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Abstract 

  A new optimal control approach was developed to 

control stochastic systems which minimizes the variance of 

the cost function using a model predictive framework. The 

nominal control was applied to a stochastic linear model 

for longitudinal aircraft trajectory tracking in simulation to 

evaluate the effectiveness of the developed control.  

 

I. Introduction  

Minimal Cost Variance (MCV) Control is a branch of 

stochastic optimal control first developed in a 1966 [1] and 

has been developed and improved over the years [2]. 

Extensions of this control theory to the multi-cumulant 

case is presented in [3] and the discrete form of the MCV 

control is developed in [4]. We extend this MCV control 

with model predictive approach. 

Model Predictive Control (MPC) is also referred to as 

Receding Horizon Control was initially developed in the 

1970s with initial applications in the process industry [5, 6, 

7, 8]. The main idea behind MPC is to use an explicit model 

of the plant to be controlled to predict the future output 

behavior, and optimize that behavior according to some 

objective function [8]. This prediction capability allows one 

to solve an optimal control problem online, where a 

tracking error is minimized over a future horizon. 

  In this paper, a new form of the MCV control is 

developed for stochastic aircraft systems. To do this, two 

modifications to the MCV control were needed. First, the 

controller was modified to allow for optimal tracking of a 

known reference signal. Second, the controller was cast 

into a model predictive framework to allow for the control 

solution to be computed continuously online out to 
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prediction horizon. 

The new control method, called Model Predictive 

Minimal Cost Variance (MPMCV) control is developed for 

a linearized aircraft model around an operating point. The 

controller is developed and simulated for an aircraft 

tracking of a prescribed trajectory. Simulated results show 

the performance of the MPMCV controller for aircraft 

tracking application. 

 

II. Model Predictive Minimal Cost Variance 

Control System  

  For the MPMCV control, the discrete-time stochastic 

system is of the form,  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐺𝜔(𝑘) 

with cost function  

𝐽 = ∑!"#
$! 01𝑥(𝑘) − 𝑥3(𝑘)4

%𝑄1𝑥(𝑘) − 𝑥3(𝑘)4

+ 𝑢%(𝑘 − 1)𝑅𝑢(𝑘 − 1)7 

with symmetric weighting matrices 𝑄  and 𝑅  being 

positive semidefinite and positive definite respectively, and 

𝑥3(𝑘) is the state reference trajectory. The system additive 

noise 𝜔(𝑘) is assumed to be zero-mean Gaussian noise 

with covariance, 

𝔼{𝜔(𝑘)𝜔%(𝑘)} = 𝑊. 

  The optimal control solution for the MPMCV control is 

computed online at each time-step 𝑘 out to time 𝑘 + 𝑁&, 

where 𝑁& is the prediction horizon selected a-priori. The 

first element of the resulting control sequence 𝑢(𝑘 + 1) is 

then applied to the plant, and the process is repeated at 

the next timestep. The optimal control sequence 𝑢(𝑘 + 1) 

is found by solving a sequence of 9 discrete recursion 

equations for each timestep in the prediction. The resulting 

optimal control is of the form,  

𝑢∗(𝑘) = 𝐾((𝑘)𝑥(𝑘) + 𝑢)*+(𝑘), 

where 𝐾((𝑘)  and 𝑢)*+(𝑘)  are found via the following 

recursion equations, 

𝑄,(𝑘) = 𝑄 +𝑀(𝑘 + 1), (1) 

Λ(𝑘) = 𝑄,(𝑘)𝐺𝑊𝐺%𝑄,(𝑘) + 𝛾(𝑘)𝑄,(𝑘)

+
𝑉((𝑘 + 1)

4 , 
(2) 

𝐾((𝑘) = −(𝐵%Λ(𝑘)𝐵 + 𝛾(𝑘)𝑅)-#𝐵%Λ(𝑘)𝐴, (3) 

𝑢)*+(𝑘) = −(𝐵%Λ(𝑘)𝐵 + 𝛾(𝑘)𝑅)-#𝐵%Λ(𝑘)𝑥3(𝑘
+ 1), 

(4) 

𝐴((𝑘) = 𝐴 + 𝐵𝐾((𝑘), (5) 

𝑀(𝑘) = 𝐴(%(𝑘)𝑄,(𝑘)𝐴((𝑘) + 𝐾(%(𝑘)𝑅𝐾((𝑘), (6) 

𝑚(𝑘) = 𝑚(𝑘 + 1) + 𝑇𝑟{𝐺%𝑄,(𝑘)𝐺𝑊}, (7) 

𝑉((𝑘) = 𝐴(%(𝑘)14𝑄,(𝑘)𝑊𝑄,(𝑘)
+ 𝑉((𝑘 + 1)4𝐴((𝑘), 

(8) 

𝑣((𝑘) = 𝑣((𝑘 + 1) + 𝑇𝑟{𝑉((𝑘 + 1)𝑊}

+ 𝔼 H1𝜔%(𝑘)𝑄,(𝑘)𝜔(𝑘)4
.
I

− 	𝑇𝑟{𝑄,(𝑘)𝑊}., 

(9) 

with boundary conditions 

𝑀1𝑁&4 = 𝑚1𝑁&4 = 𝑉(1𝑁&4 = 𝑣(1𝑁&4 = 0. 

The desired state trajectory is denoted as 𝑥3(𝑘) , and is 

known from timestep 𝑘 to prediction horizon 𝑘 + 𝑁&. 

  In addition to the weighting matrices 𝑄  and 𝑅 , two 

additional control parameters are available to the designer 

to tune the tracking response of the system. They are the 

mean cost constraint 𝛾 and prediction horizon 𝑁&	. 

  The MPMCV controller was developed by first deriving 

the tracking form of the continuous time MCV controller 

presented in [1]. The discrete form of the tracking MCV 

controller was then developed to allow for use within a 

model predictive control framework, as online 

implementation of MPC is most commonly applied in the 

discrete time form [9]. 

Due to the discrete nature of the MPMCV controller, 

these control parameters may be tuned once and remain 

fixed for the entire control period or adjusted throughout 

the process. Continuous adjustment of the control 

parameters based on schedules or measured values from 

the plant constitutes an adaptive approach to the MPMCV 

problem and is considered future work.  

 



Ⅲ. Aircraft Control Simulation 

  An MPMCV control was developed for the linear 

longitudinal aircraft model given in [10] to track a desired 

altitude reference trajectory in the presence of noise. The 

linear model consists of five states (altitude, forward speed, 

pitch angle, pitch rate, and vertical speed) and three inputs 

(spoiler angle, forward acceleration, and elevator angle). 

The controller was implemented in simulation and tuned 

using the weighting parameters. The simulation was 

designed for the aircraft to track a series of step changes 

to altitude over the course of 60 seconds in the presence 

of wind gusts modeled as zero-mean Gaussian noise.  

 

Figure 1, Simulated altitude compared to reference. 

 

  The tracking response of the aircraft altitude over time 

for the MPMCV controller is shown in Figure 1. Simulated 

trajectories for the other four states, which were desired to 

track the zero-state as closely as possible, are shown in 

Figure 2.  

 

Figure 2, Other States 

 

The computed inputs for the controller are shown in Figure 

3. The tuned control parameters found for the simulated 

results presented above are 𝑄 = 𝑰𝟓𝒙𝟓 ,𝑅 = 0.01		𝑰1*1 , 𝛾 =

0.05, and 𝑁& = 5. The developed controller successfully 

tracks the altitude reference input in the presence of noise 

and minimizes the deviation of the other states from the 

zero-state. 

 

Figure 3. Control Input versus time 

 

Ⅳ. Conclusion and Future Research 

Direction 

  The results presented above indicate the proposed 

control approach can accurately track reference inputs for 

stochastic systems by minimizing the variance of the cost 

function. We conclude that MPMCV tracks aircraft altitude 



accurately despite of the stochastic noises. 

  This MPMCV controller is also appropriate for use in the 

control of compliant robotic arms applied to medical 

diagnostics. In this application, the compliant joints used 

in the robot arm to improve safety when working in 

proximity to humans also introduce noise into the system 

in the form of zero-mean Gaussian disturbances. Ongoing 

work by the authors has shown that the MPMCV controller 

presented here can improve control in these robotic 

applications. This is an area of active research. 

  Future work in this area will focus on the implementation 

of the proposed MPMCV controller on physical systems, 

as well as exploring extensions of the MPMCV controller 

into areas such as constrained MPMCV and adaptive 

MPMCV controllers. 
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