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Abstract—In this study, we apply machine learning and soft-
ware engineering in analyzing air pollution levels in City of
Baltimore. The data model was fed with three primary data
sources: 1) a biased method of estimating insurance risk used by
homeowners’ loan corporation, 2) demographics of Baltimore
residents, and 3) census data estimate of NO2 and PM2.5
concentrations. The dataset covers 650,643 Baltimore residents
in 44.7 million residents in 202 major cities in US. The results
show that air pollution levels have a clear association with the
biased insurance estimating method. Great disparities present in
NO?2 level between more desirable and low income blocks. Similar
disparities exist in air pollution level between residents’ ethnicity.
As Baltimore population consists of a greater proportion of
people of color, the finding reveals how decades old policies has
continued to discriminate and affect quality of life of Baltimore
citizens today.

Index Terms—machine learning, data analytics, environmental
impact, air pollution, NO2, PM2 5

1. INTRODUCTION

A growing body of scholarship has conducted research
showing that there exists a relationship between racially dis-
criminatory legal practices of the past and disparities in the
quality of life for United States citizens today [1]-[4]; in
particular, that mortgage appraisal practices of past decades
are influencing the quality of air for residents of varying races
and ethnicities [5], [6].

Regarding the aforementioned appraisal practices, following
the onset of the Great Depression, the Home Owners’ Loan
Corporation (henceforth referred to as HOLC) was created in
1933 to assist borrowers in fulfilling mortgage payments and
financing property purchases [7]. In order to achieve this, part
of the HOLC’s activities included assigning neighborhoods
in the country a letter grade on a four-point scale, with “A”
meaning “Best,” “B” meaning “Still Desirable,” “C” meaning
“Definitely Declining,” and “D” meaning “Hazardous” [§]
(residents living in areas with poorer grades were less likely to
be approved for loans); however, what comes under scrutiny
is the criteria under which these grades were assigned, with
some explicitly referencing the race/ethnicity of residents as
cause to give lower grades (redlining) [9].
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Previously, a study has been conducted in which nationwide
HOLC grade data was combined with statistics on NO, and
PM: 5 levels, along with demographic information pulled from
the 2010 United States Census, to create plots displaying the
association between HOLC grade and air pollution levels,
and the association between race/ethnicity and air pollution
levels [5]. This paper contains plots generated using the same
sources of data, with a focus on the Baltimore, Maryland
location, and will corroborate previous studies’ findings that
historical discriminatory practices continue to influence the
contemporary state of the environment that civilians live in
[10], [11]. Applying machine learning in cyber threat analysis
was conducted by the authors previously [12], [13].

II. SUPPORT VECTOR MACHINE AND RANDOM FORESTS
MODELS

Decision tree is one of the common models to extracting
classification from featured instances. The issue with gen-
eralization makes it unfavorable to Support Vector Machine
(SVM) in machine learning [14].

A. SVM Model

Let S = {(x1, y1), (2), Y2), .., (xn, Yyn)} be a training
dataset, where x; € RN and yi € {—1, 1} for i=1, 2, ..., N.
The hyper-plane of S is defines as
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The optimal is reached when f(x) = 0.
The model is trained using k-means clustering. For each data
partition, computing using SVM and find the margin until an
optimal margin is reached [15]-[20].

B. Random Forests Algorithm

Random Decision Forests improve prediction with better
generalization outcomes. The algorithm randomly divides
training data into subsets each generate a random tree to
construct a random forest.



III. METHODOLOGY AND KNOWLEDGE DISCOVERY

A. Data Cleaning and Pre-processing

Data need to go through the cleaning and pre-processing
before feeding into data models. This step includes: reducdant
information, strong correlations, temporal pattern, and outlier
analysis.

The initial step in data transformation involved compre-
hensive data cleaning to address various issues. This process
was aimed at enhancing the quality of the data, making it
more suitable for analytical models. The following tasks were
performed during this phase:

- Structural Transformation: Unnecessary columns, includ-
ing those with a single value or irrelevant to the study’s
objectives, such as unit parameter name and code, and
method name, were removed. The columns were also
renamed to ensure clarity and consistency throughout the
dataset.

- Temporal Filtering: All records preceding the last date
saved in the existing tables were removed to avoid data
redundancy.

- Geographical Filtering: Since this study only concerns
the USA, data entries pertaining to locations outside
the United States, specifically Canada, Puerto Rico, and
Mexico, were identified and excluded from the dataset.

- Data Integrity Correction: Negative concentration values,
resulting from flawed calibration, were removed.

- Data Type Standardization: State and county codes were
converted into integers, and dates were transformed into
the datetime.

- Data Separation: The concentration data was separated
from AQI data for easier visualization in the next steps.

B. Programming for Data Processing

We wrote scripts in Python3 to process raw data sources
before filtering them to produce plots displaying the associ-
ation between HOLC grade, race/ethnicity residents, and air
pollution levels in Baltimore.

Data from the 2010 United States Census was assembled in
a Pandas DataFrame containing information from 202 major
American cities amounting to Zuasionat = 2,023,728 blocks, with
44,776,346 residents living in HOLC-mapped areas. This was
then filtered to only include entries pertaining to blocks within
Baltimore, Maryland (n,ca = 10,036 blocks, with 650,643
residents in HOLC-mapped areas).

C. Air Pollution Data Analysis

After preparing the data for processing according to the
above-mentioned methodology, air pollution levels were col-
lected and presented in three formats:

1) Unadjusted: Air pollution levels in blocks in Baltimore
by HOLC grade and race/ethnicity.

2) Intraurban Adjusted: The difference between air pollution
levels experienced by residents in blocks in Baltimore and
the overall population-weighted mean air pollution level

in Baltimore. This emphasizes the air quality in any given
block in Baltimore relative to local conditions.

3) Nationally Adjusted: The difference between air pollution
levels experienced by residents in blocks in Baltimore
and the national population-weighted mean air pollution
level. This emphasizes the air quality in any given block
in Baltimore relative to the national state of affairs.

NO; levels are measured in ppb, and PM;s levels in
micrograms per cubic meter (ug/m?).

IV. RESULTS AND ANALYSIS
A. HOLC Grades and Concentration in Baltimore

Discussion of unadjusted and nationally adjusted NO; levels
are shown in Figures 1 and 2, and unadjusted and nationally
adjusted PM; s levels in Figures 3 and 4. Bars represent 25th
and 75th percentiles. Medians are indicated with horizontal
lines, means with dots in each bar, and the overall mean is
shown by the dotted line.

The left cluster displays NO; levels by HOLC grade, and
the right cluster displays NO; levels by race/ethnicity.
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Fig. 1. Unadjusted population-weighted distribution of NO, levels in HOLC-
mapped blocks in Baltimore.

Figure 1 displays unadjusted air pollution levels in Balti-
more, showing that redlining is strongly associated with NO,
concentration, especially in the more “hazardous” grades, C,
and D. NO; levels in the ‘C’ grade, with an interquartile range
of 11.73 ppb to 16.21 ppb, lies almost completely above the
ranges of both grades ‘A’ and ‘B’. NO; levels in the ‘D’ grade
are even higher, with an interquartile range of 16.66 ppb to
18.77 ppb, which, despite being a smaller range, not only
exceeds that of any other HOLC grade, but also any other
air pollution measurement by race/ethnicity. As is evident,
NO; levels by race/ethnicity also follow an upwards trend,
but is less pronounced than the HOLC grouping, with median
NO; levels for White, Other, Black, and Asian residents being
nearly consistent (12.36 ppb, 12.80 ppb, 12.95 ppb, and 12.95
ppb, respectively).
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Fig. 2. Differences in NO, levels between Baltimore and national population-
weighted mean.

Figure 2 displays a similar pattern in NO, measurements in
Baltimore, but presents them as the difference between air
pollution levels in Baltimore from the national population-
weighted mean level. Corroborating the results from Figure
1, NO; levels follow HOLC grades more closely, with the
median levels in the ‘A’ and ‘B’ grades being 4.31 ppb and
3.91 ppb lower than the national mean, and in the ‘D’ grade,
2.77 ppb higher.
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Fig. 3. Unadjusted population-weighted distribution of PM, s levels in HOLC-
mapped blocks in Baltimore.

Figure 3 displays unadjusted PM,s levels in Baltimore.
Though this plot demonstrates that PM> s levels are greater in
areas with poorer HOLC grades (neighborhoods with grades
‘A’ and ‘B’ both fall nearly squarely below the overall mean
of 10.96 ug/m®), PMs levels in neighborhoods with a ‘C’
grade exhibit both a larger interquartile range than those in
the ‘D’ grade (0.62 ug/m?3 against 0.44 ug/m?), and a greater
75th percentile measurement (11.52 ug/m* to 11.41 ug/m3).
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Fig. 4. Differences in PM;,s levels between Baltimore and national
population-weighted mean.

In addition, Figure 4 shows that the distributions of PM> s
levels across race/ethnicity all exhibit similar 75th percentile
measurements (all fall between 11.30 + 0.03 ug/m?®), but
show greater differences in 25th percentile values; that is,
the distribution of air pollution levels experienced by White
and Asian residents indicate greater range and lower floor
measurements than those of Black or Hispanic residents.

Figure 4 supports these findings by showing that the distri-
bution of PM>s levels in ‘A’ and ‘B’ graded neighborhoods
measure lower than the national mean, whereas ‘C’ and ‘D’
neighborhoods measure greater than the national mean, and
PM, s levels by race/ethnicity do not display as monotonic a
trend.

B. Disparities by Race/Ethnicity in Baltimore

Figures 5 and 6 display intraurban differences in NO, and
PM, 5 levels in Baltimore by both HOLC grade and ethnicity;
each line represents air pollution measurements for some
ethnicity in the data, subdivided into four points, one for each
HOLC grade.

Figure 5 shows that in Baltimore, NO; levels are greater
at worse HOLC grades for all ethnicities, with White and
Asian residents generally experiencing lower levels than Black
or Hispanic residents. In neighborhoods with an ‘A’ grade,
there is a greater difference in NO; levels among residents
of varying ethnicities, with those of color bearing the brunt
of it; Black residents living in ‘A’ graded neighborhoods
experience an NO, concentration that is 1.72 ppb below
the population-weighted mean concentration of Baltimore,
while White residents in ‘A’ neighborhoods live in areas
with NO; levels 4.04 ppb below that average. However, at
the lowest HOLC grade, ‘D,’ the differences in NO, levels
among the varying races/ethnicities of residents decrease, with
measurements converging at 4.50 = 0.40 ppb above the mean
Baltimore measurement.
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Fig. 5. Distribution of intraurban differences in NO, levels in HOLC-mapped
blocks by ethnicity in Baltimore.
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Fig. 6. Distribution of intraurban differences in PM,s levels in HOLC-
mapped blocks by ethnicity in Baltimore.

Figure 6 shows that in Baltimore, PMys levels are, in
general, greater at worse HOLC grades for ethnicities, with the
following specification: at “better” HOLC grades, especially
‘A, there is a more significant difference in PM» s measure-
ments among ethnicities, with residents of color experiencing
higher PM> 5 levels than White or Asian residents. This trend
is reversed at the ‘C’ grade, where PM,s measurements for
Black residents are 0.18 ug/m’® above the Baltimore mean,
while PM, s measurements for White residents are 0.34 ug/m?
above the Baltimore mean.

C. Baltimore Demographics

Figures 7, 8, and 9 display demographic statistics for
residents living in Baltimore, Maryland.

Figure 7 displays the number of residents, expressed as
multiples of 10,000, living in Baltimore, and how many live in
neighborhoods of each HOLC grade. The majority (= 70%)
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Fig. 7. Number of residents living in neighborhoods by HOLC grade in
Baltimore.
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Fig. 8. Proportion of residents living in HOLC-mapped neighborhoods in
Baltimore of races/ethnicities.

of Baltimore residents live in neighborhoods assigned a ‘B’
or ‘C’ grade, with fewer in ‘D’ neighborhoods, and only 7%
in ‘A’ neighborhoods.

Figure 8 expounds on Figure 7 by presenting the proportion
of the population in each HOLC-mapped neighborhood by
ethnicity; according to the data, the majority of residents
living in Baltimore are White or Black, with the proportion of
residents of color increasing among poorer HOLC grades.

Figure 9 compares the distribution of demographic pro-
portions in Baltimore with nationwide statistics. Across all
HOLC grades, there are a greater number of Black residents
than people of any other ethnicity, with differences ranging
from 20% to 35% more Black residents in Baltimore than the
nationwide mean. Figure 9 also reveals that the proportion
of White residents in neighborhoods in Baltimore compared
to nationwide increase as HOLC grade worsens, while the
proportion of Hispanic residents decreases.
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Fig. 9. Differences in proportions of residents of ethnicities between Balti-
more and United States.

V. DASHBOARD DESIGN AND DEVELOPMENT

Starting from city of Baltimore, we are in the process
of expanding the study scope to the State of Maryland and
Nationwide. A Dashboard is a very effective tool for Human
Computer Interactions (HCI). The design and development
process encompasses a series of steps aimed at creating
an efficient and user-friendly platform for visualizing and
analyzing air quality data. It consists of initial design, backend
infrastructure, Ul development, and testing procedures.

A. Interactive Maps

A Levels of Details of interactive map was developed using
the Syncfusion library. This map (Figure 10) allows for various
interaction to explore detailed air quality data including: a)
zoom, focus on State, view details of a State, County, and
City, air quality evolution over time, air quality by season,
years, months, days, and hours.

Josuary = 1980 Y

Fig. 10. An interactive map on the dashboard front page shows the air
pollution data of the United State and a State when clicking on the US map.

B. Backend Architecture

The backend architecture was selected prioritizing simplic-
ity and a clear separation of concerns to streamline develop-
ment and ensure smooth data retrieval and endpoint exposure.

Given the straightforward nature of the backend operations,
which primarily involve fetching data from the database and
exposing endpoints to serve aggregated data and statistics,
Flask was chosen for the development of the endpoints.

Flask is known for its simplicity and flexibility, making
it an ideal choice for projects with relatively uncomplicated
backend requirements. With Flask, it was possible to quickly
set up the backend infrastructure and define endpoints without
unnecessary configurations.

Furthermore, Flask’s lightweight nature and minimalistic
approach allowed us to keep our backend codebase concise
and focused. This simplicity not only enhances development
speed but also facilitates easier debugging and maintenance in
the long run.

C. API Development

API development for frontend-backend communication and
data retrieval begins with the identification of endpoints
required to serve the frontend application’s needs. In the
provided code, this involves defining routes in app.py that
correspond to specific data queries or operations, such as
retrieving average pollution values (/average value), fetching
row counts (/count), or obtaining air quality category infor-
mation (/air quality category). These routes are designed to
accept parameters from frontend requests, such as the pollutant
element, year, month, state, and county, using the request
object in Flask.

Once the routes are defined, the next step is to implement
the corresponding controller logic, where service functions
from service.py are invoked to interact with the database
models and perform data retrieval or processing tasks. The
service functions encapsulate the business logic and database
operations, abstracting away the complexities of querying the
database and performing calculations.

Error handling is implemented to handle cases where invalid
data or no data is found for a given query, ensuring robustness
and reliability in the API responses. Finally, the API responses
are formatted as JSON objects and returned to the frontend
application, enabling seamless communication between the
frontend and backend components of the application.

D. Project Deployment

The system is deployed to AWS using the DevSecOps
methodology. The DevSecOps process starts with code com-
mits to the GitHub repositories agi-quality-apis for the back-
end and agi-dashboard for the frontend. Each commit triggers
AWS CodePipeline, which orchestrates the entire workflow,
providing a streamlined architecture.

For the backend, AWS CodePipeline uses AWS CodeBuild
to compile the Flask application, run tests, and create de-
ployment artifacts. Successful builds are deployed to AWS
Elastic Beanstalk, which simplifies the management of the
application environment by handling provisioning, scaling, and
monitoring. AWS Elastic Beanstalk integrates seamlessly with
AWS RDS, ensuring efficient database management.



For the frontend, AWS CodePipeline also uses AWS Code-
Build to compile the Angular application, run tests, and
produce build artifacts. These artifacts are then deployed to
Amazon S3, where they are hosted as a static website. Amazon
S3 offers a reliable and scalable solution for static web hosting,
ensuring that the frontend is quickly and efficiently delivered
to users.

This automated pipeline ensures consistent integration, se-
curity [21]-[23] and deployment of both backend and frontend
components, minimizing manual intervention and reducing the
risk of errors. The workflow is illustrated in the figure 11,
providing a visual overview of the deployment pipeline and
demonstrating the efficiency of the AWS-based architecture.
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Fig. 11. Application deployment architecture and services on AWS

VI. IMPLICATIONS AND FUTURE DIRECTIONS

Results from our analysis yields key insight into air pollu-
tion levels and their relationship with racially charged policy-
making of the past in Baltimore, Maryland. First, that HOLC
rankings of decades past hold a clear association with dif-
ferences in present-day environmental quality. Second, that
HOLC grades influence air pollution levels more heavily than
race/ethnicity, and that this influence is more clearly defined
in NO; levels than in PM;s levels. However, this does not
discount the link between ethnicity and air pollution levels, and
the finding that Baltimore has a greater proportion of residents
of color than nationwide, as well as observable differences
in NO; levels, corroborates previous bodies of research on
the subject [5]. Since HOLC grades of the past continue
to influence inequities today, local propositions to address
these topics may take into account the unevenly impacted
communities and structural changes that may have further
effects over many more years.
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