
This paper is included in the 
Proceedings of the 21st USENIX Symposium on 

Networked Systems Design and Implementation.

April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the 

21st USENIX Symposium on Networked 

Systems Design and Implementation 

is sponsored by

ExChain: Exception Dependency Analysis  
for Root Cause Diagnosis

Ao Li, Carnegie Mellon University; Shan Lu, Microsoft Research and University of Chicago; 

Suman Nath, Microsoft Research; Rohan Padhye and Vyas Sekar,  

Carnegie Mellon University

https://www.usenix.org/conference/nsdi24/presentation/li-ao



EXCHAIN: Exception Dependency Analysis for Root Cause Diagnosis

Ao Li1, Shan Lu23, Suman Nath2, Rohan Padhye1, Vyas Sekar1

1Carnegie Mellon University, 2Microsoft Research, 3University of Chicago

Abstract

Many failures in large-scale online services stem from

incorrect handling of exceptions. We focus on exception-

handling failures characterized by three features that make

them difficult to diagnose using classical techniques: (1) im-

plicit dependencies across multiple exceptions due to state

changes; (2) silent code handling without logging; and (3)

separation (in code and in time) between the root cause excep-

tion and the failure manifestation. In this paper, we present

the design and implementation of ExChain, a framework

that helps developers diagnose such exception-dependent

failures in test/canary deployment environments. ExChain

constructs causal links between exceptions even in the pres-

ence of the aforementioned factors. Our key observation is

that mishandled exceptions invariably modify critical system

states, which impact downstream functions. A key challenge

in tracking these states is balancing the tradeoff between

performance overhead and accuracy. To this end, ExChain

uses state-impact analysis to establish potential causal links

between exceptions and uses a novel hybrid taint tracking

approach for tracking state propagation. Using ExChain, we

were able to successfully identify the root cause for 8 out of

11 reported subtle exception-dependent failures in 10 pop-

ular applications. ExChain significantly outperforms state-

of-art approaches, while producing several orders of magni-

tude fewer false positives. ExChain also offers significantly

better accuracy-performance tradeoffs relative to baseline

static/dynamic analysis alternatives.

1 Introduction

Failures in large-scale production systems continue to be a

significant source of frustration for developers and loss of

customer satisfaction and revenues for service providers. A

common root cause of system failures is incorrect handling

of exceptions or errors.

Developers today can check whether a failure occurred

during the handling of an exception and whether that excep-

tion was thrown during another exception handler, etc; i.e.,

track exception chains. Unfortunately, existing workflows are

not useful for diagnosing failures whose root causes are out-

side the current exception chain, a type of failures that we

refer to as exception-dependent failure (EDFs). Exception-

dependent failures involve multiple exceptions whose han-

dling periods do not overlap (i.e., they do not belong to the

same exception chain) and yet the (mis)handling of one root

cause exception triggers a downstream exception which even-

tually leads to a failure.

In the context of large systems, diagnosing failures often ne-

cessitates an in-depth understanding of EDF. As highlighted

by Yuan et al., "Almost all catastrophic failures (92%) stem

from the incorrect management of non-fatal errors that are

explicitly signaled in software" [59]. Complementing this,

our manual analysis of 150 failures across multiple Apache

Foundation projects affirms that 85% of these failures orig-

inate from exceptions. Unfortunately, existing solutions for

root cause diagnosis of EDFs are insufficient; in our evalua-

tion with 11 EDFs, state of the art slicing, log analysis, and

statistical debugging techniques could identify the root causes

of only three of fewer EDFs.

EDFs differ from simple exception-chains [25] in three key

aspects that make them especially challenging to diagnose:

• Implicit stateful dependencies: In an explicit exception

chain, the final failure-inducing exception is part of a

cascaded chain of exceptions triggered by the root cause.

In EDFs, however, the root cause exception can lead to

a failure not only by just modifying the control flow of a

program, but also by subtly changing the state.

• Silent handling: Due to the common practice of silent ex-

ception handling [59], the root cause exception may not

be logged. This makes it difficult to diagnose exception-

handling failures that may occur later on.

• Spatial/temporal separation: Finally, the root cause and

the failure may be spatially and temporally distant from

each other. For instance, the root cause exception may

be triggered by one user request and the failure may

be triggered by a different request that has some data

dependency with the root cause.

For these reasons, we argue that it is critical to complement

exception chain information, which is commonly produced

and visualized by standard libraries in languages like Java and

Python, with exception dependency information for effective

failure diagnosis.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2047



In this paper, we present EXCHAIN, a tool that enables

developers to diagnose EDFs by automatically inferring ex-

ception dependency. EXCHAIN works by instrumenting the

production system binary. At run time (e.g., during integra-

tion testing or canary deployment), EXCHAIN routines, which

were instrumented into the production binary, automatically

log all exceptions and their contexts, and perform a dynamic-

static hybrid analysis to identify causal dependencies among

all exceptions; i.e., an exception e2 causally depends on an

exception e1 if e1 is responsible for e2, either explicitly (e.g.,

throw e2 inside a catch block of e1) or implicitly (e.g., e1

changes application states that causes e2). Whenever a failure

occurs, developers can query the exception-dependency graph

produced by EXCHAIN to see whether the failure was caused

by the mishandling of an exception.

EXCHAIN employs a set of novel state-impact analyses

to establish potential causal links between exceptions. First,

EXCHAIN analyzes how exception-handling code changes

program state—we call this affected state analysis—by iden-

tifying memory locations whose values are impacted by the

change in control flow when compared to non-exceptional

execution. Second, EXCHAIN analyzes immediate causes for

exceptions by tracking control flow backwards from the pro-

gram locations where exceptions are raised and identifying

memory locations whose values are responsible in triggering

the exception—we call this responsible state analysis. Third,

EXCHAIN incorporates taint analysis to monitor the state

affected by code addressing one exception as it influences

values which activate other exceptions. Notably, EXCHAIN in-

troduces a hybrid algorithm, blending dynamic taint tracking

for heap objects with static taint tracking for local primitives.

This strategic approach positions EXCHAIN uniquely in the

taint-tracking arena, offering accuracy akin to dynamic taint

analysis while achieving the overhead benefits of static taint

tracking. Collectively, these methods enable EXCHAIN to

determine causality between exceptions, proving invaluable

for EDF diagnosis.

We evaluated EXCHAIN using 10 diverse applications from

the Apache Foundation, spanning various domains and av-

eraging 6K stars. Out of 11 reproducible EDFs instances,

EXCHAIN identified root causes for 8, outperforming the

state-of-the-art statistical debugging, slicing, and log analy-

sis tools, which pinpointed only 3 or fewer issues.1 In per-

formance metrics, EXCHAIN introduced an average latency

overhead of 8%, half attributable to its techniques and half to

underlying JVM tools – tools we aim to optimize in future

versions. When juxtaposed with an alternative design employ-

ing static taint tracking, EXCHAIN was a mere 2% costlier but

detected 5 more root causes. In contrast, while dynamic taint

tracking identified the root cause for all failures, it was found

to introduce a substantial performance overhead, reaching up

to 50 times. This suggests that while accuracy is crucial, the

1EXCHAIN could have identified the root causes of two additional failures

with a better static taint tracking tool than what our current prototype uses.

1 class PageProvider {

2 int counter;

3 Page[] cache;

4 void processRequest(Request req) {

5 Page page = cache[req.pageIndex];

6 try {

7 if (page.isAttached()) {

8 logAndThrow(

9 "attached page.");

10 }

11 page.resolve(req.sessionId);

12 counter++;

13 // render page

14 } catch (StalePageException e1) {

15 // StalePageException is

16 // swallowed and not logged.

17 page.refresh(counter);

18 } catch (InitError e2) {

19 throw new FatalError(e2);

20 }

21 }

22 void logAndThrow(String msg) {

23 logger.info(msg);

24 throw new InitError(msg);

25 }

26 }

27 class Page {

28 int sessionId;

29 void resolve(int sessionId) {

30 attach();

31 if (sessionId != this.sessionId) {

32 throw new StalePageException();

33 }

34 ...

35 detach();

36 }

37 }

Req. 1

1

2

3

4

5

6

HTTP 200

Req. 2

1

2

3

4

HTTP 500

The method does not detach the page

when a StalePageException is thrown.

Figure 1: Wicket [7] fails to detach page when exception

occurs [56]. Green circles represents the first request that

triggers a StalePageException and leaves the page

attached. Red squares represents the second request which

triggers the InitError and causes the system to fail.

accompanying performance trade-off can be significant. The

results show that EXCHAIN’s hybrid taint-tracking presents

a useful accuracy-overhead trade-off: an accuracy closer to

dynamic taint tracking with an overhead closer to static taint

tracking. This makes EXCHAIN suitable for test or canary

deployments where the modest overhead is acceptable for the

ease of failure diagnosis.

The source code of EXCHAIN is available at:

https://github.com/aoli-al/exchain.

2 Motivation

In this section, we present an example to illustrate the notion

of exception-dependent failures and discuss why they are

an important class of problems that do not yet have good

solutions in practice.

2.1 A Motivating Example

We present a simplified real-world example to illustrate

2048    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



exception-dependent failures (EDFs) and the unique chal-

lenges in diagnosing their root causes. To keep the discussion

short, we pick a simple application and keep details to a min-

imum, noting that similar problems also manifest in more

complex and popular applications such as Hadoop, HDFS,

and Tomcat (as we show in §6).

Figure 1 shows a simplified code snippet from the Apache

Wicket web server [7], a popular choice for dynamic web

applications. When a user requests a page, Wicket returns the

cached version of the page for better performance (Line 5).

Next, Wicket resolves the page based on the req.sessionId

(Line 11). This sessionId allows Wicket to differentiate

between requests from various users. Specifically, if the ses-

sionId associated with a rendered page differs from a new

request, Wicket initiates re-rendering for the page. This pro-

cess is implemented in the resolve method. It begins by

attaching the page object to the current context (Line 30),

ensuring it remains exclusive to the current requester and

safeguarded against accidental modifications by concurrent

requests. Upon completion, the method detaches the page

object. The resolve compares the sessionId of the page

object with that of the requester. In cases of mismatch, it

throws a StalePageException (Line 32) so that the Page-

Provider will refresh the page (Line 17).

Unfortunately, the resolve method in Wicket 9.4.0 has a

bug that can result in an HTTP 500 error response. Figure 2

illustrates the sequence of requests that trigger this bug. The

issue involves two requests. The first request asks for a stale

page, i.e., the req.sessionId does not match the current

page.sessionId, which causes a StalePageException at

Line 31. Due to this exception, the resolve method fails

to detach the page object, leaving it attached to the current

context. The exception is later swallowed and the page is

silently refreshed in Line 17. The second request asks for

the same page requested by the previous request, and the

cache array returns correctly. However, since page is still

attached, processRequest throws an InitError exception

that eventually causes the HTTP 500 error response. The

reporter of the above Wicket issue spent significant time to

identify the root cause and to understand how it is causally

related to the failure [56].

Note that the final failure (HTTP response 500) causally

depends on one or more exceptions. The dependency can be

explicit or implicit. An exception e j explicitly depends on

another exception ei if ei’s catch block explicitly throws e j. In

the Wicket example above, FatalError explicitly depends

on InitError. On the other hand, e j implicitly depends on

ei if ei changes application state in a way that causes e j; i.e.,

there is a data-flow between the effect of ei and the cause of

e j. In the Wicket example, InitError implicitly depends on

StalePageException since the latter leaves the page in the

attached state, causing the former.

We observe that diagnosing this exception-handling failure

is challenging due to three key factors:

Req 1
p1.html

1. Get Cached Page 2. Check Page Attached

5. Throw StalePageException
HTTP 200 4. Check Stale Page

User

3. Attach Page

6. Refresh Page

Req 2
p1.html

1. Get Cached Page 2. Check Page Attached

3. Throw InitError
HTTP 500 Rethrow

4. Throw FatalError

Figure 2: The request flow that triggers the HTTP 500

error when a user requests the same page twice. The labels

correspond to the execution flow shown in Figure 1.

F1: Implicit state changes. Exceptions can have unexpected

consequences beyond just modifying the control flow of a

program. In the case of the FatalError exception shown in

Figure 2, the presence of a StalePageException implicitly

modifies the state of the page object. Specifically, the detach

method is not called, leaving the object in an un-detached

state that later triggers the FatalError exception. Impor-

tantly, there is no direct control-flow relationship between the

StalePageException and the FatalError, meaning that

simply tracing the execution path of the second request does

not reveal the root cause of the failure.

F2: Silent exception handling. The root cause exception

StalePageException is silently swallowed and not logged

(Line 15). This allows the first request to continue normally

despite encountering errors, improving overall system reli-

ability and user experience. Such silent exception handling

is a common practice among practitioners[59]; however, the

fact that the exceptions are not logged or reported to external

systems makes it difficult to diagnose failures that may occur

later on (e.g., in the second request in this example).

F3: Spatially and temporally distant root cause. The error

only surfaces in the second request, which can be temporally

distant from when the root cause was triggered by the first

request. Many unrelated error messages appear between the

temporally-distant root cause and failure, and identifying if

an error message is causally related to the failure can be

challenging.

These key factors are not specific to the motivating ex-

ample alone. For example, in a study of 10 Java libraries,

Fetzer et al. found that 40% of exceptions caused implicit

state changes [23], where both the control- and data-flow

of the program are changed. Such state changes can cause

implicit EDFs that are difficult to diagnosis. Moreover, an em-

pirical study by Fu and Ryder found that approximately 40%

of the exceptions caught by the analyzed applications were

completely ignored by the program [25]. Existing empirical

evidence shows the ubiquitous of the above factors in diag-

nosing EDF. Our experiments in §6 sampled 11 reproducible

EDFs from ten popular apps (Table 2); six of the EDFs turned

out to involve multiple requests/operations, and the root cause

exceptions were missing in the logs for five EDFs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2049



2.2 Prior Work and Limitations

We now briefly discuss why closely related work is not appli-

cable in identifying the root cause of an EDF.

Failure diagnosis. Statistical debugging [39] and backward

slicing are two classic approaches to failure diagnosis. The

former requires comparing many successful runs and failure

runs to identify the failure root cause, a very different usage

scenario from EXCHAIN. In our evaluation, even when pro-

vided with both types of runs, the leading statistical debugging

tool, GZolta, detected 6 fewer root causes than EXCHAIN.

Backward slicing has struggled to balance accuracy and

run-time overhead: static slicing [44, 49] cannot scale to ana-

lyze large-scale systems precisely. On the other, dynamic slic-

ing techniques, like [5], can drastically slow down program

execution—by up to 15 times in our evaluation, rendering

them unsuitable for consistent use during routine testing or

canary deployments.

Additionally, Sinha et al. suggested an integration of ex-

ception semantics with backward tracing, specifically to ad-

dress null pointer exceptions. However, this technique’s scope

remains limited as it primarily tracks NULL propagation,

making it non-generalizable for other exceptions [49].

Failure monitoring. Existing failure monitoring techniques

primarily focus on identifying the failure of distributed sys-

tems [4, 13, 14, 17, 22, 26, 27, 28, 37, 38, 54]. However, iden-

tifying the failure service does not reveal the root cause of the

failure. Panorama [31] and OmegaGen [40] improve the ob-

servability of large systems by monitoring grey-failures [30].

Such techniques are not sufficient to identify the root cause

for EDFs as not all exceptions are triggered by grey failures;

i.e, they do not work for silent exception handling (F2).

Log enhancement and analysis. These techniques focus on

improving the log quality [58, 63], like logging more variable

values at more selected program locations, and identifying

failure-related logs [19] during post-mortem analysis. They

are orthogonal to EXCHAIN. EXCHAIN conducts its analysis

at run time, without relying on logs. Furthermore, no matter

how many variables are logged at how many program loca-

tions, exception dependency cannot be figured out without

the dependency analysis that we will present later. Notably,

in our evaluations, only 3 failures benefitted from analyzing

the first exception thrown by the application and the closest

exception to the final failure.

2.3 Our Goal

Our goal is to build a tool that can automatically identify, at

run time, the causal relationship between root cause excep-

tions and an EDF, even when the root causes are far from the

failure, exceptions are silently swallowed, and dependencies

are implicit. More precisely, given an EDF e f , we aim to pro-

duce a DAG such that (1) there is a single sink node e f , (2)

source nodes represent root cause exceptions, and (3) an edge

ei → e j indicates that e j implicitly or explicitly depends on

Figure 3: A high-level overview of EXCHAIN.

ei. In the most common case, the output is a chain of excep-

tions, starting from the root cause exception and ending at e f .

For example, for the aforementioned Wicket failure in Fig-

ure 1, we produce the chain StalePageException@32 →
InitError@9 → FatalError@19 (while this notation only

shows line numbers, the actual dependencies are between the

objects corresponding to the exceptions thrown at run-time).

Such dependencies can better explain to developers how root

cause exceptions lead to the failure.

We aim to make our tool easy to use: a developer should be

able to use the tool with low manual effort. The tool should

be accurate: it should be able to find root causes of most

EDFs, without generating many false positives. Finally, it

should be efficient: its run time overhead would be modest.

We envision EXCHAIN being deployed in a test, a canary, or a

reproduction environment where a modest run time overhead

is acceptable for the advantage of an easy-to-use and effective

failure diagnosis tool.

3 EXCHAIN Overview

We begin with a high level overview of its workflow and

how we envision EXCHAIN being used before diving into the

technical challenges.

3.1 A High Level View

EXCHAIN consists of three components as shown in Figure 3:

the instrumenter, the runtime, and the analyzer.

To use EXCHAIN, a developer proactively uses the auto-

mated instrumenter to instrument the target application bi-

naries. The instrumenter does not require application source

code or any application-specific configuration. The instru-

mented binaries are then deployed in the same way as the

original binaries (e.g., in an integration testing environment

or in a canary deployment).

As the instrumented application executes, EXCHAIN’s run-

time intercepts all exceptions that are raised and saves all ex-

ceptions as well as the critical runtime information required

to determine their dependencies in the EXCHAIN log file.

After a failure, the developer uses EXCHAIN analyzer to di-

agnose the failure. We assume that the developer charged

with this incident troubleshooting and remediation knows

the final symptom exception of the failure (potentially from

the application’s own log file). For instance, in our example

from earlier, the developer knows that the HTTP 500 error

occurred with the FatalError exception inside the Page-

2050    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Provider class. The analyzer takes this symptom exception

as an input, and uses EXCHAIN logs to output an exception

DAG (or, most commonly, an exception chain) that has the

given symptom exception as the sink. For instance, apply-

ing EXCHAIN to the incident from Section 2, it produces

StalePageException@32 → InitError@9 → FatalEr-

ror@19. The source nodes in the analyzer output represent

potential root cause exceptions.

3.2 Technical Challenges

EXCHAIN proactively monitors all exceptions and collects

runtime information every time an exception is thrown, treat-

ing every exception as a potential threat to the system. This

is because predicting whether an exception will eventually

cause a failure is impossible in general, and hence a selective

interception may miss exceptions that are causally related to

the failure. Similarly, a reactive strategy can miss important

information if an exception and its information is not available

when the failure happens.

The key challenge EXCHAIN addresses is determining

possible dependencies between two intercepted exceptions.

There are many existing solutions to track explicit dependen-

cies across exceptions, i.e., when one exception is thrown

from the catch block of another. In this case, simply log-

ging both the caught and the thrown exceptions can trivially

capture their explicit dependency. There also exist program

analysis tools to automatically construct such explicit depen-

dencies across exceptions [24, 25, 33, 48]. However, these

solutions cannot identify implicit dependencies of two excep-

tions where one exception causes state changes, which later

causes the second exception.

The core contribution of EXCHAIN is the ability to in-

fer implicit dependencies of exceptions by tracking how an

exception changes application states and how the changes

cause subsequent exceptions. EXCHAIN needs to address two

challenges to achieve this.

First, EXCHAIN needs to identify a set of application states

to track. The set should be minimal in order to reduce the

tracking overhead. To this end, EXCHAIN uses two novel pro-

gram analysis techniques to identify a small set of program

memory locations to track. In particular, for each exception

ei, it identifies a set Aei
of affected memory locations whose

values are impacted by ei and a set Rei
of responsible mem-

ory locations whose values may cause ei. For example, if an

exception e1 causes null values of the variables v1 and v2,

and accessing v1 later leads to a null pointer exception e2,

then Ae1
= {v1,v2} and Re2

= {v1}. The fact that Ae1
and Re2

overlaps readily implies that e2 (implicitly) depends on e1.

Note that our abstraction of affected and responsible mem-

ory locations captures explicit dependencies as well: if e2 is

thrown in the catch block of e1, Ae1
and Re2

both include e1

and hence e2 depends on e1.

Second, an exception e2 may depend on another exception

e1 only indirectly. For instance, suppose e1 causes v1 =−1,

Cause

Affect
(4.1)

Catch
E1

Throw
E2

State

Responsible
(4.2)Propagate

(4.3) State'

Figure 4: EXCHAIN identifies the affected state of each

exception and tracks its propagation. A causal link is es-

tablished if the state causes another exception directly or

indirectly.

which causes v2 = −1 (e.g., via the copy v2 = v1), which

causes the array index out of bounds exception e2 (e.g., when

executing arr[v2]). In this case, e1’s affected memory loca-

tions {v1} do not overlap with e2’s responsible memory loca-

tions {v2,arr}, rather they are related to each other through

data- and control-flow. Taint tracking can accurately capture

such indirect dependencies or variables; however, it can be

prohibitively expensive (up to 50× overhead for some ap-

plications in our evaluation in §6). EXCHAIN uses a novel

technique that combines static and dynamic taint tracking of

a subset of memory locations that is significantly lightweight

compared to dynamic taint tracking (although it can miss

a small fraction of dependencies). Given the affected mem-

ory locations Ae1
of exception e1, the techniques computes

Prop(Ae1
), the set of all memory locations that are tainted by

Ae1
. Using the information, EXCHAIN decides that an excep-

tion e2 with responsible memory location Re2
depends on e1 if

the intersection of Prop(Ae1
) and Re2

is not empty. Intuitively,

a nonempty intersection means e1 affects at least one memory

location that, through data- and control-flow, affects at least

one memory location that is responsible for e2, and hence e2

depends on e1.

3.3 Scope and Limitations

EXCHAIN has several sources of false negatives. First, EX-

CHAIN cannot identify affected and responsible memory lo-

cations that are not initialized when the exception is thrown.

Second, EXCHAIN cannot track the state propagation if the

exception is thrown or caught by native code or if the state

propagates to other systems (e.g. an exception causes a cor-

rupted file or disrupts API functionalities).

The EXCHAIN is specifically tailored for programming

languages that utilize exceptions for error handling, such as

C# and Java. Its algorithms analyze throw and try/catch state-

ments to track where exceptions are raised and handled. How-

ever, EXCHAIN is less effective for languages like C and

Rust, which predominantly use return values for error han-

dling, without raising and handling failures explicitly.

4 Detailed Design

Next, we describe the detailed design of EXCHAIN to realize

the workflow from the previous section. We start by describ-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2051



Statement Variable Memory Location

StalePageException:resolve

detach(); this Page

StalePageException:processRequest

counter++; counter PageProvider.counter

page.refresh(); page Page

Table 1: Affected state analysis for the Wicket example.

ing the main analyses in EXCHAIN (ref. Figure 4). Note that

all analyses are dynamic unless specified otherwise, and they

track memory locations, which are either local variables on

the stack, objects in the heap, or fields of objects in the heap.

4.1 Affected State Analysis

First, given an exception, our goal is to identify all memory

locations whose values may be affected by the exception,

i.e., their values will differ depending on whether the excep-

tion is thrown or not. For example, in Figure 1, let us con-

sider the control-flow of the program if the resolve method

does not throw the StalePageException@32. Firstly, the

resolve method calls the detach method (Line 11), which

modifies the internal state of the Page object. Next, the

processRequest method increments the counter variable

(Line 12). Finally, the page.refresh() call (Line 17) is not

executed because it is inside the catch block. Therefore, the

StalePageException@32 affects the memory locations cor-

responding to the Page object referenced by this variable at

line 35, the counter field, and the Page object referenced by

page variable at line 17.

However, obtaining this information at runtime can be chal-

lenging. Simply removing the throw statement and rerunning

the request may not yield the correct result, particularly if the

system is stateful.

To enable EXCHAIN to identify memory locations affected

by an exception at run-time, we develop a novel a static data-

flow analysis that resembles liveness analysis [47]. Given

an exception e and its corresponding stack trace ST from

the current execution as input, EXCHAIN generates a set of

memory locations whose value will be altered by the excep-

tion. We represent a stack trace as a sequence of k g 1 tuples

ïmethod, loc,varsð corresponding to stack frames when the

exception was thrown, where loc is the program location of

the call site (for the first k−1 frames) or the throw statement

(for the k-th frame), and vars is a mapping of variables to their

values. Our algorithm for computing the affected locations A

is as follows:

1. Add thrown exception e to A.

2. For each stack frame ïmethod, loc,varsð ∈ ST:

(a) Identify all instructions Iaff that are control depen-

dent on the throw instruction or the corresponding

invocation site loc.

(b) For each instruction i ∈ Iaff which is of the form x = y

or x. f = y or x. f oo(), determine (respectively) the as-

signed local variable, the assigned object field, or the

object on which a method was invoked, and add these

locations to A. Intuitively, this is because their value

may be impacted by the change in control flow due to

the exception. Note that concrete memory locations

are obtained by resolving object references and fields

via vars.

3. Return all affected locations A.

Table 1 shows the analysis result of the StalePageExcep-

tion. When the StalePageException@32 is thrown, the

detach() statement is control dependent of the throw state-

ment. The detach() statement is a method invocation of the

object referenced by this. Therefore, EXCHAIN identifies the

memory location pointed by this as affected. The stack trace

of this exception also contains the method processRequest

which is at the invocation site page.resolve(req.sessionId)

(Line 11); as this call is aborted, the control-dependent state-

ments counter++ and page.refresh() are marked as affected.

Correspondingly, the affected state analysis returns two mem-

ory locations: (1) the Page object referenced by this in

the resolve method and by page in the processRequest

method, and (2) the class field counter.

4.2 Responsible State Analysis

Given an exception, we also need to identify all memory lo-

cations whose specific values can cause the exception. Note

that exceptions broadly have two types of causes: (a) excep-

tions originating at a throw statement are usually caused by

some program condition that is checked by an enclosing if;

and (b) run-time exceptions can be triggered while executing

expressions because of the value in some memory location

(e.g., if a reference is null or if a divisor is zero).

As an example, consider the processRequest method

shown in Figure 1. This method can throw an ArrayIndex-

OutOfBoundsException at Line 5 if cache.length <= req. ,

pageIndex. The memory location referenced by cache and req

are responsible for the exception. Next if page is attached,

the method throws an InitError exception (Line 9). In this

case, the Page object referenced by page is the responsible

memory location, since it is part of the closest enclosing if

condition. Note that the InitError is thrown indirectly by

a wrapper method called logAndThrow. Therefore, simply

analyzing the method that directly throws the exception is not

sufficient to identify the responsible location. To address this,

we implement several heuristics based on the semantics of

the exceptions and the structure of the code.

Exception rethrown. Many exceptions are thrown explicitly

in the catch block (e.g. the FatalError in Figure 1). The mem-

ory location referenced by the caught exception (e.g. e2 at

Line 18) is responsible for the new exception.

Run-time exceptions without an explicit throw statement.

We maintain a list of exceptions that are thrown directly by the

runtime while executing individual instructions, and handle

2052    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



them specially to identify the memory locations responsible

for these exceptions. For instance, if a NullPointerExcep-

tion is triggered by a method invocation instruction or an

object field access, then EXCHAIN identifies the correspond-

ing object reference as the culprit.

Exceptions thrown by throw statements. When an excep-

tion is thrown by a throw statement, EXCHAIN employs a

backward control-flow analysis to identify the memory lo-

cations responsible for the exception. The algorithm takes

an exception e and its corresponding stack trace ST as input

and returns a set of memory locations R that are responsible

for the input exception. The stack trace is again represented

as a sequence of tuples ïmethod, loc,varsð as before. The

algorithm is as follows:

1. For each frame ïmethod, loc,varsð ∈ ST starting from the

top of the stack:

(a) Find the closest branch statement of the current frame

location loc based on the control-flow graph of the

method.

(b) If no such branch is identified in this method, go to

step 1.

(c) Collect all variables or object fields that are refer-

enced by the condition expression of the branch state-

ment. Use vars to resolve variables to memory loca-

tions, and add these to R. Break and go to step 2.

2. Return the set R.

For example, in the InitError shown in Figure 1, EX-

CHAIN first analyzes the logAndThrowmethod at line 24, and

then the processRequest method at line 9. Since the throw

statement in question is not dominated by any branch condi-

tion in the logAndThrow method, the analysis continues up

the call stack to the processRequest method, where it iden-

tifies the closest branch condition as page.isAttached(). EX-

CHAIN then resolves the local variable reference and returns

a singelton set containing the memory location referenced by

value as R. Since this value is the same object included in

the affected set for StalePageException (ref. Section 4.1),

EXCHAIN can establish causality between StalePageEx-

ception and InitError.

4.3 Hybrid Taint Flow Analysis

In general, EXCHAIN needs to consider how the values af-

fected by some exception ei propagate to other values before

they become responsible for some other exception e j (§3.2).

This is done using taint analysis. The main idea behind taint

analysis is to associate some information with program values

(e.g., that they are affected by exception ei) and propagate this

to other values that are derived from the former.

Traditional dynamic taint analysis works by instrumenting

program code to propagate taint information at every instruc-

tion, such as copying local variables, performing arithmetic

computation, or invoking method calls. This instrumentation

introduces excessive overhead to the application [11, 15, 20],

1 class Foo {

2 int value = 0;

3 Taint valueT = new Taint("const:0");

4 Taint thisT = new Taint("obj:Foo");

5 }

6 void m() {

7 int i1 = 10;

8 // create a new taint because i1 is created

from a constant.↪→

9 Taint i1T = new Taint("const:10");

10 int i2 = i1;

11 // Passing the taint information from i1 to

i2.↪→

12 Taint i2T = i1T;

13 Foo e1 = new Foo();

14 Foo e2 = e1;

15 int i3 = e1.value;

16 // Passing the taint information from

e1.value to i3.↪→

17 Taint i3T = e1.valueT;

18 }

Passing the taint information

from e1 to e2 is not necessary!

Figure 5: A simple program to demonstrate how dynamic

taint analysis tools tracks the taint tag for heap objects

and local variables. The original code is not highlighted.

making it difficult to apply dynamic taint analysis techniques

to large, complex enterprise-level applications even in an in-

tegration/canary test environment. Alternatively, static taint

analysis reconstructs the dynamic behavior of a program us-

ing only static code analysis [8, 41], which introduces zero

overhead to the application while trading off precision.

Hybrid taint analysis. Neither static nor dynamic taint analy-

sis alone can achieve both accurate and efficient taint tracking.

Therefore, it is natural to ask if it is possible to combine these

two approaches to achieve a high precision and a low over-

head. EXCHAIN implements a novel hybrid taint analysis that

leverages the following two observations.

First, the main overhead introduced by dynamic taint anal-

ysis comes from maintaining the taint information for local

primitives, such as integers and booleans. In contrast, tracking

heap objects can be done more efficiently and accurately by

adding only taint information to the heap object itself.

For example, Figure 5 illustrates an instrumented Java pro-

gram that tracks taint information using dynamic taint anal-

ysis. The fields valueT and thisT of the class Foo are used

to track the taint information of Foo.value and Foo respec-

tively. The dynamic taint analysis tool creates a taint reference

for each local primitive and updates the taint information ac-

cordingly (Line 9, 12, and 17). For object references, the tool

does not create taint references if they point to heap objects

whose taint information is already being maintained by cor-

responding fields (Line 3-4). When the thisT field of an

object is updated, all references pointing to that object are au-

tomatically updated as well. In our evaluation, tracking local

primitives introduces 87-5005% overhead but tracking heap

objects only introduces 1-10% to the system.

Second, local primitives can be efficiently tracked using

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2053



HADOOP NIFI WICKET JENA FINERACT HIVE TOMCAT SOLR
Application

0

2

4

6

8

R
at
io

(%
)

assign call return

Figure 6: Analysis result of the percentage of data-flows

between heap and local objects using CodeQL.

static taint analysis offline and static taint analysis produces

more accurate result for local primitives compared to heap

objects [29]. Heap objects can be manipulated in various ways

by the program, such as being passed between functions or

being dynamically allocated and deallocated. This makes it

harder to track the flow of data through the program and to

accurately determine which inputs have tainted a particular

object. On the other hand, local primitives are typically only

modified within a single function or block of code, making it

easier to trace their flow of data.

EXCHAIN utilizes these observations and dynamically in-

struments heap objects and adds taint information at run time,

introducing only a constant overhead per exception. For lo-

cal primitives, EXCHAIN uses static taint analysis to track

data-flow offline, introducing no overhead at run time.

One limitation of tracking different types of variables dif-

ferently is that it may miss data flow between heap objects and

local primitives. For example, in Figure 5, taint information

will be lost between e1.value and i3 because EXCHAIN main-

tains the taint information of e1.value dynamically and the

taint information of i3 statically. This limitation may affect

the accuracy of EXCHAIN’s analysis.

To better understand the impact, we used CodeQL [16] to

statically analyze multiple popular cloud services. Specifi-

cally, we focused on three types of statements: assignments,

method calls, and method returns. Figure 6 presents the re-

sults of our analysis. Across all applications, we found that

less than 8.5% of assignment statements, less than 4% of

method call statements, and less than 8.4% of method return

statements had data flow from heap objects to local primitives.

Our findings confirmed that the majority of data flow occurs

between heap-to-heap and local-to-local, which can be effec-

tively handled by hybrid taint analysis. In our evaluation of

11 reproduced failures, we found that EXCHAIN can identify

the root cause of 6 issues by only tracking heap objects, while

four issues require only tracking local primitives. Only one

failure requires tracing the data-flow between heap objects

and local primitives. Besides, tracking local primitives intro-

duces 17x overhead to the target system compared to only

tracking heap objects. Overall, by selectively tracing heap

objects and local primitives, EXCHAIN can identify the root

cause of most failures with minimal overhead.

4.4 Putting it Together

We now describe how different pieces fit together in the work-

flow of EXCHAIN as shown in Figure 3. At runtime, EX-

CHAIN intercepts every exception that is thrown by the appli-

cation. On each exception, EXCHAIN performs both affected

and responsible state analysis and logs the results in the EX-

CHAIN logs (the results are cached and reused when the same

exception is thrown multiple times). It also performs the dy-

namic part of its hybrid taint analysis. For affected states that

are heap objects, EXCHAIN marks them with a unique ID

of the exception. For affected states that are local primitives,

EXCHAIN logs the stack slot number and the correspond-

ing exception. When analyzing responsible states, EXCHAIN

checks if the memory location is a heap object that contains

any labels of previous exceptions. If a label is found, EX-

CHAIN records in its logs the causal link between the current

exception and the exception represented by the label. If the

memory location is a local primitive, EXCHAIN logs the stack

slot number and the corresponding exception.

To diagnose a failure, the user uses the EXCHAIN analyzer

offline with the target symptom exception of the failure. The

analyzer first performs the static part of its hybrid taint analy-

sis with the stack slots of affected states as sources and the

stack slots of responsible states (the states are retrieved from

EXCHAIN logs). If the static taint analysis reports a flow from

a source to a sink, EXCHAIN reports the causal link between

the corresponding exceptions. Finally, the analyzer returns

a DAG (or most commonly, a chain) that has the symptom

exception as the sink node. The source nodes in the returned

DAG represents the root cause exceptions.

5 Implementation

Our EXCHAIN implementation consists of 9,000 lines of code

written in Kotlin, Java, and C++. It instruments the compiled

bytecode of the target system and attaches dynamic monitors

to the runtime. We use JVM Tool Interface (JVMTi) [35]

to capture all exceptions thrown by the target application

and map local variables and heap fields to memory locations.

The affected and responsible state analyzer are developed

on top of ASM [9]. Our dynamic taint analysis is based on

Phosphor [11], and the static taint analysis is implemented

using Soot [53] and FlowDroid [8]. Although our algorithm

is not tied to a specific implementation of JDK and JVM, we

only execute target applications using OpenJDK 16 because

the underlying dynamic taint analysis tool requires APIs that

are only available after OpenJDK 16.

Dynamic Entry Point Inference. We have also implemented

a dynamic entry point inferring technique that allows the static

taint analysis to provide more accurate results.

Client-server architecture for cloud services typically in-

volves multiple public interfaces, each serving as an entry

2054    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



1 int main() {

2 while (true) {

3 Request r = waitForNewRequest();

4 dispatchRequest(r);

5 }

6 }

7 class Server {

8 @Endpoint("create")

9 Response createUser(Request r) {

10 method1(); // may throw Exception1

11 }

12 @Endpoint("remove")

13 Response removeUser(Request r) {

14 method2(); // may throw Exception2

15 }

16 }

Figure 7: A simple web server with two endpoints.

Exception1 ->

Server.method1,

Server.createUser,

Thread.run

Exception2 ->

Server.method2:24,

Server.removeUser,

Thread.run

Exception1 ->

Server.method1,

Server.createUser,

Thread.run

void main() {

createUser(SYM);

removeUser(SYM);

createUser(SYM);

}

Figure 8: EXCHAIN constructs a main method based on

the exception trace collected at runtime.

point to the application. Figure 7 illustrates a simple web

server with two public interfaces: create and remove. The

main function of the server is a hot loop that waits for incom-

ing requests and dispatches them to respective endpoints.

The dynamic design of modern web frameworks such as

Spring [51] and Wicket [7], which dispatch requests to differ-

ent worker threads through reflection and dependency injec-

tion, makes it difficult for the static taint analyzer to construct

an accurate call graph [6]. This design significantly limits the

completeness of the static analysis.

To address this problem, EXCHAIN leverages the exception

traces collected at runtime. For each exception, EXCHAIN

identifies the deepest stack frame that contains application

code based on the package name of the caller. It then con-

structs a main method that invokes the corresponding ap-

plication code in sequential order. For example, Figure 8

demonstrates an exception trace of Figure 7. EXCHAIN finds

the deepest method that contains application code for each

exception and creates a new main method that invokes the

identified methods sequentially. By doing so, EXCHAIN is

able to generate a new main method for the application that

starts with the identified application code.

In our evaluation, dynamic entry point inference helps EX-

CHAIN to identify the root cause for two more issues com-

pared to using the original main method of the application.

Issue Multi-Run
Cause # Excp

Logged Dist Total

WICKET-6908 6 6 5 8

JENA-324 6 6 792 796

FINERACT-1211 : 6 1 58

MAPREDUCE-6654 : 6 11 117

HADOOP-17812 : : 1 24

WICKET-6249 6 : 7 11

HDFS-4128 6 : 7 115

HIVE-13410 6 6 15 51

NIFI-8249 6 6 1 47

SOLR-16363 : : 1 171

TOMCAT-65131 : : 1 13

Table 2: Basic information of EDFs. ‘Multi-Run’ indicates

if the root cause and the final exception occur in different

operations. ‘Cause Logged’ shows if the root cause excep-

tion is logged by the application. ‘Dist’ shows the number

of exceptions thrown between the root cause and the final

exception. ‘Total’ shows the total number of exceptions

thrown by the application during the reproduction.

6 Evaluation

We evaluate EXCHAIN to answer the following questions:

(1) How does EXCHAIN compare to state-of-the-art failure

diagnosis techniques in identifying the root cause for EDFs?

(2) How do our analysis techniques help improve the accuracy-

performance tradeoffs of EXCHAIN? We conduct all experi-

ments on an Ubuntu server with an Intel Xeon 1290P proces-

sor and 128 GB of memory. We set an 8-hour time limit for

static taint analysis, with a maximum heap size of 32 GB.

6.1 Methodology

For our evaluation, we looked at popular open source appli-

cations maintained by the Apache Foundation. We query the

Jira issue tracking system [32] with a list of keywords such

as "exception handling". From the result of our query (run on

11-15-2022), we closely examined the latest 30 issues return

that are indeed software bugs related to exception handling

and have clearly described failure symptoms, and were able

to reproduce 11 of them (the remaining ones do not provide

an instruction to reproduce the failure).

As such, these 11 reproducible incidents spanning 10 open

source applications form the core of our evaluation setup.

Table 2 shows the basic information of the reproduced 11

issues. We reproduce all failures by running the service in

production configuration except for NIFI-8249, which uses

a customized class loading mechanism that is not supported

by the underlying taint analysis framework. As a result, we

reproduced this issue using unit tests. We manually analyze

the issue report summary and developer conversations in the

ticket to identify the root cause to serve as the ground truth.

Note that our system does not need or have access to this issue

report.

As shown in Table 2, many of the failures are non-trivial:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2055



Issue EXCHAIN
Statistical

SL4J
Log

Ochiai Taran. First Nearst

WI-6908 6 : : N/A : :

JE-324 6 : : : 6 6

FI-1211 6 N/A N/A N/A : :

MA-6654 6 : : N/A : :

HA-17812 6 : 6 N/A : :

WI-6249 6 : : N/A : :

HD-4128 6 6 6 N/A : :

HI-13410 6 : : N/A 6 :

NI-8249 : : : N/A 6 6

SO-16363 : N/A N/A N/A : :

TO-65131 : N/A N/A N/A : :

Table 3: The analysis result of each issue. Ochiai and

Tarantula are two statistical debugging techniques imple-

mented by GZoltar. N/A means GZoltar and Slicer4J are

not applicable to the target application. First and Nearest

are two debugging techniques that focus on examining the

initial exception thrown by the application and the closest

exception to the final failure from logs.

their root causes and failures happen in different executions,

root causes are not logged, and many (unrelated) exceptions

separate the failures from their the root causes.

6.2 End-to-End Evaluation

For the end-to-end evaluation of accuracy, we compare EX-

CHAIN with three state-of-the-art fault localization tech-

niques: statistical debugging (GZoltar [12] with two different

ranking algorithms Ochiai [3] and Tarantula [34]), slicing

(Slicer4J [5]) and Log analysis. GZoltar requires workloads

that contains both pass and fail cases and we use the unit

tests associate with the application. If the existing unit test

does not cover the reproduced failure, we manually imple-

ment one. GZoltar return a ranked list of statements that may

be related to the failure based on their relevance to the failure

and Slicer4J returns a ranked list of statements that are data

dependent of the failure. If the containing method of a state-

ment reported by the tool that throws the root cause is ranked

top 200 of the list, we report a true positive. In our analysis of

application logs, we utilized two strategies: "First" represent-

ing the initial exception thrown and "Nearest" representing

the closest exception to the final failure.

Note that, as discussed in Section 2.2, it is much more costly

to use GZoltar and Slicer4J: GZoltar requires many successful

runs and failure runs, and Slicer4J requires re-executing a

failed run. In contrast, EXCHAIN allows diagnosis right after

a failure run.

Table 3 presents the analysis result. EXCHAIN successfully

identified the root cause for most issues (8 out of 11). GZoltar

only identified the root cause for 2 issues among the 8 on

which we could run it. GZoltar was unable to analyze Fineract,

Tomcat, and Solr due to incompatibilities with the building

system used by these applications. For HDFS-4128, Ochiai

identified the root cause in the top 2 predicted statements.

However, for HADOOP-17812 and WICKET-6249, Ochiai

failed to predict the root cause within the top 200 statements.

For Tarantula, it predicted the root cause statements within the

top 30 statements for HADOOP-17812 and HDFS-4128. For

5 issues, GZoltar cannot report any root cause statements due

to insufficient pass/fail executions. Our experimental results

highlight that EXCHAIN is more capable than GZoltar in

identifying the root cause for EDFs.

To gain insight into the challenges of diagnosing failures

using dynamic variable dependency tracking, we performed a

backward slicing for all failures using Slicer4J [5]. However,

we were able to use the tool to reproduce only one issue:

JENA-324; Slicer4J could not used with the other issues due

to incompatible Java versions. For JENA-324, Slicer4J re-

ported 3741 statements related to the final failure, with the

root cause identified at the 3628th statement. This suggests

that relying on variable dependency for failure diagnosis can

lead to information overload, potentially overwhelming de-

velopers. Slicer4J can introduce significant performance over-

head (up to 15×) Ahmed et al. [5]).

Finally, for the log based approaches, the "First" strategy

identified the root cause for three out of the total failures. The

"Nearest" strategy pinpointed the root cause for only two dis-

tinct failures. It’s crucial to note that even in our experiments

with smaller workloads, numerous exceptions can occur be-

fore and after the root cause, particularly in long-running

services.

6.3 Accuracy vs. Performance Tradeoff

To put the accuracy-performance tradeoff of EXCHAIN in con-

text and explain the value of our optimizations, we consider

two other hypothetical designs SI+Static and SI+Dynamic (SI

stands for affected/responsible state identification). Similar

to EXCHAIN, both log exceptions at runtime and identify af-

fected and responsible states using the algorithms mentioned

in §4.1 and §4.2. They differ in how they analyze taint flow

between affected to responsible states: SI+Static uses fully

static taint analysis and SI+Dynamic uses fully dynamic taint

analysis. In contrast, EXCHAIN uses a hybrid taint analysis:

dynamic analysis of heap objects and static analysis of local

primitives. Note, that SI+Static logs all exceptions as well as

the corresponding stack traces and runs affected and respon-

sible state analysis offline. SI+Static is expected to offer low

run-time overhead but least accurate diagnosis results. Con-

versely, SI+Dynamic is expected to offer the highest overhead

but also the highest diagnosis accuracy.

To evaluate the performance impact of EXCHAIN, we iden-

tify benchmarks for 7 out of the 10 applications. For Hadoop,

Solr, MapReduce, and HDFS, we used the built-in bench-

marks to generate workloads [18, 45, 50, 52]. For Fineract,

Wicket, and Tomcat, we use the Apache HTTP benchmarking

tool [1] to measure their performance. For each benchmark,

we measure both throughput and latency. We encountered is-

sues when attempting to benchmark NIFI in production mode

due to dynamic class loading as described earlier. We were

2056    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Issue
EXCHAIN SI+Static SI+Dynamic

TP FP TP FP TP FP

WICKET-6908 6 1 6 1 6 0

JENA-324 6 0 : 0 6 0

FINERACT-1211 6 0 6 0 6 0

MAPREDUCE-6654 6 0 : 0 6 0

HADOOP-17812 6 0 : 0 6 0

WICKET-6249 6 0 6 0 6 0

HDFS-4128 6 0 : 0 6 0

HIVE-13410 6 0 : 0 6 0

NIFI-8249 : 0 : 0 6 0

SOLR-16363 : 0 : 0 6 0

TOMCAT-65131 : 0 : 0 6 0

Sum 8/11 1 3/11 1 11/11 0

Table 4: Analysis result of each issue. EXCHAIN cannot

identify the root cause for NIFI-8249 and SOLR-16363

because of the imprecise analysis result returned by the

underlying static taint analysis tool. EXCHAIN cannot

identify the root cause for TOMCAT-65131 because of the

data-flow between heap objects and local primitives.

also unable to find a representative benchmark workload for

Jena and Hive.2 Solr only reports throughput and MapReduce

only reports latency. All remaining benchmarks report both

latency and throughput.

Accuracy Results. Table 4 presents the accuracy results for

EXCHAIN and two baselines including the number of true

positives (TP) and false positives (FP). A true positive for a

technique means that it successfully identifies the root cause

exception and correctly reported causal relationship between

the root cause exception and the final failure described in the

issue. A false positive means that the technique reports an

exception that is not mentioned by the reporter and fixing the

exception does not prevent the final failure.

The result shows that EXCHAIN successfully identified

the root cause for most issues (8 out of 11) with only 1 false

positive. SI+Dynamic successfully identified all root causes

without any false positive (at the cost of huge run-time over-

head that we discuss later). On the other hand, SI+Static could

identify root causes for only 3 issues with 1 false positive.

Recall that SI+Dynamic is based on the affected and re-

sponsible variables identified by our analysis described in §4.

The fact that it can successfully identify all root causes shows

the effectiveness of the analysis algorithms.

We also investigated the three failures for which EXCHAIN

failed to report the true root cause. For two of the cases (NIFI-

8249 and SOLR-16363), EXCHAIN failed because of the

imprecise analysis result returned by the underlying static

taint analysis while tracking local variables. Only for one case

(TOMCAT-65131), EXCHAIN failed because of its design

limitation of not being able to track data-flow between heap

and local objects.

Performance Result. Figure 9 shows the latency results re-

2A third-party benchmark for an old version of Hive was available, but our

dynamic taint analysis tool could not instrument the benchmark application.

FINERACT
17.8(ms)

HADOOP
1.7(ms)

WICKET
11.2(ms)

MAPREDUCE
24.3(ms)

TOMCAT
5.9(ms)

HDFS
34.7(s)

Application

10
−1

10
0

10
1

10
2

10
3

L
at
en
cy

O
ve
rh
ea
d
(%

)

SI+Static SI+Dynamic ExChain

Figure 9: The latency overhead for different applications

in log scale. Lower is better.

FINERACT
1125.0
(ops/s)

HADOOP
1176.4
(ops/s)

WICKET
13459.4
(ops/s)

SOLR
16591.2
(ops/s)

TOMCAT
25403.7
(ops/s)

HDFS
1556.6
(mb/s)

Application

0

20

40

60

80

100

T
h
ro
u
gh
p
u
t
D
eg
ra
d
at
io
n
(%

)

SI+Static SI+Dynamic ExChain

Figure 10: The throughput degradation for different ap-

plications. Lower is better.

ported by 6 applications. On average, EXCHAIN incurred

1%-12% overhead on latency, only 2% more than SI+Static.

In contrast, SI+Dynamic incurred 87%-5015% overhead. The

throughput result in Figure 10 shows a similar trend: EX-

CHAIN incurred 1%-11% degradation on throughput, while

SI+Static also incurred 1%-11% degradation. In contrast,

SI+Dynamic incurred 48%-99% degradation.

Our evaluation shows that EXCHAIN achieves a better bal-

ance between performance and accuracy than SI+Dynamic

and SI+Static. Specifically, it achieves an accuracy closer

to SI+Dynamic, with a cost closer to SI+Static. In fact,

EXCHAIN successfully identified the root cause of all fail-

ures whose affected and responsible states are heap objects,

whereas SI+Static only identified the root cause for 3 such

failures. Moreover, EXCHAIN reported only one false positive

out of 11 issues, demonstrating its high accuracy. In terms of

performance, EXCHAIN introduces an average overhead of

only 8%, making it feasible to deploy in an integration test or

canary environment.

7 Discussion

Our current focus was on using EXCHAIN was in a test/canary

environment where a moderate performance overhead (≈ 8%)

may be acceptable. One natural question is if our approach

may eventually be amenable to be run in production with a

lower overhead.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2057



FINERACT HADOOP HDFS MAPREDUCETOMCAT WICKET
Application

0

2

4

6

8

10

12

L
at
en
cy

O
ve
rh
ea
d
B
re
ak
d
ow

n
(%

)

JVMTi ExChain

Figure 11: Latency overhead break down for different

applications.

FINERACT HADOOP HDFS SOLR TOMCAT WICKET
Application

0

2

4

6

8

10

T
h
ro
u
gh
p
u
t
D
eg
ra
d
at
io
n
B
re
ak
d
ow

n
(%

)

JVMTi ExChain

Figure 12: Throughput degradation break down for dif-

ferent applications.

To understand the future feasibility of extending EXCHAIN

we investigate the sources of the overhead. We divide the sys-

tem into two components: JVMTi and EXCHAIN. Figure 11

and Figure 12 show the breakdown of overhead introduced

by each component. JVMTi represents the aforementioned

overhead due to JVMTi. EXCHAIN represents the overhead

introduced by the central design, including logging all ex-

ceptions and their corresponding stack traces, computing the

affected and responsible states, and storing taint information

of heap objects.

From our observations, less than half of the total overhead

is attributed to the core components of EXCHAIN, while the

rest originates from JVMTi. JVMTi can disable several JIT

optimizations when attached to the JVM, which affects the

overhead. An alternative way to intercepting exceptions (e.g.,

through instrumentation or a better JVM mechanism similar

to .NET’s first-chance-exception[21]) could reduce this over-

head substantially to enable closer-to-production acceptable

overhead (f 5%).

8 Other Related Work

We discussed some key related efforts and their limitations in

§2.2. Here, we discuss other related work.

Statistical debugging technique. There is a rich body of

work focusing on statistical debugging [2, 12, 34, 43, 55, 57,

61]. Such techniques are effective if the developer provides

both failing and passing executions. Unfortunately, such data

is not always available. In our evaluation, we show that with

existing test suit, GZoltar can only identify the root cause for

one EDF. Moreover, statistical debugging aims to identify

events (e.g., exceptions) that are correlated to failures, rather

than finding the causal dependencies among multiple events.

Failure reproducing. Kasikci et al. showed that it is possible

to reproduce failures with low overhead instrumentation using

hardware features [36]. Pensieve reconstructs failing execu-

tions using dependency analysis of runtime events [62]. EX-

CHAIN is complementary to failure reproducing techniques

and help developers to pinpoint the root cause efficiently.

Failure handling testing. ChaosMachine [60] and Fili-

buster [42] use chaos engineering to test failure handling logic

of the application. Such techniques are useful in identifying

bugs in failure handling logic.

Speeding up dynamic taint analysis. JetStream uses paral-

lel execution and record and replay techniques to improve

the performance of dynamic information flow tracking [46].

Iodine uses static analysis to remote runtime monitors if the

data-flow can be determined statically [10]. Both tool show

that taint analysis is useful in debugging and failure diagnosis.

EXCHAIN uses exception-focused hybrid taint analysis and

focuses on identifying the root cause for EDFs.

9 Conclusions

In some sense, EXCHAIN solves a particularly hard problem —

the very practices of good software engineering at scale (e.g.,

throwing exceptions, silent handling) also end up creating

subtle exception-dependent failure modes that are incredibly

hard to debug! Our key observation is that unlike basic ex-

ception chains, EDFs can entail subtle stateful dependencies

between the root cause and the eventual failure mode.

In designing EXCHAIN, we addressed fundamental chal-

lenges in applying program analysis techniques to balance

the performance and overhead in tracking such stateful de-

pendencies in exception handling failures. EXCHAIN helps

developers diagnose EDFs using a famililar exception-trace

like abstraction akin to traditional debugging workflows. Our

evaluation showed that EXCHAIN is able to successfully diag-

nose subtle issues that stumped expert developers in popular

applications with little to no manual effort and that it signifi-

cantly outperforms state-of-art techniques. While our current

implementation offers sufficient performance for test and ca-

nary deployments, our core design contributions are amenable

to production deployments at scale as well.

10 Acknowledgments

We would like to thank the anonymous reviewers for their

insightful comments and constructive feedback. This research

was supported in part by seed funding from CMU’s CyLab

and by the NSF grant CCF-2119184. A portion of this work

was carried out during an internship at Microsoft Research.

2058    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] ab. ab - apache http server benchmarking tool.

https://httpd.apache.org/docs/2.4/programs/

ab.html. Accessed: 2023-02-23.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund.

On the accuracy of spectrum-based fault localization. In

Testing: Academic and Industrial Conference Practice

and Research Techniques - MUTATION (TAICPART-

MUTATION 2007), pages 89–98, 2007. doi: 10.1109/

TAIC.PART.2007.13.

[3] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan

J. C. van Gemund. A practical evaluation of spectrum-

based fault localization. J. Syst. Softw., 82:1780–1792,

2009.

[4] Marcos K. Aguilera and Michael Walfish. No time for

asynchrony. In Proceedings of the 12th Conference on

Hot Topics in Operating Systems, HotOS’09, page 3,

USA, 2009. USENIX Association.

[5] Khaled Ahmed, Mieszko Lis, and Julia Rubin. Slicer4J:

A Dynamic Slicer for Java. In The ACM Joint European

Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE),

2021.

[6] Anastasios Antoniadis, Nikos Filippakis, Paddy Krish-

nan, Raghavendra Ramesh, Nicholas Allen, and Yannis

Smaragdakis. Static analysis of java enterprise applica-

tions: Frameworks and caches, the elephants in the room.

In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion, PLDI 2020, page 794–807, New York, NY, USA,

2020. Association for Computing Machinery. ISBN

9781450376136. doi: 10.1145/3385412.3386026. URL

https://doi.org/10.1145/3385412.3386026.

[7] Apache Wicket. Apache wicket. https://wicket.

apache.org/. Accessed: 2023-02-23.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz,

Eric Bodden, Alexandre Bartel, Jacques Klein, Yves

Le Traon, Damien Octeau, and Patrick McDaniel. Flow-

droid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. In

Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion, PLDI ’14, page 259–269, New York, NY, USA,

2014. Association for Computing Machinery. ISBN

9781450327848. doi: 10.1145/2594291.2594299. URL

https://doi.org/10.1145/2594291.2594299.

[9] asm. Asm: A java bytecode engineering library. https:

//asm.ow2.io/index.html. Accessed: 2023-02-23.

[10] Subarno Banerjee, David Devecsery, Peter M. Chen,

and Satish Narayanasamy. Iodine: Fast dynamic taint

tracking using rollback-free optimistic hybrid analysis.

In 2019 IEEE Symposium on Security and Privacy (SP),

pages 490–504, 2019. doi: 10.1109/SP.2019.00043.

[11] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating

dynamic data flow in commodity jvms. In Proceedings

of the 2014 ACM International Conference on Object

Oriented Programming Systems Languages and Applica-

tions, OOPSLA ’14, page 83–101, New York, NY, USA,

2014. Association for Computing Machinery. ISBN

9781450325851. doi: 10.1145/2660193.2660212. URL

https://doi.org/10.1145/2660193.2660212.

[12] José Campos, André Riboira, Alexandre Perez, and Rui

Abreu. Gzoltar: an eclipse plug-in for testing and de-

bugging. In 2012 Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engi-

neering, pages 378–381, 2012. doi: 10.1145/2351676.

2351752.

[13] Tushar Deepak Chandra and Sam Toueg. Unreliable

failure detectors for reliable distributed systems. J.

ACM, 43(2):225–267, mar 1996. ISSN 0004-5411. doi:

10.1145/226643.226647. URL https://doi.org/10.

1145/226643.226647.

[14] Wei Chen, S. Toueg, and M.K. Aguilera. On the qual-

ity of service of failure detectors. IEEE Transactions

on Computers, 51(1):13–32, 2002. doi: 10.1109/12.

980014.

[15] James Clause, Wanchun Li, and Alessandro Orso. Dytan:

A generic dynamic taint analysis framework. In Pro-

ceedings of the 2007 International Symposium on Soft-

ware Testing and Analysis, ISSTA ’07, page 196–206,

New York, NY, USA, 2007. Association for Comput-

ing Machinery. ISBN 9781595937346. doi: 10.1145/

1273463.1273490. URL https://doi.org/10.1145/

1273463.1273490.

[16] Codeql. Codeql. https://codeql.github.com/. Ac-

cessed: 2023-02-23.

[17] A. Das, I. Gupta, and A. Motivala. Swim: scalable

weakly-consistent infection-style process group mem-

bership protocol. In Proceedings International Con-

ference on Dependable Systems and Networks, pages

303–312, 2002. doi: 10.1109/DSN.2002.1028914.

[18] dfsio. Hadoop hdfs dfsio. https:

//github.com/c9n/hadoop/blob/

master/hadoop-mapreduce-project/

hadoop-mapreduce-client/

hadoop-mapreduce-client-jobclient/src/

test/java/org/apache/hadoop/fs/TestDFSIO.

java. Accessed: 2023-02-23.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2059



[19] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivara-

man, Shiv Kumar Saini, George Varghese, and Ravi Ne-

travali. Revelio: Ml-generated debugging queries for

finding root causes in distributed systems. In Conference

on Machine Learning and Systems, 2022.

[20] William Enck, Peter Gilbert, Seungyeop Han, Vasant

Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon

Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-

droid: An information-flow tracking system for real-

time privacy monitoring on smartphones. ACM Trans.

Comput. Syst., 32(2), jun 2014. ISSN 0734-2071. doi:

10.1145/2619091. URL https://doi.org/10.1145/

2619091.

[21] fce. Appdomain.firstchanceexception event.

https://learn.microsoft.com/en-us/dotnet/

api/system.appdomain.firstchanceexception?

view=net-8.0. Accessed: 2023-02-23.

[22] C. Fetzer. Perfect failure detection in timed asyn-

chronous systems. IEEE Transactions on Computers,

52(2):99–112, 2003. doi: 10.1109/TC.2003.1176979.

[23] C. Fetzer, K. Hogstedt, and P. Felber. Automatic de-

tection and masking of non-atomic exception handling.

In 2003 International Conference on Dependable Sys-

tems and Networks, 2003. Proceedings., pages 445–454,

2003. doi: 10.1109/DSN.2003.1209955.

[24] C. Fu, A. Milanova, B.G. Ryder, and D.G. Wonnacott.

Robustness testing of java server applications. IEEE

Transactions on Software Engineering, 31(4):292–311,

2005. doi: 10.1109/TSE.2005.51.

[25] Chen Fu and Barbara G. Ryder. Exception-chain anal-

ysis: Revealing exception handling architecture in java

server applications. In 29th International Conference on

Software Engineering (ICSE’07), pages 230–239, 2007.

doi: 10.1109/ICSE.2007.35.

[26] Trinabh Gupta, Joshua B. Leners, Marcos K. Aguil-

era, and Michael Walfish. Improving availability

in distributed systems with failure informers. In

10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13), pages

427–441, Lombard, IL, April 2013. USENIX

Association. ISBN 978-1-931971-00-3. URL

https://www.usenix.org/conference/nsdi13/

technical-sessions/presentation/leners.

[27] Andreas Haeberlen and Petr Kuznetsov. The fault detec-

tion problem. In Tarek Abdelzaher, Michel Raynal, and

Nicola Santoro, editors, Principles of Distributed Sys-

tems, pages 99–114, Berlin, Heidelberg, 2009. Springer

Berlin Heidelberg. ISBN 978-3-642-10877-8.

[28] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-

uschel. Peerreview: Practical accountability for dis-

tributed systems. In Proceedings of Twenty-First ACM

SIGOPS Symposium on Operating Systems Princi-

ples, SOSP ’07, page 175–188, New York, NY, USA,

2007. Association for Computing Machinery. ISBN

9781595935915. doi: 10.1145/1294261.1294279. URL

https://doi.org/10.1145/1294261.1294279.

[29] Michael Hind. Pointer analysis: Haven’t we solved

this problem yet? In Proceedings of the 2001 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, PASTE ’01, page

54–61, New York, NY, USA, 2001. Association for

Computing Machinery. ISBN 1581134134. doi:

10.1145/379605.379665. URL https://doi.org/10.

1145/379605.379665.

[30] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.

Lorch, Yingnong Dang, Murali Chintalapati, and Ran-

dolph Yao. Gray failure: The achilles’ heel of cloud-

scale systems. In Proceedings of the 16th Workshop

on Hot Topics in Operating Systems, HotOS ’17, page

150–155, New York, NY, USA, 2017. Association for

Computing Machinery. ISBN 9781450350686. doi:

10.1145/3102980.3103005. URL https://doi.org/

10.1145/3102980.3103005.

[31] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong

Zhou, and Yingnong Dang. Capturing and enhancing

in situ system observability for failure detection. In

13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), pages 1–16, Carlsbad,

CA, October 2018. USENIX Association. ISBN 978-

1-939133-08-3. URL https://www.usenix.org/

conference/osdi18/presentation/huang.

[32] jira. Asf jira. https://issues.apache.org/jira/

secure/Dashboard.jspa. Accessed: 2023-02-23.

[33] Jang-Wu Jo, Byeong-Mo Chang, Kwangkeun Yi, and

Kwang-Moo Choe. An uncaught exception analysis for

java. J. Syst. Softw., 72(1):59–69, jun 2004. ISSN

0164-1212. doi: 10.1016/S0164-1212(03)00057-8.

URL https://doi.org/10.1016/S0164-1212(03)

00057-8.

[34] James A. Jones, Mary Jean Harrold, and John Stasko.

Visualization of test information to assist fault localiza-

tion. In Proceedings of the 24th International Confer-

ence on Software Engineering, ICSE ’02, page 467–477,

New York, NY, USA, 2002. Association for Computing

Machinery. ISBN 158113472X. doi: 10.1145/581339.

581397. URL https://doi.org/10.1145/581339.

581397.

2060    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



[35] JVMTI. Jvm(tm) tool interface. https:

//docs.oracle.com/javase/8/docs/platform/

jvmti/jvmti.html. Accessed: 2023-02-23.

[36] Baris Kasikci, Benjamin Schubert, Cristiano Pereira,

Gilles Pokam, and George Candea. Failure sketching:

A technique for automated root cause diagnosis of in-

production failures. In Proceedings of the 25th Sympo-

sium on Operating Systems Principles, SOSP ’15, page

344–360, New York, NY, USA, 2015. Association for

Computing Machinery. ISBN 9781450338349. doi:

10.1145/2815400.2815412. URL https://doi.org/

10.1145/2815400.2815412.

[37] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.

Aguilera, and Michael Walfish. Detecting failures in

distributed systems with the falcon spy network. In

Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, SOSP ’11, page 279–294,

New York, NY, USA, 2011. Association for Comput-

ing Machinery. ISBN 9781450309776. doi: 10.1145/

2043556.2043583. URL https://doi.org/10.1145/

2043556.2043583.

[38] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,

and Michael Walfish. Taming uncertainty in distributed

systems with help from the network. In Proceedings of

the Tenth European Conference on Computer Systems,

EuroSys ’15, New York, NY, USA, 2015. Association

for Computing Machinery. ISBN 9781450332385. doi:

10.1145/2741948.2741976. URL https://doi.org/

10.1145/2741948.2741976.

[39] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and

Samuel P Midkiff. Statistical debugging: A hypothesis

testing-based approach. IEEE Transactions on software

engineering, 32(10):831–848, 2006.

[40] Chang Lou, Peng Huang, and Scott Smith. Under-

standing, detecting and localizing partial failures in

large system software. In 17th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 20), pages 559–574, Santa Clara, CA, Febru-

ary 2020. USENIX Association. ISBN 978-1-939133-

13-7. URL https://www.usenix.org/conference/

nsdi20/presentation/lou.

[41] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and

Guofei Jiang. Chex: Statically vetting android apps

for component hijacking vulnerabilities. In Proceed-

ings of the 2012 ACM Conference on Computer and

Communications Security, CCS ’12, page 229–240,

New York, NY, USA, 2012. Association for Comput-

ing Machinery. ISBN 9781450316514. doi: 10.1145/

2382196.2382223. URL https://doi.org/10.1145/

2382196.2382223.

[42] Christopher S. Meiklejohn, Andrea Estrada, Yiwen

Song, Heather Miller, and Rohan Padhye. Service-

level fault injection testing. In Proceedings of the

ACM Symposium on Cloud Computing, SoCC ’21, page

388–402, New York, NY, USA, 2021. Association for

Computing Machinery. ISBN 9781450386388. doi:

10.1145/3472883.3487005. URL https://doi.org/

10.1145/3472883.3487005.

[43] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao.

A model for spectra-based software diagnosis. ACM

Trans. Softw. Eng. Methodol., 20(3), aug 2011. ISSN

1049-331X. doi: 10.1145/2000791.2000795. URL

https://doi.org/10.1145/2000791.2000795.

[44] Mangala Gowri Nanda and Saurabh Sinha. Accurate

interprocedural null-dereference analysis for java. In

2009 IEEE 31st International Conference on Software

Engineering, pages 133–143, 2009. doi: 10.1109/ICSE.

2009.5070515.

[45] nnbench. Hadoop benchmarking. https://hadoop.

apache.org/docs/stable/hadoop-project-dist/

hadoop-common/Benchmarking.html. Accessed:

2023-02-23.

[46] Andrew Quinn, David Devecsery, Peter M. Chen, and Ja-

son Flinn. JetStream: Cluster-Scale parallelization of in-

formation flow queries. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 451–466, Savannah, GA, November 2016.

USENIX Association. ISBN 978-1-931971-33-1. URL

https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/quinn.

[47] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise

interprocedural dataflow analysis via graph reachability.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages,

pages 49–61, 1995.

[48] Martin P. Robillard and Gail C. Murphy. Static analysis

to support the evolution of exception structure in object-

oriented systems. ACM Trans. Softw. Eng. Methodol., 12

(2):191–221, apr 2003. ISSN 1049-331X. doi: 10.1145/

941566.941569. URL https://doi.org/10.1145/

941566.941569.

[49] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang,

Mijung Kim, and Mary Jean Harrold. Fault localiza-

tion and repair for java runtime exceptions. In Pro-

ceedings of the Eighteenth International Symposium

on Software Testing and Analysis, ISSTA ’09, page

153–164, New York, NY, USA, 2009. Association for

Computing Machinery. ISBN 9781605583389. doi:

10.1145/1572272.1572291. URL https://doi.org/

10.1145/1572272.1572291.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    2061



[50] solr. Solr jmh-benchmarks module. https://github.

com/apache/solr/tree/main/solr/benchmark.

Accessed: 2023-02-23.

[51] spring. Spring | home. https://spring.io/. Ac-

cessed: 2023-02-23.

[52] terasort. Package org.apache.hadoop.examples.terasort.

https://hadoop.apache.org/docs/r3.0.0/

api/org/apache/hadoop/examples/terasort/

package-summary.html. Accessed: 2023-02-23.

[53] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie

Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a

java bytecode optimization framework. In Proceedings

of the 1999 Conference of the Centre for Advanced Stud-

ies on Collaborative Research, CASCON ’99, page 13.

IBM Press, 1999.

[54] Robbert van Renesse, Yaron Minsky, and Mark Hay-

den. A gossip-style failure detection service. In Nigel

Davies, Seitz Jochen, and Kerry Raymond, editors, Mid-

dleware’98, pages 55–70, London, 1998. Springer Lon-

don. ISBN 978-1-4471-1283-9.

[55] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,

and Stephanie Forrest. Automatically finding patches

using genetic programming. In 2009 IEEE 31st Inter-

national Conference on Software Engineering, pages

364–374, 2009. doi: 10.1109/ICSE.2009.5070536.

[56] WICKET-6908. Wicket-6908. https://issues.

apache.org/jira/browse/WICKET-6908. Accessed:

2023-02-23.

[57] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yi-

hao Li. The dstar method for effective software fault

localization. IEEE Transactions on Reliability, 63(1):

290–308, 2014. doi: 10.1109/TR.2013.2285319.

[58] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,

Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou, and

Stefan Savage. Be conservative: Enhancing failure diag-

nosis with proactive logging. In Proceedings of the 10th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’12, page 293–306, USA, 2012.

USENIX Association. ISBN 9781931971966.

[59] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-

drigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and

Michael Stumm. Simple testing can prevent most critical

failures: An analysis of production failures in distributed

data-intensive systems. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, page 249–265, USA, 2014.

USENIX Association. ISBN 9781931971164.

[60] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry,

and Martin Monperrus. A chaos engineering system

for live analysis and falsification of exception-handling

in the jvm. IEEE Transactions on Software Engineer-

ing, 47(11):2534–2548, 2021. doi: 10.1109/TSE.2019.

2954871.

[61] Mengshi Zhang, Xia Li, Lingming Zhang, and Sar-

fraz Khurshid. Boosting spectrum-based fault lo-

calization using pagerank. In Proceedings of the

26th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, ISSTA 2017, page 261–272,

New York, NY, USA, 2017. Association for Comput-

ing Machinery. ISBN 9781450350761. doi: 10.1145/

3092703.3092731. URL https://doi.org/10.1145/

3092703.3092731.

[62] Yongle Zhang, Serguei Makarov, Xiang Ren, David

Lion, and Ding Yuan. Pensieve: Non-intrusive fail-

ure reproduction for distributed systems using the event

chaining approach. In Proceedings of the 26th Sym-

posium on Operating Systems Principles, SOSP ’17,

page 19–33, New York, NY, USA, 2017. Association

for Computing Machinery. ISBN 9781450350853. doi:

10.1145/3132747.3132768. URL https://doi.org/

10.1145/3132747.3132768.

[63] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm,

Ding Yuan, and Yuanyuan Zhou. Log20: Fully au-

tomated optimal placement of log printing statements

under specified overhead threshold. In Proceedings

of the 26th Symposium on Operating Systems Princi-

ples, SOSP ’17, page 565–581, New York, NY, USA,

2017. Association for Computing Machinery. ISBN

9781450350853. doi: 10.1145/3132747.3132778. URL

https://doi.org/10.1145/3132747.3132778.

2062    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	Motivation
	A Motivating Example
	Prior Work and Limitations
	Our Goal

	ExChain Overview
	A High Level View
	Technical Challenges
	Scope and Limitations

	Detailed Design
	Affected State Analysis
	Responsible State Analysis
	Hybrid Taint Flow Analysis
	Putting it Together

	Implementation
	Evaluation
	Methodology
	End-to-End Evaluation
	Accuracy vs. Performance Tradeoff

	Discussion
	Other Related Work
	Conclusions
	Acknowledgments

