
2902 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 40, NO. 4, JULY 2025

Distributionally Robust Joint Chance-Constrained
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Abstract—Designing robust algorithms for the optimal power
flow (OPF) problem is critical for the control of large-scale power
systems under uncertainty. The chance-constrained OPF (CCOPF)
problem provides a natural formulation of the trade-off between
the operating cost and the constraint satisfaction rate. In this work,
we propose a new data-driven algorithm for the CCOPF problem,
based on distributionally robust optimization (DRO). We show that
the proposed reformulation of the distributionally robust chance
constraints is exact, whereas other approaches in the CCOPF
literature rely on conservative approximations. We establish out-
of-sample robustness guarantees for the distributionally robust
solution and prove that the solution is the most efficient among all
approaches enjoying the same guarantees. We apply the proposed
algorithm to the CCOPF problem and compare the performance
of our approach with existing methods using simulations on IEEE
benchmark power systems.

Index Terms—Distributionally robust optimization, optimal
power flow, chance constraint.

NOMENCLATURE

Parameters
γ Ratio of reactive power to real power

for VRE output.

Ω ∈ R
n :

∑
k∈N Ωk = 1 AGC participation factors.

� ∈ R
n2

Active power line flow limit.

PG, P
G ∈ R

n Lower and upper active generation

limits.

QG, Q
G ∈ R

n Lower and upper active generation

limits.

v, v ∈ R
n upper and lower squared voltage

magnitude limits.

ckd ∈ R dth degree cost coefficient for gen-

erator at bus k
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PD, QD ∈ R
n Active and reactive loads.

Sets
L = N ×N Lines.

N = {1, . . . , n} Buses.

PQ,PV ,Vθ Load buses, generator buses, and

slack buses.

Variables
� ∈ N

n2
Active power flow.

θ ∈ C
n Voltage phase angles.

P,Q ∈ R
n Active and reactive power injections.

v ∈ R
n Squared voltage magnitudes.

I. INTRODUCTION

D EVELOPING resilient algorithms for the optimal power

flow (OPF) problem is fundamental to efficient and reli-

able decision-making in large-scale energy systems. The OPF

problem consists of minimizing some objective, including but

not limited to generation costs, subject to the physics of the

power network as well as additional constraints on power quality,

safety, and reliability. Independent system operators solve OPF

at several timescales, from hours to minutes ahead of the dispatch

time, in order to manage the market and match supply to demand.

Traditionally, the primary source of uncertainty in optimal power

flow was stochastic loads. This uncertainty was handled through

forecasts which were accurate enough that mismatches between

supply and demand could be handled in real-time without a sig-

nificant deviation from nominal network and market conditions.

However, given the growing penetration of variable renewable

energy (VRE), more sophisticated methods will be necessary

to ensure that decisions can be made as efficiently as possible

while being robust to large forecast errors.

Random power injections from VRE forecast error affect

the power flow of the network, which appears in the con-

straints of the OPF problem. To deal with the randomness in

the constraints, a suitable definition of constraint satisfaction is

required to define the feasible set of the problem. For example,

the robust optimization (RO) approach was proposed in [1]

and [2] to find the worst-case solution, namely, the optimal

decision that satisfies all constraints for all possible realizations

of the randomness in the system. The RO approach produces

the most conservative solution and results in a high operational

cost.
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Chance-constrained optimal power flow (CCOPF) allows for

a small user-specified probability of violating the constraints in

the OPF solution in exchange for a much better operational cost

(small violations will later be handled via a real-time control

mechanism). Chance-constrained methods avoid the conserva-

tiveness associated with the RO approach, which ensures an

operating point that is feasible for all possible realizations of

a system’s forecast errors. Refer to [3] and [4] for popular

formulations of CCOPF.

A challenge for CCOPF is that the true underlying distri-

bution of the random parameters is generally unknown and

must be inferred from historical data. Conventional data-based

reformulations of chance constraints include the sample aver-

age approximation [5] and the scenario approach [6]. Given

an allowable violation probability and a tolerance parameter,

these approaches lower bound the number of samples required

to achieve a given degree of confidence in the probability of

satisfying the chance constraints. The sample average approx-

imation is easily applicable but may lead to a high-variance

estimate of the true distribution. The scenario approach is ap-

plied for CCOPF in [3] and [4]. However, the scenario approach

is sample-intensive, may be overly conservative, and is often

computationally complex. Additionally, more sample-efficient

methods allow for samples over longer time horizons (i.e., a day

instead of an hour) to be aggregated into a single realization of a

random vector, which could reduce bias if forecast errors follow

temporal patterns.

Distributionally robust optimization (DRO) addresses the is-

sue of unknown true data-generation distributions by enforcing

the chance constraints for all distributions in an ambiguity set
centered, in the sense of some characteristic feature of probabil-

ity distributions, around the empirical distribution [7]. The idea

is that, given enough samples, the true distribution is highly

likely to fall inside the ambiguity set. Several papers have

applied DRO techniques to OPF or related problems in energy

systems. The authors of [8], [9], [10], [11] employ moment-
based ambiguity sets containing probability distributions with

the first and second moments close to those of the empirical

distribution. Li et al. [12] add a unimodality assumption to the

moment-based sets to reduce the conservatism. Moment-based

ambiguity sets often yield exact tractable reformulations of the

chance-constrained program, but they lose information about

the true distribution revealed through other features of the data.

Metric-based ambiguity sets, by contrast, are constructed using

measures of distance between probability distributions, most

often the Wasserstein metric, and are more expressive. The

metric-based approach has the advantage that various statistical

consistency and convergence guarantees can be established for

DRO estimators [13], [14]. To reformulate the chance constraints

as tractable constraints, inner approximations of Wasserstein

metric-based ambiguity sets, such as hyper-cubes [15] and poly-

topes [16], have previously been studied. However, these inner

approximations are overly conservative in practice and lead to

pessimistic estimations.

The DRO approaches discussed in the last paragraph are

designed for disjoint chance constraints, in which each constraint

individually must be satisfied with a given probability. The

chance constraints in CCOPF are formulated disjointly for each

two-sided constraint [11], [15], [16] or separately for each upper

and lower bound [8], [9], [12]. Joint chance constraints, by

contrast, require that a solution be feasible, that is, satisfies all
constraints simultaneously, with a given probability. Given the

same violation probability, joint chance constraints are clearly

stronger than disjoint chance constraints. In addition, the joint

CCOPF problem is less studied in literature compared to the dis-

joint counterpart. Joint chance constraints can be guaranteed by

applying the Bonferroni approximation to appropriately scaled

disjoint chance constraints; see [17]. However, this approach is

highly conservative and does not exploit the potential correlation

between random variables in different constraints. Intuitively,

when the randomness between constraints is highly correlated,

joint chance constraints can be satisfied at a cost that is only

slightly higher than that of the chance constraint of a single

stochastic constraint. Yang et al. [18] build on the Bonferroni ap-

proach and achieve an inner approximation of a moment-based

ambiguity set for the joint case.

The particularly interesting line of work [19], [20], [21],

[22], [23] is inspired by [13], which provides a reformulation

of Wasserstein metric-based DRO problems using conditional

value-at-risk (CVaR). The two-part work [19]–[20] is the first to

apply the CVaR reformulation to OPF by penalizing constraint

violations in the objective function; however, this is not a chance-

constrained approach and cannot guarantee the satisfaction of

the constraints in any well-defined sense. Ordoudis et al. [23]

propose a (nonconvex) CVAR-based inner approximation of

the Wasserstein metric-based ambiguity set and proposes an

iterative algorithm to solve it. Poolla et al. [21] approximate

the joint chance constraints using the Bonferroni approximation

and reformulate them using CVaR. To achieve the reformulation,

the authors use an inner approximation of the ambiguity set

via a hyper-rectangle in the parameter space. Arab et al. [22]

improve on [21] by using an ellipsoidal approximation, which

reduces the conservativeness by exploiting the correlation be-

tween random variables. While the ellipsoidal approximation

improves on the hyper-rectangle approximation, the method

in [22] remains overly conservative as a consequence of mis-

match between the inner approximation and the ambiguity set;

see Section IV for numerical illustrations. To address the above

issues, we build upon the conference paper [24] tailored to a

class of non-convex problems using DRO to study the CCOPF

problem. Compared to [24], we develop strong theoretical results

in the context of power systems, and we numerically illustrate

the empirical performance of our approach on benchmark IEEE

power systems. Compared with [22], [23], our approach does

not rely on the prior assumption that the ambiguity set can be

well approximated by an ellipsoidal or a CVAR approximation.

Furthermore, we establish a high-probability guarantee on the

constraint satisfaction rate under the true distribution and prove
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that our solution achieves a lower generation cost than any other

method with the same guarantee.

Inspired by [14], we use a relative entropy-based ambiguity

set in our DRO formulation and establish stronger theoretical

guarantees than those in existing literature. We implement the

algorithms on benchmark OPF problem instances, showcasing

the advantages of our new formulation. We summarize our

contributions in the following:
� Instead of the commonly used Wasserstein metric, our

DRO formulation utilizes a relative entropy-based ambi-

guity set. We prove that the relative entropy-based formu-

lation comes with robustness guarantees on out-of-sample

performance and moreover admits the least conservative
DRO solution in the sense that the solution achieves the

minimum possible generation cost among all methods with

the same robustness guarantees.
� We provide an exact reformulation of joint distribution-

ally robust chance constraints over the ambiguity set. By

comparison, existing works construct an approximation set

of the ambiguity set and/or only consider disjoint chance

constraints, which makes it challenging to control the trade-

off between the efficiency and robustness of the solution.

Furthermore, our reformulation always leads to a feasible

problem, while existing approaches cannot guarantee the

feasibility.
� We empirically compare the performance of our DRO

approach with the state-of-the-art approaches in [18], [22],

[23] on the IEEE 14-bus and 300-bus test cases. We show

that our approach is able to find competitive and efficient

solutions that asymptotically satisfy the joint chance con-

straints, while the approximation algorithms in the litera-

ture can lead to overly conservative solutions.

We note that our exact reformulation is designed for the joint

chance constraint and does not include the relaxations of OPF

models (e.g., the semi-definite relaxation of AC OPF model).

The exact reformulation of chance constraints and relaxations

of OPF models are discussed in Sections II and III, respec-

tively. In [14], the authors established the optimality guarantee

of a relative entropy-based ambiguity set in the context of

minimizing the expected value of an objective function with

deterministic constraints. We have adopted the same definition

of the ambiguity set and extended the optimality guarantee to the

chance constraint case; see Theorems 1 and 2 for the theoretical

guarantees. We have modified the theory in [14] and established

similar optimality guarantees for the chance-constrained setting.

Table I summarizes the relevant existing literature on DRO

for power systems (most, but not all, of the listed papers focus

on OPF) and illustrates our contributions. It is worth men-

tioning that all works in Table I except [22] use the common

linearized DC approximation of the nonlinear power flow equa-

tions, though this approximation is not always coupled to the

specific handling of chance constraints. In comparison, we allow

for the full AC OPF problem in this work.

The remainder of the paper is organized as follows. In

Section II, we develop a new exact reformulation of general

joint chance-constrained problems. In Section III, we introduce

chance-constrained optimal power flow and present different

TABLE I
COMPARISON OF RELEVANT CHANCE-CONSTRAINED OPF LITERATURE

models and techniques to arrive at a problem compatible with

the general formulation from Section II. Finally, in Section IV,

we implement the proposed algorithm to verify the theory and

demonstrate the strong empirical performance compared with

existing algorithms. We conclude the paper in Section V. The

proofs are provided in the online version [25].

Notation: For every positive integer n, we define [n] :=
{1, . . . , n}. The set of n-dimensional integer, real and complex

vectors are denoted as Zn, Rn and C
n, respectively. Similarly,

we use R
m×n and C

m×n to denote the set of m-by-n real and

complex matrices, respectively. Let 1n and 0n be the vectors

with all elements equal to 1 and 0, respectively. Denote ek
as the k-th standard basis vector of R

n. For any two matri-

ces X,Y ∈ R
m×n, the inner product between them is defined

as 〈X,Y 〉 := Tr(XTY ), where Tr stands for the trace. For

each vector v ∈ R
n, we say v ≤ 0n if vk ≤ 0 for all k ∈ [n].

Let ‖ · ‖ be the 2-norm of vectors. We say f(S) = o(S) if

limS→∞ f(S)/S = 0.

II. DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH

In this section, we use DRO techniques to develop exact

reformulations of chance-constrained optimization problems.

We show in the following sections that the proposed reformu-

lation approach can be applied to deal with both AC and DC

CCOPF problems; see Section III for more details. To preserve

the generality of our results, we consider the general objective

function and constraint function

g(X) : Rd 	→ R, h(X, ξ) : Rd × R
n 	→ R

m,

where random vector ξ ∈ R
n obeys the distribution P0, and

integers d and m are the size of input variable X and the number

of constraints, respectively. In this subsection, we consider the

optimization problem with stochastic constraints:

min
X∈Rd

g(X) s.t. h(X, ξ) ≤ 0m. (1)

Note that our theory can be extended to the case when random-

ness ξ also occurs in the objective function g or the feasible set

is a convex subset of Rd. We focus on the simpler problem (1)

as our objective is to solve the CCOPF problem (11). We make

the following assumption:

Assumption 1: The support of P0 belongs to a compact

set Ξ ⊂ R
n. Both functions g(·) and h(·, ·) are continuous.

In addition, for every positive integer S and all realizations
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ξ1, . . . , ξS ∈ R
n, problem

min
X∈Rd

g(X) s.t. h(X, ξj) ≤ 0m, ∀j ∈ [S]

is feasible and has a finite optimal value.

Assumption 1 requires that the constraints can be satisfied

regardless of the forecast error ξ. This is generally satisfied by

real-world OPF problem instances, which have sufficient reserve

and transmission capacity to handle renewable forecast errors

when properly operated; see the discussion in Section III for

more details.

To deal with the stochastic constraint in problem (1), we

target finding the minimum-cost solution under the joint chance
constraint

P0 [h(X, ξ) ≤ 0m] ≥ 1− ε, (2)

where ε ∈ (0, 1] is the pre-specified maximum failing probabil-

ity.

Remark 1: More generally, our results can be extended to the

case when the joint constraints are defined by a convex cone

P0

[
ωTh(X, ξ) ≤ 0, ∀ω ∈ W] ≥ 1− ε, (3)

where W is the convex cone spanned by weight vectors1

ω1, . . . , ωL. Constraint (3) reduces to the cardinal case (2) when

L = m and ω� = e� for all � ∈ [m].
Suppose, as is the case for VRE generation, that the true

distribution P0 is unknown and only limited historical samples

may be available. Suppose that there are S independently and

identically distributed samples, ξ1, . . . , ξS , generated from the

distribution P0. We define the empirical distribution of ξ as

P̂S :=
1

S

∑
k∈[S]

δξk ,

where δξ is the Dirac measure at ξ. The goal of the DRO approach

is to use the information from the empirical distribution P̂S to

find robust solutions that satisfy the chance constraint (2) with

high probability. Define the ambiguity set

Dr (P) := {P′ ∈ P | I (P,P′) ≤ r} , ∀P ∈ P,

where I(·, ·) is the relative entropy [26], r > 0 is the radius

and P is the family of Borel distributions with support in Ξ. The

robustness of the DRO solutions is guaranteed by the satisfaction

of chance constraints under all distributions in the ambiguity set

Dr(P̂S). Other distributional metrics, such as the Wasserstein

metric, are also considered in CCOPF literature [21], [22]. In

this work, however, we use the relative entropy due to the strong

optimality guarantees it can provide; see Theorems 1–2 and [14],

[26]. Intuitively, large deviation theory guarantees that the rel-

ative entropy between the true data-generation distribution and

the empirical distribution can be bounded by a value that depends

on the sample size [26]. Hence, the true distribution is contained

in the ambiguity set with high probability. Critically, the relative

entropy-based ambiguity set is the “smallest” ambiguity set with

such a property [14].

1A vector ω ∈ R
m is called a weight vector if ω ≥ 0m and 1T

mω = 1.

Remark 2: In DRO literature [27], [28], [29], [30], a similar

ambiguity set, defined as

D̃r (P) := {P′ ∈ P | I (P′,P) ≤ r} , ∀P ∈ P,

has been widely studied. Unlike Dr(P), the fixed distribution P

appears in the second argument of I . The two ambiguity sets are

different because the relative entropy is asymmetric. By placing

the perturbed distribution P
′ in the first argument, the alternative

ambiguity set only includes distributions that are absolutely

continuous with respect to P, which may not include P0 when

P = P̂S and therefore restricts the robustness guarantees that can

be established. For this reason, we depart from the traditional

relative entropy-based DRO literature and study Dr instead of

D̃r. See Remark 3 in [14] for a more detailed discussion.

Since we lack knowledge of the true distribution P0, we

approximate the chance constraint (2) with the distributionally
robust chance constraint

inf
P′∈Dr(P̂S)

P
′ [h(X, ξ) ≤ 0m] ≥ 1− ε. (4)

Intuitively, the true distribution P belongs toDr(P̂S)with a high

probability in terms of ε and S. Hence, the chance constraint (2)

holds with high probability if the distributionally robust chance

constraint (4) is satisfied. We prove the claim rigorously in the

following theorem.

Theorem 1: For all ε ∈ (0, 1] and r > 0, if X ∈ R
d satisfies

constraint (4), then it holds that

P∞ [h (X, ξ) ≤ 0m] ≥ 1− ε− exp [−rS + o(S)] , (5)

where P∞ is the probability measure of the sample path space

of ξ under distribution P0.

In the regime when the support Ξ is a finite set, we can apply

the strong large deviation principle [14] and derive the following

finite-sample bound in the same way as Theorem 1:

P∞ [h (X, ξ) ≤ 0m] ≥ 1− ε− (S + 1)de−rS . (6)

We include the finite-sample bound (6) for theoretical com-

pleteness and the forecast error for VRE can have a continuous

support. In particular, the high-probability bound (5) is satisfied

by the solution to the distributionally robust chance-constrained

problem

X̂ε,r,P̂S
:= arg min

X∈Rd
g(X) s.t. chance constraint (4). (7)

In the following theorem, we show that X̂ε,r,P̂S
achieves the

minimum cost among all inputs that satisfy the high-probability

bound (5) and are constructed from the empirical distribution

P̂S .

Theorem 2: Suppose that X̃ε,r,P ∈ R
d is a quasi-continuous

function of distribution P and that X̃ε,r,P̂S
satisfies constraint

(5). Then, we have

P∞
[
g
(
X̃ε,r,P̂S

)
< g

(
X̂ε,r,P̂S

)]
= 0.

Combined, Theorems 1 and 2 establish out-of-sample perfor-

mance guarantees for the relative entropy-based distributionally

robust approximation to the chance constraint (2), and they
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show that it is optimal among all solutions that satisfy these

guarantees.

Although its solution enjoys the attractive properties estab-

lished above, the DRO problem (7) is not in a form that can be

handled directly by existing solvers. In Lemma 3, we derive an

equivalent form of the chance constraint (4), which will facilitate

a reformulation of (7) as a practically solvable problem. First,

we define the scalar-valued maximum over the constraints for a

given X and realization of ξ

h̄(X, ξ) := max
�∈[m]

h�(X, ξ)

and the worst-case constraint value

h∗(X) := max
ξ∈Ξ

h̄(X, ξ).

Lemma 3: For all ε ∈ (0, 1] and r > 0, there exists a

k(ε, r, S) ∈ [S + 1] such that (4) is satisfied if and only if

mink(ε,r,S)
{
h̄(X, ξj) | j ∈ [S]

} ∪ {h̄∗(X)} ≤ 0,

where mink T indicates the k-th smallest value in set T . In

addition, the integer k(ε, r, S) is the solution to

max
k∈[S],p∈RS+1

k

s.t.
∑
j∈[k]

pj ≤ 1− ε, 1T
S+1p = 1, p ≥ 0S+1,

−
∑
j∈[S]

log(Spj) ≤ Sr.

Lemma 3 implies that the distributionally robust approxima-

tion of the chance constraint (4) is equivalent to enforcing the

k(ε, r, S) least restrictive constraints derived from the samples.

Remark 3: We note that a similar technique has been utilized

in Theorem 8 in [28], where the threshold β̄ can be viewed as a

counterpart of 1− k(ε, r, S)/S. In general, β̄ takes a different

value since they used a different ambiguity set (see Remark 2).

In addition, the optimization problem for β̄ (i.e., problem (31)

in [28]) is derived from the dual of a functional optimization

problem, whose optimal Lagrangian multiplier has a closed

form. In comparison, the counterpart of the functional optimiza-

tion problem in our formulation does not accept a closed-form

solution for the multiplier; see problem (29) in [14] for the dual

problem. Therefore, it is necessary to use our method to compute

the value of k(ε, r, S).
We now present our main result. Lemma 3 allows for an exact

reformulation that can be applied directly to CCOPF problems:

Corollary 4: Problem (7) is equivalent to

min
X∈Rd,z∈ZS

g(X)

s.t. if zj = 0 then h(X, ξj) ≤ 0, ∀j ∈ [S],

1T
Sz ≤ S − k(ε, r, S), zj ∈ {0, 1}, ∀j ∈ [S].

(8)

Problem (8) can be formulated as a mixed-integer program

(MIP) by implementing the logical indicator constraint us-

ing the big-M method (some solvers and algebraic modeling

languages will perform this reformulation automatically). De-

pending on the structure of g and h, problem (8) may be a

mixed-integer linear program (MILP) or a convex/nonconvex

mixed-integer nonlinear program (C-MINLP/NC-MINLP). Off-

the-shelf solvers exist for all three problem classes, though NC-

MINLP solvers such as Bonmin and Juniper typically use local

algorithms as heuristics for the relaxed continuous subproblems

and therefore cannot guarantee the global optimality. Com-

pared to existing DRO formulations [18], [21], [22], [23], our

formulation provides stronger guarantees in the following two

senses. First, the DRO solution X̂ε,r,P̂S
achieves the minimum

possible cost over all robust solutions that satisfy the joint chance

constraint (5). This optimality property arises from the choice

of the relative entropy for the ambiguity set, and such property

cannot be established by other distributional metrics, although

the Wasserstein metric can provide similar high-probability

bounds [13]. Second, the mixed-integer reformulation (8) is

exact. In contrast, existing literature on distributionally robust

CCOPF considered approximations to the ambiguity set. For

metric-based ambiguity sets, these are inner approximations that

may be overly conservative [21], [22], [23]; see the comparison

results in Section IV.

In practice, it is preferable for the user to first specify k and

then compute the optimal ε and r to maximize the right-hand

side of (5). Given k ∈ [S] and ε ∈ [1− k/S, 1], the maximal

radius r such that k(ε, r, S) = k is given by

r = − k

S
log

(
S(1− ε)

k

)
− S − k

S
log

(
Sε

S − k

)
,

where we define 0 log 0 = 0. Therefore, when the sample size S
is sufficiently large, we ignore the o(S) term on the right-hand

side of (5) and solve the maximization problem

ε∗k,S := arg max
ε∈[1−k/S,1]

1

− ε− SS

kk(S − k)S−k
(1− ε)kεS−k, (9)

where we define 00 = 1. The solution to the above problem

approximately maximizes the right-hand side of (5) and can be

efficiently found by the bisection algorithm.

III. CHANCE-CONSTRAINED OPTIMAL POWER FLOW

In this section, we consider the chance-constrained optimal

power flow (CCOPF) problem. We present multiple versions of

the problem associated with different relaxations and lineariza-

tions of the power flow equations. While the complexities of the

formulations differ, the DRO techniques developed in Section II

can be applied to any of them.

A. Formulation

The CCOPF problem requires choosing an operating point of

a power network that is robust to perturbations caused by the real

power forecast error, assumed here to be the result of uncertain

VRE generation. Consider a network operating at (P,Q, v, θ)
perturbed by a particular forecast error realization ξ ∈ R

n. The
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resultant state, denoted using ·̃, satisfies

P̃k = Pk + ξk − Ωk

∑
j∈N ξj , ∀k ∈ PQ ∪ PV , (10a)

Q̃k = Qk + γξk, ∀k ∈ PQ, (10b)

ṽk = vk, ∀k ∈ PV ∪ Vθ, (10c)

θ̃k = 0, ∀k ∈ Vθ, (10d)

f
(
P̃ , Q̃, ṽ, θ̃, �̃

)
= 0, (10e)

where γ is assumed here to be fixed for all VRE generators.

To avoid notational clutter, we suppose that all buses have

generators and simply set the upper and lower generation limits

and AGC factors to zero at a given bus if no generator exists.

Equation (10a) models the active perturbations from the forecast

error along with the automatic generator control (AGC), in

which each generator is responsible for compensating for a fixed

proportion of the forecast error (the change in losses is accounted

for by the slack bus). The active generation at the slack bus Vθ
is unconstrained to allow for real loss compensation. Equation

(10b) models reactive perturbations, whereas generator buses

are free to adjust their reactive power to maintain a consistent

voltage. Equation (10c) keeps the voltage magnitude constant

at buses with generators. Equation (10d) fixes the slack bus

voltage angle. In this work, we choose Ω to be proportional

to the generator capacities, which is a common and reasonable

choice for a fixed Ω. Our results can be extended to the case

whereΩ is set as a decision variable. We keepΩ fixed to simplify

our experiment setting and focus on illustrating the proposed

method.

Finally, Equation (10e) encodes the power flow model, given

here in polar coordinates, which describes the physics of the

network. Multiple power flow models are available, which can

be categorized as either nonlinear AC power flow models or

linear approximate DC power flow models. Some models em-

ploy only some of the physical quantities in the arguments of

(10e), in which case the chance constraints associated with those

quantities can be dropped.

Defining w := [P Q v θ �]ᵀ ∈ R
4n+n2

and w̃ accord-

ingly, there exists a unique implicit function u(w, ·) of the fore-

cast error ξ such that w = u(w,0n) and w̃ = u(w, ξ) satisfies

Equations (10) for any ξ. This is a consequence of the implicit

function theorem.

In context, this means that once the operator chooses a dis-

patch and assigns participation factorsΩ, the network state is de-

termined by the forecast error. Chance constraints are introduced

in order to ensure satisfaction of limits on line flows, voltage

magnitudes, and generator outputs, resulting in the following

joint chance-constrained problem:

min
w

c(P ) (11a)

s.t. f(w) = 0, (11b)

P0

⎧⎪⎪⎨
⎪⎪⎩

PG ≤ uP (w, ξ) + PD − ξ ≤ PG,
QG ≤ uQ(w, ξ) +QD − γξ ≤ QG,
v ≤ uv(w, ξ) ≤ v,

−� ≤ u�(w, ξ) ≤ �

⎫⎪⎪⎬
⎪⎪⎭ ≥ 1− ε,

(11c)

whereP0 is the distribution of perturbation ξ anduP ,uQ,uv , and

u� are the block components ofu associated with the subscripted

variables in w. The objective is the generator cost:

c(P ) :=
∑
k∈N

[
ck0 + ck1(Pk + PD

k ) + ck2
(
Pk + PD

k

)2]
.

It will be convenient to express the chance constraint in a

compact form. Let CC denote the set of indices of w associated

with the chance-constrained quantities (P,Q, v, �). With a suit-

able choice of A ∈ R
(6n+n2)×n and b ∈ R

6n+n2
, the chance

constraint (11c) becomes

P0 [uCC(w, ξ) +Aξ ≤ b] ≥ 1− ε. (12)

In our formulation of the CCOPF problem (11), Assumption 1

is satisfied unless, for instance, the reserve capacity of conven-

tional generators is insufficient to compensate for some realiza-

tions of the forecast error. In this case, CCOPF may be infeasible;

however, it is reasonable to assume that realistic power networks

have sufficient capacity to handle any realization of the forecast

error if properly dispatched.

B. Approximate Linear Uncertainty Response

In the case of AC models, we cannot yet apply Corollary 4

because problem (11) is a semi-infinite program (SIP) in gen-

eral due to the lack of an explicit expression for u(w, ξ). The

existing literature [3] and [4] discussed this issue and proposed

approximations of the chance constraints. In this work, we adopt

the popular linear approximation from [3], although our method

can also be applied to the relaxation from [4].

Following [3], we note that the forecast errors ξ are typically

small relative to the loads PD. Hence, we replace u(w, ξ) by

its first-order approximation at ξ = 0n. More specifically, we

define the Jacobian matrix

Jw :=
∂

∂ξ
uCC(w,0n), ∀w ∈ R

4n+n2

.

Then, the constraint (12) can be approximated by

P0 [wCC + (Jw +A) ξ ≤ b] ≥ 1− ε. (13)

The implicit function theorem provides a closed-form expres-

sion for the Jacobian Jw; we provide it here for completness.

Write (10) in compact form as

Ψ(w, ξ) = 0.

Then

Jw = −
[

∂

∂w
Ψ(w,0n)

]−1
∂

∂ξ
Ψ(w,0n) (14)

Replacing the constraint (12) with (13) makes problem (11) a

chance-constrained program with a finite number of constraints.

Applying the proposed distributionally robust reformulation of
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the chance constraints, we obtain the mixed-integer nonlinear

program

min
w

c(P )

s.t. f(w) = 0,

if zj = 0, then wCC + (Jw +A) ξj ≤ b, ∀j ∈ [S],

1T
Sz ≤ S − k(ε, r, S), zj ∈ {0, 1}, ∀j ∈ [S]. (15)

Unlike the SIP (11), problem (15) is a MINLP in general and can

be handled by off-the-shelf solvers. If f encodes a linear power

flow model such as DC-OPF, then the first-order approximation

of the system response is exact and problem (15) is a MILP.

On the other hand, if f encodes an AC power flow model, then

existing solvers are heuristics and cannot guarantee optimality.

C. DC Power Flow Formulation

First, we apply the techniques from Sections III-B and III-C

to the approximate linear DC power flow model, which is given

in the context of (10) by

f(P, �) :=

[∑
k∈N Pk

�− ΦP

]
.

This is the power transfer distribution factor (PTDF)-based DC-

OPF formulation, where Φ is the PTDF matrix and � is taken to

represent (directed) real power flow. Since the model is linear,

the system response functions can be computed in closed form

as

uP (P, �, ξ) = P + (I − Ω1ᵀ
n)ξ,

u�(P, �, ξ) = �+Φ(I − Ω1ᵀ
n)ξ.

Corollary 4 can now be applied directly.

D. AC Power Flow Formulation

We use the quadratic form of the AC power flow equations.

Defining Yk, Ȳk„ Yjk, and Mk as in [31], define

f̂(P,Q, v, �,X) :=

⎡
⎢⎢⎢⎢⎢⎣

Pk −XTYkX, ∀k ∈ N
Qk −XT ȲkX, ∀k ∈ N
�jk −XTYjkX, ∀(j, k) ∈ L
vk −XᵀMkX, ∀k ∈ N

⎤
⎥⎥⎥⎥⎥⎦ ,

Make the change-of-variables

X :=

[√
v � cos θ

√
v � sin θ

]
. (16)

Then, the AC power flow model can be written as

f(w) = f̂ (P,Q, v, �,X) = f̂(ŵ),

where we define ŵ := (P,Q, v, �,X). Since we have made a

change-of-variables, we define the implicit function in terms of

ŵ that characterizes the system response to forecast errors ξ. By

the implicit function theorem, there exists a unique function

û(ŵ, ξ) of the forecast error ξ such that ŵ = û(ŵ,0n) and

(P̃ , Q̃, ṽ, �̃, X̃) = û(ŵ, ξ) satisfies (10a)–(10c) along with

X̃k+n = 0, ∀k ∈ Vθ, (17a)

f̂(P̃ , Q̃, ṽ, �̃, X̃) = 0. (17b)

As before, we define

Ĵŵ :=
∂

∂ξ
uCC(ŵ,0n), ∀w ∈ R

4n+n2

.

which can be computed similarly to (14). Note that under the

change-of-variables mapping (16) between ŵ and w, it holds

that ûCC(ŵ, ξ) = uCC(w, ξ). Given this equivalence, problem

(15) becomes

min
ŵ

c(P )

s.t. f̂(ŵ) = 0,

if zj = 0, then ŵCC +
[
Ĵŵ +A

]
ξj ≤ b, ∀j ∈ [S],

1T
Sz ≤ S − k(ε, r, S), zj ∈ {0, 1}, ∀j ∈ [S]. (18)

Problem (18) is now in a form that can be handled by local-

search NC-MINLP solvers. Since these solvers are heuristics,

one may wish to apply relaxations and approximations to (18).

In the following subsections, we explain two techniques which,

for networks satisfying certain sufficient conditions, recast (18)

as a C-MINLP that can be solved globally by appropriate solvers.

1) Fixed-Point Algorithm: One source of nonconvexity in

(15) is that the Jacobian Ĵw is nonconvex in ŵ. This can be

partially addressed by applying the fixed-point iteration in

[3, Sec. V. B.]. The pseudo-code of this heuristic algorithm is

provided in Algorithm 1. Intuitively, if the initialization is close

to the solution, the fixed-point iteration enjoys fast convergence.

In most applications, the forecast errors are small

relative to the forecast power injections and thus, our approxi-

mation scheme is considerably accurate in the following sense:

1) The first-order approximation is acceptable under a wide

range of operating conditions.

2) The robust solution to the chance-constrained problem is

expected to be not too far from the deterministic solution

(i.e., the solution with ξ = 0n).

As a consequence, although there is no convergence guaran-

tee, the fixed-point iteration exhibits efficient and robust conver-

gence in practice; see the numerical experiments in Section IV

and [3].

A number of methods can be applied to solve step 5. If the

method proposed here is applied, step 5 becomes

wt+1 ← argmin
w

c(P )

s.t. f(w) = 0,

if zj = 0, then wCC + (Jwt
+A) ξj ≤ b, ∀j ∈ [S],

1T
Sz ≤ S − k(ε, r, S), zj ∈ {0, 1}, ∀j ∈ [S]. (19)

Other authors, such as [22], have taken an even simpler ap-

proach by using the Jacobian evaluated at the deterministic
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Algorithm 1: Fixed-Point Iteration for Joint CCOPF Prob-

lem.
1: Input: tolerance μ, maximum violation probability ε.
2: Output: robust solution w.

3: Initialization:

w0 ← argmin
w

c(P )

s.t. f(w) = 0, wCC ≤ b.

4: for t = 0, 1, . . . do
5: Update wt+1 to be the (approximate) solution of

min
w

c(P )

s.t. f(w) = 0,

P0 [wCC + (Jw +A)) ξ] ≥ 1− ε (20)

6: If D(wt+1 −wt) ≤ η, return wt+1.

� D is some appropriate measure of distance.

7: end for

solution obtained from assuming a zero forecast error (i.e.,w0 in

Algorithm 1).

2) Convex Relaxation: The second source of nonconvexity

arises from the nonlinearity of f̂ . This may be addressed by

applying the well-known semi-definite relaxation from [31]. The

relaxation is known to be exact for a large class of networks,

including many IEEE benchmark cases.

Other convex relaxations of AC power flow models exist

and can be applied along with our method. These include the

second-order cone relaxation for the QCQP formulation and the

second-order cone relaxation of the branch flow equations,

both of which are exact for radial networks under mild con-

ditions [32]. We note that it is necessary to apply the reduction

method in [32] to recover the rank-1 solution from the SDP

solution, which usually has a higher rank. In our experiments,

we are always able to recover a rank-1 solution and the results

presented are computed using the recovered rank-1 voltage

vector instead of the SDP solution matrix.

If both the fixed-point iteration and a relaxation are applied,

problem (15) reduces to a C-MINLP problem. Either method

described here may also be used independently to reduce the

nonconvexity of (15) before passing to a local-search solver.

IV. DEMONSTRATION ON IEEE TEST CASES

In this section, we apply the proposed DRO approach to IEEE

benchmark power systems and show the empirical performance

of our method over existing methods in the literature. To help

the readers better understand the operation of our approach, we

first demonstrate the algorithm on a simple 14-bus example and

explain each step in detail. Then, we consider both the DC and

AC models for the CCOPF problem. We focus on the 14-bus

and 300-bus systems, and we compare the performance with

several existing DRO algorithms. For each case, the satisfaction

rate, the generation cost and the running time are exhibited to

Fig. 1. The 100 historical samples with the two worst-case samples in red.

verify our theory and illustrate the advantage of our developed

approach.

A. Tutorial

To build intuition, we first present a walkthrough of the

proposed method on a simple example. Consider the IEEE

14-bus test case with VRE generators installed at buses 2 and

3, each with a forecast output of 20 MW. The VRE forecast

error follows a multivariate normal distribution, constructed as

described in Section IV-C (except without the clipping). For

simplicity, we consider the DC model where only real generator

outputs and line flows appear in the chance-constraints. Line

flows in this example are set sufficiently high as to always

be inactive, so we only consider generator output. The 14-bus

case has 6 generators, located at buses 1, 2, 3, 6, and 8. Generators

1 and 2 have linear costs of $20/MW, while the others have

linear costs of $40/MW; the quadratic components of the costs

are relatively small. Assuming no forecast error and solving the

deterministic OPF, the optimal dispatch is to supply the full net

load of the network using generator 1, with all other generator

outputs set to zero. However, under the AGC scheme described

in Section III-B, this decision will result in the zero-output

generators carrying insufficient downward reserves in case of

unexpectedly high VRE output.

Suppose that a system operator has access to 100 historical

samples of the outputs of the VRE generators at buses 2 and 3

and wants to ensure that the remaining generators carry sufficient

downward reserves at least 90% of the time. To apply the

proposed method, the system operator must enforce the con-

straints under all but a small number of the historical scenarios.

Specifically, it must find the smallest k such that ε∗k,100 is no

more than 0.10, where ε∗k,S is given in (9). In this case, we have

ε∗97,100 = 0.109 and ε∗98,100 = 0.0924. Therefore, to find the

optimal generation coast, the operator enforces the constraints

under the 98 best-case samples. Fig. 1 shows the 100 samples

and the worst-case pair selected by solving the mixed-integer

reformulation.

As expected, the worst-case set of two samples for this

example are those where VRE output exceeded the forecast,

requiring higher downward reserves. Note that despite only

requiring 90% constraint satisfaction, 98% of the samples must
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Fig. 2. The output distribution of generator 2 under the proposed method
compared to the zero-error dispatch.

be enforced to obtain the out-of-sample performance guarantee

from Theorem 1. As more samples are available, fewer “ex-

tra” samples will be required as the empirical distribution will

better approximate the true distribution. Practically, enforcing

the 98 best-case samples means that generators 2-6 produce

a small amount of power to allow for downward generation

response. This results in a higher total generation cost, but is

much more robust to errors. Fig. 2 shows the output distri-

bution of generator 2 after the AGC redispatch for 1000 test

samples, drawn independently of the historical samples from

the same generation distribution. The two subplots show the

distributions for the zero-error deterministic setpoint and the

distributionally robust KL setpoint. As expected, only a small

number of cases result in an output below the lower bound of

zero for the KL case, while the deterministic setpoint violates the

chance constraints approximately half of the time. All data-based

chance-constrained methods will accomplish the robustness in

a similar way. However, we prove in Theorem 2 that among all

methods which enjoy the out-of-sample performance guarantee

in Theorem 1, our proposed method is the most efficient in the

sense that it achieves the optimal generation cost. In the context

of this example, this means that generators 2-6 increase their

outputs just enough to maintain sufficient downward reserves

90% of the time (with high probability), but not more.

B. Overview of Benchmark Methods

Recall that the original problem of interest is (11). If a DC

power flow model is used, then the joint chance constraint (11c)

includes a finite number of linear constraints; we denote this as

the DC problem. For AC power flow models, (11c) has an infinite

number of constraints and we instead consider the approximate

problem with chance constraint (13). Although (13) is affine in

ξ, it remains nonconvex due to both the dependence of Jw on

w and the nonlinear power flow equations (11b). We name the

problem with (13) as the AC problem. The nonconvexity in the

AC problem associated with Jw can be mitigated by applying

the fixed-point algorithm discussed in Section III-E-1; we call

this the AC fixed-point approach (AC-FP). While the subprob-

lems (step 5 in Algorithm 1) in AC-FP remain nonconvex

because of (11b), the chance-constraints are affine, allowing for

the application of appropriate reformulations from the literature.

For networks satisfying certain sufficient conditions, AC-FP can

be convexified through the semi-definite relaxation discussed in

Section III-E-2, giving the relaxed fixed-point approach, which

we name as SDP-FP.

We compare the proposed method (denoted as the KL

method) against three existing methods from the literature for

handling joint chance constraints using limited samples: the

Wasserstein-based ellipsoidal method (W-E) from [22], the op-

timal CVAR approximation (OPT-CVAR) from [23, Sec. 4.3],

and the moment-based optimized Bonferroni approximation

(M-OBA) method from [18, Sec. 3.A.]. As discussed in Section I,

most other methods from the literature either consider individual
chance constraints or, in the case of the sample average or sce-

nario methods, require much more samples than we presume are

available to system operators. These methods are not suitable for

comparison as they do not share the problem setting considered

in this work. The methods selected for comparison constitute the

state-of-the-art in the CCOPF space to the best of the authors’

knowledge.

The authors of [18] used the M-OBA to approximate joint

affine chance-constraints as a single nonconvex deterministic

constraint. Additionally, multiple approximations and convex-

ifications of this constraint are presented. However, solving

the nonconvex OBA problem locally seems to have similar

performance in practice to the approximations as seen in [18,

Sec. V]. Therefore, we solve the OBA formulation locally as the

representative method of [18].

The KL approach could be directly applied to the AC problem

(without the fixed-point iteration or the convex relaxation). How-

ever, given the reliable performance of Algorithm 1 in practice

and to avoid corrupting our comparisons by potential non-global

solutions, we solve the SDP-FP formulation in our simulations

for the AC problem.

C. Experimental Setup

We demonstrate our method on the joint CCOPF problem (11)

for the IEEE 14- and 300-bus test cases. The starting system pa-

rameters are taken from the case data in MATPOWER 8.0 [33],

[34] and are prepossessed to allow for matrix-based analysis

using PowerModels.jl’s make_basic_network utility [35].

Among other things, this preprocessing step adds reasonable line

limits even when they do not exist in the MATPOWER files.

We install VRE generators at the same buses and with the

same outputs as the simulations in [18], except we triple the

forecasts for the 300-node case. The participation factors Ω are

set proportional to the maximum output of each conventional

generator.

Again following [18], the samples ξ are drawn from a multi-

variate Gaussian distribution N (μ,Σ) with μ = 0 and

Σii = ζpi, ∀i, and Σij = ρij
√

Σii

√
Σjj , ∀i �= j,

where pi is the forecast output of the VRE generator at bus i and

ρij > 0 induces some correlation between VRE outputs, as will

happen in practice. We set ζ = 0.05 for the 14-bus case, ζ = 0.1
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for the 300-bus case, and ρij = ρ = 0.2 for both cases. Unlike

in [18], we clip the i-th component of each sample to [−pi, 2pi] to
model a VRE generator operating at one-third of its capacity. We

set γ = 0.1 so that a small amount of reactive power is included

in the forecast error. For each case, we generate 200 historical

samples and compute the out-of-sample joint chance constraint

violation frequency on 10000 independent test samples.

All optimization problems are solved through the JuMP in-

terface [36], where QPs and MIQPs are solved by Gurobi [37],

SDPs are solved by Clarabel [38] and MISDPs are solved with

Pajarito [39] with SCIP [40] as the outer approximation solver

and Clarabel as the conic solver. Simulations are run on in Julia

1.11.0 on a 6-core 2.60 GHz laptop computer running Windows

11.

D. Comparison With OPT-CVAR and M-OBA on 14-Bus DC
Model

We first present results for the DC model of the 14-bus

network. Comparisons are made with OPT-CVAR and M-OBA,

both of which were introduced for DC problems. In this context,

the proposed KL method needs to solve a MIQP problem. The

OPT-CVAR solves a sequence of QPs and LPs, and the M-OBA

involves solving a NC-NLP. Recall that the KL method is most

naturally applied by choosing the minimum k such that ε∗k,S
as computed in (9) is at least the desired maximum violation

probability ε. The other methods in the literature are applied

by choosing ε directly. Therefore, we compare the methods by

testing on each k from 180 to 200, in intervals of 2, and feeding

the associated ε∗k,S to the other methods. For each k, we compute

the generation cost (efficiency) of the solution, the out-of-sample

violation frequency and the solve time. For OPT-CVAR,2 we

choose a Wasserstein radius ofρ = 10−3 and a minimum relative

improvement threshold of η = 10−5. The results are shown in

Fig. 3, where results of the KL method are shown as a solid line

while comparative methods are dotted.

The dotted line in the first subplot is simply y = 1− x, repre-

senting the desired minimum out-of-sample violation frequency.

We expect the satisfaction rate of CC solutions to remain above

this line. This subplot gives the joint constraint violation; that

is, if any single constraint is violated for a given sample, the

joint chance constraint for sample is considered to be violated.

While KL and OPT-CVAR behave as expected, OBA produces

overconservative solutions with zero constraint violation proba-

bility regardless of ε (OBA was infeasible for the smallest value

of ε tested in this experiment). We note that since the DRO

solution is constructed based on the empirical distribution P̂S ,

there exists a gap between the estimated satisfaction rate and the

actual satisfaction rate; see the error term in Theorem 1. If the

number of samples S becomes larger, the empirical distribution

P̂S will correlate better with P0 and the satisfaction rate will

converge to the pre-set value 1− ε.
The second subplot, showing the generation cost, is normal-

ized to the approximate robust optimization (RO) cost, which is

2We assume an unbounded support Ξ for the implementation of OPT-CVAR
as including the associated variables (γ) proves extremely memory-intensive.

Fig. 3. Performance on the 14-bus DC network.

computed by enforcing the constraints of 10000 training sam-

ples. As DRO is designed as a compromise between stochastic

programming and RO, distributionally robust methods should

generally achieve more efficient solutions than RO at the cost

of some robustness; that is, one should expect the costs to be

less than 1 in this subplot. As the KL method reformulates the

chance constraints exactly, this is guaranteed to be true. Other

methods, however, use approximations to the chance constraint

and may be more conservative than RO in general. Indeed,

OBA proves to be extremely conservative, with normalized costs

greater than 1.006 for all values of ε and is omitted from the

generation cost subplot so as not to distort the trends of KL

and OPT-CVAR. The deterministic solution, achieved by solving

the (non-chance-constrained) problem without forecast errors, is

also included as another benchmark. The deterministic solution

is not robust and will violate the chance constraints very often,

but its cost represents a loose lower bound on the achievable

efficiency gains of DRO relative to RO.

Both KL and OPT-CVAR exhibit the efficiency-robustness

trade-off as expected from DRO. As ε grows, their out-of-sample

constraint satisfaction rate dips, though it remains well above

the 1− ε threshold. As a consequence, they close a signifi-

cant portion of the distance between the RO and deterministic

solutions. In these simulations, KL is slightly more efficient

than OPT-CVAR for larger ε and slightly less efficient for

smaller ε. That CVAR may achieve lower costs than KL is

not a counterexample to the optimality guarantee in Theo-

rem 2, as this guarantee only applies to methods featuring the

specific out-of-sample performance guarantees in Theorem 1;
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Fig. 4. Performance on the 14-bus AC network.

CVAR, as a Wasserstein-based method, does not fall into this

category.

The final plot gives the solution time on a log scale. The OBA

runs the fastest, followed by KL, which is an order of magnitude

faster than OPT-CVAR. Notice that the solution time of KL is

lower for small values of ε since the number of feasible integer

solutions for a given k is
(
S
k

)
, which grows at an exponential

rate with respect to k.

E. Comparison With W-E on 14-Bus AC Model

We now test the proposed method on the SDP-FP formulation

using the AC power flow model presented in Section III-E

for the 14-bus network. We consider the SDP-FP formulation

instead of the AC or AC-FP problems since it results in a convex

problem and we are able to guarantee the global optimality;

the semi-definite relaxation is known to be exact for the 14-

bus network [31]. However, we emphasize that our method

could be applied to the AC or AC-FP problems with minor

changes.

We compare with W-E, as it was originally presented for

(relaxed) AC models. The physical solution to the original

problem is recovered from the matrix solution of the relaxed

problem by fixing the optimal values of [vVΘ∪PV PPV ] and

running a power flow (one could also apply [31, Cor. 2]). All

results presented here are calculated using the recovered physical

Fig. 5. Performance on 300-bus DC network.

solution, not the relaxed solution. In this context, the KL needs

to solve an MISDP and W-E involves solving a pair of SDPs.

The KL method applies the fixed-point algorithm (Algo-

rithm 1) to reduce the nonconvexity in Jw. In our experiments,

we set η = 10−4 and D is taken to be the 2-norm between

the subvectors [vVΘ∪PV PPV ], which together fully specify

the power flow solution. For all experiments, the fixed-point

algorithm converged in 3 iterations or fewer. In contrast, in [22],

the authors simply linearized around the deterministic solution

rather than apply the fixed-point algorithm. The Wasserstein

radius (ρ in [22]) is set to 10−6. This is the smallest (least

conservative) radius considered in [22]. As seen in Fig. 4, KL

is considerably less conservative even with such an aggressive

choice of Wasserstein radius. For small values of ε, W-E pro-

duced a solution more conservative than RO. In terms of running

time, W-E runs faster than KL since KL involves a MISDP and

W-E only includes solving SDPs. In summary, we observe that

in the two 14-bus experiments, the metric-based methods (KL,

OPT-CVAR, and W-E) outperform the moment-based method

(OBA) in general.

F. Results for the 300-Bus Network

To demonstrate the scalability of the proposed method, we

demonstrate the performance of KL on the 300-bus network

using the DC power flow model presented in Section III-D and

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 09,2025 at 16:47:21 UTC from IEEE Xplore.  Restrictions apply. 



BROCK et al.: DISTRIBUTIONALLY ROBUST JOINT CHANCE-CONSTRAINED OPTIMAL POWER FLOW USING RELATIVE ENTROPY 2913

compare with the OPT-CVAR method. We generate S = 300
training samples and 10000 test samples. The sweep of k is

from 270 to 300 in increments of 3.

The KL method performs on the 300-node network as it

does on the 14-bus network, with the violation rate dropping

as permitted by ε and bridging the gap in efficiency between

the RO and deterministic solutions. As for the 14-bus net-

work, KL is slightly more conservative than OPT-CVAR for

small ε and slightly less conservative for large ε. For all ε,
KL ran for the larger network with more samples in less than

10 seconds on a personal computer, approximately an order

of magnitude faster than OPT-CVAR. As OPF problems are

typically solved offline, this runtime is promising for larger-scale

implementations.

Notice that, though the values of k range from 90% to

100% of S in all three experiments, the values of ε on the

x-axis are lower for when 300 samples are used rather than

200. This is because ε better approximates k/S as the sam-

ple size S grows. Intuitively, as more historical data is avail-

able, the empirical distribution more closely approximates the

data-generation distribution, allowing one to enjoy the same

high-probability bound while enforcing the constraints of fewer

samples.

V. CONCLUSION

This work proposes a novel distributionally robust optimiza-

tion technique for chance-constrained OPF problems with large

random VRE forecast errors. Between the theoretical and em-

pirical results, the advantages of the proposed method can be

broadly categorized as follows:

1) Efficiency: Theorem 2 guarantees that the KL solution

is the most efficient in terms of the generation cost

among all solutions achieving the out-of-sample perfor-

mance guarantees established in Theorem 1. In our ex-

periments, KL is considerably more efficient than the

state-of-the-art methods in [18] and [22], which are some-

times more conservative than even the robust optimiza-

tion method. Due to the exact reformulation in Corollary

4, KL can never be more conservative than RO. For

the computational efficiency, KL achieves performance

similar to that of OPT-CVAR with faster runtime in our

simulations.

2) Stability and ease of use: Unlike other methods presented

in Section IV, KL does not require the tuning of any hy-

perparameters, particularly an ambiguity set radius, which

is unintuitive for practitioners. In addition, KL does not

ask the user to make implementation decisions as in [18],

which includes five different variants. Moreover, due to

Corollary 4, KL is guaranteed to be feasible as long as

the mild Assumption 1 is satisfied while methods that rely

on conservative approximations may become infeasible

for small ε. The reliability of the method is particularly

important for applications with large-scale networks and

AC power flow models.
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