This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Closest Neighbors are Harmful for Lightweight Masked Auto-encoders

!Jian Meng, ' Ahmed Hasssan, 2Li Yang, *Deliang Fan, ‘Jinwoo Shin, and !Jae-sun Seo
!Cornell University,? University of North Carolina at Charlotte, 3 Arizona State University, *KAIST

1{ij787, ah2288, js3528}@cornell.edu, 2lyang50@uncc.edu, 3dfanl2@asu.edu, 4jinwoos@kaist.ac.kr

Abstract

Learning the visual representation via masked auto-
encoder (MAE) training has been proven to be a power-
ful technique. Transferring the pre-trained vision trans-
former (ViT) to downstream tasks leads to superior per-
formance compared to conventional task-by-task supervised
learning. Recent research works on MAE focus on large-
sized vision transformers (>50 million parameters) with
outstanding performance. However, improving the gen-
erality of the under-parametrized lightweight model has
been widely ignored. In practice, downstream applications
are commonly intended for resource-constrained platforms,
where large-scale ViT cannot easily meet the resource bud-
get. Current lightweight MAE training heavily relies on
knowledge distillation with a pre-trained teacher, whereas
the root cause behind the poor performance remains under-
explored. Motivated by that, this paper first introduces the
concept of “closest neighbor patch” to characterize the
local semantics among the input tokens. QOur discovery
shows that the lightweight model failed to distinguish dif-
ferent local information, leading to aliased understanding
and poor accuracy. Motivated by this finding, we propose
NoR-MAE, a novel MAE training algorithm for lightweight
vision transformers. NoR-MAE elegantly repels the seman-
tic aliasing between patches and their closest neighbor-
ing patch (semantic centroid) with negligible training cost
overhead. With the ViT-Tiny model, NoR-MAE achieves
up to 7.22%/3.64% accuracy improvements on ImageNet-
100/ImageNet-1K datasets, as well as up to 5.13% accu-
racy improvements in tested downstream tasks. https:
//github.com/SeoLabCornell/NoR-MAE

1. Introduction

Starting from the early exploration with contrastive learn-
ing [0, 18], learning powerful and generic vision or seman-
tic representation has been the focal point of all prior self-
supervised learning (SSL) algorithms across various ma-
chine learning domains [2, 8, 28, 30] and vision-language
model [15, 26]. The superiority of SSL is demonstrated

Visible Patches with
Default Random Mask of MAE

Closest (Top-Similar) Neighbor Patches (CNP)
of All the Visible Patches

Low dim-representation
ViT-encoded Patches
with PCA

® Encoded MAE Unmasked Patches
*Encoded Closest Neighbor Patches

) 'Accuracy =66.6%
Small Model (ViT-Tiny):
Failed to understand different Semantic Centroids!

Accuracy = 83.60
Big Model (ViT-Base):
Clearly understood Semantic Centroids

Figure 1. Top: Closest Neighbor Patches (CNP) characterizes
the “Local Semantic Centroid” among the input tokens. Bottom:
Low-dimensional projection (via PCA) of the transformer-encoded
patches. Unlike the large-sized transformer model (e.g., ViT-Base),
lightweight models (e.g., ViT-Tiny) cannot separate the “semantic
difference” between different CNPs.

by the capability of extracting transferable knowledge from
unlabeled datasets [26, 33]. Recent efforts on masked au-
toencoder (MAE) [19] train the vision transformer [11] by
encouraging the model to understand the semantic knowl-
edge of the masked patches throughout the reconstruction-
based self-supervised learning. Particularly, the evolution
from contrastive learning [16, 18, 36] to MAE-based train-
ing [17, 19, 34, 37] shows consistent dominance by large-
scale models to ensure on-par or even better accuracy com-
pared to supervised learning, along with superior perfor-
mance in various downstream applications. In practice,
downstream small-scale tasks are commonly deployed on
edge devices with limited resources. Therefore, large-sized
vision transformers (ViTs) pre-trained by MAE [19] are sub-
optimal candidates for resource-constrained downstream
deployment and hardware platforms. Unfortunately, recent
state-of-the-art (SOTA) methods that train lightweight ViTs
with MAE from scratch lead to poor performance and in-
sufficient transferability. For example, the MAE-trained
lightweight ViT-Tiny model only achieves 66.6% top-1 ac-
curacy (with 200-epoch pre-training [3, 19, 37]) on the
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ImageNet-1K dataset [3], which is ~10% lower than the
supervised learning counterpart. Evidently, the superiority
of MAE [19] with the large model failed to be maintained
in the lightweight ViTs [11]. Given the diverse downstream
tasks and urgent need for energy-efficient foundation models,
unleashing the power of MAE and enhancing the versatility
of lightweight models is desired.

Prior works enhance the performance of the lightweight
transformer models by heavily relying on knowledge distilla-
tion (KD) [20] for both supervised [29] and self-supervised
learning paradigms [3, 21, 38]. For instance, the recent
DMAE work [3] combines MAE [19] with KD and transfers
the pre-trained knowledge from a ViT-Base teacher down
to the lightweight ViT model. DMAE [3] chooses the 3/4
depth of both student and teacher ViT models as the bond-
ing portal for feature alignment and knowledge distillation.
The heuristic design of DMAE cannot be easily extended to
other encoder models. Furthermore, distilling the knowledge
on the fly introduces an additional projector [3] or logits
mask [31], which further elevates the complexity and com-
putation cost of the entire training process. In addition to
DMAE, other recent works further increase the complexity
of the KD-based MAE by employing multi-layer distilla-
tion [38] or complex generic-to-specific distillation [21]. All
of these prior works [3, 21, 31, 38] rely on the brute force
approach to enhance the model performance with increas-
ingly complex training schemes, which results in inflated
GPU memory and training time.

However, none of these prior works can collectively
achieve 1) the capability of training lightweight model from
scratch without a large-sized teacher model, 2) negligible
training cost overhead compared to the vanilla MAE, and 3)
clear insights that cause the poor performance of lightweight
MAE. To overcome this, the key questions to address are:

(D What is the bottleneck of MAE with under parametrized
small vision transformer models?

Q) How to efficiently train a high performance lightweight
model from scratch via MAE?

To answer (1), our investigation shows that the lightweight
model failed to understand different local semantic informa-
tion among the input tokens and lead to poor performance.
We characterize different local semantics by introducing the
concept of closest neighborhood patch (CNP) (Figure 1),
which carries the most similar semantics of a given input
patch. Since multiple patches can share one CNP (e.g., Back-
ground Forrest), different CNPs represent various local se-
mantics across the entire input sequence. Unlike large-sized
models, the under-parameterized model falls into the seman-
tic aliasing between different CNPs with poor accuracy, as
indicated in Figure | and Section 3.3.

Motivated by the findings in (1), we propose the Neighbor
Repelling Masked Autoencoder (NoR-MAE) to resolve 2),
anovel self-supervised learning algorithm designed for train-

ing powerful lightweight vision transformers. NoR-MAE
trains the powerful small vision transformer by penalizing
the similarity between the unmasked patches and CNPs.
Different from prior works, NoR-MAE directly trains the vi-
sion transformer from scratch without introducing the large-
sized pre-trained teacher or heuristically designed distilla-
tion scheme. The proposed method achieves up to 7.22%
and 3.64% accuracy improvements on ImageNet-100 and
ImageNet-1K datasets, with negligible training time and
memory overhead compared to the vanilla MAE. The major
contributions of our work are:

* Simplicity: NoR-MAE does not require teacher pre-
training or heuristic knowledge distillation to train a pow-
erful lightweight ViT.

High Performance: Compared to the baseline MAE,
NoR-MAE achieves 7.22% and 3.64% accuracy improve-
ments on ImageNet-100 and ImageNet-1K datasets with
the ViT-Tiny model, achieving the new SoTA performance
on the lightweight MAE training.

Transferrability: Different from prior works, which
mainly focus on fine-tuning the performance on the pre-
training dataset (e.g., ImageNet), NoR-MAE is also eval-
uated with the downstream fine-tuning and linear evalua-
tion benchmarks, with significantly improved performance
compared to prior SSL baselines and the vanilla MAE.
Rationality: Besides the superior performance, for the
first time, NoR-MAE reveals the semantic aliasing issue
caused by the neighboring patches, which is proved to be
the reason that hinders efficient training and representation
learning of lightweight ViT models.

2. Related Work

Empowering a deep neural network model with strong and
transferable knowledge has been widely investigated, espe-
cially in self-supervised learning. Early research works in
contrastive learning (CL) introduce the learning paradigm
with “positive” and “negative” sample pairs [6, 18], to-
gether with the alignment-repellent strategy embedded into
InfoNCE [7, 18, 25] and NT-Xent loss [6] as the learning
objective. The early success of CL motivated the succes-
sors to investigate the potential of different training and
sampling strategies, inducing the standpoint of asymmetri-
cal learning [16, 24], knowledge distillation [13], and the
latent-dimension correlation [36].

While the core idea of CL is training the model to
understand the similarities and differences between dif-
ferent augmentations, the emergence of masked autoen-
coder (MAE) [19] training reconsiders SSL from a differ-
ent perspective, which is perfectly suitable for vision trans-
formers. Encouraging the encoder-decoder to reconstruct
the randomly sparsified patches allows the model to under-
stand the semantics. Due to the powerful visual representa-
tion, MAE-based pretaining exhibits strong performance on
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Figure 2. Closest Neighbor Patches (CNP) within the image.

both backbone datasets (e.g., ImageNet-1K) and downstream
transfer learning tasks. Subsequent research works further
improved the performance of MAE from the perspectives of
contrastive learning [27, 37], cross-attention [14, 17], mixed
feature learning [23], or intricate tokenizer [12].

Across all the different MAE training methods, elevating
the performance of the large-sized models (e.g., ViT-Large)
has been the primary focus of exploration, while improving
the poor performance of the small-sized model (e.g., ViT-
Tiny) has been largely ignored. Given that the downstream
tasks are well-suited for resource-constrained edge devices,
the imbalanced research focus of the prior works largely
hinders the efficiency and transferability of MAE [19]. The
practical needs and the imperfection of lightweight MAE mo-
tivate the recent research works to investigate MAE training
strategies with small models. Following the protocol from
supervised distillation [20], knowledge distillation-based
MAE [3, 21] is proposed to enhance the performance of the
lightweight student. However, the learning scheme of the
single-layer or multi-layer distillation is established based on
the heuristically designed distillation between intermediate
features. Compared to the supervised knowledge distillation,
recent studies largely complicate the overall cost of train-
ing lightweight ViT models with either heuristic design [3],
multi-phased distillation [21], or distillation with extensive
fine-tuning [31]. In particular, employing the pre-trained
large ViT model as the teacher introduces additional GPU
memory usage and time cost toward the total training efforts.
Furthermore, training the interconnect projectors between
the student and teacher exacerbates the training complexity
even further. More importantly, the knowledge distillation-
based MAE inherits the essence of KD from supervised
learning, but the insights of training lightweight ViT from
scratch via MAE remain largely unexplored.

3. Proposed Method

We propose the Neighbor-Repelling MAE (NoR-MAE). In
this section, we will 1) introduce the concept of the Clos-
est Neighbor Patch into MAE training, 2) present the pro-
posed NoR-MAE training, and 3) unravel the rationality
of NoR-MAE by revealing the insights that cause the poor
performance of the directly-trained lightweight ViT model.
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Figure 3. Cosine Similarity between each patch and their Closest
Neighbor Patch across a subset of ImageNet-1K with 4096 images.

3.1. Closest Neighbor Patch (CNP)

Let X € RA*WXC pe an input image to the model, where
H, W, and C represent the height, width, and channel of
the image. Vision transformer (ViT) reformulates the in-
put by decomposing the image X into a sequence of non-
overlapped patches with the pre-defined patch size P x P
and the total number of patches (tokens) K. All the patches
are further encoded into the embeddings with dimension D,
which is the input of the subsequent transformer blocks.

For a given input patch X p, there are naturally 8 neigh-
bors that share a common edge with X p, as shown in Fig-
ure 2(a). We define the Closest Neighbor Patch (CNP)
Xcnp by selecting the neighbor that has the Top-1 cosine
similarity with X p. In other words, X p and X v p are shar-
ing the highest degree of semantically meaningful relations.

Shared Closest Neighbor Patch. In the example of Fig-
ure 2, two patches X% and X%, partially share the neighbor-
hoods in between, wh11e the CNP of X% and X%, g happen to
be identical as XJ o p- Naturally, X, C? N p carries the shared
semantic information (‘“Background Forest”) for both Xi P
and X fg, but the degree of similarity between (X5, X7y p)
and (X3, Xy p) are different.

Closest Neighbor Patch # Identical Patch. Although
Xp and X p are sharing the highest degree of similarity,
the semantics between Xp and X yp are not identical.
As shown in Figure 3, the cosine similarity between all the
patches and their closest neighbor in ImageNet-1K images
varies from 0.07 to 0.999, with an average of 0.83. In other
words, the highly similar neighboring patches also contain
the implicit semantical difference.

Difficulty of Lightweight Models to Understand the
Different Semantics Carried by CNP. With MAE, the in-
put patches of the transformer models are randomly masked
with a pre-defined sparsity ratio 7 (e.g., 75%), as illustrated
in Figure 4, left. Naturally, each unmasked visible patch
has a Closest Neighbor Patch (CNP). As a result, the CNP
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Figure 4. The shared Closest Neighbor Patch (CNP) characterizes
the estimated local semantic centroids of the input sequence.

of the unmasked patches formulates another sparse input
image (Figure 4, right). From the perspective of the entire
image, visible patches and their CNPs are close neighbors,
while different visible patches may share the same closest
neighbor, which estimates the local and regional semantics
of the input sequence. However, as described in Figure 1 and
Section I, understanding the semantic difference between
different CNPs is the bottleneck for the under-parameterized
models. Furthermore, our extended experiments in Figure 7
show that the key difference between the big (e.g., ViT-Base)
and small (e.g., ViT-Tiny) model is understanding and sep-
arating the semantic differences between CNPs. Therefore,
the challenge of lightweight MAE is clear:

In MAE training, how to facilitate the lightweight model
to understand different local semantics?

3.2. Proposed Method: NoR-MAE

We propose the Neighbor-Repelling training for self-
supervised MAE learning (NoR-MAE). The overall objec-
tive is to train a powerful, lightweight vision transformer by
encouraging the model to avoid the aliased relation between
different local semantics of the input. We follow the standard
protocol of the vanilla MAE with the encoder fy and decoder
g4, where both fg and g4 are vision transformers with the
same embedding dimension D.

Given the masking ratio 7, we first generate the masked
input sequence 2" and x ¢ p that are embedded from the
unmasked patches with the corresponding closest neighbor
patches, respectively. During the forward pass of each itera-
tion, we parallely encode and decode the masked sequence
«7 and CNP sequence z7-yp by fy and g4, generating the
reconstructed embedding Z and Z¢ y p, respectively. In par-
ticular, fg and g4 are served as the siamese encoder and de-
coder (with stop gradient) during the forward pass of Zonp.

Overall, each forward pass will generate two pairs of
decoded tokens resulting from z7 and x{yp.

Following the standard training protocol of MAE, we first
compute the £y reconstruction loss between the decoded
sequence Z and the ground truth. Subsequently, we compute
the matrix multiplication between the normalized Z and
Zonp- As shown in Figure 5, the encoder fy and decoder

g¢ are shared for both branches, while the stop gradient is
enabled for the CNP input. Given the size of [N, K, D],
the matrix multiplication between Z and transposed Zcnp
is performed along the token dimension K. The resultant
matrix is further scaled down by K and takes the average
along the batch dimension N. Mathematically, we have:

Cneighbor = i l(Z>T . ZCNP (])
N ~ K

Where Cieighbor Te€presents the resultant relation matrix with
the size of D x D. Each entry c; j of Cheighbor Character-
izes the correlation between the randomly-unmasked input
sequence (output logits Z) and the corresponding CNP se-
quence (output logits Zcnp) between embedding dimension
7 and j. To minimize the semantic aliasing between the
unmasked tokens and their CNPs, we decorate different em-
beddings by penalizing the off-diagonal terms of Cicighbor:

LNor = Z Z Crigghbor 2

i i

Essentially, the proposed NoR-Loss (Lnor) minimizes
semantic aliasing by preventing the model encoding the
visible patches and CNP as aliased embeddings. It has been
shown in Figure 3 that patches and their CNPs share similar
but non-identical semantics. We balance such a tradeoff of
“similarity-discrepancy” by decorrelating the off-diagonal
embeddings only. The overall loss is the combination of the
standard L9 reconstruction loss and the proposed Neighbor-
Repelling Loss Lxor scaled by a hyperparameter A:

Ltota] = HGround Truth — Z‘ |2 =+ )\ . ‘CNOR(Z7 ZCNP) (3)

More importantly, decorrelating embeddings eventually
separate the aliased semantics between different CNPs and
their corresponding “local semantic centroids” (Section 3.3).
In other words, the embedding-level anti-aliasing regu-
larization of the proposed NoR-Loss facilitates the under-
standing on the representation (token) level, leading to the
largely improved model performance.

Decorrelating Embeddings vs. Decorrelating Tokens.
Although the proposed NoR-MAE selects the Top-1 neigh-
bor (the closest neighbor patch (CNP)) as the candidate
for decorrelation, the CNP patches can be overlapped or
shared between each other. For instance, the closest neigh-
bor patch of patch X; could also be the Top-2/3/4 ... 8
neighbor of patch X ;. Minimizing the semantic aliasing by
naively decorrelating tokens leads to collapsed performance
and unsuccessful training, as shown in Figure 6.

NoR-MAE vs. Contrastive Learning. Empowering rep-
resentation learning via invariance-covariance optimization
has been investigated in Barlow Twins [36]. Recently pro-
posed U-MAE [37] combines the contrastive learning and
MAE [19] by introducing the random asymmetry masks
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Figure 6. Different relation penalty of the NoR-Loss (A=5e-5).

during the forward pass of the training. On the contrary,
the proposed NoR-MAE exploits the semantic aliasing issue
by constructing the asymmetry between the visible patches
and the corresponding closest neighbors, instead of relying
on the randomness. As a result, NoOR-MAE outperforms
U-MAE [37] in various sizes of models (Section 4).

In the context of contrastive learning, the similar sam-
ples (patches) are considered as “positive samples” which
are intended to be aligned by the algorithms [35]. However,
the important discovery of NoR-MAE points out that se-
mantic aliasing among the closest neighbors is harmful for
the lightweight masked autoencoder training, which is not
properly addressed by prior works. Moreover, unlike Barlow
Twins [36], NoR-MAE does not need the embedding align-
ment along the diagonal terms due to the well-established
similarity between the visible patches and their CNPs.

NoR-MAE Does Not Need a Teacher Model. We
would like to highlight that the proposed NoR-MAE is
entirely different from knowledge distillation-based MAE.
NoR-MAE does not require a pre-trained teacher [3] or multi-
stage distillation [21] during training. The lightweight en-
coder is trained from scratch following the standard MAE
protocol [19]. Although the CNPs and the original unmasked
patches are separately generated, the encoding-decoding pro-

cess remains the same as the vanilla MAE. For example,
given the 75% mask ratio with 25% visible patches, the
equivalent input sparsity of NoR-MAE is 50%. The over-
head of the NoR-MAE is minimal compared to the vanilla
MAE, as profiled in the supplementary.

3.3. Rationality of NoR-MAE

As shown in Figure 2 and Figure 4, the proposed concept
of Closest Neighbor Patch (CNP) characterizes the local se-
mantics of the image. For instance, the patches that contain
“Background Forest” or “Back of the Fox” are represented
by separate CNP patches. However, the lightweight model
failed to learn the semantic difference between CNPs.

We prove the significance of the CNP semantics by an-
alyzing the original unmasked features and CNP features
encoded by the trained encoder fy. Specifically, we first
normalize the encoded features and then compress the fea-
ture dimension down to 2-D via the Principal Component
Analysis (PCA) [1]. As shown in Figure 7 and Figure 8,
the lightweight models (ViT-Tiny and ViT-Small) trained by
the vanilla MAE [19] failed to distinguish the semantical
difference between different closest neighbor patches (CNP,
blue dots), regardless of the patch sizes. Different seman-
tics of CNP are heavily mixed together in the low dimen-
sional space. Moreover, CNP is critical for MAE training
regardless of the input patch sizes and the corresponding
sequence length. The distorted and aliased understanding of
the local semantics leads to the sub-optimal performance of
MAE, as shown in Table | with the empirical verification on
ImageNet-100 (224 x224) with ViT-Tiny.

On the contrary, the model trained by NoR-MAE success-
fully understands the semantic difference between different
CNP features, leading to largely improved accuracy on the
lightweight ViT models across different patch sizes. In the
meantime, the large-sized model (e.g., ViT-Base) exhibits
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input from ImageNet-1K dataset. NoR-MAE clearly separates the semantic information among different CNP, with improved accuracy.
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Figure 8. Low dimensional features of the unmasked patches (red
dots) and the CNP (blue dots) encoded by ViT-Tiny with patch size
=4x4 (sequence length = 3136), evaluated on ImageNet-100.

Table 1. NoR-MAE consistently outperforms the MAE [19] across
different input patch sizes (evaluated on the ImageNet-100 dataset).

Masking Ratio Input Patch Size MAE [19] NoR-MAE (This work)
75% 22 71.08% 83.56% (+12.48%)
75% 42 71.16% 83.58% (+12.42%)
75% 82 71.27% 79.24% (+7.97 %)
75% 162 71.04% 78.26% (+7.22%)
75% 322 68.42% 74.73% (+6.31%)

a better understanding and stronger separation of different
semantics with the vanilla MAE [19].

In summary, the proposed NoR-MAE successfully miti-
gates the performance gap between model sizes, facilitating
the learnability of the transformer model with a stronger
understanding of the semantical relations from the input,
leading to improved accuracy with both lightweight and
large-sized transformer models.

4. Experimental Results
4.1. ImageNet Classification

For image classification tasks, we follow the standard proto-
col of MAE [19] by training the lightweight encoder on the
ImageNet-1K and ImageNet-100 datasets with the batch size
of 4,096 and 2,048, and subsequently performing the stan-
dard fine-tuning [19]. Specifically, the model is pre-trained
by 200 and 400 epochs with the initial learning rate set to

1.5e-4, together with the weight decay value of 0.05. The
penalty coefficient A of the proposed NoR Loss is set to Se-5,
and the optimality of the selected penalty level is demon-
strated in Table 5. The mask ratio is fixed at 75% based on
the findings in the vanilla MAE [19]. We implement the
standard fine-tuning protocol with 100 epochs as the vanilla
MAE [19]. The detailed experimental setup (pre-train and
downstream) are summarized in the supplementary, together
with the report of GPU memory usage and training cost.

Table 2 and Table 3 summarize the performance of the
NoR-MAE on ImageNet-100 and ImageNet-1K datasets.
Compared to the vanilla MAE [19], NoR-MAE largely im-
proves the performance on top of the MAE baseline [19]
with up to 7.22% and 3.64% accuracy on ImageNet-100
and ImageNet-1K datasets, respectively. For the large-sized
vision transformer training (e.g., ViT-Base), NoR-MAE
still maintains the superiority compared to the recent high-
performance MAE training (Table 3).

More importantly, NoR-MAE improves the model perfor-
mance marginal training cost overhead. NoR-MAE trains
the model with the standard MAE protocol without intro-
ducing 1) a pre-trained teacher [3] or 2) other additional
architectures [27] or clustering modules [12]. As profiled
in the supplementary, the performance boost reward by the
NoR-MAE only exhibits up to 8% memory overhead and
2% additional training time. Compared to the distillation-
based MAE [3], NoR-MAE outperforms DMAE [3] with
~1% accuracy improvement and 50% less training cost.

We further validate the NoR-MAE on the larger ViT-
Base model. The proposed algorithm consistently achieves
better performance compared to the MAE baseline and the
recent ImageNet-100 SoTA method without introducing any
additional clustering efforts or special tokenizer [12].

Finally, NoR-MAE is also suitable for the MAE with su-
pervision (SupMAE) [22]. Introducing supervised learning
into MAE does not impact the effectiveness of the proposed
NoR-MAE, while the NoR-MAE further enhances the per-
formance of SupMAE [22], as shown in Table 2.

Comparison with the Distillation-based MAE. We
would like to highlight that the proposed NoR-MAE can
achieve on-par or even better performance compared to the



Table 2. Fine-tuning and semi-supervised learning accuracy (%) of the ViT encoder pre-trained by MAE [19] and recent SoTA lightweight
MAE on ImageNet-1K dataset (with 200 epochs and 400 epochs pre-training).

ViT Model # of Params Method Teacher Model Pre-training Epoch  Supervised Fine-tuning Accuracy (%)
MAE [19] - 200 66.60
MAE [19] - 400 67.63
Sup MAE [22] - 200 67.88
ViT-Tiny 57M Sup MAE [22] - 400 68.91
MoCo-V3 [18] - 200 70.09
DINO [5] - 300 68.17
SimMIM [34] - 200 66.08
DMAE [3] ViT-B 200 70.00
Sup NoR-MAE (This work) - 200 70.63 (+2.75)
NoR-MAE (This work) - 200 70.24 (+3.64)
NoR-MAE (This work) 2 400 71.18 (+3.55)
MAE [19] - 200 79.00
MAE [19] - 400 80.11
ViT-Small 21.7M Sup MAE [22] - 200 79.27
CrossMAE [14] - 400 79.30
MoCo-V3 [18] - 200 79.46
DMAE [3] ViT-B 200 79.30
Sup NoR-MAE (This work) - 200 80.16 (+0.89)
NoR-MAE (This work) - 200 80.13 (+1.03)
NoR-MAE (This work) - 400 81.04 (+0.93)
MAE [19] - 200 83.30
Sup MAE [22] - 200 83.60
DMAE [3] - 200 84.00
ViT-Base 38.6M CrossMAE [14] - 200 83.60
MoCo-V3 [3] - 200 83.14
DINO [5] - 200 82.80
SimMIM [34] - 200 83.50
U-MAE [37] - 200 83.00
NoR-MAE (This work) - 200 83.42 (+0.12)
Sup NoR-MAE (This work) - 200 83.70 (+0.10)
NoR-DMAE (This work) - 200 84.22 (+0.22)
distillation-based MAE, while significantly reducing the 4.3. Ablation Study

training resources, in terms of GPU training time and mem-
ory usage. As shown in Table 2, NoR-MAE directly trains
the lightweight model from scratch, achieving on-par or even
better performance compared to the recent distillation-based
MAE training, which yet consumes massive GPU resources.

4.2. Transfer Learning on the Downstream Tasks

We fine-tune the pre-trained ViT-Tiny and ViT-Small mod-
els (from Table 2) on the downstream vision tasks with 100
epochs. As shown in Table 4, the proposed NoR-MAE al-
gorithm outperforms the MAE baseline [19] among all the
downstream tasks with up to 5.13% accuracy improvements.
The outstanding downstream performance indicates the capa-
bility of learning strong representation through NoR-MAE.

Intensity of Neighbor-Repelling (). We evaluate the im-
pact of the penalty level A with different values. As shown in
Table 5, the proposed NoR-MAE algorithm achieves the best
performance with A = Se-5. In other words, the repelling
between the embedding features of the visible patches and
the CNP should be properly controlled. Over-penalized se-
mantic relation leads to sub-optimal performance.

Impact of Masking Ratio. In addition to the 75% mask-
ing ratio that has been used in all prior works as the default
setting, we evaluate the impact of different input masking
ratios, varying from 50% to 85% sparsity. Among different
input masking ratios, the proposed NoR-MAE consistently
outperforms the vanilla MAE [19] with lightweight vision



Table 3. Fine-tuning accuracy (%) of the vision transformer encoder pre-trained by MAE and recent SOTA MAE methods on ImageNet-100.

ViT Model # of Parameters  Pre-training Method  Pre-training Epochs Supervised Fine-tuning Accuracy (%)

MAE [19] 200 71.04
ViT-Tiny 5™ DiNO-Tiny [5, 9] 200 63.04
CrossMAE [14] 200 70.82

NoR-MAE (This work) 200 78.26 (+7.22)
MAE [19] 200 81.82
ViT-Small 21.7M MaskFeat HOG [32] 200 82.80
PeCo [10] 200 83.60

NoR-MAE (This work) 200 84.28 (+2.46)
MAE [19] 200 86.80
ViT-Base $8.6M CrossMAE [14] 200 86.29
U-MAE [37] 200 86.80
BEIT [4] 200 86.10

NoR-MAE (This work) 200 87.56 (+0.76)

Table 4. Fine-tuning accuracy (%) of the NoR-MAE on the downstream tasks with the lightweight ViT pre-trained on the ImageNet-1K.

ViT Model Method CIFAR-10 CIFAR-100 Flowers Pets DTD Food Caltech-101 Aricraft ADE20K (mlIoU)
ViT-Tiny MAE [19] 95.01 78.74 85.80 8247 5507 75.63 68.05 64.60 26.54
NoR-MAE (This work) 95.98 80.13 88.71 8529 60.18 78.71 73.18 67.07 33.54
g
VIT-Small MAE [19] 97.50 84.83 9149  91.14 6231 81.57 80.85 55.90 41.14
NoR-MAE (This work) 98.17 85.57 91.85 91.70 64.79 83.15 82.08 57.41 42.99

Table 5. Impact of different penalty levels (A) on Neighbor Re-
pelling on the ImageNet-100 dataset.

Penalty Level (\) 0.0 (Baseline) le-5 5e-5 le-4 5e-4
ViT-Tiny 70.24 7620 7826 77.89 72.17
ViT-Small 81.82 82.14 84.28 84.21 81.83

Table 6. Impact of different input masking ratios. NoR-MAE shows
consistent performance improvements on the ImageNet-1K dataset
with ViT-Tiny model.

Patch-wise Masking Ratio  Baseline MAE [19] NoR-MAE (This work)

50% 65.43% 69.27 %
75% 66.60% 70.24%
85% 66.37% 70.16%

transformers, as shown in Table 6. In other words, seman-
tic aliasing is persistent in lightweight transformer models
regardless of the information density in the input sequence.
NoR-MAE with extended training effort We further re-
port the performance of the NoR-MAE algorithm with 1,000
and 1,600 epoch training on the ImageNet-100. As shown
in Table 7, the extended training effort can further boost up
the performance of the NoR-MAE-trained ViT-Tiny (5.2M)
model to 83.96%, while consistently outperforming MAE.

Table 7. Performance of NoR-MAE with extended training effort.

Training Epochs MAE on ImageNet-100 (%) NoR-MAE on ImageNet-100 (%)

200 71.04 78.26
1000 73.22 82.97
1600 74.29 83.96

5. Conclusion

In this paper, we propose NoR-MAE, a novel self-supervised
learning algorithm designed for lightweight vision transform-
ers via masked autoencoder training. We first introduce the
concept of closest neighbor patches (CNP) into the MAE
training, which is a critical concept in lightweight SSL. On
top of that, we propose Neighbor-Repelling Loss for MAE
training. The proposed method trains the lightweight model
from scratch without using a pre-trained teacher model. NoR-
MAE achieves the new state-of-the-art performance on di-
rect lightweight MAE training with largely improved per-
formance on both pre-training and downstream vision tasks.
Finally, our discovery of the aliased semantic relations pro-
vides valuable insights regarding lightweight masked autoen-
coder learning.
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