to transition
between synchronous and asynchronous modes suggests opportunities for even more versatile

control.

4.7.1 Shared dynamics and transitions in insect flight modes

Through introduction of a dynamical model for delayed stretch activation we have
revealed new insights into asynchronous wingbeat generation in insect flight. When combined
with synchronous actuation, this unified spring-wing framework recapitulates the transition
between synchronous and asynchronous regimes. Furthermore, both types of actuation can
coexist even when a dominant wingbeat strategy emerges. Overall, broader physiological testing
of delayed stretch activation, especially in other synchronous species and those close to the
bridge, may further resolve the nuances in these two modes of insect flight. Mapping specific
parameters of stretch-activation myosin recruitment, delayed stretch activation time constants,
troponin isoform ratios, and calcium activation would connect the potential molecular basis of
asynchronous and synchronous flight to the model parameter space across more species. This
framework also provides a starting point for the examination of how more complex models
of body dynamics, muscle force production, and aerodynamics contribute to the emergent
wingstroke oscillations of flapping wing insects.

The coupling of indirectly actuated wings to an elastic thorax (spring-wing mechanics),
with both periodic neural activation and delayed stretch activation enables multiple solutions to
the challenges of high-power, periodic wingstrokes. Given that the capacity for asynchronous
flight was gained and then preserved even in secondarily synchronous descendants (Fig. 4.1d,
4.2c), transitions between the two flight modes are not necessarily caused by a switch in

morphology or physiology. However, asynchronous and synchronous flight muscle do have
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different ultrastructure and can show molecular adaptations to each mode of flight [75], [128],
[141], [153]-[155]. Still, their physiological properties (embodied in our model by K, and
to/T,) can manifest on a continuum. This may explain the multiple evolutionary transitions
between asynchrony and synchrony within insects. It is likely that highly-specialized fliers, like
many dipterans and hymenopterans, have further specializations to enhance asynchronous flight
[136], [141], [142], [156], [157], but these do not preclude a common underlying physiological
mechanism for delayed stretch activation which can vary in magnitude and timing. Supporting
this, we see multiple asynchronous-synchronous transitions in the earlier diverging orders like
Hemiptera (Fig. 4.1c). This also suggests that hemipterans and other orders with multiple
transitions may have muscle physiological parameters closer to the bridge in parameter space,
thereby enabling more frequent transitions.

The evolutionary history of insects has shown a great deal of diversification in flight
strategies. Central to these patterns are the transitions between synchronous and asynchronous
modes. Taken together, our evolutionary reconstructions, muscle physiology results, dynamics
simulations, and robotic models show that the capacity for both synchronous and asynchronous
flight can exist in the same system. Moreover, we demonstrate that when synchronous and
asynchronous actuation modes act harmoniously there can be an evolutionary pathway (a bridge)
between asynchronous to synchronous regimes that enables smooth, high-power wingbeats

across these two extremes.
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Appendix A

Supplementary to Chapter 1

A.1 Computing added mass inertia

The standard method for computing added mass is to treat the added mass as a cylindrical
volume of fluid that surrounds the wing [95]. The dimensions of the cylinder are defined by the
dimensions of the wing: the radius is half the mean chord length, ¢/2, the length is single wing
span R measured from wing hinge to wing tip, and the density is the fluid density p. The added

rotational inertia is thus the rotational inertia of a cylinder of mass my4 that rotates about its base:

)
my = pZRc

Iy = imAEZ + —mAR2
16 3

In our system, with ¢ = 3.5 cm, R = 10 cm, py,o = 977 %’ added mass inerita Iy = 3.465 X

10~% kg m?.

A.2 Structural damping modeling

Structural damping for generic oscillatory motion can be represented as an additional

complex term in the spring stiffness parameter:

K =k(1+iy) (A.1)
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However, this representation is not convenient for numerical modeling because of the complex
term. If we assume that the oscillatory motion is sinusoidal, it is possible to express structural

damping another way. Beginning with a generic spring-wing equation
L+ k(1 +iy)x+T% =0
we make the substitutions x = Xe'®" and x = i@wXe'®:
Li+ kX' 4 ykiX " + T2 =0
Using the definition % = iXe'® | we can rearrange:
Li+kx + %er [ =0 (A.2)

Thus, the structural damping term can be represented as a viscous damper that is normalized by

the oscillation frequency, implying frequency-independent viscous damping.

A.3 Derivation of the non-dimensional spring-wing equa-
tions

We introduce dimensionless time and angle parameters normalized to wing oscillation

amplitude and frequency:

T= Wt —9'—9"—é
- 7qW— 9(), QW_ (De()’ qW— (1)29()

Plugging these terms into Eq. 1.7 and rearranging coefficients, we obtain
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. Yk L
L6000 Gy + kpBogys + L 000 + L0202 |Gyldw = Ty (1)

.. kp Ykp . ', . . Ty(t)
Gw + IthcIW + Ithqw + 7 [Gwldgw = 1,600?
A N 1 N
Gw +KpQW+7Kp4w+N|QW|QW = Tp(t) (A.3)

Eq. A.3 is a forced nonlinear oscillator defined by non-dimensional parameters K, the
reduced stiffness; 7, the structural damping loss modulus; and N, the Weis-Fogh number.

Performing a similar substitution for the series system we arrive at the equation
. 5 5 .. .
qW+quW+YquW+N|qW|QW:T:T(t) (A.4)
which is identical to Eq. A.3 except for the normalized torque, which is now defined as

() =5° () + L 9) (A.5)

(0]
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Figure A.1. Robophysical system component detail. A diagram of the system is shown at the
right, with labels for each of the components. a) the design process of the silicone torsion spring,
from 3D CAD model based on desired dimensions to 3D-printed mold for silicone to completed
spring with acrylic adapter plates and steel flange couplers. b) An aluminum inertia plate used to
change the overall system inertia. c) The fixed-pitch acrylic wing with aluminum hub and 1/4”
steel shaft. d) Teknic Clearpath SDSK Motor used to drive the system (photo from Teknic). e)
Dimensions of the 115-gallon rectangular tank (Chem-Tainer) as well as water depth.

A.4 Robophysical system details

In Figure A.1 we show the elements of the robophysical system. The left column of
Fig. A.1 shows the design process of the silicone torsion spring, from 3D CAD model based
on desired dimensions (top-left) to 3D-printed mold for silicone (mid-left) to completed spring
with acrylic adapter plates and steel flange couplers (bottom-left). In Fig. A.1b we show the
aluminum inertia plate that was used to change the overall system inertia. Fig. A.1c shows the
fixed-pitch acrylic wing with aluminum hub and 1/4” steel shaft. We used a Teknic Clearpath
SDSK Motor used to drive the system (A.1d). The dimensions of the 115-gallon rectangular tank

as well as water depth are shown in Fig. A.le.

A.4.1 Computing drag torque coefficient

We follow the standard methods for blade-element analysis of quasi-steady flapping

wings. The wing is broken into differential chord elements, each of which experiences a
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differential aerodynamic torque,
1 2
dQuero = 5P (r6)"Cp(a)c(r)dr (A.6)

The differential torques along the wing can be integrated across the entire wing shape resulting
in the following equations

For simplicity we express the velocity dependence of the aerodynamic torque as, 62, and
the sign dependence on the direction of motion is implied. The aerodynamic torque is governed
by both the wing speed and the aerodynamic torque constant, I, which itself is a function of wing
geometry (wing radial length, R and shape factor r3), wing pitch angle (), and fluid density (p).
The drag coefficient, Cp(a), is dependent on the pitch angle of the wing, &, which is 0 when the
wing is vertical, and 7 /2 when the wing is horizontal. The drag coefficient we use was measured
at Reynolds numbers relevant to flies (Re = 200) via a robophysical flapping wing by Dickinson

and colleagues [39]:
Cp(a) =1.92—1.55co0s(2.04x —9.82) (A.7)

Since our wing is always vertical (o = 0), we use Cp(0) = 3.35.

A.4.2 Design and fabrication of silicone springs

We designed and 3D-printed two-piece molds for casting the springs. Each mold was
treated with Ease Release 2007 (Smooth On) before being filled with a common silicone
material used in soft-robotics, DragonskinTM 30A silicone (Smooth-On) Marechal2020-op.
Care was taken to de-gas the silicone in a vacuum chamber before filling the mold. The silicone
molds were allowed to cure in a positive pressure chamber for at least 24 hours before removal
and use.

The dimensions of the springs were determined by the desired spring stiffness. The
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torsional stiffness of a silicone spring is given by the stiffness equation for a twisting cylinder:

_ umR?
2L

ks (A.8)

where (1 is the shear modulus, R is the spring radius, and L is the spring length. We used three

spring designs of constant length and radius 13, 16, 18 mm corresponding to torsional stiffness

values of k;, = [0.163, 0.416,0.632] Nm/rad.

A.4.3 Data Processing

Analysis of both experiment and simulation data relied on the wing and motor angle data.
To generate a consistent sampling time of all experiments we interpolated position measurements
to a constant sample rate. The measured angle data was filtered with a Sth-order Butterworth filter
at cutoff frequency of 10Hz (approximately 2.5 times greater than the peak driving frequency).
Velocity was computed through numerical differentiation of the filtered position, and similarly
acceleration from the filtered velocity.

We observed that the wing trajectories were consistent with a single frequency sine
wave except when actuation frequency or amplitude approached the epxerimental limits (at
low-amplitude and high-frequency and at high-amplitude). We used a nonlinear least-squares

sine fit to find amplitude and phase of the motor, ¢ (¢), and wing, 6(¢), trajectories respectively.

A.5 Derivation of non-dimensional resonance frequency for
series system

The following derivation is based on the process in bennett elastic’'1987. For a system
with a spring with stiffness k in series with an actuator that drives a mass m subject to aerodynamic
loading, I'%?, the power driving the mass, P,, is the sum of the aerodynamic and inertial forces
times the velocity:

P, = (F,+ F)x = (0#° 4 mi)x (A.9)
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The strain energy in the spring, E, is
1 1 1 1 2 N2
E = k™ (Fo+F) = 5k (TF 4 m) (A.10)

Since the motor must both move the mass and compress the spring, the actuator power, P, 1s

defined

Pact:Pm+E

Puey = (T +mx) [+ k' 20%i+m i) (A.11)

If we assume that the mass follows a sinusoidal trajectory, x(z) = xo sin @¢, we can compute the

derivatives and plug into A.11:

3

Puct = x50° cos ot [Txgcos” of —msinwt] [1 — k™' &*(2Dxg sin @t +m)] (A.12)

If we define a non-dimensional actuator power, P = mf “2“(;3 , we can get the non-dimensional
0
expression:
5 -1,..2 . —1 -l
P,.; = cos ot (N cos” @t — sin a)t) [1 —K (2N 'sinot + 1)} (A.13)

Bennett et al. showed that this actuator power expression is minimized when it is always greater
than zero over half an oscillation period. The relationship between K and N that guarantees that

condition is

K=+vV1+4N"2 (A.14)

Eq. A.14 describes the of spring, mass, aerodynamic damping and oscillation amplitude to get
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. . . . 7> _ L _
resonant oscillation at a particular frequency. Recalling that K = ——, N =

k

frequency ®? = - we can get an expression for that frequency:

k w?
602 n

T \/m2+4F2x(2) N V144N—2

> and natural
X0

(A.15)

A.6 Derivation of non-dimensional wing torques in the

parallel system

Here we provide the full derivation for the non-dimensional work presented in Eq. 1.27

and 1.28. We start from the non-dimensional force terms in the parallel system dynamics

(Egn. 1.8). We make the assumption of sinusoidal wing motion, such that

q = sin(7)

g = cos(T)

G=—sin(7)
=—q

Substituting these expressions in for the individual force terms in the parallel system and

multiplying by the aerodynamic force in those equations results in

A 2

Qaero = COs (T)
Qinertial = _Nq
Qidealelastic = KNq

Qstrucluml = YKNCOS(T>
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In order to write Quero and O uciuras in terms of wing angle we can use the following trigono-

metric relationship

=1—¢* (A.16)

cos(7) = /1 —¢g? (A.17)

Substituting in the expressions of cos(7) and cos?(7) yields the non-dimensional work equations

in terms of just the normalized wing angle, q.

A.7 Derivation of non-dimensional wing torque due to
viscous damping

We can use the same method as in the above section to show that the relationship
between the Weis-Fogh number N and the dynamic efficiency holds true even if we change the
damping model. If we choose a viscous damping model where torque is proportional to velocity,

Tviscous = Cv0, We can get the non-dimensional torque term as in Eq. 1.8:

A 0,0 =
Briscous = Ia}#q —20VRg (A.18)

where we have used the standard definition of the harmonic-oscillator damping ratio, { = 7&-.

The damping ratio must be less than one for resonance to be possible. Multiplying by the

maximum aerodynamic force, we arruve at the non-dimensional torque
Oviscous = 2ENV K cos(7) = 26N/ R(1— ¢2) (A.19)
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which scales linearly with N, the same as the structural damping torque. Therefore, viscous
damping leads to a dynamic efficiency that monotonically decreases with the Weis-Fogh number

resulting in the same qualitative result as with structural damping.
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Appendix B

Supplementary to Chapter 2
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B.1 Rise time with error bars
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Figure B.1. Mean time to full amplitude versus N, with error bars showing standard deviations

B.2 Computing N for Paratuposa placentis

When the maximum aerodynamic and inertial torques are not available to compute the
Weis-Fogh number, it is also possible to approximate using the aerodynamic and inertial power.
Note, this approximation assumes sinusoidal wingstrokes, which is far from guaranteed; however,
this gives a first-order approximation that can be improved through deeper analysis

Given a sinusoidal wing trajectory ¢ = ¢, sin(@t), the inertial and aerodynamic torques

on the wing, according to 2.2, are

T; =1¢ = —1¢,0”sin(wt) (B.1)

T, =T|¢|¢ =T|¢2w?|cos(wt)|cos(wt) (B.2)
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The respective inertia and aerodynamic powers are therefore

P =T = (—I1¢,0°sin(ot))d,wcos(wt) =—0.51¢w>sin(2cwt)
P, =T, = [[92 w?| cos(wt)| cos(wt)]d,w cos(wt)

=T¢;®>|cos(wt)|cos?(mt)

The maximum magnitudes are |Pi|;qx = 0.51¢2 @3 and |P,|;nax = 92 @3, Therefore,

Plwax I N

’Pa‘max B 2F¢o B 2

and

N=2x |Pi|max

|Pa|max

(B.3)

(B.4)

(B.5)

(B.6)

Based on this relationship, we can inspect figure 3e from [2] and see that there is a maximum

(mass specific) aerodynamic power of ~110 W kg~!

and inertial power of ~7.8 W kg~!. Thus

N =~ 0.14. We were able to place it on the chart in Fig. 2.7 using the fact that the body mass is

2.43 £ 0.19 ugf2].

The same method is used to compute N for the insect parameters reported in [158]
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Appendix C

Supplementary to Chapter 3

C.1 Molloy 1987 Curve Fits

Molloy and colleagues studied the asynchronous flight muscle of four species of flying
insect [73]. They fit Eq. 3.2 to stretch-hold experiments and showed that the rate of tension
increase, r3, was linearly related to wingbeat frequency across species. However, they did not
report the rest of their fitting parameters or many other details of the fit routine, so we do not
know what those parameters might have been. In order to be confident that we’re using relevant
parameters for our asynchronous spring-wing modeling, it would be helpful to know how all of

the fit parameters vary across insects.

C.1.1 Digitizing data

WebPlotDigitizer (Rohatgi, https://automeris.io/WebPlotDigitizer/) was used to extract
the data from the figure shown in Fig. 3.2c and import it to MATLAB (Mathworks, R2022a).
The digitized data is shown in Fig. C.1. In order to improve fitting performance, especially for
the high-speed of the fruitfly dynamics, data was interpolated and some non-unique datapoints

were removed prior to fitting.
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Figure C.1. Digitized data from [73] showing the stretch-hold response of Giant Waterbug,
Cranefly, Hoverfly, and Fruitfly data, respectively.

C.1.2 Curve Fitting

All fitting was done using the Curve Fitter tool in MATLAB R2022a. MATLAB scripts

and data are available upon request.
Procedure

Data for each insect was loaded into the tool, and a custom fit function was defined,

F=Ke " +K3;(1—e ™) +Kge ™ +c¢ (C.1)

In the case of the giant waterbug, the resolution of the sensor was insufficient to capture the phase
2 dynamics, and therefore the fit function is defined with K, = 0. Bounds were set such that all

parameters are greater than zero, c is less than the value of the last datapoint (since the offset sets
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the asymptote of the curve), and k¥ < 0.5. The fit is extremely sensitive to local minima due to
nonlinearities, so care was taken to choose informed initial conditions which were iteratively
improved over multiple fits. The tool performed a nonlinear least squares optimization with
tolerances set to 10~% and a maximum of 10,000 iterations. The resulting fits all had R? values

greated than 0.94.
Results

The curves fit well to the data, plotted in Figure C.2 (GF: R? =0.998, RMSE = 2.4;CF:
R? = 0.964, RMSE = 4.8; HF: R? = 0.948, RMSE = 4.6; FF: R* = 0.993, RMSE = 0.26). The
individual parameters and their 95% confidence intervals as reported by the curve fitting tool
are plotted in C.3. The black dots are the fit values, and the vertical lines span the 95% CI;
thus, longer lines indicate less certainty. In many cases, the confidence interval is hidden by the
black dot. The insects are ordered in the same way that they were ordered by Molloy, which
also corresponds to decreasing size and increasing wingbeat frequency. The terms A and k are
defined as ratios of r; to r3 and r4 to r3, respectively.

The data are fairly messy, especially in the variability of gain terms K, and in the ratios
A - more data would be needed to identify any trends. However, we can observe that phase 2
dynamics are typically much faster (10 or more times faster) than phase 3 (A > 1). Additionally,
phase 4 is much slower than phase 3 (k < 0.2), and it seems that in smaller, higher-wbf insects,
the ratio decreases progressively. In the fruitfly case, it is so slow that the fit routine struggled
to get a confident result for the passive stiffness ¢ because the experiment ended before there
could be substantial decay after the tension case. Meanwhile, there appears to be a trend where
passive stiffness and r3 both increase with smaller size and/or higher wingbeat frequency. The r3
result is reported by the Molloy and colleagues in the paper, and the increased muscle stiffness

in fruitflies and others has been noted by other researchers [4], [5], [159].
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Figure C.2. Raw data and curve fits for the giant waterbug, cranefly, hoverfly, and fruitfly from
Molloy. [73]

C.1.3 Conclusions

The results presented here are not sufficient to make general claims about asynchronous
muscles across species, but for our purposes, it is a starting point. More, and cleaner, data is
necessary, as well as considerations of many fine details of the experimental setup. However,

three facts will be helpful in choosing logical parameters during simulations and other analysis:

1. Phase 2 is ~10x faster than phase 3, which is 5-50x faster than phase 4
2. Phase 3 rate, r3, increases with flapping frequency

3. Gains K3, K3, and K, are the same order of magnitude
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Figure C.3. dSA Fit Parameters for the four insects. Fit parameter with bars showing the 95%
CI for each

C.2 Physical interpretation of the dSA equation

Historically, delayed-stretch activation has been measured using a step-strain test that
measures the force response of the muscle to stretching. The data is then fit to a sum of
exponential terms. Looking at the relative rates of the different exponential terms is one way to
compare muscles from different insects [62], [73], [111], [121] and across genetically-modified
organisms [71]. The equation used to fit the data is given in Eq C.1. The equation breaks the
transient tension in the muscle into three distinct phases plus an offset: a fast decay right after
stretching (phase 2), a rise in tension caused by stretch activation (phase 3), and a relatively
slower decay in tension following the rise (phase 4). The offset term ¢ represents passive stiffness
of the muscle after a long time has passed.

While the actual mechanics of stretch activation are likely related to mechanical regulation
of actin and myosin attachments in the sarcomere [61], an equation like that above is useful
for gaining insight into the relationships between active, work producing aspects of muscle and

passive energy loss. Indeed, muscle has a history of being represented as a system of springs,
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Figure C.4. Generalized Maxwell model of stretch-activated muscle. Stretch-activation dynam-
ics behave like a negative Maxwell element

dampers, and active elements [72], [160], [161].

In that context, consider the linear system in Fig. C.4. It consists of three Maxwell
elements (spring and damper in series) plus a fourth spring in parallel. The Maxwell element
that represents stretch activation is different from the others in that it has a negative stiffness and
viscosity. This is not necessarily physical, but it represents the “negative viscosity” effect that
was first described by Machin & Pringle [59].

Each parallel element experiences the same strain, and the total stress is the sum of the
stresses in each element. For each of the Maxwell elements, we can express a stress-strain

relationship in the Laplace domain:

ni. . 7 SE; _
o,+—=—6;=n€ = 0, = £ C2
< Bane % oo () e
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Summing up the stresses for all of the elements, we get:

€ (C.3)

_ skr sEy sEs
Oror = (Eo +

_|_ —
E Ey _ -k
S+TI2 s+ﬂ4 § -3

In the stretch-hold experiment, the strain is a step function with a set strain maximum, i.e.

€ = gH(t) , where &, is the stretch fraction, Ag /L . The Laplace transform of H(t) gives € = £

N

, and plugging into equation 3:

E E E E
Gior = | 2+ — 4+ —— -, (C.4)
S S—f—& S—f—é S—&
m N4 m

It’s straightforward to take the inverse Laplace transform of Eq. C.4 to get the time course of

stress:

_E, _Ey, _Es,
o(t)=|(E,+E3+Eye " +Eqe ™ —Eze ™ g,

o, t _B _E _Eg
- dZAO:EQe n' _Eye ™' 4+ Eqe ™' LE, (C.5)
’ iy =y oy
=FEye ™ —|—E3(1—e 3 )+E4e 4 —l—(EO—E_O,) (C.6)

If we use the relationship between muscle tension and muscle stress, F; = 0544, where A is the
muscle cross-sectional area, we can convert the expression into the force caused by a step strain,
with the same units as Eq. C.1.

Some observations we can make by comparing the Generalized Maxwell model equation

vs the fit function:
» Ky = Ere,, Ky = E3Ag,, Ky = E4A€, and ¢ = E, — E5 are related to the stiffness of the
different elements.

Ey
N4

. Theratesrzzé,m:&,m:

s T are functions of the stiffness and damping moduli, i.e.

the relaxation rates of the three elements
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* The offset term c is a function of the parallel stiffness of the muscle and the strength
of stretch-activation. The stiffness of an activated asynchronous muscle is larger than a

similar synchronous muscle after a stretch [4]

When it comes to designing an asynchronous artificial muscle or actuator, this represen-
tation helps to clarify the necessary requirement for an active element. While the dSA dynamics
which produce oscillations and were discussed in Chapter 4 are relatively simple, it is neces-
sary to have this negative viscosity effect, created via feedback, in order to have a system that
does work. A negative spring-damper is non-physical, but even a simple PD-controlled motor

combined with viscoelastic damping elements would be sufficient to produce similar behavior.
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Appendix D

Supplementary to Chapter 4

D.1 Methods

D.1.1 Ancestral state reconstruction

Muscle type labeling

We encoded the orders Odonata, Ephemeroptera, Dermaptera, Plecoptera, Orthoptera,
Embioptera, Phasmatodea, Mantodea, Blattodea, Isoptera, Raphidioptera, Megaloptera, Neu-
roptera, Trichoptera, Lepidoptera, and Mecoptera as synchronous and the orders Thysanoptera,
Strepsiptera, Coleoptera, and Diptera as asynchronous [75], [128], [153], [154], [162]. Mus-
cle type in Zoraptera remains unknown, and the orders Mantophasmatodea, Grylloblattodea,
Siphonaptera are all wingless. The three remaining orders, Hemiptera, Psocodea, and Hy-
menoptera are known to have both synchronous and asynchronous species [75], [128], [153],
[162], [163]. The muscle type for each tip species of the insect phylogeny and its associated
reference are included as a raw data file (Supplementary Data Table S1 - Species muscle type
with sources). We also conducted a more detailed literature analysis on all orders.

Psocodea. Psocodea is a particularly notable clade that has the potential to strongly
influence the ancestral state and single origin of asynchronous muscle. This order is historically
considered to have mixed muscle types [75] based on the muscle structure data for various
species [128]. Of the tip species present in the phylogeny used in this study, we were able to

discern muscle types based on muscle structural data or absence of wings (see Fig. 1). Muscle
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structure data for the longest-branched species (Ectopsocus) are inferred from a closely related
species investigated by Cullen [128] and the wingless state of other tip species was determined
through multiple sources [164], [165]. Additional confirmation of the states of this group
was completed by cross referencing the phylogeny used in this study (Fig. 1) with a more
densely sampled phylogeny of Psocodea [166] and searching for additional muscle type data for
Psocodea species not represented in the phylogeny used in this study. We found that one species
(Trogium pulsatorium) belonging to the most ancient suborder within the group (Trogiomorpha)
is reported to have synchronous flight muscle (Cullen, 1974). The next most ancient subclade
(suborder: Psocomorpha) within Psocodea is known to have multiple species with asynchronous
flight muscle based on its structure [128]. Data from a more recently diverging clade, the
Amphientometae infraorder (within the Troctomorpha suborder), are absent and the remaining
species of the larger clade (Troctomorpha), where Amphientometae is nested, are wingless [164],
[165].

All evidence together suggests that the ancestral state of Psocodea is asynchronous.
However, there remains uncertainty in this group due to poor muscle data and their large degree
of winglessness. Using scaling relationships based on body mass and measurements of Psocodea
wing sizes, it seems likely that most winged Psocodean species fly with wing beat frequencies
well over 100 Hz (150-500 Hz), even when we allow body mass to differ by an order of
magnitude from 0.1 mg to 1 mg [167]-[169]. Wing beat frequencies above 100 Hz are strongly
associated with the evolution of asynchronous flight muscle. Second, in support of our scaling
argument, other authors report that all species of winged Psocodea are asynchronous based on
their necessarily high wing beat frequencies [170], directly conflicting with the muscle type data
from Cullen (1974). Finally, the winged clade of unknown muscle type, Amphientometae, has a
most recent common ancestor with the Psocomorpha clade, which does possess asynchrounous
muscle [128]. If Amphientometae does have asynchronous muscle as expected, this would most
likely result in an asynchronous ancestral condition of the entire Psocodea order. Thus, multiple

lines of evidence support asynchronous muscle type as the ancestral condition of this clade with
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possibly a single, independent reversion to synchrony within the Trogiomorpha clade, which is
not present in the phylogeny used in this study.

Hemiptera. Although Hemiptera is another clade with interspecific variation in muscle
type we are again confident in our reconstruction of the ancestral state. First, many species of
Hemiptera were investigated by [128] and the clade is relatively well sampled in the phylogeny
used in this study. In addition, we mapped additional muscle type data from [128] onto a
more densely sampled Hemiptera phylogeny [171] for at least one species from most (19 of
29) families. Here, we find that all investigated species from the Heteroptera suborder, which
includes 20 (11 of which have been investigated) of the 29 families present in the Johnson e?
al. phylogeny [171], use asynchronous flight muscle [128]. Second, two of the four longest
branch families with the most ancient diverging Hemiptera suborder (Sternorrhyncha) are also
asynchronous. The Sternorrhyncha suborder is only represented by two synchronous species in
the phylogeny used in this study and thus is likely overweighted when inferring the ancestral
condition of this group. Despite that, we still recover an ancestral condition of asynchronous
muscle. Other authors reviewing known muscle types and flight neuromechanics also concluded
that most Hemiptera species rely on asynchronous flight muscle [170].

Two additional phylogeny tips within Hemiptera from the genera (Xenophysella and
Nilaparvata) did not have published muscle structure data from any species within the same
family, warranting further investigation. First, we code the Xenophysella tip as wingless because
the majority of investigated species (24 of 25) from the Coleorrhyncha suborder that includes
Xenophysella are reported to be flightless [172]. Second, we code the Nilaparvata tip as
asynchronous for the following reasons: Nilaparvata myofibril diameter has been reported as 1.8
microns in insects three days post-emergence [173], which is above the 1.5 microns threshold
for differentiating synchronous from asynchronous muscle [128], [163]. From transmission
electron microscopy of Nilaparvata, the sarcoplasmic reticulum appears to be sparse [173]
which is a proposed hallmark of asynchronous muscle [128]. Despite this evidence, there is

still some uncertainty about the Nilaparvata muscle type for the following reasons: a different
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species (Sogatella furcifera) from the same family (Delphacidae) is reported to have muscle with
myofibril diameters ranging between 1.5 to 2.0 ( 1.7) microns 3 days post emergence [174], which
also falls on the border of the diameter (1.5 microns) used to differentiate muscle type in this
group [128]. Further, Nilaparvata belongs to the Fulgoroidea superfamily [171]. The Fulgoroidea
superfamily shares a most recent common ancestor with the Membracoidea superfamily based
on the Johnson ez al. (2018) Hemiptera phylogeny [171], and Membracoidea contains species of
both synchronous and asynchronous muscle type [128], making the identification of Nilaparvata
equivocal based on its phylogenetic position alone. However, the most direct histological
evidence supports our classification of Nilaparvata as asynchronous.

The high variation of muscle type within Hemiptera makes this clade particularly interest-
ing for future studies on the evolution of synchronous and asynchronous muscle physiology and
structure. Based on our assessment of muscle type across Hemiptera, there appears to have been
multiple reversions back and forth between the two types, where both types have likely evolved
at least once from an ancestor of the other type. These bidirectional transitions within Hemiptera
support the thesis that muscle physiology lies on a continuum rather than as two discrete types
and may transition across the bridge in parameter space (Fig. 3b,e). Despite the diversity within
Hemiptera, the reconstruction of the ancestral node is confidently asynchronous.

Hymenoptera. All Hymenoptera muscle types were assigned based on published muscle
structures and supported by other investigations of muscle physiology. As noted above, variation
in muscle myofibril diameter is directly related to muscle type, where myofibril diameters less
than 1.5 microns are considered synchronous muscle [128]. Myofibril diameter was measured in
46 species distributed across the Hymenoptera phylogeny [175]. All but one of the 46 species are
reported to have myofibril diameters greater than 1.5 microns [163]. A second line of evidence
that relies on the muscle being defined as “close-packed” versus “fibrillar” supports these results
[163]. Thus, while Hymenoptera is considered to be a group of mixed muscle type [75], we find
the presence of synchronous muscle to be relatively rare. In support of these conclusions, [170]

also reports that most species of Hymenoptera rely on asynchronous flight muscle.
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All other clades: All other insect orders are reported to be invariant in flight muscle type
or are known to be completely wingless. Therefore, we relied on their invariant classification from
published reviews [4], [75], [162] where authors used total evidence from both muscle structure
and physiology data across species of each order to determine the muscle type classification of
each order. However, we do code the single Zoraptera tip as unknown because we could not find
any data on any species from this order. The coding of this tip as synchronous, which would be

the most conservative classification, does not impact our results.
Rate reconstruction implementation

We used a previously published molecular phylogeny grounded in fossil records spanning
all insect orders [127], which modifies the fossil calibration of the extensive insect phylogeny
developed by Misof et al. [1]. For ancestral state reconstruction, we assumed an equal rates
model of evolution and used maximum likelihood estimation to estimate the posterior probability
of ancestral states using the Phytools R Package [126]. These analyses were performed in
RStudio (v. 1.1.383) using R (v. 4.0.2). In Supplementary Information section IIA we test other
models of evolution using different characters states, allowing all rates to be different rather than
equal, and consider hidden rates models, using the Phytools R Package [129], [176]. The latter
allows for heterogenous rates of evolution but quickly increases the number of parameters in
the model [129], [130], [176]. All models with a single rate class are consistent with the order
level reconstruction of synchronoy and asynchrony, including the single origin of asynchrony
at Node 200 (Thysanoptera + Hemiptera + Psocodea + holometabolous insects). Some models
with multiple rate classes can produce more ambiguous reconstructions with more possible
patterns but are significantly overfit as assessed by Akaike Information Criterion (AIC) values
(See Supplementary Information IIA for further discussion).

We also determine the probability that the Lepidoptera clade evolved from synchronous
ancestry without reverting from a single asynchronous ancestor (e.g. there were multiple, inde-

pendent, more recent evolutions of asynchronous muscle for different synchronous orders). To do
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so, we first recorded the probability that the node representing the origin of asynchronous muscle
(Node 200) is synrchronous (Supplementary Data Table S2 - Ancestral state posterior proba-
bilities per node). Next, we constrained that same ancient node (200) to be 100% synchronous
and recorded the probability of synchrony in the next most recent node (218) in the branching
path towards the origin of Lepidoptera. We iteratively continued this process, constraining each
node between the origin of asynchronous muscle and the origin of the Lepidoptera clade (Node
255). We then multiplied the probability that each node is synchronous to calculate the total

probability that the Lepidoptera clade evolved from a synchronous ancestor.
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Figure D.1. The insect wide phylogeny. The insect wide phylogeny [127] used to conduct the
ancestral state reconstruction of insect muscle type. The full name of every tip species can be
found in raw data (Supplementary Data Table S1 — Species muscle type with sources). Node
number labels are found in Extended Data Figure 2.
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Figure D.2. The insect wide phylogeny with node number labels. The number of each node
is overlayed on top of the insect wide phylogeny (Fig. 1c, Extended Data Figure 1). These node
numbers are referenced in the table containing the posterior probability of the ancestral state for
each ancestral node of the phylogeny (Supplementary Data Table S2 - Ancestral state posterior

probabilities per node).
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number for every node on the phylogeny is referenced in Extended Data Figure 2. All colors are
consistent with Figure 1 of the main text.
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D.1.2 Muscle physiology

Animals

Manduca sexta were obtained as pupae from a colony maintained at the University of
Washington. Moths were kept on a 12h:12h light dark cycle. We used 6 females and 3 males
with a mean body mass of 2.32 + 0.46 g.

Experimental preparation

After a 30 min cold anesthesia, we removed the head, wings, abdomen, legs, and first
thoracic segment from each moth to isolate the second and third thoracic segments. We then
used digital calipers to measure the dorsal longitudinal muscle (DLM) length as the distance
between the anterior and posterior phragma. These structures are the phsyiological attachment
points of the DLMs. We measured a mean muscle length of 11.7 4+ 0.5 mm.

We used a similar experimental paradigm as Tu & Daniel[131] for dynamic, whole
muscle experiments on M. sexta DLMs. The key difference in our protocol is that we used a dual-
mode ergometer (305C Muscle Lever, Aurora Scientific Inc. Aurora, ON, Canada) capable of
prescribing a length trajectory while measuring the force necessary to follow that trajectory. For
the anterior muscle attachment, we used cyanoacrylate glue to rigidly mount the anterior phragma
to a custom three-dimensional printed ABS shaft, which was secured to our experimental table.
For the posterior attachment, we attached a pair of tungsten prongs to the ergometer lever. We
inserted these prongs at the invagination between the second and third thoracic segments. This
ensures that the prongs adhere to the posterior face of the posterior phragma. Cyanoacrylate
glue ensured a strong connection. In all preparations, we ensured that the anterior and posterior
attachments were rigidly bonded following the experiment.

At this point, the intact second and third thoracic segments were rigidly mounted on
our ergometer. We relieved any force buildup during this procedure by manually adjusting the
ergometer length until the force reading was at zero. We then shortened the muscle by 2%

because the in vivo muscle length during flight is 2% shorter than its length during rest [131].
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We next decoupled the anterior and posterior sections of the muscle by removing a
transverse ring of exoskeleton. To minimize inertial loads on the ergometer, we removed all
other muscles and any remaining exoskeleton on the anterior side of the thorax. We made sure to
excise the ganglia to prevent spontaneous muscle activation.

To activate the muscles, we inserted two tungsten electrodes into the anterior end of the
muscle by piercing the exoskeleton of the anterior phragma. We repeated this procedure for
the posterior side by piercing the posterior end of the scutum. To ensure muscle viability, we
maintained a steady drip of saline and held a constant temperature of 35°C measured at the
muscle.

Because Ca®" is required for delayed stretch activation [4], we stimulated the muscles
at 150 Hz to induce tetanus. We found that 150 Hz stimulation was the minimum stimulation
frequency to establish a fused tetanus. Our experiments to measure delayed stretch activation
consisted of a stretch-hold-release-hold cycle. We first maintained zero strain for 150 ms to
enable a plateau in force, indicating constant activation (Fig. 2b), we stretched the muscle to in
vivo strains (4.5%) at peak in vivo strain rates [131] while measuring muscle force output. We
calculated peak in vivo strain rate as & = 27 f &, where f is the wingbeat frequency (25 Hz) and
& 1s peak in vivo strain. We then held the strain constant for 150 ms. We returned the muscle to
rest length at the same strain rate as before.

We measured the peak twitch, delayed stretch activation, and tetanic force produced
by the muscle. In all cases, we normalized force production by the cross-sectional area of the
muscle. To determine the rate constants of delayed stretch activation we fit the muscle force data
with the equation

Fyep(t) = Kae ™' +K3(1 —e ™) + Kye ™ 4-¢ (D.1)

where K; and r; are the coefficients and rate constants associated with a particular phase of
the delayed stretch activation response: a fast decay (1, > wingbeat frequency), a slower rise

(r3 =~ wingbeat frequency), and a very slow decay (r4 < wingbeat frequency). The constant ¢
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represents the passive stiffness of the muscle. Phase 1 is the immediate material response of any
muscle to a transient strain and is not relevant to characterizing delayed stretch activation. We
quantified delayed stretch activation force magnitude as the difference between the lowest force
immediately following stretch to the peak force during the plateau phase.

Following experiments, we removed and weighed the DLMs. We measured an average
muscle mass of 0.123 £+ 0.012 g. This corresponds to a body-mass normalized muscle mass of
5.28 £ 1.41%, which is in rough agreement with prior measurements of 5.96 4+ 0.62% [177].
From muscle length and muscle mass, we calculated a cross-sectional area of 10.7 £ 2 mm?

under the assumption that muscle density is 1 g cm™>.

Scaling the delayed stretch activation force due to non-ideal strain rate impulse

Our input stimulus to the ergometer for stretch-hold-release-hold experiments was a ramp
with a speed matching the in vivo speed of muscle contraction in a hawkmoth. Our modeling
assumes that r3 is the rate of tension rise in response to an infinite impulse, which is not possible
to implement in any real physical system. To examine the discrepancy between muscle’s response
to an infinite impulse and a non-ideal finite impulse, we follow the following procedure. First,
we construct a rectangular pulse with a width and height that match the width and height of
the actual strain rate pulse we imposed in experiment. We then compute the empirical transfer
function between the sum-of-exponentials fit to our force data and the rectangular pulse. This
transfer function represents the response of hawkmoth muscle to an infinite impulse in strain
rate, and is equal to our fit multiplied by a scalar. We compute this scalar to be 2.29, by dividing
the infinite impulse response (IIR) by our fit. We then scale our force data by this constant factor
and plot it, labeled as “IIR” in Fig. 4.2e. Data presented in Fig. 4.2b-d is raw and unscaled by

the method described here.
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D.1.3 Delayed stretch activation model

To study how delayed stretch activation produces wing oscillations we needed to generate
a feedback model for delayed stretch activation. No current detailed muscle model can predict
both neural and stretch-activated force components under general dynamic conditions, in part
because of limitations in our understanding of the multiscale interactions in muscle [178]. Thus,
to model asynchronous force, we do not try to build a detailed molecular model that can predict
force from arbitrary activation and strains. Instead, we seek to capture the basic functional
input-output relations for delayed stretch activation between an imposed strain and the resulting
force. We first constructed a reduced order model of the delayed stretch activation that was
able to capture the stretch-hold-release-hold behavior we observed in experiment. This single
parameter model is described by the “time to peak™ (#y) of the delayed stretch activation force
response, which allows us to study how the relative timescales of delayed stretch activation
(o), body mechanics (the natural resonance frequency, 7;,), and the synchronous timescale (%S)
govern the emergent wingbeats. To implement delayed stretch activation in simulation, we
then generated a computational representation of delayed stretch activation and coupled it to a

computational representation of body mechanics.
One-parameter delayed stretch activation feedback model

Measurements of delayed stretch activation in the literature [74] consist of imposing
a step change in muscle length and fitting the force response, Fy,(t), with a sum of three
exponentials given by Equation D.1. The 7-parameter model was used to fit the delayed stretch
activation response in the hawkmoth muscle (Fig. 4.2c). However, the initial viscoelastic drop
following lengthening is unlikely to be important for generating self-excited oscillations, and the
symmetry between r, and r4 leaves those parameters sensitive to initial conditions of a curve fit
procedure. Because the delay between stretch and force production is likely the critical feature
of delayed stretch activation, we only considered the delayed tension rise (determined by r3)

and the delayed tension drop (determined by r4). In doing so, we eliminated K, and r, from
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the fit Equation D.1. We further eliminated the passive muscle stiffness from Eq. 4.2 because
it does not contribute significantly to the elastic response of the thorax in M. sexta [76]. It is
possible that active muscle stiffness contributes to body mechanics. Incorporating estimates of
active muscle elasticity and body dissipation that may be present in the thorax does not affect the
overall conclusions or features of the simulation (see Supplementary Information IID). We fit the

Hawkmoth muscle data to the reduced convolution kernel,

g(t) = gio (—e™ o) (D.2)

where g is a scalar that normalizes by the area under the kernel (which depends on the kernel
rate constants and has units of seconds). We sought to further reduce this convolution kernel
to be parameterized by a single variable, the time to reach peak tension from a step input (fo;
Fig. 4.1b). We first assumed a constant ratio between r3 and r4 such that r4 = kr3 (for M. sexta

K = 0.62). We can then solve for 7y, from the reduced kernel to obtain

fo = ln(r3/r4)

(D.3)

r3—r4

1
_ () (D.4)
r3 (K' — 1)
For hawkmoth muscle this yields a relationship between 7y and r3 of

1.258

th= (D.5)
r3

While our single parameter model is simplified from the classic 7-parameter delayed stretch
activation model, the qualitative features of the Fig. 4.3 heatmaps and associated conclusions are

insensitive to the precise value of .
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Discrete FIR filter implementation

To implement delayed stretch activation in our simulation and robot experiments, we
require a model of delayed stretch activation that can produce stretch dependent forces in
“real-time” which can provide a delayed stretch activation force to the simulation or robotics
experiments. We describe the delayed stretch activation response of asynchronous muscle as a

convolution of the muscle strain velocity with a kernel, g, such that
Fusyne(t) = WF,(—g*€)(1) (D.6)

where F is the asynchronous forcing magnitude and dictates the strength of the delayed stretch
activation feedback.

We implement this convolution in simulation and in the robotic models in MATLAB
simulink (R2020, Mathworks) using a finite impulse response (FIR) filter, which is an instanta-
neous (real-time at 10kHz) evaluation of a convolution operation. We construct the filter such
that the input is the muscle strain rate, and the output is the delayed stretch activation force. We
convert from the angular rotational units of our wing to actuator strain through the equation,
¢ = LT&, where we divide wing velocity (¢) by a factor of LT where L is the resting muscle
or actuator length (in the robot models, L = T = 1). This yields the following delayed stretch
activated force

Fa (ewd)) D7)

Fasync(t) — .uﬁ

The value of F, is tuned to each system (simulation, roboflapper, and robobee wing, see below for
details), but is not changed between experiments where the relative magnitudes of synchronous
and asynchronous forcing are varied (i.e. when K, is varied as in Fig. 4.3).

For simulations and experiment the delayed stretch activation force is generated from

an FIR filter which requires a numerical evaluation of the convolution, (—g* ¢)(z). First, we
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generate the response curve g(¢) based on the delayed stretch activation parameters (r3,r4) in
MATLAB (R2020, Mathworks), sampled at the system rate Ar over the simulation/experiment
duration (simulation, roboflapper, and robobee wing, see below for details). The normalization
parameter go in Equation D.2 is the numerical area under the curve. We then find the value of ¢
for which g() < 0.01 *xmax(g()) and truncate the response since the finite impulse response
filter requires a finite kernel. Lastly, we multiply the output of the numerical convolution by the

coefficient Pg;" The delayed stretch activation step response, Fygync (1), is thus represented as a

vector of numbers that are supplied to “filter coefficients” input of the FIR block in Simulink.
When synchronous and asynchronous forces are applied together we scale Fyqy,c by (1 —K;)

according to the combined forcing equation (Eq. 4.1).

D.1.4 Hawkmoth simulation

Hawkmoth body mechanics model

We used a dynamics model of the wing rotation in the stroke plane (¢) for the hawkmoth
which has previously been derived by Gau et al. [76]. In brief, we assumed a body mechanics
model with aerodynamic drag whose magnitude depends on angular velocity squared (|¢|¢@) with
a constant drag coefficient (I'), a parallel-elastic spring due to thorax elasticity (k), and rotational
inertia from wing and added mass (/). These assumptions yield the equations of motion presented
in Equation 4.2.

To generate equivalent torques from the linear muscle force and the linear thorax elasticity
we require the transmission ratio between linear muscle displacement and the rotational wing
movement. We assumed a linear transmission ratio such that 7 = ¢ /X where ¢ is the wing
rotation and X is the linear displacement of the muscle and thorax. We calculated the transmission
ratio for Manduca as T = @y /Xy, where ¢ is the peak-to-peak wingstroke amplitude and X is
the peak-to-peak muscle displacement amplitude (values can be found in Table D.1 and Gau
et al.[147]). The equivalent torque about the wing hinge produced by the muscle force F;, is

given by F,/T. The equivalent elastic torque from the thorax linear stiffness is calculated as
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k/T?. These two transformations can be derived using conservation of energy: work done at the
rotational joint must equal work done on the linear elements (spring and muscle).

The wing inertia, /, includes the added mass effects from aerodynamics. Following the
derivations of Ellington [179], wing inertia (/) is the sum of inertia due to wing mass (/,,) and
added mass (1),

Ly =Ri(m)m,L2, and I, =R3(v)vL2, (D.8)

where Ry(m) is the radius of the second moment of wing mass, Ry(v) is the radius of the
second moment of wing added mass, and L,, is the wing length. Note that in the aerodynamics
literature, the second moments are often denoted r, and the wing length denoted R, but we

change the convention here to avoid confusion with the rate constants, r, used in the delayed

2p70LY,

AR2

stretch activation experiments. Dimensional added mass (v) is defined as v = , where
v is the non-dimensional added mass of the wing pair and AR is the aspect ratio of the wings.
Parameter values are in Table D.1.

Table D.1. Hawkmoth simulation variable definitions and values

variable | value description

k 2582+ 510 Nm™! thoracic stiffness[76]

I 5.69+ 0.34 E-8 kg m” rad~! | wing inertia

T 2230+ 110 rad m™! transmission ratio

r 3.69 + 0.33 E-8 kg m? rad 2 | damping coefficient

Ry(m) | 0.383 £ 0.003 2nd moment of wing area[134]

R>(v) 0.482 + 0.001 2nd moment of added mass[134]

Ry (s) 0.518 £+ 0.001 2nd moment of wing shape [134]

My, 0.092 g wing mass (both wings) [134]

% 1.08 added mass [134]

P 1.225 kg m™> air density

A, 1881 mm? wing area (both) [134]

R 5.53 £0.04 wing aspect ratio (both wings)[134]
L, 51 mm wing length [134]

Cp 1.5 drag coefficient [180]

lep 30.6 mm aerodynamic center of pressure [180]
o 117 £ 6° peak-to-peak wingstroke amp [134]
Xo 0.46 + 0.02 mm peak-to-peak muscle displacement amp [131]
F 272N zero-to-peak muscle force amp
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The lumped aerodynamic parameter I" was calculated by following the work of Whitney
& Wood [8]. The quasi-steady aerodynamic drag force (Fy,,) on insect wings over a single

wingstroke can be modeled as
| . N -
Faero = 5pcDAng(s)LfVm)|q>. (D.9)

Setting the drag torque Tyero = Fuerolep and Tgero = F|¢\¢, where [, is the center of pressure

[180], yields the velocity-squared aerodynamic damping coefficient (I') as

1 ~ A
= EpCDAWR%(s)Lgvle (D.10)

Simulation details

We used MATLAB and Simulink (R2020, Mathworks) to run simulations of combined
synchronous and asynchronous forcing on a mechanical model of the hawkmoth. Figure 4.4 b,c
presents a representation of the Simulink model. The system dynamics block implements
the equation of motion (Eq. 4.2) using hawkmoth parameters. It takes the combined muscle
forcing as an input and generates the wing angle and angular velocity as outputs (Extended Data
Figure 4.4b). The wing rotational velocity is then an input into the delayed stretch activation
simulation described in the previous section and calculated by Equation D.7.

As insect flight is driven by pairs of antagonistic muscles, we represent the upstroke
and downstroke muscles separately in our Simulink simulation. The antagonistic configuration
means that the sign on both strain velocity and output force is different for each muscle, as
shown in Extended Data Figure 4.4c. Additionally, a sine wave generator is used to produce
synchronous forcing based on the amplitude F; and frequency f;. The output force is a weighted
sum of synchronous and asynchronous forces defined by K.

Both the synchronous and asynchronous forces in the muscle block are saturated so

that they only output tension forces. Additionally, the sine wave generators are operated with
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different initial phase 8y = O for the upstroke muscle and 6y = 7 for the downstroke muscle. The
overall effect is that all of the negative torque is produced by the upstroke muscle, and all of the
positive torque is produced by the downstroke muscle. The phase shift in the sine wave generator
blocks also enforces that the fully synchronous output is identical to a single sinusoidal torque

source.
Iterative force tuning procedure

The parameter K, describes the relative amounts of synchronous and delayed stretch-
activated forcing. To study how an insect that is actuated purely through delayed stretch activation
(K, = 0) can transition to being purely actuated through synchronous forcing (K, = 1) we need
to establish values of F, and F; that produce feasible wingbeat motions in both of these regimes.
In the hawkmoth simulation we determined that a sinusoidal forcing amplitude of Fy = 2720 mN
generates wingbeat kinematics that match in-vivo observation of 117 degrees peak-to-peak.
This value was previously used to synchronously drive an identical simulation to physiological
wingbeat amplitudes [147].

However, the wingbeat kinematics in the purely asynchronous regime (K, = 0) are
emergent and thus we need to determine an appropriate Fyyy,e that can drive our insect model to
appropriate wingbeat kinematics. We used a simple iterative force tuning procedure to determine
the value of Fyy,. such that asynchronous actuation (K, = 0) can produce wingbeats with peak-
to-peak amplitude of @9 = 117°. We slowly increment the value of u until the output steady-state
wingbeat amplitude is within 1% of the desired amplitude of @. In this way we ensure that the
both synchronous (K, = 1)and asynchronous (K, = 0) actuation can produce the same wingbeat

amplitudes.
Calculation of K, for M. sexta

Direct computation of K, for Manduca is challenging since realistic measures of muscle

force from work loops will contain a mixture of synchronous and asynchronous effects, which are
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unlikely to be distinguishable in practice. To address this issue, we take the following approach
to estimate K, using static measurements of muscle, which allow synchronous and asynchronous
behavior to be measured separately.

We compute the ratio of asynchronous to total muscle force from muscle physiology and
from simulation. We then equate these ratios and solve for the unique K, that results in equality
between experiment and simulation. We use the maximum dSA force from our stretch-hold-
release-hold experiments, F,, as a static representation of the asynchronous muscle force, and
the tetanic muscle force F,; as a static representation of the synchronous muscle force. Both F,
and F;., are generated under maximum activation, and F;,; is measured isometrically, thus will
not include any stretch-activated force. Total muscle force is then F, + F;.;. Thus, the ratio of
asynchronous to total muscle force in Manduca from experiment (denoted with subscript exp.)

1S:

Fasync,exp. o Fy

= ~0.12 (D.11)
Ftotahexp. Fa+Fe

In simulation, the maximum purely asynchronous force amplitude can be found by setting
K, = 0 and taking the emergent amplitude of Fyyn.(t). Maximum purely synchronous force
amplitude is simply max (Fysin(wt)) = F; = 2.72 N, the force required to drive the K, = 1
system to in-vivo amplitude wingbeats. Since Manduca is neither purely synchronous nor
asynchronous (i.e. 0 < K, < 1), the maximum asynchronous and synchronous forces must be
multiplied by (1 — K;.) and K, respectively to yield an estimate of in-vivo contributions to total
muscle force. Therefore, the ratio of asynchronous to total muscle force for a hybrid insect in
simulation (denoted by subscript sim.) is:

Fusyne.sim. (1 — K) max (Fagyne(1)|Kr = 0)

= (D.12)
Efotal,sim. (1 - Kr) max (Fasync (l) |Kr = O) + K, Fj

Finally, we set Eqs. 13 and 14 equal to one another and solve for the unique K, that

results. When we do this, we find that Manduca has K, ~ 0.6. This construction relies on the
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approximation that static muscle physiological measurements are representative (in relative

magnitude terms) of oscillatory forces that would be measured in-vivo and in our simulation.
Simulation parameter sweep and analysis

To evaluate how the presence of both synchronous and delayed stretch activation in an
insect muscle influences the wing kinematics we performed simulations varying both K, and
the time to reach peak tension of the delayed stretch activation, #y. We incorporated mechanical
timescales of the system by dividing o by the natural period to yield the parameter #y/7,,. For a
given insect, 7, is assumed to be constant. To sweep across delayed stretch activation timescales,
we adjusted r3 via Eq. D.5 to sweep over a range of #y/7, values from 0.01 to 1. We varied K,
from O to 1. For each set of K, and #y/7,, values, we first calculated r3 from 7y (Eq. D.5). We
then generated the delayed stretch activation kernel as described in the delayed stretch activation
model section. With F, from the section above, we could now combine synchronous and
asynchronous forcing (Eq. 4.1). We initialized the wing position at 0.1 rad to initiate oscillations
when there was no synchronous forcing. All simulations were performed with a fixed sample
time of Ar = 1 x 10~ s over a duration of 5 s.

For each set of parameter values, we recorded the emergent force F;,;,, wing position, and
wing velocity. We determined the emergent oscillation frequency by taking the Fourier transform
of the last 2.5 s of position and identifying the frequency with the largest magnitude. To calculate
power, we extracted 5 periods of oscillation after the system reached steady state. We then
numerically integrated force over position and divided by the time elapsed. Lastly, we computed
the variation in the peak-to-peak wing amplitude by using the findpeaks command in Matlab to
locate all the of wingbeat peaks. The amplitude variation is calculated as the standard deviation

of the peak-to-peak wingbeat angles.
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Figure D.4. Robophysical experiment setup and details. a) Schematic of the robophysical
experiment. A dynamically scaled wing is immersed in a large water tank and is actuated by
a brushless motor under torque control. An angular encoder measures the wing rotation and
the calculated wing velocity is supplied to a Simulink simulation of delayed stretch activation.
The combined output of delayed stretch activation (Fyqyyc) and the synchronous force (Fjyy,e) is
provided to the motor driver to actuate the wing. b) A photo of the experimental setup.

D.1.5 Dynamically scaled robophysical experiment

Robot details

Experiments were performed on a dynamically-scaled robophysical model described
previously in Lynch etz. al. [106]. The device consists of a silicone torsion spring with known,
linear characteristics [106]; a brushless DC motor (ODrive Robotics, D6374) under closed-loop
torque control; and a rigid, fixed-pitch acrylic wing submerged in a tank of water (Figure D.4).
The wing span and chord (10 x 3.6 x 0.5 cm) were selected such that the wing, flapping in
water with an amplitude between 10 and 60 degrees and frequency between 1 and 4 Hz, has a
Reynolds number between 10° and 10*, which is approximately the same range as M. sexta[134].
Friction is minimized via a set of radial air bearings and a thrust ball-bearing. We measured the
spring stiffness and system inertia and calculated the wing drag torque coefficient (Extended
Data Table D.2) [106]. We also calculated the natural period 7;, of the robophysical system using
Equation 4.3 as 7, = 0.416 s.

The robophysical experiment was designed to mimic the hawkmoth simulation, replacing
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the virtual hawkmoth dynamics with those of a real system. We tracked wing angle using an
optical encoder (US Digital, 4096 CPR) fixed to the wing shaft and a DAQ (National Instruments,
PCle 6323) sampled at 1 kHz. The encoder angle was used as input to a Simulink Desktop Real-
Time (Mathworks) model running an identical combined forcing model as described previously
in the sections on the delayed stretch activation model, and the hawkmoth simulations. The
velocity was calculated by taking a derivative of the encoder position and fed into the model. The
model prescribed a motor torque which was sent via USB serial connection to an open source
motor controller (ODrive v3.6) that converted it to a current command to the brushless DC motor.
The control loop for sensing wing position and sending torque commands to the motor ran at a

sample time A = 1 x 1073 s.
Experiment details

To study how the robophysical system transitions between delayed asynchronous and
synchronous forcing modes (Fig. 4.3d-f) we varied K, and 7y /T, in experiments. The robophysical
experiments used approximately the same range of actuation parameters as the simulation: K,
spanning O to 1 and #y/7, from 0.02 to 1. The synchronous gain was set manually so that
oscillations did not trigger the overload-current safety features of the motor driver, and the
asynchronous gain was set using the same iterative force tuning procedure described above. We
ran experiments for 30 seconds and we measured output power and frequency over the last 15
seconds of the experiment.

In a separate set of experiments we studied the frequency entrainment properties of the
robophysical system under combinations of both synchronous and asynchronous forcing. We first
determined a value of F, in experiment that yielded high-amplitude asynchronous oscillations
(106 £3 degrees peak-to-peak) at 3.2 Hz. Next, we performed experiments with a constant
F,, but with varied synchronous frequency f; = [0.815,6.515] Hz at three levels of forcing
magnitude, F;" = [0.1,0.2,0.3]F;, with respect to the purely synchronous forcing magnitude of

Fs. We then measured the output wingbeat angle and computed: 1) the emergent frequency
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using the peak frequency of the Fourier transform, and 2) the peak-to-peak variation in wingbeat

amplitude. The results of this experiment are shown in Fig. D.5.
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Figure D.5. Synchronous entrainment of asynchronous oscillations experiment. a) Emergent
wingbeat angle versus time in experiments with a combination of asynchronous and synchronous
actuation. The four plots correspond to varying the synchronous drive frequency compared
to the emergent asynchronous frequency. The synchronous drive is increased from curves 1
through 4 as shown by the arrows in (b). As the synchronous drive frequency gets closer to the
asynchronous frequency the wing motion exhibits large amplitude modulations due to a beat
frequency between synchronous and asynchronous oscillations. However, when the synchronous
drive is close enough the emergent wingbeat frequency entrains to the synchronous drive and
the amplitude fluctuations disappear. b) The emergent wingbeat frequency compared to the
driving wingbeat frequency. The gray region indicates frequency entrainment where the emergent
frequency is exactly equal to the driving synchronous frequency. The three plots are of increasing
synchronous forcing magnitude from bottom to top. c¢) The amplitude fluctuations increase
as the synchronous frequency approaches the asynchronous frequency. However, when the
driving frequency cross the Arnold tongue and the emergent frequency becomes entrained to the
synchronous frequency, then the amplitude fluctuations disappear.
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Table D.2. Dynamically-scaled robophysical system parameters

variable | value description

k 0.525 N m stiffness

1 0.0023 kg m” | wing+system inertia

r 0.0017 kg m? | damping torque coefficient
T 1 transmission ratio

D.1.6 Robobee experiment

We fabricated a single-winged version of a “dual-actuator” Harvard Robobee, following
the Smart Composite Microstructure (SCM) process pioneered by the Harvard Microrobotics
Lab [11], [13]. Wing parameter values are provided in Extended Data Table 3. The carbon fiber
airframe, which holds the piezoelectric bending actuator and SCM transmission, was fixed to an
acrylic mount on a manual translation stage to enable displacement sensor calibration.

In order to implement the delayed stretch activation model, it is necessary to estimate
wing velocity in real time. We achieved this via a fiber-optic displacement sensor (D21, Philtec)
pointed at a small piece of reflective tape glued to the bending actuator. The sensor is able to
measure actuator displacement at which are fed into an a Simulink model that converts sensor
voltage to displacement through a calibration curve, and then takes a numerical derivative to
calculate wing rotational velocity. Wing rotational velocity is then supplied to an identical
Simulink model as in the hawkmoth simulations and roboflapper experiments described above.
The simulation of delayed stretch activation force was converted into an amplified voltage signal
(0V < Vjie < 200V) and sent to the piezoelectric actuator resulting in wing oscillations. The
control loop for sensing wing position and sending torque commands to the motor ran at a
sample time Ar = 1 x 10~* s. The asynchronous gain was chosen such that flapping angles were
large but the actuator did not saturate, and the synchronous gain was set using the iterative force
tuning procedure above. The Robobee flapping amplitudes did not exceed 50° peak-to-peak.
Observations of the Robobee wing angle were taken via a high framerate video camera (Phantom

VEO-410) at 2500 FPS. Video frames were processed in MATLAB to get the wing angle.
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Table D.3. Robobee parameters

variable | value description

k 197.7 N m stiffness

Il 5.55E-11 kg m” | wing inertia

r 5.68E-11 kg m* | damping coefficient
T 3333 rad m~! transmission ratio

Flapping amplitude was estimated by finding oscillation peaks, and flapping period/frequency
was estimated by computing the time between peaks and smoothing the resulting curve (Fig.

D.6).
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Figure D.6. Synchronous to asynchronous transitions in the robobee wing. Four tests at
fs = [20,40,67,100] Hz are shown in which the robobee is transitioned from synchronous to
asynchronous forcing. Each experiment consisted of one second of synchronous flapping (blue
region) at a particular frequency, followed by a 2 second transition in which K, was linearly
increased from K, =1 to K, = 0 (top plot) followed by 2 seconds of 100% asynchronous
operation (red region). The wingbeat angle and frequency are plotted for each of the four
experiments ( f; is indicated on the right hand side). The left column shows the full time course of
the experiments while the right column is a zoomed in region of the onset of fully asynchronous
dynamics.
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D.2 Additional Figures
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Figure D.7. Emergent frequency (/) normalized by the synchronous frequency (f;) in the
asynchronous regime (K, = 0). As the time to peak force from delayed stretch activation (#()
is increased the system undergoes a bifurcation in which steady wingbeats emerge. Dashed
line is the prediction of this critical #y/T,, from analysis of a linearized system. The emergent
wingbeat frequency in simulation (circles) decreases as 7y is increased. A linearized analysis of
Equations 4.1 & 4.2 (See SI for details) is able to capture the emergent wingbeat frequency. The
colormap of simulation points matches the heatmap of Fig. 4.3c,f. The bridge emerges when the
emergent frequency from delayed stretch activation matches the synchronous frequency.
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Figure D.8. Wingbeat amplitude variation in M. sexta simulations. a) The three plots show the
wingbeat angle versus time at three different values of 7y /7,, for a constant K, = 0.2 (parameters
for tests 1, i1, and iii are shown in panel b). After transient oscillations die out we measure the
amplitude of wingbeat peaks as a function of time (positive peaks are shown as red triangles). The
top plot is an example in the asynchronous regime, displaying moderate amplitude fluctuations.
The middle plot is the wing angle within the frequency locking synchronous regime (on the
“bridge”) where the wing amplitude is steady. Lastly, the bottom plot shows the wing motion
in the asynchronous regime below the frequency locking “bridge”. b) For all combinations of
K, and /T, we calculated the standard deviation of the wingbeat amplitudes which we show
as a heatmap. Brighter regions of the plot correspond to where large stroke to stroke amplitude
variation occurs (i.e. top and bottom plots in panel a). When the wingbeat is steady the amplitude
variation is small these appear as the black regions. The boundaries between the synchronous
and asynchronous regimes exhibit large amplitude fluctuations, while the bridge connects the
synchronous and asynchronous regimes with smooth sinusoidal emergent wingbeats.

Data Availability

Trait data and posterior probabilities of the phylogenetic reconstructions are located in
supplementary data table files. Raw physiological data for the muscle physiology experiments
and data from the robophysical experiments are available at the Georgia Tech SmartTech data

repository.
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All code associated with simulations, robophysical models, and the robotics platform are
available at the following public GitHub repository:

https://github.com/agilesystemslab/synch_asynch_sim.
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