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Abstract—Analog circuit design has traditionally depended
on manual expertise, slowing the discovery of novel topologies
essential for advanced technologies like Al, 5G/6G, and quantum
computing. While AI-driven methods have accelerated hardware
design workflows, most of them focus on topology synthesis,
often reusing known structures to achieve specific goals. The
challenge of discovering entirely new, high-performance topolo-
gies remains largely underexplored due to its abstract nature.
In this work, we introduce EVA, an efficient and versatile
generative engine for discovering novel analog circuit topolo-
gies. EVA employs a bottom-up generation framework, using
a decoder-only transformer to sequentially predict device pin
connections and create diverse circuits from scratch. Pretraining
on unlabeled circuit topologies builds foundational knowledge
about circuit connectivity, achieving baseline discovery efficiency
by generating valid circuits and reducing performance-labeled
samples needed in fine-tuning. For targeted discovery of high-
performance designs, EVA leverages two fine-tuning strate-
gies—proximal policy optimization (PPO) and direct preference
optimization (DPO)—to further enhance discovery efficiency for
relevant, high-performing topologies. Experimental results across
various circuit types highlight EVA’s strengths in validity, novelty,
versatility, and both training sample and discovery efficiency.

I. INTRODUCTION

Analog circuit topologies’ design has historically relied
heavily on manual effort and domain expertise. This ap-
proach not only results in a lengthy design cycle but also
restricts the discovery of novel analog circuit topologies.
Emerging technologies, such as Al, 5G/6G, and quantum
computing, impose stringent performance demands, creating
a need for innovative analog circuit topologies beyond the
capabilities of well-established designs. To support the ad-
vancement of these technologies, a critical question arises:
how can we efficiently explore and invent circuit topologies
that might achieve unprecedented performance, surpassing
what human expertise alone has accomplished? Recently, Al-
driven methodologies for analog hardware design have shown
promise in accelerating the design cycle across various stages
of the design flow [1]-[10]. However, existing research [11]-
[13] mainly addresses the analog circuit topology synthesis
problem, focusing on meeting specific design objectives by
selecting or reusing known topologies or sub-blocks from
existing designs. In contrast, the discovery problem of novel
analog circuit topologies remains underexplored due to its
abstract and complex nature.

In this work, we tackle the novel circuit topology discovery
problem due to its scientific significance and potential for
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breakthrough innovations. Existing approaches have achieved
great progress in topology discovery for certain types of
analog circuits. CktGNN [1], a pioneering effort, employs a
variational autoencoder (VAE) with a two-level graph neural
network (GNN) to learn and generate diverse operational
amplifier (Op-Amp) topologies. Similarly, Karahan et al. [14]
propose an inverse design approach for the rapid synthesis of
complex RF-to-terahertz (THz) matching networks by gener-
ating various electromagnetic (EM) structures. However, these
approaches are limited in versatility and discovery efficiency
without the ability to discover diverse types of analog circuit
topologies while targeting certain performance preferences.

To address these challenges, we introduce EVA, an efficient
and versatile generative engine for discovering novel analog
circuit topologies. To achieve great versatility, EVA proposed
a bottom-up generation framework that uses a decoder-only
transformer to generate diverse analog designs from scratch,
starting from a VSS pin and sequentially predicting the next
device pin connection. Instead of training with performance-
labeled topology from scratch, EVA is first pre-trained on
a diverse set of unlabeled circuit topologies to learn the
circuit connectivity. In this way, the model itself has already
achieved a basic level of discovery efficiency by generating
valid topology and setting a great foundation for finetuning.
For targeted discovering specific circuit types with high perfor-
mance within limited attempts, EVA proposed two fine-tuning
strategies based on proximal policy optimization (PPO) [15]
and direct preference optimization (DPO) [16] with a limited
number of labeled topology thanks to the foundation laid by
the pretrained model. In this way, EVA is able to achieve
great training sample efficiency and discovery efficiency with-
out wasting evaluation time on irrelevant or low-performing
circuits. Our key contributions are as follows:

o EVA is a versatile generative engine that can discover
diverse, novel analog circuit topologies by sequentially
predicting device pin connections, starting from VSS.

e« EVA pretrains a decoder-only transformer on an un-
labeled dataset of circuit topologies, enabling efficient
generation of valid circuits and significantly improving
training sample efficiency by reducing the reliance on
performance-labeled samples during fine-tuning.

« EVA enhances discovery efficiency by fine-tuning with
PPO and DPO on a small set of performance-labeled
topologies, focusing on high-performance circuits and
minimizing irrelevant evaluations.



o Experimental results across various analog circuit types
demonstrate EVA’s advantages in topology validity, nov-
elty, versatility, sample efficiency, and discovery effi-
ciency.

II. RELATED WORK

A. ML methods for analog circuit topology synthesis

Analog circuit topology synthesis aims to develop circuits
that meet design goals using established topologies or sub-
block topologies. Existing ML methods primarily address
the issue of data scarcity when building models capable of
automating analog circuit design. AnalogCoder [11] highlights
that while large language models (LLMs) have been exten-
sively trained on Python code, they lack exposure to the SPICE
netlist, the industry-standard format for describing analog
circuits. To bridge this gap, they employ domain-specific
prompt engineering, enabling LLMs to generate PySpice
code that can be seamlessly converted into SPICE netlists
without additional training—thus maximizing training sample
efficiency. Similarly, Artisan [12] translates SPICE netlists
into natural language, allowing the development of domain-
specific foundation models for analog circuit design, even
with limited data. On the other hand, LaMAGIC [13], a fine-
tuned masked language model (MLM), has been proposed to
generate power converter circuit topologies by predicting the
connections between predefined nodes. However, most current
approaches to analog circuit topology design rely heavily
on existing circuit topologies or subblock structures, which
constrains their ability to discover novel topologies.

B. ML methods for novel analog circuit topology discovery

Novel analog circuit topology discovery aims to identify
novel, non-existent circuit topologies that could potentially
expand our understanding of analog circuits. Existing ML
approaches have primarily focused on discovering designs
at two distinct levels, each restricted to a specific type of
analog circuit. CktGNN [1] addresses the schematic level
by generating a variety of Op-Amp topologies. This method
adopts a top-down graph generation approach but limits the
design scope to sub-blocks without incorporating device-level
details. While this constraint simplifies the generation process
and ensures valid topologies (e.g., avoiding floating nodes),
it also restricts the diversity of circuits that can be explored.
Karahan et al. [14], on the other hand, focus on the physical
level, employing an inverse-design approach using binary
matrices to generate unintuitive EM structures for RF-to-
THz matching networks. However, applying this method to
schematic-level design is challenging, as the complexity of
analog circuit topologies—due to the wide variety of device
types and numbers—cannot be adequately captured by a
binary matrix representation. Beyond versatility limitations,
these methods are also constrained by inefficient discovery
processes. Both approaches lack target discovery capabilities,
relying heavily on trial and error, which leads to substantial
evaluation overhead from real-world simulators due to fre-
quent low-performance circuit assessments. To mitigate this,
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Fig. 1: An example of sequential graph presentation EVA used
to represent the circuit topology [17]. (a) Original topology.
(b) Pin-level graph representation. (c¢) Eulerian circuit.

Karahan et al. proposed training a forward model to predict
performance for specific EM structures, a promising direction
but one that demands over 600k performance-labeled EM
structures, making it extremely sample inefficient.

III. EVA FRAMEWORK

EVA in Figure 2 is an efficient and versatile generative
engine designed to discover novel analog circuit topologies.
It uses a device pin-level graph representation [17], sequen-
tialized as an Eulerian circuit, to capture all possible connec-
tions in a compact format while retaining critical structural
information. EVA leverages a decoder-only transformer ar-
chitecture, pre-trained on diverse analog circuit topologies, to
generate circuits from scratch by sequentially predicting device
pin connections. Through fine-tuning strategies such as PPO
and DPO, EVA efficiently generates high-performance circuit
topologies with minimal labeled data, targeting specific circuit
types and desired performance.

A. Expressive and efficient sequential graph representation

Existing approaches to schematic-level analog circuit topol-
ogy discovery generally formulate the problem as a graph
generation task, where each circuit topology is represented as
a device-level graph with nodes corresponding to individual
devices (e.g., NMOS transistors) [1]. EVA, in contrast, adopts
a device pin-level graph representation as shown in Figure 1
where each node corresponds to an individual device pin (e.g.,
NMI1_G, NM1_D, NM1_S, and NM1_B) [17]. Since analog
circuit topologies are typically sparse—most devices connect
only to their immediate neighbors—traditional adjacency ma-
trices are inefficient, as they waste space representing non-
existent edges [1], [13]. To address this, EVA sequentializes
the graph as an Eulerian circuit [17], a path that traverses each
directed edge exactly once before returning to the starting node
(e.g., VSS). Unlike prior approaches that limit graph structures
to directed acyclic graphs (DAGs) [1]—which cannot uni-
versally represent all analog topologies—the Eulerian circuit
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approach is more versatile, capable of representing any analog
circuit that can be modeled as a finite connected undirected
graph.

B. Pretraining model to generate diverse circuits

EVA employs a customized domain-specific tokenizer to
encode and decode sequences for pretraining a decoder-only
transformer to discover a wide range of analog circuit topolo-
gies. Each token in EVA’s tokenizer corresponds either to a
device pin (e.g., NM1_G, NM1_D, NM1_S, NMI1_B) or to a
circuit-level pin for the overall analog topology (e.g., VINI,
VOUTI1, VDD, VSS). To ensure the model can generalize
across circuit topologies with varying numbers and types
of devices, EVA uses a data-driven approach to scan the
entire dataset and determine device limits. A special token,
“Truncate,” is introduced to handle padding when sequences
of varying lengths are processed.

With this domain-specific tokenizer, EVA pre-trains a
decoder-only transformer to predict the next device pin within
a circuit topology. Unlike typical language model pretraining,
which crops sequences randomly from text, EVA ensures
that each sequence corresponds to a single complete circuit
topology. Given an corpus of tokens U = {u,...,u,}
representing one circuit topology, EVA maximizes the standard
language modeling objective [18] to train the model.

Epretrained(u) = Z 1OgP (uz | Ui—Fy vy Wi—13 @) (1)

TABLE I: Rank score definitions for PPO finetuning

Reward | Definition
1.0 High performance relevant valid circuit
0.5 Low performance relevant valid circuit
-0.5 Irrelevant valid circuit
-1.0 Invalid circuit

Here, k represents the size of the context window, and the
conditional probability P is modeled by a neural network
with parameters ©. During the generation phase, the model is
initially provided with just one context token, “VSS,” which
serves as the starting node for all Eulerian circuits. From this
single token, the model generates the rest of the sequence,
completing it to represent an entire circuit topology.

C. Finetuning model to target high performance circuit

The pre-trained model in EVA has developed foundational
knowledge of circuit connections across various circuit types,
enabling it to achieve baseline discovery efficiency by gener-
ating valid circuits. To further enhance its ability to efficiently
generate high-performance circuits within limited attempts,
EVA fine-tunes this model to align with human preferences
for both type and performance. Building on the foundation
provided by pretraining, EVA can leverage a small set of
performance-labeled topologies to guide generation towards
high-performance designs. EVA introduces two fine-tuning
strategies that balance training stability and overfitting.

1) Proximal policy optimization: EVA adopts PPO [15]
as one of its reinforcement learning with human feedback
(RLHF) strategies. PPO uses limited labeled samples to train
a reward model as a labeler, enabling the pre-trained model
to generate new samples, which are then labeled by the
reward model for fine-tuning based on human preferences.
Specifically, EVA utilizes a Plackett-Luce ranking model [19]
for sequence reward, ranking multiple classes as shown in
Table I. The reward model combines a rule-based checker with
a multiclass classifier: it first checks if a generated circuit is
valid (i.e., simulatable with default sizing) and then classifies
circuit type and performance. To train this multiclass classifier,
a limited set of circuit topologies is initially labeled for type
and performance. For instance, if EVA aims to discover high-
performance Op-Amps, only Op-Amps are relevant, while
other types are irrelevant. The figure of merit (FoM) deter-
mines whether relevant circuits are high-performance, with
Otsu’s method [20] setting the FoM threshold. Once labeled,
EVA adds a three-output linear layer on top of the final
transformer layer, outputting a reward value after softmax.

With the trained reward model, PPO performs optimization

as shown in Algorithm 1. The major components of PPO are
defined as follows:
Agent: The agent is the policy model my, which is the pre-
trained model fine-tuned to align with human preferences.
EVA adds a value head to it, which consists of a simple linear
layer that takes hidden states as input and outputs a single
scalar per token. The value function provides an estimate of
the expected cumulative reward from any given state.



Algorithm 1 PPO RLHF Finetuning

Require: Policy model 7y, Reference model 7y, ,, Reward
model Ry, Epochs Nepocns, PPO epochs N, Batch size
D, Minibatch size B, Value loss coefficient ve
1: for epoch =1 t0 Nepocns do
2:  Let mg generate a batch of sequences with size D and
corresponding values and store them as x,y,V
Compute PPO rewards r from Eq. (2)
for ppo_epoch = 1 to N, do
Randomly sample minibatch (zp, ys, Vi, T3)
Repredict V;, ., for minibatch using 7y
Calculate Lpglicy, Lvawe from Eq. (3) and Eq. (4)
Calculate Lppo = —Lpolicy + V¢ * Lualue
Backpropagate and update 7y
10:  end for
11: end for

R S AN A

Environment: The environment is the reward model Rg.
This environment assigns rewards based on whether generated
sequences meet criteria defined in Table I.

Action: The action is discrete by selecting a token y; (i.e.,
device-pin) from a pre-defined tokenizer’s look-up table based
on the current context x; (i.e., generated sequence).

State: The state is the current context x;.

Reward: Starting from the initial state zo (i.e., “VSS”), the
RL agent takes a discrete action by predicting the next token
y¢ given the current state x; in each time step ¢, and the
environment returns a reward r; at that step. EVA defines the
PPO reward function as follows:

2)

ry = Ry(x,y) — Blog (”9(%'“))

To,.; (Yt | Tt)

Here, Ry (z,y), is the reward model’s score that measures
how well the entire sequence aligns with preference defined in
Table I. The second term is a penalty that discourages 7y from
deviating too much from 7, ., with 3 controlling the strength
of this penalty. The reference model 7y, , is a fixed version
of the pre-trained language model that the policy model was
initially based on.

In PPO, the entire sequence or circuit topology acts as a
trajectory, with the objective of optimizing the policy model
Ty to generate sequences that maximize the expected accumu-
lated reward via the advantage A and the policy loss Lyglicy-
Concurrently, PPO refines value prediction V; , using the
value 1oss Lyae. As shown in Algorithm 1, each epoch begins
with PPO generating rollouts (sequences) using the policy
model, and the reward model R4 assigns rewards r, where
each r corresponds to a rollout. PPO then performs minibatch
optimization. The policy loss Lpoiicy is designed to maximize
the expected advantage of the actions taken by the agent while
preventing large, destabilizing updates to the policy.

Lpoticy = E¢ [min (L - Ay, clip(L, 1 —€,1 +€) - Ay)]
mo (Yo, | Tv,) 3)

where L =
T 001 (ybt | xbt)

Here, advantages A; = 6; + YA - Ai11 where §; = 7, +
Vi (Tb,41) — Vi (z5,) measure how much better (or worse)
an action at time ¢ is compared to the expected outcome
calculated from value function Vj(xs, ). L represents the
probability ratio between the current and previous policies
during minibatch optimization. With the clip objective, the
policy loss in PPO strikes a balance between exploiting the
current advantage—encouraging the model to increase the
probability of actions that yield higher expected rewards—and
maintaining stable, incremental updates to the policy. In PPO,
the value loss Ly, is calculated to enhance the accuracy of
the model’s value function.

1
Cvalue = 5 ' (‘/l)nm, (mbt) - Gt)2 (4)

The value loss Ly, is the squared difference between the
newly predicted value V},, (xp,) and the target return G;. The
Gy = Ay + Vi (xp,) represents the total expected reward for
the trajectory from ¢ onward, including the estimated value
of future states. By incorporating both immediate and future
rewards, GG; is a robust target for updating the value function.

2) Directed preference optimization: PPO is effective in
preventing overfitting by continually generating new training
data [21]. However, its complexity and stability issues arise
from its sensitivity to hyperparameters and dependence on a
reward model. To address these challenges in a simpler and
more stable way, EVA introduces a finetuning strategy based
on DPO [16]. Unlike PPO, which requires a separate reward
model to label newly generated data, DPO finetunes the pre-
trained model using a static dataset with expert-labeled data.
This approach enhances stability, as the training labels are
accurate and unaffected by the reward model’s classification
reliability. Moreover, DPO’s objective function is simplified
compared to PPO, with only a single hyperparameter, 3, which
controls the extent of 7y deviation from the reference model.

Lpro (75 Tref) = —E(a,y0.y,)~D

[loga (ﬁ log w — Blog
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DPO utilizes the Bradley-Terry model [22] as its prefer-
ence framework, focusing on pairwise comparisons (win or
lose) rather than the multi-rank model employed in PPO.
Specifically, optimizing Lppo guides the pre-trained model
to identify analog circuit topologies that maximize the ex-

pression log ZeW=l2) 150 ;i;(g’;llli)), thus encouraging it to

generate ”wiTﬁTﬁ%’é"’ x)topologles while discouraging ”losing”
ones. Given the complexity of human preferences for analog
circuit topologies, EVA still relies on human experts to label
circuit topologies according to a multi-rank model, as defined
in Table I. For any four data points where each belongs to
a unique class, EVA transforms these into six unique win-
lose pairs for DPO training (e.g., High performance relevant
valid circuit > Low performance relevant valid circuit, High
performance relevant valid circuit > Irrelevant valid circuit,
etc.).




IV. EXPERIMENTS
A. Experiments Setup

Datasets: The EVA circuit dataset comprises 3470 unique
and real-world topologies across 11 circuit types: Op-Amps,
LDOs, Bandgap references, Comparators, PLLs, LNAs, PAs,
Mixers, VCOs, Power converters, and Switched Capacitor
Samplers from public resources [23]-[28]. Each circuit’s
performance was assessed through circuit simulation, and a
corresponding label was assigned based on its performance
metrics and label definition defined in Table I.

EVA training setup: EVA splits the topology dataset into
training and validation sets with a 9:1 ratio, ensuring the
validation topologies remain unseen during training. EVA uses
a depth-first search (DFS) to identify the Eulerian circuit
for each topology. To prevent overfitting, it permutes DFS
traversal order, creating multiple unique Eulerian circuits per
topology, expanding the original 3470 topologies to 234393
sequences. EVA’s generation model is a decoder-only trans-
former with 6 layers, 6 attention heads, and 11.825 million
parameters, with a vocabulary size of 1029 and maximum
sequence length of 1024. The reward model architecture is
detailed in Section III-Cl1.

Baseline: To compare with EVA, we select AnalogCoder [11],
Artisan [12], and LaMAGIC [13] as the representative ML
baselines for analog circuit topology synthesis and select
CktGNN [1] as the representative ML baselines for novel
analog circuit topology discovery at the schematic level. The
differences between these methods and EVA are discussed in
Section II. We follow original work to produce their results.
Evaluation tasks and metrics: We evaluate generative quality
across the following metrics: (1) Validity: An unsized circuit
is valid if it can be simulated in SPICE without errors (e.g.,
floating or shorting nodes). Each method generates 1000
topologies, and we report the percentages that are valid. (2)
Novelty: Each method generates 1000 topologies, and we
measure the percentage of them that are different from the
topologies in the dataset. To quantify the topology difference,
We converted them into graphs and computed the maximum
mean discrepancy (MMD) [29] between these and real-world
graphs converted from our circuit dataset. (3) Versatility: The
number of distinct analog circuit types generated indicates
versatility. (4) Training sample efficiency: Efficiency is eval-
uvated by comparing the number of labeled topologies (i.e.,
with known performance) required for training. (5) Discovery
efficiency: Given the time cost of performance evaluation,
each method only generates 10 topologies, and we report the
maximum FoM (e.g., gain, bandwidth, power for Op-Amps)
after sizing with a genetic algorithm and SPICE evaluation.

B. Necessity of pretraining and finetuning

We first perform an ablation study to evaluate the necessity
of both pretraining and fine-tuning. As shown in Figure 3,
PPO results reveal that the pretrain-only model establishes a
solid foundation in generating irrelevant valid circuits (score
= —0.5) and low-performance relevant valid circuits (score
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Fig. 3: PPO score and DPO validation reward accuracy
comparison between Pretrain + Finetune, Pretrain only, and
Finetune only while targeting Op-Amp design as an example.
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Fig. 4: EVA’s PPO loss and DPO loss after pretraining while
targeting Op-Amp design as an example.

= 0.5). However, it lacks the ability to specifically target
high-performance relevant valid circuits (score = 1), necessi-
tating further fine-tuning. Similar observations are evident in
DPO results, where the pretrain-only model shows no strong
preference for winning topologies, as indicated by O reward
accuracy. This suggests the model predominantly generates

losing topologies during generation, i.e., log% <
7o (yi|z) |

log Tt (W112)° In contrast, the finetune-only model lacks the
foundational understanding of circuit connectivity, making it
challenging to effectively train on a limited number of labeled
samples to generate valid topologies. For PPO, EVA’s vast
design space (1029'92%), dominated by invalid topologies,
leads to an extremely sparse reward signal (i.e., most rewards
are suboptimal). As a result, guiding the finetune-only model
to discover high-performance relevant valid circuits from
scratch becomes infeasible using a simple reward model. On
the other hand, DPO results indicate that even an untrained
model can achieve reward accuracy exceeding 50%, highlight-
ing a limitation in this metric. Specifically, the metric only
measures the preference for generating winning topologies,
log% > log ;::_((yyll“?), without assessing the actual
generation quality of winning topologies 7y (yy, | ) or losing
topologies g (y; | ). This limitation is further validated in
Table II, where EVA (DPO only) fails to generate any valid
topologies. In conclusion, EVA can effectively target high-
performance relevant valid circuits only through a combination
of pretraining and finetuning.




TABLE II: Performance comparison between EVA and existing analog circuit topology generation work.

Evaluation metric Validity (%) 1 Novelty Versatility 4 of labeled topology | FoM@10 [12], [13] 1
Diff circuit (%) T MMD | Op-Amp  Power converter Op-Amp  Power converter
AnalogCoder [11] 66.1 0 0 7 11 N/A 232.1 N/A
Artisan [12] 82 0 0 1 14000 N/A 12769.5 N/A
CktGNN [1] 68.5 93 0.313 1 10000 N/A 311.3 N/A
LaMAGIC [13] 75 3 0.001 1 N/A 132000 N/A 22
EVA (Pretrain) 84 99 0.0518 11 0 0 274.1 2.5
EVA (PPO only) 0 N/A N/A 112 850 362 N/A N/A
EVA (DPO only) 0 N/A N/A 112 850 362 N/A N/A
EVA (Pretrain+PPO) 94 99 0.0509 112 850 362 13647.2 33
EVA (Pretrain+DPO) 83 99 0.0491 112 850 362 13763.8 34

% Targeting another circuit type requires redo fine-tuning, which takes less than an hour on an A100 GPU.

C. Comparison between PPO and DPO for EVA finetuning

We compare PPO and DPO for EVA fine-tuning in terms
of training stability and generation quality. PPO, an online RL
method, dynamically generates new topologies and samples
rewards from the environment, but its training instability stems
from the stochastic reward signal 7, , leading to noisy advan-
tage estimates A; and oscillations in Lplicy. In contrast, DPO,
an offline RL method, optimizes the relative log-likelihood
between winning and losing topologies using static preference
data, avoiding noisy rewards. For generation, PPO demon-
strates superior validity by optimizing for both preference and
reward-based quality through continuous exploration of new
topologies. This enables it to overcome degeneration issues
and produce valid, diverse outputs that outperform the pre-
trained model. DPO, however, shifts the model’s preference
to high-performance topologies in the dataset without learning
from new data, leading to degeneration in validity. This de-
generation is characterized by a reduction in both winning and
losing topology generation likelihoods in Figure 4, with the
latter declining faster. At low learning rates, this degeneration
is manageable, and our results focus on these settings, as
shown in the Figure 4 and Table II. Higher learning rates,
while not depicted, can cause the model to collapse, generating
repetitive tokens. Despite these limitations, DPO excels in
targeted discovery, producing higher-FoM topologies within
10 attempts and achieving lower MMD values, which indicate
a closer resemblance to real-world circuits.

D. Comparison between EVA and prior arts

Finally, we compare EVA with prior methods:
Validity: EVA demonstrates higher validity than previous
methods. Top-down approaches like CktGNN and LaMAGIC
rely on predefined representations, which limit their general-
ization to other circuit types and restrict the range of topologies
they can be trained on. In contrast, EVA’s universal circuit
representation and bottom-up generation framework enable
pretraining on diverse analog circuits with more training data.
Novelty: EVA excels in discovering novel circuits compared
to AnalogCoder and Artisan, which primarily reuse existing
topologies or subblocks. LaMAGIC is confined to a small
design space (fewer than 4 devices), limiting its ability to dis-
cover new topologies. While CktGNN and EVA both support

larger circuits (around 20 and 60 devices, respectively), Ckt-
GNN is trained on synthetic datasets, which lack critical real-
world features. EVA, trained on real-world circuits, improves
MMD by over 6x and generates around 99% novel circuits.
Versatility: EVA outperforms Artisan, CktGNN, and LaM-
AGIC, which can only design one type of circuit. While
AnalogCoder supports seven circuit types, it is limited to
a synthesis library of just 20 topologies. EVA, trained on
a dataset with 11 circuit types and over 3000 topologies
(minimum 30 per type), demonstrates unparalleled versatility.
Sample efficiency: Unlike prior work that typically uses
performance-labeled topology to train a model from scratch,
EVA first pretrains on an unlabeled dataset to build a strong
foundation in circuit connectivity. This enables efficient fine-
tuning with only a small labeled dataset, achieving up to 364 x
greater training sample efficiency compared to other methods.
Discovery efficiency: CktGNN and EVA (Pretrain) lack tar-
geted discovery, often producing low-performance circuits
within 10 attempts. AnalogCoder’s synthesis library only con-
tains simple circuits, which also limits the FoM of the circuit it
synthesized. After finetuning, EVA is able to align with human
preference and target high-performance circuits within limited
attempts. Combining the foundation knowledge it learned from
all sorts of analog circuit types during pretraining, EVA is able
to discover unseen topologies with superior FoM compared to
dedicated synthesizers like Artisan and LaMAGIC, excelling
in both Op-Amp and power converter.

V. CONCLUSION

In this work, we propose EVA, a versatile and efficient
generative engine for discovering novel analog circuit topolo-
gies. EVA employs a bottom-up generation framework using
a decoder-only transformer to sequentially predict device pin
connections, starting from a VSS pin. By pretraining on
an unlabeled dataset of circuit topologies, EVA establishes
a strong foundation for topology generation, enabling fine-
tuning with minimal performance-labeled data. Through fine-
tuning strategies based on PPO or DPO, EVA achieves high
discovery efficiency, targeting high-performance circuits while
minimizing wasteful evaluations. EVA paves the way for Al-
driven discovery in analog circuit, unlocking unprecedented
potential for innovation in next-generation technologies.
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