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The Landscape of Deterministic and Stochastic
Optimal Control Problems: One-Shot
Optimization Versus Dynamic Programming

Jihun Kim““, Yuhao Ding *“, Yingjie Bi

Abstraci—Optimal control problems can be solved via a
one-shot (single) optimization or a sequence of optimiza-
tion using dynamic programming (DP). However, the com-
putation of their global optima often faces NP-hardness,
and thus only locally optimal solutions may be obtained
at best. In this work, we consider the discrete-time finite-
horizon optimal control problem in both deterministic and
stochastic cases and study the optimization landscapes
associated with two different approaches: one-shot and DP.
In the deterministic case, we prove that each local mini-
mizer of the one-shot optimization corresponds to some
control input induced by a locally minimum control policy
of DP, and vice versa. However, with a parameterized pol-
icy approach, we prove that deterministic and stochastic
cases both exhibit the desirable property that each local
minimizer of DP corresponds to some local minimizer of the
one-shot optimization, but the converse does not neces-
sarily hold. Nonetheless, under different technical assump-
tions for deterministic and stochastic cases, if there ex-
ists only a single locally minimum control policy, one-shot
and DP turn out to capture the same local solution. These
results pave the way to understand the performance and
stability of local search methods in optimal control.

Index Terms—Dynamic programming (DP), landscape,
one-shot optimization, optimal control.

[. INTRODUCTION

YNAMIC programming (DP) has been widely used in

a variety of fields with a rich theoretical foundation and
many mathematical and algorithmic aspects [2], [3]. One classic
area of DP is to solve optimal control problems, with applications
in communication systems [4], inventory control [5], powertrain
control [6], and many more. Furthermore, many recent successes
in artificial intelligence, especially in reinforcement learning
(RL) [71, [8], are also deeply rooted in DP. In the challenging
domain of classic Atari 2600 games, the work [9] has demon-
strated that the Q-learning method based on the generalized
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policy iteration along with a deep neural network as the function
approximator for the Q-values surpasses the performance of all
previous algorithms and achieves a level comparable with that
of a professional human games tester.

Despite a strong theoretical framework of DP, the exact solu-
tions of large-scale optimal control problems are often impos-
sible to obtain using DP in practice [7]. Apart from suffering
the “curse of dimensionality” when the state space is large,
solving DP accurately could also be highly complex. The reason
is that DP requires solving optimization subproblems to global
optimality, and the computation of their global optima is NP-
hard in general, due to the nonlinearity of the dynamics and the
nonconvexity of the cost function.

Therefore, although DP theory relies on global optimization
solvers, practitioners routinely use local optimization solvers
based on first- and second-order numerical algorithms. As a
result, the theoretical guarantee of DP could break down as soon
as a nonglobal local solution is found in any of the subproblems.
Understanding the performance of local search methods for
nonconvex problems has been a focal area in machine learning
in recent years. This is performed under the notion of spurious
solution, which refers to a local minimum that is not a global
solution. The specific application areas are neural networks [10],
[11], deep learning [12], [13], mixtures of regressions [14],
[15], matrix sensing/recovery [16], [17], [18], [19], phase re-
trieval [15], [20], and online optimization [21], [22].

Recently, there has been an increasing interest in under-
standing the global convergence of exact or approximate DP
algorithms in policy gradient methods for RL, such as projected
policy gradient, natural policy gradient, and mirror descent with
or without regularizers [23], [24], [25], [26], [27]. Prior to them,
the work [28] identified some general algorithm-independent
properties of the policy gradient method by establishing a direct
connection between policy gradient (one-shot) and policy itera-
tion (DP) objectives. They showed that the global convergence
of the policy gradient method is guaranteed if the policy iteration
objectives have no suboptimal stationary points. However, the
literature lacks a rigorous analysis of the spurious solutions of
the DP method.

In this article, we analyze the spurious solutions of the DP
method by focusing on the following fundamental question:
What if the globally optimal solution of each subproblem of
DP is replaced with a solution obtained by a local search
method? A challenge in this analysis is that policy optimization
even toward the spurious solutions can be problematic if the
action space is continuous [29]. One can think of the policy
iteration with function approximation [30] where the Q-function
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approximation error is zero. This is a reasonable assumption
since a close-to-zero error can be obtained with a sufficiently
rich and expressive policy class, such as deep neural networks,
which naturally yields the existence of the local minimizer of
DP. That motivates our analysis on the comparison between the
solutions of one-shot method and DP if they are only solved to
the spurious local minimizers, and hence, our algorithm-agnostic
study offers a clear understanding on the landscapes for the op-
timal control problem without considering the secondary issue
of the approximation error.

We focus on both deterministic and stochastic discrete-time
finite-horizon optimal control problems whose goal is to find
an optimal input sequence minimizing the total cost subject
to the dynamics. One approach to solving the problem is by
formulating it as a one-shot optimization problem, a single
entire-period problem, and another approach is using the DP
to formulate it as a sequential decision-making problem with
multiple single-period subproblems and solve it in a backward
way. Although it is known that the one-shot method and the
DP method return the same globally optimal control sequence
for the deterministic optimal control problem [3], it is not yet
known what would occur if the global optimizer needed for
solving each suboptimization problem in DP is replaced by a
local optimizer. In our work, we compare the two optimization
landscapes: one induced by the DP method based on local search
algorithms, and the other induced by its corresponding one-shot
optimization based on local search methods.

Contribution and Outline: The rest of this article is organized
as follows. We investigate the two landscapes holistically for the
following three types of control systems.

1) In Section II, we first study deterministic systems under a
nonparameterized policy. We introduce the notion of lo-
cally minimum control policy of DP and prove that under
some mild conditions, each (spurious) local minimizer of
the one-shot optimization corresponds to the control input
induced by a (spurious) locally minimum control policy
of DP, and vice versa. This indicates that DP with local
search can successfully solve the optimal control problem
to global optimality if and only if the one-shot problem
is free of spurious solutions.

2) In Section III, we analyze deferministic systems under a
parameterized policy. The necessity to study this problem
arises in RL algorithms, where the control policy used
by DP is parameterized by neural networks or other
means. Thus, we generalize the results of Section II to
optimization with respect to the parameters rather than
the control inputs themselves. We prove that each local
minimizer of DP corresponds to some local minimizer
of the one-shot optimization, whereas its converse may
not hold. Moreover, we show that if there exists only a
single locally minimum control policy with a specific pa-
rameterized policy class, namely, a linear combination of
independent basis functions, each local minimizer of the
one-shot optimization corresponds to a local minimizer
of DP.

3) In Section IV, we extend the result to stochastic systems
under a parameterized policy. The stochasticity brings up
the challenge to handle an uncountable number of real-
izations of random variables. We show that surprisingly

TABLE |
THEOREMS AND THE CORRESPONDING ASSUMPTIONS WITH RESULTS

w Deterministic | Deerminisic + | Stochastic +
Assumptions P T15]6 78 ]9
Clotvex action space a
parameter space Q
(5 2] 2] L
Policy [ L]
class Defined by
Definition 13 o -]
contains a single
locally minimum o o
control policy
Interior policy o ]
Strict local minimi: o o
Continuous Random state ]
Large parameter space ]
DF to one-shot o o o
DF to one-shot
Result (stationarity) o [} o
one-shot to DF ) ] E]

a similar relationship in the deterministic parameterized
problem holds. For both cases, we conclude that the
optimization landscape of the one-shot problem is more
complex than its DP counterpart in terms of the number
of spurious solutions. This implies that if the one-shot
problem has a low complexity, so does the DP problem.
Another result says that if the DP problem has a very low
complexity, the same holds for the one-shot problem. In
this article, our notion of “complexity” of an optimization
problem is based on the number of spurious local minima.
For example, convex optimization problems have very
low complexity in light of having no spurious solutions.
However, problems with an exponential number of spuri-
ous solutions are hard to solve [31]. Note that a reformula-
tion of an optimization problem via a change of variables
does not normally change the number of local minima,
which justifies why the number of spurious solutions can
serve as a complexity measure.

Finally, Section V concludes this article. Table I summarizes
the main results of this article.

In various applications arising in machine learning and model-
free approaches for which the model is unknown and simulations
are expensive, DP is the only viable choice compared with
the one-shot optimization approach. Hence, it is essential to
understand when DP combined with a local search solver works.
The results of this article explain that the success of DP is closely
related to the optimization landscape of a single optimization
problem. For instance, the success of the DP method highly
depends on the number of spurious solutions of the one-shot
optimization problem.

Notations: Let R denote the set of real numbers. We use
B(e,r) to denote the open ball centered at ¢ with radius r,
and use B(e,r) to denote the closure of B(e, 7). The notation
z € A\ B means that = is in the set A but not in the set
B. Let || - || denote the Euclidean norm and || - ||z denote the
Frobenius norm. Let V; f(z,y) denote the gradient of f(z,y)
with respect to z, and V3 f(x) denote the Hessian of f(x).
For the matrix K, K > 0 means that K is positive definite.
The notation C™ means that the function is n-times contin-
uously differentiable. The notation E denotes the expectation
operator.
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Il. DETERMINISTIC PROBLEM

A. Problem Formulation

Consider a general discrete-time finite-horizon deterministic
optimal control problem with n time steps

n—1
uo,...ﬂjilg_,ql ;Q(Ig,ug‘) +Cﬂ($ﬂ)
1=0 n—1

stz = fi(T,uy), (P1)

T is given

O

where z; € R is the state at time 7, and u; is the control input at
time i that is constrained to be in an action space A C RM ., The
state transition is governed by the dynamics f; : RV x RM —
RY . Each time instance i is associated with a stage cost ¢; :
RY x RM — R or the terminal cost ¢, : RY — R. Given an
initial state z;, the goal of the optimal control problem is to
find an optimal control input (ug,...,u,_1) minimizing the
sum of the stage costs and the terminal cost. In this article, the
dynamics f; and the cost functions ¢; are assumed to be at least
twice continuously differentiable over R x R™  and the action
space A is assumed to be compact.

The optimal control problem can be solved by two common
approaches. The first approach directly solves (P1) as a one-
shot optimization problem that simultaneously solves for all
variables. To simplify the analysis, we eliminate the equality
constraints in (P1) via the notation C(x; ug, . . . , un_1) defined
as the cost-to-go started at the time step k with the initial state
z and control inputs ug, . .., uy_i. In other words

C('E) = Cn(-'f)
C(T; Wy o 5Un-1 ) = G T; tiw)
+ C(fr(z, ur); urs1, - -

for k =0,...,n — 1. The one-shot optimization problem (P1)
can be equivalently written as

-1 un—l)

min
ug,...,un_]_EA

C(zo; u0, - - -, Un-1)- (P2)
The second approach to solving the optimal control problem is
based on DP. Let Ji(zj) denote the optimal cost-to-go at the

time step £ with the initial state xy, i.e.,

Jk(:l.'k) —

min

. un_l).
UyeoryUn_1€A ’

Clas ur, -
Then, J; can be computed in a backward fashion from the time
step n — 1 to time O through the following recursion:

Jn(z) = en(x)

Ji(z) = ﬂiﬁ{ck(ﬂ?: u) + Jet1(fe(z, u))} (P3)
fork=0,...,n — 1. Itis worth noting that (P3) yields a set of
Junctions that solve the problem for all initial states, whereas
(P1) produces a vector specific to a given xp. The optimal cost
Ju(zp) equals the optimal objective value of (P1).

However, due to the nonconvexity of the function, it is gen-
erally NP-hard to obtain globally optimal solutions of (P3) for
all states and at all times. Specifically, when using the DP to
solve the optimal control problem (P1), the first step is to com-
pute minyea{en_1(zn_1,2) + en(fn_1(zn_1,u))} for every
Tn_1 € RN, which requires solving nonconvex optimization

problems if the cost function or the dynamic is nonconvex. Since
these intermediate problems are normally solved via local search
methods, the best expectation is to obtain a local minimizer for
un_1 as a function of z € RN, denoted by the policy m, _1(z).
As a result, instead of working with truly optimal cost-to-go
functions, one may arrive at a suboptimal cost-to-go at time
n — 1 as follows:

JI_1(zn-1) = cn-1(Tn-1, Tn-1(zn-1))
=+ Cﬂ(fn—l(f‘:n—lg :‘Tn—l(In—I)))

which is obtained based on the local minimizer 7,1 (x). Subse-
quently, it is required to solve the optimal decision-making prob-
lemmi-nuEA{Cn—Z(In—Qa u) o T Jr?nr—l (fn—2(In—2: u))} forevery
Tn_2 € RN, By repeating this procedure in a backward fashion
toward the time step 0, we obtain a group of policy functions
and suboptimal cost-to-go functions J; for k =0,...,n — 1.
Given the initial state xq, let

UBZWO(IO)a $i:f0(ID:uE): u; = 7]'1(.'12’;)., :[",.2e = fl(IE’;,U;)

Ty = fa(Th-1,Un_1)

be the control inputs and the states induced by the policies
MOy« - vy Tn—1. Then, (ug,...,uy,_4) is a suboptimal solution to
the original optimal control problem (P1) with the suboptimal
objective value Jj (). This motivates us to define locally min-
imum control policies based on solving (P3) to local optimality.

Definition 1: Given a control policy m = (mp, ..., Tn_1), the
associated Q-functions Q7 (-, -) and cost-to-go functions J7 (-)
under the policy 7 are defined in a backward way from the time
step n — 1 to O through the following recursion:

J5 (z) = en(z)
Qk (z,u) = ck(z,u) + I 1 (fr(z,u)), k=0,...,n—-1
() = Q% (zymx(z)); KB=0,0:0,m—1.

Definition 2 (Local minimizer): A vector (ug,...,u;_1) is
said to be alocal minimizer of the one-shot optimization problem
(P2) if there exists e > 0 such that

Uy = Tn1(Zn_1);

eylin1)

for all u; € B(uj,e) N A, wherei =0,...,n— 1. It is further
called a spurious (nonglobal) local minimizer of the one-shot
optimization problem if C(zg,ug, - .., uls_1) > Jo(zo).

Definition 3 (Locally minimum control policy): A control
policy m = (mp,...,mn—1) is said to be a locally minimum
contro}vpolicy of DP if for all k € {0,...,n— 1} and for all
= € R, the policy 7y () is alocal minimizer of the Q-function
Q7% (z,-), meaning that there exists €}, (x) > 0 such that

Qk (z, mk(z)) < Qk(z,u) Va € B(mk(x), () N A.

It is further called a spurious locally minimum control policy
of DP if J§ (zo) > Jo(zo).

In the following sections, we will show that in the determin-

istic problem, both approaches capture the same local solutions
under mild assumptions.

O(IU: U‘Ba i au:’a—l) =< C(Io,ﬁg, .

B. Local Minimizers: From DP to One-Shot Optimization

It is well known that the input sequence induced by a globally
minimal control policy is a global minimizer of the one-shot
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problem [3]. In this section, we will show that the input sequence
induced by a spurious locally minimum control policy of DP
also corresponds to a spurious local minimizer of the one-shot
problem if some mild conditions are satisfied.

Theorem 1: Assume that A is convex. Consider a (spurious)
locally minimum control policy == (mp,...,Tn-1),
and let the corresponding input and state sequences
associated with the initial state xzp; be denoted as
(ufy,...,uk_4) and (zj,...,z}), respectively. If m is
twice continuously differentiable in a neighborhood of
z} and VZQT(z},u;) -0 for all ke{0,...,n—1},
then (uj,...,u; ;) is also a (spurious) local minimizer
of the one-shot problem.

Proof: First, we will use induction to find positive numbers
dp,...,0n and e, ..., €,_1 such that

VaQk(z,u) = 0 (1)
() € B(uy, €x) (2)
fr(z,u) € B(ziyq,0k41) (3)

for every = & B(zj,0k), u€ B(up,ex)NA, and ke
{0,...,n — 1}. At the base step k = n, we choose an arbitrary
0 > 0. At the induction step, since fx is continuous and VZQT
is continuous at (x},u;,), there exist dx > 0 and €; > 0 such
that both (1) and (3) are satisfied for all = € B(z},dz) and
u € B(uy, ex) N A. Moreover, as 7, is continuous at zj, (2)
will be satisfied by further reducing d;.

For every (uo,...,ln-1) Wwith 4 € B(uj,ex) N A, let
(Zo,...,Tn) be its corresponding state sequence (note that
To = xo). It follows from (3) that T} € B(z}, ) forall k €
{0, ...,n — 1}, which together with (2) implies that:

mi(Zx) € B(ug,ex) ¥Yke {0,...,n—1}.

In light of (1), Q% (Zk,-) is a convex function on the con-
vex set B(uj,ex) N A. Because 7 (Zx) € B(uj,ex) NAisa
local minimizer of the function Q7 (Zg,-), it must be a global
minimizer of this function over B(uj, ex) N A. Thus, for k €
{0,...,n — 1}, we have

cx(Zk, k) + iy 1 (Zrg1) = Qk (Tn, tx) > Qk (Tk, mr(Zk))
= Ji (Zx)-
By adding all of the above inequalities, one can obtain
O T05 0500 0 1) 2 T (T0) = C(Ed; s 5 05 U o)

which shows that (uy, . .., u},_;)isalocal minimizer of the one-
shot problem. Also, if 7 is a spurious locally minimum control
policy of DP, namely, J§ (zo) > Jo(z{), then

C(x0;ug; - - - un_1) = Jg (o) > Jo(xo).

As aresult, (ug, ..., u,_;) is also a spurious local minimizer
of the one-shot problem. |

Remark 1: By taking the contrapositive, one can immediately
conclude that the DP method cannot produce any spurious
locally minimum control policies that satisfy the regularity
conditions in Theorem 1 as long as the one-shot problem has
no spurious local minima.

C. Stationary Points: From DP to One-Shot Optimization

In this section, we will show that the induced controlled input
of a locally minimum control policy of DP corresponds to a

stationary point of the one-shot problem, under some conditions
milder than the assumptions of Theorem 1.

Definition 4: Given a set S and a continuously differentiable
function g, a point s* € S is said to be a stationary point of the
optimization problem mingcg g(s) if

—V.g(s*) € Ns(s%)

where Ng(s*) denotes the normal cone of the set S at the point
s* [32].

We branch off into two specific notions of stationarity below.

Definition 5 (Stationary point): A vector of control inputs
(ug,...,uy_q) is said to be a stationary point of the one-
shot optimization if for all & € {0,...,n — 1}, it holds that
Vo, Clzosuh, ..., uh_y) € Nalul).

Definition 6 (Stationary control policy): A control policy m =
(g, ...,mp_1) is said to be a stationary control policy of DP
if for all k € {0,...,n — 1} and for all z € R", it holds that
—Vu Qi (z, mx (2)) € Na(me(z)).

Now, we will prove that a stationary control policy (which
involves a locally minimum control policy) implies a stationary
point of the one-shot optimization under mild assumptions. Let
D7 (z) be the Jacobian matrix of 7 (-) at point z, DI* (z, u)
be the Jacobian matrix of the function fi(-, ) at point = while
viewing u as a constant, and D;’;’“(I, u) be the Jacobian matrix
of fr(z,-) at point w while viewing x as a constant.

Theorem 2: Consider a stationary control policy =
(mo,...,mn_1), and let the associated input and state sequences
with the initial state z¢ be denoted as (uf,...,u), ;) and
(- - -, xy), respectively. If for every k € {0,...,n — 1}, the
following holds:

1) 7y is continuously differentiable in a neighborhood of . ;
2) either mx(x},) is in the interior of A or D (z}) = 0;
then (uf,...,u} ;) is a stationary point of the one-shot
optimization.
Proof: First, we will apply induction to prove that

VaJg (zy) = Vo Olah; s - - -y un_y) 4)

holds for k € {0,...,n}. The base step k = n is obvious. For
the induction step, observe that

V2Qi(z,u) = Vzek(z,u) + DL (2, u)T Vo Ji . (fr(z, u))
VoI (z) = V. [QF (z, m(z))]

= Vo Qf (z, mk(x)) + DE ()T VuQi (z, mi(x))-
Therefore
Vo Ji () = Vaer(zh, ui) + DL (2h, up) Vo Ii (Thye)

+ Di(23) T VuQF (i, uk)-
(5)
If u}, is in the interior of A, we have V,, Q7 (z},u}) = 0 by
stationarity. Otherwise, by the assumption, we have D} (z},) =
0. In either case, the last term of (5) is zero. Meanwhile

Vo C(z;ug, ... upq)
= Vaer(z,ui) + Va [C(fi(z, up); uhy1s - - -y un_q)]
= Vcx(z, up) + DL (2, u})T

X VO (fi(T, ug); ukyrs - --

s Un_1)-
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Now, (4) can be obtained by taking = = z}. in the above
equality and then combining it with the induction hypothesis
and (5). Finally, for k € {0,...,n — 1}, one can write
Vo (203, -

) Un_1)

= Vuck(zh, up) + DL (g, uf) T VaClahpai by, - -
= Vuek(zy, ug) + Di’u(IZ:U;)TVIJ§+1(IZ+1)

= VuQk (k, uk)

in which the second equality is due to (4). Since wuj is
a stationary point of Q% (z}, "), —VuQ5 (zk, ur) € Na(u}).
Thus, —V,, C(zo;up, ... un_1) € Na(u}), which proves
that (uf,...,u;_ ;) is a stationary point of the one-shot
optimization. )

3 u;—l)

D. Local Minimizers: From One-Shot Optimization to DP

In this section, we will show that each strict local minimizer
of the one-shot problem is induced by alocally minimum control
policy m of DP. Before proving the theorem, we first provide the
following useful lemma.

Lemma 1: Given a function g : RV x A — R, a point z* €
RY, and a number ¢ > 0, if u* € A is a strict local minimizer of
the function g(z*,-) and g is continuous in a neighborhood of
(z*,u*), then there exist § > O and afunctionh : B(z*,6) — A
such that h(z*) = u* and that the following statements hold for
all z € B(z*, ).

1) h(z) is a local minimizer of g(z, ).
2) h(z) € B(u",€).
3) The function g(x, h(z)) is continuous at x.

Proof: The proof is given in [1] (see Lemma 1). |

Theorem 3: If the one-shot problem has a (spurious) strict
local minimizer (ug, ..., u;,_q), then there exists a (spurious)
locally minimum control policy 7 of DP with the property that
mx(z}) = uj, forall k € {0,...,n — 1}, where (3, ..., z}) is
the state sequence associated with the (spurious) solution of the
one-shot problem.

Proof: Let (uf, ...,u},_;) be a strict local minimizer of the
one-shot problem. There exists e > 0 such that

sty 1) < C(zo;u0; - < -5 ti-1) (6)

for every control sequence (uq,...,un 1) 7 (g, ..., %5 1)
with the property that u; € B(u},e)nAfori=0,...,n—1.
In what follows, we will prove by a backward induction that
there exist policies mg, . .., mp_1, positive numbers dp, . . ., on,
and corresponding cost-to-go functions JJ, ..., J7 such that
they jointly satisfy the following properties.

1) 7y (xy) is a local minimizer of the function QF (xy, -) for

all o € RN,
2) mp(zy) = up.
3) For all = € B(x}, d), it holds that

C(z0; u, - -

m(zx) € B(uy,€), fr(zr, mi(zx)) € B(Thyq,0k41)-

4) JT is lower semicontinuous on R” and continuous on
B(z}, 0x).

For the base step kK = n, we choose an arbitrary é,, > 0 and
notice that J7 () = ¢, (z), implying that J7 is always contin-
uous. For k < n, assume that mpy1,...,7p—1 and dg41,...,0,
with the above properties have been found.

First, by the continuity of fj, there exist§}, > 0and 0 < ¢ <
€ such that

fr(zk,ur) € B(Tkyq1,0041) Y(Tk,ux) € Sk @)

where S = B(z}, 6}) x (B(uj, ex) N A).

Since Q(zk,uk) = ck(Tr,ur) + Jg 1 (fr(Tk,ux)) and
Ji 1 is continuous on B(z}, 1, 0k+1), QF is continuous on Sk.
Next, for every ux € B(u}, ex) N A, if we define

Tr+1 = fr(Th Uk),  Ukt1 = Try1(Tht1)
T2 = fopr1(Tr1, Ury1), kg2 = Tepo(Trg2)
Thefi—= fn—Z(fEn—Z: ﬂn—Z): Up_1 = Wn—l(-{in—l)

by applying (7) and then the third property above repeatedly, we
arrive at

4; € B(uj,e)NA Vie{k+1,...,n—1}.

When i, # up, it follows from (6) and the second property
above that:

Qk (zk, Uk) = C(zk; U, - - 5 Un—1)
k-1
= O(ID;HE! e 1“2—]1’&*: e 'lﬂn_l) = ZC‘:(I:"‘ u:)
i=0

k-1
> O(IO;HE: veey u;—l) i ZC":(I:!U:)
i=0

-y Un_1) = QF (Th, ug)-
As a result, uy, is a strict local minimizer of QF (z,-). Ap-
plying Lemma 1 to the function Q}, with =} and ¢, one can
find 0 < d; < &}, and a function hy, : B(z}, d;) — A such that
hi(z}) = uy, and that the following statements hold for every
Tk € B(z}, 0x).

1) hi(zy) is a local minimizer of QF (zg, -).

2) hi(zr) € B(uy, ex) € B(uy, €), which together with (7)

implies that fk(Ik; hk{Ik)) (= B(I;c—i-li 5;;4.1).

3) The function QF (xk, hx(zx)) is continuous at xy.

Let 7, be the extension of the function hy, by setting 7 (x)
to be any global minimizer of the lower semicontinuous function
Q% (zg, -) over the compact set A if z ¢ B(x},, dx). Obviously,
. satisfies the first three properties. To verify the last property,
observe that

T (o) = { Gy o

in which Hy(zy) = min,e 4 QF (zg, ), and therefore, J[ is
continuous on the set B(x}, dx). In addition, note that Ji7, ; and
thus Q)7 are lower semicontinuous, while A is compact. Hence,
it follows from the Berge maximum theorem [33] that Hy, is also
lower semicontinuous on R”, which implies that JJ is lower
semicontinuous on RY \ B(z}, 8x). For every point Zx on the
boundary of B(x},, §x), since Hy, is lower semicontinuous at Ty,
for every € > 0, there exists § > 0 such that

Jg (z) 2 Hi(z) > Hp(Tx) — €= Jg (Th) — €

o
= C(zy; ug, - -

if 2 € B(zy, 0k)
otherwise

holds for all x € B(Zx,d). Therefore, JI is also lower semi-
continuous at Tg.
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By the first and second properties, m = (7, ..., Tp_1) iS a
locally minimum control policy of DP. Also, if (ug,...,uk 1)
is a spurious local minimizer of the one-shot problem, then
J§ (zo) = Clzo; up, - - ., up_1) > Jo(xo), whichimplies that =
is also a spurious locally minimum control policy of DP. |

Remark 2: Theorem 3 shows that, under mild conditions, DP
is a reformulation from a single one-shot optimization problem
to a sequence of optimization problems that preserves local
minimizers. By taking the contrapositive of Theorem 3, one can
immediately obtain the result that the one-shot problem has no
spurious strict local minimizers as long as DP has no spurious
locally minimum control policies.

Remark 3: Pontryagin’s minimum principle implies that a
global minimizer of the one-shot problem achieves a global
optimality of each DP problem minimizing Hamiltonian. One
can restrict the domain to apply the principle to alocal minimizer
of the one-shot problem; it achieves a local optimality of u}. for
each DP problem if J| are evaluated at the associated state x}.
Theorem 3 is a generalization of Pontryagin’s principle in the
sense that from each local minimizer of the one-shot problem, we
obtain a locally minimum control policy instead of u;,; i.e., a set
of functions that achieves a local optimality of every DP problem
for all x € RN . We further require a “strict” local minimizer of
the one-shot problem to ensure that a local optimality is obtained
at all points in the neighborhood of x7. Meanwhile, one can now
anticipate that Theorem 1 would correspond to the converse of
Pontryagin’s principle. The principle provides sufficient con-
ditions for the one-shot problem if we have a convex action
space, convex cost functions, and linear dynamics [3], [34]. In
contrast, Theorem 1 assumes a convex action space but still
has general nonlinear transition dynamics. Theorem 1 instead
requires a locally “strictly” convex Q-functions (Hamiltonian)
for each DP subproblem. The connection between our results and
Pontryagin’s principle suggests the possibility of the extension
of the above results to the continuous-time setting.

Remark 4: In fact, all results of this article can be naturally
generalized to the continuous-time setting, but the analysis is
left as future work due to space restrictions. To outline the path-
way for generalization, note that the Hamilton—Jacobi—Bellman
equation for a given continuous-time system can be obtained
from developing a discrete-time model, obtaining the Bellman
equation for that model, and then closing the gap between the
continuous-time and discrete-time system via taking a limit [3].
Moreover, the infinite-horizon case is also treated in [3] as the
stationary limit of a finite-horizon problem, which again allows
us to extend our results to the infinite-horizon case.

Considering Theorems 1 and 3 altogether, one can conclude
that under mild conditions, each local minimizer of the one-shot
optimization corresponds to some control input induced by a
locally minimum control policy, and vice versa.

E. Numerical Examples

To effectively demonstrate the results of this section via
visualization, we will provide two low-dimensional examples.

Example 1: Consider an optimal control problem with the
control constraint A = [—10, 10] and

colz,u) =0
1 3r+4 322 +8z+3
cl(:::,u):zu4— J:;_ ud + - +2I+ u?

—z(z +1)(z + 3)u + exp (z*)
c2(z) =0, folz,u) =z +u, fi(z,u) =z +u.

(a) (b)

Fig. 1. Landscape of the one-shot optimization. (a) Each local min-
imizer is equivalent to a set of control inputs induced by each locally
minimum control policy—Example 1. (b) (0,0) is a control input induced
by a locally minimum control policy but not a local minimizer of the
one-shot optimization. However, it is indeed a stationary point of the
one-shot optimization—Example 2.

At the initial state =g = 0, the one-shot problem is written as

. 1 , 3Bup+4 4 3u%—i—8uo—f—3 9
min —uy — Uuq uq
UDEA?ulEA 4 3 2

—ug(ug + 1)(uo + 3)uy +exp (ué)} ;

This one-shot optimization problem has three spurious
local minimizers (—0.523, —0.523), (—0.523, 2.477),
and (0.938,0.938), and the globally optimal minimizer
(0.938,3.938). The landscape of this objective function is
shown in Fig. 1(a).

The optimal control problem can also be solved sequentially
by DP. At the time step 1, the Q-function is QT (z,u1) =
c1(x,u1), which has the maximum point = + 1, the spurious
local minimizer z, and the global minimizer = + 3. One can
choose between the two different continuous policies

sl = T, |z| <10
7110 - sgn(z), otherwise
or
i) T3, A3 <x <7
710 - sgn(z),  otherwise

where sgn(x) denotes the sign of x. The first policy has the cost-
to-go function Ji (z) = —%(33:4 + 1623 + 1822) + exp(z?)
for |z| < 10 and the second policy has J{ (x) = —1—12(31:4 +
1623 + 1822 + 27) +exp(z?) for —13 <z < T.

At the time step 0 and the initial state z; = 0, the Q-function
is QF(0,up) = J{(up). For the first policy, the Q-function
has a spurious local minimizer at ug = —0.523 and a global
minimum at up = 0.938. If we choose m(0) = —0.523, then
the induced input under 7w of DP is (—0.523, —0.523), and if we
choose mp(0) = 0.938, then the induced input under 7 of DP is
(0.938,0.938). Both of these input sequences are spurious local
minimizers of the one-shot problem.

The Q-function of the second policy has a spurious local min-
imizer at ug = —0.523 and a global minimum at ug = 0.938. If
we choose mp(0) = 0.938, then the locally minimum control
policy m is nonspurious and its induced input (0.938,3.938)
is the global minimizer of the one-shot problem. However, if
we choose 7p(0) = —0.523, then = is spurious and its induced
input (—0.523, 2.477) is the spurious minimizer of the one-shot
problem.
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In this example, one can observe that each strictly local mini-
mizer of the one-shot problem corresponds to a locally minimum
control policy of DP, which validates the result of Theorem 3.
In addition, it can be noticed that since V2QF (0, —0.523) and
V2Q7(0,0.938) are both strictly positive for each of the two
policies, Theorem 1 clearly holds.

Example 2: Consider the problem in Example 1 but change
ci(z,u) to 2u* — Zu® — 2%u? + exp (z*). At the initial state
xp = 0, the one-shot problem can be written as

: L4 2 2 1
min —Uqy — —/— Uy — Uy € u .
uOEJ‘,‘:HlE},‘{4 1 g g xp (ug)

It has three stationary points (0,0), ((log(2))7,2(log(2))%),
and (—(log(§)), —2(log(§))?). The latter two are the global
minimizers of this one-shot problem. For (0,0), we take ug =
uy = € and use the Taylor expansion of the exponential function
to arrive at 7}‘64 — %54 — et +exp(et) = —%64 + 1+ o(e?),
which is strictly less than 1 for sufficiently small values of e.
This implies that (0,0) is not a local minimizer of the one-shot
problem. The landscape of this objective function is shown in
Fig. 1(b). It can also be solved sequentially by DP. For the initial
state ), it has three different induced input sequences under
the locally minimum control policy: (log(%))?,2(log($))%),
(—(log(8))%, —2(log($)) ), and (0,0). The first two points are
the global minimizers of the one-shot problem but (0,0) is not a
local minimizer of the one-shot problem.

In this example, V2QT (0,0) = V2¢;(0,0) = 0 violates the
assumptions in Theorem 1, and thus (0,0) is not a local minimizer
of the one-shot problem. This clarifies the role of the regularity
conditions needed in the theorem. On the other hand, QT (z, -)
has three stationary control policies 0, —z, 2z. Consistent with
Theorem 2, (0,0) is a saddle point (which is a stationary point)
of the one-shot optimization.

I1l. DETERMINISTIC PROBLEM UNDER A PARAMETERIZED
PoLicy

A. Problem Formulation

In Section II, the one-shot optimization approach is referred
to as an open-loop control, in the sense that it determines all the
control inputs at once, only given an initial state. On the other
hand, the DP approach is referred to as a closed-loop control, in
the sense that the control input of each time step is the function of
the output of the previous step [3]. In this section, we formulate
both approaches to a closed-loop control. To achieve this, we
can replace the control inputs of the one-shot optimization with
a parameterized policy. We still optimize over a vector at once,
which means that it can be solved in a one-shot fashion. However,
this method becomes a type of closed-loop control in the sense
that a function of both the parameters at each step and the output
of the previous step determines the control input [35]. Also,
it is reasonable to adopt such parameterized policies for DP
as well, which would still be a closed-loop control. Note that
both approaches now optimize over a set of parameters so that
they can be directly compared in terms of their landscapes. This
motivates us to modify Definitions 1-3, 5, and 6 to incorporate
parameterized policies.

Definition 7: Given a parameter space © and a compact
action space A, let ug(-) : RN — A be a bounded real-valued

function parameterized by # € ©, which satisfies the continuity
assumption that for all € > 0, there exists 6 > 0 such that

16— ¢l < 6= sup [uo(z) — po(z)]| <e (8

cRN
Now, we modify the deterministic problems (P1)—(P3) to a

discrete-time finite-horizon deterministic optimal control prob-
lem under a parameterized policy as follows:

n—1
o B o Dl 10,(0) + enfn)
s.t. I§+1:f§(.'£§,;.£9‘.(.'£§)), Z.ZO,...,R—]_
g is given. (PP1)

Definition 8: Given a control policy parameter vector m =
(fo, - - ., 6r_1), the associated Q-functions QF (-, -) and cost-to-
go functions J7 (-) under the policy  are defined in a backward
way from the time step n — 1 to the time step O through the
following recursion:

J7(2) = en()
Qk (z, po(x)) = ck(z, po(x)) + Jg 1 (fi(z, po(x))),
k= Dpnaym—1

Ji (z) = Qi (z, po, (), k=0,...,n—1.
Then, the one-shot optimization problem (PP1) can be equiv-
alently written as
i Jg PP2
‘J‘T=(90‘.‘]‘:Eléil-1)€9“ 6 (z0) ( )
and DP approach can be written as the following backward
recursion:

Li(T) =en(T)
Ji(z) = g%ilel{ck(iﬂ: po(x)) + Jip1(fr(z, po(z)))} (PP3)

for k=0,...,n — 1. Note that = was previously defined as a
control policy (g, .., Tn—1), but we use the equivalent definition
(6o, . ..,0n_1) in the parameterized case. We also call it control
policy parameter vector alternatively.

Definition 9 (Local minimizer of the one-shot optimization):
A control policy parameter vector m = (6, ..., 05 ;) is said to
be a local minimizer of the one-shot optimization if there exists
€ > 0 such that

J§ (z0) < J§ (o)

for all 7= (fo,..
(B(6,_,6) N 6).

Definition 10 (Local minimizer of DP): A control policy pa-
rameter vectorm = (6, . .., 6, ) is said to be alocal minimizer
of DPifforallk € {0,...,n — 1}andforallz € RN the policy
parameter 6} is a local minimizer of QF (z, p1()(x)), meaning
that there exists €;. > 0 such that

QF(, 1oy (2)) < QF (z,1(z)) VB € B(B,c1)NO. (9)

Definition 11 (Stationary point of the one-shot optimization):
A control policy parameter vector m = (65, ...,6% ;) is said

s0n_1) € (B(65,6)NO) x --- x
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to be a stationary point of the one-shot optimization if for all
k € {0,...,n— 1}, it holds that —V g, J§ (z0) € Neo(6})-

Definition 12 (Stationary point of DP): A control policy
parameter vector m = (6, ..., 60_1) is said to be a stationary
point of DPif forall k € {0,...,n — 1} and for all z € R", it
holds that —V 5, Q7 (z, p1; () € No ().

Remark 5: By comparing (P2) with (PP2) as well as com-
paring Definition 2 with Definition 9, notice that one-shot opti-
mization now considers JJ () instead of C(zq; 6, . .., 0 _1),
since the two definitions are equivalent when the parameterized
policy is incorporated.

We can compare Definition 10 with the following definition:

Vk € {0,...,n—1} Vz € RY, Je}(z) > 0 such that

Qi (z, po; (r)) < Qi (z,u) Vi € Blugy (z), €(z)) N A
(10)

Definition 10 considers the open ball centered at the policy
parameter in the parameter space, whereas (10) considers the
corresponding open ball in the action space. Proposition 1
establishes the relationship between these definitions.
Proposition 1: 1f an arbitrary control policy parameter vector
m™=(65,...,0;_1) satisfies (10) with inf, g~ €} (z) > 0 for
allk € {0,...,n — 1}, then it is a local minimizer of DP.
Proof: Since inf, g~ €, () > 0, by the continuity assump-
tion, forevery k € {0,...,n — 1}, there exists §; > 0 such that

16 — Oll <6 = sup |lue(z) — pe; (z)l| < inf e (z).
zeRVN zeRN

That is, for all 6 € B(0,0x) N O, ||ug(z) — pe; (z)|| < €x(z)
forall z € RY. Notice that Definition 7 implies that p¢(z) € A
for all € R Thus, it holds for all z € R" that

6 € B(0k,0k) NO = pg(z) € B(pe; (x), ex(x)) N A.

Thus, given a control policy parameter vector satisfying (10),
forall k € {0,...,n — 1} and for all z € R¥, (9) holds if one
substitutes €}, with dz. This completes the proof. |

Remark 6: The converse of Proposition 1 does not hold. For
example, suppose that there exists €}, > 0 such that y9(x) takes
the same value for all § € B(f}, €;,) N ©. While this control
policy satisfies the continuity assumption, @}, is clearly a local
minimizer of DP, which satisfies (9). However, itis even possible
that g, () is a strict local maximizer of QF (z, -).

Note that the condition inf, g~ €},(z) > 0 is necessary for
Proposition 1. Thus, the proposition implies that if we use our
notion of a local minimizer of DP, we no longer need to assume
thatinf,.p~ €;(z) > 0 while establishing the relationship from
DP to one-shot optimization, which was the case in the (non-
parameterized) deterministic case presented in our conference
paper (see [1, Th. 2]).

B. From DP to One-Shot Optimization

In this section, we will show that in the deterministic case with
a parameterized policy, each local minimizer (stationary point)

of DP directly corresponds to some local minimizer (stationary
point) of the one-shot optimization.
Theorem 4: Consider a local minimizer of DP w =

(65, --.,60%_1). Then, 7 is also a local minimizer of the one-shot
optimization.
Proof: Since (6, . . .,6;,_) is alocal minimizer of DP, there

exist €, ..., €,_; > 0 such that

Jg (z0) = Qg (o, ke (z0)) < Qf (o, 1, (o))
= co(zo, ptg, (z0)) + Q7 (Z1, pe; (71))

(1 = fo(zo, g,(z0)))
< co(o, pg, (o)) + Q1 (Z1, pg, (£1))
=co(To, g, (T0)) +c1(F1, g, (£1)) +Q3 (E2, poy (£2))

(T2 = f1(Z1, pg, (1))
< -+ < J§ (z0)

where = (0o,...,0nh-1) € (B(f,e) NO) x --- x
(B8} 1,6 1) NO). _

Choose € =min{e},...€5_1}. Then, JF(zp) < JF(xo)
for all = (6o,...,0n-1) € (B(65,€)NO) x--- x
(B(6;,_1,€) N ©). This completes the proof. a

Theorem 5: Consider a stationary point of DP =
(65, ...,0% 1). Let the corresponding state sequence be
(z§, - .. zy). If for every k € {0,...,n — 1}, pg, (zx) is con-
tinuously differentiable with respect to €y in a neighborhood
of (zy,0%). then 7 is also a stationary point of the one-shot
optimization.

Proof: Notice that Vg, J§(z0) = Vg, Ji (z}) = Ve, Q%
(23, moy (23)). Thus, —V, J7(zo0) € No(6}) for all ke
{0,...,n — 1}, which means that 7 is a stationary point of the
one-shot optimization.

Remark 7: The converse of Theorem 5 clearl
hold since one can generally find a point z € R

Vo, Qk (zi, o () # Vo, Qi (z, oy (2))-

does not
such that

C. From One-Shot Optimization to DP

In this section, we first show that a local minimizer of the
one-shot optimization does not necessarily correspond to a local
minimizer of DP; i.e., the converse of Theorem 4 does not hold.
Then, with Remark 7, it is clear that the optimization landscape
of the one-shot optimization is more complex than that of DP.
As a byproduct, if the one-shot problem has a low complexity,
so does the DP problem.

To develop a clear counterexample, we restrict the parameter-
ized policy to a certain class as given below, which automatically
satisfies the continuity assumption defined in Definition 7.

Definition 13: Define our parameterized policy to be a linear
combination of arbitrary linearly independent basis functions,
while satisfying Definition 7; i.e., given m functions f; : RY —

RM,s=1,...,m,and 0 = [51,...,5::]T €O
po(z) = sifi(z) € A (11)
i=1
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where there does notexist (3y, ..., §,) # 0such that forall z in
any set of nonzero measure, the following equation holds [36]:

m

Zgifi(:‘:) =0.

i=1

(12)

Remark 8: Since a set of isolated points is a set of measure
zero, it is exempt from determining the independence of basis
functions. When = has a continuous distribution, the indepen-
dence of basis functions 1mphes that if (12) holds for all = in
the support of the distribution, §; = - - - = 5, = 0. When = has
a discrete distribution, since a set of all the possible values of
x is a set of measure zero, the independence of basis functions
does not guarantee §; = - - - = 5, = 0 evenif (12) holds for all
possible values of .

Applications of a parameterized policy defined by Defini-
tion 13 arise in a piecewise polynomial function as well as
a stochastic control. The usefulness of the parameterized pol-
icy also manifests within representer theorem [37]: a linear
combination of kernels fully represents the solution of mini-
mizing empirical risk. It switches the optimization problem in
infinite-dimensional function space to finding the finite number
of coefficients. The minimum number of parameters needed is
the number of data points, which is generally much greater than
the dimension of the output. Applying this to our parameterized
policy, the number of parameters m needs to be greater than
the dimension of the action M to cover all data points. For the
rest of this section, we call a policy satisfying . > M as an
overparameterized policy.

We now provide some evidence to refute the converse of
Theorem 4, specifically if the parameterized policy class is a
linear combination of basis functions. It turns out that a local
minimizer of the one-shot optimization does not necessarily
imply a local minimizer of DP in the overparameterized case.

Proposition 2: Consider an overparameterized policy class
defined by Definition 13. Letw = (6, ..., #},_;) be alocal min-
imizer of DP. If there exists atleastone k € {0,...,n — 1} such
that #;, is in the interior of ©, then there exists an infinite number
of local minimizers of the one-shot optimization corresponding
to each local minimizer of DP.

Proof: Consider the state sequence (zj, . . ., z},) induced by
a local minimizer of DP 7. Let k be an index for which #}, is in
the interior of ©. Then, one can express the action taken at step
k as pg: () = 32524 s filxy) with 6 = (s5, 51, - -, s7) by
Definition 13. Since the policy is overparameterized, m is greater
than the dimension of the action M. Now, consider the matrix
equation

[fo(z})  fu(=}) Fm(z})] Ok = poy (k)

where 6}, is an m x 1 vector variable, and let F}. denote the first
matrix in the left-hand side, which is an M x m constant matrix
given by 3. Equation (13) has at least one solution: ¢}

The dimension of the null space of F} is greater than 0 due
to m > M. We take any nonzero element v from the null space.
Then, for all 6 € R, 0 + dv satisfies (13). Since ¢y, is in the
interior of ©, one can pick €; > 0 such that B(f,e1) C ©.

Thus, for0 < J§ < ﬁ, 0 + dv € B(0;., €1) preserves the state

and action sequences associated with 8}, due to (13). The induced
cost is also indeed preserved.

By Theorem 4, 7 is a local minimizer of the one-shot opti-
mization. Now, we select e > 0 such that JF (zo) < J§(z0)

(13)

for all # = (6§,...,0k,...,0% 1), whereékEB(ﬁ' €)NO.
Let € —:n:un{el,ez} > 0. Then, for 0 <6 < 5, we have

B(6y. + v, 6||v||) C B(6;,¢€). Since ¢, + v preserves the in-
duced cost, (65, ..., 05 + 61; 6‘;_1) is a local minimizer of
the one-shot optimization for all 0 < 6 < gyr- This completes

the proof. |

Proposition 2 implies that for every k € {0,...,n— 1}, 0%
of a “strict” local minimizer of the one-shot optimization does
not lie in the interior of ©. Thus, one can think of constructing
a strict local minimizer by restricting the area of ©. It turns out
that given a strict local minimizer of the one-shot optimization
and the induced input sequence, no other points can retrieve the
same input sequence if © is convex.

Lemma 2: Consider a strict local minimizer of the one-shot
optimization = = (6;,...,6;_,). Let (z3,...,z}) be the in-
duced state sequence. Suppose that © is convex and the parame-
terized policy is defined by Definition 13. Then, 7 is the unique
control policy parameter vector that achieves the input sequence
(o5 (20), - - - > poy,_, (Tn_1))-

Proof: For every ke {0,...,n—1}, po(z})=> 1K
sifi(z}), where 0 = (s1,...,8m,)- Let O = (s1,...,55,,)-
Since T is a strict local minimizer of the one-shot optimization,
po(xy) # pe; (x3,) in the neighborhood of 6 if 6 # 0;; ie.,
there exists € > 0 such that

{9 € B(6;,€) NO: Y sifi(xi) = pey ()

} = {6}
i=1
(14)

Assume that there exists 6 # 6, such that Y ;% 3;fi(z}) =
poy (7). where 6 = (51,---,8m,)- Then, for A € [0,1], one
can obtain Y i™% (As} 4 (1 — X)) fu(xy) = pey (z) by lin-
earity and A8% + (1 — )@ € © by convexity. Letting A — 1,
one can construct an element of the left-hand side of (14)
distinct from ;. By contradiction, 6} is the unique point
that achieves pq; (7).

Note that Lemma 2 does not necessarily imply that a strict
local minimizer of the one-shot optimization is alocal minimizer
of DP even if © is convex. A simple counterexample can be
constructed by considering the one-step problem

col, po(x)) = Tho(@)' — 3(a + 2 pale)+

225 +2— Dpo(e)? — (2 — 2 + 2 ~ D)o()

e1(z, po(z)) = 0, fole, po(x)) =  + po(z)

with the parameterized policy pg(z) = dix + d2, where 6 =
(dl,dg), and © = {(dl,dQ) :1<2d; —dy < P 2d; +
dy < 3}, which is convex. At the initial state =g = 1, the one-
shot problem can be written as

1

@ {Z(dl +dg)* — (dy +d2)* + (1 +d2)2} :

Each vector (di,d2) € ©, which satisfies dy +dz =0
or di +ds =2, is a local minimizer of the one-shot
optimization. Since {(dy,ds) : d1 +d2 =0} N© = {(1,-1)}
and {(dy,ds):d; +dy =2}nO©={(1,1)}, we have
(1,—1) and (1,1) as strict local minimizers of the one-shot
optimization. On the other hand, since VgQF(z,pe(z)) =
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(a) (b)

Fig. 2. Domain and the landscape of the one-shot optimization for
a deterministic parameterized problem. (a) Gray-colored area is the
domain of the parameter space. The intersection between the dotted
lines and the domain is {(1,1),(1,—1)}. (b) Both (1,1) and (1,—1) are
a strict local minimizer of the one-shot optimization but only (1,—1) is a
local minimizer of DP—Landscape.

Voco(z, po(z)) = [9(z,0)z,9(z,0)]",  where  g(z,0) =
(no(z) — (2 +1))(no(x) — z)(no(x) — (z — 1)), a local
minimizer of DP should be the parameter that yields
po(r)=x—1 or pg(zr)=z%2+1 for all =€ RYN. Since
a linear policy cannot contain =2 + 1, (1, —1) € © is the only
local minimizer of DP. Thus, (1,1) is a strict local minimizer
of the one-shot optimization but not a local minimizer of DP.
Fig. 2 shows the domain and the landscape of the one-shot
optimization.

In light of the above counterexample, one can think of the
situation where the parameterized policy contains every locally
minimum control policy of DP (see Definition 3). It turns out
that if such a situation is possible, given a convex parameter
space, each strict local minimizer of the one-shot optimization
is a local minimizer of DP under the following assumptions.

Assumption 1: Given a local minimizer of the one-shot
optimization , let (zg,...,xz;,) be the associated state se-
quence. Then, for all k € {0,...,n — 1}, the M x m matrix
[fo(zr) fi(zk) --- fm(xk)] has a full row rank.

Assumption 2: Assume that A CN}_,pug(zry), where
pe(z}) is the image of © through pg(z}) : © — A.

Lemma 3: Assume that © is convex. Consider a strict local
minimizer of the one-shot optimization = = (6j,...,65 ).
Suppose that the parameterized policy defined by Definition 13
satisfies Assumptions 1 and 2. If the parameterized policy
class contains every locally minimum control policy of DP and
at least one of the locally minimum control policies satisfies
inf, g~ € (z) > 0forall k € {0,...,n — 1}, then = is a local
minimizer of DP.

Proof: Let (zg,...,x)) be the state sequence associated
with 7. Recall that Jg(zo) =Y 1, ci(z}, po:(z})) +
Q% (z%, to; (x.)). One can fix all parameters except 6, to derive

that  J§(z0) — J§ (z0) = QF (x, ey () — QR (z, pey (2)),
where 7' = (6g,...,60;_1,0%,05,4,---,05_1)- Thus, a local

minimizer of the one-shot optimization 7 implies that for all
k€ {0,...,n — 1}, there exists €}, > 0 such that

R (zk, noy (1)) < QF (zh. pg(zk)) VO € B(bi,€p) N 6.
(15)

Now, let F}; be the M x m matrix [fo(z}) fi(z}) --- fm(zh)]s
where its smallest singular value is denoted by o;.. Given an ar-
bitrary direction v € R, one can take a point u, that is farthest
from pg: () in the direction of v since the action space A is
compact. Let é,, be the value that achieves u, = po; (%) + dyv.
By Assumption 2, there exists ,, € © satisfying u,, = pg, (z},),
and by Definition 13, pg, (},) is defined by F}/0,.

Case 1—6, = 0: There does not exist 4 > 0 such that
pe; (z}) + 0v € A.

Case 2—0d,, > 0 and 6, € B(0;,, €;.): Due to the linearity of
policy and the convexity of ©, there exists 65 € B(f},¢€;) N ©
such that pg, () = pe; (z3,) + dv forall 0 < § < 4.

Case 3—06, > 0 and 6, ¢ B(0y,¢€;): Consider pg; (z3) +

mm:ﬁii‘eﬂ (1o, (z}) — pe; (z.))- The corresponding parameter is
definitely in B(6},, €;,) N © by the linearity of policy and the con-
vexity of ©. Then, as in Case 2, there exists 65 € B(f},€;) N ©

such that pg, (3) = pe; (z3,) + dv forall 0 < § < flmv%?ﬂg"‘

. [
In Case 3, notice that ||m(pgu(3:}‘;) — peoy ()| =
i . IFE(0.—00I

p—r %J; > 0, where the last inequality is from
Assumption 1 and the second last inequality is from the basic
property of singular value [38].

Considering all three cases, u € B(ue; (z}), %cr}';) MNAim-
plies that at least one corresponding parameter for each % is in
B(6;, ;) N ©. Thus, one can notice that (15) implies

* * o o * Ei *
R (ks oy (7)< QR (2, @) Vit € Bugy (23), 5roi) N A.
(16)
We select an arbitrary locally minimum control policy ¢ =
(¢0,...,¢n_1) with the property that inf, g~ € (z) > 0.
Let # = (%p,...,7n—1) be the policy such that for all k €
{0,...,n—1}

" _ Jrep(z3),
?Tk(Ik) - {ék(Ik);
Such 7 is also a locally minimum control policy by (16). This im-
plies that the parameterized policy contains 7. Also, 7 achieves
the same input sequence (ug(xp),. .., pe: (1)) as the
strict local minimizer 7. Therefore, by Lemma 2, Hor = Tk
holds. Since inf g~ €f(x) induced by ¢ is greater than 0,
inf g~ €;(x) induced by 7 is also greater than 0. Then,
by Proposition 1, m = (6§, ...,0; ;) is a local minimizer of
DP. 5]
Remark 9: With a given set of parameters (6f,...,65 1),
there exists only one associated state sequence for the deter-
ministic parameterized problem. Assumptions 1 and 2 are thus
only required for that specific state sequence, where one can
readily check the assumptions in advance with known dynamics,
parameter space, action space, and policy class. Assumption 1
is a type of regularity condition, which can be regarded as the
extension of an overparameterized policy. Assumption 2 implies
that © should be large enough to contain relevant parameters
to cover the action space A. Since pg(z) is designed to be in
A by Definition 7, Assumption 2 is equivalent to saying that
A=po(zh) =+ = pe(z}).
Meanwhile, suppose that there exist two different locally
minimum control policies in a set of nonzero measure, meaning
that at some step k, m1(x) # m2(z) for all z € I, where [ is a

g
if =T}
otherwise.
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set of nonzero measure. Then, there exists an infinite number
of locally minimum control policies made up of m; and o
by alternating between 7 (z) and my(z) along = € I, and the
parameterized policy class cannot contain all these policies. We
now present the situation that the parameterized policy contains
every locally minimum control policy of DP.

Theorem 6: Assume that © is convex. Consider a strict local
minimizer of the one-shot optimization = = (6;,...,6,_1)-
Suppose that the parameterized policy defined by Definition
13 satisfies Assumptions 1 and 2. If there exists only a single
locally minimum control policy of DP ¢ = (¢o, ..., ¢n_1) and
the parameterized policy class contains ¢, then « is a local
minimizer of DP.

Proof: Let¢' = (6, ...,6,_4) be the parameters associated
with ¢. Forall k € {0,...,n — 1} and for all z € RY, ¢y(z)
is the unique local minimizer of Qf (z,w). Having no spurious
local minima implies that inf g~ €},(z) = oo > 0. Moreover,
the parameterized policy class contains every locally minimum
control policy of DP. Since these facts satisfy the preconditions
of Lemma 3, this completes the proof.

Considering both Theorem 4 and 6, one can conclude that
under the assumptions of Theorem 6, a local minimizer of DP
is equivalent to a local minimizer of the one-shot optimization.

IV. STOCHASTIC PROBLEM UNDER A PARAMETERIZED
PoLicy

A. Problem Formulation

In this section, we will show that the results obtained for the
deterministic problem under a parameterized policy also hold
for the stochastic problem under a parameterized policy. Since
we now take the expectation of the sum of the costs over the
trajectories, the issue of strictness, as in Proposition 2, does not
take place. Before presenting the theorems, we first define the
problem setting in the stochastic case.

Definition 14: Given a complete probability space (2, F, P),
let =g be a F-measurable, R" -valued random variable, which
has an initial distribution p. Also, let wy be an F-measurable,
R™ -valued random variable forall k € {0, ...,n — 1} such that

Tp, Wp, - - - , Wy_1 are mutually independent. The state transition
is now governed by the dynamics f; : RV x A x RW — RN,
i =0,...,n — 1. The dynamics are again defined to be at least

twice continuously differentiable.

Now, we modify the deterministic problems under a parame-
terized policy, i.e., (PP1)—(PP3), to a discrete-time finite-horizon
stochastic optimal control problem under a parameterized policy

n—1
oo, B0 B, s [szo ci(z, po, (1)) + en(zn)
where Tit1 ng-(:l:g,pgi(:l:i),w@), 1 :0,...,'-’1—1.
(SP1)

Notice that for stochastic problems, xp may not be given as
a point, but has an initial distribution p. Afterward, T, is a
random variable induced by (zg, wo, . .., w;).

Definifion 15: Given a control policy parameter vector m =
(fo, . ..,0n_1), the associated Q-functions QF (-, -) and cost-to-
go functions JJ (-) under the policy 7 are defined in a backward
way from the time step n — 1 to the time step O through the

following recursion:

Ji(z) = ca(z)

Qi (. po(x)) = Euw,[ex(, po(x)) + Jit1 (Fi(z, po(z), wr))],
R e e |

JE () = QE(z, po(z), k=0,...,n—1

Then, the one-shot optimization problem (SP1) can be equiv-
alently written as

; Eq[Jo SP2
17:(90 s-%{:—l){fe“ To [ 0 (ID)] ( )
as long as the cost functions ¢;, =0, ...,n — 1, are uniformly

bounded, due to the product measure theorem and Fubini’s
theorem [39]. In the rest of this article, we assume that the two
problems are equivalent.

The DP approach can be written as the following backward
recursion:

Jn(z) = en(z)
Ji(z) = min{Bu, [ex(z, po () + Js+1(fi(z, no (), wi))},

k=0,...,n—1. (SP3)

Definition 16 (Local minimizer of the one-shot optimization):
A control policy parameter vector m = (g, .. ., f,_;) is said to
be a local minimizer of the one-shot optimization if there exists
€ > 0 such that

Eq, [JG (20)] < Eq,[JF (zo)]

for all = (6o,...,0n-1) € (B(#5,€)NO) x ---x
(B(67_1,€) N O).

Definition 17 (Stationary point of the one-shot optimization):
A control policy parameter vector m = (65, ...,6% ;) is said
to be a stationary point of the one-shot optimization if for all
k € {0,...,n—1},itholdsthat —V g, E, [JF (z0)] € Ne(6}).

While the one-shot method aims for optimizing the expec-
tation over all steps in the stochastic dynamics, DP studies
optimizing Q-function at every step both in the deterministic
and stochastic cases. Since we have modified the definition of
Q-function to incorporate the expectation, it is natural that the
definition of alocal minimizer (stationary point) of DP is exactly
the same as Definition 10 (12).

B. From DP to One-Shot Optimization

In this section, we will show that, in the stochastic case with
a parameterized policy, each local minimizer (stationary point)
of DP directly corresponds to some local minimizer (stationary
point) of the one-shot optimization, just as in the deterministic
case. However, it turns out that for the stationary points, the
policy needs to be continuously differentiable with respect to
both states and parameters since the expectation is over all
trajectories rather than a single trajectory.

Theorem 7: Consider a local minimizer of DP w =
(65, .. .,05_1). Then, 7 is also a local minimizer of the one-shot
optimization.

Proof: Since (6, ...,07_,) is alocal minimizer of DP, there
exist €}, ..., €,_; > 0 such that
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Eq, [Jg (0)] =Eq, [QF (0, 1oy (z0))] < Ex, [Q5 (20, 15, (0))]
= Eq,[co(o, g, (%0)) + Ew, [QT (F1, pre; (1))]]
(Z1 = fo(zo, g, (z0), wo))
< Eg,[co(zo, g, (z0)) + Eu, [QF (1, 14, (£1))]]
= Eg, [co(zo, g, (z0)) + Euw, [c1(Z1, g, (£1))
+ Eu, [Q3 (Z2, pos (T2))]]]
(Z2 = f1(Z1, g, (Z1), w1))

L ETD:wD:‘--swn—l [Jg(-fo)]

where = (0o,...,0n-1) € (B(6,e5) NO) x --- %
(B(6y,_1,€r_1)N©O). The last inequality is due to the
assumption that the two problems (SP1) and (SP2) are
equivalent.

Choose €= min{e},...€; ;}. Then, JF(xo) < JZ(z0)
for all = (00,...,0h-1) € (B(fh,e)NO) x ---x
(B(6;,_1,€) N O). This completes the proof. |

Now, let D£(#) be the Jacobian matrix of y(.)(z) at point
0, Dﬁ’x(:c, peo(z),w) be the Jacobian matrix of the func-
tion fir(-, pe(-),w) at point = while viewing € as a constant,
and similarly Di"e(a:, po(x),w) be the Jacobian matrix of
fr(z, py(x), w) at point 6 while viewing = as a constant.

Theorem 8: Consider a stationary point of DP m =
(65,...,65_1). If for all ke {0,...,n—1}, the following
holds:

1) pg, (x3,) is continuously differentiable with respect to 6,
in a neighborhood of @;, for all £} € RV

2) pg; (zx) is continuously differentiable with respect to
everywhere;

then 7 is a stationary point of the one-shot optimization.

Proof: First, we will apply induction to prove that for every
ke{l,...,n},JI (=) is continuously differentiable. For the
base step, J (x) = ¢, () is continuously differentiable. For the
induction step, observe that

— Valex(z, oy (<)) + /Q TZ 1 (i g (), wx) ) dp(as)]

—Valea(s g N+ [ VT (i, (0, i) dp(un)
= Vaz[ck(z, poy ()]
+ [ DL,y (@), )"

X Vz'};r+1(fk(:£:ﬁ91 (:E): wk))dp(wk)'

This observation is based on the existence and continuity of the
Jacobian matrix D{’m (, pog (), wi ) due to Assumption 2, con-
tinuity of Vo JiT, ; (fx (=, po; (), wi)) due to the induction step,
and therefore the continuity of V. [J,; (fr(z, pe; (), wy))]-
This allows us to interchange integration and differentiation in
the second equality by Leibniz’s integration rule.

Now, for k € {0,...,n — 1}, observe that
Vo, Qk (Tk, poy, (k)
= Vo, [c(zk, poy (zx))

+ / Jer1 (fe(zr, He;, (zx), wi))dp(we)]
Q
=D, (6)7Vielzk, oy ()
+ /n Dﬁ’&(:.wg,;uw};c (zk), ’wk)T

x Vo Ji 1 (fi(zr, poy (zk), wi))dp(wk)

which is valid because for k € {1,...,n}, J{ () is continu-
ously differentiable and Assumption 1 implies the existence
and continuity of D% (¢;) and Di’ﬂ(:ﬂk,pﬁei (zg), wg)- Thus,
Vo, Q% (xk, pe, (1)) is continuous in a neighborhood of #;; for
all ;. € RN, Then, for k € {0,...,n — 1}

Vo, Eao 3 (20)] =
fR ) /Q - /Q Vo, QF (2, p6y (2k))dp(we_1). .-dp(wo)dp(zo).

Now, note that Ng(f;) is nonempty, closed, and convex [32].
By the definition of a stationary point of DP, we have
—Vo, Q7 (zx, po; (zx)) € No(6y) forall z;, € RN . Toproveby
contradiction, assume that —Vg, E,, [JF (z0)] & Ne(f}). Let
aj denote the dimension of 6. By the separating hyperplane
theorem, there exist p € R®* and @ € R such that

—p" Vo, Qk (zk, poy (xx)) < & < —p" Vg B, [J5 (20)]
forall z;, € RV . Then, observe that

— PV, Eay [ (20)
—" [ [+ [ Vo.QE (oo (21))dp(nr). . dp(z)
- /R ) /ﬂ /Q —p" Vo, QF (2, oy (k) dp(we_1). . dp(zo)

< _/RN L ' L _pTVBk]Exo [Jg(:::o)]dp(wk_l)_ ..dp(zq)

= —p" Vo, Ex,[J§ (z0)]

which is a contradiction. Thus, —V g, E, [JF (z0)] € No(6;),
which shows that m = (), . . ., f;,_, ) is a stationary point of the
one-shot optimization.

C. From One-Shot Optimization to DP

In this section, we first show that a local minimizer (stationary
point) of the one-shot optimization does not necessarily corre-
spond to a local minimizer (stationary point) of DP; i.e., the
converse of Theorem 7 and that of Theorem &8 do not hold. Then,
the optimization landscape of the one-shot optimization is more
complex than that of DP. In other words, if the one-shot problem
has a low complexity, so does the DP problem.

To provide a counterexample, we use the basic parameterized
policy that follows Definition 13: pg, (z) = axz + by, where
0x = (ag, br). Consider the two-step problem
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Fig. 3. Landscape of the one-shot optimization for a stochastic param-
eterized problem: by is fixed to 0 in the figure. (a;,b;) = (£1,0), (0,£1)
are strict local minimizers of the one-shot optimization but only (0, +1)
is a local minimizer of DP.

zo =0, co(zx,pe,(z)) =0
fo(z, po, (), wo) = =+ apz + bp + wo

1 il
ci(z, po, () = Z(alI +by)* — 5(“193 +b1)? + 2

fi(z, po, (z),w1) =z + a1z + by + un

i 5 b
ea(z, po,(x)) = 0 where wp, un - Uniform( . \/;, \/%)

where © = [—2, 2] x [—2, 2]. The associated one-shot problem
can be written as

1
B 1{01(50 +wp) + by}

min
—2<bg,a1,b1<2

- %{Gl(bo +awp) + b1} + (bo + wo)‘:‘].

It turns out that there are nine stationary points of the
one-shot optimization in the interior of ©: (bp,a1,b1) =
(0,£0.7071, £0.4082), (0,+1,0), (0,0, £1), (0,0, 0). Among
them, there are four strict local minimizers of the one-shot
optimization: (0, +1,0), (0,0, £1). On the other hand, consid-
ering Vo, c1(z, po, (z)) = [g(z, a1,b1)z, g(z,a1,b1)], where
g(z,a1,b1) = (a1 + b1)(a1z + by — 1)(a1z + by + 1), there
are three stationary points of DP: (0,0, 1), (0,0,0) and two
strict local minimizers of DP: (0,0,+£1). This verifies that
a local minimizer (stationary point) of DP is indeed a local
minimizer (stationary point) of the one-shot optimization but
not the other way around. Fig. 3 shows the landscape of the
one-shot optimization when by is fixed to 0.

Now, we present the specific case that a local minimizer
of the one-shot optimization implies a local minimizer of DP,
similar to Theorem 6. The preconditions of theorems are similar
in the sense that they both consider the case when DP has a
very low complexity in the sense that there is no spurious local
minima at each step of DP. The main difference between the
theorems comes from whether we consider a single trajectory
or the expectation over infinitely many trajectories. We consider
this in the view of stationarity. (see Definitions 6, 11, and 12)

Assumption 3: There exists only a single stationary control
policy ¢ = (o, ..., ®n-1), Which is also a locally minimum
control policy in the interior of A for all z € RY. The param-
eterized policy defined by Definition 13 contains ¢, with the
associated parameters denoted by ¢' = (6j,...,6},_1).

Theorem 9: Assume that Assumption 3 holds. Consider a lo-
cal minimizer of the one-shot optimization = = (6;,...,65_4)

in the interior of ©™. If ;. is a continuous random variable for
allk € {0,...,n— 1}, where (zj, ..., z;,) is the random state
process associated with i, then m is a local minimizer of DP.

Proof: Since ¢ is a single locally minimum control policy,
Qf(z, u) has no spurious local minima forall k € {0,...,n —
1}. Thus, by Proposition 1, the corresponding inf, g~ €}, (z) =
oo > 0 makes ¢’ be a local minimizer of DP.

Consider a stationary point of the one-shot optimization m =
(65, ...,6;5_4) in the interior of ©™. We will now prove by a
backward induction that 7 should always be ¢'; i.e., 6, = 6}, for
alke{0,...,n—1}.

For the base step, at step n — 1, since the parameter-
ized policy contains ¢, _;, it can be expressed as ¢,_;(x) =
N ki) wheie Lo RY -5 RM, o= m FilE) =
[fia(z), .-, firr(z)]T, and 0,_; = (s1,-..,5m) € O. Notice
that Q% (z, per,_, (x)) = QF_1(z, pe:,_, (x)) since 0}, is the
final parameter of the whole system to determine the control
inputs and the state transition. Now, observe that

VuQL i (z,pe, (7)) = VuQE_1(z, pe,_ (z)) =0

and p1g () is the unique solution for V#Qi’_l (z,-) = Osince
pe:, , (z)is the unique stationary point located within the interior
of A due to Assumption 3. This yields the following expression
with pg(z) = (u1,...,up)T:

V.QF (2, po(z)) = VuQr_ (z, po(z))
(w1 — Y in; sifir(z)) - g1(z,0)

(ung — T, 8:Fiaa (=) - e (2, 6)

where g;(z,0),7 =1,..., M, are nonnegative at = 6;,_; and
positive at all the other points since ¢’ is a local minimizer of
DP that yields the unique stationary control policy ¢.

Now, let pe: (z) be > i—,difi(z), where 6}, ;=
(d1,...,dm). Observe that according to the chain rule, the
following expression holds:

Vo, . Qr_1(z, pos,_, ()T
= V,.Qn_1(z,po:_ (z))TDa(65_1)

(i1 (di — s1) fir(2)) - 9a(z, 67 4)

8 s b ol )
fu(x) -+ fma(x)

2|l 3 =% 3
Frar(@) - Fone ()

Now, notice that Vg, E,,[J7 (z0)] = 0 since  is a station-
ary point of the one-shot optimization in the interior of ©™. Then,
observe that

Ve, ,Eqz,[J5 (z0)]

= Vo 1 Eaowo,....wn[Qn-1(z71, 105, (Tn1))]

a7

= Eaowo,....wn 2[Ven 1 Qn-1(Tn_1, 10, , (Tn_1))] = 0.
(18)
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The second equality comes from Q7 _, (, 19(x)) being dif-
ferentiable with respect to the parameters due to the linearity of
the policy defined by Definition 13. Now, we substitute (17) into
(18) to derive an m-dimensional vector equation, and multiply
(dr — sg) with the kth component as follows:

M

]Ezg_.u.rg,...,.w,._g [Z(dk - Sk)fkj(:s:;_})

j=1
IR VCINIPHEANAN] BT
i=1

forallk =1,...,m. We sum up the m equations and rearrange
the terms to derive the following equation:
2
)

M
Z E:I,‘g,l!}g,...,wﬂ_g [( Z
j=1
% gj(w;_l,a;_ﬂ] 0. (19)

fa:,-

The term inside the expectation is always nonnegative re-
gardless of the distribution of zg, wy, . . ., wy_2. Now, suppose
that 6}, ; # 6, ;;i.e., d; # s; forsomei € {1,...,m}. Then,
we have g;(-, 6y _,) to be strictly positive. As a result, for (19)
to be satisfied, Y~ (d; — s;) fij(z3,_1) should be O for every
je{l,...,M} for all possible values of x, 1. Recall from
Remark 8 to note that it is impossible to satisfy (19) since z},_4
is a continuous random variable and the policy is defined by
Definition 13, i.e., a linear combination of some independent
basis functions. Thus, d; = s; for all i € {1,...,m}, which
means 6;,_; =6,,_;.

For the induction step, assume that 6 = 6.
ri(x poy (z)) = Q% (x, o, (x)) holds, and thus one can apply
the same logic as the base step to obtain 6}, = 6},_;.

Thus, m = ¢’ holds, which implies that r is a local minimizer
of DP since ¢' is a local minimizer of DP. |

Remark 10: The results of both Theorems 6 and 9 state
that a local minimizer of the one-shot optimization is indeed
a local minimizer of DP under the common assumption that
no spurious local minima exist at each step of DP. By taking
the contrapositive, one can observe that under such a condition,
there is at most one local minimizer of the one-shot optimization,
indicating that no spurious local minima exist; i.e., if DP has a
very low complexity, the same holds for the one-shot problem.

Remark 11: To determine the form of V#Qf_](:c, u), it was
necessary to argue that yp () should be the unique solution

forV ﬁQf_ 1(z,u) = 0.For this to be true, there should certainly
be only a single stationary control policy, which necessitates As-
sumption 3. In fact, it may be difficult to satisfy the precondition
that a single stationary control policy should be in the interior of
A for all z € R™. Instead, we can relax this condition to apply
only within the domain of z; i.e., the set of values that at least
one of the states xg,z1,..., T, can take. For example, if the
state space is finite, satisfying the condition becomes relatively
straightforward.

Remark 12: The challenging part of a backward induction
in the proof arises from the fact that the state at step £ is fully
determined by the previous steps but one cannot look at the
previous steps in the backward induction. Thus, the main idea
of the proof leverages (19), which incurs the fact that 6}, = 6},

Again,

Fig. 4. Landscape of the one-shot optimization under the assumptions
of Theorem 9: by is fixed to 0 in the figure. (a1, b;) = (1,0.5) is the only
stationary point (local minimizer) of DP and also the only stationary point
(local minimizer) of the one-shot optimization.

regardless of the distribution of zp, wp, . . . , wg_1. Thus, we only
need the assumption that there is a single stationary control
policy with respect to the given distribution of =g, wo, . . ., wp_1.
This is a big improvement from the work [28] (see Condition 4
of Section 5.4) in the sense that Condition 4 needs no suboptimal
stationary point with respect to any possible distribution.

Now, we present the pictorial example of Theorem 9. Consider
the example of two-step problem presented above in Fig. 3,
but modify ¢y (z, pe, (z)) to 3 (a1z + by — = — 0.5)* + z*. The
associated one-shot problem can be written as
Ey

o i{(al — 1)(50 4 T-Uo) + b — 0.5}4

min
—2<bg,a1,b1<2
b, 4
+ (bo + wo)

(mo,m) = (0,z + 0.5) is the only locally minimum control
policy, and the parameterized policy class contains this policy as
(bo,a1,b1) = (0,1, 0.5). Clearly, it is a local minimizer of DP.
It turns out that the corresponding one-shot problem also has a
single stationary point (0,1,0.5), which is also a local minimizer
of the one-shot optimization. Fig. 4 shows the landscape of the
one-shot optimization when by is fixed to 0.

Considering both Theorems 7 and 9, one can conclude that
under the assumptions of Theorem 9, a local minimizer of DP
is equivalent to a local minimizer of the one-shot optimization.

D. Numerical Experiments

In this section, we will present a high-dimensional experiment
on the classical linear quadratic regulator (LQR)

Ji(zk,ux) = Az + Brug, k=0,...,n—1, zo~D

(T, ur) = 74 Qe +up Rpug, k=0,...,n—1

k=0,...,n—1, Cn(fsn):lenIn

whose goal is to find the optimal parameters: Ky, ..., K,_1.
To solve the problem using DP, we use Xpress Optimizer
v9.3.0 [40]. To solve the problem in a one-shot fashion, we use
Gurobi Optimizer v11.0.0 [41] with the tolerance of 104,

Let K}, pp and K7 g denote an observed local solution of the
Kth step parameter K, obtained by DP and the one-shot problem,
respectively. We aim to determine whether each local solution
of DP corresponds to some local solutions of the one-shot

up = Kyy,
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TABLE Il
RELATIONSHIP BETWEEN DP AND ONE-SHOT SOLUTIONS OF LQR

Scenario

Numerical difference (a) Unconstrained | (b) Constrained
155,00 — Ko pp—sos |7 /11 Kp pell F 0 0
1KY pp — K1 pp—osll# /KT pellF 0 0

1K 0s — K3 0s—ppll F/I1KS 05l F 2.901-10~° 5399-10~%
K5 os — K7 ospell/I1K5 osllF 22911077 3.156

The bold value (3.156) being far from 0 supports that the landscape of the one-shot
problem is more complex than its DP counterpart. One can find out that the other values in
Table 11 are 0 or close to 0.

problem, and vice versa. One can verify this by first solving
DP or the one-shot problem and then providing its solution
as the initial parameter values when solving its counterpart.
This method is often referred to as “warm start.” We expect
to observe unchanged values from the initial guess if there is
indeed a correspondence. Let K pp o5 (K s ,pp) denote the
solution of K} obtained by the one-shot problem (DP) using
warm start with DP (one-shot) solution as an initial guess. The
initial distribution D introduces the stochasticity to the system
and induces the states to be continuous random variables, which
obeys the assumption of Theorem 9.

We perform 20 experiments for z € R3 and u; € R* with
n = 30. We randomly generate A, and By, whose entries are
all in [—100,100]. We also generate Q = QQT and Ry =
RRT + 1001, where all entries of Q and R are in [—20, 20] and
I denotes the identity matrix. D is the normal distribution with
the expectation 201 and the variance VVT, where 1 denotes
the vector of ones and all entries in V" are in [—200, 200]. We
consider two scenarios: (a) unconstrained and (b) constrained
by the last-step (nonconvex) condition KT ; K, 1 = 100001,
where > denotes the Loewner partial ordering (roughly speak-
ing, this condition ensures that the controller has a high gain).
Table II gives whether the correspondence holds between the
solutions of DP and the one-shot problem using warm start
under the two scenarios, presenting the results of the average
of 20 experiments.

It turns out that for both scenarios, one can observe that a
solution of DP corresponds to each solution of one-shot problem
since the one-shot solver directly identifies DP solution as alocal
solution of the one-shot problem without any numerical update.
This implication supports the findings of Theorem 7.

However, whether a one-shot solution implies some DP so-
lutions depends on the problem setting. Our experiment for the
unconstrained case shows that a solution of the one-shot problem
indeed corresponds to that of DP, implying with the above
result that a one-shot solution is equivalent to a DP solution.
Previous studies have shown the global convergence of this
one-shot problem by proving that LQR satisfies the gradient
dominance property, even though the problem is generally non-
convex [42], [43]. Our general approach alternatively observes
the DP counterparts. Since every DP subproblem of LQR has no
spurious local minima, our experiment implies that the one-shot
LQR problem also has none of them and achieves the global
convergence, which supports Theorem 9.

On the other hand, the nonconvex constraint on K,,_; creates
spurious solutions for the (n — 1)™ DP, independent of whether
the (n — 2)™, ..., Oth DP steps have any spurious local minima.
Our experiment for the constrained case shows that having
spurious local minima at the (n — 1) DP propagates backward

to K1, where the solver fails to guarantee that an observed local
minimum of the one-shot optimization corresponds to that of
DP. This illustrates that the landscape of the one-shot problem
has a higher complexity than its DP counterpart, which was also
shown in Figs. 2(b) and 3. This result serves as a counterexample
of the converse of Theorems 7 and 8, and it implies that a single
high-complexity DP step affects the landscape of the one-shot
problem.

V. CONCLUSION

In this article, we studied the optimization landscape of
the optimal control problems via two different formulations:
one-shot optimization aimed at solving for all input values
at the same time, and DP method aimed at finding the input
values sequentially. For the deterministic problem, we proved
that under some mild conditions, each local minimizer of the
one-shot optimization corresponds to an input sequence induced
by some locally minimum control policy of DP, and vice versa.

To help better understand the quality of the local solutions ob-
tained by RL algorithms, we incorporated exact parameterized
policies into the optimal control problem for both deterministic
and stochastic dynamics. We showed that if the one-shot problem
has a low complexity, so do the corresponding DP subproblems,
indicating the success of DP methods. Moreover, under the
condition that there exists only a single locally minimum control
policy, with different technical assumptions, both deterministic
and stochastic cases yield that a local minimizer of the one-shot
optimization is equivalent to a local minimizer of DP.

We focused on the discrete-time finite-horizon optimal control
problem in this work. A natural future direction would be to
extend this work to the continuous-time and infinite-horizon
cases, which was discussed in Remark 4. For safety-critical
systems, state constraints may also be enforced, with recursive
feasibility being crucial to guarantee the success of DP. One
may also want to extend the parameterized policy class beyond
a linear combination of basis functions, such as composite
functions, widely used in deep neural networks.
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