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ABSTRACT This paper investigates the system identification problem for linear discrete-time systems
under adversaries and analyzes two lasso-type estimators. We examine non-asymptotic properties of these
estimators in two separate scenarios, corresponding to deterministic and stochastic models for the attack
times. We prove that when the system is stable and attacks are injected periodically, the sample complexity
for exact recovery of the system dynamics is linear in terms of the dimension of the states. When adversarial
attacks occur at each time instance with probability p, the required sample complexity for exact recovery
scales polynomially in the dimension of the states and the probability p. This result implies almost sure
convergence to the true system dynamics under the asymptotic regime. As a by-product, our estimators still
learn the system correctly even when more than half of the data is compromised. We emphasize that the attack
vectors are allowed to be correlated with each other in this work. This paper provides the first mathematical
guarantee in the literature on learning from correlated data for dynamical systems in the case when there is

less clean data than corrupt data.

INDEX TERMS Linear systems, robust control, statistical learning, system identification.

I. INTRODUCTION

Dynamical systems serve as the fundamental components
in reinforcement learning and control systems. The sys-
tem dynamics may not be known exactly when the sys-
tem is complex. Therefore, learning the underlying system
dynamics, named the system identification problem, us-
ing the data collected from the system are essential in
robotics, control theory, time-series, and reinforcement learn-
ing applications. The system identification problem with
small disturbances using the least-square estimator has been
ubiquitously studied [1]. Despite several advances in this
field, most results in system identification focus on the
asymptotic properties of the proposed estimators, i.e., their
behavior as sample size approaches infinity [2], [3]. Nonethe-
less, the non-asymptotic analysis of the system identification
problem has gained interest in recent years [4], [5], [6], [7].
Non-asymptotic analysis is crucial to understand the required
sample complexity for online control problems.

Robust learning of dynamical systems is crucial for safety-
critical applications, such as autonomous driving [8], un-
manned aerial vehicles [9], and robotic arms [10]. While
recent papers have addressed online non-asymptotic con-
trol of linear time-invariant (LTT) systems, their applicability
often hinges on the assumption of small noise in measure-
ments, neglecting scenarios involving large magnitudes of
noise indicative of adversarial attacks or data corruption [11],
[12], [13]. These papers utilize recent advances in high-
dimensional statistics and learning theory to analyze the
properties of the solution even when the data samples are
correlated. The work [14] provides a tutorial on proof tech-
niques. Least-square estimators are the main tool in those
works, which are susceptible to outliers and large noise in
the system. Consequently, we propose two new non-smooth
estimators inspired by the lasso problem and robust regres-
sion literature [15]. We study the required sample complexity
for the exact recovery of LTI systems using these estimators
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when there are sporadic large disturbance injections to the
system.

The robust regression and learning problems under adver-
saries are ubiquitously studied in the literature [16], [17],
[18], [19]. £;-based non-smooth estimators are extensively
investigated in the context of robust learning in the presence
of adversaries and outliers [20], [21], [22]. Compressed sens-
ing and sparse error detection are such problems that are
closely related to the proposed estimators [23], [24], [25],
[26]. However, existing methods for analyzing the estimators
cannot be directly generalized to control problems due to the
correlation between the samples. Therefore, different strate-
gies have been developed recently to tackle this challenge.
Firstly, the system is initiated multiple times, and the data
point at the end of each run is used to obtain uncorrelated
data points, as in [27]. However, obtaining multiple trajec-
tories is not viable and cost-efficient for most safety-critical
applications. One method with a single trajectory relies on the
persistent excitation of the states so that the dynamics can be
explored thoroughly. This is achieved by injecting a Gaussian
noise input into the system. Block Martingale Small Ball
(BMSB) techniques are used to analyze the properties of the
estimator [11], [28], [29]. It employs normalized martingale
bounds for the estimation error when the excitation is large
enough [11].

Unlike the non-asymptotic analysis of correlated data, the
least-squares estimator offers a closed-form solution [30],
[31], [32]. As long as the noise magnitudes are not large, the
least-squares estimator performs relatively well. The estima-
tion error asymptotically converges to zero with the optimal
rate of 7~!/2, where T is the number of samples collected
from the system [11]. However, it is not robust to adversarial
attacks, and the literature on robust learning of dynamical
systems is limited. The work [33] uses compressed sensing
to learn system parameters for FIR systems. However, the
impulse vectors are assumed to be Gaussian independent and
identically distributed, which does not contain the correlated
state vectors. The work by [34] defines the null space property
(NSP) to analyze a lasso-type estimator for the system. It pro-
vides necessary and sufficient conditions for exact recovery
when NSP is satisfied, which is NP-hard to check. To circum-
vent the computational complexity, we build upon [34] and
study estimators from a non-asymptotic point of view under
standard assumptions, such as the system being stable and the
attacks being sub-Gaussian.

Contributions: We consider an LTI dynamical system
over the time horizon [0, T, Xi4+1 = Ax; + Bu; +d;, i =
0,1,..., T —1,where A € R and B € R™ are unknown
system matrices, and d; € R" are unknown system distur-
bances. We aim to learn these matrices from the samples
{)c,-}l.T:0 and {u,'}l.T:_O1 of a single initialization of the system
when the disturbance vectors d; are adversarial. Here, the ad-
versarial noise refers to a vector that is designed to deteriorate
the performance of the estimator. Thus, the adversarial vectors
{d_i},-T:_ol can take arbitrarily large finite values, be dependent
over time, and have any undesirable structures. We say that

an adversarial attack occurs whenever d; is non-zero, and we
have no information on the value of d;. If d; is zero, there
is no attack or adversary at time i. In our setting, we study
systems that are not subject to ordinary minor measurement or
modeling errors, and instead the non-zero noise or disturbance
stems from an adversarial event.

We study two convex estimators based on the minimization
of the ¢, and £; norms of the estimated disturbance vectors,
ZiT;o] ld;|l> and ZiT;Ol lld;|l1, with the decision variables A,
B, and {dl-}l.T;Ol subject to x4+ = Ax; + Bu; + d;, given the
samples {)c,-}l.T:0 and {ui}iT:_Ol:

T-1
min Z Ixie1 — Axi — Bujllo, o € {1,2}.
AeRmM, BeRmm - 4—

We employ a non-smooth objective function to obtain a robust
estimator. The arbitrary injection of adversaries may happen
infrequently in time. In that case, the attacks occur sparsely
in time. Conversely, the vector d; at each attack time i could
be dense, and there is no limitation on how sparse the vector
is. The £> norm estimator is the most effective in this case. In
contrast, the £; norm estimator is preferable if the vector d;
at each attack time is structured and known to be sparse. We
summarize our contributions below.

i) We first consider the case when the adversarial noise
injections, i.e., adversarial attacks, happen periodically over
time with the period A. We show that both of our estimators
exactly recover the true system matrices when the system is
stable and the number of samples, i.e., T, is larger than n + A.

ii) We then consider a probabilistic model for the occur-
rence of attacks, in which there is an arbitrary noise injection
at each time instance i with probability p, independent of
previous time periods. Nevertheless, we allow these noise
injections, or attack vectors, to be dependent. We study the re-
quired sample complexity of our estimators for exact recovery
when the attack vectors are stealthy. Suppose that the adver-
sarial noise and the input sequence are sub-Gaussian random
vectors. Then, the estimators achieve exact recovery with
probability at least 1 — § if the time horizon T satisfies the

inequality 7 > ®(max{ }), where Tsilmple and
T2

sample

1 2
Tsample’ Tsample
are defined as

R R
n’R, log <%> and nmR;log <n$_2> ,

with the constants R; and R, defined in Theorem 4. If the
attack vectors are not stealthy, the system operator could de-
tect the abnormalities and stop the system, which is not a
desired outcome for the adversarial agent or attacker. This is
the first paper that studies the adversarial attack structure for
the system identification problem to obtain sample complexity
using non-asymptotic analysis techniques.

This paper is organized as follows. In Sections II and III,
we introduce the notations used in the paper and formulate
the problem, respectively. In Section IV, we study the con-
vergence and sample complexity properties of our estimators
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in the case when the system is autonomous. In Section V, we
generalize the results to non-autonomous systems. In Section
VI, we demonstrate the results on synthetic simulations and
a biomedical system that models blood sugar levels with the
injection of bolus insulin.

1. NOTATION AND PRELIMINARIES

For a matrix Z, ||Z||r and || Z]|,, denote the Frobenius norm
and operator norm of a matrix. For a vector z, ||z]|1, ||z]l2, and
Izlloo denote its €1, €5, and £, norms, respectively. Given
two functions f and g, the notation f(x) = ®[g(x)] means
that there exist universal positive constants ¢; and ¢ such
that ¢1g(x) < f(x) < cag(x). The relation f(x) < g(x) holds
if there exists a universal positive constant c3 such that f(x) <
c3g(x) holds with high probability. The relation f(x) = g(x)
holds if g(x) < f(x). Given the function f, df denotes the
subdifferential of the function. |S| shows the cardinality of a
given set S. Furthermore, we use the notation v ® w = vw! to
denote the outer product. P(-) and [E[-] denote the probability
of an event and the expectation of a random variable.

We will utilize concentration bounds for sub-Gaussian ran-
dom variables to verify that the optimality conditions for our
proposed estimators are satisfied with high probability.

Lemma 1: (Hoeftding’s Bound [35]) Suppose that the vari-
able X has mean p and sub-Gaussian parameter o. Then, for
allt > 0, we have

2
t
P(X — | > 1) < 2exp <—20—2>

The subdifferential of the ¢ norm of O vector is the ¢;
norm unit ball, whereas the subdifferential of the £; norm
of 0 vector is the £+, norm unit ball, which is Boo (1) = {x €
R™ : ||x|lco < 1}. Note that while the subdifferential of the ¢;
norm is coordinate-wise separable, the subdifferential of the
£ norm is not coordinate-wise separable. We also define the
unit ball Sp(1) as S»(1) = {x € R" : ||x||» = 1}, that is the set
of all the points on the sphere with radius 1.

1il. PROBLEM FORMULATION

We assume that the disturbance vectors {d_,-}iT:B1 can be de-
pendent on the disturbance vectors from the previous time
instances and there is no specific distribution assumption for
these vectors except the sub-Gaussian assumption. We repre-
sent the time indices of the attacks or large disturbance vectors
with the set 7, thatis #'={i:d; #0,i€0,1,...,T —1}.
These time instances are called the attack times and % is the
set of attack times. Similarly, the set of time instances without
attack or corrupted data is shown with J#° and these time in-
stances are called the no-attack times. The data corresponding
to attack times are corrupted, whereas the data corresponding
to no-attack times are uncorrupted. We establish the exact
recovery of the proposed estimators when there are large
disturbances in the system. In such cases, the least-squares
method cannot achieve exact recovery, a fact that can be easily
verified from its closed-form solution. To exactly recover the
system matrices A and B, we analyze the following convex
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optimization problems with non-smooth objective functions:

T-1
min Y xiet —Axi—Buila  (CO-L2)
AERnX}’l BGRHXW!
’ i=0
and
-1
min Y e —Axi = Buily  (CO-LI)
AGR"X",BER”X'" P
1=

where the states {xi},-T:() are generated according to xjy; =
Ax; +Bu; +d;, i=0,...,T — 1. The difference between
problems (CO-L2) and (CO-L1) is their objective functions.
In problem (CO-L2), the sum of the £, norm columns is
analogous to the £; norm minimization in the lasso problem.
In other words, the £1 norm is applied at the group level to
{di}l.T:_O1 because the occurrence of large injections of distur-
bances is rare and not frequent. We highlight that the vectors
{d_,-}l.TZ_O1 are not necessarily sparse. On the other hand, the ¢;
norm is applied both at the group level and the in-group levels
to {di},-T:_ol for problem (CO-L1). For those applications that
the disturbance vectors can be assumed to be sparse, (CO-L1)
is more suitable than (CO-L2). Furthermore, the states x; are
correlated to each other due to the system dynamics, which
makes the non-asymptotic analysis of the problem more chal-
lenging than the robust regression literature for which the
samples are assumed to be independently generated. Although
these types of sum-of-norm minimization non-smooth loss
functions are utilized in other applications, this paper marks
the first non-asymptotic analysis of these loss functions in
the context of control and system identification with serially
correlated data.

The optimization problems (CO-L2) and (CO-L1) are
equivalent to an empirical risk minimization problem for
which the loss function is the ¢, and ¢; norms. We remark
that classical statistical theory on empirical risk minimiza-
tion is not applicable here due to the correlated data at each
time instance. By representing the data points X; as tuples
(Xit1, Xi, u;), it is impossible to claim that X; and X;y; are
independent, which is a key assumption in the empirical risk
minimization literature. We can also transform this problem
into the compressed sensing problem. Let ¥ = [xq, ..., x7],
X =[x0,...,xr—1],and U = [uo, ..., ur_1] be the matrices
where the state, input and noise vectors are given as columns.
Then, the problem is equivalent to

Y —[A, B] [i]

where || - ||o.1 is the sum of the o-norms of the columns for
a given matrix. However, some entries of the feature matrix
(XT,UT1T are not independent of each other due to the auto-
correlation between the state vectors. Therefore, the classical
compressed sensing results are not applicable to this system
identification problem. In addition, the existing sufficient con-
ditions, such as NSP [34], do not provide explicit conditions
for exact recovery and are difficult to analyze. As the first step

min
AER" xXn ,BERHX”I

)

o,1
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of the proof, the Karush-Kuhn-Tucker (KKT) conditions will
be used to analyze the properties of these estimators because
(CO-L2) and (CO-L1) are convex optimization problems.
Theorem 1: Consider the convex optimization problems
(CO-L2) and (CO-L1) and let o € {1, 2}. Given a pair of ma-
trices (A, B), if the following conditions hold simultaneously

0€ ) x @A —Ax + (B —Buil,
ign

+) i @A — A+ (B—Bui+dillo, (1)
iex

0 ui®A—Axi+ (B —Buillo
igx

+ Y i @A — A+ B — B +dill.,  (2)
iex

then (A, B) is a solution to (CO-L1) when o = 1 and a solution
to (CO-L2) when o = 2.

We emphasize that (A, B) represent the unknown ground
truth matrices, (A, B) are the decision variables in the convex
optimization problems, and (A, f?) are the solutions to those
convex optimization problems. The proof for the KKT con-
ditions when o = 2 is provided in [36], and the proof for the
case o = 1 can be done similarly. We will utilize the condi-
tions above to study in what scenarios the exact recovery is
achievable. As a simple corollary to Theorem 1, we can state
that (A, B) is a solution to our estimator(s) if the following
conditions hold:

0eY xi®dl0ll+ Y xi ®dlldillo,

ign et
0eY @0l + ) ui @ ddill.-
g iet

IV. AUTONOMOUS SYSTEMS

In this section, we consider autonomous systems, meaning
that up = --- = ur—; = 0. Therefore, the system dynamics
could be written as x; 1 = Ax; + difori=0,...,T —1.We
study noiseless systems under an adversary to obtain exact
recovery results, meaning that if there is no attack at time
i, i € #°, then d; = 0. We are interested in recovering the
system matrix A using the following convex optimization
problems for autonomous systems:

T-1
min Xiy1 — Ax; CO-L2-Aut
| min_ ;” i1 — Axill ( )
and
T-1
min X1 — Ax; CO-L1-Aut
min ;n 1 — Axill, ( )

The optimality conditions for problem (CO-L2-Aut) with o =
2 and problem (CO-L1-Aut) with o =1 can be written as

4

follows using Theorem 1:

0e) x®@A—Auillo+) x @A~ Aitdl..
g ieA

Remark 1: As a remark, although the set of attack times
% appears in the optimality conditions, this set is not known
a priori to the system operator. The set is only used during
the analysis of the proposed estimators to derive sufficient
conditions for exact recovery. Moreover, although the attacker
can choose a zero attack, d; = 0, the time period i is not
included in the set of attack vectors, i.e. i & %, to facilitate
the mathematical derivations regarding subdifferentials. How-
ever, due to the continuity of optimal solutions, one can select
an infinitesimal small value for the attack vector. Thus, its
limit corresponds to a zero attack.

We examine two types of attack structures: A-spaced and
probabilistic attack structures. An attack structure refers to the
pattern of attack occurrences. In other words, it involves the
distribution of each time instance at which a large disturbance
vector is injected into the system. Namely, we inspect the
structure of the set 7.

A. A-SPACED ATTACK STRUCTURE

The first attack structure is a deterministic attack model for
which the attacks occur at every A time period. For instance, if
A = 2,theset # couldbe {1, 3,5, ..., 2k + 1}, meaning that
an agent injects a disturbance vector into the system at every
odd time instance. We first define the deterministic attack
model, borrowed from [36].

Definition 1 (A-spaced Attack Structure): Given a positive
integer A > 2, the disturbance sequence {aT,-}l.T:_O1 is said to
be A-spaced if for every i € {0, 1,...,7 — A — 1} such that
di #0, we have d; =0, for all je{i+1,....,i+A—1}
and d_,-+A # 0. In addition, fori € {0, 1, ..., A — 1}, we must
have at least one non-zero disturbance vector, i.e. d; # 0.

Initially, we consider first-order ans stable systems where
x; € R and |A| < 1. When n = 1, the problems (CO-L1-Aut)
and (CO-L2-Aut) are equivalent, and therefore, we only focus
on (CO-L2-Aut). We will show that the convex formulation
(CO-L2-Aut) exactly recovers A in the case of A-spaced dis-
turbance sequence with A > 2.

Proposition 1: Consider a first-order autonomous system
with |A| < 1 and A-spaced disturbance sequence with A >
2. Then, whenever xg = 0 or 0 € %, the convex formulation
(CO-L2-Aut) has the unique solution A as long as the sample
complexity satisfies the inequality T > A + 1.

This proposition implies that whenever there are more than
A + 1 data samples, the exact recovery is guaranteed to be
achieved. Note that Proposition | does not make any assump-
tion on the vector set {d; : i € .#"} and each element of the
set could be arbitrarily large and correlated as long as they are
finite. As a result, regardless of the severity of the attack, an
exact recovery is guaranteed for (CO-L2-Aut). One important
implication of Proposition 1 is for the case where there is
a A-spaced disturbance sequence with A = 2, meaning that
half of the observations are corrupted. In the robust regression
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estimation literature, exact recovery is possible only if the
number of attacked observations is less than half of the total
observations. The main difference between robust regression
and system identification problems is that the observations
are correlated with each other in the latter. This enables exact
recovery for the convex formulation even if half of the data is
corrupted via an adversarial agent. The proof of Proposition 1
is based on the following lemma.

Lemma 2: (Theorem 1 in [36]) Consider the convex op-
timization problem (CO-L2-Aut). If Zi¢9{|xi| > Y e lxils
then A is the unique solution to the problem.

A natural question arises as to whether one can generalize
the above result to higher-order systems. The next proposition
extends Proposition 1 to autonomous dynamical systems with
an arbitrary order n under a A-spaced disturbance sequence
with A > n+ 1.

Proposition 2: Consider an autonomous system of order
n under a A-spaced disturbance sequence with A >n + 1.
Suppose that A is diagonalizable with eigenvalues, A;, [ =
1,2,...,n,and that the condition

span{d;, Ad;, ..., A" 'd}} e R", Vie # 3)

is satisfied. Then, whenever xo =0 or {0, ..., A — 1} € %,
A is a solution to the convex formulation (CO-L2-Aut) if
T > n+ A, provided that

A—n—1
Yok k)| = YYD Ak )
kit Ak=A—n i=0  |k+-+ky=i
“4)
where the notation A(ky, ..., k,) denotes 5\]{1 X oo X Akn,

This result is a generalization of Proposition 1. The con-
dition (3) is necessary to ensure that the KKT condition is
satisfied, which guarantees that the disturbance vector excites
the system to explore the entire system space in the next n
time instances. In real-life applications, this condition can
be attained by injecting a random small perturbation to the
system. To gain insight into (4), which involves the prod-
uct of eigenvalues, consider a special case where A has the
eigenvalue A with multiplicity n with n linearly independent
eigenvectors. In this case, we can simplify (4) as follows.
Define k := A — n. Then, (4) is equivalent to

n+k—1\ ., sa(n+i—1\_,
( . )|x| —Z( ; >|x| <0.
i=0
This condition is satisfied if || < C, x, where C, x denotes the
upper bound on the eigenvalue magnitudes given the parame-
ters n and k. Fig. 1 summarizes the values of C, ; for different
choices of n and k. Note that G, < Cp i if n > mand C,, <
Gy if k < I, due to the definition of C, ;. It can be shown
that Cy p — 2ask — oo. Asaresult, |A| < C,x < Ci; — 2.
This shows that the stability of the system is not necessary
for exact recovery when the attack vectors are injected less
frequently. In addition, whenever k = nor A = 2n, |A| < 11is
sufficient for exact recovery. This conclusion is analogous to
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Cn i k=1 k=2 k=3 k=5 k=7 k=10

n=1 1.0000 | 1.6180 | 1.8393 | 1.9659 | 1.9920 | 1.9990
n=2 | 0.5000 | 1.0000 | 1.2886 | 1.5725 | 17010 | 1.7951
n=3 | 03300 | 0.7287 | 1.0000 | L3181 | 1.4892 | 1.6310
n=5 | 0.2000 | 0.4740 | 0.6938 | 1.0000 | 1.1956 | 1.3087
n=7 | 0.1429 | 0.3516 | 0.5320 | 0.8069 | 1.0000 | 1.1979
n=10 | 0.1000 | 0.2535 | 0.3944 | 0.6263 | 0.8036 | 1.0000

FIGURE 1. Upper-Bound Value C, . for Different Values of n and k.

the stability of the system. Proposition 2 can still be applied
to problem (CO-L1-Aut). However, the KKT conditions will
differ due to the subdifferential of the £, and ¢; norms. In
fact, they both have a similar shape. Therefore, one can show
that this proposition still holds with the same condition even
if convex formulation (CO-L1-Aut) with the £; norm of the
disturbance vectors is used.

Remark 2: We choose the A-attack structure with uniform
attacks as the strictest attack structure. Here, A can be gen-
eralized as the smallest interval over which there is no attack.
The sufficient conditions hold for every A-time interval. If the
sufficiency conditions are satisfied for the interval of length A,
they will also be satisfied for intervals of length greater than
A. In the latter case, we add additional terms to the summation
for i ¢ # in the KKT condition, which enlarges the set of
possible values for the subgradients. In fact, this relaxes the
condition of the KKT condition for the interval of length A.

B. PROBABILISTIC ATTACK STRUCTURE

Because the minimum value of A is 2, the deterministic attack
structure does not allow the size of corrupted data to exceed
the size of clean data. Thus, we investigate a probabilistic
attack structure for which a non-zero disturbance vector d;
is injected into the system at time instance i with probability
p > 0, which is independent of the other time periods. Specif-
ically, given a time instance i, d; is non-zero with probability
p, and this is independent of all previous and future time
instances. Nevertheless, the attack vectors are still allowed to
be correlated with each other. Our goal is to discover the prop-
erties of (CO-L1-Aut) and (CO-L2-Aut) for an arbitrary value
of p, especially p > 0.5. We make the following assumptions
throughout this section.

Assumption 1: Given an autonomous system x;| = Ax; +
difori=0,...,T — 1 with dimension 7, assume that xy = 0
and all singular values of A are less than 1, i.e. [|Al|,, < 1.

The stability assumption is standard in system identification
problems to avoid an unbounded growth of the states during
the learning process. Without loss of generality, we initialize
the trajectories at the origin since an initialization at other
points affects the results only with a constant factor. In ad-
dition, we make the following stealth attack assumption.

Assumption 2: For each k € JZ; the attack vector is defined
as dy = £ fy where £; € R and f; € Sy(1). f; plays the role
of the direction of the attack while £ plays the role of the
length. Define the filtration

Fi=o0ofx1,...,x}, Vkel0,...,T —1}.
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For all k € 7, conditioning on .%, the following statements
hold:

1) £ is independent from the direction fi;

2) The direction f; obeys the uniform distribution on

Sa(1);

3) ¢ is mean-zero and sub-Gaussian with parameter o;

4) The variance of ¢ is akz € [c?02, 02] for some constant

c>0.

Under the stealth assumption, the length #; can depend
on the previous attacks dj/, and in particular £, and fi for
k' < k. For example, a stealthy attack vector d; could have the
distribution .#(0, min{c, ||7,-|T2}) where m = Z;;:O(i +
D~ Yxi]|2 is the average norm of the states between time pe-
riods 0 and i. The magnitude of the attack vector is dependent
on the past. We note that the above assumption of symmetry
of the disturbance vectors reflected in f is not restrictive and
corresponds to stealth attacks. If this does not hold, the attacks
may be detectable, and their effects could be nullified, or the
system could be stopped to investigate the possible influence
from outside agents [37], [38]. To understand the notion of
stealthy attack, consider the practice in power systems where
the system operator performs some hypothesis testing on sen-
sory data to detect anomaly before making any decisions using
the data. If the mean of the data is not zero, it would not
pass the test and therefore the attack would be isolated or
nullified. If the symmetric assumption does not hold, there is
an unavoidable bias in estimation [39].

It is not possible to obtain deterministic sample complexity
for exact recovery due to the randomness in attack structure.
Therefore, it is essential to quantify the required number of
samples for the exact recovery with high probability. Un-
der Assumption 2, the attack vector at time i, d;, has a
sub-Gaussian distribution with parameter o given .%;. The
sub-Gaussian assumption does not specify the distribution of
the disturbance vector but assures that the disturbance vectors
have light tails. For instance, any distribution over a bounded
space is sub-Gaussian, making this assumption mild.

The KKT conditions for exact recovery, which are neces-
sary and sufficient, can be restated as

i €dll0lle, VigH sty xi®@yi=) x®dldil.
g et

because of the properties of the subdifferentials at the origin.
In order to simplify the analysis, we use the relationship
between the unit balls of the ¢, and ¢, norms, that is
Boo(1)/4/n € Ba(1). Additionally, we examine the results for
each coordinate of the subdifferentials since they are separable
due to the properties of the £, norm. Therefore, the following
propositions provide sufficient conditions to satisfy the KKT
conditions.

Proposition 3: The KKT conditions for the problem
(CO-L2-Aut) and (CO-L1-Aut) are satisfied if there exist
scalars yil el[—1,11,i €% 1 =1,...,nsuch that

dovini/Nn=) dldilx, Vi=1...n (5

idA iex

and

Y vixi=) dldlix, Vi=1...n (6

g ieA

Here, 3 ||d; ||é is the /-th element of the subgradient.

Because analyzing the conditions (5) and (6) directly is
cumbersome, we investigate the equivalent condition provided
in the lemma below, derived using Farkas’ lemma [40] and the
duality of linear programs.

Lemma 3: Given a matrix F € R and the vector g € R”,
the following statements are equivalent:

i) There exists a vector w € R™ with ||w]s < 1 satisfy-
ing Fw = g.

ii) For every z € R" with ||z|l> = 1, it holds that f(z) :=
g+ 1" Flli = 0.

It is important to notice that the conditions (5) and (6)
amount to finding a vector for the set of equations in the
form of Fw = g where w is restricted as ||w|s < 1. Given
a coordinate /, the matrix F € R"*T'=I#D) agsociated with the
conditions (5) and (6) is a matrix with columns % and x;,
and the vector g € R" is Y, ,dlldill5x; and Y, ,dlldi’ x;,
respectively. Moreover, the vector w € RT =1 has the ele-
ments yil,i ¢ ¢ for both conditions. Hence, we study the
condition ii) in Lemma 3. However, there are infinitely many
points on the ¢, unit circle Sy(1). In order to show that the
function f(z) =z’ g+ ||lz' F||; is non-negative at every point
on the ¢ unit circle, we employ the discretization technique
that chooses a finite set of points. These points are chosen as
the e-cover of the unit ball.

Definition 2 (Covering Number [35]): e-cover of the
compact set T with respect to the norm p is a set
{91, 0%, ..., 9N} C T such that for each 6 € T, there exists
somei € {l,..., N} with p(0, 0") < €. The €-covering num-
ber A (€, T, p) is the cardinality of the smallest e-cover.

Given a € > 0, the logarithm of the covering number of
the unit ball or the metric entropy of the unit ball can be
upper bounded using the volumetric arguments of the balls.
Indeed, the number of € balls exceeding exp{nlog(l 4 2/¢)}
is sufficient to cover the unit ball with balls of radius €.

Lemma 4 (Covering Number of the Unit Ball [35]): Given
an n-dimensional unit ball B(1) with the norm || - ||, the metric
entropy of the unit ball can be upper bounded by

log (e, B(1), || - |) < nlog (1 + %) .

We show that the function f(z) can be lower bounded by
some positive number 6 > 0 at every point in the e-cover of
the unit ball with high probability, and that the function value
inside the e-ball does not change more than this positive num-
ber 6 with high probability. Thus, f(z) must be non-negative
at every point of the unit circle with high probability. Utilizing
this idea, the next theorem shows that the sample complexity
for the exact recovery grows with n” log(n) and (1 — p)~2 for
the general systems of order n.
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Theorem 2: Consider an autonomous system of order n
under a probabilistic attack model with frequency p. Suppose
that Assumptions | and 2 hold. Then, for all § € (0, 1], if the
time horizon satisfies T > O (Tsample ), Where Tgample is defined

as
nR |:n log(nR) + log <é):| ,
and
R := max{ log1/¢) ,
netp(1 — p)log(1/p)
log*(1/c) 1 }
101 = p)2(1 — p)*log*(1/p) np(1 —p) )’

with p denoting the largest magnitude of the singular values
of A, then A is the unique solution to the convex optimization
(CO-L2-Aut) with probability at least 1 — &.

An implication of the above theorem is that even when p is
large (e.g., p > 0.5) corresponding to the system being under
attack frequently, exact recovery of the system dynamics is
still possible as long as the time horizon is above the threshold.
Similar results can be obtained if one prefers to use problem
(CO-L1-Aut) to recover the system matrix A.

Theorem 3: Under the assumptions of Theorem 2, if the
time horizon T satisfies T > O (Tgample ), Where Tgample 18

R [n log(nR) + log (é):| s

and R is defined in Theorem 2, then A is the unique solution
to the convex optimization (CO-L1-Aut) with probability at
least 1 — 6.

The proof of Theorem 3 is highly similar to that of Theo-
rem 2. Because the conditions (5) and (6) differ by a factor of
/n, the sample complexity results in those theorems differ by
a factor of n. The required amount of data increases with the
value (1 — p)~2 and the order of the system n. Hence, as p
and n increase, the number of samples for exact recovery with
high probability grows. The results on sample complexity are
intuitive: as the probability of having an attack increases, a
larger time horizon is required for exact recovery. In addi-
tion, if the system is at the verge of instability, the sample
complexity increases significantly. Even in the case when the
probability p is close to 1, significantly more corrupt data than
clean data, this result guarantees asymptotic exact recovery as
long as there are a sufficient number of clean samples. We
make the following remarks regarding various generalizations
of the above results.

Remark 3: We note that the dependence on p~!(1 — p)~!
is an artifact of the high probability bound. Specifically, this
dependence ensures that the number of attacks is bounded by
®(pT) with high probability. When p is very small or even
zero, learning the system becomes a classic problem in control
theory, where it is known that artificial noise (referred to as
an excitation signal) must be added to the system in order
to enable learning. There is a rich literature explaining why
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an excitation signal is necessary when a system is (nearly)
deterministic. For instance, consider the system x;| = Ax;.
If xg is zero, then x; will always remain zero, preventing us
from identifying A. To avoid this, we must excite the system
as x;11 = Ax; + w;, where w; is, for example, Gaussian noise.
When p is not close to zero, the adversarial attack serves as an
excitation signal, helping in this regard.

Remark 4: When the system is initialized randomly at xg
following Assumption 2, the results of Theorems 2 and 3
continue to hold. A system with a nonzero initial state xo at
time 0 is equivalent to the system initialized at the origin at
time —1 under the attack xp at time —1, namely, the new
system could be constructed as x_; = O andd_; = xo, leading
to the state value xg at time 0. Thus, the sample complexities
of the theorems only shift by a constant.

Remark 5: Furthermore, we mention that the uniform dis-
tribution assumption of f; can be relaxed to any distribution
on the sphere with zero mean and full-rank covariance matrix.
In that case, the sample complexity in Theorems 2-5 will
depend on the conditional number of the covariance matrix.

V. SYSTEMS WITH INPUT SEQUENCE

It is desirable to understand the role of an input sequence
in exact recovery. Since the input sequence is generated by
a controller, one can design it in such a way that it acceler-
ates the learning. In this case, the system dynamics is given
as xjy1 = Ax; + Bu; +d;,i=0,...,T — 1, where A € R™"
and B € R"™ The goal is to obtain these matrices using the
state trajectories and the sequence of inputs. We will investi-
gate the estimators (CO-L2) and (CO-L1) defined earlier.

We choose the input vectors u; to be Gaussian given .%;. A
random input sequence is commonly used in system identifi-
cation and online learning because it enables the exploration
of the system to learn the system dynamics faster. The Gaus-
sian input assumption is mild, and it is satisfied when u; is
designed in the linear feedback form as u; = Kx; + . Condi-
tioning on .%;, the input is excited with Gaussian noise w. Note
that the closed loop system could be written as x; | = (A +
BK)x; + Bw + d;. Thus, the problem is equivalent to estimat-
ing the matrices (A 4+ BK) and B when the linear feedback
control is used. Therefore, the most common input sequence
used in optimal control satisfies this assumption. Similar to
Proposition 3, the sufficient conditions can be tightened so
that the equations become coordinate-wise separable.

Proposition 4: The KKT conditions for problem (CO-L2)
are satisfied if there exist scalars yl-l , ,uf e[—1,1] forall i &
1 e{l,...,n} such that

dovini/Nn=7) dldilx, Vi=1...n (D

it iex

and

D miui/n= dldillyu, V=10 (8

i iex

where 9|d; ||12 denotes the /-th element of the subgradient.
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The proof of Proposition 4 relies on the same technique
as in Proposition 3. Similar to autonomous systems, we can
omit the factor \/n from above equations to guarantee the
satisfaction of the KKT conditions for problem (CO-L1). We
require the following controllability assumption.

Assumption 3: The ground truth (A, B) satisfies

rank {[B AB A”_lg]} =n.

Intuitively, the controllability of a non-autonomous system
denotes the ability to move a system around in its entire state
space using the input sequence {u,'}l.T;Ol. Controllability is an
important property of a control system and plays a crucial
role in many control problems, such as stabilization of un-
stable systems by feedback. Under the above assumption, we
implement the non-asymptotic analysis of the general non-
autonomous system in a similar fashion to Theorem 2.

Theorem 4: Consider an autonomous system of order n
under a probabilistic attack model with frequency p. Suppose
that Assumptions 1, 2, and 3 hold. Assume also that the input
vectors u;|.%; are selected to be independent from the attack

vectors and obey the Gaussian distribution .40, %Im). For all
8 € (0, 1], let

1
Tsimple = nR, [ﬂ log(nR) + log <5>]

and
1
Tszlmple = nR; [m log(nR>) + log (g)} ,
where
lOg(K/c) pK2
R; := max 7 . 5 : .
nc*log(l/p) c¢'V(1 — p)*(1 — p)
pr?log?(k/c) 1 }
cl0(1 = p)?log*(1/p) " np
1
R := max {—, Lz’ ﬂ}.
np (1—-p) n

Here, constants ¢ € (0, 1] and « > (1 — ,0)_1 depend on m, n,
o, & and B. If the time horizon satisfies the inequality 7 >
@[max{TS;mple, Tszzlmple}]’ then (A, B) is the unique solution to
(CO-L2) with probability at least 1 — §.

The proof of Theorem 4 is deferred to the online ver-
sion [41]. We have obtained a high probability bound for the
exact recovery of the system matrices A and B. The TS}lmple
in the sample complexity corresponds to the satisfaction of
the KKT conditions for the state measurements, whereas the
Tsﬁmple corresponds to the satisfaction of the KKT conditions
for the input sequence. Just like autonomous systems, the
sample complexity increases as the probability of disturbances
increases. Compared with the previous theorems for the au-
tonomous case, we require a sample complexity that scales
with p/(1 — p)> and terms depending on the spectral norm
of A. The introduction of the input sequence removes the
requirement on the variance of the attack vectors. In addition,

8

the dependence of the sample complexity on p is improved
from 1/(1 — p)2 to p/(1 — p)z. Moreover, the dependence on
the spectrum of A is reduced from 1/[(1 — p)? logz(l/p)] to
1/[(1 — p)? 10g2(1/,0)]. As expected, even if more than half
of the data are corrupted, that is p > 1/2, the exact recovery
is still attainable with high probability. The following theorem
studies problem (CO-L1).

Theorem 5: Under the assumptions of Theorem 4, for all
8§ € (0, 1], let and T2 be defined as

sample

R [n log(nR;)+log (é)} and R, |:m log(nR»)+1log (é)} ,

where R and R; are given in Theorem 4. If T satisfies the
inequality T > @[max{TS:lmple, Témple}], then (A, B) is the
unique solution to (CO-L1) with probability at least 1 — 8.

Remark 6: When the input sequence u; = Kx; is used to
control the system, the closed-loop system with the matrix
(A + BK) results in a second solution A = A + BK and B =
0. Still, the ground-truth system matrix pair (A, B) is also
a solution to our estimators. This phenomenon occurs due
to the existence of multiple optimal solutions. It could be
avoided if the input is excited with a small noise in the form of
u; = Kx; + w. Moreover, if all the input vectors u; are set to
zero, it is not possible to uniquely recover the system matrix
B. Because the input sequence is zero, the KKT conditions are
trivially satisfied; thus, we have multiple optimum solutions.

Remark 7: The results in Sections IV and V can be ex-
tended to the case where there is a small-in-magnitude dense
measurement noise, e;, in addition to potentially large-in-
magnitude adversarial noise d;. Note that the estimator can
be written as a constrained optimization problem as

T-1
> ldills
i=0

s.t. Xi+1—Axi+Bu; +d; =0,

1
Tsample

min
AER’IX"’BERHXWI’
d,‘GR",Vf

i=0,....T =1

Adding the dense measurement vector e; is equivalent to
perturbing the constraint from x;+1 — Ax; — Bu; —d; = 0 to
Xi+1 — Ax; — Bu; — d; = e;. This implies that the optimal so-
lution will be perturbed as well. Different results are readily
available on how to calculate the change in the optimal solu-
tion (Theorem 2 in [42]).

VI. NUMERICAL EXPERIMENT

We conduct numerical experiments with synthetically gener-
ated dynamical systems and a real-life biomedical application
involving insulin injections.

A. SYNTHETIC SIMULATIONS

We generate LTI dynamical systems to verify the theoretical
results. For each experiment, we generate 10 different random
matrices A and B with singular values uniformly distributed
between (—1, 1). We generate the trajectory of the system,
{x,-}iTzo, from a system initialized at the origin by using the
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FIGURE 3. Performance of (CO-L2-Aut) with Probability of Attacks
p €{0.001,0.01, 0.1} with n = 5.

disturbance vector d; = ¢; f; where

¢ ~ MO, min{100/n, 100]x:[2}),  f; ~ Uniform(S"™ )

whenever i € # and using i.i.d. zero mean and Gaussian
input vectors u; with the covariance matrix I,,/m. We solve
the following optimization problem for every time period ¢
between [1, T'] using the CVX solver

t—1

FiAB)=" |lxip1 —Axi—Buj]|
i=0

(A, B)= arg min
AeRmxn BeRnxm
For any time periodr = 1, ..., T, we obtain the solution gap,
I(A;, B:) — (A, B)||, and the loss gap, f;(A,, B;) — fi(A, B).
We plot the trajectory of the average solution gap and the loss
gap of the 10 independent simulation runs. First, we analyze
the performance of the estimator with respect to the proba-
bility of having an attack for the autonomous systems. We
use three different values of p € {0.5, 0.7, 0.8}. In Fig. 2, we
report the results for the estimator (CO-L2-Aut). In this case,
as the probability of attack p increases, the number of required
samples grows. This aligns with the theoretical results since
the sample complexity scales with (1 — p)~2.

Moreover, we conduct an experiment with a very small
probability of having an attack, namely the probability of
attack p being equal to {0.001, 0.01, 0.1}. Unsurprisingly, an
extremely small excitation or probability of attack, such as
p = 0.001, leads to the failure of exact recovery in 7 = 500
time periods in Fig. 3 because of the lack of excitation.

In addition, we test the impact of the dimension of the sys-
tem using the estimator (CO-L2). Setting p = 0.5, we create
systems with dimensions (n, m) € {(5, 5), (10, 10), (15, 15)}
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FIGURE 4. Performance of (CO-L2) with Dimensions (n, m) € {(5, 5),
(10, 10), (15, 15)} with p = 0.5.
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FIGURE 5. Performance of (CO-L2-Aut), (CO-L1-Aut), and Least-Squares
withn=5and p=0.7.
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FIGURE 6. Performance of (CO-L2), (CO-L1) and Least-Squares with
(n,m)=5and p=0.7.

for (CO-L2). In Fig. 4, it is observed that the sample com-
plexity for exact recovery grows with the dimension of the
system. Theoretically, T grows with roughly nlog(n) when
the term R in the sample complexity bound is dominated by
the terms that scales with n~!. The smaller empirical sample
complexity hints stricter lower bounds since the theoretical
results are only sufficient conditions and are derived for the
worst-case scenario.

Moreover, we test the relationship between the sample
complexities of the estimators with ¢, £; norms, and the
least-squares method. Figs. 5 and 6 show the performance
for autonomous systems with n =5 and p = 0.7, and non-
autonomous systems with (n, m) = (5,5) and p = 0.7, re-
spectively. The solution gap and loss gap plateau for the
least-squares estimator, whereas the £, and £; norm estimators
successfully learn the ground truth system matrices. Since
the attack vectors themselves are not sparse, the ¢, estimator
requires fewer number of samples to achieve exact recovery
than the ¢ estimator.



YALCIN ET AL.: EXACT RECOVERY FOR SYSTEM IDENTIFICATION WITH MORE CORRUPT DATA THAN CLEAN DATA

Solution Gap (p = 0.5)

Solution Gap (p = 0.7)

Solution Gap (p = 0.8)

10°
—— Two Norm

One Norm
— Least Squares 102

107!

10

1077

\ (QM*A""""UY#MHWMM\ A

—— Two Norm 10° |
One Norm
~— Least Squares
10*

—— Two Norm
One Norm
~— Least Squares

0 100 200 300 400 500 0 100 200

Time T

Time T

300 400 500 0 100 200 300 400 500
Time T

FIGURE 7. Solution Gap for (CO-L2), (CO-L1) and Least-Squares with p € {0.5, 0.7, 0.8} for the Insulin Application.

B. BIOMEDICAL APPLICATION

We conduct a numerical experiment inspired by biomedical
applications to demonstrate results for a real-life biomedical
application. We consider a compartmental model of blood
sugar and insulin dynamics in the human body, as described
in [43]. Accurately estimating the parameters of the dynamics
is crucial when regulating the blood sugar level through the
injection of a bolus of insulin into the system. Due to the com-
plex structure of the human body, the dynamics vary among
individuals. We consider a linear system based on Hovarka’s
model as follows [44]:

X1 = —ka1x1 + kp1l + di,

Xy = —kppx1 + kpol + da,

X3 = —kgzx1 + kpal + d3,

St = =St /tmax,1 + da,

S> = S1/tmax.s — S2/tmax.1 + ds.
I'=52/(tmax,1V1) — kel + ds,

where given a time-dependent variable z(7), z(¢) represents its
derivative with respect to time 7. The states xy, x», x3 repre-
sent the influence of insulin on glucose distribution/transport,
glucose disposal, and endogenous production, respectively. S;
and S represent the absorption rate of insulin. Lastly, the state
I represents the blood sugar level in the body. The disturbance
dy corresponds to the bolus injection into the body, while
the remaining disturbance vectors represent other effects not
captured by the model. Although the injected insulin amount
could be known, the exact amount of insulin and its timing
reaching the effective body parts are unknown. Hence, the d;
values are treated as unknown. Even though the disturbance
in this application is not a malicious attack, it exhibits simi-
lar characteristics for identification purposes: the arrival time
of the bolus is unknown, and once it arrives, it has a large
magnitude.

We discretize the continuous-time system to obtain an LTI
system using A; = 0.5. The resulting matrix A is stable. Our
objective is to estimate the parameters (Kui, kpi, tmax.1, Vi, Ke).
The attack vectors are modeled using the same distribution
as in the synthetic simulations. We run our model with the

10
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FIGURE 8. Performance of (CO-L2), (CO-L1) and Least-Squares with
p = 0.7 for the Insulin Application with Sparse Vector Injections.

probability of an attack being p = 0.5, p = 0.7, and p = 0.8.
We report the solution gap for the least-squares estimator,
problem (CO-L2), and problem (CO-L1).

Fig. 7 suggests that our proposed estimators attain exact
recovery while the least-squares estimator fails to do so. As
the probability of having an attack p increases, the number
of required time periods for exact recovery grows. Note that
there are more corrupted data than clean data in the case
of p=0.7 and p = 0.8. Additionally, because there is no
sparsity assumption on the attack vectors, (CO-L2) performs
slightly better than (CO-L1). We compare the performance of
(CO-L2) and (CO-L1) by running a similar experiment with
and without sparse disturbances. When the disturbances are
sparse, d1, da, d3, ds are set to zero. Fig. 8 shows that the ¢»
and ¢ estimators perform similarly when the attack vectors
are also sparse.

VII. DISCUSSION AND CONCLUSION

We investigated the problem of learning LTI systems under
adversarial attacks by studying two lasso-type estimators. We
considered both deterministic and probabilistic attack models
regarding the time occurrence of the attack and developed
conditions for the exact recovery of the system dynamics.
When the attacks occur deterministically every A period, ex-
act recovery is possible after n + A time steps. Moreover, if
the system is attacked at each time instance with probability p,
the system matrices are recovered with high probability when
T is on the order of ©((1 — p)~2) and a polynomial in the
dimension of the problem. These findings were supported by
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a numerical experiments. This work provides the first set of
mathematical guarantees for the robust non-asymptotic anal-
ysis of dynamic systems.

APPENDIX
A. PROOF OF PROPOSITION 1
Let iy, ip, ... be the set of attack times over time horizon, i.e.
H ={iy, iz, ...}. We show that sufficient conditions satisfied
for every attack interval [i; + 1, k4], Yk > 1. Due to A-
spaced attack model, we have i; < A. We can utilize Lemma 2
to show that A is the unique solution.

Case 1: xo =0

We have x; =0 for i =0, 1,...,i;. As a result, we will
show that the condition of Lemma 2 holds for every time pe-
riod in the time intervals [iy + 1, ix4+1], Vk > 1, where iy+1 =
ir + A. For any such interval with £ > 1, the following holds

l‘k+A71 l‘k+A71
D0l =i l= Y Il — Al a1l
i=ip+1 i=ip+1
ir+A-2
= > ll+ A=A ra1] >0
i=ip+1

The last statement is positive because |A| <1 and A >
2. Note that le |x;| =0 whenever j <i. The condition
Zi¢%|x,~| — Y icxlXil > 0 holds after the first attack time
period. Thus, whenever 7 > i; + 1 > A + 1, exact recovery
is achieved.

Case2:0¢ % and xy # 0

Because 0 ¢ %, we have iy > 1. From the above state-
ments, we know that the sufficient condition holds for every
time interval [i; + 1, ix41], Yk > 1. Hence, we only need to
show that the condition in Lemma 2 is satisfied for the time
interval [0, 1] as well. It is apparent that

i—1 i—1

Dbl = bl = bl — AlLxi, 1
i=0 i=0

i1—2
=Yl + (1 = |ADlx, 1] > 0.

i=0

The last statement is positive because |A| < 1 and i; > 1.

B. PROOF OF PROPOSITION 2
By using KKT conditions, A is a solution to the problem if
and only if

0 x @002+ Y x®d|dil. ©)

g iex

Let i; be the time stamp of the first attack time. Then, we
have i1 < A due to A-attack structure and the assumptions in
the theorem. The set of attack times is % = {i1, i1 + A, i1 +
2A,i; + 3A,...}. Since xop = 0, we have x; = 0 whenever
i=0,1,...,i1andx;; 41 = d;,. Let T = A + iy, i.e., the time
step at which a cycle of disturbance is completed. In this case,
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the sufficient condition using KKT condition can be written
as
A—1
0€ Y x4 ®[0ll2 +xiy 14 ® 3y, 1all2

t=1

A-2 7
- - - d;
e Y A'dy, ®0]0]r +Ad @ A
= i +all

The matrix 0 may belong to the right-hand side term for
arbitrary d;, 1 a if di,+a € span{d;,,Ad;,, ..., A%72d;,}. This
is satisfied by the assumption in the proposition statement.
However, this is not sufficient because the vectors cho-
sen for 9||0]2 have a bounded norm. Therefore, we need

_ _ d;
to bound the norm of the columns of AA_ld,-1 ® i HAIIz’
i +A

so it can be expressed as a linear combination of the
vectors {d;,, Ad;,, ...,A%72d;}. Let (1}, v;) be eigenvalue-
eigenvector pairs for the matrix AT. Let e],...,ea_1 €

9||0]|2. Then, the KKT condition can be written as follows:

0cerd +erd AT +.. . +ea1d" (ATHYA72 4 £dT (ATHYA 1,

di+a
ldi; +all2
above by the eigenvector v; of AT | we obtain

Oeed vj+-+eard (AT)A v+ fdT (AT)A 1y,

where [ =

and || f]l> = 1. If we multiply the equation

€(e1 +rjer+---+ ,\J.A—zeA,l + xf—lf)d'fvj.

Note that because A is diagonalizable, we only need to satisfy
this condition along the direction of each eigenvector. There-
fore, the KKT condition holds if

0=el+)\,j62+...+)»jA726A_1+)\,f71f, Vi=1,...,n.

There are (A — 1)n free variables and n? equations. One can
use the substitution to eliminate n? variables, which leads to

> aki. kS
ki+-+ky=A—n
A—n—2
= Z Aki, .o k)eiing.
=0 k4 thy=i

Taking the norm of both sides and using the triangle inequality
yields that

Z A-(kl"'°7kl’l) ||f||2
ki+-+ky=A—n
A—n—1
< Z Z )\(kl,...,kn) ||ei+n+1||2-
i=0  |kj+tkp=i

Using the fact that |lej|lo =1 for all j and [|f]l> =1, we
obtain

A—n—1
Yo Mkik)|[ S Y > Mkie k)|
ki4-+k=A—n i=0  |ki+-+k,=i
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Moreover, if xq is not 0, then we can show that KKT condi-
tion is satisfied for the interval {0, 1, ..., A}. This completes
the proof for the proposition.

C. PROOF OF PROPOSITION 3
The KKT condition for the exact recovery is

By € 0o i & A st Y xi®yi= D % ®ddillo.
g et
(10)

For (CO-L2-Aut) with o = 2. the condition (10) becomes

Fyi € 90ll2, i ¢ A st Y xi®yi=Y x5 ®dilla.
g iet

Since 8|0]l1/+v/n = Boo/+/n(1) € Ba(1) = 3|0]l2, we can
rewrite it as

. X -
Jyi € 0l0lh.i € A sty 71®yi= > " xi ® d|dill2.
igH n e

We can check the condition at each coordinate because the
set Boo (1) is coordinate wise separable. Thus, KKT condition
holds for (CO-L2-Aut) if there exist scalars yl.l e[-1,11,i &
1 =1, ..., nsuch that

D_ovixi/Nn=7) dldilx, VI=1,...n,

it iex

where 8||d_,-||é is the /-th element of the subgradient. Similar
algebraic manipulation can be done for (CO-L1-Aut).

D. PROOF OF LEMMA 3
The condition “Given a matrix F € R™™ and the vector g €
R”, there exists a vector w € R” with ||w|s < 1 satisfying

Fw = g.” is equivalent to the feasibility of the linear program-
ming (LP) below with objective function equal to O:

max O s.t.
weRM

Fw=g¢ |wlew =1

Due to the strong duality, the dual problem of the LP above
must have the optimum objective value equal to 0. The dual
problem can be formulated as

min dg+ I st ZTF4+yT =0,

yeR™ zeR"
or equivalently,

min  f(z) := zTg+ ||ZTF||1.
zeR"

Thus, for any z € R", f(z) must be nonnegative. Because
f(cz) = cf(z) forall ¢ > 0, the condition f(z) > O forall z €
R" is satisfied if f(z) > 0 for all z € R” such that ||z|[» = 1.

E. PROOF OF THEOREM 2
Since xyp = 0, x; can be expressed as

Xi = Z ATF=De g
ket

where A+ is defined as

0, ifi <0
AD+ =1 ifi=0.
Al ifi >0
By Lemma 3, given a coordinate [ € {1, ..., n}, the optimality

condition for the recovery of A is equivalent to

f@=2"g+ Flli =0, VzeSD), (1)

where the matrix F € R"* 14D hag the columns

, Al—k=1)
ey T

. Vig
ke ﬁ

and the vector g € R" is
gi= Y Y A
iex ke

We do the proof in multiple steps.

1) SHOWING f(z) > 0 FOR ANY GIVEN z € S,(1)

We first prove that condition (11) holds with high probability
for a fixed z € Sy(1).

a) Analysis of the term ||zTF||;:

Z ZTA(ifkflpd‘k
ket

. (12)

1
Ell"Fli = —= 3 E

i¢H
We construct the index set

S=lilie H i—1ex).

CS
= Pogp © [log(m |/6)ﬂ

o [loglog(m 1/8) + log(l/C)]
log(1/p) ’

where [x7] is the minimal integer that is not smaller than x and
8 € (0, 1) is the specified probability. We construct a subset of
#] in the following way:

S = {i, ..

Let

Larlij e A, ij—ij—1 =8, Vj}.
It is straightforward to construct .# such that
1
I= > —|A].
|71 = S| 1

In addition, due to the probabilistic attack model, it holds with
probability at least 1 — exp[—®[p(1 — p)T]] that

Iﬂlle'

Therefore, we have an estimate on the size of .7

1—-p)T
p(1= P05 ) = 1 - ewi-elpa - T (3)
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For each je{l,...,
k < i;}, where we denote iy :=

I}, we define 7 :={k e X|ij_ <
—1. Moreover, we define

=Y AT, vjee{l,... I} stj<t
ke
Using (12), we can calculate that
A
ITF = — > Y X
==
1 J I
> Dol = 20 Xl (14)
j=1 l=j+1

We utilize the following lemma to bound |X; ,|.

Lemma 5: Suppose that a random variable X is sub-
Gaussian with parameter oy, where the mean and the variance
of X are 0 and 5)%, respectively. Then, we have

54

640 4'

P(X| = 6x) =

For all j € {1, ..., 1}, Assumption 2 implies that the stan-
dard deviation and the sub-Gaussian parameter of X; , are

B 1 .
Giei= | 2 WA e,
n
\ ket
. 1 T Aig—k—112 52
ojei= |~ Y A0,
ket

respectively. It follows from Lemma 5 that

54
P(X; | >6;;) > —2L,
(| il = ‘7/-,1) = 4ot
JiJ
which further leads to
A
P(1X;.jl = coj.j) = - (15)

On the other hand,
ZL,-H |X; ¢l is at most

Z Oj¢ < Z p(é DS & j,/fl_

l=j+1 l=j+1

the sub-Gaussian parameter of

S

gj j.
JsJ
oS

Therefore, it holds with probability at least 1 — §/(47) that

! s
— 3 Xl = -t fpsgm. /210g(41/3)
t=j+1
03
> - pSGj,j -y/2log(4]411/8)
A
Z—m'caj,j, (16)
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where the last step is by the choice of S. Using the bound in
(13), if we choose

loglog(1 log(1
T>e ( oglog( /3)4+ og( /c))’
p(l — p)c*log(1/p)

it holds with high probability that

ct ) c*

_— > —

64 41 — 128
Note that we have dropped the |.#)| term in the definition

of S since loglog(|-#|) is bounded by loglog(7T) and will
not change the order of the above bound. Let g; be the

(1 — ¢*/128)-quantile of |X; ;| — >>1_; | Xjel-
We define the indicator function
. I
Lif X 1= e [Xjie| = 4
0, otherwise,

1;:= Vje(l,...I.

Since the value of the Bernoulli random variable 1; only
depends on attacks in ., which are disjoint from each other,
the random variables

1, —c*/128, ..., 1; —¢*/128

form a martingale sequence with respect to filtration
Fiy, ..., Fy. Forall j e {l,...,I}, we can calculate that

C4
@(es—l)}, Vs € R.

By the tower property of expectation, we have

E [exp (s1,)] < exp [

!
E; | exp Zl fexp[lzg(e—l)] Vs € R.

For conditional probabilities and expectations of a random
variable X given another random variable Y, we use the
notation Ey [X] := E[X|Y] and Py (X) := P(X|Y) for the re-
mainder of the proof. Therefore, E;[-] denotes the conditional
expectation of the term given the value of the random variable
I. Therefore, by applying Chernoff’s bound and choosing
—log(2), it follows that
I ct

1
1l,<— 1] < — -1
ZZ: I=256 1| = CXP[ 256 T ¢ )]
exp| -0 (.
= ex — [ .
P 128
Equivalently, we know

oA
I =1 —exp|:—® (— I>j| (17

128
Furthermore, since i; — 1 € Jifj we can estimate that

1
2.2
o;i > Zll50° =
J,j_\/ || ||2

o.

4
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By the definition of g; and 1;, when the event in inequality
(17) happens, inequalities (15) and (16) imply that

1 I
Z X550 = > Xl

t=j+1

Z C4 - CSU I
LA I
< 256 74 T 512 79| = 512,

holds with probability at least 1 — §/4. Hence, we obtain

T
2" Fll1 =

Sl=

I \/

(18)

CSO'
[llz Fl1 > Son 1} >1—exp[-0 (c*1)] -

b) Upper bounding of the term 7 g:
Efexp (- )]
=E |:exp (k Z ZZTA(i_k_l)+Jk . fll>:| .
kexiext

Define the filtration .%/ := o{f;,i € #}. By the stealth
assumption, for each k € 7, conditional on .%; and T we
have

£, is sub-Gaussian with parameter o.
Let 7’ be the second last time instance in .#. We have
E | exp (AZ ZZTA(’ k=g, . 1 )i|

iexXkex

=E

exp | A Z ZZTA(’ k=Digy . i
ke k<T'iex
x E |:exp <A ZZTA(i_l_T,)+cZ_’T fll) 'QT/, ﬂf]
iex
Using the decomposition in Assumption 2, we have
]E |:3Xp ()\ ZZTA(l -7 )+dT’ f1> ‘y]‘/ yf:|

iex

19)

)\,20'2 —(: ’ - = :
< exp T ZZTA(lflfT )JrfT’fi[

iex

Substituting back into (19) and continuing the process for all
k € #, we obtain

E | exp (AZZZTA(’ “*=Dr gy f):|
iexkex

exp

2,2 2

Ao

e (2:\TA“">+fk\> . Qo)
ket

iex

where the last inequality holds because fll is bounded in
[—1, 1]. Foreach i, k € %, the value of (zT AE=1=0+ £)2 con-
centrates around its expectation ||z7 AG—1=0+ ||% /n. Therefore,

inequality (20) leads to
sfon(sp o 1)]
iexXkex

)\'2 2
<exp|®

Z(Zp" o ‘>+> .@y

ket \iext’

Suppose the elements in %" are

J1<j2<- < jlxl
Define
Api=jk—jk-1—1, Vkef2,..., |71}
‘We can calculate that
A
3 pli=1mir < Pt
l—p

iexX
Since ,oAk € [0, 1] are bounded random variables, they are
sub-Gaussian and concentrate around the mean with high

probability. The expectation of p>2« is
- P
p(1—pip?=—2
g 1 — (1= p)p?

Therefore, with probability at least 1 — exp[—®(pT)], we
have

17|
Z 24 < |2 |p
1—(1—p)p?

Hence, inequahty (21) implies that with the same probability,

7! g is sub-Gaussian with parameter
|# |po?
n(l—p)3

Therefore, Hoeffding’s inequality leads to

| po? 4 1)
P |:ZTg =-0 (/ﬁ log (g)):| =7

By combining inequalities (18) and (22), it holds with proba-
bility at least

<|<%/|p‘
I—p

o? P20
_ 2
n = (=p)

(22)

1 —exp [—@(041)] —

5 2
col | | po 1
>0 — 1 -
f@) = [ . \/n(l_p)3 og| 3
Similar to the bound in (13), it holds with probability at least

1 — exp[—O(pT)] that
|#] <2pT.

NSRS

that
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As a result, if we choose

T ®|:max { 10g410g(1/8) +log(1/c) log (1) ’
c*p(1 — p)log(1/p) 8

—1 lo (1>
pa—p 2\5)

nlog(1/c)?
101 — p)2(1 — p)3log*(1/p)

o[ (1]

where

log(1/c) 1
R := max { 7 log (—) ,
c*p(l — p)log(1/p) 8

log?(1/c) 1 }
cl0(1 — p)2(1 — p)3log(1/p) np(1 = p)

5
P, [f(z) > o<cn—‘”>] >1-6.

F. USING DISCRETIZATION BOUND OVER THE

UNIT SPHERE

In the second step, we apply discretization techniques to prove
that condition (11) holds for all z € Sy(1) with high probabil-
ity. Suppose that € > 0 is a small constant. We construct an
e-cover of the unit sphere S;(1), denoted as

o (5) ]

(23)

we have

(24)

', ..., 2"}

Namely, for all z € Sy(1), we can find r € {1, 2, ..., N} such
that ||z — 2|2 < €. The number of points N can be bounded
by

2
log(N) < log[-#'(€,S2(1), || - I2)] < nlog (1 + g) .
Define a to be the lower bound of f(z) in inequality (24).

Then, we have
(csal >
a=0 .
n

Our goal is to prove that
f@—f@) = ~a,
holds with high probability. Notice that
f@=f@)=e-"g+U"Flh -

V2,7 € Sa(D)sit.llz =22 <€

1) Fllv)

>iz-)g—llz—2)'F|

> —llz =2 laliglz = Iz = 212 )_ IIFl2
r¥4

= (zzwkm@

ieXkex
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=

1¢/£/

=—ey > p VI,

kex i>k

ZA(l —k— 1)+dk

kex

)

Using the property of exponential sequences we have
DY g < — Z |l.
ke i>k keth

Using a similar proof, we can show that ), %|Zk| is
sub-Gaussian with parameter |.# |o. Therefore, Hoeffding’s
inequality implies that

2.2
Pm< YU —) <20 |- |
kle/
Letting
_ (I =p)a
| |0 /2Tog(4/8)
it holds that

P[f@) - f(@) = —a,

1)
sz( Z|ek|<—>>1—§

kel

Now, after we replace § in (23) with §/(2N), it holds with
probability at least 1 — §/2 that

f(@)>a, Vre{l,...,N}.

After combining the above two inequalities, we apply the
union bound to obtain

P[f(z) =0,

The corresponding sample complexity is

2N
T > @[anog (T) }
Since it holds with probability 1 — exp[—®[p(1 — p)T']] that

|71 =Olp(1 —p)T], |H]=0(pT),

we get the estimate

vz, 2 € Sa(D)sitllz =22 < €]

VzeSy(D]=1-6.

2
log(N) < nlog <1 + —)
€

= nlog [1 +0 ( n/Tog(1/8)log(1/c) )}
(1 —p)e>(1 = p)log(1/p)
= O [nlog(nR)].

By omitting the constants in the expression, the final sample
complexity can be written as

T > @[nR |:n log(nR) + log (%)} ]

Finally, we replace § with §/n and apply the union bound to
all coordinates ¢ € {1, ..., n}.
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G. SHOWING UNIQUENESS OF SOLUTION

A is the unique solution to the (CO-L2-Aut) if and only if the
objective function value evaluated at A is strictly less than the
objective function value evaluated at A + €2, where € is any
small perturbation to the matrix A. Let fr(A) = ZiT;Ol (A —
A)x; +d;|| be the objective function of the (CO-L2-Aut).
Then, A is the unique solution if

frd) < frA+Q) =
T—-1 T-1
D ldilla < Y Ik +dill, =
i=0 i=0
D ldily < DNl + Y lldilla + Z(Qx,, ; )
l

iex igx iex iext
= 0<> Il +) (e d—) +o(1213)
igx iex ” ”

In the second-to-last step, we used Taylor’s expansion for
lx|l2 whenever x # 0. Taking €2 sufficiently small ensures that
|Qx; + d;||> is not zero. The terms ﬁ(|§2|%) is non-negative.
As a result, A is the unique solution whenever

> ligsillz + Z(Qx,, e ) >0,
di

igx

Q:QlF <e.

We can bound the norm of €2 with 1 instead of € thanks to
homogeneity. Let ! denote the I-th row of the matrix .
Using ||x|l2 > |lx|l1/+/7 and, we have the following sufficient
condition for the exact recovery:

ZZ

=1 th}V

||szlxl Il + Q' -

_ > 0,
lld;ll2

for all € such that |Q/,<1,1=1,...,
can be simplified as

n. This condition

n
Zng+ IQF; >0, VQst|Q<1,1=1,

=1

The matrix F € R"*T~=1#D and the vector g € R" are defined
at the beginning of the proof. The above condition is the
same as (11), except that we require strict positivity of f(z)
rather than non-negativity. The number of samples required
to satisfy both inequalities will remain the same, due to the
continuous distribution of the attack vectors.
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