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Distributionally Robust Joint Chance-Constrained
Optimal Power Flow Using Relative Entropy

Eli Brock
and Somayeh Sojoudi

Abstract—Designing robust algorithms for the optimal power
flow (OPF) problem is critical for the control of large-scale power
systems under uncertainty. The chance-constrained OPF (CCOPF)
problem provides a natural formulation of the trade-off between
the operating cost and the constraint satisfaction rate. In this work,
we propose a new data-driven algorithm for the CCOPF problem,
based on distributionally robust optimization (DRO). We show that
the proposed reformulation of the distributionally robust chance
constraints is exact, whereas other approaches in the CCOPF
literature rely on conservative approximations. We establish out-
of-sample robustness guarantees for the distributionally robust
solution and prove that the solution is the most efficient among all
approaches enjoying the same guarantees. We apply the proposed
algorithm to the CCOPF problem and compare the performance
of our approach with existing methods using simulations on IEEE
benchmark power systems.

Index Terms—Distributionally robust optimization, optimal
power flow, chance constraint.

NOMENCLATURE
Parameters
v Ratio of reactive power to real power
for VRE output.

QeR™: Y, % =1 AGC participation factors.

7 eR™ Active power line flow limit.

BG,PG eR” Lower and upper active generation
limits.

QG,@G eR” Lower and upper active generation

o limits.

v,v € R"” upper and lower squared voltage
magnitude limits.

ckg €R dth degree cost coefficient for gen-

erator at bus k
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PP QP cR" Active and reactive loads.

Sets

L=NxN Lines.

N={1,...,n} Buses.

PO, PV, VO Load buses, generator buses, and
slack buses.

Variables

{eN” Active power flow.

feC” Voltage phase angles.

P,QeR" Active and reactive power injections.

veR” Squared voltage magnitudes.

I. INTRODUCTION

EVELOPING resilient algorithms for the optimal power

flow (OPF) problem is fundamental to efficient and reli-
able decision-making in large-scale energy systems. The OPF
problem consists of minimizing some objective, including but
not limited to generation costs, subject to the physics of the
power network as well as additional constraints on power quality,
safety, and reliability. Independent system operators solve OPF
atseveral timescales, from hours to minutes ahead of the dispatch
time, in order to manage the market and match supply to demand.
Traditionally, the primary source of uncertainty in optimal power
flow was stochastic loads. This uncertainty was handled through
forecasts which were accurate enough that mismatches between
supply and demand could be handled in real-time without a sig-
nificant deviation from nominal network and market conditions.
However, given the growing penetration of variable renewable
energy (VRE), more sophisticated methods will be necessary
to ensure that decisions can be made as efficiently as possible
while being robust to large forecast errors.

Random power injections from VRE forecast error affect
the power flow of the network, which appears in the con-
straints of the OPF problem. To deal with the randomness in
the constraints, a suitable definition of constraint satisfaction is
required to define the feasible set of the problem. For example,
the robust optimization (RO) approach was proposed in [1]
and [2] to find the worst-case solution, namely, the optimal
decision that satisfies all constraints for all possible realizations
of the randomness in the system. The RO approach produces
the most conservative solution and results in a high operational
cost.
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Chance-constrained optimal power flow (CCOPF) allows for
a small user-specified probability of violating the constraints in
the OPF solution in exchange for a much better operational cost
(small violations will later be handled via a real-time control
mechanism). Chance-constrained methods avoid the conserva-
tiveness associated with the RO approach, which ensures an
operating point that is feasible for all possible realizations of
a system’s forecast errors. Refer to [3] and [4] for popular
formulations of CCOPF.

A challenge for CCOPF is that the true underlying distri-
bution of the random parameters is generally unknown and
must be inferred from historical data. Conventional data-based
reformulations of chance constraints include the sample aver-
age approximation [5] and the scenario approach [6]. Given
an allowable violation probability and a tolerance parameter,
these approaches lower bound the number of samples required
to achieve a given degree of confidence in the probability of
satisfying the chance constraints. The sample average approx-
imation is easily applicable but may lead to a high-variance
estimate of the true distribution. The scenario approach is ap-
plied for CCOPF in [3] and [4]. However, the scenario approach
is sample-intensive, may be overly conservative, and is often
computationally complex. Additionally, more sample-efficient
methods allow for samples over longer time horizons (i.e., a day
instead of an hour) to be aggregated into a single realization of a
random vector, which could reduce bias if forecast errors follow
temporal patterns.

Distributionally robust optimization (DRO) addresses the is-
sue of unknown true data-generation distributions by enforcing
the chance constraints for all distributions in an ambiguity set
centered, in the sense of some characteristic feature of probabil-
ity distributions, around the empirical distribution [7]. The idea
is that, given enough samples, the true distribution is highly
likely to fall inside the ambiguity set. Several papers have
applied DRO techniques to OPF or related problems in energy
systems. The authors of [8], [9], [10], [11] employ moment-
based ambiguity sets containing probability distributions with
the first and second moments close to those of the empirical
distribution. Li et al. [12] add a unimodality assumption to the
moment-based sets to reduce the conservatism. Moment-based
ambiguity sets often yield exact tractable reformulations of the
chance-constrained program, but they lose information about
the true distribution revealed through other features of the data.
Metric-based ambiguity sets, by contrast, are constructed using
measures of distance between probability distributions, most
often the Wasserstein metric, and are more expressive. The
metric-based approach has the advantage that various statistical
consistency and convergence guarantees can be established for
DRO estimators [13], [ 14]. To reformulate the chance constraints
as tractable constraints, inner approximations of Wasserstein
metric-based ambiguity sets, such as hyper-cubes [15] and poly-
topes [16], have previously been studied. However, these inner
approximations are overly conservative in practice and lead to
pessimistic estimations.
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The DRO approaches discussed in the last paragraph are
designed for disjoint chance constraints, in which each constraint
individually must be satisfied with a given probability. The
chance constraints in CCOPF are formulated disjointly for each
two-sided constraint [11], [15], [16] or separately for each upper
and lower bound [8], [9], [12]. Joint chance constraints, by
contrast, require that a solution be feasible, that is, satisfies all
constraints simultaneously, with a given probability. Given the
same violation probability, joint chance constraints are clearly
stronger than disjoint chance constraints. In addition, the joint
CCOPF problem is less studied in literature compared to the dis-
joint counterpart. Joint chance constraints can be guaranteed by
applying the Bonferroni approximation to appropriately scaled
disjoint chance constraints; see [17]. However, this approach is
highly conservative and does not exploit the potential correlation
between random variables in different constraints. Intuitively,
when the randomness between constraints is highly correlated,
joint chance constraints can be satisfied at a cost that is only
slightly higher than that of the chance constraint of a single
stochastic constraint. Yang et al. [ 18] build on the Bonferroni ap-
proach and achieve an inner approximation of a moment-based
ambiguity set for the joint case.

The particularly interesting line of work [19], [20], [21],
[22], [23] is inspired by [13], which provides a reformulation
of Wasserstein metric-based DRO problems using conditional
value-at-risk (CVaR). The two-part work [19]-[20] is the first to
apply the CVaR reformulation to OPF by penalizing constraint
violations in the objective function; however, this is not a chance-
constrained approach and cannot guarantee the satisfaction of
the constraints in any well-defined sense. Ordoudis et al. [23]
propose a (nonconvex) CVAR-based inner approximation of
the Wasserstein metric-based ambiguity set and proposes an
iterative algorithm to solve it. Poolla et al. [21] approximate
the joint chance constraints using the Bonferroni approximation
and reformulate them using CVaR. To achieve the reformulation,
the authors use an inner approximation of the ambiguity set
via a hyper-rectangle in the parameter space. Arab et al. [22]
improve on [21] by using an ellipsoidal approximation, which
reduces the conservativeness by exploiting the correlation be-
tween random variables. While the ellipsoidal approximation
improves on the hyper-rectangle approximation, the method
in [22] remains overly conservative as a consequence of mis-
match between the inner approximation and the ambiguity set;
see Section IV for numerical illustrations. To address the above
issues, we build upon the conference paper [24] tailored to a
class of non-convex problems using DRO to study the CCOPF
problem. Compared to [24], we develop strong theoretical results
in the context of power systems, and we numerically illustrate
the empirical performance of our approach on benchmark IEEE
power systems. Compared with [22], [23], our approach does
not rely on the prior assumption that the ambiguity set can be
well approximated by an ellipsoidal or a CVAR approximation.
Furthermore, we establish a high-probability guarantee on the
constraint satisfaction rate under the true distribution and prove
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that our solution achieves a lower generation cost than any other
method with the same guarantee.

Inspired by [14], we use a relative entropy-based ambiguity
set in our DRO formulation and establish stronger theoretical
guarantees than those in existing literature. We implement the
algorithms on benchmark OPF problem instances, showcasing
the advantages of our new formulation. We summarize our
contributions in the following:

e Instead of the commonly used Wasserstein metric, our
DRO formulation utilizes a relative entropy-based ambi-
guity set. We prove that the relative entropy-based formu-
lation comes with robustness guarantees on out-of-sample
performance and moreover admits the least conservative
DRO solution in the sense that the solution achieves the
minimum possible generation cost among all methods with
the same robustness guarantees.

® We provide an exact reformulation of joint distribution-
ally robust chance constraints over the ambiguity set. By
comparison, existing works construct an approximation set
of the ambiguity set and/or only consider disjoint chance
constraints, which makes it challenging to control the trade-
off between the efficiency and robustness of the solution.
Furthermore, our reformulation always leads to a feasible
problem, while existing approaches cannot guarantee the
feasibility.

® We empirically compare the performance of our DRO
approach with the state-of-the-art approaches in [ 18], [22],
[23] on the IEEE 14-bus and 300-bus test cases. We show
that our approach is able to find competitive and efficient
solutions that asymptotically satisfy the joint chance con-
straints, while the approximation algorithms in the litera-
ture can lead to overly conservative solutions.

We note that our exact reformulation is designed for the joint
chance constraint and does not include the relaxations of OPF
models (e.g., the semi-definite relaxation of AC OPF model).
The exact reformulation of chance constraints and relaxations
of OPF models are discussed in Sections II and III, respec-
tively. In [14], the authors established the optimality guarantee
of a relative entropy-based ambiguity set in the context of
minimizing the expected value of an objective function with
deterministic constraints. We have adopted the same definition
of the ambiguity set and extended the optimality guarantee to the
chance constraint case; see Theorems 1 and 2 for the theoretical
guarantees. We have modified the theory in [14] and established
similar optimality guarantees for the chance-constrained setting.

Table I summarizes the relevant existing literature on DRO
for power systems (most, but not all, of the listed papers focus
on OPF) and illustrates our contributions. It is worth men-
tioning that all works in Table I except [22] use the common
linearized DC approximation of the nonlinear power flow equa-
tions, though this approximation is not always coupled to the
specific handling of chance constraints. In comparison, we allow
for the full AC OPF problem in this work.

The remainder of the paper is organized as follows. In
Section II, we develop a new exact reformulation of general
joint chance-constrained problems. In Section III, we introduce
chance-constrained optimal power flow and present different
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TABLE I
COMPARISON OF RELEVANT CHANCE-CONSTRAINED OPF LITERATURE

chance-constrained | joint | metric-based exact reformulation
[8] v X X v
[16] v X v X
[11] v X X 4
[15] v X v X
[91 4 X X v
[12] v X X v
[18] v v X X
[19], [20] X v v
[23] v v v X
[21] v v v X
[22] v v v X
this work v v v v

models and techniques to arrive at a problem compatible with
the general formulation from Section II. Finally, in Section IV,
we implement the proposed algorithm to verify the theory and
demonstrate the strong empirical performance compared with
existing algorithms. We conclude the paper in Section V. The
proofs are provided in the online version [25].

Notation: For every positive integer n, we define [n] :=
{1,...,n}. The set of n-dimensional integer, real and complex
vectors are denoted as Z™, R™ and C", respectively. Similarly,
we use R"7*" and C™*™ to denote the set of m-by-n real and
complex matrices, respectively. Let 1,, and 0,, be the vectors
with all elements equal to 1 and 0, respectively. Denote ey,
as the k-th standard basis vector of R™. For any two matri-
ces X,Y € R™ ™, the inner product between them is defined
as (X,Y) :=Tr(XTY), where Tr stands for the trace. For
each vector v € R", we say v < 0,, if vi, <0 for all k € [n].
Let | - || be the 2-norm of vectors. We say f(S) = o(9S) if

II. DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH

In this section, we use DRO techniques to develop exact
reformulations of chance-constrained optimization problems.
We show in the following sections that the proposed reformu-
lation approach can be applied to deal with both AC and DC
CCOPF problems; see Section III for more details. To preserve
the generality of our results, we consider the general objective
function and constraint function

gX):RT¥—= R, h(X,€):RYxR" — R™,

where random vector £ € R™ obeys the distribution Py, and
integers d and m are the size of input variable X and the number
of constraints, respectively. In this subsection, we consider the
optimization problem with stochastic constraints:
min ¢g(X) s.t.h(X,&) < 0,,. (1
XeRd
Note that our theory can be extended to the case when random-
ness £ also occurs in the objective function g or the feasible set
is a convex subset of R?. We focus on the simpler problem (1)
as our objective is to solve the CCOPF problem (11). We make
the following assumption:
Assumption 1: The support of Py belongs to a compact
set = C R™. Both functions g(-) and h(-,-) are continuous.
In addition, for every positive integer S and all realizations
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&1,...,&s € R”, problem
(X) st h(X, &) < O, Vi € [S5]

min
XeRd
is feasible and has a finite optimal value.

Assumption | requires that the constraints can be satisfied
regardless of the forecast error &. This is generally satisfied by
real-world OPF problem instances, which have sufficient reserve
and transmission capacity to handle renewable forecast errors
when properly operated; see the discussion in Section IIT for
more details.

To deal with the stochastic constraint in problem (1), we
target finding the minimum-cost solution under the joint chance
constraint

Py [h(X,€) < 0,] > 11—, 2)

where € € (0, 1] is the pre-specified maximum failing probabil-
ity.

Remark 1: More generally, our results can be extended to the
case when the joint constraints are defined by a convex cone

Py [w"h(X,£) <0, YweW] >1—¢, 3)

where W is the convex cone spanned by weight vectors'
w1, . ..,wr. Constraint (3) reduces to the cardinal case (2) when
L = m and w, = e forall £ € [m].

Suppose, as is the case for VRE generation, that the true
distribution Py is unknown and only limited historical samples
may be available. Suppose that there are S independently and
identically distributed samples, £', ..., &%, generated from the
distribution Py. We define the empirical distribution of ¢ as

EDS = % Z 551«,
]

ke[S

where d¢ is the Dirac measure at £. The goal of the DRO approach
is to use the information from the empirical distribution Ps to
find robust solutions that satisfy the chance constraint (2) with
high probability. Define the ambiguity set

D, (P):={P e P|I(P,P)<r}, YPEP,

where I(-,-) is the relative entropy [26], > 0 is the radius
and P is the family of Borel distributions with support in =. The
robustness of the DRO solutions is guaranteed by the satisfaction
of chance constraints under all distributions in the ambiguity set
D, (Pg). Other distributional metrics, such as the Wasserstein
metric, are also considered in CCOPF literature [21], [22]. In
this work, however, we use the relative entropy due to the strong
optimality guarantees it can provide; see Theorems 1-2 and [14],
[26]. Intuitively, large deviation theory guarantees that the rel-
ative entropy between the true data-generation distribution and
the empirical distribution can be bounded by a value that depends
on the sample size [26]. Hence, the true distribution is contained
in the ambiguity set with high probability. Critically, the relative
entropy-based ambiguity set is the “smallest” ambiguity set with
such a property [14].

A vector w € R™ is called a weight vector if w > 0, and lfnw =1.
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Remark 2: In DRO literature [27], [28], [29], [30], a similar
ambiguity set, defined as

D, (P):={P eP|I(P,P)<r}, VPeP,

has been widely studied. Unlike D,.(IP), the fixed distribution P
appears in the second argument of /. The two ambiguity sets are
different because the relative entropy is asymmetric. By placing
the perturbed distribution P’ in the first argument, the alternative
ambiguity set only includes distributions that are absolutely
continuous with respect to P, which may not include P, when
P = Pg and therefore restricts the robustness guarantees that can
be established. For this reason, we depart from the traditional
relative entropy-based DRO literature and study D,. instead of
@T. See Remark 3 in [14] for a more detailed discussion.

Since we lack knowledge of the true distribution Py, we
approximate the chance constraint (2) with the distributionally
robust chance constraint

inf P [A(X,£) <0n] > 1~ 4)
P'eD,. (Ps)

Intuitively, the true distribution IP belongs to D, (I@’S) with a high
probability in terms of € and S. Hence, the chance constraint (2)
holds with high probability if the distributionally robust chance
constraint (4) is satisfied. We prove the claim rigorously in the
following theorem.

Theorem 1: For all € € (0,1] and r > 0, if X € R satisfies
constraint (4), then it holds that

Po[h(X,€) <0,]>1—€c—exp[-rS+0(S)], ()

where P, is the probability measure of the sample path space
of ¢ under distribution Py.

In the regime when the support = is a finite set, we can apply
the strong large deviation principle [ 14] and derive the following
finite-sample bound in the same way as Theorem 1:

P [ (X,6) <0, >1—e—(S+ 1) ™. (6)

We include the finite-sample bound (6) for theoretical com-
pleteness and the forecast error for VRE can have a continuous
support. In particular, the high-probability bound (5) is satisfied
by the solution to the distributionally robust chance-constrained
problem

X := arg min ¢(X) s.t. chance constraint (4). (7)

erPs XeRd

In the following theorem, we show that Xe,r,ﬁ’s achieves the
minimum cost among all inputs that satisfy the high-probability
bound (5) and are constructed from the empirical distribution
Ps.

Theorem 2: Suppose that X67T7[p> € R% is a quasi-continuous
function of distribution P and that Xe,r,ﬁ”s satisfies constraint
(5). Then, we have

Poo 9 (Xs) <0 (Xe,s,) ] =00

Combined, Theorems 1 and 2 establish out-of-sample perfor-
mance guarantees for the relative entropy-based distributionally
robust approximation to the chance constraint (2), and they

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 09,2025 at 16:47:21 UTC from IEEE Xplore. Restrictions apply.



2906

show that it is optimal among all solutions that satisfy these
guarantees.

Although its solution enjoys the attractive properties estab-
lished above, the DRO problem (7) is not in a form that can be
handled directly by existing solvers. In Lemma 3, we derive an
equivalent form of the chance constraint (4), which will facilitate
a reformulation of (7) as a practically solvable problem. First,
we define the scalar-valued maximum over the constraints for a
given X and realization of &

B, ) = max (X €)

and the worst-case constraint value

h(X) := I?Ea:x h(X,¢).

Lemma 3: For all €€ (0,1] and r > 0, there exists a
k(e,r,S) € [S + 1] such that (4) is satisfied if and only if

min* ("% {R(X, &) | j € [S]} U {h"(X)} <0,

where min® 7" indicates the k-th smallest value in set 7. In
addition, the integer k(¢,r, S) is the solution to

max k
ke[S],peRS+1

st. > pj<l—e1§,p=1p>0g1,
JE(k]

- Z log(Sp,) < Sr.
Jjels]

Lemma 3 implies that the distributionally robust approxima-
tion of the chance constraint (4) is equivalent to enforcing the
(e, r, S) least restrictive constraints derived from the samples.

Remark 3: We note that a similar technique has been utilized
in Theorem 8 in [28], where the threshold B can be viewed as a
counterpart of 1 — k(e,r,S)/S. In general, 3 takes a different
value since they used a different ambiguity set (see Remark 2).
In addition, the optimization problem for /3 (i.e., problem (31)
in [28]) is derived from the dual of a functional optimization
problem, whose optimal Lagrangian multiplier has a closed
form. In comparison, the counterpart of the functional optimiza-
tion problem in our formulation does not accept a closed-form
solution for the multiplier; see problem (29) in [14] for the dual
problem. Therefore, it is necessary to use our method to compute
the value of k(e, 7, S).

We now present our main result. Lemma 3 allows for an exact
reformulation that can be applied directly to CCOPF problems:

Corollary 4: Problem (7) is equivalent to

9(X)

min
XeR4,zeZS

s.t.if z; = 0 then h(X, &%) <0, Vj € [S],
15z < S —k(e,r,S), z; €{0,1}, Vje[S].
®)

Problem (8) can be formulated as a mixed-integer program
(MIP) by implementing the logical indicator constraint us-
ing the big-M method (some solvers and algebraic modeling

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 40, NO. 4, JULY 2025

languages will perform this reformulation automatically). De-
pending on the structure of g and h, problem (8) may be a
mixed-integer linear program (MILP) or a convex/nonconvex
mixed-integer nonlinear program (C-MINLP/NC-MINLP). Off-
the-shelf solvers exist for all three problem classes, though NC-
MINLP solvers such as Bonmin and Juniper typically use local
algorithms as heuristics for the relaxed continuous subproblems
and therefore cannot guarantee the global optimality. Com-
pared to existing DRO formulations [18], [21], [22], [23], our
formulation provides stronger guarantees in the following two
senses. First, the DRO solution Xs,r,l@s achieves the minimum
possible cost over all robust solutions that satisfy the joint chance
constraint (5). This optimality property arises from the choice
of the relative entropy for the ambiguity set, and such property
cannot be established by other distributional metrics, although
the Wasserstein metric can provide similar high-probability
bounds [13]. Second, the mixed-integer reformulation (8) is
exact. In contrast, existing literature on distributionally robust
CCOPF considered approximations to the ambiguity set. For
metric-based ambiguity sets, these are inner approximations that
may be overly conservative [21], [22], [23]; see the comparison
results in Section IV.

In practice, it is preferable for the user to first specify & and
then compute the optimal € and r to maximize the right-hand
side of (5). Given k € [S] and € € [1 — k/S, 1], the maximal
radius r such that k(e, r, S) = k is given by

——El S(1—e) _S’—kl Se
T8 k s B\e—% )

where we define 0 log 0 = 0. Therefore, when the sample size S
is sufficiently large, we ignore the o(S) term on the right-hand
side of (5) and solve the maximization problem

€rg = argmax 1
’ e€[l-k/S,1]
8% k_S—k
_E_kk(ka)ka(l_e)e , )

where we define 0° = 1. The solution to the above problem
approximately maximizes the right-hand side of (5) and can be
efficiently found by the bisection algorithm.

III. CHANCE-CONSTRAINED OPTIMAL POWER FLOW

In this section, we consider the chance-constrained optimal
power flow (CCOPF) problem. We present multiple versions of
the problem associated with different relaxations and lineariza-
tions of the power flow equations. While the complexities of the
formulations differ, the DRO techniques developed in Section II
can be applied to any of them.

A. Formulation

The CCOPF problem requires choosing an operating point of
apower network that is robust to perturbations caused by the real
power forecast error, assumed here to be the result of uncertain
VRE generation. Consider a network operating at (P, Q, v, 6)
perturbed by a particular forecast error realization £ € R™. The
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resultant state, denoted using -, satisfies

Py =P+ & — kangj, Vk € PQUPY, (10a)
Qr = Qr + vk, Vk € PQ, (10b)
T = vg, VE e PYUVE, (10c)
0, =0, Vk e Vo, (10d)
f (15,@,6,9, Z) =0, (10e)

where 7 is assumed here to be fixed for all VRE generators.
To avoid notational clutter, we suppose that all buses have
generators and simply set the upper and lower generation limits
and AGC factors to zero at a given bus if no generator exists.
Equation (10a) models the active perturbations from the forecast
error along with the automatic generator control (AGC), in
which each generator is responsible for compensating for a fixed
proportion of the forecast error (the change in losses is accounted
for by the slack bus). The active generation at the slack bus V0
is unconstrained to allow for real loss compensation. Equation
(10b) models reactive perturbations, whereas generator buses
are free to adjust their reactive power to maintain a consistent
voltage. Equation (10c) keeps the voltage magnitude constant
at buses with generators. Equation (10d) fixes the slack bus
voltage angle. In this work, we choose €2 to be proportional
to the generator capacities, which is a common and reasonable
choice for a fixed 2. Our results can be extended to the case
where (2 is set as a decision variable. We keep (2 fixed to simplify
our experiment setting and focus on illustrating the proposed
method.

Finally, Equation (10e) encodes the power flow model, given
here in polar coordinates, which describes the physics of the
network. Multiple power flow models are available, which can
be categorized as either nonlinear AC power flow models or
linear approximate DC power flow models. Some models em-
ploy only some of the physical quantities in the arguments of
(10e), in which case the chance constraints associated with those
quantities can be dropped.

Defining w:= [P Q v 6 /|7 € R**+"" and W accord-
ingly, there exists a unique implicit function u(w, -) of the fore-
cast error £ such that w = u(w, 0,,) and w = u(w, {) satisfies
Equations (10) for any £. This is a consequence of the implicit
function theorem.

In context, this means that once the operator chooses a dis-
patch and assigns participation factors €2, the network state is de-
termined by the forecast error. Chance constraints are introduced
in order to ensure satisfaction of limits on line flows, voltage
magnitudes, and generator outputs, resulting in the following
joint chance-constrained problem:

min  ¢(P) (11a)
st f(w) =0, (11b)
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&SUP(W,&)"‘PD_gSPG,
Po v < uy(w,§) <7, z1-¢
—0 < up(w,€) <L
(11c)

where [P is the distribution of perturbation £ and up, ug, ., and
uy are the block components of u associated with the subscripted
variables in w. The objective is the generator cost:

c(P) = Z [Ck0+ck1(Pk+Plcl))+Ck2 (Pk+PkD)2] .
keN
It will be convenient to express the chance constraint in a
compact form. Let CC denote the set of indices of w associated
with the chance-constrained quantities (P, @, v, ¢). With a suit-
able choice of A € R(6n+n*)xn and b € R6"+7°  the chance
constraint (11c) becomes

Po [uce(w,§) + A <b] > 1 —e. (12)

In our formulation of the CCOPF problem (11), Assumption 1
is satisfied unless, for instance, the reserve capacity of conven-
tional generators is insufficient to compensate for some realiza-
tions of the forecast error. In this case, CCOPF may be infeasible;
however, it is reasonable to assume that realistic power networks
have sufficient capacity to handle any realization of the forecast
error if properly dispatched.

B. Approximate Linear Uncertainty Response

In the case of AC models, we cannot yet apply Corollary 4
because problem (11) is a semi-infinite program (SIP) in gen-
eral due to the lack of an explicit expression for u(w, ). The
existing literature [3] and [4] discussed this issue and proposed
approximations of the chance constraints. In this work, we adopt
the popular linear approximation from [3], although our method
can also be applied to the relaxation from [4].

Following [3], we note that the forecast errors £ are typically
small relative to the loads P”. Hence, we replace u(w, &) by
its first-order approximation at £ = 0,,. More specifically, we
define the Jacobian matrix

0
Jw = —ucc(w,0,), VYwe Rén+n?

23

Then, the constraint (12) can be approximated by

Po [wee + (Jw +A)E<b] > 1—c (13)

The implicit function theorem provides a closed-form expres-
sion for the Jacobian J,; we provide it here for completness.
Write (10) in compact form as

U(w,&) =0.
Then

-1
Ty =— {;W(W,On)} Sw(w0.) (4

W o0&

Replacing the constraint (12) with (13) makes problem (11) a
chance-constrained program with a finite number of constraints.
Applying the proposed distributionally robust reformulation of
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the chance constraints, we obtain the mixed-integer nonlinear
program

rr‘li‘i,n c(P)
st. f(w) =0,

ifz; =0, then wee + (Jw + A) & <b, Vje 9],
15z < S —k(e,r,S), z; €{0,1}, Vje[S]. (15

Unlike the SIP (11), problem (15) is a MINLP in general and can
be handled by off-the-shelf solvers. If f encodes a linear power
flow model such as DC-OPEF, then the first-order approximation
of the system response is exact and problem (15) is a MILP.
On the other hand, if f encodes an AC power flow model, then
existing solvers are heuristics and cannot guarantee optimality.

C. DC Power Flow Formulation

First, we apply the techniques from Sections III-B and III-C
to the approximate linear DC power flow model, which is given
in the context of (10) by

z:lce/\/P’c
{—dP

f(P,f) = l

This is the power transfer distribution factor (PTDF)-based DC-
OPF formulation, where ® is the PTDF matrix and / is taken to
represent (directed) real power flow. Since the model is linear,
the system response functions can be computed in closed form
as

Corollary 4 can now be applied directly.

D. AC Power Flow Formulation

We use the quadratic form of the AC power flow equations.
Defining Yy, Yi,, Y, and My, as in [31], define

P - XY, X, VkeN
“ Qk - XTYkX, Vk e N
f(PaQ7’U7€aX) =

Ejk — )(Tijk)(7 V(j, ki) eL

v — XTM X, Vk e N

Make the change-of-variables

VU ® cosf
Vv ®sinf

Then, the AC power flow model can be written as

X = . (16)

fw) = f(P,Q,v,6,X) = f(W),
where we define w := (P, Q, v, ¢,X). Since we have made a
change-of-variables, we define the implicit function in terms of
w that characterizes the system response to forecast errors £. By
the implicit function theorem, there exists a unique function
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u(w, &) of the forecast error § such that w = (W, 0,,) and
(P,Q,v,0,X) = u(w, &) satisfies (10a)—(10c) along with

Xjin =0, Vke Vo, (17a)

f(P,Q,0,6,X) = 0. (17b)

As before, we define

J 0 - n+n?
Jw = gguCc(W,On), Vw € RAn+7",

which can be computed similarly to (14). Note that under the
change-of-variables mapping (16) between w and w, it holds
that dce(W, &) = uee(w, ). Given this equivalence, problem
(15) becomes

min ¢(P)
st f(W) =0,

if z; = 0, then Wee + [jw + A] & <b, Vjels],

152 < S —k(e,r,S), z; €{0,1}, Vje[S]. (18)

Problem (18) is now in a form that can be handled by local-
search NC-MINLP solvers. Since these solvers are heuristics,
one may wish to apply relaxations and approximations to (18).
In the following subsections, we explain two techniques which,
for networks satisfying certain sufficient conditions, recast (18)
as a C-MINLP that can be solved globally by appropriate solvers.

1) Fixed-Point Algorithm: One source of nonconvexity in
(15) is that the Jacobian jw is nonconvex in w. This can be
partially addressed by applying the fixed-point iteration in
[3, Sec. V. B.]. The pseudo-code of this heuristic algorithm is
provided in Algorithm 1. Intuitively, if the initialization is close
to the solution, the fixed-point iteration enjoys fast convergence.

In most applications, the forecast errors are small
relative to the forecast power injections and thus, our approxi-
mation scheme is considerably accurate in the following sense:

1) The first-order approximation is acceptable under a wide

range of operating conditions.

2) The robust solution to the chance-constrained problem is

expected to be not too far from the deterministic solution
(i.e., the solution with £ = 0,,).

As a consequence, although there is no convergence guaran-
tee, the fixed-point iteration exhibits efficient and robust conver-
gence in practice; see the numerical experiments in Section [V
and [3].

A number of methods can be applied to solve step 5. If the
method proposed here is applied, step 5 becomes

W1 < arg H‘l"i]n ¢(P)

st. f(w)=0,
ifz; =0, thenwee + (Jw, + A) & <b, Vjel9],
152 < S —k(e,r,S), z; €{0,1}, Vje[S]. (19)

Other authors, such as [22], have taken an even simpler ap-
proach by using the Jacobian evaluated at the deterministic
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Algorithm 1: Fixed-Point Iteration for Joint CCOPF Prob-
lem.

1: Input: tolerance p, maximum violation probability e.
2: Output: robust solution w.
3: Initialization:

wo  argmin ¢(P)
w

st. f(w) =0, wee <b.

4: fort=20,1,... do
5:  Update w4 to be the (approximate) solution of

m“i,n c(P)
s.t. f(w) =0,
Po [wee + (Jw +A)) €] > 1 ¢

6: If D(wiy1 — wy) <1, return wyy .
> D is some appropriate measure of distance.
7: _end for

(20)

solution obtained from assuming a zero forecast error (i.e., wg in
Algorithm 1).

2) Convex Relaxation: The second source of nonconvexity
arises from the nonlinearity of f . This may be addressed by
applying the well-known semi-definite relaxation from [31]. The
relaxation is known to be exact for a large class of networks,
including many IEEE benchmark cases.

Other convex relaxations of AC power flow models exist
and can be applied along with our method. These include the
second-order cone relaxation for the QCQP formulation and the
second-order cone relaxation of the branch flow equations,
both of which are exact for radial networks under mild con-
ditions [32]. We note that it is necessary to apply the reduction
method in [32] to recover the rank-1 solution from the SDP
solution, which usually has a higher rank. In our experiments,
we are always able to recover a rank-1 solution and the results
presented are computed using the recovered rank-1 voltage
vector instead of the SDP solution matrix.

If both the fixed-point iteration and a relaxation are applied,
problem (15) reduces to a C-MINLP problem. Either method
described here may also be used independently to reduce the
nonconvexity of (15) before passing to a local-search solver.

IV. DEMONSTRATION ON IEEE TEST CASES

In this section, we apply the proposed DRO approach to IEEE
benchmark power systems and show the empirical performance
of our method over existing methods in the literature. To help
the readers better understand the operation of our approach, we
first demonstrate the algorithm on a simple 14-bus example and
explain each step in detail. Then, we consider both the DC and
AC models for the CCOPF problem. We focus on the 14-bus
and 300-bus systems, and we compare the performance with
several existing DRO algorithms. For each case, the satisfaction
rate, the generation cost and the running time are exhibited to
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Fig. 1. The 100 historical samples with the two worst-case samples in red.

verify our theory and illustrate the advantage of our developed
approach.

A. Tutorial

To build intuition, we first present a walkthrough of the
proposed method on a simple example. Consider the IEEE
14-bus test case with VRE generators installed at buses 2 and
3, each with a forecast output of 20 MW. The VRE forecast
error follows a multivariate normal distribution, constructed as
described in Section IV-C (except without the clipping). For
simplicity, we consider the DC model where only real generator
outputs and line flows appear in the chance-constraints. Line
flows in this example are set sufficiently high as to always
be inactive, so we only consider generator output. The 14-bus
case has 6 generators, located atbuses 1,2, 3, 6, and 8. Generators
1 and 2 have linear costs of $20/MW, while the others have
linear costs of $40/MW; the quadratic components of the costs
are relatively small. Assuming no forecast error and solving the
deterministic OPF, the optimal dispatch is to supply the full net
load of the network using generator 1, with all other generator
outputs set to zero. However, under the AGC scheme described
in Section III-B, this decision will result in the zero-output
generators carrying insufficient downward reserves in case of
unexpectedly high VRE output.

Suppose that a system operator has access to 100 historical
samples of the outputs of the VRE generators at buses 2 and 3
and wants to ensure that the remaining generators carry sufficient
downward reserves at least 90% of the time. To apply the
proposed method, the system operator must enforce the con-
straints under all but a small number of the historical scenarios.
Specifically, it must find the smallest & such that € ,,, is no
more than 0.10, where ez, g is given in (9). In this case, we have
€97.100 = 0-109 and €55 199 = 0.0924. Therefore, to find the
optimal generation coast, the operator enforces the constraints
under the 98 best-case samples. Fig. 1 shows the 100 samples
and the worst-case pair selected by solving the mixed-integer
reformulation.

As expected, the worst-case set of two samples for this
example are those where VRE output exceeded the forecast,
requiring higher downward reserves. Note that despite only
requiring 90% constraint satisfaction, 98% of the samples must
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Fig. 2. The output distribution of generator 2 under the proposed method
compared to the zero-error dispatch.

be enforced to obtain the out-of-sample performance guarantee
from Theorem 1. As more samples are available, fewer “ex-
tra” samples will be required as the empirical distribution will
better approximate the true distribution. Practically, enforcing
the 98 best-case samples means that generators 2-6 produce
a small amount of power to allow for downward generation
response. This results in a higher total generation cost, but is
much more robust to errors. Fig. 2 shows the output distri-
bution of generator 2 after the AGC redispatch for 1000 test
samples, drawn independently of the historical samples from
the same generation distribution. The two subplots show the
distributions for the zero-error deterministic setpoint and the
distributionally robust KL setpoint. As expected, only a small
number of cases result in an output below the lower bound of
zero for the KL case, while the deterministic setpoint violates the
chance constraints approximately half of the time. All data-based
chance-constrained methods will accomplish the robustness in
a similar way. However, we prove in Theorem 2 that among all
methods which enjoy the out-of-sample performance guarantee
in Theorem 1, our proposed method is the most efficient in the
sense that it achieves the optimal generation cost. In the context
of this example, this means that generators 2-6 increase their
outputs just enough to maintain sufficient downward reserves
90% of the time (with high probability), but not more.

B. Overview of Benchmark Methods

Recall that the original problem of interest is (11). If a DC
power flow model is used, then the joint chance constraint (11c)
includes a finite number of linear constraints; we denote this as
the DC problem. For AC power flow models, (1 1c) has an infinite
number of constraints and we instead consider the approximate
problem with chance constraint (13). Although (13) is affine in
£, it remains nonconvex due to both the dependence of J, on
w and the nonlinear power flow equations (11b). We name the
problem with (13) as the AC problem. The nonconvexity in the
AC problem associated with J, can be mitigated by applying
the fixed-point algorithm discussed in Section III-E-1; we call
this the AC fixed-point approach (AC-FP). While the subprob-
lems (step 5 in Algorithm 1) in AC-FP remain nonconvex
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because of (11b), the chance-constraints are affine, allowing for
the application of appropriate reformulations from the literature.
For networks satisfying certain sufficient conditions, AC-FP can
be convexified through the semi-definite relaxation discussed in
Section III-E-2, giving the relaxed fixed-point approach, which
we name as SDP-FP.

We compare the proposed method (denoted as the KL
method) against three existing methods from the literature for
handling joint chance constraints using limited samples: the
Wasserstein-based ellipsoidal method (W-E) from [22], the op-
timal CVAR approximation (OPT-CVAR) from [23, Sec. 4.3],
and the moment-based optimized Bonferroni approximation
(M-OBA) method from [18, Sec. 3.A.]. Asdiscussedin Section I,
most other methods from the literature either consider individual
chance constraints or, in the case of the sample average or sce-
nario methods, require much more samples than we presume are
available to system operators. These methods are not suitable for
comparison as they do not share the problem setting considered
in this work. The methods selected for comparison constitute the
state-of-the-art in the CCOPF space to the best of the authors’
knowledge.

The authors of [18] used the M-OBA to approximate joint
affine chance-constraints as a single nonconvex deterministic
constraint. Additionally, multiple approximations and convex-
ifications of this constraint are presented. However, solving
the nonconvex OBA problem locally seems to have similar
performance in practice to the approximations as seen in [18,
Sec. V]. Therefore, we solve the OBA formulation locally as the
representative method of [18].

The KL approach could be directly applied to the AC problem
(without the fixed-point iteration or the convex relaxation). How-
ever, given the reliable performance of Algorithm 1 in practice
and to avoid corrupting our comparisons by potential non-global
solutions, we solve the SDP-FP formulation in our simulations
for the AC problem.

C. Experimental Setup

We demonstrate our method on the joint CCOPF problem (11)
for the IEEE 14- and 300-bus test cases. The starting system pa-
rameters are taken from the case data in MATPOWER 8.0 [33],
[34] and are prepossessed to allow for matrix-based analysis
using PowerModels.jlI’s make_basic_network utility [35].
Among other things, this preprocessing step adds reasonable line
limits even when they do not exist in the MATPOWER files.

We install VRE generators at the same buses and with the
same outputs as the simulations in [18], except we triple the
forecasts for the 300-node case. The participation factors €2 are
set proportional to the maximum output of each conventional
generator.

Again following [18], the samples £ are drawn from a multi-
variate Gaussian distribution A" (p, 3) with g = 0 and

Yii = Cpi, Vi, and Xi5 = pij\/ B/ g5, ViF g,

where p; is the forecast output of the VRE generator at bus ¢ and
pi; > 0 induces some correlation between VRE outputs, as will
happen in practice. We set ¢ = 0.05 for the 14-bus case, ¢ = 0.1
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for the 300-bus case, and p;; = p = 0.2 for both cases. Unlike
in [18], we clip the i-th component of each sample to [—p;, 2p;] to
model a VRE generator operating at one-third of its capacity. We
set v = 0.1 so that a small amount of reactive power is included
in the forecast error. For each case, we generate 200 historical
samples and compute the out-of-sample joint chance constraint
violation frequency on 10000 independent test samples.

All optimization problems are solved through the JuMP in-
terface [36], where QPs and MIQPs are solved by Gurobi [37],
SDPs are solved by Clarabel [38] and MISDPs are solved with
Pajarito [39] with SCIP [40] as the outer approximation solver
and Clarabel as the conic solver. Simulations are run on in Julia
1.11.0 on a 6-core 2.60 GHz laptop computer running Windows
11.

D. Comparison With OPT-CVAR and M-OBA on 14-Bus DC
Model

We first present results for the DC model of the 14-bus
network. Comparisons are made with OPT-CVAR and M-OBA,
both of which were introduced for DC problems. In this context,
the proposed KL method needs to solve a MIQP problem. The
OPT-CVAR solves a sequence of QPs and LPs, and the M-OBA
involves solving a NC-NLP. Recall that the KL method is most
naturally applied by choosing the minimum £ such that €}, ¢
as computed in (9) is at least the desired maximum violation
probability e. The other methods in the literature are applied
by choosing e directly. Therefore, we compare the methods by
testing on each k from 180 to 200, in intervals of 2, and feeding
the associated €}, ¢ to the other methods. For each k, we compute
the generation cost (efficiency) of the solution, the out-of-sample
violation frequency and the solve time. For OPT-CVAR,> we
choose a Wasserstein radius of p = 10~ and a minimum relative
improvement threshold of = 107°. The results are shown in
Fig. 3, where results of the KL method are shown as a solid line
while comparative methods are dotted.

The dotted line in the first subplot is simply y = 1 — x, repre-
senting the desired minimum out-of-sample violation frequency.
We expect the satisfaction rate of CC solutions to remain above
this line. This subplot gives the joint constraint violation; that
is, if any single constraint is violated for a given sample, the
joint chance constraint for sample is considered to be violated.
While KL and OPT-CVAR behave as expected, OBA produces
overconservative solutions with zero constraint violation proba-
bility regardless of € (OBA was infeasible for the smallest value
of € tested in this experiment). We note that since the DRO
solution is constructed based on the empirical distribution Pg,
there exists a gap between the estimated satisfaction rate and the
actual satisfaction rate; see the error term in Theorem 1. If the
number of samples .S becomes larger, the empirical distribution
]13’5 will correlate better with Py and the satisfaction rate will
converge to the pre-set value 1 — e.

The second subplot, showing the generation cost, is normal-
ized to the approximate robust optimization (RO) cost, which is

2We assume an unbounded support Z for the implementation of OPT-CVAR
as including the associated variables () proves extremely memory-intensive.
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Fig. 3. Performance on the 14-bus DC network.

computed by enforcing the constraints of 10000 training sam-
ples. As DRO is designed as a compromise between stochastic
programming and RO, distributionally robust methods should
generally achieve more efficient solutions than RO at the cost
of some robustness; that is, one should expect the costs to be
less than 1 in this subplot. As the KL. method reformulates the
chance constraints exactly, this is guaranteed to be true. Other
methods, however, use approximations to the chance constraint
and may be more conservative than RO in general. Indeed,
OBA proves to be extremely conservative, with normalized costs
greater than 1.006 for all values of € and is omitted from the
generation cost subplot so as not to distort the trends of KL
and OPT-CVAR. The deterministic solution, achieved by solving
the (non-chance-constrained) problem without forecast errors, is
also included as another benchmark. The deterministic solution
is not robust and will violate the chance constraints very often,
but its cost represents a loose lower bound on the achievable
efficiency gains of DRO relative to RO.

Both KL and OPT-CVAR exhibit the efficiency-robustness
trade-off as expected from DRO. As e grows, their out-of-sample
constraint satisfaction rate dips, though it remains well above
the 1 — e threshold. As a consequence, they close a signifi-
cant portion of the distance between the RO and deterministic
solutions. In these simulations, KL is slightly more efficient
than OPT-CVAR for larger ¢ and slightly less efficient for
smaller e. That CVAR may achieve lower costs than KL is
not a counterexample to the optimality guarantee in Theo-
rem 2, as this guarantee only applies to methods featuring the
specific out-of-sample performance guarantees in Theorem 1;
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Fig. 4. Performance on the 14-bus AC network.

CVAR, as a Wasserstein-based method, does not fall into this
category.

The final plot gives the solution time on a log scale. The OBA
runs the fastest, followed by KL, which is an order of magnitude
faster than OPT-CVAR. Notice that the solution time of KL is
lower for small values of e since the number of feasible integer
solutions for a given k is (‘2), which grows at an exponential

rate with respect to k.

E. Comparison With W-E on 14-Bus AC Model

We now test the proposed method on the SDP-FP formulation
using the AC power flow model presented in Section III-E
for the 14-bus network. We consider the SDP-FP formulation
instead of the AC or AC-FP problems since it results in a convex
problem and we are able to guarantee the global optimality;
the semi-definite relaxation is known to be exact for the 14-
bus network [31]. However, we emphasize that our method
could be applied to the AC or AC-FP problems with minor
changes.

We compare with W-E, as it was originally presented for
(relaxed) AC models. The physical solution to the original
problem is recovered from the matrix solution of the relaxed
problem by fixing the optimal values of [vyeupy Ppy] and
running a power flow (one could also apply [31, Cor. 2]). All
results presented here are calculated using the recovered physical
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solution, not the relaxed solution. In this context, the KL needs
to solve an MISDP and W-E involves solving a pair of SDPs.

The KL method applies the fixed-point algorithm (Algo-
rithm 1) to reduce the nonconvexity in J,. In our experiments,
we set 7 = 107* and D is taken to be the 2-norm between
the subvectors [vyeupy Ppy], which together fully specify
the power flow solution. For all experiments, the fixed-point
algorithm converged in 3 iterations or fewer. In contrast, in [22],
the authors simply linearized around the deterministic solution
rather than apply the fixed-point algorithm. The Wasserstein
radius (p in [22]) is set to 1076, This is the smallest (least
conservative) radius considered in [22]. As seen in Fig. 4, KL
is considerably less conservative even with such an aggressive
choice of Wasserstein radius. For small values of €, W-E pro-
duced a solution more conservative than RO. In terms of running
time, W-E runs faster than KL since KL involves a MISDP and
W-E only includes solving SDPs. In summary, we observe that
in the two 14-bus experiments, the metric-based methods (KL,
OPT-CVAR, and W-E) outperform the moment-based method
(OBA) in general.

F. Results for the 300-Bus Network

To demonstrate the scalability of the proposed method, we
demonstrate the performance of KL on the 300-bus network
using the DC power flow model presented in Section III-D and
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compare with the OPT-CVAR method. We generate S = 300
training samples and 10000 test samples. The sweep of k is
from 270 to 300 in increments of 3.

The KL method performs on the 300-node network as it
does on the 14-bus network, with the violation rate dropping
as permitted by e and bridging the gap in efficiency between
the RO and deterministic solutions. As for the 14-bus net-
work, KL is slightly more conservative than OPT-CVAR for
small ¢ and slightly less conservative for large e. For all e,
KL ran for the larger network with more samples in less than
10 seconds on a personal computer, approximately an order
of magnitude faster than OPT-CVAR. As OPF problems are
typically solved offline, this runtime is promising for larger-scale
implementations.

Notice that, though the values of k range from 90% to
100% of S in all three experiments, the values of € on the
x-axis are lower for when 300 samples are used rather than
200. This is because ¢ better approximates k/S as the sam-
ple size S grows. Intuitively, as more historical data is avail-
able, the empirical distribution more closely approximates the
data-generation distribution, allowing one to enjoy the same
high-probability bound while enforcing the constraints of fewer
samples.

V. CONCLUSION

This work proposes a novel distributionally robust optimiza-
tion technique for chance-constrained OPF problems with large
random VRE forecast errors. Between the theoretical and em-
pirical results, the advantages of the proposed method can be
broadly categorized as follows:

1) Efficiency: Theorem 2 guarantees that the KL solution
is the most efficient in terms of the generation cost
among all solutions achieving the out-of-sample perfor-
mance guarantees established in Theorem 1. In our ex-
periments, KL is considerably more efficient than the
state-of-the-art methods in [18] and [22], which are some-
times more conservative than even the robust optimiza-
tion method. Due to the exact reformulation in Corollary
4, KL can never be more conservative than RO. For
the computational efficiency, KL achieves performance
similar to that of OPT-CVAR with faster runtime in our
simulations.

2) Stability and ease of use: Unlike other methods presented
in Section IV, KL does not require the tuning of any hy-
perparameters, particularly an ambiguity set radius, which
is unintuitive for practitioners. In addition, KL does not
ask the user to make implementation decisions as in [18],
which includes five different variants. Moreover, due to
Corollary 4, KL is guaranteed to be feasible as long as
the mild Assumption 1 is satisfied while methods that rely
on conservative approximations may become infeasible
for small e. The reliability of the method is particularly
important for applications with large-scale networks and
AC power flow models.
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