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ABSTRACT
The subjective evaluation of early stage engineering designs,

such as conceptual sketches, traditionally relies on human ex-
perts. However, expert evaluations are time-consuming, expen-
sive, and sometimes inconsistent. Recent advances in vision-
language models (VLMs) offer the potential to automate design
assessments, but it is crucial to ensure that these AI “judges” per-
form on par with human experts. However, no existing framework
assesses expert equivalence. This paper introduces a rigorous
statistical framework to determine whether an AI judge’s rat-
ings match those of human experts. We apply this framework in
a case study evaluating four VLM-based judges on key design
metrics (uniqueness, creativity, usefulness, and drawing qual-
ity). These AI judges employ various in-context learning (ICL)
techniques, including uni- vs. multimodal prompts and inference-
time reasoning. The same statistical framework is used to assess
three trained novices for expert–equivalence. Results show that
the top-performing AI judge, using text- and image-based ICL
with reasoning, achieves expert-level agreement for uniqueness
and drawing quality and outperforms or matches trained novices
across all metrics. In 6/6 runs for both uniqueness and creativity,
and 5/6 runs for both drawing quality and usefulness, its agree-
ment with experts meets or exceeds that of the majority of trained
novices. These findings suggest that reasoning-supported VLM
models can achieve human-expert equivalence in design evalua-
tion. This has implications for scaling design evaluation in edu-
cation and practice, and provides a general statistical framework
for validating AI judges in other domains requiring subjective
content evaluation.
Keywords: vision-language model, design evaluation, AI
judge, inter-rater agreement

1. INTRODUCTION
In engineering design, assessing the quality and creativity

of early concept sketches is a critical but challenging task [1–3].

∗Corresponding author: kme@mit.edu
Version 1.40, April 2, 2025

Designers and researchers often rely on subjective evaluations
by domain experts to judge the creativity, novelty, aesthetic ap-
peal, and functional feasibility of a design concept [4–6]. This
approach, while considered the gold standard, faces well-known
issues: expert assessment is labor-intensive, potentially costly,
and can suffer from variability due to personal biases and differ-
ing criteria. Furthermore, defining expertise within a domain is
inherently complex and remains an active area of research [7];
however, leading researchers argue that expert-level judges should
possess “at least some formal training and experience in the target
domain” [8]. Even within panels of experts, achieving consis-
tency is non-trivial, typically necessitating multiple judges and
statistical checks for inter-rater reliability (e.g., intraclass corre-
lation coefficients) [9]. At the same time, crowdsourcing has
been explored to increase throughput of design evaluations, but
without careful control, as it may yield noisy results [10, 11].
Studies show that averaging across a large crowd of non-experts
can lead to inaccurate evaluations, with some raters providing
systematically biased judgments [12]. These challenges motivate
the search for scalable, reliable alternatives or complements to
human expert judges.

Artificial intelligence (AI) offers a promising avenue to ad-
dress this need. In particular, vision-language models (VLMs) –
AI models that combine image and text understanding – have re-
cently achieved remarkable capabilities in interpreting visual con-
tent and producing human-like judgments [13–15]. For example,
DriveLLaVA [16] is a VLM fine-tuned to make human-level judg-
ments in driving scenarios, while Lin et al. [17] developed models
capable of distinguishing AI-generated from human-created art.
Their work was driven by the observation that humans can often
tell the difference, but large-scale human evaluation is costly and
impractical.

In engineering design, a sufficiently advanced AI could as-
sess a sketch’s creativity or functionality in seconds, enabling
real-time feedback and rapid screening of large idea pools. How-
ever, deploying AI as a design “judge” demands caution: its
evaluations must be as credible and valid as those of a human
expert. In other words, the AI’s ratings should be equivalent
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to expert ratings for us to trust its judgments in critical design
decisions.

Recent developments make the goal of expert equivalence
increasingly plausible. Modern VLMs and other multimodal
methods have demonstrated an ability to understand drawings or
images and relate them to semantic concepts. In engineering
design, such models have shown high correlation with human
assessments of creativity and other metrics [18–21]. However,
these methods require large amounts of training data, limiting
their practical use.

Preliminary work has shown that pre-trained VLMs can as-
sess design similarity [22], and other studies explore LLMs in
engineering tasks like solving mechanics problems [23] or build-
ing trusses using FEM modules [24]. These results suggest that
with the right models and inputs, AI can capture the nuanced
criteria used by experts.

Yet, a key challenge remains: rigorously verifying that AI
evaluators truly match expert performance. Prior studies often
report high correlations or small average errors [18, 25]. While
encouraging, such measures alone do not confirm that the AI’s
performance is indistinguishable from that of a human expert
within acceptable bounds. What is needed is a rigorous sta-
tistical equivalence perspective: instead of asking whether the
AI is simply correlated with or not significantly worse than hu-
mans, we ask whether any difference between the AI and human
evaluations is within acceptable bounds across multidimensional
criteria. Adopting statistical equivalence testing provides a more
stringent and meaningful validation that the AI can serve as a
surrogate for human judges with confidence and highlights areas
of improvement for future AI judges.

In this paper, we address this gap by developing AI “judges”
for evaluating design sketches and introducing a comprehensive
framework to test for expert equivalence. We focus on a use
case of rating milk frother design sketches on subjective metrics
commonly used in conceptual design assessment (e.g., unique-
ness, creativity, usefulness, and drawing quality). We test four
VLM-based models using a dataset of design sketches with scores
obtained by two experts and three trained novices. We then design
and apply a rigorous testing procedure to determine whether the
models’ ratings are statistically on par with human expert ratings,
within a predefined tolerance margin. To our knowledge, this
work is the first to demonstrate and validate an AI model achiev-
ing expert-level equivalence in an engineering design evaluation
context.

Contributions: The key contributions of this work are as
follows:

• We demonstrate how in-context VLM predictions (few-shot
prompting) can be used to evaluate subjective design met-
rics, without conventional fine-tuning or large-scale train-
ing. This approach both addresses the scarcity of labeled
data in many design contexts, while also enabling scalable
design evaluation, which is necessary as the quantity of
generated designs grows.

• We propose a comprehensive statistical validation frame-
work to assess AI-expert agreement across multiple di-
mensions. Our approach integrates correlation metrics,
distributional-difference hypothesis testing, error metrics,

equivalence testing, and top-set overlap analysis to provide
a robust and quantifiable assessment of AI-expert agree-
ment.

• We showcase a case study rating design sketches on unique-
ness, creativity, usefulness, and drawing quality, revealing
that with carefully chosen methodology, one can coax near-
expert judgments from a general VLM.

– We show that top AI judges not only reach expert–
level agreement for many metrics, but also meet ex-
pert agreement better or the same as trained novices
across all metrics.

– We confirm this quantitatively by verifying equiva-
lence with human experts using multi-pronged statis-
tical checks.

• We show that a handful of ratings from experts can be
scaled to rate thousands of designs using in-context learn-
ing for VLMs while maintaining statistical equivalence to
experts at a level higher than trained novices.

We emphasize that most of the statistical approaches them-
selves (TOST or correlation, hypothesis tests, etc.) are not our
invention; rather, our contribution is to integrate these tests into a
cohesive protocol, ensuring a thorough evaluation of AI-human
alignment beyond single metrics and highlighting why they are
necessary. This provides a template for other domains where
researchers or practitioners might suspect that an AI is “as good
as” a human expert, but need to validate that claim rigorously.

The remainder of the paper is organized as follows. In Re-
lated Work, we review established metrics for design evaluation,
vision-language models in subjective evaluation tasks, in-context
learning as a method of enhancing VLM-performance, and sta-
tistical methods for comparing AI with humans. The Methodol-
ogy section describes our AI models, the experimental setup for
training and evaluating them, the statistical procedure, and the
decision criteria for expert equivalence. We then present Results
from our experiments, including quantitative comparisons and
illustrative figures. In Discussion, we interpret the findings, ex-
amine limitations, and outline future research directions. Finally,
the Conclusion summarizes the contributions and significance of
this study for the design engineering community.

2. RELATED WORKS
In the following sections, we describe related works on es-

tablished metrics for evaluating engineering designs, the use of
vision-language models for subjective evaluation, how in-context
learning can be used to enhance VLMs even in data-scarce do-
mains, and finally, established statistical methods for comparing
raters.

2.1. Engineering Design Metrics for Design Evaluation
Engineering design literature has established a variety of

metrics to evaluate the outcomes of conceptual design and
ideation. A foundational distinction is that creative design quality
is multi-dimensional: a concept must be both novel and functional
to be truly valuable.

Various metrics are used to measure the creativity of a de-
sign or idea. These metrics include, but are not limited to, ex-
pert panels [5, 26–29], the Consensual Assessment Technique
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(CAT) [8, 30, 31], the Shah, Vargas-Hernandez and Smith (SVS)
method [32], and the Comparative Creativity Assessment (CCA),
which is based on the SVS method [33]. Among all the metrics
created, CAT [8, 30, 31] is often cited as the “gold standard”
of creativity metrics; however, obtaining CAT ratings is very re-
source intensive [7, 34, 35] as expert raters must code hundreds
or thousands of ideas.

Many design studies employ expert judges to rate designs on
Likert scales corresponding to such attributes. CAT uses human
experts, averaging their scores to arrive at a reliable ground truth
for creativity. CAT relies heavily on the intraclass correlation
coefficient (ICC), and, particularly on having a sufficient ICC
between experts [36]. ICC signifies “the extent to which the
mean rating assigned by a group of judges is reliable”[36], and
typically ICC values of 0.7 or greater are considered acceptable
levels of agreement among judges [37, 38]. Although experts
can be consistent, they are costly to obtain. Work by Miller
et al., explores the use of trained human novices as proxies for
experts [9]. They find that trained novices provide design ratings
that are consistent with experts for novelty but less consistent
for quality, and that novice agreement with experts varies if the
metrics are social science or engineering metrics.

Furthermore, some algorithmic metrics (like Shah’s ap-
proach for novelty or variety) have been proposed, but they some-
times fail to capture the subjective nuances that experts weigh.
Data-driven approaches combine features from sketches with ma-
chine learning to predict CAT-style scores [18, 19], bridging the
gap between purely automated metrics and human judgment. Our
work builds on these approaches, leveraging machine learning to
replicate expert-labeled design metrics.

2.2. Vision-Language Models in Subjective Evaluation
VLMs have shown strong performance on tasks where im-

ages and text interplay, such as image captioning. Prior design-
centered work [18–21, 39] often trains a model on a large dataset
of sketches labeled with, say, creativity scores, so that the model
can predict them on new sketches. Our approach differs: we do
not train or fine-tune the underlying large model; we rely instead
on in-context learning, specifically few-shot prompting [40], in
which we provide the VLM with a handful of demonstration ex-
amples that illustrate how a human might label a design. The
model then infers how to rate a new sketch in a similar manner.
This approach is attractive in design contexts where data is scarce,
or experts are reluctant to label hundreds of examples.

Recent studies have explored pre-trained LLMs and VLMs
as evaluators. LLM-Eval [41] and ROME [42] examine VLMs’
reasoning abilities, particularly when faced with unconventional
images requiring beyond-common-sense interpretation. Findings
suggest that even state-of-the-art VLMs struggle with counterin-
tuitive scenarios [42], highlighting the need for deeper evaluation
of their reliability in subjective assessments—further motivating
our work.

LLMs have also been used as judges for subjective tasks.
LLM-as-a-Judge [25] investigates whether LLMs can assess chat-
bot responses as accurately as humans in Chatbot Arena [43],
comparing their evaluations to MT-Bench human ratings [44].
Results suggest strong LLMs (e.g., GPT-4) can approximate hu-

man judgments with 80% agreement, offering a scalable alterna-
tive to human evaluation. However, biases such as position bias
(favoring the first response) and verbosity bias (favoring longer
responses) remain concerns [25], which could similarly affect
design evaluations.

In a review of VLMs for engineering design tasks, re-
searchers have tested GPT-4V’s ability to assess design simi-
larity by replicating human-based experiments [22, 45]. Results
show GPT-4V matches or exceeds human performance in self-
consistency and transitive reasoning. Motivated by the opportu-
nities of using VLMs as a judge, as well as the need to ensure that
VLMs’ ratings can match those of experts, our work explores
the effectiveness of VLMs in subjective evaluation of designs.
However, we move past just off-the-shelf VLMs and incorporate
advancements in in-context learning to better align an AI judge
with experts.

2.3. In-Context Learning
Few-shot in-context learning (ICL) is the ability of a large-

language model (LLM) to perform a new task given a prompt that
includes a few demonstrations of that task. The LLM, having seen
correct input-output pairs in the demonstrations, can effectively
produce a new output given a new input [40, 46, 47].

Thus, ICL is a way to adapt a language model to a new
downstream task without fine-tuning or retraining a model, as
was the traditional way of making a model work for a new task.
A visual of how ICL is utilized for the AI judges in our case-study
is shown in Figure 1. ICL is particularly useful for data-scarce
tasks. One does not need as much data for a new task as they
would need if they were fine-tuning a model, since ICL only
requires a few input-output pair demonstrations [46, 47].

Luo et al. identify several factors affecting ICL perfor-
mance [46]: the number and format of demonstrations, their
order (with later examples possibly having a greater impact), and
their diversity. Generally, more demonstrations benefit LLMs,
although improvements diminish as the count grows, and the
maximum context size remains a constraint.

2.4. Comprehensive Statistical Methods for AI-Human
Equivalence
To evaluate AI model performance in comparison to human

experts, we rely on established statistical methods. In this section,
we introduce key statistical approaches relevant to our study, in-
cluding measures of inter-rater reliability, absolute error metrics,
rank correlation, and equivalence testing. While correlation or
significance tests are common in evaluating an AI’s alignment
with humans, they do not fully prove equivalence. We incor-
porate distribution checks (Friedman test), post-hoc Wilcoxon
comparisons, correlation analysis, and TOST equivalence testing
under a user-defined margin. Our novelty is applying all these
tests alongside other standard tests used in design to thoroughly
confirm or refute “human-level” claims. By also leveraging mea-
sures like intraclass correlation and top-set overlap, one can see
exactly where and how an AI’s judgments diverge from experts.

Inter-Rater Reliability and Agreement Reliable statisti-
cal methods are essential for assessing agreement between AI

3



Figure 1: The in-context learning (ICL) workflow utilized to develop our four AI judges.

models and human experts on ordinal Likert-scale ratings. Co-
hen’s Kappa quantifies inter-rater agreement while accounting
for chance [48], and its weighted variant penalizes larger dis-
agreements, making it ideal for ordinal data [49]. The Intraclass
Correlation Coefficient (ICC) captures both correlation and ab-
solute agreement, particularly useful when ratings are continuous
and multiple raters are involved [50]. Furthermore, ICC is a back-
bone metric for the Consensual Assessment Technique commonly
used in design evaluation [9, 36].

Error Metrics for AI Performance Absolute error metrics
quantify how closely AI ratings align with human ratings. Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
measure rating deviations, with RMSE penalizing larger errors
more heavily [51]. Given the nature of our ratings, ranging from
1-6 on a Likert scale, any differences will be small, making MAE
a sufficient measurement of error.

Beyond these measures, Bland-Altman analysis visualizes
agreement by plotting rating differences against their mean,
revealing systematic biases that simple correlation cannot de-
tect [52]. This is particularly relevant in AI evaluation, where
models may systematically over- or underestimate ratings.

Statistical Hypothesis Testing for Rating Differences To
determine whether AI-generated ratings differ significantly from
human expert ratings, we apply nonparametric statistical tests
that do not assume normality in the data. The Friedman test, a
nonparametric alternative to repeated-measures ANOVA, evalu-
ates whether there are overall differences in ratings across multi-
ple raters, making it well-suited for within-subjects experimental
designs [53]. If significant differences are detected, post-hoc
pairwise comparisons using the Wilcoxon signed-rank test can
identify which AI models systematically differ from human ex-
perts [54]. This step is critical for determining whether AI-
generated ratings fall within typical human rating variability.

Correlation Analysis for Trend Agreement While absolute
agreement metrics assess rating consistency, it is also important
to evaluate whether AI models preserve the ranking of sketches
relative to human assessments. Spearman’s rank correlation is
a nonparametric measure that captures the monotonic relation-
ship between two sets of rankings, making it suitable for ordinal
data [55]. A high Spearman correlation between AI and expert
ratings suggests that even if absolute scores differ, the AI model

successfully distinguishes between high- and low-quality designs
in a manner consistent with human intuition.

Equivalence Testing for AI–Expert Comparability We ap-
ply equivalence testing to assess whether AI ratings fall within
a predefined human-expert tolerance range. The Two One-Sided
Tests (TOST) procedure confirms practical AI-human parity, pro-
viding evidence beyond standard difference testing [56].

Top-Set Overlap Analysis for Design Selection For appli-
cations where only the highest-rated designs are of interest, it
is crucial to measure whether AI models select the same top-
tier designs as human experts. The Jaccard similarity coefficient
provides a metric for quantifying overlap between two sets, such
as the top 10% of sketches chosen by an AI model and an ex-
pert [57]. By computing Jaccard similarity across multiple top-
set thresholds, we assess whether AI models prioritize the same
high-quality designs as human evaluators, a key consideration in
design selection tasks.

3. VLM METHODOLOGY
We developed four ICL approaches for rating design

sketches. Unlike typical supervised learning that requires a large
training set, we show each model only a few demonstration ex-
amples. These include (1) a reference design sketch image, (2)
a short textual description or prompt, and (3) the expert’s known
rating for that design. The model thus observes several (e.g., 9)
such examples in the prompt (this is the context), followed by a
new target design (this is the query) and must generate a rating.
No parameter updates occur; the large model remains unchanged.
We simply rely on the model’s ability, via few-shot ICL, to mimic
the rating process it saw in the examples.

3.1. Overview of In-Context Models
As described above, and shown in Figure 1, different types

of information can be provided in both the context and the query.
The value of using an AI judge is that the evaluation is more
automated, thus it was critical that all of the information used in
the context and query could be automatically retrieved. As such,
we first used a vision-language model to extract the handwritten
text descriptions that were on each sketch. Specifically, we in-
structed GPT-4o to extract the text descriptions from each design
sketch via the API, and saved these descriptions as to only run
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this automated step once. This provided the textual description
used in our later experiments.

The four AI judges that we developed each receive a de-
scription of the design task, the design metric of interest (e.g.
uniqueness), and the rating scale on which to provide the ratings.
Unless otherwise stated, the VLM used was GPT-4o, specifi-
cally the “gpt-4o-2024-08-06” release. The AI judges’ different
contexts and queries are as follows:

1. AI Judge: No Context
(a) Context: None.
(b) Query: An image of the target design sketch.

2. AI Judge: Text
(a) Context: Nine textual descriptions of different de-

signs and their expert ratings.
(b) Query: A textual description of the target design.

3. AI Judge: Text + Image
(a) Context: Nine textual descriptions of different de-

signs and their expert ratings.
(b) Query: A textual description and an image of the

target design sketch.
4. AI Judge: Text + Image + Reasoning

(a) Context: Nine textual descriptions of different de-
signs and their expert ratings.

(b) Query: A textual description and an image of the
target design sketch.

(c) Model: OpenAI o1 reasoning model.
Through initial experiments exploring the number and na-

ture of context demonstrations, we found that using nine context
designs along with a tenth target query provided a reliable frame-
work. To minimize confounding variables, we kept these param-
eters constant across all judges and runs. While systematically
varying these values is an important avenue for future research,
it falls outside the scope of this work.

Furthermore, for each design metric, we selected nine context
designs, which were provided to all AI judges except for the "No
Context" judge. As detailed in Section 4.1, 50 images were set
aside as a test set. In each of the three runs, and independently for
each design metric, we selected nine context designs where both
experts had agreed on their ratings. These designs were chosen
to ensure a uniform distribution across the rating scale (1–6).

4. STATISTICAL APPROACH FOR COMPARING AI JUDGES
AND HUMAN EXPERTS IN DESIGN RATINGS

We evaluated the four AI judges (AI Judge: No Context, AI
Judge: Text, AI Judge: Text + Image, and AI Judge: Text + Image
+ Reasoning) against two human experts (Expert 1 and Expert 2)
and 3 trained novices (Trained Novice 1-3) who rated a total of
934 early design sketches. This dataset1 originates from prior
studies [58–60], where each sketch was evaluated on a 6-point
Likert scale across four design metrics: uniqueness, creativity,
usefulness, and drawing quality. These ratings were provided by
two experts and three trained novices. The expert raters were
classified as such based on their graduate degrees or completion
of graduate coursework in an engineering design-related field[9].
Our overarching goals were to determine:

1https://sites.psu.edu/creativitymetrics/2018/07/18/milkfrother/

1. Which AI judge most closely aligns with the human ex-
perts’ ratings, and

2. Whether any AI judges perform at a level comparable to a
human expert, and

3. Whether any AI judges perform at a level comparable to a
trained novice.

4.1. Data Preparation
We reserved 50 sketches—where both experts provided

matching ratings—for training the AI models. The full set of
934 sketches, including these training examples, was rated by
two experts, three trained novices, and four AI judges. To ensure
an unbiased evaluation, only the remaining 884 sketches were in-
cluded in the test set. Finally, any sketches missing ratings from
any judge (expert, trained novice, or AI) were removed, resulting
in a final test set of approximately 875 sketches.

4.2. Validation Metrics and Statistical Analyses
To thoroughly assess each AI model’s performance relative to

the human experts, we combined multiple statistical approaches.
These were selected based on the nature of the data (ordinal
Likert ratings, limited to discrete integer values from 1 to 6), the
goal of measuring both absolute and relative agreement, and the
need for nonparametric methods given non-normal distributions.
All analyses were repeated separately for each of the five rating
metrics.

4.2.1. Inter-Rater Agreement We assess AI-human con-
sistency using Weighted Cohen’s Kappa (quadratic) and Intra-
class Correlation Coefficient (ICC). Kappa accounts for chance-
corrected ordinal agreement, while ICC measures absolute agree-
ment. Higher values indicate stronger reliability.

Rationale: Kappa is suited for ordinal Likert data, adjusting for
partial agreement, while ICC treats ratings as continuous and
reflects both correlation and agreement. Together, they ensure a
robust assessment of AI performance relative to human experts.

4.2.2. Error Metrics (MAE) Mean Absolute Error (MAE)
quantifies rating deviations:

MAE =
1
𝑁

𝑁∑︂
𝑖=1

| 𝑟𝑖 − 𝑟𝑖 | (1)

where 𝑟𝑖 is the AI rating and 𝑟𝑖 is the expert rating. AI models are
considered human-level if their MAE matches or is lower than
expert-expert MAE.

Rationale: MAE directly measures rating accuracy and allows
comparison against expert disagreement levels. Since there is
no absolute ground truth, we compute MAE separately for each
expert reference.

4.2.3. Bias and Consistency (Bland–Altman Analysis)
Bland–Altman analysis detects systematic bias by measuring
mean rating differences and their variability. This demonstrates
both the mean difference (or bias) between raters, as well as the
standard deviation (SD) between the raters. If the bias is close to
zero and most data points fall within±1.96×SD of that difference,
the two raters exhibit strong agreement. If AI–expert differences
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fall within the expert–expert limits of agreement (LoA), the AI
demonstrates human-like rating consistency.

Rationale: Standard correlation does not always reveal system-
atic rating biases. Bland–Altman analysis highlights potential
biases and the spread of disagreements at different rating levels,
thereby indicating if the AI’s errors are consistent with normal
human disagreement. Bland-Altman plots can reveal any sys-
tematic trends (heteroscedasticity). For example, perhaps the
models agree with humans on low scores but diverge on very
high scores. A trend line in the Bland-Altman (differences grow-
ing with the mean rating) would indicate the agreement depends
on the sketch’s overall quality rating.

4.2.4. Statistical Hypothesis Testing We use the Fried-
man test to detect overall rating differences between experts, AI
models, and trained novices. If significant (𝑝 < 0.05), Wilcoxon
signed-rank tests with Bonferroni correction identify specific
AI-human differences.

Rationale: The Friedman test is non-parametric and suitable
for repeated measures. Pairwise Wilcoxon tests pinpoint which
AI models differ significantly from experts while controlling for
multiple comparisons.

4.2.5. Rank Correlation (Spearman’s ρ)) Spearman’s
rank correlation measures whether AI models maintain the
relative ordering of sketches. A high AI–expert correlation
near the expert–expert correlation suggests strong alignment in
ranking.

Rationale: Even if absolute ratings differ, AI models should
ideally rank sketches similarly to experts. Spearman’s 𝜌 evaluates
this ranking agreement.

4.2.6. Equivalence Testing (TOST) The Two One-Sided
Tests (TOST) framework assesses whether AI ratings are statis-
tically equivalent to expert ratings within a predefined tolerance
(e.g., ±1.0 points). A significant result confirms AI-expert rating
similarity.

Rationale: Non-significant differences (e.g., from Friedman or
Wilcoxon tests) do not confirm equivalence; they only show no
evidence of difference. TOST directly tests whether any differ-
ences are small enough to be practically irrelevant, reinforcing or
contradicting findings of “no difference.”

Equivalence testing complements hypothesis testing. A non-
significant difference test means no detected difference, but a
non-significant equivalence test means insufficient evidence of
equivalence—often due to variability. If both tests support equiv-
alence, there is good evidence that an AI judge is matching an
expert. If difference is non-significant but equivalence fails, the
AI is close but lacks definitive proof of expert-level performance.

4.2.7. Top-Set Overlap Analysis (Jaccard Similarity at
Variable Cutoffs) Another practical way to evaluate whether the
AI models identify the same “best” sketches as the experts is to
measure set overlap in the top-rated designs. Although corre-
lation and MAE capture broad patterns, some design use cases
focus primarily on whether a model picks out the same top frac-
tion of designs that a human would.

To compare an AI model and an expert at multiple thresholds,
we define the following methodology:

(a) Nominal Fraction. We start by choosing a series of nom-
inal cutoffs (e.g., 5%, 10%, 15%, . . . ) to indicate the
intended top 𝑘% of items for that expert’s ratings.

(b) Reference Expert Top Set + Ties. For each fraction 𝑓 , let
𝑁 = ⌈ 𝑓 · (total sketches)⌉. We collect the top 𝑁 sketches
from the expert, including all ties at the boundary rating.
In practice, if 𝑁 = 10 but the 10th and 11th sketches share
the same rating, we include both. As a result, the final set
may exceed 𝑁 items, yielding an actual fraction larger than
𝑓 .

(c) Model Top Set + Ties (Matching Size). Suppose the
expert’s top set ends up being 𝑁𝑒 sketches (after ties). We
then form the model’s top set by taking at least 𝑁𝑒 items
under the same tie rule. This ensures neither the expert
set nor the model set excludes items arbitrarily cut off by
rating ties.

(d) Jaccard Similarity. Denote the expert’s top set by 𝐸top
and the model’s top set by 𝑀top. We measure

Jaccard(𝐸top, 𝑀top) =

|︁|︁𝐸top ∩ 𝑀top
|︁|︁|︁|︁𝐸top ∪ 𝑀top
|︁|︁ .

A higher Jaccard indicates better agreement on which
sketches are considered best.

(e) Plotting Actual Fraction vs. Jaccard. To compare the
models and experts, we record the actual fraction of total
sketches |𝐸top |/(total sketches) on the x-axis, since bound-
ary ties can inflate (or occasionally reduce) the set size.
On the y-axis, we plot the Jaccard similarity for each frac-
tion. Doing this for multiple fractions (5%, 10%, 15%,
etc.) produces a curve showing how well the model and
the expert align on which items belong in progressively
larger top sets.

(f) Comparing AUC of the Jaccard Plots To quantitatively
measure this metric, we find the AUC for the Jaccard plots
for Expert 1 vs. Expert 2, and for all four AI judges vs.
each expert as well as the three trained novices vs. each
expert. Figures 2, 4, 5, and 6 show these plots and the
corresponding AUCs.

Rationale: Whereas correlation tests broad item-by-item rank
alignment, top-set overlap directly answers, “Does the model
pick out the same top-tier sketches that the expert considers best?”
This is often crucial in design or idea-generation tasks where only
the highest-performing concepts matter. By including ties at the
threshold, we avoid arbitrary cutoffs (e.g., one design that shares
the boundary rating gets left out of the model set but included
in the expert set). Furthermore, comparing multiple fractions
reveals if a model aligns strongly at small cutoffs (the absolute
top 5%) but diverges beyond that, or vice versa.
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4.3. Decision Criteria for “Human-Level” Ratings
We deemed an AI judge “as good as” a human expert if, for

a given metric:
1. Agreement metric (Kappa): The AI–expert Kappa value

was within 20% of the expert–expert baseline. Kappa
measures categorical agreement beyond chance, and since
higher values indicate stronger reliability, the AI–expert
Kappa had to be at least 0.80× the expert–expert Kappa to
meet this threshold.

2. Agreement metric (ICC): The AI–expert Intraclass Cor-
relation Coefficient (ICC) was also within 20% of the
expert–expert ICC. Unlike Kappa, ICC quantifies the con-
sistency of continuous or ordinal ratings across raters.
Kappa and ICC values were often equal. To ensure suffi-
cient agreement, the AI–expert ICC needed to be at least
0.80× the expert–expert ICC.

3. Error within expert range: The AI’s MAE against an
expert did not exceed the expert–expert MAE within 20%,
indicating that average disagreements were no greater than
typical human variability. So AI–expert MAE ≤ 1.2×
expert–expert MAE.

4. Bland-Altman Bias: The AI’s mean difference, or bias, is
within 20% of the absolute mean bias between experts.

5. Bland-Altman Limits of Agreement: The AI’s limits
of agreement (±1.96× standard deviation of differences)
are within 20% of the expert–expert agreement bounds,
ensuring AI predictions do not exhibit wider variability
from an expert rater than another expert rater does.

6. Equivalence (TOST): The AI–expert differences lay fully
within the ±1 margin, reinforcing that any small discrep-
ancies are practically negligible.

7. No significant distribution differences: The Friedman
test and paired Wilcoxon signed-rank tests showed no sys-
tematic bias or distributional shifts in AI vs. expert ratings
(i.e., Bonferroni-corrected 𝑝 > 0.05).

8. Correlation near expert–expert: Spearman’s 𝜌 between
AI and expert ≥ 0.8× the experts’ own inter-correlation,
indicating comparable ranking ability. Mathematically,

𝜌𝐴𝐼−𝑒𝑥𝑝𝑒𝑟𝑡 ≥ 0.8 × 𝜌𝑒𝑥𝑝𝑒𝑟𝑡−𝑒𝑥𝑝𝑒𝑟𝑡

9. Top-set overlap (Jaccard approach): For various nomi-
nal cutoffs (e.g. 5%, 10%, 15%), the AI’s actual top set had
a high Jaccard similarity with the expert’s top set across all
those cutoffs. We compared the AI–expert overlap to the
expert–expert overlap at each cutoff. For the overall plot,
we compared the area under the curve (AUC):

𝐴𝑈𝐶Jaccard(AI, Expert) ≥ 0.8 × 𝐴𝑈𝐶Jaccard(Expert1, Expert2)

We repeated these analyses independently for each of the four
metrics (uniqueness, creativity, usefulness, and drawing quality).
We then summarized which judge(s) met which criteria, and
thereby concluded which judge performed better and whether it
operated at a “expert-level” for any or all of the metrics. It is
possible an AI judge is very good on some metrics but not others,
or beyond a trained-novice level but not yet at an expert level. We
note such cases in the Results section and discuss overarching
trends in the Discussion.

Practical Interpretation: If an AI consistently demonstrates (1)
close agreement metrics, (2) MAE≃ expert–expert MAE, (3) low
bias and similar limits of agreement as expert–expert pairs, (4) a
TOST equivalence outcome, and (5) no significant difference in
distribution, (6) a strong correlation with the expert, then it can
be treated as being “as reliable as” a human rater on that metric.
Otherwise, we can examine where it fell short (e.g., higher error,
lower correlation, or failing to show equivalence) to pinpoint
which aspects of performance need improvement. Lastly, we
compared the four AI judges in two respects: 1) among each
other to determine which ICL setup yielded ratings that best
matched experts, and 2) we compared the AI judges against the
three trained human novices on the same criteria to identify if a
well-developed AI judge shown just nine design-rating examples
could equally or more closely match expert ratings than trained
humans.

5. RESULTS
In this section, we report our findings for each metric (unique-

ness, creativity, usefulness, and drawing quality). We compare
the ratings from the four AI judges (No Context, Text, Text +
Image, and Text + Image + Reasoning) against the ratings from
the two human experts (Expert 1 and Expert 2). The expert–
expert levels of agreement serve as a baseline. For each metric
we provide the comprehensive results from one of our three runs,
as shown in Tables 1, 3, 5, and 7, while the results for runs two
and three are provided in the Appendix. We report statistical
measures of agreement, error, hypothesis tests (Friedman and
post-hoc Wilcoxon), and equivalence (TOST). For clarity, the
nine statistical tests that we report in Tables 1-12 are outlined in
Section 4.3. Furthermore, for each metric we plot the Jaccard
similarity between the Expert 1 and all other raters.

Figure 2: AI Judge: Text + Image + Reasoning reaches expert-level
AUC, as does one trained novice, all other models do not.
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Table 1: Run 1: Summary of Uniqueness results. Kappa and ICC are relative to the expert–expert baseline of 0.54. MAE values compare to
the observed Expert–Expert MAE = 1.10. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr AUC

Tests
Passed

Expert 1 vs Expert 2 0.54 0.54 1.10 0.33 ± 2.85 – 0.54 2.11 · 10−09 0.64 –

Ex
pe

rt
1

Trained Novice 1 0.49 0.49 1.17 -0.31 ± 3.01 True 0.48 1.41 · 10−08 0.63 8/9
Trained Novice 2 0.44 0.44 1.20 0.83 ± 2.79 True 0.50 6.54 · 10−50 0.63 7/9
Trained Novice 3 0.51 0.51 1.04 -0.10 ± 2.67 True 0.50 1.22 · 10−01 0.64 9/9
AI Judge: No Context 0.24 0.24 1.58 −1.33 ± 2.75 False 0.43 3.17 · 10−92 0.61 3/9
AI Judge: Text 0.47 0.47 1.10 -0.35 ± 2.75 True 0.48 8.91 · 10−12 0.63 8/9
AI Judge: Text + Image 0.42 0.42 1.15 0.23 ± 2.99 True 0.40 3.38 · 10−05 0.61 5/9
AI Judge: T + I + Reasoning 0.49 0.49 1.08 -0.38 ± 2.66 True 0.52 8.00 · 10−15 0.64 8/9

Ex
pe

rt
2

Trained Novice 1 0.58 0.58 1.07 0.01 ± 2.82 True 0.56 1.00 · 10+00 0.65 9/9
Trained Novice 2 0.42 0.42 1.40 1.15 ± 2.77 False 0.53 1.73 · 10−77 0.66 3/9
Trained Novice 3 0.55 0.55 1.00 0.23 ± 2.62 True 0.55 1.88 · 10−06 0.65 8/9
AI Judge: No Context 0.28 0.28 1.42 −1.00 ± 2.89 False 0.45 1.34 · 10−63 0.63 3/9
AI Judge: Text 0.53 0.53 1.06 -0.02 ± 2.71 True 0.54 1.00 · 10+00 0.64 9/9
AI Judge: Text + Image 0.42 0.42 1.19 0.55 ± 2.98 True 0.44 2.81 · 10−23 0.63 5/9
AI Judge: T + I + Reasoning 0.52 0.52 1.04 -0.05 ± 2.71 True 0.54 3.54 · 10−01 0.64 9/9

5.1. Uniqueness

Table 2: Uniqueness: Summary of Tests Passed Across Runs

Comparison Run 1 Run 2 Run 3 Avg.

Ex
pe

rt
1

Trained Novice 1 8/9 8/9 8/9 8/9
Trained Novice 2 7/9 7/9 7/9 7/9
Trained Novice 3 9/9 9/9 9/9 9/9
AI Judge: No Context 3/9 2/9 2/9 2.33/9
AI Judge: Text 8/9 6/9 5/9 6.33/9
AI Judge: Text + Img. 5/9 8/9 7/9 6.67/9
AI Judge: Text + Img.
+ Reasoning.

8/9 8/9 8/9 8/9

Ex
pe

rt
2

Trained Novice 1 9/9 9/9 9/9 9/9
Trained Novice 2 3/9 3/9 3/9 3/9
Trained Novice 3 8/9 8/9 8/9 8/9
AI Judge: No Context 3/9 2/9 3/9 2.67/9
AI Judge: Text 9/9 4/9 8/9 8.67/9
AI Judge: Text + Img. 5/9 9/9 8/9 7.33/9
AI Judge: Text + Img.
+ Reasoning

9/9 8/9 9/9 8.67/9

For rating uniqueness, the best-performing AI rater was AI
Judge: Text + Image + Reasoning, which passed at least 8/9
statistical tests across all runs (Table 2). This model achieved
agreement with experts within 20% of expert–expert levels for all
key metrics except the Wilcoxon post hoc test, where its p-value
exceeded 0.05 (Table 1). This performance (matching expert–
expert agreement in at least 8/9 tests) is on par with the top two
trained novices (who each pass one more test than this AI judge
across the six runs), and outperforms one of the trained novices.
Figure 2 plots the Jaccard similarity between raters and Expert
1 at different top design percentiles. The graph shows that by a
fraction cutoff of approximately 0.25, the AI Judge: Text + Image

+ Reasoning ratings have a Jaccard similarity with Expert 1 that
is higher than or on par with the Jaccard similarity between the
two experts for the remainder of the plot.

AI Judge: Text + Image showed moderate performance, av-
eraging 6.67/9 tests passed against Expert 1 and 7.33/9 against
Expert 2 (Table 2). The only difference between this judge and the
top-performing one is the inclusion of a reasoning model, sug-
gesting that reasoning contributes meaningfully to expert-level
agreement even when using identical context.

AI Judge: No Context consistently performed the worst for
uniqueness, passing only 2–3 tests per run. This result under-
scores the importance of in-context learning for aligning with
expert judgments. The performance gap is also evident in the
Bland–Altman plots (Figures 3b and 3a): the reasoning model
shows negligible systematic bias relative to the expert (mean dif-
ference near zero), whereas the No Context judge overestimates
scores by about 1.0 point on average.

Lastly, we note some trends among which statistical tests are
more often passed or failed when rating uniqueness. All raters,
AI judges and trained novices, pass the TOST test, meaning their
average rating differences stay within ±1.0. All raters also pass
the Jaccard similarity plot’s AUC test. Many raters, similarly are
within 20% of expert-level agreement for MAE. Results for inter-
rater agreement analysis (Kappa and ICC), as well as ranked
correlation analysis (Spearman) are similar, where many, but
not all raters fall within 20% of expert-level agreement. The
Wilcoxon p-correlation is a consistently difficult test for raters to
reach expert-level agreement.

5.2. Creativity
Experts, AI judges, and trained novices all exhibited lower

statistical similarity when rating creativity compared to unique-
ness in this study. Expert–expert Kappa, ICC, Spearman, and
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(a) (b)

Figure 3: Bland-Altman plots comparing AI judges’ ratings to expert ratings. (a) The AI Judge with No Context consistently assigns higher
uniqueness ratings than Expert 2. (b) The AI Judge with Reasoning shows minimal bias. Both instances reveal larger differences in the
middle range of the mean ratings.

Table 3: Run 1: Statistical test results for Creativity. Kappa and ICC are relative to the expert–expert baseline of 0.26. MAE values compare to
the observed Expert–Expert MAE = 1.25. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.26 0.26 1.25 0.19 ± 3.13 – 0.22 2.39 · 10−03 0.59 –

Ex
pe

rt
1

Trained Novice 1 -0.02 -0.02 1.62 −0.88 ± 3.59 True -0.04 2.06 · 10−37 0.55 3/9
Trained Novice 2 0.08 0.09 1.38 0.60 ± 3.39 True 0.11 5.69 · 10−23 0.57 4/9
Trained Novice 3 -0.07 -0.07 1.50 −0.58 ± 3.62 True -0.07 4.22 · 10−17 0.57 3/9
AI Judge: No Context 0.05 0.05 2.04 −1.89 ± 2.97 False 0.11 1.68 · 10−113 0.58 2/9
AI Judge: Text 0.11 0.11 1.48 −1.02 ± 3.00 False 0.15 7.29 · 10−61 0.58 3/9
AI Judge: Text + Image 0.11 0.11 1.40 −0.56 ± 3.24 True 0.11 8.20 · 10−21 0.59 4/9
AI Judge: T + I + Reasoning 0.15 0.15 1.37 −0.91 ± 2.84 True 0.21 1.98 · 10−55 0.59 5/9

Ex
pe

rt
2

Trained Novice 1 0.17 0.17 1.32 −0.70 ± 3.03 True 0.20 2.34 · 10−33 0.60 5/9
Trained Novice 2 0.15 0.15 1.34 0.79 ± 3.07 True 0.18 1.20 · 10−40 0.60 5/9
Trained Novice 3 0.23 0.23 1.20 −0.39 ± 2.91 True 0.25 1.29 · 10−12 0.59 7/9
AI Judge: No Context 0.09 0.09 1.83 −1.70 ± 2.65 False 0.22 1.19 · 10−114 0.58 3/9
AI Judge: Text 0.20 0.20 1.26 −0.83 ± 2.66 True 0.26 4.57 · 10−53 0.58 5/9
AI Judge: Text + Image 0.16 0.16 1.20 −0.37 ± 2.99 True 0.17 1.86 · 10−12 0.58 4/9
AI Judge: T + I + Reasoning 0.22 0.22 1.17 −0.73 ± 2.56 True 0.29 5.48 · 10−45 0.60 7/9

9



Table 4: Creativity: Summary of Statistical Tests Passed Across
Runs

Comparison Run 1 Run 2 Run 3 Avg.

Ex
pe

rt
1

Trained Novice 1 3/9 3/9 3/9 3/9
Trained Novice 2 4/9 4/9 4/9 4/9
Trained Novice 3 3/9 3/9 4/9 3.33/9
AI Judge: No Context 2/9 2/9 2/9 2/9
AI Judge: Text 3/9 4/9 4/9 3.67/9
AI Judge: Text + Img. 4/9 2/9 2/9 2.67/9
AI Judge: Text + Img.
+ Reason.

5/9 3/9 4/9 4/9

Ex
pe

rt
2

Trained Novice 1 5/9 5/9 5/9 5/9
Trained Novice 2 5/9 5/9 5/9 5/9
Trained Novice 3 7/9 7/9 7/9 7/9
AI Judge: No Context 3/9 3/9 3/9 3/9
AI Judge: Text 5/9 4/9 4/9 4.33/9
AI Judge: Text + Img. 4/9 5/9 4/9 4.33/9
AI Judge: Text + Img.
+ Reason.

7/9 7/9 5/9 6.33/9

Figure 4: Two of the AI judges, shown in blue, reach the same AUC
as Expert 1 vs. Expert 2, while the trained novices do not.

Jaccard similarity AUC were lower for creativity, while mean
average error was higher. This aligns with prior studies using
the same dataset, which independently found creativity to be the
most challenging metric for AI to predict [18, 19].

Among AI judges, AI Judge: Text + Image + Reasoning
performed best, as detailed in Table 3 and summarized across
runs in Table 4. This model consistently outperformed two of the
three trained novices against both experts, with only one trained
novice surpassing it in a single instance (Expert 2, run three).

Non-reasoning AI judges performed on par with or worse
than trained novices, with AI Judge: No Context ranking the
lowest. This mirrors the uniqueness results and reinforces the hy-

pothesis that few-shot ICL significantly improves vision-language
model performance. However, unlike in uniqueness ratings, AI
Judge: Text (text-only input) performed as well as or better than
AI Judge: Text + Image across experts and runs.

5.3. Usefulness

Figure 5: AI Judge: Text + Image + Reasoning and Trained Novice 2
come closest to expert-level AUC of 0.67, with their AUC of 0.62. In
general, for Usefulness, expert-level Jaccard similarity is hard for
novices and AI judges to meet.

No single AI judge consistently outperformed the others in
assessing usefulness. AI Judge: No Context performed better
than expected, passing 4 out of 9 statistical tests in most runs
against Expert 1—outperforming two trained novices (Table 6).
Against Expert 2, it performed on par with the other AI judges,
all averaging just 2.67/9 tests passed. AI Judge: Text and AI
Judge: Text + Image showed similar performance, passing 2–4
tests per run. Surprisingly, AI Judge: Text + Image + Reasoning
did not show a clear advantage, averaging 3.67/9 tests against
Expert 1 and 2.67/9 against Expert 2. This suggests that rea-
soning contributed less to aligning with expert usefulness ratings
(Table 6).

Among trained novices, Trained Novice 3 performed best,
averaging 4.33/9 tests against Expert 1 and 3/9 against Expert 2,
slightly outperforming AI judges. Trained Novices 1 and 2 per-
formed worse, passing 3/9 and 2/9 tests, respectively, highlighting
the general difficulty in achieving expert-level agreement on use-
fulness.

Both AI judges and trained novices performed best in TOST
equivalence and Jaccard similarity plot AUC, but struggled with
inter-rater agreement. Kappa and ICC values remained well be-
low the expert-expert baseline (0.59), with most AI judges scoring
between 0.14 and 0.35. Notably, usefulness was the only metric
where expert ratings were significantly similar in the Wilcoxon
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Table 5: Run 1: Statistical test results for Usefulness. Kappa and ICC are relative to the expert–expert baseline of 0.59. MAE values compare
to the observed Expert–Expert MAE = 1.00. “Equiv?” indicates whether TOST found AI–expert equivalence within±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.59 0.60 1.00 −0.01 ± 2.61 – 0.58 1.00 · 10+00 0.67 –

Ex
pe

rt
1

Trained Novice 1 0.12 0.12 1.53 −0.81 ± 1.67 True 0.15 4.41 · 10−36 0.55 3/9
Trained Novice 2 0.34 0.35 1.60 −1.21 ± 1.65 False 0.45 4.77 · 10−68 0.62 2/9
Trained Novice 3 0.35 0.36 1.20 −0.36 ± 2.92 True 0.36 1.37 · 10−11 0.60 4/9
AI Judge: No Context 0.29 0.29 1.37 −0.91 ± 2.75 True 0.37 1.50 · 10−57 0.61 4/9
AI Judge: Text 0.35 0.35 1.27 −0.50 ± 3.01 True 0.38 7.63 · 10−19 0.61 4/9
AI Judge: Text + Image 0.29 0.29 1.33 −0.34 ± 1.64 True 0.30 5.37 · 10−09 0.59 3/9
AI Judge: T + I + Reasoning 0.35 0.35 1.30 −0.77 ± 2.81 True 0.42 5.79 · 10−42 0.62 4/9

Ex
pe

rt
2

Trained Novice 1 0.15 0.15 1.54 −0.83 ± 1.70 True 0.17 3.93 · 10−37 0.54 3/9
Trained Novice 2 0.33 0.33 1.71 −1.22 ± 1.72 False 0.43 1.91 · 10−64 0.60 2/9
Trained Novice 3 0.24 0.25 1.38 −0.37 ± 1.66 True 0.22 1.70 · 10−09 0.56 3/9
AI Judge: No Context 0.16 0.17 1.51 −0.92 ± 1.62 False 0.20 9.10 · 10−48 0.56 2/9
AI Judge: Text 0.20 0.21 1.47 −0.52 ± 1.76 True 0.20 5.01 · 10−16 0.56 3/9
AI Judge: Text + Image 0.14 0.15 1.54 −0.36 ± 1.85 True 0.13 3.25 · 10−07 0.54 3/9
AI Judge: T + I + Reasoning 0.19 0.20 1.51 −0.78 ± 1.68 True 0.22 7.94 · 10−35 0.55 3/9

Table 6: Usefulness: Summary of Tests Passed Across Runs

Comparison Run 1 Run 2 Run 3 Avg.

Ex
pe

rt
1

Trained Novice 1 3/9 3/9 3/9 3/9
Trained Novice 2 2/9 2/9 2/9 2/9
Trained Novice 3 4/9 4/9 5/9 4.33/9
AI Judge: No Context 4/9 4/9 4/9 4/9
AI Judge: Text 4/9 3/9 4/9 3.67/9
AI Judge: Text + Img. 3/9 3/9 4/9 3.33/9
AI Judge: Text + Img.
+ Reason.

4/9 4/9 3/9 3.67/9

Ex
pe

rt
2

Trained Novice 1 3/9 3/9 3/9 3/9
Trained Novice 2 2/9 2/9 2/9 2/9
Trained Novice 3 3/9 3/9 3/9 3/9
AI Judge: No Context 2/9 3/9 3/9 2.67/9
AI Judge: Text 3/9 2/9 3/9 2.67/9
AI Judge: Text + Img. 3/9 2/9 3/9 2.67/9
AI Judge: Text + Img.
+ Reason.

3/9 3/9 2/9 2.67/9

post hoc test (p > 0.05). However, no AI judge or trained novice
passed this test, indicating systematic differences in their rating
distributions.

The Jaccard similarity plot for usefulness (Figure 5) further
highlights this challenge—all raters fail to reach expert-expert
similarity levels until a much higher fraction cutoff than for other
metrics (Figures 2, 4, and6). This suggests that while experts
largely agree on usefulness ratings, neither AI judges nor trained
novices can reliably match their assessments.

5.4. Drawing Quality
The AI Judge with No Context and AI Judge with Text + Im-

age + Reasoning were the top-performing AI judges for drawing

Figure 6: For Drawing Quality, AI Judge: Text + Image + Reason-
ing and Trained Novice 2 reach expert-level agreement for Jac-
card similarity (AUC = 0.61). Interestingly, AI Judge: No Context
also reaches a high AUC of 0.60, higher than the other two trained
novices.
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Table 7: Run 1: Statistical test results for Drawing Quality. Kappa and ICC are relative to the expert–expert baseline of 0.33. MAE values
compare to the observed Expert–Expert MAE = 1.16. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin.
Bold indicates judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.33 0.33 1.16 −0.67 ± 2.65 – 0.37 2.19 · 10−39 0.61 –

Ex
pe

rt
1

Trained Novice 1 0.17 0.17 1.26 0.44 ± 3.00 True 0.17 1.13 · 10−15 0.58 5/9
Trained Novice 2 0.24 0.24 1.45 0.92 ± 3.07 False 0.27 4.57 · 10−49 0.61 2/9
Trained Novice 3 0.22 0.22 1.23 0.81 ± 2.64 True 0.25 3.31 · 10−52 0.59 4/9
AI Judge: No Context 0.28 0.28 1.02 0.40 ± 2.42 True 0.32 4.44 · 10−19 0.60 8/9
AI Judge: Text 0.20 0.20 1.19 0.74 ± 2.63 True 0.26 8.14 · 10−46 0.59 5/9
AI Judge: Text + Image 0.13 0.14 1.30 0.78 ± 2.91 True 0.17 1.85 · 10−43 0.56 5/9
AI Judge: T + I + Reasoning 0.31 0.31 0.99 0.22 ± 2.47 True 0.32 1.06 · 10−06 0.61 8/9

Ex
pe

rt
2

Trained Novice 1 0.37 0.37 0.98 -0.23 ± 2.55 True 0.36 1.70 · 10−06 0.62 8/9
Trained Novice 2 0.45 0.45 1.02 0.25 ± 2.64 True 0.46 2.36 · 10−07 0.66 8/9
Trained Novice 3 0.43 0.43 0.88 0.14 ± 2.27 True 0.42 2.57 · 10−03 0.63 8/9
AI Judge: No Context 0.38 0.38 0.85 -0.27 ± 2.17 True 0.42 6.16 · 10−12 0.65 8/9
AI Judge: Text 0.27 0.27 0.96 0.06 ± 2.51 True 0.28 4.80 · 10−01 0.62 8/9
AI Judge: Text + Image 0.11 0.11 1.15 0.11 ± 2.92 True 0.12 1.73 · 10−01 0.58 6/9
AI Judge: T + I + Reasoning 0.29 0.29 0.99 -0.46 ± 2.38 True 0.33 2.22 · 10−25 0.63 8/9

Table 8: Drawing Quality: Summary of Tests Passed Across Runs

Comparison Run 1 Run 2 Run 3 Avg.

Ex
pe

rt
1

Trained Novice 1 5/9 5/9 5/9 5/9
Trained Novice 2 2/9 2/9 2/9 2/9
Trained Novice 3 4/9 4/9 4/9 4/9
AI Judge: No Context 8/9 8/9 8/9 8/9
AI Judge: Text 5/9 5/9 6/9 5.33/9
AI Judge: Text + Img. 5/9 5/9 8/9 6/9
AI Judge: Text + Img.
+ Reason.

8/9 8/9 9/9 8.33/9

Ex
pe

rt
2

Trained Novice 1 8/9 8/9 8/9 8/9
Trained Novice 2 8/9 8/9 8/9 8/9
Trained Novice 3 8/9 8/9 8/9 8/9
AI Judge: No Context 8/9 8/9 8/9 8/9
AI Judge: Text 8/9 6/9 5/9 6.33/9
AI Judge: Text + Img. 6/9 5/9 5/9 5.33/9
AI Judge: Text + Img.
+ Reason.

8/9 8/9 6/9 7.33/9

quality ratings. AI Judge: No Context passed 8/9 statistical tests
across all runs, while AI Judge: Text + Image + Reasoning passed
8/9 statistical tests in all runs but one. The strong performance of
AI Judge: No Context suggests that raw visual assessment alone
is highly effective for evaluating drawing quality. This finding is
supported by prior findings in [18]. Meanwhile, AI Judge: Text
+ Image + Reasoning demonstrated consistently strong agree-
ment with expert ratings, reinforcing the benefits of multimodal
reasoning.

Both of these AI judges had superior overall performance
to the trained novices, which showed high rating agreement with
Expert 2 (8/9 tests passed across the board), but low rating agree-
ment with Expert 1 (an average of 2/9, 4/9, and 5/9 tests passed

across three runs - Tables 7, 15, and 16).
Across the three runs, the metrics for which the AI judges

are best able to meet expert–expert agreement levels are MAE,
Bland-Altman’s mean difference and limits of agreement, TOST
equivalence,and Jaccard similarity plot’s AUC. The two lesser-
performing AI judges, AI Judge: Text and AI Judge: Text + image
struggle with inter-rater agreement metrics, Kappa and AUC, as
well as the Spearman correlation coefficient.

That said, drawing quality is one of the design metrics where
the best AI judges are able to meet expert–expert agreement
levels consistently. Interesting, while the trained novices perform
relatively poorly compared to Expert 1, they are able to exceed
expert–expert agreement with Expert 2 for the metrics of Kappa,
ICC, MAE, and Spearman correlation coefficient (Tables 7, 15,
and 16). AI Judge: No Context is similarly able to exceed expert–
expert agreement when compared with Expert 2 for these metrics.

6. DISCUSSION
The results from each of the four design metrics have been

explored in Section 5. The AI Judge: Text + Image + Reason-
ing has better overall performance than two of the three trained
novices for all four metrics, as measured by the total number of
tests passed across all three runs and compared to each expert.
Most often, the top two raters with best agreement with experts
are AI Judge: Text + Image + Reasoning and Trained Novice
3. Both of these raters frequently pass 8/9 statistical tests, and
in some cases 9/9 statistical tests, indicating that they are able
to match expert ratings with agreement levels on par with fellow
experts.

Comparison of AI Judges Among the four AI judges we
developed, AI Judge: Text + Image + Reasoning best matched
expert–expert agreement levels for uniqueness, creativity, and
(tied) drawing quality. This supports the notion that reasoning
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models equipped with ICL may more effectively replicate expert
ratings than their non-reasoning counterparts. In contrast, AI
Judge: No Context showed the weakest alignment with expert-
level agreement for uniqueness and creativity, highlighting the
value of few-shot demonstrations via ICL.

This trend is particularly evident in Tables 2 and 4, where the
three ICL-based judges consistently outperformed the No Context
model in aligning with expert ratings for uniqueness and creativ-
ity. Interestingly, however, AI Judge: No Context outperformed
many of the others for usefulness and drawing quality. For draw-
ing quality, this may be because the model was still given the
target image in the query—suggesting that the VLM’s pretrained
understanding of visual quality may suffice without demonstra-
tions. This aligns with findings from [18], which reported that
drawing quality was the only design metric where image input
improved AI predictions more than text descriptions.

In some cases, AI Judge: Text performed as well as—or
even better than—AI Judge: Text + Image, particularly for cre-
ativity, usefulness, and in Expert 2 comparisons for uniqueness
and drawing quality. This result is somewhat counterintuitive, as
one might expect that additional contextual information (i.e., the
image) would enhance performance. One possible explanation is
that the experts may have relied more heavily on the textual de-
scriptions than the sketches when making their assessments. This
aligns with findings from [18], which showed that text descrip-
tions had greater predictive power than sketches. Future work
could further investigate this phenomenon.

Statistical Tests often Passed or Failed In general passing
the Wilcoxon post hoc test is the rarest, while TOST equivalence
and Jaccard similarity plot AUC are the most common. We
selected ±1.0 as our margin of equivalence for TOST. The choice
is grounded in the idea that an AI doesn’t need to be perfect,
just within normal expert variation. Based on a given application
and desired strictness of matching, a smaller TOST equivalence
margin could be used, and perhaps fewer cases would declare
equivalence.

Another notable trend among the statistical tests is that of
Bland-Altman bias. This is measured for each run as (expert
rating - model rating). For uniqueness, creativity, and usefulness,
the bias between either expert and any AI judge is consistently
negative. This means that the AI judge almost always rates a
design higher (if only slightly) than an expert. For trained novices
the same pattern holds, although not for every single run. The
only design metric where this is not the case is drawing quality.
Here, the bias is usually positive when compared to Expert 1,
(Expert 1’s ratings > model’s ratings) and often negative when
compared to Expert 2 (Expert 2’s ratings < model’s ratings).
This is very useful for determining if and how an AI’s ratings can
complement or supplement an expert’s ratings.

Trends Among Design Metrics Given that this is just one
case study, we cannot make sweeping claims about what metrics
can best be predicted by the AI judges, but we do note trends found
in our results. Between Expert 1 and Expert 2, statistical agree-
ment measures like Kappa, ICC, and Spearman’s 𝜌 are higher
for uniqueness and usefulness. However, trained novices and AI
judges alike, are better able to agree with experts for uniqueness
and drawing quality and actually show the lowest agreement for

usefulness (Figure 5 and Table 6). This trend is corroborated
with past work that has used AI models to predict expert ratings
from this same dataset, and found that experts’ usefulness and
creativity ratings are harder to predict than their uniqueness and
drawing quality ratings [18].

Implications for In-Context VLMs in Design Our results
show that large, general vision-language models can approach
expert-level performance on subjective design metrics with min-
imal overhead, provided that we carefully craft the prompting.
This is a powerful finding for design scenarios with limited data
or budget to collect massive labels for training. The key is choos-
ing demonstration examples that illustrate the rating scale well,
so the model sees how humans scored certain reference sketches.

AI judges’ strong performance when compared to trained
novices has promising cost and time saving implications for de-
sign evaluations. These findings also suggest that AI judges could
be used in place of trained novices as proxies for expert raters.
As a showcase of the potential savings, let us assume an expert
is paid $200/hour to rate designs based on uniqueness. Each de-
sign takes the expert 15 seconds to rate, so 1,000 designs would
cost $200 × 4.167 hours = $833.33. With the ICL framework,
an expert could rate just 9 designs, totaling $12.50. From those
9 designs, we can use a reasoning model to rate the remainder
of the 1,000. In our 12 trials with OpenAI’s o1, running the
reasoning model cost ∼ $0.17/ design, so for 991 additional de-
signs, it would cost $168.47. Therefore, the total cost savings are
$833.33 − $12.50 − $168.47 = $652.46, or 78% cost savings.

This value becomes even clearer when considering the cost
and time of hiring experts and the opportunity cost of using their
time for repetitive ratings. Unlike human raters, who experience
rating fatigue and shifts in judgment [61], AI provides consis-
tent evaluations at scale. Lastly, the cost of LLMs and VLMs
is steadily decreasing[62, 63], especially with advancements in
open-source models[13], making AI-assisted evaluation increas-
ingly viable.

Statistical Rigor Matters We emphasize that it is insuffi-
cient to rely on a single metric (e.g., correlation or a p-value
from a difference test) to claim human-level performance. Our
evaluation integrates multiple statistical approaches to provide a
comprehensive assessment of AI judge reliability. Each statisti-
cal test captures a different aspect of agreement; some focus on
absolute error, while others assess ranking or distributional simi-
larity. Passing one test does not necessarily imply passing others,
highlighting the need for a multifaceted evaluation framework.

To exemplify this, for the drawing quality metric, Trained
Novice 3 frequently passed the TOST equivalence test and exhib-
ited low MAE when compared to Expert 1, yet failed in weighted
Cohen’s Kappa, ICC, and Spearman correlation. This suggests
that while their ratings were numerically close on average, their
ranking patterns and relative consistency differed significantly.
Such discrepancies highlight the limitations of single-metric eval-
uations and motivate our use of a suite of nine statistical tests to
capture different facets of expert equivalence. By incorporat-
ing multiple measures, we ensure a more rigorous assessment of
whether a model or rater truly aligns with expert judgment across
both absolute agreement and ranking consistency.

Our approach also emphasized selecting appropriate param-
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eters and thresholds for the design context. For example, ±1.0
equivalence margin in our TOST analysis and the 20% error mar-
gin from expert–expert agreement were determined by the Likert
scale used and expert agreement in our dataset. Future work
may explore ways to determine the best parameters for a given
application. This flexibility allows for tailoring AI evaluation to
different levels of precision required in design assessment tasks.

7. LIMITATIONS AND FUTURE WORK
Though encouraging, these findings should be tested on other

design tasks (e.g., CAD models, design prototypes) to confirm
generality. Because in-context learning can fail if the domain
is too far from the model’s pretraining, we might not always
see such strong results. Another limitation is interpretability:
the AI’s rating might match an expert’s but not necessarily pro-
vide a rationale. Future efforts can study the “chain-of-thought”
text so the model explains how it judged certain design aspects.
Nonetheless, the synergy between prompt engineering and robust
validation sets a precedent for deploying AI in design critiques.

We plan to further study whether the trends among design
metrics hold for other datasets. Are uniqueness and drawing
quality consistently the metrics with which AI judges can best
match experts? Is usefulness consistently difficult? This also
raises the question of whether these results would hold when
using different vision-language models, particularly open-source
alternatives.

A further consideration is the reliability of AI-based evalua-
tion methods when experts themselves diverge on certain design
aspects. Since experts may disagree on criteria such as creativ-
ity or functionality of a given design, how and how should an
AI model predict expert ratings? Future work should examine
inter-expert variability, perhaps using ensemble AI methods or
probabilistic models to capture the distribution of expert ratings
and provide uncertainty estimates in AI judgments.

There are important ethical considerations to be made around
the use of AI as an evaluator. We aim to highlight the importance
of ensuring that an AI’s evaluations align with human judgment
to mitigate risk, but other factors must also be considered. For
instance, an AI judge could amplify expert biases at scale. More-
over, while an AI model may outperform a novice in replicating
expert ratings, this does not diminish the value of novice train-
ing. It remains crucial to determine which skills engineers and
designers should retain and develop, regardless of AI’s capabil-
ities. Additionally, we must examine when and how large-scale
design evaluation should occur. While this has been explored for
decades—such as in Google’s Project 10 to the 100th—AI has
dramatically increased the volume of generated designs, raising
new questions about its role in evaluating this growing abundance.

8. CONCLUSION
We proposed using in-context vision-language models—

which do not undergo additional training—to rate design sketches
on subjective metrics like uniqueness, usefulness, and creativity.
To thoroughly verify when such an AI truly performs at a “human
expert” level, we combined multiple statistical tests: inter-rater
agreement, error analysis, distributional checks, correlation, top-
set overlap, and equivalence (TOST). This ensures that claims of

“no difference” are supported by actual evidence of equivalence
rather than the mere absence of significance. Our findings suggest
that AI judges can serve as viable substitutes for trained novices,
outperforming them in several cases and providing scalable, cost-
efficient alternatives for large-scale evaluations. Furthermore,
our experiments demonstrate that, with carefully constructed few-
shot prompting, a reasoning-supported VLM is expert-equivalent
for design metrics such as uniqueness and drawing quality. We
conclude that both in-context learning and rigorous multi-metric,
multi-test statistical validation are crucial to confidently deploy
AI judges in design. Moving forward, we believe this holistic
approach will generalize to other subjective domains, guiding
practitioners to adopt AI safely and effectively as a peer to human
experts.
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Table 9: Run 2: Summary of Uniqueness results. Kappa and ICC are relative to the expert–expert baseline of 0.53. MAE values compare to
the observed Expert–Expert MAE = 1.11. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.53 0.53 1.11 0.33 ± 2.86 – 0.53 3.09 · 10−09 0.64 –

Ex
pe

rt
1

Trained Novice 1 0.49 0.49 1.17 -0.31 ± 3.01 True 0.48 1.83 · 10−08 0.63 8/9
Trained Novice 2 0.44 0.44 1.21 0.83 ± 2.80 True 0.49 2.32 · 10−49 0.63 7/9
Trained Novice 3 0.51 0.51 1.04 -0.10 ± 2.68 True 0.49 1.57 · 10−01 0.64 9/9
AI Judge: No Context 0.22 0.21 1.61 −1.39 ± 2.78 False 0.38 1.27 · 10−94 0.60 2/9
AI Judge: Text 0.38 0.38 1.20 0.13 ± 3.10 True 0.37 7.67 · 10−02 0.59 6/9
AI Judge: Text + Image 0.45 0.45 1.14 -0.37 ± 2.79 True 0.47 3.08 · 10−12 0.63 8/9
AI Judge: T + I + Reasoning 0.52 0.52 0.99 -0.16 ± 2.57 True 0.53 1.45 · 10−03 0.64 8/9

Ex
pe

rt
2

Trained Novice 1 0.58 0.58 1.07 0.01 ± 2.83 True 0.56 1.00 · 10+00 0.65 9/9
Trained Novice 2 0.42 0.42 1.40 1.15 ± 2.78 False 0.53 8.69 · 10−77 0.66 3/9
Trained Novice 3 0.55 0.55 1.00 0.23 ± 2.62 True 0.55 1.11 · 10−06 0.65 8/9
AI Judge: No Context 0.26 0.26 1.45 −1.06 ± 2.87 False 0.41 1.52 · 10−67 0.61 2/9
AI Judge: Text 0.41 0.41 1.19 0.46 ± 3.06 True 0.42 7.28 · 10−15 0.63 4/9
AI Judge: Text + Image 0.53 0.53 1.04 -0.04 ± 2.70 True 0.54 6.84 · 10−01 0.65 9/9
AI Judge: T + I + Reasoning 0.54 0.54 0.99 0.17 ± 2.60 True 0.56 1.36 · 10−03 0.65 8/9

Table 10: Run 3: Summary of Uniqueness results. Kappa and ICC are relative to the expert–expert baseline of 0.53. MAE values compare to
the observed Expert–Expert MAE = 1.11. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.53 0.54 1.11 0.33 ± 2.86 – 0.53 3.16 · 10−09 0.64 –

Ex
pe

rt
1

Trained Novice 1 0.49 0.49 1.17 -0.32 ± 3.01 True 0.48 1.36 · 10−08 0.63 8/9
Trained Novice 2 0.44 0.44 1.20 0.83 ± 2.80 True 0.49 1.78 · 10−49 0.63 7/9
Trained Novice 3 0.51 0.51 1.05 -0.11 ± 2.67 True 0.50 9.43 · 10−02 0.64 9/9
AI Judge: No Context 0.23 0.23 1.61 −1.36 ± 2.76 False 0.41 3.37 · 10−92 0.61 2/9
AI Judge: Text 0.41 0.41 1.27 -0.16 ± 3.29 True 0.41 1.70 · 10−02 0.61 5/9
AI Judge: Text + Image 0.45 0.46 1.23 −0.57 ± 2.93 True 0.49 1.82 · 10−25 0.62 7/9
AI Judge: T + I + Reasoning 0.52 0.52 1.06 -0.36 ± 2.67 True 0.53 6.66 · 10−13 0.64 8/9

Ex
pe

rt
2

Trained Novice 1 0.58 0.58 1.07 0.01 ± 2.83 True 0.56 1.00 · 10+00 0.65 9/9
Trained Novice 2 0.42 0.42 1.40 1.15 ± 2.77 False 0.52 8.57 · 10−77 0.66 3/9
Trained Novice 3 0.54 0.54 1.00 0.22 ± 2.63 True 0.55 3.25 · 10−06 0.65 8/9
AI Judge: No Context 0.26 0.26 1.45 −1.03 ± 2.89 False 0.42 8.40 · 10−66 0.62 3/9
AI Judge: Text 0.45 0.45 1.24 0.17 ± 3.25 True 0.45 4.60 · 10−02 0.62 8/9
AI Judge: Text + Image 0.52 0.52 1.13 -0.24 ± 2.88 True 0.54 1.68 · 10−07 0.63 8/9
AI Judge: T + I + Reasoning 0.55 0.55 1.01 -0.03 ± 2.70 True 0.56 9.71 · 10−01 0.65 9/9
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Table 11: Run 2: Summary of Creativity results. Kappa and ICC are relative to the expert–expert baseline of 0.26. MAE values compare to
the observed Expert–Expert MAE = 1.25. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.26 0.26 1.25 0.19 ± 3.13 – 0.22 1.98 · 10−03 0.58 –

Ex
pe

rt
1

Trained Novice 1 -0.02 -0.02 1.62 −0.89 ± 3.59 True -0.04 2.83 · 10−37 0.55 3/9
Trained Novice 2 0.09 0.09 1.38 0.59 ± 3.39 True 0.12 8.63 · 10−22 0.57 4/9
Trained Novice 3 -0.07 -0.07 1.51 −0.58 ± 3.64 True -0.07 5.81 · 10−17 0.57 3/9
AI Judge: No Context 0.05 0.05 2.03 −1.90 ± 2.93 False 0.11 5.21 · 10−112 0.58 2/9
AI Judge: Text 0.09 0.09 1.46 −0.66 ± 3.36 True 0.09 4.06 · 10−25 0.56 4/9
AI Judge: Text + Image 0.11 0.11 1.51 −1.09 ± 3.03 False 0.14 1.02 · 10−63 0.59 2/9
AI Judge: T + I + Reasoning 0.11 0.11 1.40 −0.95 ± 2.98 False 0.14 6.10 · 10−54 0.57 3/9

Ex
pe

rt
2

Trained Novice 1 0.17 0.17 1.32 −0.70 ± 3.03 True 0.19 6.63 · 10−33 0.60 5/9
Trained Novice 2 0.16 0.16 1.34 0.78 ± 3.08 True 0.18 3.49 · 10−39 0.60 5/9
Trained Novice 3 0.23 0.23 1.20 −0.39 ± 2.92 True 0.25 2.60 · 10−12 0.59 7/9
AI Judge: No Context 0.08 0.08 1.84 −1.71 ± 2.66 False 0.19 2.55 · 10−112 0.57 3/9
AI Judge: Text 0.14 0.14 1.29 −0.47 ± 3.12 True 0.16 6.09 · 10−16 0.58 4/9
AI Judge: Text + Image 0.17 0.17 1.33 −0.90 ± 2.75 True 0.22 1.11 · 10−55 0.57 5/9
AI Judge: T + I + Reasoning 0.24 0.24 1.17 −0.75 ± 2.56 True 0.31 3.93 · 10−48 0.60 7/9

Table 12: Run 3: Summary of Creativity results. Kappa and ICC are relative to the expert–expert baseline of 0.26. MAE values compare to
the observed Expert–Expert MAE = 1.25. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.26 0.26 1.25 0.18 ± 3.14 – 0.22 3.83 · 10−03 0.58 –

Ex
pe

rt
1

Trained Novice 1 -0.03 -0.03 1.63 −0.88 ± 3.61 True -0.05 2.23 · 10−36 0.55 3/9
Trained Novice 2 0.08 0.09 1.38 0.60 ± 3.39 True 0.11 1.61 · 10−22 0.57 4/9
Trained Novice 3 -0.06 -0.06 1.50 −0.58 ± 3.62 True -0.07 4.43 · 10−17 0.57 4/9
AI Judge: No Context 0.06 0.06 2.01 −1.89 ± 2.92 False 0.11 2.00 · 10−113 0.58 2/9
AI Judge: Text 0.11 0.11 1.46 −0.87 ± 3.19 True 0.13 6.16 · 10−43 0.56 4/9
AI Judge: Text + Image 0.10 0.10 1.51 −1.09 ± 3.02 False 0.14 1.34 · 10−64 0.59 2/9
AI Judge: T + I + Reasoning 0.12 0.12 1.47 −1.10 ± 2.88 False 0.19 1.21 · 10−69 0.60 4/9

Ex
pe

rt
2

Trained Novice 1 0.17 0.17 1.32 −0.70 ± 3.04 True 0.19 8.86 · 10−33 0.60 5/9
Trained Novice 2 0.15 0.15 1.33 0.78 ± 3.07 True 0.18 1.18 · 10−39 0.60 5/9
Trained Novice 3 0.23 0.23 1.20 −0.39 ± 2.91 True 0.25 7.72 · 10−13 0.59 7/9
AI Judge: No Context 0.10 0.10 1.82 −1.71 ± 2.62 False 0.22 8.94 · 10−115 0.58 3/9
AI Judge: Text 0.14 0.14 1.33 −0.69 ± 3.00 True 0.15 3.42 · 10−32 0.59 4/9
AI Judge: Text + Image 0.13 0.13 1.36 −0.91 ± 2.82 True 0.16 6.29 · 10−55 0.57 4/9
AI Judge: T + I + Reasoning 0.16 0.16 1.31 −0.91 ± 2.66 True 0.22 1.19 · 10−59 0.58 5/9
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Table 13: Run 2: Summary of Usefulness results. Kappa and ICC are relative to the expert–expert baseline of 0.58. MAE values compare to
the observed Expert–Expert MAE = 1.00. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.58 0.60 1.00 −0.01 ± 2.61 – 0.58 1.00 · 10+00 0.67 –

Ex
pe

rt
1

Trained Novice 1 0.11 0.11 1.53 −0.81 ± 1.68 True 0.14 3.60 · 10−35 0.55 3/9
Trained Novice 2 0.35 0.35 1.60 −1.21 ± 1.65 False 0.45 3.53 · 10−67 0.62 2/9
Trained Novice 3 0.35 0.35 1.21 −0.36 ± 2.93 True 0.36 1.47 · 10−11 0.60 4/9
AI Judge: No Context 0.29 0.28 1.35 −0.82 ± 2.77 True 0.36 7.98 · 10−48 0.60 4/9
AI Judge: Text 0.27 0.27 1.28 −0.16 ± 1.61 True 0.28 4.13 · 10−03 0.57 3/9
AI Judge: Text + Image 0.25 0.24 1.32 −0.32 ± 1.61 True 0.25 6.12 · 10−08 0.57 3/9
AI Judge: T + I + Reasoning 0.30 0.30 1.31 −0.71 ± 2.84 True 0.34 1.05 · 10−36 0.59 4/9

Ex
pe

rt
2

Trained Novice 1 0.15 0.14 1.54 −0.82 ± 1.69 True 0.17 1.48 · 10−36 0.54 3/9
Trained Novice 2 0.33 0.33 1.70 −1.22 ± 1.72 False 0.43 2.11 · 10−63 0.59 2/9
Trained Novice 3 0.24 0.25 1.38 −0.37 ± 1.66 True 0.22 1.33 · 10−09 0.56 3/9
AI Judge: No Context 0.16 0.16 1.48 −0.83 ± 1.62 True 0.18 3.97 · 10−40 0.55 3/9
AI Judge: Text 0.12 0.12 1.48 −0.17 ± 1.81 True 0.11 2.28 · 10−02 0.527 2/9
AI Judge: Text + Image 0.08 0.09 1.53 −0.33 ± 1.82 True 0.06 6.16 · 10−07 0.528 2/9
AI Judge: T + I + Reasoning 0.16 0.16 1.48 −0.72 ± 1.66 True 0.15 8.58 · 10−31 0.54 3/9

Table 14: Run 3: Summary of Usefulness results. Kappa and ICC are relative to the expert–expert baseline of 0.58. MAE values compare to
the observed Expert–Expert MAE = 1.00. “Equiv?” indicates whether TOST found AI–expert equivalence within ±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.58 0.59 1.00 −0.01 ± 2.61 – 0.58 1.00 · 10+00 0.67 –

Ex
pe

rt
1

Trained Novice 1 0.12 0.12 1.53 −0.82 ± 1.67 True 0.15 4.05 · 10−36 0.56 3/9
Trained Novice 2 0.35 0.35 1.60 −1.20 ± 1.65 False 0.45 6.06 · 10−67 0.63 2/9
Trained Novice 3 0.35 0.36 1.19 −0.36 ± 2.92 True 0.36 1.10 · 10−11 0.62 5/9
AI Judge: No Context 0.28 0.28 1.36 −0.82 ± 2.77 True 0.36 4.25 · 10−49 0.61 4/9
AI Judge: Text 0.32 0.32 1.32 −0.62 ± 2.98 True 0.35 6.73 · 10−29 0.61 4/9
AI Judge: Text + Image 0.32 0.32 1.35 −0.64 ± 3.05 True 0.35 4.06 · 10−28 0.59 4/9
AI Judge: T + I + Reasoning 0.32 0.31 1.40 −0.99 ± 2.73 False 0.40 8.73 · 10−65 0.62 3/9

Ex
pe

rt
2

Trained Novice 1 0.15 0.15 1.55 −0.83 ± 1.70 True 0.17 2.69 · 10−37 0.54 3/9
Trained Novice 2 0.33 0.33 1.71 −1.22 ± 1.73 False 0.43 4.15 · 10−63 0.59 2/9
Trained Novice 3 0.24 0.25 1.38 −0.37 ± 1.67 True 0.22 1.22 · 10−09 0.56 3/9
AI Judge: No Context 0.14 0.15 1.49 −0.84 ± 1.63 True 0.17 1.40 · 10−40 0.55 3/9
AI Judge: Text 0.15 0.16 1.53 −0.64 ± 1.76 True 0.16 1.21 · 10−21 0.54 3/9
AI Judge: Text + Image 0.16 0.16 1.56 −0.66 ± 1.80 True 0.16 1.08 · 10−22 0.55 3/9
AI Judge: T + I + Reasoning 0.17 0.17 1.57 −1.01 ± 1.64 False 0.21 3.38 · 10−52 0.55 2/9
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Table 15: Run 2: Summary of Drawing Quality results. Kappa and ICC are relative to the expert–expert baseline of 0.33. MAE values compare
to the observed Expert–Expert MAE = 1.16. “Equiv?” indicates whether TOST found AI–expert equivalence within±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.33 0.33 1.16 −0.67 ± 2.64 – 0.37 8.09 · 10−39 0.61 –

Ex
pe

rt
1

Trained Novice 1 0.16 0.16 1.26 0.45 ± 2.99 True 0.17 7.45 · 10−16 0.58 5/9
Trained Novice 2 0.23 0.23 1.46 0.93 ± 3.08 False 0.27 1.37 · 10−48 0.60 2/9
Trained Novice 3 0.21 0.22 1.23 0.82 ± 2.63 True 0.25 1.95 · 10−52 0.58 4/9
AI Judge: No Context 0.28 0.29 1.04 0.52 ± 2.36 True 0.34 2.33 · 10−31 0.62 8/9
AI Judge: Text 0.18 0.18 1.19 0.58 ± 2.83 True 0.20 3.68 · 10−27 0.58 5/9
AI Judge: Text + Image 0.22 0.22 1.11 0.48 ± 2.68 True 0.25 2.69 · 10−21 0.60 5/9
AI Judge: T + I + Reasoning 0.30 0.30 0.96 0.28 ± 2.38 True 0.33 1.55 · 10−10 0.62 8/9

Ex
pe

rt
2

Trained Novice 1 0.36 0.36 0.98 -0.23 ± 2.54 True 0.35 5.31 · 10−06 0.62 8/9
Trained Novice 2 0.44 0.44 1.02 0.25 ± 2.64 True 0.46 9.77 · 10−08 0.66 8/9
Trained Novice 3 0.43 0.43 0.87 0.15 ± 2.26 True 0.42 8.42 · 10−04 0.63 8/9
AI Judge: No Context 0.41 0.41 0.81 -0.15 ± 2.12 True 0.45 2.44 · 10−04 0.65 8/9
AI Judge: Text 0.09 0.09 1.15 -0.09 ± 2.93 True 0.10 1.25 · 10−01 0.56 6/9
AI Judge: Text + Image 0.20 0.21 1.03 -0.19 ± 2.64 True 0.22 3.55 · 10−05 0.60 5/9
AI Judge: T + I + Reasoning 0.29 0.29 0.93 -0.39 ± 2.28 True 0.34 4.09 · 10−21 0.64 8/9

Table 16: Run 3: Summary of Drawing Quality results. Kappa and ICC are relative to the expert–expert baseline of 0.33. MAE values compare
to the observed Expert–Expert MAE = 1.16. “Equiv?” indicates whether TOST found AI–expert equivalence within±1.0 margin. Bold indicates
judge is within 20% of expert-expert agreement.

Comparison Kappa ICC MAE
Mean Diff
± 1.96 SD Equiv? Spear.

Wilcoxon
p-corr

Jacc.
AUC

Tests
Passed

Expert 1 vs Expert 2 0.33 0.33 1.16 −0.67 ± 2.66 – 0.37 1.65 · 10−38 0.62 –

Ex
pe

rt
1

Trained Novice 1 0.17 0.17 1.26 0.45 ± 2.99 True 0.17 9.41 · 10−16 0.58 5/9
Trained Novice 2 0.23 0.23 1.46 0.92 ± 3.08 False 0.27 4.82 · 10−48 0.61 2/9
Trained Novice 3 0.22 0.22 1.23 0.81 ± 2.64 True 0.25 1.90 · 10−51 0.59 4/9
AI Judge: No Context 0.27 0.27 1.04 0.52 ± 2.40 True 0.33 1.33 · 10−29 0.62 8/9
AI Judge: Text 0.19 0.19 1.13 0.00 ± 2.87 True 0.19 1.00 · 10+00 0.56 6/9
AI Judge: Text + Image 0.29 0.29 1.04 0.01 ± 2.62 True 0.28 1.00 · 10+00 0.61 8/9
AI Judge: T + I + Reasoning 0.30 0.30 0.97 -0.11 ± 2.43 True 0.31 5.56 · 10−02 0.60 9/9

Ex
pe

rt
2

Trained Novice 1 0.37 0.37 0.98 -0.23 ± 2.53 True 0.36 3.64 · 10−06 0.63 8/9
Trained Novice 2 0.45 0.45 1.02 0.25 ± 2.64 True 0.46 2.45 · 10−07 0.66 8/9
Trained Novice 3 0.43 0.43 0.87 0.14 ± 2.27 True 0.42 2.32 · 10−03 0.63 8/9
AI Judge: No Context 0.37 0.37 0.84 -0.16 ± 2.19 True 0.42 2.46 · 10−04 0.65 8/9
AI Judge: Text 0.07 0.07 1.31 -0.67 ± 2.97 True 0.09 6.95 · 10−33 0.60 5/9
AI Judge: Text + Image 0.22 0.23 1.12 -0.66 ± 2.58 True 0.26 3.01 · 10−40 0.63 5/9
AI Judge: T + I + Reasoning 0.24 0.24 1.11 -0.78 ± 2.32 True 0.35 1.27 · 10−57 0.61 6/9
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