
IEEE Open Journal of

Control Systems

Received 24 July 2024; revised 22 October 2024; accepted 19 November 2024. Date of publication 27 November 2024;
date of current version 9 January 2025. Recommended by Senior Editor Dr. Alberto Speranzon.

Digital Object Identifier 10.1109/OJCSYS.2024.3507452

Exact Recovery for System Identification With
More Corrupt Data Than Clean Data

BATURALP YALCIN 1, HAIXIANG ZHANG 2, JAVAD LAVAEI 1, AND MURAT ARCAK 3

1Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720 USA
2Department of Mathematics, University of California, Berkeley, CA 94720 USA

3Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 USA

CORRESPONDING AUTHOR: BATURALP YALCIN (e-mail: baturalp_yalcin@berkeley.edu).

This work was supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant W911NF2010219, in part by the Office

of Naval Research under Grant N000142412673, in part by AFOSR, in part by NSF, and in part by the UC Noyce Initiative.

ABSTRACT This paper investigates the system identification problem for linear discrete-time systems

under adversaries and analyzes two lasso-type estimators. We examine non-asymptotic properties of these

estimators in two separate scenarios, corresponding to deterministic and stochastic models for the attack

times. We prove that when the system is stable and attacks are injected periodically, the sample complexity

for exact recovery of the system dynamics is linear in terms of the dimension of the states. When adversarial

attacks occur at each time instance with probability p, the required sample complexity for exact recovery

scales polynomially in the dimension of the states and the probability p. This result implies almost sure

convergence to the true system dynamics under the asymptotic regime. As a by-product, our estimators still

learn the system correctly even when more than half of the data is compromised. We emphasize that the attack

vectors are allowed to be correlated with each other in this work. This paper provides the first mathematical

guarantee in the literature on learning from correlated data for dynamical systems in the case when there is

less clean data than corrupt data.

INDEX TERMS Linear systems, robust control, statistical learning, system identification.

I. INTRODUCTION
Dynamical systems serve as the fundamental components

in reinforcement learning and control systems. The sys-

tem dynamics may not be known exactly when the sys-

tem is complex. Therefore, learning the underlying system

dynamics, named the system identification problem, us-

ing the data collected from the system are essential in

robotics, control theory, time-series, and reinforcement learn-

ing applications. The system identification problem with

small disturbances using the least-square estimator has been

ubiquitously studied [1]. Despite several advances in this

field, most results in system identification focus on the

asymptotic properties of the proposed estimators, i.e., their

behavior as sample size approaches infinity [2], [3]. Nonethe-

less, the non-asymptotic analysis of the system identification

problem has gained interest in recent years [4], [5], [6], [7].

Non-asymptotic analysis is crucial to understand the required

sample complexity for online control problems.

Robust learning of dynamical systems is crucial for safety-

critical applications, such as autonomous driving [8], un-

manned aerial vehicles [9], and robotic arms [10]. While

recent papers have addressed online non-asymptotic con-

trol of linear time-invariant (LTI) systems, their applicability

often hinges on the assumption of small noise in measure-

ments, neglecting scenarios involving large magnitudes of

noise indicative of adversarial attacks or data corruption [11],

[12], [13]. These papers utilize recent advances in high-

dimensional statistics and learning theory to analyze the

properties of the solution even when the data samples are

correlated. The work [14] provides a tutorial on proof tech-

niques. Least-square estimators are the main tool in those

works, which are susceptible to outliers and large noise in

the system. Consequently, we propose two new non-smooth

estimators inspired by the lasso problem and robust regres-

sion literature [15]. We study the required sample complexity

for the exact recovery of LTI systems using these estimators
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when there are sporadic large disturbance injections to the

system.

The robust regression and learning problems under adver-

saries are ubiquitously studied in the literature [16], [17],

[18], [19]. �1-based non-smooth estimators are extensively

investigated in the context of robust learning in the presence

of adversaries and outliers [20], [21], [22]. Compressed sens-

ing and sparse error detection are such problems that are

closely related to the proposed estimators [23], [24], [25],

[26]. However, existing methods for analyzing the estimators

cannot be directly generalized to control problems due to the

correlation between the samples. Therefore, different strate-

gies have been developed recently to tackle this challenge.

Firstly, the system is initiated multiple times, and the data

point at the end of each run is used to obtain uncorrelated

data points, as in [27]. However, obtaining multiple trajec-

tories is not viable and cost-efficient for most safety-critical

applications. One method with a single trajectory relies on the

persistent excitation of the states so that the dynamics can be

explored thoroughly. This is achieved by injecting a Gaussian

noise input into the system. Block Martingale Small Ball

(BMSB) techniques are used to analyze the properties of the

estimator [11], [28], [29]. It employs normalized martingale

bounds for the estimation error when the excitation is large

enough [11].

Unlike the non-asymptotic analysis of correlated data, the

least-squares estimator offers a closed-form solution [30],

[31], [32]. As long as the noise magnitudes are not large, the

least-squares estimator performs relatively well. The estima-

tion error asymptotically converges to zero with the optimal

rate of T −1/2, where T is the number of samples collected

from the system [11]. However, it is not robust to adversarial

attacks, and the literature on robust learning of dynamical

systems is limited. The work [33] uses compressed sensing

to learn system parameters for FIR systems. However, the

impulse vectors are assumed to be Gaussian independent and

identically distributed, which does not contain the correlated

state vectors. The work by [34] defines the null space property

(NSP) to analyze a lasso-type estimator for the system. It pro-

vides necessary and sufficient conditions for exact recovery

when NSP is satisfied, which is NP-hard to check. To circum-

vent the computational complexity, we build upon [34] and

study estimators from a non-asymptotic point of view under

standard assumptions, such as the system being stable and the

attacks being sub-Gaussian.

Contributions: We consider an LTI dynamical system

over the time horizon [0, T ], xi+1 = Āxi + B̄ui + d̄i, i =
0, 1, . . . , T − 1, where Ā ∈ Rn×n and B̄ ∈ Rn×m are unknown

system matrices, and d̄i ∈ Rn are unknown system distur-

bances. We aim to learn these matrices from the samples

{xi}T
i=0 and {ui}T −1

i=0 of a single initialization of the system

when the disturbance vectors d̄i are adversarial. Here, the ad-

versarial noise refers to a vector that is designed to deteriorate

the performance of the estimator. Thus, the adversarial vectors

{d̄i}T −1
i=0 can take arbitrarily large finite values, be dependent

over time, and have any undesirable structures. We say that

an adversarial attack occurs whenever d̄i is non-zero, and we

have no information on the value of d̄i. If d̄i is zero, there

is no attack or adversary at time i. In our setting, we study

systems that are not subject to ordinary minor measurement or

modeling errors, and instead the non-zero noise or disturbance

stems from an adversarial event.

We study two convex estimators based on the minimization

of the �2 and �1 norms of the estimated disturbance vectors,∑T −1
i=0 ‖di‖2 and

∑T −1
i=0 ‖di‖1, with the decision variables A,

B, and {di}T −1
i=0 subject to xi+1 = Axi + Bui + di, given the

samples {xi}T
i=0 and {ui}T −1

i=0 :

min
A∈Rn×n,B∈Rn×m

T −1∑
i=0

‖xi+1 − Axi − Bui‖◦, ◦ ∈ {1, 2}.

We employ a non-smooth objective function to obtain a robust

estimator. The arbitrary injection of adversaries may happen

infrequently in time. In that case, the attacks occur sparsely

in time. Conversely, the vector d̄i at each attack time i could

be dense, and there is no limitation on how sparse the vector

is. The �2 norm estimator is the most effective in this case. In

contrast, the �1 norm estimator is preferable if the vector d̄i

at each attack time is structured and known to be sparse. We

summarize our contributions below.

i) We first consider the case when the adversarial noise

injections, i.e., adversarial attacks, happen periodically over

time with the period �. We show that both of our estimators

exactly recover the true system matrices when the system is

stable and the number of samples, i.e., T , is larger than n + �.

ii) We then consider a probabilistic model for the occur-

rence of attacks, in which there is an arbitrary noise injection

at each time instance i with probability p, independent of

previous time periods. Nevertheless, we allow these noise

injections, or attack vectors, to be dependent. We study the re-

quired sample complexity of our estimators for exact recovery

when the attack vectors are stealthy. Suppose that the adver-

sarial noise and the input sequence are sub-Gaussian random

vectors. Then, the estimators achieve exact recovery with

probability at least 1 − δ if the time horizon T satisfies the

inequality T ≥ �(max{T 1
sample, T 2

sample}), where T 1
sample and

T 2
sample are defined as

n2R1 log

(
nR1

δ

)
and nmR2 log

(
nR2

δ

)
,

with the constants R1 and R2 defined in Theorem 4. If the

attack vectors are not stealthy, the system operator could de-

tect the abnormalities and stop the system, which is not a

desired outcome for the adversarial agent or attacker. This is

the first paper that studies the adversarial attack structure for

the system identification problem to obtain sample complexity

using non-asymptotic analysis techniques.

This paper is organized as follows. In Sections II and III,

we introduce the notations used in the paper and formulate

the problem, respectively. In Section IV, we study the con-

vergence and sample complexity properties of our estimators
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in the case when the system is autonomous. In Section V, we

generalize the results to non-autonomous systems. In Section

VI, we demonstrate the results on synthetic simulations and

a biomedical system that models blood sugar levels with the

injection of bolus insulin.

II. NOTATION AND PRELIMINARIES
For a matrix Z , ‖Z‖F and ‖Z‖op denote the Frobenius norm

and operator norm of a matrix. For a vector z, ‖z‖1, ‖z‖2, and

‖z‖∞ denote its �1, �2, and �∞ norms, respectively. Given

two functions f and g, the notation f (x) = �[g(x)] means

that there exist universal positive constants c1 and c2 such

that c1g(x) ≤ f (x) ≤ c2g(x). The relation f (x) � g(x) holds

if there exists a universal positive constant c3 such that f (x) ≤
c3g(x) holds with high probability. The relation f (x) � g(x)

holds if g(x) � f (x). Given the function f , ∂ f denotes the

subdifferential of the function. |S| shows the cardinality of a

given set S. Furthermore, we use the notation v ⊗ w = vwT to

denote the outer product. P(·) and E[·] denote the probability

of an event and the expectation of a random variable.

We will utilize concentration bounds for sub-Gaussian ran-

dom variables to verify that the optimality conditions for our

proposed estimators are satisfied with high probability.

Lemma 1: (Hoeffding’s Bound [35]) Suppose that the vari-

able X has mean μ and sub-Gaussian parameter σ . Then, for

all t > 0, we have

P (|X − μ| > t ) ≤ 2 exp

(
− t2

2σ 2

)
.

The subdifferential of the �2 norm of 0 vector is the �2

norm unit ball, whereas the subdifferential of the �1 norm

of 0 vector is the �∞ norm unit ball, which is B∞(1) = {x ∈
Rn : ‖x‖∞ ≤ 1}. Note that while the subdifferential of the �1

norm is coordinate-wise separable, the subdifferential of the

�2 norm is not coordinate-wise separable. We also define the

unit ball S2(1) as S2(1) = {x ∈ Rn : ‖x‖2 = 1}, that is the set

of all the points on the sphere with radius 1.

III. PROBLEM FORMULATION
We assume that the disturbance vectors {d̄i}T −1

i=0 can be de-

pendent on the disturbance vectors from the previous time

instances and there is no specific distribution assumption for

these vectors except the sub-Gaussian assumption. We repre-

sent the time indices of the attacks or large disturbance vectors

with the set K, that is K = {i : d̄i 	= 0, i ∈ 0, 1, . . . , T − 1}.
These time instances are called the attack times and K is the

set of attack times. Similarly, the set of time instances without

attack or corrupted data is shown with K c and these time in-

stances are called the no-attack times. The data corresponding

to attack times are corrupted, whereas the data corresponding

to no-attack times are uncorrupted. We establish the exact

recovery of the proposed estimators when there are large

disturbances in the system. In such cases, the least-squares

method cannot achieve exact recovery, a fact that can be easily

verified from its closed-form solution. To exactly recover the

system matrices Ā and B̄, we analyze the following convex

optimization problems with non-smooth objective functions:

min
A∈Rn×n,B∈Rn×m

T −1∑
i=0

‖xi+1 − Axi − Bui‖2 (CO-L2)

and

min
A∈Rn×n,B∈Rn×m

T −1∑
i=0

‖xi+1 − Axi − Bui‖1 (CO-L1)

where the states {xi}T
i=0 are generated according to xi+1 =

Āxi + B̄ui + d̄i, i = 0, . . . , T − 1. The difference between

problems (CO-L2) and (CO-L1) is their objective functions.

In problem (CO-L2), the sum of the �2 norm columns is

analogous to the �1 norm minimization in the lasso problem.

In other words, the �1 norm is applied at the group level to

{di}T −1
i=0 because the occurrence of large injections of distur-

bances is rare and not frequent. We highlight that the vectors

{d̄i}T −1
i=0 are not necessarily sparse. On the other hand, the �1

norm is applied both at the group level and the in-group levels

to {di}T −1
i=0 for problem (CO-L1). For those applications that

the disturbance vectors can be assumed to be sparse, (CO-L1)

is more suitable than (CO-L2). Furthermore, the states xi are

correlated to each other due to the system dynamics, which

makes the non-asymptotic analysis of the problem more chal-

lenging than the robust regression literature for which the

samples are assumed to be independently generated. Although

these types of sum-of-norm minimization non-smooth loss

functions are utilized in other applications, this paper marks

the first non-asymptotic analysis of these loss functions in

the context of control and system identification with serially

correlated data.

The optimization problems (CO-L2) and (CO-L1) are

equivalent to an empirical risk minimization problem for

which the loss function is the �2 and �1 norms. We remark

that classical statistical theory on empirical risk minimiza-

tion is not applicable here due to the correlated data at each

time instance. By representing the data points Xi as tuples

(xi+1, xi, ui ), it is impossible to claim that Xi and Xi+1 are

independent, which is a key assumption in the empirical risk

minimization literature. We can also transform this problem

into the compressed sensing problem. Let Y = [x1, . . . , xT ],

X = [x0, . . . , xT −1], and U = [u0, . . . , uT −1] be the matrices

where the state, input and noise vectors are given as columns.

Then, the problem is equivalent to

min
A∈Rn×n,B∈Rn×m

∥∥∥∥∥Y − [A, B]

[
X

U

]∥∥∥∥∥◦,1

,

where ‖ · ‖◦,1 is the sum of the ◦-norms of the columns for

a given matrix. However, some entries of the feature matrix

[X T ,U T ]T are not independent of each other due to the auto-

correlation between the state vectors. Therefore, the classical

compressed sensing results are not applicable to this system

identification problem. In addition, the existing sufficient con-

ditions, such as NSP [34], do not provide explicit conditions

for exact recovery and are difficult to analyze. As the first step
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of the proof, the Karush-Kuhn-Tucker (KKT) conditions will

be used to analyze the properties of these estimators because

(CO-L2) and (CO-L1) are convex optimization problems.

Theorem 1: Consider the convex optimization problems

(CO-L2) and (CO-L1) and let ◦ ∈ {1, 2}. Given a pair of ma-

trices (Â, B̂), if the following conditions hold simultaneously

0 ∈
∑
i 	∈K

xi ⊗ ∂‖(Ā − Â)xi + (B̄ − B̂)ui‖◦

+
∑
i∈K

xi ⊗ ∂‖(Ā − Â)xi + (B̄ − B̂)ui + d̄i‖◦, (1)

0 ∈
∑
i 	∈K

ui ⊗ ∂‖(Ā − Â)xi + (B̄ − B̂)ui‖◦

+
∑
i∈K

ui ⊗ ∂‖(Ā − Â)xi + (B̄ − B̂)ui + d̄i‖◦, (2)

then (Â, B̂) is a solution to (CO-L1) when ◦ = 1 and a solution

to (CO-L2) when ◦ = 2.

We emphasize that (Ā, B̄) represent the unknown ground

truth matrices, (A, B) are the decision variables in the convex

optimization problems, and (Â, B̂) are the solutions to those

convex optimization problems. The proof for the KKT con-

ditions when ◦ = 2 is provided in [36], and the proof for the

case ◦ = 1 can be done similarly. We will utilize the condi-

tions above to study in what scenarios the exact recovery is

achievable. As a simple corollary to Theorem 1, we can state

that (Ā, B̄) is a solution to our estimator(s) if the following

conditions hold:

0 ∈
∑
i 	∈K

xi ⊗ ∂‖0‖◦ +
∑
i∈K

xi ⊗ ∂‖d̄i‖◦,

0 ∈
∑
i 	∈K

ui ⊗ ∂‖0‖◦ +
∑
i∈K

ui ⊗ ∂‖d̄i‖◦.

IV. AUTONOMOUS SYSTEMS
In this section, we consider autonomous systems, meaning

that u0 = · · · = uT −1 = 0. Therefore, the system dynamics

could be written as xi+1 = Āxi + d̄i for i = 0, . . . , T − 1. We

study noiseless systems under an adversary to obtain exact

recovery results, meaning that if there is no attack at time

i, i ∈ K c, then d̄i = 0. We are interested in recovering the

system matrix Ā using the following convex optimization

problems for autonomous systems:

min
A∈Rn×n

T −1∑
i=0

‖xi+1 − Axi‖2 (CO-L2-Aut)

and

min
A∈Rn×n

T −1∑
i=0

‖xi+1 − Axi‖1 (CO-L1-Aut)

The optimality conditions for problem (CO-L2-Aut) with ◦ =
2 and problem (CO-L1-Aut) with ◦ = 1 can be written as

follows using Theorem 1:

0 ∈
∑
i 	∈K

xi ⊗ ∂‖(Ā − A)xi‖◦+
∑
i∈K

xi ⊗ ∂‖((Ā − A)xi+d̄i )‖◦.

Remark 1: As a remark, although the set of attack times

K appears in the optimality conditions, this set is not known

a priori to the system operator. The set is only used during

the analysis of the proposed estimators to derive sufficient

conditions for exact recovery. Moreover, although the attacker

can choose a zero attack, d̄i = 0, the time period i is not

included in the set of attack vectors, i.e. i 	∈ K, to facilitate

the mathematical derivations regarding subdifferentials. How-

ever, due to the continuity of optimal solutions, one can select

an infinitesimal small value for the attack vector. Thus, its

limit corresponds to a zero attack.

We examine two types of attack structures: �-spaced and

probabilistic attack structures. An attack structure refers to the

pattern of attack occurrences. In other words, it involves the

distribution of each time instance at which a large disturbance

vector is injected into the system. Namely, we inspect the

structure of the set K.

A. �-SPACED ATTACK STRUCTURE
The first attack structure is a deterministic attack model for

which the attacks occur at every � time period. For instance, if

� = 2, the set K could be {1, 3, 5, . . . , 2k + 1}, meaning that

an agent injects a disturbance vector into the system at every

odd time instance. We first define the deterministic attack

model, borrowed from [36].

Definition 1 (�-spaced Attack Structure): Given a positive

integer � > 2, the disturbance sequence {d̄i}T −1
i=0 is said to

be �-spaced if for every i ∈ {0, 1, . . . , T − � − 1} such that

d̄i 	= 0, we have d̄ j = 0, for all j ∈ {i + 1, . . . , i + � − 1}
and d̄i+� 	= 0. In addition, for i ∈ {0, 1, . . . , � − 1}, we must

have at least one non-zero disturbance vector, i.e. d̄i 	= 0.

Initially, we consider first-order ans stable systems where

xi ∈ R and |Ā| < 1. When n = 1, the problems (CO-L1-Aut)

and (CO-L2-Aut) are equivalent, and therefore, we only focus

on (CO-L2-Aut). We will show that the convex formulation

(CO-L2-Aut) exactly recovers Ā in the case of �-spaced dis-

turbance sequence with � ≥ 2.

Proposition 1: Consider a first-order autonomous system

with |Ā| < 1 and �-spaced disturbance sequence with � ≥
2. Then, whenever x0 = 0 or 0 	∈ K, the convex formulation

(CO-L2-Aut) has the unique solution Ā as long as the sample

complexity satisfies the inequality T ≥ � + 1.

This proposition implies that whenever there are more than

� + 1 data samples, the exact recovery is guaranteed to be

achieved. Note that Proposition 1 does not make any assump-

tion on the vector set {d̄i : i ∈ K } and each element of the

set could be arbitrarily large and correlated as long as they are

finite. As a result, regardless of the severity of the attack, an

exact recovery is guaranteed for (CO-L2-Aut). One important

implication of Proposition 1 is for the case where there is

a �-spaced disturbance sequence with � = 2, meaning that

half of the observations are corrupted. In the robust regression
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estimation literature, exact recovery is possible only if the

number of attacked observations is less than half of the total

observations. The main difference between robust regression

and system identification problems is that the observations

are correlated with each other in the latter. This enables exact

recovery for the convex formulation even if half of the data is

corrupted via an adversarial agent. The proof of Proposition 1

is based on the following lemma.

Lemma 2: (Theorem 1 in [36]) Consider the convex op-

timization problem (CO-L2-Aut). If
∑

i 	∈K |xi| >
∑

i∈K |xi|,
then Ā is the unique solution to the problem.

A natural question arises as to whether one can generalize

the above result to higher-order systems. The next proposition

extends Proposition 1 to autonomous dynamical systems with

an arbitrary order n under a �-spaced disturbance sequence

with � ≥ n + 1.

Proposition 2: Consider an autonomous system of order

n under a �-spaced disturbance sequence with � ≥ n + 1.

Suppose that Ā is diagonalizable with eigenvalues, λ̄l , l =
1, 2, . . . , n, and that the condition

span{d̄i, Ād̄i, . . . , Ān−1d̄i} ∈ Rn, ∀i ∈ K (3)

is satisfied. Then, whenever x0 = 0 or {0, . . . ,� − 1} 	∈ K,

Ā is a solution to the convex formulation (CO-L2-Aut) if

T ≥ n + �, provided that∣∣∣∣∣∣
∑

k1+...+kn=�−n

λ̄(k1, . . . , kn)

∣∣∣∣∣∣ ≤
�−n−1∑

i=0

∣∣∣∣∣∣
∑

k1+···+kn=i

λ̄(k1, . . . , kn)

∣∣∣∣∣∣ ,
(4)

where the notation λ̄(k1, . . . , kn) denotes λ̄
k1
1 × · · · × λ̄kn

n .

This result is a generalization of Proposition 1. The con-

dition (3) is necessary to ensure that the KKT condition is

satisfied, which guarantees that the disturbance vector excites

the system to explore the entire system space in the next n
time instances. In real-life applications, this condition can

be attained by injecting a random small perturbation to the

system. To gain insight into (4), which involves the prod-

uct of eigenvalues, consider a special case where Ā has the

eigenvalue λ with multiplicity n with n linearly independent

eigenvectors. In this case, we can simplify (4) as follows.

Define k := � − n. Then, (4) is equivalent to(
n + k − 1

k

)
|λ|k −

k−1∑
i=0

(
n + i − 1

i

)
|λ|i < 0.

This condition is satisfied if |λ| ≤ Cn,k , where Cn,k denotes the

upper bound on the eigenvalue magnitudes given the parame-

ters n and k. Fig. 1 summarizes the values of Cn,k for different

choices of n and k. Note that Cn,k ≤ Cm,k if n > m and Cn,k ≤
Cn,l if k < l , due to the definition of Cn,k . It can be shown

that C1,k −→ 2 as k −→ ∞. As a result, |λ| ≤ Cn,k ≤ C1,k −→ 2.

This shows that the stability of the system is not necessary

for exact recovery when the attack vectors are injected less

frequently. In addition, whenever k = n or � = 2n, |λ| < 1 is

sufficient for exact recovery. This conclusion is analogous to

FIGURE 1. Upper-Bound Value Cn,k for Different Values of n and k.

the stability of the system. Proposition 2 can still be applied

to problem (CO-L1-Aut). However, the KKT conditions will

differ due to the subdifferential of the �2 and �1 norms. In

fact, they both have a similar shape. Therefore, one can show

that this proposition still holds with the same condition even

if convex formulation (CO-L1-Aut) with the �1 norm of the

disturbance vectors is used.

Remark 2: We choose the �-attack structure with uniform

attacks as the strictest attack structure. Here, � can be gen-

eralized as the smallest interval over which there is no attack.

The sufficient conditions hold for every �-time interval. If the

sufficiency conditions are satisfied for the interval of length �,

they will also be satisfied for intervals of length greater than

�. In the latter case, we add additional terms to the summation

for i 	∈ K in the KKT condition, which enlarges the set of

possible values for the subgradients. In fact, this relaxes the

condition of the KKT condition for the interval of length �.

B. PROBABILISTIC ATTACK STRUCTURE
Because the minimum value of � is 2, the deterministic attack

structure does not allow the size of corrupted data to exceed

the size of clean data. Thus, we investigate a probabilistic

attack structure for which a non-zero disturbance vector d̄i

is injected into the system at time instance i with probability

p > 0, which is independent of the other time periods. Specif-

ically, given a time instance i, d̄i is non-zero with probability

p, and this is independent of all previous and future time

instances. Nevertheless, the attack vectors are still allowed to

be correlated with each other. Our goal is to discover the prop-

erties of (CO-L1-Aut) and (CO-L2-Aut) for an arbitrary value

of p, especially p > 0.5. We make the following assumptions

throughout this section.

Assumption 1: Given an autonomous system xi+1 = Āxi +
d̄i for i = 0, . . . , T − 1 with dimension n, assume that x0 = 0

and all singular values of Ā are less than 1, i.e. ‖Ā‖op < 1.

The stability assumption is standard in system identification

problems to avoid an unbounded growth of the states during

the learning process. Without loss of generality, we initialize

the trajectories at the origin since an initialization at other

points affects the results only with a constant factor. In ad-

dition, we make the following stealth attack assumption.

Assumption 2: For each k ∈ K, the attack vector is defined

as d̄k := �̄k f̄k where �̄k ∈ R and f̄k ∈ S2(1). f̄k plays the role

of the direction of the attack while �̄k plays the role of the

length. Define the filtration

Fk := σ {x1, . . . , xk}, ∀k ∈ {0, . . . , T − 1}.
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For all k ∈ K, conditioning on Fk , the following statements

hold:

1) �̄k is independent from the direction f̄k ;

2) The direction f̄k obeys the uniform distribution on

S2(1);

3) �̄k is mean-zero and sub-Gaussian with parameter σ ;

4) The variance of �̄k is σ 2
k ∈ [c2σ 2, σ 2] for some constant

c > 0.

Under the stealth assumption, the length �̄k can depend

on the previous attacks d̄k′ , and in particular �̄k′ and f̄k′ for

k′ < k. For example, a stealthy attack vector d̄i could have the

distribution N (0, min{c, ‖̂xi‖2}) where ‖̂xi‖2 = ∑i
k=0(i +

1)−1‖xi‖2 is the average norm of the states between time pe-

riods 0 and i. The magnitude of the attack vector is dependent

on the past. We note that the above assumption of symmetry

of the disturbance vectors reflected in f̄k is not restrictive and

corresponds to stealth attacks. If this does not hold, the attacks

may be detectable, and their effects could be nullified, or the

system could be stopped to investigate the possible influence

from outside agents [37], [38]. To understand the notion of

stealthy attack, consider the practice in power systems where

the system operator performs some hypothesis testing on sen-

sory data to detect anomaly before making any decisions using

the data. If the mean of the data is not zero, it would not

pass the test and therefore the attack would be isolated or

nullified. If the symmetric assumption does not hold, there is

an unavoidable bias in estimation [39].

It is not possible to obtain deterministic sample complexity

for exact recovery due to the randomness in attack structure.

Therefore, it is essential to quantify the required number of

samples for the exact recovery with high probability. Un-

der Assumption 2, the attack vector at time i, d̄i, has a

sub-Gaussian distribution with parameter σ given Fi. The

sub-Gaussian assumption does not specify the distribution of

the disturbance vector but assures that the disturbance vectors

have light tails. For instance, any distribution over a bounded

space is sub-Gaussian, making this assumption mild.

The KKT conditions for exact recovery, which are neces-

sary and sufficient, can be restated as

∃γi ∈ ∂‖0‖◦, ∀i 	∈ K s.t.
∑
i 	∈K

xi ⊗ γi =
∑
i∈K

xi ⊗ ∂‖d̄i‖◦.

because of the properties of the subdifferentials at the origin.

In order to simplify the analysis, we use the relationship

between the unit balls of the �∞ and �2 norms, that is

B∞(1)/
√

n ⊆ B2(1). Additionally, we examine the results for

each coordinate of the subdifferentials since they are separable

due to the properties of the �∞ norm. Therefore, the following

propositions provide sufficient conditions to satisfy the KKT

conditions.

Proposition 3: The KKT conditions for the problem

(CO-L2-Aut) and (CO-L1-Aut) are satisfied if there exist

scalars γ l
i ∈ [−1, 1], i 	∈ K, l = 1, . . . , n such that∑

i 	∈K

γ l
i xi/

√
n =

∑
i∈K

∂‖d̄i‖l
2xi, ∀l = 1, . . . , n (5)

and ∑
i 	∈K

γ l
i xi =

∑
i∈K

∂‖d̄i‖l
1xi, ∀l = 1, . . . , n. (6)

Here, ∂‖d̄i‖l◦ is the l-th element of the subgradient.

Because analyzing the conditions (5) and (6) directly is

cumbersome, we investigate the equivalent condition provided

in the lemma below, derived using Farkas’ lemma [40] and the

duality of linear programs.

Lemma 3: Given a matrix F ∈ Rn×m and the vector g ∈ Rn,

the following statements are equivalent:

i) There exists a vector w ∈ Rm with ‖w‖∞ ≤ 1 satisfy-

ing Fw = g.

ii) For every z ∈ Rn with ‖z‖2 = 1, it holds that f (z) :=
zT g + ‖zT F‖1 ≥ 0.

It is important to notice that the conditions (5) and (6)

amount to finding a vector for the set of equations in the

form of Fw = g where w is restricted as ‖w‖∞ ≤ 1. Given

a coordinate l , the matrix F ∈ Rn×(T −|K |) associated with the

conditions (5) and (6) is a matrix with columns xi√
n

and xi,

and the vector g ∈ Rn is
∑

i∈K ∂‖d̄i‖l
2xi and

∑
i∈K ∂‖d̄i‖l

1xi,

respectively. Moreover, the vector w ∈ RT −|K | has the ele-

ments γ l
i , i 	∈ K for both conditions. Hence, we study the

condition ii) in Lemma 3. However, there are infinitely many

points on the �2 unit circle S2(1). In order to show that the

function f (z) = zT g + ‖zT F‖1 is non-negative at every point

on the �2 unit circle, we employ the discretization technique

that chooses a finite set of points. These points are chosen as

the ε-cover of the unit ball.

Definition 2 (Covering Number [35]): ε-cover of the

compact set T with respect to the norm ρ is a set

{θ1, θ2, . . . , θN } ⊂ T such that for each θ ∈ T, there exists

some i ∈ {1, . . . , N} with ρ(θ, θ i ) ≤ ε. The ε-covering num-

ber N (ε,T, ρ) is the cardinality of the smallest ε-cover.

Given a ε > 0, the logarithm of the covering number of

the unit ball or the metric entropy of the unit ball can be

upper bounded using the volumetric arguments of the balls.

Indeed, the number of ε balls exceeding exp{n log(1 + 2/ε)}
is sufficient to cover the unit ball with balls of radius ε.

Lemma 4 (Covering Number of the Unit Ball [35]): Given

an n-dimensional unit ball B(1) with the norm ‖ · ‖, the metric

entropy of the unit ball can be upper bounded by

log N (ε,B(1), ‖ · ‖) ≤ n log

(
1 + 2

ε

)
.

We show that the function f (z) can be lower bounded by

some positive number θ > 0 at every point in the ε-cover of

the unit ball with high probability, and that the function value

inside the ε-ball does not change more than this positive num-

ber θ with high probability. Thus, f (z) must be non-negative

at every point of the unit circle with high probability. Utilizing

this idea, the next theorem shows that the sample complexity

for the exact recovery grows with n2 log(n) and (1 − p)−2 for

the general systems of order n.
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Theorem 2: Consider an autonomous system of order n
under a probabilistic attack model with frequency p. Suppose

that Assumptions 1 and 2 hold. Then, for all δ ∈ (0, 1], if the

time horizon satisfies T ≥ �(Tsample), where Tsample is defined

as

nR

[
n log(nR) + log

(
1

δ

)]
,

and

R := max

{
log(1/c)

nc4 p(1 − p) log(1/ρ)
,

log2(1/c)

c10(1 − p)2(1 − ρ)3 log2(1/ρ)
,

1

np(1 − p)

}
,

with ρ denoting the largest magnitude of the singular values

of Ā, then Ā is the unique solution to the convex optimization

(CO-L2-Aut) with probability at least 1 − δ.

An implication of the above theorem is that even when p is

large (e.g., p > 0.5) corresponding to the system being under

attack frequently, exact recovery of the system dynamics is

still possible as long as the time horizon is above the threshold.

Similar results can be obtained if one prefers to use problem

(CO-L1-Aut) to recover the system matrix Ā.

Theorem 3: Under the assumptions of Theorem 2, if the

time horizon T satisfies T ≥ �(Tsample), where Tsample is

R

[
n log(nR) + log

(
1

δ

)]
,

and R is defined in Theorem 2, then Ā is the unique solution

to the convex optimization (CO-L1-Aut) with probability at

least 1 − δ.

The proof of Theorem 3 is highly similar to that of Theo-

rem 2. Because the conditions (5) and (6) differ by a factor of√
n, the sample complexity results in those theorems differ by

a factor of n. The required amount of data increases with the

value (1 − p)−2 and the order of the system n. Hence, as p
and n increase, the number of samples for exact recovery with

high probability grows. The results on sample complexity are

intuitive: as the probability of having an attack increases, a

larger time horizon is required for exact recovery. In addi-

tion, if the system is at the verge of instability, the sample

complexity increases significantly. Even in the case when the

probability p is close to 1, significantly more corrupt data than

clean data, this result guarantees asymptotic exact recovery as

long as there are a sufficient number of clean samples. We

make the following remarks regarding various generalizations

of the above results.

Remark 3: We note that the dependence on p−1(1 − p)−1

is an artifact of the high probability bound. Specifically, this

dependence ensures that the number of attacks is bounded by

�(pT ) with high probability. When p is very small or even

zero, learning the system becomes a classic problem in control

theory, where it is known that artificial noise (referred to as

an excitation signal) must be added to the system in order

to enable learning. There is a rich literature explaining why

an excitation signal is necessary when a system is (nearly)

deterministic. For instance, consider the system xi+1 = Āxi.

If x0 is zero, then xi will always remain zero, preventing us

from identifying Ā. To avoid this, we must excite the system

as xi+1 = Āxi + wi, where wi is, for example, Gaussian noise.

When p is not close to zero, the adversarial attack serves as an

excitation signal, helping in this regard.

Remark 4: When the system is initialized randomly at x0

following Assumption 2, the results of Theorems 2 and 3

continue to hold. A system with a nonzero initial state x0 at

time 0 is equivalent to the system initialized at the origin at

time −1 under the attack x0 at time −1, namely, the new

system could be constructed as x−1 = 0 and d̄−1 = x0, leading

to the state value x0 at time 0. Thus, the sample complexities

of the theorems only shift by a constant.

Remark 5: Furthermore, we mention that the uniform dis-

tribution assumption of f̄k can be relaxed to any distribution

on the sphere with zero mean and full-rank covariance matrix.

In that case, the sample complexity in Theorems 2–5 will

depend on the conditional number of the covariance matrix.

V. SYSTEMS WITH INPUT SEQUENCE
It is desirable to understand the role of an input sequence

in exact recovery. Since the input sequence is generated by

a controller, one can design it in such a way that it acceler-

ates the learning. In this case, the system dynamics is given

as xi+1 = Āxi + B̄ui + d̄i, i = 0, . . . , T − 1, where Ā ∈ Rn×n

and B̄ ∈ Rn×m. The goal is to obtain these matrices using the

state trajectories and the sequence of inputs. We will investi-

gate the estimators (CO-L2) and (CO-L1) defined earlier.

We choose the input vectors ui to be Gaussian given Fi. A

random input sequence is commonly used in system identifi-

cation and online learning because it enables the exploration

of the system to learn the system dynamics faster. The Gaus-

sian input assumption is mild, and it is satisfied when ui is

designed in the linear feedback form as ui = Kxi + ω. Condi-

tioning on Fi, the input is excited with Gaussian noise ω. Note

that the closed loop system could be written as xi+1 = (Ā +
B̄K )xi + B̄ω + d̄i. Thus, the problem is equivalent to estimat-

ing the matrices (Ā + B̄K ) and B̄ when the linear feedback

control is used. Therefore, the most common input sequence

used in optimal control satisfies this assumption. Similar to

Proposition 3, the sufficient conditions can be tightened so

that the equations become coordinate-wise separable.

Proposition 4: The KKT conditions for problem (CO-L2)

are satisfied if there exist scalars γ l
i , μl

i ∈ [−1, 1] for all i 	∈
K, l ∈ {1, . . . , n} such that∑

i 	∈K

γ l
i xi/

√
n =

∑
i∈K

∂‖d̄i‖l
2xi, ∀l = 1, . . . , n, (7)

and ∑
i 	∈K

μl
i ui/

√
n =

∑
i∈K

∂‖d̄i‖l
2ui, ∀l = 1, . . . , n, (8)

where ∂‖d̄i‖l
2 denotes the l-th element of the subgradient.
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The proof of Proposition 4 relies on the same technique

as in Proposition 3. Similar to autonomous systems, we can

omit the factor
√

n from above equations to guarantee the

satisfaction of the KKT conditions for problem (CO-L1). We

require the following controllability assumption.

Assumption 3: The ground truth (Ā, B̄) satisfies

rank
{[

B̄ ĀB̄ · · · Ān−1B̄
]}

= n.

Intuitively, the controllability of a non-autonomous system

denotes the ability to move a system around in its entire state

space using the input sequence {ui}T −1
i=0 . Controllability is an

important property of a control system and plays a crucial

role in many control problems, such as stabilization of un-

stable systems by feedback. Under the above assumption, we

implement the non-asymptotic analysis of the general non-

autonomous system in a similar fashion to Theorem 2.

Theorem 4: Consider an autonomous system of order n
under a probabilistic attack model with frequency p. Suppose

that Assumptions 1, 2, and 3 hold. Assume also that the input

vectors ui|Fi are selected to be independent from the attack

vectors and obey the Gaussian distribution N(0,
ξ2

m Im). For all

δ ∈ (0, 1], let

T 1
sample := nR1

[
n log(nR1) + log

(
1

δ

)]

and

T 2
sample := nR2

[
m log(nR2) + log

(
1

δ

)]
,

where

R1 := max

{
log(κ/c)

nc4 log(1/ρ)
,

pκ2

c10(1 − p)2(1 − ρ)2
,

pκ2 log2(κ/c)

c10(1 − ρ)2 log2(1/ρ)
,

1

np

}

R2 := max

{
1

np
,

p

(1 − p)2
,

m

n

}
.

Here, constants c ∈ (0, 1] and κ ≥ (1 − ρ)−1 depend on m, n,

σ , ξ and B̄. If the time horizon satisfies the inequality T ≥
�[max{T 1

sample, T 2
sample}], then (Ā, B̄) is the unique solution to

(CO-L2) with probability at least 1 − δ.

The proof of Theorem 4 is deferred to the online ver-

sion [41]. We have obtained a high probability bound for the

exact recovery of the system matrices Ā and B̄. The T 1
sample

in the sample complexity corresponds to the satisfaction of

the KKT conditions for the state measurements, whereas the

T 2
sample corresponds to the satisfaction of the KKT conditions

for the input sequence. Just like autonomous systems, the

sample complexity increases as the probability of disturbances

increases. Compared with the previous theorems for the au-

tonomous case, we require a sample complexity that scales

with p/(1 − p)2 and terms depending on the spectral norm

of Ā. The introduction of the input sequence removes the

requirement on the variance of the attack vectors. In addition,

the dependence of the sample complexity on p is improved

from 1/(1 − p)2 to p/(1 − p)2. Moreover, the dependence on

the spectrum of Ā is reduced from 1/[(1 − ρ)3 log2(1/ρ)] to

1/[(1 − ρ)2 log2(1/ρ)]. As expected, even if more than half

of the data are corrupted, that is p > 1/2, the exact recovery

is still attainable with high probability.The following theorem

studies problem (CO-L1).

Theorem 5: Under the assumptions of Theorem 4, for all

δ ∈ (0, 1], let T 1
sample and T 2

sample be defined as

R1

[
n log(nR1)+log

(
1

δ

)]
and R2

[
m log(nR2)+log

(
1

δ

)]
,

where R1 and R2 are given in Theorem 4. If T satisfies the

inequality T ≥ �[max{T 1
sample, T 2

sample}], then (Ā, B̄) is the

unique solution to (CO-L1) with probability at least 1 − δ.

Remark 6: When the input sequence ui = Kxi is used to

control the system, the closed-loop system with the matrix

(Ā + B̄K ) results in a second solution Â = Ā + B̄K and B̂ =
0. Still, the ground-truth system matrix pair (Ā, B̄) is also

a solution to our estimators. This phenomenon occurs due

to the existence of multiple optimal solutions. It could be

avoided if the input is excited with a small noise in the form of

ui = Kxi + ω. Moreover, if all the input vectors ui are set to

zero, it is not possible to uniquely recover the system matrix

B̄. Because the input sequence is zero, the KKT conditions are

trivially satisfied; thus, we have multiple optimum solutions.

Remark 7: The results in Sections IV and V can be ex-

tended to the case where there is a small-in-magnitude dense

measurement noise, ei, in addition to potentially large-in-

magnitude adversarial noise di. Note that the estimator can

be written as a constrained optimization problem as

min
A∈Rn×n,B∈Rn×m,

di∈Rn,∀i

T −1∑
i=0

‖di‖◦

s.t . xi+1−Axi+Bui + di =0, i = 0, . . . , T − 1

Adding the dense measurement vector ei is equivalent to

perturbing the constraint from xi+1 − Axi − Bui − di = 0 to

xi+1 − Axi − Bui − di = ei. This implies that the optimal so-

lution will be perturbed as well. Different results are readily

available on how to calculate the change in the optimal solu-

tion (Theorem 2 in [42]).

VI. NUMERICAL EXPERIMENT
We conduct numerical experiments with synthetically gener-

ated dynamical systems and a real-life biomedical application

involving insulin injections.

A. SYNTHETIC SIMULATIONS
We generate LTI dynamical systems to verify the theoretical

results. For each experiment, we generate 10 different random

matrices Ā and B̄ with singular values uniformly distributed

between (−1, 1). We generate the trajectory of the system,

{xi}T
i=0, from a system initialized at the origin by using the

8 VOLUME 4, 2025



IEEE Open Journal of

Control Systems

FIGURE 2. Performance of (CO-L2-Aut) with Probability of Attacks
p ∈ {0.5, 0.7, 0.8} with n = 5.

FIGURE 3. Performance of (CO-L2-Aut) with Probability of Attacks
p ∈ {0.001, 0.01, 0.1} with n = 5.

disturbance vector d̄i = �i f̂i where

�i ∼ N(0, min{100/n, 100‖̂xi‖2}), f̂i ∼ Uniform(Sn−1)

whenever i ∈ K and using i.i.d. zero mean and Gaussian

input vectors ui with the covariance matrix Im/m. We solve

the following optimization problem for every time period t
between [1, T ] using the CVX solver

(Ât , B̂t )=arg min
A∈Rn×n,B∈Rn×m

ft (A, B)=
t−1∑
i=0

‖xi+1−Axi−Bui‖◦

For any time period t = 1, . . . , T , we obtain the solution gap,

‖(Ât , B̂t ) − (Ā, B̄)‖F , and the loss gap, ft (Ât , B̂t ) − ft (Ā, B̄).

We plot the trajectory of the average solution gap and the loss

gap of the 10 independent simulation runs. First, we analyze

the performance of the estimator with respect to the proba-

bility of having an attack for the autonomous systems. We

use three different values of p ∈ {0.5, 0.7, 0.8}. In Fig. 2, we

report the results for the estimator (CO-L2-Aut). In this case,

as the probability of attack p increases, the number of required

samples grows. This aligns with the theoretical results since

the sample complexity scales with (1 − p)−2.

Moreover, we conduct an experiment with a very small

probability of having an attack, namely the probability of

attack p being equal to {0.001, 0.01, 0.1}. Unsurprisingly, an

extremely small excitation or probability of attack, such as

p = 0.001, leads to the failure of exact recovery in T = 500

time periods in Fig. 3 because of the lack of excitation.

In addition, we test the impact of the dimension of the sys-

tem using the estimator (CO-L2). Setting p = 0.5, we create

systems with dimensions (n, m) ∈ {(5, 5), (10, 10), (15, 15)}

FIGURE 4. Performance of (CO-L2) with Dimensions (n, m) ∈ {(5, 5),
(10, 10), (15, 15)} with p = 0.5.

FIGURE 5. Performance of (CO-L2-Aut), (CO-L1-Aut), and Least-Squares
with n = 5 and p = 0.7.

FIGURE 6. Performance of (CO-L2), (CO-L1) and Least-Squares with
(n, m) = 5 and p = 0.7.

for (CO-L2). In Fig. 4, it is observed that the sample com-

plexity for exact recovery grows with the dimension of the

system. Theoretically, T grows with roughly n log(n) when

the term R in the sample complexity bound is dominated by

the terms that scales with n−1. The smaller empirical sample

complexity hints stricter lower bounds since the theoretical

results are only sufficient conditions and are derived for the

worst-case scenario.

Moreover, we test the relationship between the sample

complexities of the estimators with �2, �1 norms, and the

least-squares method. Figs. 5 and 6 show the performance

for autonomous systems with n = 5 and p = 0.7, and non-

autonomous systems with (n, m) = (5, 5) and p = 0.7, re-

spectively. The solution gap and loss gap plateau for the

least-squares estimator, whereas the �2 and �1 norm estimators

successfully learn the ground truth system matrices. Since

the attack vectors themselves are not sparse, the �2 estimator

requires fewer number of samples to achieve exact recovery

than the �1 estimator.
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FIGURE 7. Solution Gap for (CO-L2), (CO-L1) and Least-Squares with p ∈ {0.5, 0.7, 0.8} for the Insulin Application.

B. BIOMEDICAL APPLICATION
We conduct a numerical experiment inspired by biomedical

applications to demonstrate results for a real-life biomedical

application. We consider a compartmental model of blood

sugar and insulin dynamics in the human body, as described

in [43]. Accurately estimating the parameters of the dynamics

is crucial when regulating the blood sugar level through the

injection of a bolus of insulin into the system. Due to the com-

plex structure of the human body, the dynamics vary among

individuals. We consider a linear system based on Hovarka’s

model as follows [44]:

ẋ1 = −ka1x1 + kb1I + d1,

ẋ2 = −ka2x1 + kb2I + d2,

ẋ3 = −ka3x1 + kb3I + d3,

Ṡ1 = −S1/tmax,I + d4,

Ṡ2 = S1/tmax,I − S2/tmax,I + d5,

İ = S2/(tmax,IVI ) − keI + d6,

where given a time-dependent variable z(t ), ż(t ) represents its

derivative with respect to time t . The states x1, x2, x3 repre-

sent the influence of insulin on glucose distribution/transport,

glucose disposal, and endogenous production, respectively. S1

and S2 represent the absorption rate of insulin. Lastly, the state

I represents the blood sugar level in the body. The disturbance

d4 corresponds to the bolus injection into the body, while

the remaining disturbance vectors represent other effects not

captured by the model. Although the injected insulin amount

could be known, the exact amount of insulin and its timing

reaching the effective body parts are unknown. Hence, the di

values are treated as unknown. Even though the disturbance

in this application is not a malicious attack, it exhibits simi-

lar characteristics for identification purposes: the arrival time

of the bolus is unknown, and once it arrives, it has a large

magnitude.

We discretize the continuous-time system to obtain an LTI

system using �i = 0.5. The resulting matrix Ā is stable. Our

objective is to estimate the parameters (kai, kbi, tmax,I ,VI , ke).

The attack vectors are modeled using the same distribution

as in the synthetic simulations. We run our model with the

FIGURE 8. Performance of (CO-L2), (CO-L1) and Least-Squares with
p = 0.7 for the Insulin Application with Sparse Vector Injections.

probability of an attack being p = 0.5, p = 0.7, and p = 0.8.

We report the solution gap for the least-squares estimator,

problem (CO-L2), and problem (CO-L1).

Fig. 7 suggests that our proposed estimators attain exact

recovery while the least-squares estimator fails to do so. As

the probability of having an attack p increases, the number

of required time periods for exact recovery grows. Note that

there are more corrupted data than clean data in the case

of p = 0.7 and p = 0.8. Additionally, because there is no

sparsity assumption on the attack vectors, (CO-L2) performs

slightly better than (CO-L1). We compare the performance of

(CO-L2) and (CO-L1) by running a similar experiment with

and without sparse disturbances. When the disturbances are

sparse, d1, d2, d3, d5 are set to zero. Fig. 8 shows that the �2

and �1 estimators perform similarly when the attack vectors

are also sparse.

VII. DISCUSSION AND CONCLUSION
We investigated the problem of learning LTI systems under

adversarial attacks by studying two lasso-type estimators. We

considered both deterministic and probabilistic attack models

regarding the time occurrence of the attack and developed

conditions for the exact recovery of the system dynamics.

When the attacks occur deterministically every � period, ex-

act recovery is possible after n + � time steps. Moreover, if

the system is attacked at each time instance with probability p,

the system matrices are recovered with high probability when

T is on the order of �((1 − p)−2) and a polynomial in the

dimension of the problem. These findings were supported by
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a numerical experiments. This work provides the first set of

mathematical guarantees for the robust non-asymptotic anal-

ysis of dynamic systems.

APPENDIX
A. PROOF OF PROPOSITION 1
Let i1, i2, . . . be the set of attack times over time horizon, i.e.

K = {i1, i2, . . . }. We show that sufficient conditions satisfied

for every attack interval [ik + 1, ik+1],∀k ≥ 1. Due to �-

spaced attack model, we have i1 ≤ �. We can utilize Lemma 2

to show that Ā is the unique solution.

Case 1: x0 = 0

We have xi = 0 for i = 0, 1, . . . , i1. As a result, we will

show that the condition of Lemma 2 holds for every time pe-

riod in the time intervals [ik + 1, ik+1],∀k ≥ 1, where ik+1 =
ik + �. For any such interval with k ≥ 1, the following holds

ik+�−1∑
i=ik+1

|xi| − |xik+1
| =

ik+�−1∑
i=ik+1

|xi| − |Ā||xik+�−1|

=
ik+�−2∑
i=ik+1

|xi| + (1 − |Ā|)|xik+�−1| > 0

The last statement is positive because |Ā| < 1 and � ≥
2. Note that

∑ j
i |xi| = 0 whenever j < i. The condition∑

i 	∈K |xi| − ∑
i∈K |xi| > 0 holds after the first attack time

period. Thus, whenever T ≥ i1 + 1 ≥ � + 1, exact recovery

is achieved.

Case 2: 0 	∈ K and x0 	= 0

Because 0 	∈ K, we have i1 ≥ 1. From the above state-

ments, we know that the sufficient condition holds for every

time interval [ik + 1, ik+1],∀k ≥ 1. Hence, we only need to

show that the condition in Lemma 2 is satisfied for the time

interval [0, i1] as well. It is apparent that

i1−1∑
i=0

|xi| − |xi1 | =
i1−1∑
i=0

|xi| − |Ā||xi1−1|

=
i1−2∑
i=0

|xi| + (1 − |Ā|)|xi1−1| > 0.

The last statement is positive because |Ā| < 1 and i1 ≥ 1.

B. PROOF OF PROPOSITION 2
By using KKT conditions, Ā is a solution to the problem if

and only if

0 ∈
∑
i 	∈K

xi ⊗ ∂‖0‖2 +
∑
i∈K

xi ⊗ ∂‖d̄i‖2. (9)

Let i1 be the time stamp of the first attack time. Then, we

have i1 ≤ � due to �-attack structure and the assumptions in

the theorem. The set of attack times is K = {i1, i1 + �, i1 +
2�, i1 + 3�, . . . }. Since x0 = 0, we have xi = 0 whenever

i = 0, 1, . . . , i1 and xi1+1 = d̄i1 . Let T = � + i1, i.e., the time

step at which a cycle of disturbance is completed. In this case,

the sufficient condition using KKT condition can be written

as

0 ∈
�−1∑
t=1

xi1+t ⊗ ∂‖0‖2 + xi1+� ⊗ ∂‖d̄i1+�‖2

∈
�−2∑
t=0

Āt d̄i1 ⊗ ∂‖0‖2 + Ā�−1d̄i1 ⊗ d̄i1+�

‖d̄i1+�‖ .

The matrix 0 may belong to the right-hand side term for

arbitrary d̄i1+� if d̄i1+� ∈ span{d̄i1 , Ād̄i1 , . . . , Ā�−2d̄i1}. This

is satisfied by the assumption in the proposition statement.

However, this is not sufficient because the vectors cho-

sen for ∂‖0‖2 have a bounded norm. Therefore, we need

to bound the norm of the columns of Ā�−1d̄i1 ⊗ d̄i1+�

‖d̄i1+�‖2
,

so it can be expressed as a linear combination of the

vectors {d̄i1 , Ād̄i1 , . . . , Ā�−2d̄i1}. Let (λ j, v j ) be eigenvalue-

eigenvector pairs for the matrix ĀT . Let e1, . . . , e�−1 ∈
∂‖0‖2. Then, the KKT condition can be written as follows:

0 ∈ e1d̄T +e2d̄T ĀT +. . .+e�−1d̄T (ĀT )�−2 + f d̄T (ĀT )�−1,

where f = d̄i1+�

‖d̄i1+�‖2
and ‖ f ‖2 = 1. If we multiply the equation

above by the eigenvector v j of ĀT , we obtain

0 ∈ e1d̄T v j + · · · + e�−1d̄T (ĀT )�−2v j + f d̄T (ĀT )�−1v j

∈ (e1 + λ je2 + · · · + λ�−2
j e�−1 + λ�−1

j f )d̄T v j .

Note that because Ā is diagonalizable, we only need to satisfy

this condition along the direction of each eigenvector. There-

fore, the KKT condition holds if

0 = e1+ λ je2+ . . .+ λ�−2
j e�−1 + λ�−1

j f , ∀ j = 1, . . . , n.

There are (� − 1)n free variables and n2 equations. One can

use the substitution to eliminate n2 variables, which leads to∑
k1+···+kn=�−n

λ(k1, . . . , kn) f

=
�−n−2∑

i=0

∑
k1+···+kn=i

λ(k1, . . . , kn)ei+n+1.

Taking the norm of both sides and using the triangle inequality

yields that∣∣∣∣∣∣
∑

k1+···+kn=�−n

λ(k1, . . . , kn)

∣∣∣∣∣∣ ‖ f ‖2

≤
�−n−1∑

i=0

∣∣∣∣∣∣
∑

k1+···+kn=i

λ(k1, . . . , kn)

∣∣∣∣∣∣ ‖ei+n+1‖2.

Using the fact that ‖e j‖2 = 1 for all j and ‖ f ‖2 = 1, we

obtain∣∣∣∣∣∣
∑

k1+···+kn=�−n

λ(k1, . . . , kn)

∣∣∣∣∣∣≤
�−n−1∑

i=0

∣∣∣∣∣∣
∑

k1+···+kn=i

λ(k1,. . . ,kn)

∣∣∣∣∣∣ .
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Moreover, if x0 is not 0, then we can show that KKT condi-

tion is satisfied for the interval {0, 1, . . . , �}. This completes

the proof for the proposition.

C. PROOF OF PROPOSITION 3
The KKT condition for the exact recovery is

∃γi ∈ ∂‖0‖◦, i 	∈ K s.t.
∑
i 	∈K

xi ⊗ γi =
∑
i∈K

xi ⊗ ∂‖d̄i‖◦.

(10)

For (CO-L2-Aut) with ◦ = 2. the condition (10) becomes

∃γi ∈ ∂‖0‖2, i 	∈ K s.t.
∑
i 	∈K

xi ⊗ γi =
∑
i∈K

xi ⊗ ∂‖d̄i‖2.

Since ∂‖0‖1/
√

n = B∞/
√

n(1) ⊆ B2(1) = ∂‖0‖2, we can

rewrite it as

∃γi ∈ ∂‖0‖1, i 	∈ K s.t.
∑
i 	∈K

xi√
n

⊗ γi =
∑
i∈K

xi ⊗ ∂‖d̄i‖2.

We can check the condition at each coordinate because the

set B∞(1) is coordinate wise separable. Thus, KKT condition

holds for (CO-L2-Aut) if there exist scalars γ l
i ∈ [−1, 1], i 	∈

K, l = 1, . . . , n such that∑
i 	∈K

γ l
i xi/

√
n =

∑
i∈K

∂‖d̄i‖l
2xi, ∀l = 1, . . . , n,

where ∂‖d̄i‖l◦ is the l-th element of the subgradient. Similar

algebraic manipulation can be done for (CO-L1-Aut).

D. PROOF OF LEMMA 3
The condition “Given a matrix F ∈ Rn×m and the vector g ∈
Rn, there exists a vector w ∈ Rm with ‖w‖∞ ≤ 1 satisfying

Fw = g.” is equivalent to the feasibility of the linear program-

ming (LP) below with objective function equal to 0:

max
w∈Rm

0 s.t. Fw = g, ‖w‖∞ ≤ 1.

Due to the strong duality, the dual problem of the LP above

must have the optimum objective value equal to 0. The dual

problem can be formulated as

min
y∈Rm,z∈Rn

zT g + ‖yT ‖1 s.t. zT F + yT = 0,

or equivalently,

min
z∈Rn

f (z) := zT g + ‖zT F‖1.

Thus, for any z ∈ Rn, f (z) must be nonnegative. Because

f (cz) = c f (z) for all c > 0, the condition f (z) ≥ 0 for all z ∈
Rn is satisfied if f (z) ≥ 0 for all z ∈ Rn such that ‖z‖2 = 1.

E. PROOF OF THEOREM 2
Since x0 = 0, xi can be expressed as

xi =
∑
k∈K

Ā(i−k−1)+ d̄k,

where A(i)+ is defined as

A(i)+ :=

⎧⎪⎨
⎪⎩

0, if i < 0

I, if i = 0

Ai, if i > 0

.

By Lemma 3, given a coordinate l ∈ {1, . . . , n}, the optimality

condition for the recovery of Ā is equivalent to

f (z) := zT g + ‖zT F‖1 ≥ 0, ∀z ∈ S2(1), (11)

where the matrix F ∈ Rn×(T −|K|) has the columns

Fi :=
∑
k∈K

Ā(i−k−1)+ d̄k√
n

, ∀i 	∈ K,

and the vector g ∈ Rn is

g :=
∑
i∈K

∑
k∈K

Ā(i−k−1)+ d̄k · f̄ l
i .

We do the proof in multiple steps.

1) SHOWING f (z) > 0 FOR ANY GIVEN z ∈ S2(1)
We first prove that condition (11) holds with high probability

for a fixed z ∈ S2(1).

a) Analysis of the term ‖zT F‖1:

E‖zT F‖1 = 1√
n

∑
i/∈K

E

∣∣∣∣∣
∑
k∈K

zT Ā(i−k−1)+ d̄k

∣∣∣∣∣ . (12)

We construct the index set

I1 := {i | i /∈ K, i − 1 ∈ K }.
Let

S :=
⌈

logρ �

[
c5

log(|I1|/δ)

]⌉

= �

[
log log(|I1|/δ) + log(1/c)

log(1/ρ)

]
,

where �x� is the minimal integer that is not smaller than x and

δ ∈ (0, 1) is the specified probability. We construct a subset of

I1 in the following way:

I := {i1, . . . , iI | i j ∈ I1, i j − i j−1 ≥ S, ∀ j}.
It is straightforward to construct I such that

I = |I| ≥ 1

S
|I1|.

In addition, due to the probabilistic attack model, it holds with

probability at least 1 − exp[−�[p(1 − p)T ]] that

|I1| ≥ p(1 − p)T

2
.

Therefore, we have an estimate on the size of I:

P

(
I ≥ p(1 − p)T

2S

)
≥ 1 − exp[−�[p(1 − p)T ]]. (13)
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For each j ∈ {1, . . . , I}, we define K j := {k ∈ K | i j−1 <

k < i j}, where we denote i0 := −1. Moreover, we define

Xj,� :=
∑

k∈K j

zT Āi�−k−1d̄k, ∀ j, � ∈ {1, . . . , I} s.t. j ≤ �.

Using (12), we can calculate that

‖zT F‖1 ≥ 1√
n

I∑
�=1

∣∣∣∣∣∣
�∑

j=1

Xj,�

∣∣∣∣∣∣
≥ 1√

n

I∑
j=1

⎛
⎝∣∣Xj, j

∣∣ −
I∑

�= j+1

∣∣Xj,�
∣∣
⎞
⎠ . (14)

We utilize the following lemma to bound |Xj,�|.
Lemma 5: Suppose that a random variable X is sub-

Gaussian with parameter σX , where the mean and the variance

of X are 0 and σ̃ 2
X , respectively. Then, we have

P (|X | ≥ σ̃X ) ≥ σ̃ 4
X

64σ 4
X

.

For all j ∈ {1, . . . , I}, Assumption 2 implies that the stan-

dard deviation and the sub-Gaussian parameter of Xj,� are

σ̃ j,� :=
√√√√1

n

∑
k∈K j

‖zT Āi�−k−1‖2
2σ

2
k ,

σ j,� :=
√√√√1

n

∑
k∈K j

‖zT Āi�−k−1‖2
2σ

2,

respectively. It follows from Lemma 5 that

P
(|Xj, j | ≥ σ̃ j, j

) ≥ σ̃ 4
j, j

64σ 4
j, j

,

which further leads to

P
(|Xj, j | ≥ cσ j, j

) ≥ c4

64
. (15)

On the other hand, the sub-Gaussian parameter of∑I
�= j+1 |Xj,�| is at most

I∑
�= j+1

σ j,� ≤
I∑

�= j+1

ρ (�− j)Sσ j, j ≤ ρS

1 − ρS
σ j, j .

Therefore, it holds with probability at least 1 − δ/(4I ) that

−
I∑

�= j+1

∣∣Xj,�
∣∣ ≥ − ρS

1 − ρS
σ j, j ·

√
2 log(4I/δ)

≥ − ρS

1 − ρS
σ j, j ·

√
2 log(4|I1|/δ)

≥ − c4

512
· cσ j, j, (16)

where the last step is by the choice of S. Using the bound in

(13), if we choose

T ≥ �

(
log log(1/δ) + log(1/c)

p(1 − p)c4 log(1/ρ)

)
,

it holds with high probability that

c4

64
− δ

4I
≥ c4

128
.

Note that we have dropped the |I1| term in the definition

of S since log log(|I1|) is bounded by log log(T ) and will

not change the order of the above bound. Let q j be the

(1 − c4/128)-quantile of |Xj, j | − ∑I
�= j+1 |Xj,�|.

We define the indicator function

1 j :=
{

1, if
∣∣Xj, j

∣∣−∑I
�= j+1

∣∣Xj,�
∣∣ ≥ q j,

0, otherwise,
∀ j ∈ {1,. . . ,I}.

Since the value of the Bernoulli random variable 1 j only

depends on attacks in K j , which are disjoint from each other,

the random variables

11 − c4/128, . . . , 1I − c4/128

form a martingale sequence with respect to filtration

Fi1 , . . . ,FiI . For all j ∈ {1, . . . , I}, we can calculate that

E
[
exp

(
s1 j

)] ≤ exp

[
c4

128

(
es − 1

)]
, ∀s ∈ R.

By the tower property of expectation, we have

EI

⎡
⎣exp

⎛
⎝s

I∑
j=1

1 j

⎞
⎠
⎤
⎦ ≤ exp

[
c4I

128

(
es − 1

)]
, ∀s ∈ R.

For conditional probabilities and expectations of a random

variable X given another random variable Y , we use the

notation EY [X ] := E[X |Y ] and PY (X ) := P(X |Y ) for the re-

mainder of the proof. Therefore, EI [·] denotes the conditional

expectation of the term given the value of the random variable

I . Therefore, by applying Chernoff’s bound and choosing

s := − log(2), it follows that

PI

⎛
⎝ I∑

j=1

1 j ≤ c4

256
· I

⎞
⎠ ≤ exp

[
− c4I

256
· s + c4I

128

(
es − 1

)]

= exp

[
−�

(
c4

128
· I

)]
.

Equivalently, we know

PI

⎛
⎝ I∑

j=1

1 j ≥ c4

256
· I

⎞
⎠ ≥ 1 − exp

[
−�

(
c4

128
· I

)]
. (17)

Furthermore, since i j − 1 ∈ K j , we can estimate that

σ j, j ≥
√

1

n
‖z‖2

2σ
2 = 1√

n
σ.
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By the definition of q j and 1 j , when the event in inequality

(17) happens, inequalities (15) and (16) imply that

‖zT F‖1 ≥ 1√
n

I∑
j=1

⎛
⎝∣∣Xj, j

∣∣ −
I∑

�= j+1

∣∣Xj,�
∣∣
⎞
⎠

≥ 1√
n

I∑
j=1

[
c4

256
· cσ j, j − c4

512
· cσ j, j

]
≥ c5σ

512n
· I

holds with probability at least 1 − δ/4. Hence, we obtain

PI

[
‖zT F‖1 ≥ c5σ

512n
· I

]
≥ 1 − exp

[−�
(
c4I

)] − δ

4
. (18)

b) Upper bounding of the term zT g:

E
[
exp

(
λ · zT g

)]
= E

[
exp

(
λ
∑
k∈K

∑
i∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]
.

Define the filtration F f := σ { f̄i, i ∈ K }. By the stealth

assumption, for each k ∈ K, conditional on Fk and F f , we

have

�̄k is sub-Gaussian with parameter σ.

Let T ′ be the second last time instance in K. We have

E

[
exp

(
λ
∑
i∈K

∑
k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]

= E

⎡
⎣exp

⎛
⎝λ

∑
k∈K,k<T ′

∑
i∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

⎞
⎠

× E

[
exp

(
λ
∑
i∈K

zT Ā(i−1−T ′ )+ d̄ ′
T · f̄ l

i

) ∣∣∣∣FT ′ ,F f

]⎤
⎦ .

(19)

Using the decomposition in Assumption 2, we have

E

[
exp

(
λ
∑
i∈K

zT Ā(i−1−T ′ )+ ¯dT ′ · f̄ l
i

) ∣∣∣∣FT ′ ,F f

]

≤ exp

⎡
⎣λ2σ 2

2

(∑
i∈K

zT Ā(i−1−T ′ )+ f̄T ′ f̄ l
i

)2
⎤
⎦ .

Substituting back into (19) and continuing the process for all

k ∈ K, we obtain

E

[
exp

(
λ
∑
i∈K

∑
k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]

≤ E

⎡
⎣exp

⎡
⎣λ2σ 2

2

∑
k∈K

(∑
i∈K

∣∣∣zT Ā(i−1−k)+ f̄k

∣∣∣
)2

⎤
⎦
⎤
⎦ , (20)

where the last inequality holds because f̄ l
i is bounded in

[−1, 1]. For each i, k ∈ K, the value of (zT Ā(i−1−k)+ f̄k )2 con-

centrates around its expectation ‖zT Ā(i−1−k)+‖2
2/n. Therefore,

inequality (20) leads to

E

[
exp

(
λ
∑
i∈K

∑
k∈K

zT Ā(i−k−1)+ d̄k · f̄ l
i

)]

≤ exp

⎡
⎣�

⎡
⎣λ2σ 2

2n

∑
k∈K

(∑
i∈K

ρ (i−k−1)+

)2
⎤
⎦
⎤
⎦ . (21)

Suppose the elements in K are

j1 < j2 < · · · < j|K |.

Define

�k := jk − jk−1 − 1, ∀k ∈ {2, . . . , |K |}.
We can calculate that∑

i∈K

ρ (i−1− jk )+ ≤ ρ�k

1 − ρ
.

Since ρ�k ∈ [0, 1] are bounded random variables, they are

sub-Gaussian and concentrate around the mean with high

probability. The expectation of ρ2�k is

∞∑
�=0

p(1 − p)�ρ2� = p

1 − (1 − p)ρ2
.

Therefore, with probability at least 1 − exp[−�(pT )], we

have

|K |∑
k=2

ρ2�k � |K |p
1 − (1 − p)ρ2

≤ |K |p
1 − ρ

.

Hence, inequality (21) implies that with the same probability,

zT g is sub-Gaussian with parameter

�

⎡
⎣
√√√√σ 2

n

|K |∑
k=2

ρ2�k

(1 − ρ)2

⎤
⎦ ≤ �

⎡
⎣
√

|K |pσ 2

n(1 − ρ)3

⎤
⎦ .

Therefore, Hoeffding’s inequality leads to

P|K |

[
zT g ≤ −�

(√
|K |pσ 2

n(1 − ρ)3
log

(
4

δ

))]
≤ δ

4
. (22)

By combining inequalities (18) and (22), it holds with proba-

bility at least

1 − exp
[−�(c4I )

] − δ

2

that

f (z) ≥ �

[
c5σ I

n
−

√
|K |pσ 2

n(1 − ρ)3
log

(
1

δ

)]
.

Similar to the bound in (13), it holds with probability at least

1 − exp[−�(pT )] that

|K | ≤ 2pT .
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As a result, if we choose

T ≥ �

[
max

{
log log(1/δ) + log(1/c)

c4 p(1 − p) log(1/ρ)
log

(
1

δ

)
,

1

p(1 − p)
log

(
1

δ

)
,

n log(1/c)2

c10(1 − p)2(1 − ρ)3 log2(1/ρ)
log

(
1

δ

)}]

= �

[
nR log

(
1

δ

)]
, (23)

where

R := max

{
log(1/c)

c4 p(1 − p) log(1/ρ)
log

(
1

δ

)
,

log2(1/c)

c10(1 − p)2(1 − ρ)3 log2(1/ρ)
,

1

np(1 − p)

}
,

we have

PI

[
f (z) ≥ �

(
c5σ I

n

)]
≥ 1 − δ. (24)

F. USING DISCRETIZATION BOUND OVER THE
UNIT SPHERE
In the second step, we apply discretization techniques to prove

that condition (11) holds for all z ∈ S2(1) with high probabil-

ity. Suppose that ε > 0 is a small constant. We construct an

ε-cover of the unit sphere S2(1), denoted as

{z1, . . . , zN },
Namely, for all z ∈ S2(1), we can find r ∈ {1, 2, . . . , N} such

that ‖z − zr‖2 ≤ ε. The number of points N can be bounded

by

log(N ) ≤ log[N (ε,S2(1), ‖ · ‖2)] ≤ n log

(
1 + 2

ε

)
.

Define a to be the lower bound of f (z) in inequality (24).

Then, we have

a = �

(
c5σ I

n

)
.

Our goal is to prove that

f (z) − f (z′) ≥ −a, ∀z, z′ ∈ S2(1) s.t. ‖z − z′‖2 ≤ ε

holds with high probability. Notice that

f (z) − f (z′) = (z − z′)T g + (‖zT F‖1 − ‖(z′)T F‖1)

≥ (z − z′)T g − ‖(z − z′)T F‖1

≥ −‖z − z′‖2‖g‖2 − ‖z − z′‖2

∑
i/∈K

‖Fi‖2

≥ −ε

(∥∥∥∥∥
∑
i∈K

∑
k∈K

Ā(i−k−1)+ d̄k

∥∥∥∥∥
2

+ 1√
n

∑
i/∈K

∥∥∥∥∥
∑
k∈K

Ā(i−k−1)+ d̄k

∥∥∥∥∥
2

)

≥ −ε
∑
k∈K

∑
i>k

ρ (i−k−1)|�̄k|.

Using the property of exponential sequences, we have∑
k∈K

∑
i>k

ρ (i−k−1)|�̄k| ≤ 1

1 − ρ

∑
k∈K

|�̄k|.

Using a similar proof, we can show that
∑

k∈K |�̄k| is

sub-Gaussian with parameter |K |σ . Therefore, Hoeffding’s

inequality implies that

P|K |

(
1

1 − ρ

∑
k∈K

|�̄k| >
a

ε

)
≤ 2 exp

[
− (1 − ρ)2a2

2ε2|K |2σ 2

]
.

Letting

ε := (1 − ρ)a

|K |σ√
2 log(4/δ)

,

it holds that

P
[

f (z) − f (z′) ≥ −a, ∀z, z′ ∈ S2(1) s.t.‖z − z′‖2 ≤ ε
]

≥ P|K |

(
1

1 − ρ

∑
k∈K

|�̄k| ≤ a

ε

)
≥ 1 − δ

2
.

Now, after we replace δ in (23) with δ/(2N ), it holds with

probability at least 1 − δ/2 that

f (zr ) ≥ a, ∀r ∈ {1, . . . , N}.
After combining the above two inequalities, we apply the

union bound to obtain

P
[

f (z) ≥ 0, ∀z ∈ S2(1)
] ≥ 1 − δ.

The corresponding sample complexity is

T ≥ �

[
nR log

(
2N

δ

)]
.

Since it holds with probability 1 − exp[−�[p(1 − p)T ]] that

|I1| = �[p(1 − p)T ], |K | = �(pT ),

we get the estimate

log(N ) ≤ n log

(
1 + 2

ε

)

= n log

[
1 + �

(
n
√

log(1/δ) log(1/c)

(1 − p)c5(1 − ρ) log(1/ρ)

)]

= �
[
n log(nR)

]
.

By omitting the constants in the expression, the final sample

complexity can be written as

T ≥ �

[
nR

[
n log(nR) + log

(
1

δ

)]]
.

Finally, we replace δ with δ/n and apply the union bound to

all coordinates � ∈ {1, . . . , n}.
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G. SHOWING UNIQUENESS OF SOLUTION
Ā is the unique solution to the (CO-L2-Aut) if and only if the

objective function value evaluated at Ā is strictly less than the

objective function value evaluated at Ā + �, where � is any

small perturbation to the matrix Ā. Let fT (A) = ∑T −1
i=0 ‖(Ā −

A)xi + d̄t‖ be the objective function of the (CO-L2-Aut).

Then, Ā is the unique solution if

fT (Ā) < fT (Ā + �) ⇒
T −1∑
i=0

‖d̄i‖2 <

T −1∑
i=0

‖�xi + d̄i‖2 ⇒

∑
i∈K

‖d̄i‖2 <
∑
i 	∈K

‖�xi‖2 +
∑
i∈K

‖d̄i‖2 +
∑
i∈K

〈
�xi,

d̄i

‖d̄i‖2

〉

⇒ 0 <
∑
i 	∈K

‖�xi‖2 +
∑
i∈K

〈
�xi,

d̄i

‖d̄i‖2

〉
+ O(‖�‖2

F )

In the second-to-last step, we used Taylor’s expansion for

‖x‖2 whenever x 	= 0. Taking � sufficiently small ensures that

‖�xi + d̄i‖2 is not zero. The terms O(|�|2F ) is non-negative.

As a result, Ā is the unique solution whenever

∑
i 	∈K

‖�xi‖2 +
∑
i∈K

〈
�xi,

d̄i

‖d̄i‖2

〉
> 0, ∀� : ‖�‖F ≤ ε.

We can bound the norm of � with 1 instead of ε thanks to

homogeneity. Let �l denote the l-th row of the matrix �.

Using ‖x‖2 ≥ ‖x‖1/
√

n and, we have the following sufficient

condition for the exact recovery:

n∑
l=1

⎛
⎝∑

i 	∈K

1√
n
‖�l xi‖1 + �l xi · d̄ l

i

‖d̄i‖2

⎞
⎠ > 0,

for all � such that ‖�l‖2 ≤ 1, l = 1, . . . , n. This condition

can be simplified as

n∑
l=1

�l g + ‖�l F‖1 > 0, ∀� s.t. ‖�l‖2 ≤ 1, l = 1, . . . , n

The matrix F ∈ Rn×(T −|K|) and the vector g ∈ Rn are defined

at the beginning of the proof. The above condition is the

same as (11), except that we require strict positivity of f (z)

rather than non-negativity. The number of samples required

to satisfy both inequalities will remain the same, due to the

continuous distribution of the attack vectors.
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