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Abstract: Mobile robots navigating in crowds trained using reinforcement
learning are known to suffer performance degradation when faced with out-of-
distribution scenarios. We propose that by properly accounting for the uncertain-
ties of pedestrians, a robot can learn safe navigation policies that are robust to
distribution shifts. Our method augments agent observations with prediction un-
certainty estimates generated by adaptive conformal inference, and it uses these
estimates to guide the agent’s behavior through constrained reinforcement learn-
ing. The system helps regulate the agent’s actions and enables it to adapt to dis-
tribution shifts. In the in-distribution setting, our approach achieves a 96.93%
success rate, which is over 8.80% higher than the previous state-of-the-art base-
lines with over 3.72 times fewer collisions and 2.43 times fewer intrusions into
ground-truth human future trajectories. In three out-of-distribution scenarios, our
method shows much stronger robustness when facing distribution shifts in veloc-
ity variations, policy changes, and transitions from individual to group dynamics.
We deploy our method on a real robot, and experiments show that the robot makes
safe and robust decisions when interacting with both sparse and dense crowds. Our
code and videos are available on https://gen-safe-nav.github.io/.
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1 Introduction

Safely navigating among crowds is fundamental to a future where robots work closely with humans
[1, 2, 3, 4]. Various solutions have been studied, including rule-based methods [5, 6], optimization-
based planners [7, 8, 9, 10], reinforcement learning (RL) approaches [11, 12, 13, 14], and hybrid
systems that track a reference path from an optimizer while a learned policy makes necessary adap-
tations [15, 16]. For RL approaches, a single millisecond-level forward pass can generate decisions,
making them faster and more scalable than optimization- or rule-based planners. Yet while they
excel in in-distribution settings, their performance drops sharply in out-of-distribution (OOD) en-
vironments [17, 18]. This indicates a tendency towards overfitting and difficulty in generalizing to
diverse crowd dynamics [19].

Moreover, previous studies have shown that incorporating predictions into observations, thus form-
ing prediction-augmented observations [20, 21, 22, 23, 24, 25, 26], can explicitly represent human
intentions [27, 28] and aid in robot decision making. However, this practice may exacerbate over-
fitting issues, as human dynamics in real-world scenarios are inherently complex and difficult to
fully capture in simulation environments or datasets, and trajectory predictions fitted for one cer-
tain dynamics face generalization challenges to other dynamics. Inaccurate predictions can severely
mislead robot decisions, especially when robots rely heavily on them to determine actions. Due to
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compounded overfitting from both predictions and the learned policy, robots specialized for these en-
vironments often fail to generalize to new scenarios with different crowd dynamics. In other words,
existing methods lack a systematic treatment of prediction errors to improve policy generalizability.

In this paper, we propose that by properly quantifying uncertainties in human trajectory predictions
and incorporating the results into decision making algorithms, it is possible to alleviate overfitting
in RL-based crowd navigation. Uncertainty serves as an indicator of the reliability of prediction
hypotheses, reflecting both prediction errors and the sensitivity of prediction models to distribution
shifts [29]. Therefore, encouraging the agent to account for uncertainty enables it to generate ac-
tions that are more robust to distribution shifts and resilient to incorrect assumptions about human
dynamics. Specifically, we introduce a learning-based framework that explicitly reasons about pre-
diction uncertainty. First, we apply adaptive conformal inference (ACI) [30, 31] to quantify the
uncertainty of each predicted human trajectory with a prediction set that contains the true future
position with a user-defined coverage probability. Unlike other conformal approaches [32], ACI
updates its calibration online, so it can swiftly adapt when the underlying crowd dynamics shift.
Second, we employ constrained reinforcement learning (CRL) to introduce effective controllability
into the decision making system, using uncertainty estimates to guide both the learning process and
the agent’s behavior. Our system achieves the state-of-the-art (SOTA) performance in safety met-
rics and with much smaller performance drops in OOD settings. In the in-distribution setting, our
system achieves an over 8.80% higher success rate than previous SOTA RL baselines, with more
than 3.72 times fewer collisions and over 2.43 times fewer intrusions into pedestrian trajectories in
in-distribution settings. In three different OOD test scenarios that introduce velocity shifts, policy
shifts, and pedestrian grouping behavior, our method maintains a high success rate and low collision
rate, while competing approaches degrade significantly. Finally, we deploy the learned policy on a
real Mecanum-wheel robot. With only minor clipping and smoothing, the policy transfers directly
from simulation and achieves safe navigation in both sparse and dense crowds.

2 Related Work

Crowd Navigation. Mobile robots are expected to interact with humans and complete various
tasks, such as providing assistance [1]. Crowd navigation forms the foundation for performing
most high-level tasks. Robots are required to navigate in crowds, where the challenge of modeling
dynamic human behavior makes navigation challenging. It is crucial to capture the subtleties of
human behavior, such as human intentions and interactions between agents [33, 34, 3, 35, 36, 37],
and properly use them for effective robotic decisions. Deep RL offers a potentially viable solution
to the challenging navigation task [10, 38]. Previous work on RL-based methods for social robots
includes the capture of agent-agent interactions [39, 40] and the intentions of human agents [21,
41], incorporating these as predictions into RL policy networks. Our work focuses on alleviating
performance degradation in OOD scenarios and proposes a system that works towards this challenge
by effectively considering and handling uncertainties in human behavior predictions.

Planning Under Uncertainty. Trajectory planning under uncertainty has attracted increasing
attention in the past decades. In optimization-based and search-based approaches, researchers
have integrated uncertainty quantification from perception and prediction into various controllers
[42, 43, 44, 45, 46]. These methods easily support adding constraints or safety shields, allowing
explicit management of uncertainty. By contrast, guiding decision making in RL agents with un-
certainty measures is less straightforward, since policy networks often behave as black boxes. Prior
work has augmented agent observations with uncertainty estimates [47, 48] or post-processed policy
outputs based on uncertainty to ensure safe behavior [49]. However, most approaches avoid integrat-
ing uncertainty guidance directly into the learning process and still suffer from OOD performance
degradation similar to the methods without uncertainty measures. In our work, we propose that
uncertainty-aware planning can effectively mitigate OOD performance degradation for RL-based
crowd navigation and introduce a CRL framework that enhances controllability and leverages un-
certainty estimates to effectively guide decision making, thereby improving robustness to prediction
errors and OOD scenarios.
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Figure 1: The overall pipeline of our method. We mark components related to humans in yellow,
components related to physical information and decision making of the robot in blue, and fused
features in green. We use ACI to quantify the prediction uncertainty of human trajectories and con-
catenate these metrics with predictions before inputting them into networks. The networks contain
attention mechanisms for interactions between humans (H-H attention) and between humans and the
ego robot (H-R attention). Prediction uncertainty combined with physical information is used for
designing costs. For the CRL agent using PPO Lagrangian, the actor and reward critic share some
layers while the cost critic uses a separate network. We adopt reward value loss lR, action loss lπ ,
and cost value loss lC for updating the agent.

3 Method

3.1 Problem Formulation

In our setting, we have H humans in the environment, each indexed by h, within an episode of hori-
zon T . At each time step t, the positions of humans are represented as ph(t). We predict K future
steps (a larger K means more extended future predictions) for each human’s future trajectories. The
prediction point for the k-th prediction of the h-th human is denoted as ph,k(t), where 1 ≤ h ≤ H
and 1 ≤ k ≤ K. We formulate the task as a constrained Markov decision process, where the CRL
agent is provided with observations of the state St at each timestep, which consists of two main parts.
The first part includes physical information: the current positions of humans and the robot, and other
quantities about the robot’s dynamics. The second part comprises post-processed features generated
by models, such as the predicted human trajectories. We denote physical state components of ego
information as e, physical components of human information as h, and components generated by
models as m. The complete state St is written as St = [e,h,m]. The agent then generates action
At = (vx, vy) to control the moving speed of the robot according to St. After taking an action, the
environment provides a reward Rt and a cost Ct. We aim to obtain an optimal policy π(At | St)
that maximizes rewards while satisfying cost constraints.

3.2 Method Overview

The overall pipeline of our method is illustrated in Fig. 1. First, we employ two different trajectory
predictors: the constant velocity (CV) predictor [50] and the Gumbel social transformer (GST)
predictor [51]. This is to demonstrate that our algorithm can adapt to both rule-based and learning-
based predictors. Next, we use ACI to quantify prediction uncertainties and incorporate them into
m; subsequently, we adopt a policy network with a combined attention mechanism as proposed in
[21] to process these uncertainties along with other features. Finally, we employ CRL to guide the
agents’ behavior using the uncertainty quantification results. Instead of directly applying constraints
to the collision rate, we impose constraints on the cumulative intrusions of the robot into other
agents’ uncertainty areas. This approach provides behavior-level guidance and effectively addresses
the issue of sparse constraint feedback, thereby improving upon previous methods that constrained
result-oriented metrics such as the collision rate.
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3.3 Rule-Based and Learning-Based Trajectory Prediction

Our system adapts to different prediction models, including both learning-based and rule-based
trajectory predictors, and can mitigate the adverse effects of incorrect predictions on the subsequent
decision making process. For the rule-based prediction model, we use the CV model to obtain
simple and effective estimates of future human states by extrapolating the current states of human
agents based on their velocities. For learning-based prediction models, we choose the GST predictor
[51] as the learning-based prediction model, which is designed to address the challenges of partially
detected pedestrians and redundant interaction modeling. GST is adapted for the efficient encoding
of pedestrian features and demonstrates adaptability and robustness in high-density crowds.

3.4 Adaptive Conformal Inference for Quantifying Prediction Uncertainty

After obtaining the K-step future predictions, we quantify the prediction uncertainty using
dynamically-tuned adaptive conformal inference (DtACI) [31], an ACI algorithm that adapts ef-
fectively to distribution shifts and thus serves as a good fit for online uncertainty estimation in social
navigation. For each prediction step of each pedestrian, we run M prediction error estimators simul-
taneously. At time step t, we calculate the actual prediction error δh,k between the current position
and the predicted position made at time step t − k for the k-th prediction step of the h-th human
as δh,k(t) = ∥ph(t) − ph,k(t − k)∥2, where ph(t) is the position of the h-th human at time t,
ph,k(t − k) is the k-step predicted position of the h-th human made at time t − k, and δh,k(t) is
calculated as the L2 norm of the difference of the two values. We then update the estimated error
generated by the m-th estimator for the h-th human as

δ̂
(m)
h,k (t) = δ̂

(m)
h,k (t− 1) − γ(m)

(
α− err

(m)
h,k (t)

)
, (1)

where δ̂(m)
h,k represents the estimated prediction error of the m-th estimator corresponding to a k-step

ahead prediction for the h-th human, γ(m) is the learning rate of the m-th prediction error estimator
for all humans and predictions, α is the coverage parameter, and

err
(m)
h,k (t) :=

{
1, if δ̂(m)

h,k (t− 1) < δh,k(t),

0, if δ̂(m)
h,k (t− 1) ≥ δh,k(t).

(2)

According to quantile regression [31], δ̂(m)
h,k converges to the (1−α) quantile of actual errors. Since

we run M prediction error estimators with different learning rates simultaneously, for each error
estimator, after taking in the actual prediction error δh,k and updating the estimated prediction error
for the next step, we evaluate the errors of each estimator and update the probability distribution for
choosing the next output prediction error estimator by

w
(m)
h,k ← (1− σ)

w
(m)
h,k exp

(
−η ℓ(δh,k, δ(m)

h,k )
)∑M

j=1 w
(j)
h,k exp

(
−η ℓ(δh,k, δ(j)h,k)

) +
σ

M
, p

(m)
h,k ←

w
(m)
h,k∑M

j=1 w
(j)
h,k

, (3)

where we ignore the explicit time-step notation t for simplicity, and use the arrow to indicate the
replacement of values. The weight w(m)

h,k corresponds to the probability p
(m)
h,k for the m-th prediction

error estimator, σ and η are hyperparameters of DtACI for adjusting the speed at which weights
change. ℓ(δh,k, δ

(m)
h,k ) is the pinball loss function used to measure the estimation error:

ℓ(δh,k, δ
(m)
h,k ) =

{
α
(
δh,k − δ

(m)
h,k

)
, if δh,k ≥ δ

(m)
h,k ,

(α− 1)
(
δh,k − δ

(m)
h,k

)
, if δh,k < δ

(m)
h,k .

(4)

Each time we estimate the prediction uncertainty, we treat δ̂h,k as a discrete random variable taking
values in the set {δ̂(1)h,k, . . . , δ̂

(M)
h,k }, with probability mass function taken values from {p(m)

h,k }.

3.5 Policy Network Structure

Once we have obtained the trajectory prediction results and the corresponding prediction uncertainty,
we concatenate the uncertainty quantification with the predicted trajectory before feeding it into the
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attention layers. This allows the RL agents to account for the prediction uncertainty in their decision
making process, as shown in Fig. 1. The first block is the human-human attention (H-H attention in
Fig. 1), which models each human as a separate node to capture interactions among humans. Next,
we fuse the robot features (including velocity, heading, positions, and goal) into the attention blocks
through human-robot attention (H-R attention) to obtain fused feature embeddings capturing the
interactions between humans and the ego robot. We then process these fused embeddings with the
robot features and concatenate them to form the GRU input, thereby capturing temporal information.
Lastly, the final fused features are passed to the actor and critic networks for further processing. For
more details about the policy network structure, please refer to [21].

3.6 Decision Making with Effective Uncertainty Handling

To enhance controllability and enable effective guidance under uncertainty, we adopt a physically
meaningful cost and adjust its distribution based on a predefined cost limit using CRL, which is
not achievable with traditional RL and reward shaping, as conventional rewards provide only an
aggregate signal without any mechanism to ensure that safety-related components converge within a
specified range. First, we design the safety critical area of pedestrians as a combination of a circular
area around the human’s position and an uncertainty area around K ′ (K ′ ≤ K) steps of predictions.
Since we have H human agents in the environment, the two parts of the area are defined as

Di(pego) = {pego : |pego − p| ≤ ri} , p ∈ Pi, i = 1, 2, (5)

P1 = {ph}, P2 = {ph,k}, 1 ≤ h ≤ H, 1 ≤ k ≤ K ′, (6)

r1 = rego + rh + rcomfort, r2 = rego + rh + δ̂h,k, (7)
where D1 is the subarea around the current positions of humans and D2 is the subarea around the
predicted positions of humans. If the current center position of the ego robot pego is in either D1 or
D2, an intrusion occurs. For the computation, we consider the distance between the center positions
of agents and prediction points. rego is the radius of the ego robot, rh is the radius of the h-th human,
rcomfort is the radius of the subarea around the current positions of humans, and δ̂h,k is the prediction
uncertainty generated by DtACI for the k-th prediction point of the h-th human.

At each time step t, we iterate through all cost areas of all humans and calculate the maximum
intrusion, denoted as dintru,t. For an episode with a horizon of T , we have

max
π

Eπ

[
T∑

t=0

Rt(St, At)

]
s.t. Eπ

[
T∑

t=0

dintru,t

]
= d̃, (8)

where d̃ is a pre-defined threshold.

We formulate the cost Ct using the intrusions as Ct(St, At) = µdintru,t, where µ is a constant. Our
reward includes three components: Rsuccess, Rcollision, and Rpotential. Rsuccess is the reward for robot
reaches the goal, Rcollision is for the robot collides with pedestrians, and Rpotential provides a dense
reward that drives the ego robot to approach the goal, proportional to the distance the ego robot
approaches the goal compared to the previous time step [21].

In our work, we use the PPO Lagrangian [52] for optimization. We set up two critics to compute the
state value for reward and the state value for cost. The loss functions for the critics are defined as

lRt = c1(V
R
θ1 (St)− V targ,R

t )2, (9)

lCt = c2(V
C
θ2 (St)− V targ,C

t )2, (10)

where c1 and c2 are constants, V R
θ1
(St) and V C

θ2
(St) are network-generated value estimates for re-

ward and cost, respectively, and V targ,R
t and V targ,C

t are the corresponding target values.

As for the policy network, the action loss is similar to the form in PPO [53] except that we employ
the combined advantage Â′

t =
ÂR

t −λÂC
t

1+λ . The action loss function can then be written as

lπt = Êt

[
min

(
rt(θ3)Â

′
t, clip (rt(θ3), 1− ϵ, 1 + ϵ) Â′

t

)]
, (11)
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Table 1: In-Distribution Test Results
Methods SR↑ CR↓ TR↓ NT↓ PL↓ ITR↓ SD↑

SF 15.60% 21.44% 62.96% 30.23 34.64 3.78% 0.42
ORCA 67.84% 27.52% 4.64% 22.80 19.74 1.10% 0.50
MPC 73.76% 25.52% 0.72% 19.09 20.88 11.91% 0.43
SafeCrowdNav 89.09±3.18% 10.91±3.18% 0.00±0.00% 13.06±0.34 12.06±0.45 14.09±0.91% 0.39±0.01
CrowdNav++ 86.11±0.61% 13.81±0.57% 0.00±0.14% 14.96±1.07 20.68±0.88 6.61±0.98% 0.43±0.01

RL (w/o ACI) 92.67±1.51% 7.33±1.51% 0.00±0.00% 12.89±0.10 19.42±0.12 10.62±0.57% 0.39±0.01
RL (w/ ACI) 94.08±1.18% 5.92±1.18% 0.00±0.00% 13.35±0.26 19.88±0.25 8.81±0.67% 0.40±0.00

Ours (w/ CV) 96.03±1.14% 3.73±1.24% 0.24±0.24% 17.88±0.60 24.51±0.76 2.40±0.22% 0.45±0.00
Ours (w/ GST) 96.93±0.68% 2.93±0.61% 0.13±0.12% 17.54±0.86 24.27±0.85 2.72±0.16% 0.44±0.00

Table 2: Out-of-Distribution Test Results
Environments Methods SR↑ CR↓ TR↓ NT↓ PL↓ ITR↓ SD↑

Rushing
Humans

SF 12.24% 19.12% 68.64% 32.06 36.15 5.31% 0.40
ORCA 60.32% 34.96% 4.72% 23.41 19.84 2.95 % 0.48
MPC 49.76% 49.84% 0.40% 18.52 17.77 19.70% 0.39

SafeCrowdNav 69.71±4.55% 30.29±4.55% 0.00±0.00% 13.47±0.40 10.96±0.66 20.20±1.10% 0.37±0.00
CrowdNav++ 73.17±1.24% 26.67±1.40% 0.16±0.16% 15.43±1.63 19.89±1.12 12.38±1.48 0.39±0.00
RL (w/o ACI) 74.19±1.26% 25.81±1.26% 0.00±0.00% 13.31±0.30 18.20±0.10 18.23±0.31% 0.37±0.00
RL (w/ ACI) 76.96±4.29% 23.04±4.29% 0.00±0.00% 14.13±0.32 19.04±0.14 15.84±1.14% 0.37±0.01
Ours (w/ CV) 87.07±0.89% 12.75±1.21% 0.19±0.32% 18.74±0.31 24.57±0.66 5.29±0.20% 0.40±0.00

Ours (w/ GST) 87.17±4.14% 12.75±4.00% 0.08±0.14% 18.32±1.01 24.04±0.85 6.82±1.36% 0.38±0.00

SF Pedestrian
Model

SF 12.08% 6.72% 81.20% 29.76 40.56 1.60% 0.45
ORCA 92.56% 4.88% 2.56% 22.36 21.91 0.72% 0.48
MPC 89.76% 10.00% 0.24% 17.07 20.58 8.58% 0.41

SafeCrowdNav 91.28±0.60% 8.72±0.60% 0.00±0.00% 12.12±0.23 11.37±0.29 10.94±0.40% 0.39±0.00
CrowdNav++ 92.48±1.36% 7.52±1.36% 0.00±0.00% 14.65±1.81 20.82±1.71 6.48±0.88% 0.41±0.00
RL (w/o ACI) 95.68±0.89% 4.32±0.89% 0.00±0.00% 12.35±0.21 18.99±0.16 9.98±0.49% 0.39±0.00
RL (w/ ACI) 97.41±0.81% 2.59±0.81% 0.00±0.00% 13.08±0.24 19.81±0.24 8.07±0.43% 0.40±0.01
Ours (w/ CV) 98.48±0.92% 1.39±0.82% 0.13±0.12% 19.02±0.45 25.84±0.54 2.04±0.25% 0.43±0.01

Ours (w/ GST) 98.96±0.52% 1.04±0.52% 0.00±0.00% 18.18±0.84 25.05±0.79 2.66±0.45% 0.42±0.00

Groups

SF 2.56% 97.44% 0.00% 9.41 9.91 23.59% 0.35
ORCA 49.44% 46.72% 3.84 22.98 19.37 20.46% 0.39
MPC 69.12% 29.76% 1.12% 20.48 22.78 24.08% 0.37

SafeCrowdNav 75.73±2.01% 24.27±2.01% 0.00±0.00% 16.29±0.44 13.44±0.64 26.78±1.42% 0.35±0.01
CrowdNav++ 81.84±15.17% 18.13±15.20% 0.03±0.05% 17.28±1.30 24.95±3.60 9.05±6.54% 0.39±0.01
RL (w/o ACI) 71.07±6.33% 28.93±6.33% 0.00±0.00% 14.87±0.67 21.35±1.08 20.17±2.07% 0.36±0.01
RL (w/ ACI) 83.12±7.81% 16.88±7.81% 0.00±0.00% 15.70±0.39 23.53±1.30 12.67±4.83% 0.37±0.01
Ours (w/ CV) 94.51±4.20% 5.41±4.23% 0.08±0.14% 21.16±1.32 30.61±1.98 3.00±0.61% 0.43±0.01

Ours (w/ GST) 94.13±3.51% 5.71±3.31% 0.16±0.21% 20.19±0.69 29.69±0.81 3.55±1.21% 0.41±0.01

where rt(θ3) represents the change ratio between the updated and old policies, ϵ is the clip ratio,
and Â′

t represents the estimated value advantage function at time step t. Lastly, we update λ using
gradient descent. The loss function [54] for updating λ is defined as lλt = −λ(C̄ − d̃C), where C̄ is
the mean episodic cost and d̃C is the cost limit proportional to d̃.

4 Experiments

4.1 Simulation Settings, Evaluation Metrics, and Implementation Details

We adopt CrowdNav [39], one of the most widely adopted simulation environments for crowd nav-
igation. The environment consists of 20 humans and one robot in a 12m × 12m area, with ran-
domized initial positions and goal locations. The robot has a radius of 0.2m, while human radii are
randomly sampled between 0.3m and 0.5m. The robot’s maximum speed is set to 1.0m/s. We
adopt the standard evaluation metrics [21], including success rate (SR), collision rate (CR), timeout
rate (TR), navigation time (NT), path length (PL), intrusion time ratio (ITR), and social distance
(SD). The detailed definitions can be found in Appendix D. For all of these metrics, SR reflects the
effectiveness and CR evaluates the safety of algorithms. TR, NT, and PL measure the efficiency of
the policy-generated paths, and ITR and SD measure the politeness of the paths. While different
deployment contexts may prioritize different metrics, we emphasize SR and CR given their critical
importance for safe robot deployment. We include our implementation details in Appendix E.

4.2 Baselines and Ablation Models

Our baselines include optimal reciprocal collision avoidance (ORCA) [5], social force (SF) [6],
model-predictive control (MPC), SafeCrowdNav [23], and CrowdNav++ [21]. ORCA and SF are
classic rule-based algorithms in obstacle avoidance, MPC is an optimization-based algorithm, and
SafeCrowdNav and CrowdNav++ represent the previous SOTA RL algorithms in crowd navigation.
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Figure 2: Test-case visualizations. Pedestrians are shown in blue, the robot in yellow, and the goal
as an orange star. Light-blue circles show the quantified uncertainties around pedestrians. (a) Ours
(w/ GST) successfully navigates to the goal in an in-distribution environment. (b) CrowdNav++
fails to complete the same episode; here, light-blue circles represent predicted trajectories rather
than uncertainties. (c) Ours (w/ GST) in an OOD environment with rushing pedestrians. (d) Ours
(w/ GST) in an OOD environment using the SF pedestrian model. (e) Ours (w/ GST) in an OOD
environment with pedestrian groups.

For MPC, we implement a cost function similar to that in [43, 44, 45], which uses uncertainty as a
reference in the cost formulation to improve safety. We test our method with the CV and the GST
predictors, represented as Ours (w/ CV) and Ours (w/ GST), respectively. We also include RL (w/o
ACI) and RL (w/ ACI) as two ablation models. The two variants have the same network structures
as Ours (w/ GST), but RL (w/o ACI) excludes uncertainty estimates from the input and does not
employ CRL, while RL (w/ ACI) incorporates uncertainty estimates but does not apply CRL.

4.3 In-Distribution Test Results

Quantitative Analysis. For all the test results in Table 1-2, we evaluate 1250 samples across 5
random test seeds and calculate the mean performance and standard deviations of models trained
with 3 different training seeds. The test results under the same setting as the training environment
are shown in Table 1. From these results, we can see that SF, ORCA, and MPC have lower SR and
higher CR compared to RL methods. When comparing all the RL-based methods, both Ours (w/
GST) and Ours (w/ CV) outperform other methods in safety metrics and ITR, indicating that our
method can generate both safe and polite trajectories that cause minimal intrusions to pedestrians.
Although our method generates paths with higher TR, NT, and PL compared to RL baselines and
ablation models, this tradeoff is reasonable considering the overall improvement in effectiveness
and safety. Notably, Ours (w/ GST) achieves over an 8.80% higher SR, decreases collisions by more
than 3.72 times, and reduces intrusions into the future pedestrian trajectories by more than 2.43
times compared to the two RL baselines.

Qualitative Analysis. We visualize the behaviors of Ours (w/ GST) and CrowdNav++ in the same
episode in Fig. 2(a) and Fig. 2(b), respectively. At the beginning, CrowdNav++ decides to approach
the goal directly. However, as the pedestrians move, they gradually surround the robot, which leads
to an almost inevitable collision for CrowdNav++. In contrast, Ours (w/ GST) chooses to move
the robot out of the crowds from the start. At step 24, Ours (w/ GST) rapidly reacts to a sudden
change in human direction, and the adaptive expanding uncertainty area due to prediction errors
helps the robot perform an avoidance maneuver. Additional qualitative examples are provided in
our supplementary video.
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4.4 Out-of-Distribution Test Results

OOD Scenarios Mixed with Rushing Humans. In this setting, we set 20% of the human agents
to have a maximum speed of 2.0m/s. From the results in Table 2, we observe that all methods
exhibit degraded performance compared to in-distribution conditions. Especially, SafeCrowdNav,
CrowdNav++, RL (w/o ACI), and RL (w/ ACI) experience SR drops of 19.38%, 12.94%, 18.48%,
and 17.12%, respectively. In contrast, Ours (w/ CV) and Ours (w/ GST) exhibit smaller SR drops of
8.96% and 9.76%, respectively. We visualize a scenario performed by Ours (w/ GST) in Fig. 2(c),
where two rushing humans are moving toward the agent at step 32. Due to the GST predictor facing
the challenges of OOD conditions, the uncertainty area generated by ACI becomes much larger. The
robot then chooses to navigate between these two agents through the gap between the uncertainty
areas at step 34 and successfully escapes to a safe area at step 38.

OOD Scenarios with SF Pedestrian Model. In this setting, we change the behavior policy of all
human agents from ORCA to SF. From the results in Table 2, all methods perform better than in
in-distribution conditions. Ours (w/ CV) and Ours (w/ GST) achieve almost perfect results in terms
of SR, CR, and TR, implying that our methods adapt well to OOD scenarios caused by different
behavior models. We visualize a scenario performed by Ours (w/ GST) in Fig. 2(d). When three
humans approach each other, Ours (w/ GST) maintains a conservative distance from the crowds and
successfully escapes afterward.

OOD Scenarios with Group Dynamics. In this setting, pedestrians are clustered into cohesive
groups that maintain tight intra-group spacing. As Table 2 shows, every RL baseline and ablation
variant suffers a noticeable performance drop. Especially, SafeCrowdNav and RL (w/ ACI) fall to
SR below 76%. The adaptability to grouped pedestrians of CrowdNav++ is highly sensitive to the
training seed, with variance exceeding 15%. By contrast, Ours (w/ CV) and Ours (w/ GST) retain
SR above 94% and CR below 6%, while also displaying the smallest variance across seeds.

4.5 Other Test Results

We include additional test results in Appendix G to J, covering the effectiveness of ACI quantifica-
tion, a convergence comparison between Ours (w/ GST) and RL (w/ ACI), the influence of different
cost limits on policy aggressiveness, and cross-evaluations of algorithms trained in environments
where humans either actively avoid or ignore the robot.

4.6 Real-Robot Experiments

We deploy our method on a ROSMASTER X3 robot with Mecanum wheels running ROS2, con-
nected via router to a laptop equipped with a mobile NVIDIA RTX 3070 GPU. We apply the model
to the robot without further fine-tuning, using only basic clipping and smoothing. Perception is per-
formed with a 6 Hz RPLIDAR-A1 LiDAR, human detection via a pre-trained DR-SPAAM model
[55], tracking with SORT [56], and trajectory prediction with GST. We implement two movement
modes: fixed-goal reaching and long-range navigation with a dynamically updated goal. The robot
navigates outdoor environments and executes safe behaviors in both sparse and dense crowds. For
more details, please refer to Appendix K-M and the supplementary video.

5 CONCLUSION

In this paper, we introduce an RL-based trajectory-planning framework that integrates conformal
uncertainty into a CRL scheme to mitigate OOD performance degradation. Unlike conventional RL
planners that overfit and falter under distribution shifts, our method dynamically leverages uncer-
tainty estimates to adapt to velocity variations, policy changes, and transitions from individual to
group dynamics. Extensive simulations demonstrate robust stability across diverse OOD scenarios,
and real-world trials confirm the practical effectiveness of our approach.
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6 Limitations

First, our work addresses the safety challenges of navigating dense, human-populated environments
by combining uncertainty-aware prediction with constrained reinforcement learning. It can also
handle static obstacles when they are modeled as collections of static agents, as in prior work [11].
However, to naturally handle obstacles of arbitrary shape, our approach would require additional
perception and mapping capabilities, such as integrating SLAM and feeding multi-modal observa-
tions into the policy network. This represents a clear direction for future research. The second
limitation arises from perception errors (e.g., human miss-detections and the 2D LiDAR’s sensitiv-
ity to lighting). To mitigate these issues, we plan to augment our sensor suite with cameras, apply
sensor-fusion techniques, and upgrade to a higher-frequency, more robust LiDAR, thereby adding
safety redundancy. Third, while our strategy effectively mitigates OOD performance degradation, it
does not yet eliminate it, which is a great challenge in deep learning. Promising directions include
adopting larger models (e.g., LLMs or VLMs) and advanced alignment methods, though these may
introduce increased computational demands that could limit deployment on cost-effective robots.
Finally, although we have evaluated OOD performance in three representative scenarios: velocity
variations, policy changes, and transitions from individual to group-level dynamics, we acknowl-
edge that the space of possible distributional shifts is vast and cannot be exhaustively tested. We
plan to conduct larger-scale real-world experiments once static-obstacle handling is resolved. These
real-world experiments represent the most challenging OOD setting. We will also employ metrics
such as the intervention rate to further compare our method against standard RL baselines.
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Appendices for Towards Generalizable Safety in Crowd Navigation via
Conformal Uncertainty Handling

A Preliminaries

Adaptive Conformal Inference. Conformal methods can augment model predictions with a pre-
diction set that is guaranteed to contain true values with a predefined coverage, enabling the quan-
tification of uncertainties in a model-agnostic manner [31]. Traditional split conformal prediction
requires a calibration set and places high demands on the exchangeability between the test sample
and the calibration samples. In contrast, adaptive conformal inference (ACI) can dynamically adjust
its parameters to maintain coverage in an online and distribution-free manner [30], making it ap-
pealing for time-sequential applications. Dynamically-tuned adaptive conformal inference (DtACI)
[31] further boosts the applicability and performance of ACI by running multiple prediction error
estimators with different learning rates simultaneously. DtACI adaptively selects the best output
based on its historical performance, eliminating the need to pre-acquire underlying data dynamics
to achieve satisfying coverage.

Constrained Reinforcement Learning. Constrained reinforcement learning (CRL) extends RL
algorithms by incorporating constraints on the agent’s behavior. Unlike traditional Markov decision
process (MDP) settings, where agents learn behaviors only to maximize rewards, CRL is often
formulated as a constrained Markov decision process (CMDP). At time step t, an agent chooses an
action At under state St, receives a reward Rt, and incurs a cost Ct, after which the environment
transitions to the next state St+1. In a CMDP, the objective is not only to find an optimal policy
that maximizes rewards but also to manage costs associated with certain actions or states, which
may be defined as quantities related to safety in the context of social navigation. This is generally
represented as [52]:

π∗ = arg max
π∈ΠC

JR(π), (12)

where JR(π) is a reward-based objective function, and ΠC is the feasible set of policies that satisfy
the constraints added to the problem. The goal of CRL is to ensure that costs remain within pre-
defined thresholds while maximizing reward.

B Conceptual Differences with CBF

In CBFs, a safety function h(x) and a safe set {x : h(x) > 0} are used to encode safety. The
condition ḣ(x) ≥ −γh(x) is enforced during optimization to ensure the system remains in the
safe set, constraining the derivative of the safety function. In contrast, our framework focuses on
controlling the integral of a risk-related function. Our cost function C(S,A), analogous to h(x),
is accumulated over time as

∑T
t=0 Ct(St, At), and we aim to constrain this cumulative cost below

a small threshold d̃C . Thus, while both approaches can shape the distribution of a safety-related
function, the optimization mechanisms differ significantly. Our methods integrate more closely with
CRL and achieve expected safety.

C SF vs. ORCA

We plotted human trajectories generated using ORCA and SF dynamics in Fig. 3, along with plots
of minimal distances between individuals and mean velocities. Note that in our simulation environ-
ments, humans may sample a new goal every five steps with a probability of 50%, which changes
their moving directions and velocities. From the results, ORCA pedestrians exhibit sharper turns
and smaller minimal distances between individuals.

D Evaluation Metrics

The evaluation metrics used in our paper are introduced in detail as follows:
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Figure 3: Comparison of SF and ORCA.

• Success Rate (SR): SR measures the ratio of the number of successful episodes (i.e., the
robot reaching the goal within the time limit of 50 s) to the total number of test episodes,
i.e., SR = Nsuccess/Ntotal.

• Collision Rate (CR: CR measures the ratio of episodes with at least one collision to the
total number of test episodes, i.e., CR = Ncollision/Ntotal.

• Timeout Rate (TR): TR measures the ratio of episodes that fail to reach the goal before the
time limit to the total number of test episodes, i.e., TR = Ntimeout/Ntotal.

• Navigation Time (NT): NT is the average time required for the robot to reach the goal
(computed only over successful episodes), i.e., NT =

(
1/Nsuccess

)∑Nsuccess
k=1 Tk, where Tk is

the time the robot took to reach the goal in the k-th successful episode.

• Path Length (PL): PL is the total distance traveled by the robot in an episode, accumulated
step by step. We report the average path length across all episodes (including collisions
and timeouts), i.e., PL =

(
1/Ntotal

)∑Ntotal
i=1 disti, where disti is the total distance traveled in

episode i.

• Intrusion Time Ratio (ITR): ITR is the fraction of time steps in an episode where the robot
intrudes into the ground-truth future positions of humans (Danger event triggered). Its final
value is an average over all episodes:

ITR =
1

Ntotal

Ntotal∑
i=1

(# danger steps in episode i

total steps in episode i
× 100%

)
. (13)

• Social Distance (SD): SD is the average of the minimal distances between the robot and
any human, computed only at the “danger steps.” We log the minimal distance whenever a
Danger event occurs, and then take the average over all episodes.

E Implementation Details

Under each ablation setting, we train our models using three different random seeds on an NVIDIA
RTX 4090 GPU, keeping all other hyperparameters consistent except those we intend to compare.
Key common settings include:

• All models use human predictions as part of the input observations and employ a pre-trained
GST predictor with fixed parameters to generate five steps of human trajectory predictions,
except for Ours (w/ CV).

14



1-step
2-step
3-step

4-step
5-step

AC
I E

rro
r

−0.5

0

0.5

1.0

Time Step
5 10 15 20 25 30 35 40

Figure 4: Visualization of ACI errors (i.e., estimated prediction error minus actual prediction error)
for one pedestrian’s five prediction steps during the time period it is within the observable area of
the robot. ACI provides valid coverage when the ACI error is greater than 0.

• For the training parameters, we leverage the parallel training feature of PPO by and running
128 parallel environments. The learning rate is set to 3 × 10−5, and the clip parameter is
set to 0.08 for both the actor and the reward critic. The learning rate for the cost critic is set
to 1.5×10−5. We run 2×107 training steps to obtain the final policy model for testing and
real-robot deployment. In our training, varying entropy is removed, and the action noise,
which is normally distributed, is only added during training and removed during testing
and deployment.

• We set the radius of the cost subareas around current positions of humans, rcomfort, to 0.25m
and calculate costs based on the intrusions into the subarea and the first two prediction
uncertainty areas, while inputting predictions for all five future steps into the policy network
with a coverage parameter α = 0.1, corresponding to 90% coverage in prediction errors.

• For DtACI hyperparameters, the initial prediction errors are set to 0.1m, 0.2m, 0.3m,
0.4m, and 0.5m for 1- to 5-step-ahead predictions, respectively. We employ three error
estimators with learning rates γ of 0.05, 0.1, and 0.2 for each DtACI estimator.

• For the specific reward and cost functions, we set the success reward Rsuccess to +10, the
collision penalty Rcollision to −20, and the dense potential reward that guides the robot’s
movement to 2∆dforward, where ∆dforward measures the distance the robot moves toward
the goal compared to the previous step. The cost Ct(St, At) is defined as 2.5dintru,t, where
dintru,t represents the maximum intrusion into the cost areas of the current human positions
and the first two prediction uncertainty areas.

F Tradeoffs of Different Methods

From the results in Tables 1-2, we observe that: (1) SF, ORCA, and MPC show poor perfor-
mance across multiple metrics, particularly in collision avoidance and goal-reaching capabilities. (2)
CrowdNav++, RL (w/o ACI), and RL (w/ ACI) achieve reasonable goal-reaching rates and safety
performance. (3) SafeCrowdNav achieves comparable task completion and safety performance with
shorter path lengths, but exhibits higher intrusion rates, indicating less socially-aware behavior. (4)
Our method achieves the highest goal-reaching rates with the lowest collision rates and fewest in-
trusions, at the cost of longer paths and navigation time, since our framework prioritizes safety over
efficiency. However, this safety-efficiency tradeoff can be easily adjusted via the cost limit parameter
for different deployment scenarios.

G ACI Effectiveness

To validate the effectiveness of ACI in covering actual prediction errors, we visualize the ACI errors
of one human in Fig. 4. At the beginning of this trajectory, the ACI errors for multi-step predic-
tions are large because the GST predictor lacks sufficient information to accurately predict human
positions, leading to large actual prediction errors that our initial ACI values do not cover properly.
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Figure 5: Convergence analysis of our method. (a) The learning curves of Ours (w/ GST) and RL
(w/ACI). Ours (w/ GST) shows faster convergence with higher rewards. (b) The cost curves of Ours
(w/ GST) with different cost limits. The average costs across episodes can approximately approach
the predefined cost limits, which are shown by the dashed lines.

Table 3: Performance of Ours (w/ GST) Under Different Cost Limits

Cost limit SR↑ CR↓ TR↓ NT↓ PL↓ ITR↓ SD↑

0.4 96.96% 2.80% 0.24% 18.52 25.24 2.73% 0.43
0.6 96.72% 3.04% 0.24% 16.16 22.96 3.59% 0.44
0.8 94.56% 5.44% 0.00% 13.60 20.33 5.61% 0.43
1.0 94.32% 5.68% 0.00% 13.53 20.19 6.62% 0.42
1.2 93.76% 6.24% 0.00% 12.97 19.45 7.31% 0.41

However, after several steps, ACI quickly adapts to the actual prediction error and achieves adequate
coverage. Additionally, if the coverage remains sufficient, the ACI error will decrease to ensure that
the uncertainty estimation is not too conservative. We also extract human trajectories and the cor-
responding ACI predictions to evaluate the quantitative coverage performance. The coverage rates
for 1-, 2-, 3-, 4-, and 5-step predictions are 90.21%, 91.53%, 92.34%, 90.78%, and 90.55%, respec-
tively, using the parameters specified in our approach with α = 0.1, which theoretically corresponds
to 90% coverage.

H Convergence Analysis

We present the learning curves of Ours (w/ GST) in Fig. 5(a), alongside RL (w/ ACI) for comparison.
The results indicate that Ours (w/ GST) demonstrates a smoother learning process and achieves
higher rewards. Furthermore, as shown in Fig. 5(b), the average episodic costs of Ours (w/ GST)
converge to different cost limit values. This provides an effective mechanism for adjusting the
aggressiveness of robot policies, as further discussed in Appendix I.

I Tuning Aggressiveness of Trajectories with Cost Limits

Although the main results presented in our paper focus on low cost limits to ensure safe navigation
through crowds, we also observe interesting testing results with varying cost limits that allow for
tuning the aggressiveness of trajectories, as shown in Table 3. These results are obtained by testing
across five seeds, with 250 test samples for each seed, using models trained with the same training
seed. We find that as the cost limits increase, the trajectories become gradually more aggressive,
reflected by an increase in ITR. This increased aggressiveness also improves efficiency, as indicated
by reductions in NT and PL. However, it comes at the expense of key metrics such as SR and CR.
Therefore, for a single best policy, we recommend keeping the cost limit as low as possible, provided
the policy can still converge.

J Visible Robot Settings

For the main results presented in our paper, we train the RL baselines, ablation models, and our
methods in the CrowdNav environments where humans will not actively avoid the robot, which is
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Table 4: Cross-Validation of Ours (w/ GST) for Robot Visibility Settings Using Success Rates

Test
Train Invisible Visible

Invisible 96.93±0.68% 50.48±0.49%

Visible 99.92±0.14% 99.07±0.76%

Table 5: Cross-Validation of Ours (w/ GST) for Robot Visibility Settings Using Collision Rate

Test
Train Invisible Visible

Invisible 2.93±0.61% 49.52±0.49%

Visible 0.08±0.14% 0.93±0.76%

a common practice in prior work [21, 23]. To validate the effectiveness of this setting, we conduct
a cross-evaluation on models trained in environments where humans either actively avoid or ignore
the robot, as summarized in Tables 4-5. Specifically, we evaluate the models under five different
testing seeds, each with 250 test samples, for three models trained under three distinct training
seeds. From these results, we observe that although models trained in the visible robot setting
achieve low collision rates in their in-distribution settings, they fail to generalize when humans do
not react to the robot. In such scenarios, nearly half of the test cases result in collisions. In contrast,
models trained in the invisible robot setting maintain low collision rates in both testing scenarios
and, surprisingly, exhibit even lower collision rates when the robot is visible than those trained
in the visible robot setting. In real-world situations, some pedestrians may ignore the robot (e.g.,
when they are using their mobile phones while walking). This mixture of reactive and non-reactive
pedestrians poses significant challenges for models that assume all humans will actively avoid the
robot. Thus, training in an environment where humans do not react to the robot proves to be more
robust, as it better accounts for scenarios in which pedestrians may fail to notice the robot.

K ROS2 System for Real Robot Deployment

We develop a full ROS2 system from perception to decision making, including four main nodes:

• Detector: This node employs a pretrained DR-SPAAM model [55] to detect human agents
from 2D LiDAR point clouds. The model leverages a lightweight neural network, enabling
real-time detection on resource-constrained devices. According to the original paper, it
achieves an accuracy metric of AP0.5 = 70.3%.

• Tracker: This node uses the SORT [56] algorithm for tracking, which simply aims at as-
signing indices to detected agents. To generate consistent tracking results even when receiv-
ing noisy detections, we assign large values to the measurement noise covariance matrix
R and the process noise covariance matrix Q of the underlying Kalman filter to accom-
modate detection jitter. We also set a higher noise coefficient for the position and scale
components of the Kalman filter and a smaller value for the velocity components to allow
more flexibility in position and scale updates. In the initial state covariance matrix P, the
velocity components are given a large uncertainty, and the entire matrix is scaled accord-
ingly so the filter can quickly adapt during early tracking. Besides, in the SORT tracker,
we only keep trajectories whose ratio of valid detections over the entire detected period
is above 0.9, filtering out spurious or short-lived detections. At each timestep, we run the
Kalman filter’s inference step to infer the positions of tracked agents even when they are
not correctly detected in certain frames.

• Predictor: This node uses the GST [51] model as the trajectory planner, integrating the
DtACI module to directly apply uncertainty quantification after obtaining prediction lines
for the pedestrians. The parameters and model weights are consistent with those used
during training.
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• Decider: This node receives information from the upper-level nodes and determines the
output action commands (vx and vy for velocities) for the controller. We utilize the con-
troller integrated into the ROSMASTER X3 system by publishing \cmd_vel. The de-
cider supports three modes: goal-reaching mode, long-range navigation mode, and manual
control mode. The selection of these modes is managed by another utility node, Command
Listener, which listens to user input and communicates the commands to the decider.

L Real Robot Experiments

We deploy our approach on a ROSMASTER X3 robot equipped with Mecanum wheels, enabling
flexible movement and independent control of vx and vy . The robot connects to a laptop with an
Nvidia RTX 3070 GPU (mobile version) via a router. Our model is trained in CrowdNav simulations
with holonomic dynamics and is deployed directly to the robot system without further fine-tuning.

The robot uses a 2D LiDAR (RPLIDAR-A1) for human detection via a learning-based detector. The
LiDAR operates at a scanning frequency of approximately 6Hz, which also limits the frequencies of
the tracking, prediction, and decision making modules. Despite this, our experiments demonstrate
that the robot makes effective navigation decisions in crowded environments, indicating that the
system generalizes well to cost-efficient robots. Human detection is done with a pre-trained DR-
SPAAM model [55], tracking is done with SORT [56], prediction is done with the GST model [51],
and decision making is powered by Ours (w/GST). For further details about our system, please
refer to Appendix K, and computational speed analyses for the core functions of each module are
provided in Appendix M.

We conduct the experiments on a large outdoor terrace covering an area greater than 15m × 20m.
The robot operates in two movement modes:

• Goal-reaching mode: The robot navigates to a predetermined target point, which is the
original setting in the standard CrowdNav training phase.

• Long-range navigation mode: The goal of the robot is dynamically updated based on its
movement. This approach addresses the limitation that, during training, the goal inputs
to the policy networks are constrained to a limited range. As a result, distant goals be-
yond 12m may negatively impact policy performance. By introducing a continuously up-
dated moving target, we show that the robot can reliably navigate distances exceeding 20m
through experiments. This method has the potential to be extended to even longer distances
if the system is fully integrated onboard in the future.

We show several representative real-world testing scenarios and results in Fig. 6. Specifically, we
first visualize the prediction uncertainties using RViz in Fig. 6(a). Before t = 13 s, the human
walks around the robot, and the robot successfully detects the human’s position while visualizing
the predicted trajectory and the associated uncertainty area. Since the prediction model does not
fully capture the human’s circular walking pattern, the long-horizon prediction uncertainty area is
significantly larger than that of short-horizon predictions. After t = 13 s, the human stands still
behind the robot. Initially, the prediction uncertainty area is large because the uncertainty results are
carried over from iterative processes. Gradually, the uncertainty area shrinks to reflect more precise
prediction uncertainties. After approximately 3 seconds, the uncertainty area stabilizes and reduces
to almost zero. This process demonstrates that by using DtACI, the system can effectively adapt
to different conditions and dynamically reflect prediction uncertainties. This enables safer decision
making without being overly conservative.

In Fig. 6(b), by allowing the robot to interact with a single agent, we observe that the robot can
generate stable yielding behaviors. At t = 2 s, the robot detects that a human is coming along a path
that will intersect with its original moving trajectory. It begins by slowing down to reduce the risk
of a collision (t = 3 s). At t = 3.5 s, the robot adjusts its direction, moving towards the backside
area of the human to avoid intrusions. At t = 4.5 s, the robot successfully passes.
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Figure 6: We deploy our methods on a ROSMASTER X3 with Mecanum wheels using the ROS2
system. For the four subplots, the left sides display photos taken from the experiments, and the right
sides show visualizations in RViz. In the RViz visualizations, the red circles represent detection
results, and the white numbers inside the red circles indicate the output probabilities of the detection
model. The purple numbers correspond to the indices generated by the tracker. The prediction
lines are shown in blue, and the prediction uncertainties are depicted in semi-transparent light blue.
In (a), the green robot represents the robot’s current location. In (b)-(d), where the decision node
is enabled, the yellow sphere indicates the robot’s position, and the yellow arrow represents the
command output from the decider node. The orange circle indicates the goal position. (a) In the
uncertainty visualization, the human initially walks around the robot and then stands still behind it.
The uncertainty area adjusts dynamically based on the prediction accuracy. (b) The robot equipped
with Ours (w/ GST) demonstrates stable yielding behavior when interacting with humans. (c) In
goal-reaching mode, the robot navigates through crowds and successfully reaches its goal. (d) In
long-range navigation mode, the moving goal consistently guides the robot’s movement.

In Fig. 6(c), the robot navigates in goal-reaching mode while interacting with humans along its
path. We observe that the robot encounters very dense crowds at t = 16 s and t = 23 s. Throughout
this process, the robot makes appropriate decisions to minimize intrusions into humans’ trajecto-
ries while progressing toward its goal, and it ultimately reaches the goal despite the dense human
interactions.

In Fig. 6(d), we implement the long-range navigation mode, enabling the robot to navigate distances
beyond those encountered during training. In this mode, the moving goal is dynamically updated
to remain 5m ahead of the robot’s position along the longitudinal axis, while its lateral position
remains fixed. Under these conditions, the robot moves forward while actively avoiding dynamic
obstacles, as demonstrated at t = 25 s. Although the robot temporarily deviates laterally to avoid
collisions, the fixed lateral component of the moving goal serves as a stable reference, helping the
robot stay within a reasonable lateral range.

Overall, our system demonstrates robust decision making capabilities in crowded environments. By
quantifying prediction uncertainty and incorporating it into behavior guidance, the robot develops
more adaptive spatial awareness and exhibits consistent, safe, and socially aware behaviors.

M Computational Speed Analysis

We log the time consumption of key functions across different nodes, including the inference times
of the detection model (DR-SPAAM), prediction model (GST), and the policy network (CRL), as
well as the update times for the tracker (SORT) and uncertainty quantifier (DtACI) in dense crowd
experiments, and visualize the results in Fig. 7. The visualization shows that GST has the longest
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Figure 7: Visualizations of computational time distributions for five key modules of our ROS2 sys-
tem. The data samples were collected during experiments in dense human environments. The shape
of each violin plot represents the density of computation times, with wider areas indicating a higher
concentration of values. The white dots at the center of each shape denote the mean computation
time for the respective module.

average computation time and the largest variance. In contrast, DR-SPAAM and SORT maintain
low and stable computation times, making them efficient for real-time applications. While DtACI
has relatively high computational costs due to its pure Python implementation, its average time
remains below 0.01 s, well within acceptable limits. This overhead can be greatly reduced by tran-
sitioning to more efficient languages like C++. Despite this, the worst-case computation time for
all main modules stays below 0.1 seconds, meeting and exceeding our system’s decision frequency
requirements.
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