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Abstract

Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm
for aligning foundation models to human values and preferences. However, cur-
rent RLHF techniques cannot account for the naturally occurring differences in
individual human preferences across a diverse population. When these differences
arise, traditional RLHF frameworks simply average over them, leading to inac-
curate rewards and poor performance for individual subgroups. To address the
need for pluralistic alignment, we develop a class of multimodal RLHF methods.
Our proposed techniques are based on a latent variable formulation - inferring a
novel user-specific latent and learning reward models and policies conditioned on
this latent without additional user-specific data. While conceptually simple, we
show that in practice, this reward modeling requires careful algorithmic consid-
erations around model architecture and reward scaling. To empirically validate
our proposed technique, we first show that it can provide a way to combat under-
specification in simulated control problems, inferring and optimizing user-specific
reward functions. Next, we conduct experiments on pluralistic language datasets
representing diverse user preferences and demonstrate improved reward function
accuracy. We additionally show the benefits of this probabilistic framework in
terms of measuring uncertainty, and actively learning user preferences. This work
enables learning from diverse populations of users with divergent preferences,
an important challenge that naturally occurs in problems from robot learning to
foundation model alignment.

1 Introduction

Reinforcement learning from human feedback (RLHF) has become the predominant technique for
aligning AI foundation models to human values. Across domains like natural language processing
(NLP) [52] to robotics [62, 50], RLHF is an effective way to improve the performance, accuracy, and
safety of AI models, by ensuring that they align with human preferences [45, 34, 29] The question
then becomes: whose preferences? Current RLHF approaches rely on a prescriptive set of values
curated by a small set of AI researchers [39, 60, 2]. Moreover, they typically assume that all end-users
share the same set of values. Given the concerning lack of diversity in AI [22], it is clear that this
approach cannot account for the range of social, moral, and political values that inform preferences
in human populations. Recent work has demonstrated that with current RLHF techniques, if the
majority population has a weak preference for an outcome that will severely disadvantage a minority
group, the learned reward model will ignore the minority group’s preferences [58]. These issues
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Figure 1: Current RLHF approaches [52] incorrectly assume a unimodal BTL reward model for a diverse
population of users. In this example, users have diverging preferences over the level of detail provided in the
responses from a large language model. Without additional context, the BTL model considers both responses to
be equally likely. In contrast, our method, VPL, is a personalized approach to RLHF. Using a few samples from
a particular user, we infer the distribution over their distinct preferences. Based on this distribution, we condition
the reward model to more accurately predict rewards, and enable steering the resulting policy to personalize to
the specific user. This enables accounting for and serving the preferences of under-represented groups which
would otherwise be ignored by the standard BTL model [52].

necessitate pluralistic alignment of models to human preferences [59, 44] (see Figure 1); ideally, we
would democratize RLHF to account for a wider variety of human values to better serve a diverse
population. While intuitively appealing, a practical technical solution to this problem has yet to be
developed and validated.

Current approaches to RLHF [52] use the Bradley-Terry-Luce (BTL) [15] model to learn a reward
model that explains the human preferences. While the BTL model accounts for noisy preferences,
RLHF typically applies this model under the ‘unimodal’ assumption that all human preferences are
derived from a single utility function. This fails to capture scenarios where preferences diverge—
i.e. are multi-modal—due to fundamentally different utilities. For example, Figure 1 shows a
case where one group of users prefers detailed responses, while another prefers concise ones. By
performing maximum likelihood estimation under the unimodal BTL model, current methods learn a
reward function that averages these multi-modal preferences (akin to mode averaging in imitation
learning [51]. As we show in our experimental results, this model misspecification leads to reward
models that are inaccurate, and the policies optimized on these rewards fail to accomplish tasks
per any of the distinct preferences (see Figures 8, 3). Thus, vanilla RLHF methods [52, 17] are
insufficient for aligning AI systems to diverse human values.

In many applications, from large language models (LLMs) to assistive robotics [7], users are diverse,
and AI systems must adapt the generated responses to user-specific preferences to successfully
complete the task. Consider, for example, a robot assistant putting away dishes in a specific user’s
kitchen: each individual has unique personal preferences for how the dishes in their kitchen are
organized, potentially diverging from others’ preferences. In the context of LLMs, failing to adapt to
user-specific preferences can make them unhelpful, unsafe, and vulnerable to jailbreak in the presence
of conflicting objectives [2, 58]. To build safe and performant foundation models serving a diverse
population, we need methods that can explicitly account for and adapt to the inherent plurality of
human preferences.

These insights suggest that human preferences are not derived from a single utility function, but are
affected by unobserved, hidden user context [58]. To accurately model individual utilities, RLHF
should be able to efficiently infer and adapt to the context for each user. With this in mind, we formu-
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late RLHF as a latent variable problem. Building on techniques from variational inference [11, 38],
we propose a method—Variational Preference Learning (VPL)—for multi-modal reward modeling.
Intuitively, given a few preference annotations from a particular user, our approach uses a variational
encoder to infer a latent distribution over hidden user context, and a latent conditional reward model
to accurately recover the true multi-modal preference distribution. We derive an evidence lower
bound (ELBO) for latent-variable preference-based reward optimization. Our proposed algorithm,
VPL, effectively learns a distribution of reward functions from large corpora of preferences provided
by diverse users.

In developing practical training methods for such latent-conditioned reward models, we show that
several complexities and technical considerations arise. A key problem is that binary comparisons
inherently lack information regarding the scale of rewards. Under the BTL model (and correspond-
ingly the VPL model), the preference label between two alternatives A and B can only provide
information about rA − rB . So, the learned reward function may have vastly varying reward scales
across individual users that adversely affect the optimization landscape of multi-user reinforcement
learning [31, 69] using these rewards. To mitigate this, we show how a simple pairwise classifica-
tion scheme [61, 49] can appropriately bound and scale reward estimates within our latent variable
framework, thereby enhancing the performance of downstream learned policies. The predicted
latent distribution enables several additional capabilities. In Section 4 we use our approach to learn
latent-conditioned policies that can personalize to particular users at test time. Additionally, the latent
variable reward models can measure uncertainty in the reward distribution [56]. So, in Section 4.2,
we use our approach to actively query [8, 10, 9] users to minimize the number of labels they need to
provide before we can adapt to their distinct preferences.

Overall, our work introduces a latent variable framework for reward modeling that can encode and
approximate the distribution of user preferences directly from binary comparisons, and steer the
downstream policy to adapt to diverse user preferences. We conduct a broad range of experiments
across three simulated robotics environments and two language tasks with conflicting user preferences.
Our results show that in simulated domains, VPL accurately models rewards and improves task
performance and personalization. We are able to scale this method to many users, and use active
learning to adapt efficiently to particular users with significantly fewer queries at test time. In the
language domain, we are able to train multiple LLM-based reward models that learn a separable
embedding space that can distinguish between users with divergent preferences. The resulting models
outperform existing by RLHF approaches 10-25% [52, 58] by more precisely predicting rewards that
align with diverse users and objectives across multiple datasets.

2 Related Work

Reinforcement Learning from Human Feedback (RLHF): We focus on the problem of reinforce-
ment learning (RL) from binary human preferences using the Bradley-Terry-Luce (BTL) model [15].
This has a rich history in the field of RL and robotics, often referred to as Preference-based RL (PbRL)
[65, 28, 1, 8, 10]. We specifically build on the framework outlined in Christiano et al. [17] and
further expanded in recent works [52, 2, 74, 60, 37, 58]. This has seen a wide range of applications
ranging from training robots [17, 10, 62] to finetuning language models for alignment [52, 74, 60].
Our work, enabling RLHF with diverse preferences, is easily applicable to any preference-based
learning method, including recent techniques [55, 24] that circumvent reward modeling altogether.

RLHF under non-BTL models: Prior work has aimed to study non-BTL models of human behavior
and preferences [12, 43, 42, 37, 61] to account for human irrationality and uncertainty in preferences,
or intransitive preferences [49, 61, 64]. However, our key argument in this work is less about
human irrationality (i.e. inconsistency), and more about the divergence between potentially rational
preferences for different labeling users and end users. In this sense, our work is complementary in that
the latent variable model can easily be adapted to non-BTL models as well. In fact, we incorporate
the technique proposed in Swamy et al. [61] to improve reward learning for downstream applications.

Personalized RLHF: While some works [39, 40, 35] characterize similar challenges as VPL,
they largely focus on exploring the societal issues underpinning the need for personalization and
introducing datasets with diverse annotations. Conitzer et al. [19] argue Social Choice Theory could
provide insights into how to aggregate diverse preferences. But these works do not propose a technical
method to achieve modeling diverse preferences.
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Several prior works have looked at trading off conflicting alignment objectives (such as remaining
both helpful and harmless) through techniques like Pareto-optimal optimization [13, 16] or multi-
objective RL [67, 21]. For example, Jang et al. [33] treats personalization as a multi-objective RL
problem, requiring explicit decomposition into different sub-rewards and learning independent reward
models for different users. Further, Dai et al. [21] introduces Safe RLHF, an approach that explicitly
models the different objectives of helpfulness vs harmfulness. In contrast, our work does not aim to
reconcile the diversity but rather solve the model misspecification and learn reward models that can
infer the context and specialize to a particular user.

Some methods which deal with diverse underlying preferences (e.g. [14]) aim to model disagreement
in the data but typically require more information such as annotator demographics [26, 4]. Li et al.
[46] learns to map user information to a fixed set of representations for each user, and conditions the
reward model on this embedding. Feng et al. [25] proposes a pluralistic alignment framework, using
smaller LMs that are trained on community or user-specific data. In contrast, our method does not
assume access to personal user information, but only a few preference annotations from each user.

Some works have explored personalization outside of the context of reward learning. Zhao et al.
[72] uses in-context learning with few samples from a particular user group, to learn preferences
over discrete answers to a question, but does not focus on reward learning with a BTL loss over long
context prompt and responses, which is our focus. In addition, our method learns a latent distribution
over user types to enable capabilities like active learning [71] and latent-conditioned policy learning.

Dumoulin et al. [23] explores annotator-model misspecification and uses synthetic examples to show
how RLHF fails in the presence of two users with different preferences, but they do not propose
a scalable approach for resolving this issue. The closest work to ours is Distributional Preference
Learning (DPL) [58], which aims to account for hidden context in RLHF. While the motivation is
similar, the techniques proposed in DPL include modeling only the mean and variance of the reward
distribution across users, or a particular categorical approximation to the reward distribution. As such,
DPL can capture uncertainty in the inferred reward distribution, but cannot accurately predict the
reward for a particular user. In contrast, VPL explicitly models a user-specific latent variable z, and
learns z-conditioned, user-specific reward models, enabling us to accurately reconstruct divergent
reward functions for different users. As we will show in Section 6, this leads to significantly improved
empirical reward prediction results. Unlike DPL, VPL takes a variational approach to user modeling
and allows for reward interpretability, active learning, and model specialization to particular users at
test time.

3 Technical Preliminaries

In this work, we build on the framework of preference-based reward learning (often referred to
as RLHF) [17, 1]. In particular, we will consider reward learning methods based on the Bradley-
Terry-Luce (BTL) choice model [15]. RLHF has two key phases: (1) inferring a reward function
from human-provided labels of ordinal preferences; (2) using reinforcement learning (RL) to train
a decision-making policy that maximizes the rewards inferred in step (1). We will instantiate this
framework abstractly, which can then be specialized to both LLMs and robotics.

We define a Markov decision process (MDP) [53]M = (S,A, T , γ, ρ0), with state space S , action
space A, transition dynamics T , discount factor γ and initial state distribution ρ0. Notably, we do not
have access to an underlying reward function, but instead have annotators who rank pairs of states sA
and sB . We assume annotators have an unknown reward function r(s) that informs their preference
labels. More formally, an annotator (h ∈ H) takes a pair of states sA and sB , and returns an ordinal
preference i.e. y = 1(sA { sB), according to r(s) [15, 23]; where H is the space of all possible
annotators. Given a dataset of annotated preferencesD = {(siA, siB , y = 1(siA { siB))}Ni=1, a typical
RLHF procedure learns a reward function rφ(s) using a maximum likelihood objective (MLE) on the
preferences, where the likelihood: pφ(y | sA, sB) can be defined using the BTL model:

pφ(y = 1 | sA, sB) = 1− pφ(y = 0 | sA, sB) = pφ(sA { sB) =
erφ(sA)

erφ(sA) + erφ(sB)
(1)

Note, that while in this case, the ordinal preferences are on states sA, sB , this can be generalized to
trajectories or snippets [17, 52]. Finally, the recovered reward function can then be used to learn (or
finetune) a policy πθ(a|s) that can act to maximize the expected sum of approximated rewards in
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the environment using standard RL algorithms [57, 30, 41] i.e. πθ = argmax
θ

E
πθ

[
∑

t γ
trφ(st)]. We

note that while the BTL model accounts for some IID noise in preferences through the probabilistic
formulation [17, 3, 23], it does not account for hidden-context and divergent human preferences [58],
and it does not allow the underlying reward models and policies to be personalized to specific users.

4 VPL: Incorporating Latent Context into Preference-Based Learning

The standard BTL formulation described in Section 3 is based on the assumption that all annotators
h ∈ H share a single underlying reward function rφ(s). This does not hold in practice with a diverse
range of annotators. To model diverse, pluralistic preferences, we frame multi-modal reward learning
as a latent variable problem, where the latent variable z represents the hidden context affecting the
underlying reward function (and thereby the preferences) of an annotator h ∈ H; for instance, it could
be representative of their lived experience, or the style of response/policy that they would like the
agent to perform. Following this, the latent-conditional reward rφ(s, z) is a function of latent z along
with state s, and preference likelihoods can be expressed with a latent-conditional BTL model:

pφ(y = 1 | sA, sB , z) = pφ(sA { sB | z) =
erφ(sA,z)

erφ(sA,z) + erφ(sB ,z)
(2)

The maximum likelihood objective for this model from a dataset of preference labels (with multiple
annotators), max

φ
E

sA,sB ,y∼D
[log pφ(y | sA, sB)] = E

sA,sB ,y∼D

[

log
∫

pφ(y | sA, sB , z)p(z)dz
]

is in-

tractable due to marginalization over the unobserved latent variable z. To tackle this, we can introduce
a variational posterior approximation qψ(z | {(siA, siB , yi)}Ni=1), conditional on multiple annotations

{(siA, siB , yi = h(siA, s
i
B)}Ni=1 provided by the same annotator h2. This results in a corresponding

evidence lower bound (ELBO), L(φ, ψ), for the intractable marginal log pφ(y | sA, sB):

E
h∼H

{siA,s
i
B ,y

i=h(siA,s
i
B)}Ni=1

∼D
(sA,sB ,y=h(sA,sB))∼D

[

E
z∼qψ(z|{(siA,s

i
B
,yi)}Ni=1

)
[log pφ(y | sA, sB , z)]−DKL(qψ(z | {(siA, siB , yi)}Ni=1) ∥ p(z))

]

(3)

This objective samples a user h ∼ H from the given annotators and a set of annotations from this
particular user {(siA, siB , yi = h(siA, s

i
B)}Ni=1 for inferring the latent variable z through the posterior

qψ(z | {(siA, siB , yi)}Ni=1). Given the posterior, this objective involves optimizing two terms: a
maximum preference likelihood objective (log pφ(y | sA, sB , z)) using the contextual BTL model

and a regularization term (DKL(qψ(z | {(siA, siB , yi)}Ni=1)) ∥ p(z))) against a prior p(z). Intuitively

this objective encodes a set of user-provided annotations {(siA, siB , yi)}Ni=1 into a latent distribution
using the encoder qψ , and then learns a latent-conditional reward function r(s, z) that best explains
the annotated preference data. As the variational encoder qψ generates a latent distribution, this
formulation further enables uncertainty estimation and active learning, as shown in Section 4.2. We
describe details further in Appendix B.3.

We emphasize that the only additional requirement of this objective, compared to standard RLHF [17],
is a set of annotated pairs from the same annotator, and this information is easily available when
annotators are queried in batches [10]. We refer to Algorithm 1 for further details on implementation.

Personalized, latent-conditioned policies. The learned reward models rφ(s, z) can be used to
train personalized, user-specific policies. During training, we learn a latent-conditioned policy
πθ(·|s, z) that maximizes the rewards rφ(s, z) for different values of z. This allows the policy
to adapt to diverse user preferences encoded in the latent space. We can use any standard (RL)
algorithm [57, 30, 41] to optimize the latent-conditional reward maximization objective: πθ =
argmax

θ

E
πθ,z∈p(z)

[
∑

t γ
trφ(st, z)]. For this, we sample z from the prior p(z) during training and

learn the policy πθ(·|s, z), to maximize the corresponding latent-conditioned reward rφ(s, z).

At test-time, we infer a specific user’s (htest) latent context z by posterior inference using a set of
labeled preference queries {(siA, siB , yi = htest(s

i
A, s

i
B))}Ni=1 i.e z ∼ qψ(z | {(siA, siB , yi)}Ni=1). We

then deploy the personalized policy πθ(·|s, z) conditioned on the inferred z for that user. We outline
the complete algorithms for policy training and deployment in Appendix C.

2Having multiple annotations are important here to be able to accurately infer the user’s latent vector z
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4.1 Scaled Rewards for Multi-Task Learning

In practice, optimizing latent-conditioned reward functions learned with the VPL objective poses
unique challenges. The pairwise preferences used to train the reward model in Section 4 do not have
information about the scale of rewards, but only their relative ordering. As a simple illustration,
if we have a pair of states sA, sB , where the users prefer sA i.e. sA { sB , two different reward
functions: r(sA) = 100, r(sB) = 50 or r(sA) = 50, r(sB) = 0 have the same likelihood under the
BTL model. Empirically, we observe that this poses problems for optimizing Equation 3; different
values of the latent variable z result in learned reward functions of vastly different scales. This is
an issue for several reasons: 1) varying reward scales adversely affect the landscape of multi-user
policy optimization (often observed in multi-task RL) [31], and 2) it is challenging to identify states
where user preferences diverge across the population as differently scaled rewards cannot be directly
compared.

To address this issue, we experiment with several different techniques for scaling the learned reward
functions (see Appendix A.2). Our key insight in solving this challenge lies in the observation
that while raw rewards from BTL are not scaled equally across z, probabilities from the preference
likelihood model p(y | sA, sB , z) are appropriately scaled. This suggests that an effective solution to
the reward scaling issue is to replace the raw rewards from the BTL model (r(s, z)) with likelihoods
suggested by the pairwise preference likelihood model p(y | sA, sB , z). In particular, a natural choice
of scaled rewards for a state sA is the expected likelihood that the state sA is “preferred" to all other
states (or a sampled set of states) sB observed in the data - rφ(sA, z) = E

sB∈S
[pφ(y = 1 | sA, sB , z)].

Since these are probabilities, normalized in the [0, 1] range, the scaling of rewards is consistent across
latents z. Note that these expected likelihood rewards can easily be obtained from the objective in
Equation 3 since we already train a latent-conditional preference classifier via maximum likelihood.
While proposed from a very different perspective, we note the similarity of this reward scaling
approach to recent work [61, 49], in particular, Self-Play Preference Optimization (SPO) [61], which
was originally proposed to address the issue of intransitive preferences. Similar to [61] we assume
that the oracle / user providing preference labels is Non-Markovian. Due to this similarity3, we use
VPL-SPO to indicate this approach of preference likelihood-based reward scaling throughout our
experiments (See Algorithm 3 for details).

4.2 Active Learning of Preferences to Minimize Latent Uncertainty

A natural question that arises for test time deployment of the latent-conditioned policies is how
to obtain the set of state pairs {(siA, siB)}Ni=1 to be annotated with preference labels and used for

posterior inference, z ∼ qψ(z | {(siA, siB , yi)}Ni=1). Not all query sets {(siA, siB)}Ni=1 are made equal;
some are more informative than others. Certain states (where preferences vary across annotators) are
particularly informative in accurately inferring the z which should be used for policy deployment
π(a|s, z). In VPL, the probabilistic modeling of the variational encoder naturally allows for active
selection of the most informative query set based on maximal information gain, following prior
work [8, 10, 50]. Here the provision of preference labels {yi}Ni=1 will provide the maximum
information about the latent distribution (and indirectly, the user preferences). This active query
selection procedure can be expressed as the following optimization problem, maximizing the mutual
information between the labels and the latent distribution.

{(siA, siB)}Ni=1 ← argmax
{(si

A
,si
B
)}Ni=1

I
(

z; {yi}Ni=1 | qψ, {(siA, siB)}Ni=1

)

(4)

The posterior qψ is a multivariate Gaussian, and assuming a uniform distribution over the set of

labels, qψ(z | {(siA, siB)}Ni=1) allows for closed form solution for mutual information I . To solve the

maximization objective, we chose the query set (siA, s
i
B)

N
i=1 with the maximum information gain,

across samples from the preference dataset. Finally, we elicit user labels on this maximal query set,
infer the latent, and condition the policy on this latent at deployment.
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Figure 2: VPL LLM architecture for reward learning. The left and right parts denote the encoder qψ and the
reward model r(s, z) respectively.

5 Scaling VPL for Reward Learning in Large Language Models (LLMs)

VPL can be used to train pluralistic reward models for LLMs, accounting for diverse human prefer-
ences and values. Here we discuss the key details that are essential to scale our method to LLMs.
The architecture of our LLM reward model is shown in Figure 2. Unlike prior work which attempted
to insert summary embedding layers into LLMs (see e.g. [18]), we find that we can successfully com-
press user preference information into a concise, probabilistic embedding vector z without sacrificing
reward model performance. Further details and hyperparameters are discussed in Appendix B.

Prompt and Response Embeddings. Since using raw representations of the prompt and responses
can increase the context length significantly, we use a pre-trained LLM to encode prompt and response
pairs together [6] (to be consistent with previous notation, we assume a preferred state sA contains
both a prompt and response [x, r], and we obtain eA = LLM(sA)). For efficient training, we
pre-compute and freeze the encoded embeddings.

Latent Encoder. Given a set of multiple encoded preference queries from the same user,
{(eAi , eBi , yi)}Ni=1, we pass each through the same pair encoder to obtain hi = enc(eAi , e

B
i ). The

latent representation z is generated using a self-attention layer over the set of encoded pairs, {hi}Ni=1.

Reward learning. Here, the representation eA
′

of a new state sA
′

is concatenated with a z sampled
from the posterior distribution which is passed into an MLP to predict the rewards. The LLM is
fine-tuned using low-rank adaptation (LoRA) [32], and unlike typical RLHF settings, we find that
we need to train the reward model for g 1 epochs to fit the encoder and the reward model.

Data augmentation. As we scaled VPL to larger datasets with more users, we found that augmenting
the training dataset with multiple context samples from the same user for each new data point is
essential to learning an effective encoder. Formally, at training time, given a prompt and response
pair s′A, s

′
B from a particular user, we generate M ∈ {4, 8} duplicates of this labeled response with

different contexts i.e. annotated prompt and response pairs ({(siA, siB , yi)}Ni=1)
M
j=1; where each

context ({(siA, siB , yi)}Ni=1)j is sampled from a user annotated subset of size K (K > N ).

6 Experimental Evaluation on Simulated Control Tasks

In our experiments, we answer the following questions: (1) Can VPL accurately learn a multi-modal
distribution of reward functions from a preference dataset labeled by diverse users? (2) Do the
inferred latent user vectors enable learning a multi-task personalized policy? (3) Can we leverage the
posterior to actively query preferences for latent estimation? In this section, we show the benefits of
VPL in multiple simulated control tasks and demonstrate that VPL is able to capture multi-modality in

3There are some differences in setup with SPO likelihoods being computed against on-policy samples, while
VPL-SPO likelihoods are computed against a fixed offline dataset of comparator states.
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the underlying reward functions, arising due to underspecification of annotator goals and preferences.
In the following section, we ask whether VPL scales up to RLHF for LLMs.

Training and Evaluation Details: We test our hypothesis across evaluation domains in two steps:
1) We train a reward model on a dataset of preferences collected using diverse simulated humans;
2) We train a policy using RL to maximize the learned rewards. For these experiments, we use
Implicit Q-Learning [41], an offline RL algorithm that achieves strong performance on offline
RL benchmarks [27]. Using the learned reward function rφ(s, z), and the prior p(z), we label the
reward-free offline RL dataset D = (st, at, st+1), by sampling a latent z ∈ p(z), and setting the
reward as rt = rφ(st), or a one-step look-ahead method, where rt = rφ(st+1) (refer to Algorithm 2
for complete method) . We include the hyperparameters and the training details in the Appendix B

Baselines: We compare our method against multiple baselines: 1) Oracle [47]: This is a goal-
conditioned offline RL method, that presents an oracle with access to the true reward functions for all
annotators. 2) BTL [17]: This is the standard RLHF method from [17, 52] as a baseline, where the
reward model is approximated using the unimodal BTL function. 3) DPL [58]: Following the work
on accounting for hidden context in RLHF, we train a distributional reward model, using both the
mean-variance (MeanVar) and categorical (Categorical) approximation for the reward functions. 4)
VPL (Ours): We denote two versions of our method, VPL and VPL + SPO, discussed in Section 4.

6.1 Tasks:

We evaluate our approach on three diverse simulated control tasks (Figure 4) to demonstrate the
effectiveness of VPL to learn latent conditioned policies.

Maze-Navigation is based on the D4RL benchmark [27]. Here, users guide a pointmass agent to
goals marked with their preferred colors. The user’s preferred color is underspecified, so the agent has
to infer their preferences from a few annotated comparisons and navigate to one of two/ten locations,
satisfying the corresponding user.

Ravens-Manipulation requires the agent to rearrange an object on a table-top (akin to rearranging a
dining table), based on user preferences. Built on the ravens benchmark [70], the agent controls a
robot arm in a continuous action space to pick and place the box in one of the two preferred locations.

Habitat-Rearrange [68] requires a mobile robot arm to pick a bowl, and relocate it to a user preferred
location. The agent is equipped with motion primitives for navigation and manipulation, so the task
is to reason over five relocation candidates (eq. desk, kitchen, table, etc.). The habitat environment is
a simplified one-step reasoning problem, but the setting illustrates the need for personalization in
assistive robotics, where each person has distinct requirements for robots within their homes.

Habitat-Tidy is a simulated environment similar to TidyBot [66], where the robot has to clean
up objects in the kitchen and has to infer the placement location for a new object, based on the
existing locations of similar objects. Here, different users have preferences to sort or clean up objects
according to different attributes (e.g. function or material) and the robot has to infer and adapt the
goals according to these preferences. The task is set in a similar setting to the Habitat-Rearrange
environment (with motion primitives), and here the agent has to reason over the attributes it should
use to sort the objects based on the existing user preferences.

6.2 Can VPL capture multi-modal reward functions from a dataset of diverse preferences?

We generate preferences using multi-modal reward functions across multiple didactic and simulated
discrete and continuous control experiments, as shown in Figures 8, 3, 4, 13 and 12. We see that the
BTL baseline with an MLP model averages the different underlying rewards and learns an inaccurate
reward model (Figure 3b). In the presence of a majority, BTL converges to the preferences ignoring
the minority groups (See Figure 13). While DPL [58] can recover the uncertainty in the reward
models due to underspecification, they have no mechanism to recover the individual reward functions.
As a result, the DPL reward model estimates high variance rewards (see Figures 8, 12) for each
particular user. In contrast, VPL infers the hidden user context using the latent variable formulation
and accurately recovers the multi-modal reward distribution.
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(a) Ground truth (b) BTL (c) VPL

Figure 3: Ground truth preferences (a) show that annotators prefer the robot navigate to two different
goals. Unimodal BTL (b) averages over the two modes. VPL (c) accurately reconstructs diverse
preferences, and learns z conditioned policies that can reach either goal.

Figure 4: Performance of a downstream policy on diverse control and reasoning tasks, using the rewards trained
using different baselines. We report the mean and standard error over five seeds. Note: Habitat envs have a
one-step greedy policy so reward scaling and SPO+VPL are not required.

6.3 Do distributional reward functions enable learning a steerable multi-task policy?

As discussed above, the baselines (BTL [17] and DPL [58]) average the reward modes across the
users and learn an inaccurate reward function. So, we see in Figure 4 that the policy for the
Maze-Navigation converges to a wrong goal, leading to poor performance and misalignment with all
the underlying users. For the Ravens-Manipulation experiments, the baselines randomly choose a
goal location and are unable to adapt to the user preference at test time. Similarly, for the Habitat-
Rearrange tasks the baselines are not able to capture the diversity in user preferences over the multiple
locations and do not succeed in placing the bowl at the correct location. Finally, in the Habitat-Tidy
task, we observe that the baselines converge to an accuracy achieved when they ignore the diverse
preferences of sorting the objects by the users.

In contrast, the policies trained using VPL outperform all the baselines in terms of the task success
rate, according to the user’s underlying reward function. For the navigation task, VPL correctly
infers the goal and the learned policy is able to navigate to the goals with a high success rate, and the
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performance is comparable to a goal-conditioned oracle with global user information. For Ravens-
Manipulation, VPL infers the user latent at test time and accurately places the box at the right location.
Finally, VPL is mostly able to correctly identify the preferred location for the bowl in the user’s home
and has a higher success rate than the baselines. We note that scaling the rewards via VPL + SPO
improves the performance of multi-task RL for optimizing diverse user preferences. In Habitat-Tidy,
VPL is able to infer the user preferences and follow the preferred attributes while placing the objects.
However, the accuracy of the robot is dependent on the context length and we discuss this in further
detail in Appendix A.4.

6.4 Can VPL enable active query selection for latent estimation?

Figure 5: Active learning enables personalizing
policies to user preferences with fewer queries.

In Section 4.2, we present an objective to actively
query users at test time to efficiently infer user prefer-
ences. Figure 5 shows that this technique leads to bet-
ter performance of the learned policy across varying
numbers of queries ∥N∥. This implies that the active
learning objective 4 which maximizes information
gain over the latent distribution generates queries that
are more discriminative and provides a more informa-
tive posterior for user identification. This results in a
more efficient adaptation of the downstream policy to
the distinct user preferences, achieving the same per-
formance with only half the queries. These methods
can be potentially transferred to LLMs to query and
identify user preferences with minimal questions.

7 LLM Experiments

In this section, we ask: can VPL scale up to the pluralistic alignment of LLM-based reward models?
We compare the reward modeling performance of our method against two baselines: the vanilla BTL
model and DPL [58]. We experiment with two LLMs: GPT2 [54] and Llama2-7B [63], and two
pluralistic preference datasets.

7.1 Datasets for pluralistic LLM alignment

Prior RLHF works have focused mainly on unimodal BTL models, and as such there is a lack of
publicly available datasets containing annotated preferences with divergent objectives. To evaluate
our method on capturing multi-modality in preferences for LLMs, we consider two benchmarks.
First, we introduce a synthetic dataset, Pets, that directly represents multimodal preferences, and
second, we augment the publicly available UltraFeedback [20] dataset.

Pets. Here, the dataset is generated to reflect multi-modal user preferences, where each user has a
preference ranking over four kinds of animals (in this case cats, dogs, birds, and rabbits). To simulate
a setting where users agree on some comparisons and disagree on others, we consider two users who
agree on the best and worst pet and disagree on the middle pair of rankings over pets. Preferences
here are divergent in certain cases (middle pets), and agree in other instances (best and worst pets),
requiring multimodal preference modeling. We evaluate our approach on two versions of the dataset:
Pets (Full), and Pets (Divergent) which contains only those prompt and response pairs where the
users are divergent (i.e. they have conflicting preferences). For the contexts {(siA, siB , yi)}Ni=1, we
randomly sample 1-4 other prompts and ranked responses from the same user.

UltraFeedback-P. To construct this dataset UF-P (where P stands for personalized), we use the
fine-grained scores over different attributes available in the UltraFeedback (UF) [20] dataset to
construct different users, taking a similar approach to prior work [58]. Following prior work, we
construct a dataset with two users, UF-P-2, who prefer either helpfulness or honesty (hidden attribute),
i.e. they generate preferences using the scores for their chosen attributes. To test the ability of VPL to
model more users than has been previously attempted in the literature, we create UF-P-4, which uses
the fine-grained scores over all the four attributes in the UF dataset [20] to create a dataset with four
different users. Here, the users are divergent because given two responses, users following different
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Table 1: We compare the accuracy of different reward models trained on the two datasets. We report the mean
and standard deviation of performance of GPT2-based models on three seeds, and one seed for Llama models.

GPT2 Llama2-7b

Pets (Divergent) Pets (Full) UF-P-2 UF-P-4 UF-P-2

BTL [52] 63.27 ± 0.57 94.92 ± 0.00 49.84 ± 0.14 53.48 ± 0.03 47.17
DPL [58] 70.62 ± 1.13 95 ± 0.00 49.57 ± 0.42 52.92 ± 0.06 49.51

VPL (Ours) 100 ± 0.00 100 ± 0.00 74.75 ± 2.01 61.49 ± 0.03 76.41

objectives can have opposite preferences - some users can prefer the helpful response, while others
prefer the honest response. In some cases, these responses are at odds. To ensure that successfully
modeling the data requires fitting divergent preferences, we filtered out the responses where all users
agree or are indecisive to primarily focus on multimodal preference modeling, and avoid degenerate
context queries that provide no information about the user distribution. However, in UF-P-4 the
context can still contain queries where at least two users overlap. Thus, this provides a dataset to
evaluate VPL in cases in cases where different users agree on some responses, but not all of them.
Finally, to generate the context {(siA, siB , yi)}Ni=1 for inferring latent distributions, for each prompt
and response pair, we sample N different data points from a smaller subset of size K from the dataset
(K = 100 for GPT2 and 16 for Llama2). For a deployed LLM system, this is analogous to having a
known set of survey questions from which the user must answer a subset of 2-8 questions in order to
personalize the model’s behavior to their needs.

7.2 Does VPL help to make LLM reward models more pluralistically aligned?

In Table 1, we see that VPL is able to learn a more accurate reward model across all the datasets,
capturing the multi-modality in the language preference data. This indicates that VPL can infer the
latent representation of the user’s preferences z from a few annotated samples, and successfully adapt
the reward model. In contrast, the baselines—including the BTL model typically used in widely
deployed RLHF [52] models—are unable to fit the datasets because they are unable to account for
divergent preferences. Because the datasets are imbalanced, the baselines can sometimes perform
better than random guessing by fitting only the preferences of the majority group. This is why the
performance on Pets (Full) appears high, in spite of the fact that the baseline BTL model fails to
adapt to the divergent preferences.

Figure 6: We train GPT2-based VPL, on the UltraFeedback-P dataset. In this plot, we visualize the
T-SNE features of the latent distribution z produced by the encoder qψ on a set of annotated prompts

and responses {siA, siB , yi}Ni=1 from the two users in the dataset. We see that the encoder clusters the
users in the latent space, allowing the decoder to personalize the reward models according to multiple
objectives preferred by the diverse users belonging to a cluster.

In Figure 6, we show that the VPL-Encoder effectively learns a latent space with clusters that
correspond to the user types in the dataset. Previous work has shown that attempting to compress
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information within an LLM into a single bottleneck embedding layer can hinder performance [18].
However, using the architectural design of VPL as well as user-context data augmentation, VPL
is able to learn a compressed user representation that accurately separates users according to their
preferences, from only a few preference labels.

7.3 Does VPL scale to real-world settings with larger and noisy users?

Figure 7: Reward accuracy with varying levels of
noisy labels introduced at test time.

A key assumption in our approach is that context
questions accurately represent individual users with-
out noise in the underlying dataset. To test VPL’s
robustness to noisy context labels at test time, we
injected noise by flipping the questions answered by
each user and evaluated the trained model’s accuracy
in predicting rewards. This experiment can help us
evaluate how well the model would generalize to new
users that have similar preferences to those experi-
enced during training, but may not answer questions
in exactly the same way. Figure 7 illustrates that VPL
is able to outperform prior work even when 25% of
preference labels are flipped at test time. Notably, we
observed that longer context lengths result in more
accurate reward modeling, even with higher noise
injection. This is because the encoder can generate
more accurate inferences of the latent distribution
when provided with more user information through
a larger number of context questions and response
labels.

We note further that when 50% of the preference labels are flipped, the context preference queries
provide no information about the user, and the performance of VPL is equivalent to the baseline BTL
model. This mirrors the additional findings presented in Appendix A.6, which demonstrate that when
VPL is trained on a unimodal preference language dataset, it gives equivalent performance to BTL.
Essentially, when extra preference data is available for a user, VPL can personalize the reward model
effectively and attain higher performance. But without that information, it performs just as well as the
default BTL model. These findings, as shown in Table 1,Figure 7, and the Appendix, demonstrate
VPL’s effectiveness in handling multi-modality and noise in large-scale preference datasets, without
compromising performance even when no additional preference information is available. This
capability suggests the potential for VPL to contribute to the development of next-generation LLMs
that are more personalized, inclusive, and efficient.

8 Conclusion

In this work, we presented VPL, a technique for pluralistic alignment of preference-based RLHF
models via variational inference. We show that VPL can capture diverse preferences, and can be used
for steerable personalized model learning while capturing uncertainty and divergence in preferences.
We discussed practical considerations for enabling VPL to scale up for LLMs and policy learning and
showed results across simulated control problems and LLM-based RLHF, significantly outperforming
current RLHF techniques.

Limitations and Future Work. A key limitation of this work is that as yet, realistic preference
datasets containing the opinions of diverse users do not yet exist at scale. This limitation necessitated
creating our own synthetic preference datasets. Although this was also the approach taken in prior
work on personalized RLHF (e.g. [58, 73]), an important direction for future work will be to apply
VPL to more realistic preference data from diverse groups of users. Further, our current experiments
on the UltraFeedback dataset assume that when adapting to a new user’s preference, it is possible to
ask them to provide preferences over a sample from a fixed set of survey questions. In the future, it
would be good to relax this assumption so that VPL could be applied to preferences obtained naturally
during a conversation with the user.
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We believe VPL could also provide promising safety benefits, beyond modeling the preferences
of diverse users. Because uncertainty detection can be used to prevent jailbreak attacks that arise
from conflicting rewards [58], and since VPL could capture uncertainty in the distribution over user
preferences, this could potentially be used to improve safety by having the model stop or refuse to
answer when uncertainty cannot be reduced [36].
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A Additional Experiments

A.1 Didactic example on a toy reward learning problem.

To more carefully understand the behavior of VPL empirically, we construct a didactic example [23]
as shown in Figure 8. In this problem, let us consider a mixture of M different annotators providing
preferences, where each annotator i has a reward function specified by N (µi, σi)

M
i=1 that they use to

assign binary preferences. Mathematically, we sample the preferences from a mixture of Gaussians:

p(sA { sB | i) =
eri(sA)

eri(sA) + eri(sB)
; where eri ∼ 1

σi
√
2π
e
− 1

2

(

x−µi
σi

)

2

Multi-annotator preferences are simulated by sampling an annotator from this mixture distribution
and then assigning binary preferences according to the chosen reward function. We train VPL as
described in Section 4 to recover the underlying distribution over reward functions. As expected
in Figure 8, standard RLHF [17] averages over the different modes since it can only represent a
single reward function. While prior work in accounting for hidden context in RLHF (DPL [58])
can learn the uncertainty in the reward functions due to hidden context, it is not able to accurately
disambiguate different modes. Meanwhile, VPL is able to infer the underlying context using the
approximate posterior qψ and the recover the individual reward modes through the latent-conditional
reward function r(s, z).

Figure 8: Didactic experiments comparing standard BTL [17], DPL [58] and VPL (Ours). Four Gaussian
reward functions generate different binary preference data. The traditional BTL approach [17] averages the
different modes, and DPL [58] captures the uncertainty in the rewards due to the multi-modality but cannot
accurately predict the true modes. VPL (ours) infers the hidden latent as described in Section 4 and recovers the
individual distribution of reward functions.

A.2 Does scaling rewards help improve performance?

Figure 9: Comparing scaling
methods on Maze-Navigation.

To avoid the problem of high variance rewards (Section 4), we com-
pare the performance of VPLno-norm with VPL + SPO. We further
compare against two normalizing schemes: VPLbatchnorm where
the rewards for each latent is normalized by the mean rewards

across a set of state samples i.e. r′(s, z) = r(s,z)
1

M

∑

s′∈S
r(s′,z)

, and

VPLmax-norm where all the rewards in the offline dataset are nor-
malized by the maximum reward for any latent.

In Section 4.1, we discuss the problem of generating scaled rewards
from latent variable-based reward models and compare the perfor-
mance across multiple baselines discussed above. As shown in
Figure 9, the batch norm scaling generates highly biased estimates
of the rewards, which is catastrophic for the method. However, VPL
methods have decent performance at test-time, but are an unprinci-
pled approach to the scaling problem. Our SPO + VPL presents a
general method for estimating normalized rewards. Thus, in Figure

9 we can see that our method outperforms the baseline approaches in terms of success rate. The
baselines have an unscaled or a biased estimate of the multi-modal rewards leading to sub-optimal
performance. For the ravens-manipulation environment, the dataset doesn’t contain sub-optimal
trajectories, VPL (with max norm) performs comparably.
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(a) VPL scales to Maze-Navigation task with ten
modes of user preferences. BTL expectedly aver-
ages the modes and fails to learn. We also see the
benefits of scaling rewards across this domain as
well, where VPL +SPO performs better than VPL.

(b) We compare the performance of baselines and
VPL on a Habitat-Rearrange environment with
100 users. VPL can scale to a much larger set
of diverse users, complementing the real-world ca-
pabilities shown in Table 1 and Figure 4.

Figure 10: Comparison of VPL’s scalability on different tasks and user bases.

A.3 Does VPL scale with the number of diverse users?

In order to test the effectiveness of VPL in scaling to a control problem with larger modes of
underlying preferences, we create a task with ten underlying locations that the users could prefer.
So, the challenge here is to disambiguate the user preference among a larger space of possible goals
and condition the policy to navigate successfully to the goal. Figure 10a shows that our method is
able to navigate to the individual goals with a higher success rate, whereas the baseline DPL model
[17] collapses to a single user mode. This demonstrates the benefits of scaling VPL to a setting with
a large population of diverse users. To test the method at a larger scale, we increase the number
of users in the Habitat-Rearrange tasks to 100. It is a combinatorial problem as the users provide
rankings over five locations, so all possible users/orderings are 5!. We observe in Figure 10b that
VPL significantly outperforms the baselines in inferring the user preference, and steering the robot
policy accordingly.

A.4 How does context length affect VPL?

Figure 11: In the Habitat-TidyBot tasks, the
agent has to relocate objects in the house
based on the user’s preferences. We show
that the accuracy of user modeling and choos-
ing the right location for the object increases
with the number of queries the agent makes
to infer the latent distribution.

In Habitat-TidyBot, the robot’s task is to relocate
an object in the kitchen (fork, knife, spoon, bowl,
pitcher) to a specific location based on user prefer-
ences. The user can prefer to arrange objects ac-
cording to the object function (i.e. kitchenware or
tableware), or material (metal or plastic). The agent
has to query the location of some of the objects, in-
fer the user type, and arrange the requested object
accordingly. Fig 4 shows that the baselines converge
to the correct location for the objects agreed upon by
the different users, but converge to one mode for the
divergent choices. Meanwhile, VPL infers and adapts
to user preferences and aligns with humans perfectly.
However, one caveat to this is the context length i.e.
the number of queries to each user. In Figure 11 we
show that as the query length increases VPL can iden-
tify users with higher accuracy and achieve higher
performance. This happens because certain queries
are uninformative about the user preferences (such as things users agree on), and thus, it generates a
high variance posterior. As a result, longer context length increases the probability of useful queries,
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which enables low variance posterior inference and improved alignment during decision-making. In
Section 4.2, we also show how to use an active learning approach to generate queries based on a
max information gain objective. For LLMs, in Figure 7, we show that a higher context length also
provides robustness to noise in the annotated queries.

A.5 Visualizing Learned Rewards and Embeddings

We visualize the rewards generated by the baseline and the latent conditioned rewards models on the
diverse domains described in Section 6. We observe that VPL reconstructs the multi-modal reward
functions, based on the inferred latent distribution. Figure 3 shows that the BTL models averages the
reward over the user-preferred goals, while VPL accurately reconstructs the individual user-specific
rewards. Figure 12 shows that for optimal trajectories solving the task, VPL can accurately match
the ground rewards for the two modes. At the same time, DPL [58] predicts high-variance rewards
for both cases due to the inherent multi-modality. Finally, in Figure 13 we see that the majority of
users consider the desk to be the preferred location of the bowl, and standard BTL models converge
to the majority population. Meanwhile, VPL can generate user-specific rewards, satisfying all the
user groups.

Figure 12: In the Ravens-Manipulation task, we compare the predicted rewards for states st along
timesteps t in oracle trajectories to either of the goals the user prefers. VPL (Ours) can learn the
individual reward functions for the two different (closely matching the ground truth rewards for both
users) leading to more performant policies (see Figure 4), while DPL [58] learns a high variance
reward function due to the multi-modality.

(a) Ground truth (b) BTL (c) Our method

Figure 13: In the Habitat-Rearrange task, annotators have rankings, i.e. preferences over the different locations
they want the robot to place their bowl in their home. Accordingly, (a) shows the rewards associated with a
particular location ("column") for each annotator ("row"). We see that a majority of the users rank the desk as
the most preferred location. Consequently, in (b), unimodal BTL converges to this majority preference ignoring
other users. However, in (c) we see that VPL accurately reconstructs diverse preferences and aligns to all five
users.
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A.6 Does VPL under uni-modal settings?

To test that the introduction of a variational framework does not decrease performance in settings
where all users have single/aligned preferences, we run an experiment on the UF-P-4 dataset, where
we considered the preferences of a single user (preferring the model to be “honest” over all other
attributes) to analyze the single-modal case as suggested. The standard BTL model gives a 77.04%
eval accuracy while our VPL model gives a 77.16% eval accuracy. Our model matches the baseline
performance, indicating no drop in performance when using VPL compared to traditional RLHF over
an unimodal dataset.

A.7 Social Impact

This work has a clear social impact when deployed on user-facing systems like LLMs or household
robots. In pluralistic alignment, we assume that some differences in user preferences reflect divergent
but equally valid perspectives on which moral or cultural values an LLM should align to; for example,
individuals from one culture may hold collectivist moral values, while another culture is more
individualist. Both value systems should be respected, and as such LLMs should be able to recognize
and adapt to the values held by a particular user. However, the personalized model could potentially
either be sycophantic or align with adversarial users, which is undesirable. This raises very interesting
questions, such as: At what point should the LLM embrace a more universal set of values? How can
we detect when such a point has occurred in a particular conversation? The probabilistic framework
of the user distribution could allow us to identify low probability or rare behavior, and also the
distributional nature of reward functions can help us point out responses where the users are divergent
(maybe signifying disagreement). Additionally, a model could flexibly switch between adhering
to the user’s personal preferences and conforming to a more universal perspective on topics where
it could be biased, or is sensitive to jailbreak [2]. Taking inspiration from Constitutional AI [2],
we can allow a system designer to specify the topics for which the LLM should not engage in user
personalization. Overall, this presents an exciting future research direction toward building safe
personalized LLMs.

B Implementation Details

B.1 Task Details

We evaluate our methods on three simulated control environments.

Maze-Navigation. This task is adapted from the "maze2d-medium-v2" environment from the D4RL
benchmark [27]. The observation space is the position and velocity of the robot (px, py, pz), and the
pointmass is controlled using torque control. In this environment, point mass doesn’t have access to a
goal, and diverse users guide the agent to (two or ten) different locations in the maze, marked with
their preferred colors. The users label the preferences over two states based on the shortest path to
the goal from each state, i.e, the user prefers states closer to their preferred color location. The offline
dataset for IQL is collected using the waypoint controllers provided in the D4RL benchmark. For
each episode, the agent is spawned at a random location in the maze, interacts with a random user,
and navigates to the goal based on the learned reward model and corresponding policy trained on
the offline dataset. The oracle reward function is the optimal Q-value of the state, generated using a
dynamic programming solution, which is available in D4RL.

Ravens-Manipulation This task is adapted from the ravens benchmark [70]. The observation
space is the 3-D position of the object, the 3-D position of the end effector, and the grasp state of the
object, i.e., (eex, eey, eez, px, py, pz, grasp). The agent commands absolute positions for the 3-DOF
robot arm in end-effector space i.e. (ee′x, ee

′
y, ee

′
z). This setup resembles how a robot arm would

infer user preferences to organize a dining table. The users prefer two different locations for the box
spawned at a random location at the beginning of each episode. To collect offline data, we use a
motion planning oracle with some added noise, which tries to pick the box and place it randomly at
one of the two locations. The oracle reward function is as follows:
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reward =
1

100











100 if goal_dist < 0.05 and not grasped
5 if goal_dist < 0.05 and grasped
2 + exp(−goal_dist) if not goal_dist < 0.05 and grasped
exp(−gripper_dist) if not goal_dist < 0.05 and not grasped

Habitat-Rearrange This is a task based on the Meta Habitat simulator [68]. Here, the objective
for the Mobile Manipulator is to pick a bowl and place it at the user’s preferred location in the
home. However, the exact location is underspecified and needs to be inferred from the user-annotated
preferences. The robot uses a motion primitive to navigate and place the object at five possible
locations (’desk’, ’room’, ’dining’, ’coffee table’, ’sofa’). This problem is reduced to a discrete
one-step problem, where the robot has to reason about the best possible location to put the bowl.
For ranking the states, the users are generated by randomly choosing a five random orderings of the
locations, each corresponding to an individual user. At test time, the agent is greedy and chooses the
location with the maximum inferred reward from the learned reward model.

Habitat-TidyBot This task is based on Meta Habitat [68] and inspired from the TidyBot task [66].
In this environment, there are 5 objects in the kitchen (spoon, knife, plate, bowl, and spatula). Each
user has their preferences for sorting the objects according to particular attributes (material such as
metal, plastic or function i.e. tableware or cooking ware). The robot observes or queries the user
for the existing location of a subset of objects, then rearranges the misplaced object according to
the inferred user preference and greedily selects the goal with the higher reward. The baseline here
would converge to sort the objects according to one attribute only, while VPL would infer the latent,
and choose the correct location for the given object.

B.2 LLM Preference Learning Dataset Descriptions

Pets This dataset is generated synthetically to specifically study the ability of models to perform
divergent preference modeling. The goal here is to choose between different types of pets. For each
animal, including bird, cat, dog, and rabbit, we use GPT-4 to generate 100 sentences that describe
these kinds of pets. Then we define two user groups based on their preference order over the pets. So
as to have mix of contexts where users agree and disagree, we construct a preference ordering where
both groups like birds the most and rabbits the least. One group of users prefers dogs to cats while
another group disagrees and prefers cats to dogs. That is to say, among all 6 comparisons between
two kinds of pets, only one pair (dogs versus cats) leads to divergent opinions, while the users agree
on other comparisons (birds better than dogs, dogs better than rabbits and so on). This tests the ability
of the preference models to capture multimodality, even when the users do agree on some set of
preferences.

We then construct the Pets dataset by clustering the prompt and ranked responses according to the
group of preferences that they align with. To generate the Pets dataset, we randomly sample a pair
of different pets as well as two corresponding sentences, and then label them to be “chosen” and
“rejected” according to the preference of either “dog group” or “cat group”. The prompt is fixed to be
“Human: Please talk about one kind of pet.” After all the chosen/rejected pairs are generated, we
randomly sample 1-4 pairs of responses from the same user that are comparing dogs and cats for
use as the context to the variational encoder. These are informative since a user’s choice over these
contexts can clearly express the user’s preference group. In this way, we can generate a “full" Pets
dataset, and based on that we filter out a “divergent" split that only contains controversial data points
(comparing dogs and cats). This dataset is meant as a didactic test for language modeling capabilities,
but scalability is further tested in the following section with the UltraFeedback-P dataset.

Here we show an example data point for Pets.

• Prompt: “Human: Please talk about one kind of pets.”

• Response A: “Cats communicate through vocalizations.” (Rejected)

• Response B: “Birds exhibit complex social behaviors within flocks.” (Chosen)

• Contexts: ["chosen": "Cats have a preference for certain types of litter.","rejected":"Dogs
enjoy exploring their surroundings."], ["chosen":"Cats have a preferred scratching sub-
strate.","rejected": "Dogs have a unique personality."]
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UltraFeedback-P The original UltraFeedback dataset [20] contains 64,000 pairs of responses,
where each response is evaluated across four dimensions: helpfulness, honesty, instruction following,
and truthfulness. Instead of using the averaged scores, we leverage the fine-grained scores to create
a dataset with multi-modal, divergent user preferences. We assume that each user ranks responses
based on the score for only one attribute. For example, one user might prioritize helpfulness, while
another values honesty the most. Consequently, the same response pair can receive divergent labels
from different users depending on their chosen attribute. Following prior work [2, 58], we only
consider the first two attributes: helpfulness and honesty, to create the dataset UF-P-2. Next, we
filter out response pairs where the two users agree or are indecisive, since we care about multimodal
reward modeling in this work, leaving approximately 4,000 prompt and response pairs labeled by
each user. From this dataset, we randomly sample a smaller subset of K data points, which serves
as our context sample set to help identify the latents corresponding to a particular user. For each
prompt and pair of responses, we get 8 samples from the context set to characterize the particular user
providing responses. These samples, along with the prompt, responses (with preferences over which
response is chosen), form a complete data point (context + prompt + responses). This data point is
then used to infer the latent distribution and personalized reward for that specific user. Additionally,
we introduce a version of the dataset UF-P-4, where we consider all four attributes as distinct users.
In the filtering step, we first filter out the response pairs where all of the four users agree on. Then
within the data subset of each user, we filter out the response pairs where that particular user gives
equal ratings to the two responses. It results in a dataset of approximately 7,500 prompt and response
pairs labeled by each user. The way we generate the context is similar to UF-P-2, except that we
randomly pick a number from 2 to 8 to be the number of samples to form the context. Note that in
UF-P-4, it is still possible that a question from the context set cannot help with distinguish between
two users, because we only filter out the data points that are agreed by all users. This presents a large,
diverse and challenging benchmark for pluralistic alignment, created from the existing available
open-source datasets [20].

B.3 Implementation Details

Learned Prior. While the methods described in the methods section only learn the reward model
and the latent encoder, we can also use a prior p(z) as is common in variational inference methods.
We assume that our prior is a multi-variate Gaussian with mean µ and covariance Σ = diag(σσT ),
where µ, σ ∈ Rd; where d is the dimension of the latent embedding. In all experiments, they are
initialized from a standard Gaussian. However, in our control experiments, we observed that using a
learned Gaussian i.e. setting µ and σ to learnable parameters under the ELBO objective in Eq. 3
improved performance and stability during training.

LLM Embeddings. In our experiments, we use the embedding from the last token as our encoding
for the prompt+response input. However, we also tried llm2vec [5] and a weighted pooling mecha-
nism [48]. However, we find that using the last token embedding as inputs to the encoder and for
predicting the rewards performs the best.

Active Learning Complexity. In our active inference technique, we use a sampling-based method

inspired by [8] to generate the active queries for the model. Given a dataset of D queries (siA, s
i
B)

|K|
i=1,

we sample S query batches of size Q, where Q is number of annotations per batch we get from a user
(total possible combinations are KCN ). Here, Q ∈ [2, 8], so we need to perform O(S * Q) passes over
the model with batch size 2Q ∼ [4, 256]. Furthermore, this process only needs to be performed once
after the model is trained to obtain the most discriminative set of queries for the given model. Finally,
whenever a new user interacts with the system, we need to get labels on the actively inferred queries
(usually 2-4) but do not require any additional passes over the query dataset. In our experiments
(Figure 5), we show that using active learning allows the model to achieve comparable performance
with fewer queries (∼ 2), as compared to randomly sampled larger (∼ 8) queries.

B.4 Hyperparameters

C Algorithms
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Table 2: Hyperparameters for learning reward models using VPL. We sweep over these values and
report the best results on 5 seeds.

Hyperparameter Value

Encoder and Decoder Architecture MLP
Hidden layers 2 layers of width 256
Optimizer Adam (Kingma & Ba, 2015)

Learning rate 3.0000 × 10−4

Latent dimension {8, 16, 32}
β Cosine annealing between 0 and 1 every 25% steps

VAE Prior Multi-variate gaussian with learnable parameters µ, σ ∈ Rd
Context set of queries ∥N∥ 2,4,8,16
Comparison set size (for SPO + VPL) 1000
Number of annotated sets 5000 (Maze), 10000(Ravens)

Table 3: Hyperparameters for IQL. We use the same parameters across all experiments.

Hyperparameter Value

Architecture MLP
Hidden layers 2 layers of width 256 (4 layers of width 1024 for users > 5)
Optimizer Adam (Kingma & Ba, 2015)

Learning rate 3.0000 × 10−4

Discount 0.99
Expectile 0.9
Temperature 10
Dataset size 4M steps (Navigation), 5K trajectories (Manipulation)

Table 4: Hyperparameters for LLM experiments

Hyperparameter Value

Pair Encoder Architecture 2 layer MLP with LeakyReLU
Hidden Dimension 512 (GPT2), 1024 (Llama2-7b)
Latent Dimension 512 (GPT2), 1024 (Llama2-7b)

Learning rate 1.0000 × 10−4

Learning rate scheduler Cosine with 3% warmup steps
Context set size N 8
Full context sampling set K 100 (GPT2), 16 (Llama2-7b)
Batch size 32 (GPT2), 512 (Llama)
Optimizer AdamW(with weight decay = 0.001)
β 0.0001 (for Pets), 0.0 (for UltraFeedback-P)
Computational Resources 2 × RTX4090, 4 × A100

Algorithm 1 Learning Multimodal Reward Functions using VPL

Require: Preference Data {(siA, siB , yi)}Ni=1
Require: Encoder E, Reward Model R, prior p(z)

1: while not done do
2: Sample a batch B ∼ D
3: Compute µB , σB = E(B)
4: Sample z ∼ N (µB , σB)
5: Append z to B: {(sA, sB , y)} → {((sA|z, sB |z), y)}
6: Compute rewards: rsA = R(sA|z) and rsB = R(sB |z)
7: Compute reconstruction loss: Lrecon = cross entropy(σ(rsA − rsB ), y)
8: Compute KL-loss: LKL = β ·DKL(N (µB ,

∑

B) ∥ p(z))
9: Compute total loss: Ltotal = Lrecon + LKL

10: Update E and R by optimizing Ltotal

11: end while
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Algorithm 2 Policy Optimization using IQL and VPL

Require: Offline Dataset {τ1, τ2, . . . }
Require: Reward Model rφ(s, z)
Require: Prior p(z)
Require: Policy π(a|s, z)

1: for each trajectory τi = {(st, at, st+1)}Tt=1 in D do
2: Sample z ∼ p(z)
3: for each state st in τi do
4: Compute reward rt = rφ(st, z) # Alternatively, rt = rφ(st+1, z)
5: Update dataset with (st, rt, z)
6: end for
7: end for
8: Train policy π(a|s, z) using IQL

Algorithm 3 Policy Optimization using IQL and SPO + VPL (Note the changes from Algorithm 2)

Require: Offline Dataset {τ1, τ2, . . . }
Require: Preference Model pφ(sA, sB , z)
Require: Prior p(z)
Require: Policy π(a|s, z)
Require: Comparison set C = {s1, s2, . . . , sC} # Sampled randomly from the offline dataset

1: for each trajectory τi = {(st, at, st+1)}Tt=1 in D do
2: Sample z ∼ p(z)
3: for each state st in τi do
4: Compute reward rt =

1
∥C∥

∑

s′∈C pφ(st, s
′, z)

5: Update dataset with (st, rt, z)
6: end for
7: end for
8: Train policy π(a|s, z) using IQL
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We highlight the claims and contributions in the abstract and the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We highlight the limitations of our approach in the Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: We do not claim any substantial theoretical results that requires a proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe all the algorithms, datasets, models and hyperparameters in detail
in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We do not provide immediate access to the data and code, but will do so in the
future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details in the main paper and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard error across multiple seeds for all results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the compute resources used in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm to the code of ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impact of the work in the concluding section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use publicly available datasets and models, and the synthetic toy dataset
generated has no risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the datasets, models and other assets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset, and provide detailed explanation of the dataset in
the Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We dont use real humans or crowd sourcing as subjects for any of our experi-
ments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments do not require an IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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