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Abstract—Analog circuit design has traditionally depended
on manual expertise, slowing the discovery of novel topologies
essential for advanced technologies like AI, 5G/6G, and quantum
computing. While AI-driven methods have accelerated hardware
design workflows, most of them focus on topology synthesis,
often reusing known structures to achieve specific goals. The
challenge of discovering entirely new, high-performance topolo-
gies remains largely underexplored due to its abstract nature.
In this work, we introduce EVA, an efficient and versatile
generative engine for discovering novel analog circuit topolo-
gies. EVA employs a bottom-up generation framework, using
a decoder-only transformer to sequentially predict device pin
connections and create diverse circuits from scratch. Pretraining
on unlabeled circuit topologies builds foundational knowledge
about circuit connectivity, achieving baseline discovery efficiency
by generating valid circuits and reducing performance-labeled
samples needed in fine-tuning. For targeted discovery of high-
performance designs, EVA leverages two fine-tuning strate-
gies—proximal policy optimization (PPO) and direct preference
optimization (DPO)—to further enhance discovery efficiency for
relevant, high-performing topologies. Experimental results across
various circuit types highlight EVA’s strengths in validity, novelty,
versatility, and both training sample and discovery efficiency.

I. INTRODUCTION

Analog circuit topologies’ design has historically relied

heavily on manual effort and domain expertise. This ap-

proach not only results in a lengthy design cycle but also

restricts the discovery of novel analog circuit topologies.

Emerging technologies, such as AI, 5G/6G, and quantum

computing, impose stringent performance demands, creating

a need for innovative analog circuit topologies beyond the

capabilities of well-established designs. To support the ad-

vancement of these technologies, a critical question arises:

how can we efficiently explore and invent circuit topologies

that might achieve unprecedented performance, surpassing

what human expertise alone has accomplished? Recently, AI-

driven methodologies for analog hardware design have shown

promise in accelerating the design cycle across various stages

of the design flow [1]–[10]. However, existing research [11]–

[13] mainly addresses the analog circuit topology synthesis

problem, focusing on meeting specific design objectives by

selecting or reusing known topologies or sub-blocks from

existing designs. In contrast, the discovery problem of novel

analog circuit topologies remains underexplored due to its

abstract and complex nature.

In this work, we tackle the novel circuit topology discovery

problem due to its scientific significance and potential for

This work is partially supported by NSF #2416375 and NSF #2526432.

breakthrough innovations. Existing approaches have achieved

great progress in topology discovery for certain types of

analog circuits. CktGNN [1], a pioneering effort, employs a

variational autoencoder (VAE) with a two-level graph neural

network (GNN) to learn and generate diverse operational

amplifier (Op-Amp) topologies. Similarly, Karahan et al. [14]

propose an inverse design approach for the rapid synthesis of

complex RF-to-terahertz (THz) matching networks by gener-

ating various electromagnetic (EM) structures. However, these

approaches are limited in versatility and discovery efficiency

without the ability to discover diverse types of analog circuit

topologies while targeting certain performance preferences.

To address these challenges, we introduce EVA, an efficient

and versatile generative engine for discovering novel analog

circuit topologies. To achieve great versatility, EVA proposed

a bottom-up generation framework that uses a decoder-only

transformer to generate diverse analog designs from scratch,

starting from a VSS pin and sequentially predicting the next

device pin connection. Instead of training with performance-

labeled topology from scratch, EVA is first pre-trained on

a diverse set of unlabeled circuit topologies to learn the

circuit connectivity. In this way, the model itself has already

achieved a basic level of discovery efficiency by generating

valid topology and setting a great foundation for finetuning.

For targeted discovering specific circuit types with high perfor-

mance within limited attempts, EVA proposed two fine-tuning

strategies based on proximal policy optimization (PPO) [15]

and direct preference optimization (DPO) [16] with a limited

number of labeled topology thanks to the foundation laid by

the pretrained model. In this way, EVA is able to achieve

great training sample efficiency and discovery efficiency with-

out wasting evaluation time on irrelevant or low-performing

circuits. Our key contributions are as follows:

• EVA is a versatile generative engine that can discover

diverse, novel analog circuit topologies by sequentially

predicting device pin connections, starting from VSS.

• EVA pretrains a decoder-only transformer on an un-

labeled dataset of circuit topologies, enabling efficient

generation of valid circuits and significantly improving

training sample efficiency by reducing the reliance on

performance-labeled samples during fine-tuning.

• EVA enhances discovery efficiency by fine-tuning with

PPO and DPO on a small set of performance-labeled

topologies, focusing on high-performance circuits and

minimizing irrelevant evaluations.



• Experimental results across various analog circuit types

demonstrate EVA’s advantages in topology validity, nov-

elty, versatility, sample efficiency, and discovery effi-

ciency.

II. RELATED WORK

A. ML methods for analog circuit topology synthesis

Analog circuit topology synthesis aims to develop circuits

that meet design goals using established topologies or sub-

block topologies. Existing ML methods primarily address

the issue of data scarcity when building models capable of

automating analog circuit design. AnalogCoder [11] highlights

that while large language models (LLMs) have been exten-

sively trained on Python code, they lack exposure to the SPICE

netlist, the industry-standard format for describing analog

circuits. To bridge this gap, they employ domain-specific

prompt engineering, enabling LLMs to generate PySpice

code that can be seamlessly converted into SPICE netlists

without additional training—thus maximizing training sample

efficiency. Similarly, Artisan [12] translates SPICE netlists

into natural language, allowing the development of domain-

specific foundation models for analog circuit design, even

with limited data. On the other hand, LaMAGIC [13], a fine-

tuned masked language model (MLM), has been proposed to

generate power converter circuit topologies by predicting the

connections between predefined nodes. However, most current

approaches to analog circuit topology design rely heavily

on existing circuit topologies or subblock structures, which

constrains their ability to discover novel topologies.

B. ML methods for novel analog circuit topology discovery

Novel analog circuit topology discovery aims to identify

novel, non-existent circuit topologies that could potentially

expand our understanding of analog circuits. Existing ML

approaches have primarily focused on discovering designs

at two distinct levels, each restricted to a specific type of

analog circuit. CktGNN [1] addresses the schematic level

by generating a variety of Op-Amp topologies. This method

adopts a top-down graph generation approach but limits the

design scope to sub-blocks without incorporating device-level

details. While this constraint simplifies the generation process

and ensures valid topologies (e.g., avoiding floating nodes),

it also restricts the diversity of circuits that can be explored.

Karahan et al. [14], on the other hand, focus on the physical

level, employing an inverse-design approach using binary

matrices to generate unintuitive EM structures for RF-to-

THz matching networks. However, applying this method to

schematic-level design is challenging, as the complexity of

analog circuit topologies—due to the wide variety of device

types and numbers—cannot be adequately captured by a

binary matrix representation. Beyond versatility limitations,

these methods are also constrained by inefficient discovery

processes. Both approaches lack target discovery capabilities,

relying heavily on trial and error, which leads to substantial

evaluation overhead from real-world simulators due to fre-

quent low-performance circuit assessments. To mitigate this,
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Fig. 1: An example of sequential graph presentation EVA used

to represent the circuit topology [17]. (a) Original topology.

(b) Pin-level graph representation. (c) Eulerian circuit.

Karahan et al. proposed training a forward model to predict

performance for specific EM structures, a promising direction

but one that demands over 600k performance-labeled EM

structures, making it extremely sample inefficient.

III. EVA FRAMEWORK

EVA in Figure 2 is an efficient and versatile generative

engine designed to discover novel analog circuit topologies.

It uses a device pin-level graph representation [17], sequen-

tialized as an Eulerian circuit, to capture all possible connec-

tions in a compact format while retaining critical structural

information. EVA leverages a decoder-only transformer ar-

chitecture, pre-trained on diverse analog circuit topologies, to

generate circuits from scratch by sequentially predicting device

pin connections. Through fine-tuning strategies such as PPO

and DPO, EVA efficiently generates high-performance circuit

topologies with minimal labeled data, targeting specific circuit

types and desired performance.

A. Expressive and efficient sequential graph representation

Existing approaches to schematic-level analog circuit topol-

ogy discovery generally formulate the problem as a graph

generation task, where each circuit topology is represented as

a device-level graph with nodes corresponding to individual

devices (e.g., NMOS transistors) [1]. EVA, in contrast, adopts

a device pin-level graph representation as shown in Figure 1

where each node corresponds to an individual device pin (e.g.,

NM1 G, NM1 D, NM1 S, and NM1 B) [17]. Since analog

circuit topologies are typically sparse—most devices connect

only to their immediate neighbors—traditional adjacency ma-

trices are inefficient, as they waste space representing non-

existent edges [1], [13]. To address this, EVA sequentializes

the graph as an Eulerian circuit [17], a path that traverses each

directed edge exactly once before returning to the starting node

(e.g., VSS). Unlike prior approaches that limit graph structures

to directed acyclic graphs (DAGs) [1]—which cannot uni-

versally represent all analog topologies—the Eulerian circuit
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Fig. 2: Overview of EVA framework.

approach is more versatile, capable of representing any analog

circuit that can be modeled as a finite connected undirected

graph.

B. Pretraining model to generate diverse circuits

EVA employs a customized domain-specific tokenizer to

encode and decode sequences for pretraining a decoder-only

transformer to discover a wide range of analog circuit topolo-

gies. Each token in EVA’s tokenizer corresponds either to a

device pin (e.g., NM1 G, NM1 D, NM1 S, NM1 B) or to a

circuit-level pin for the overall analog topology (e.g., VIN1,

VOUT1, VDD, VSS). To ensure the model can generalize

across circuit topologies with varying numbers and types

of devices, EVA uses a data-driven approach to scan the

entire dataset and determine device limits. A special token,

“Truncate,” is introduced to handle padding when sequences

of varying lengths are processed.

With this domain-specific tokenizer, EVA pre-trains a

decoder-only transformer to predict the next device pin within

a circuit topology. Unlike typical language model pretraining,

which crops sequences randomly from text, EVA ensures

that each sequence corresponds to a single complete circuit

topology. Given an corpus of tokens U = {u1, . . . , un}
representing one circuit topology, EVA maximizes the standard

language modeling objective [18] to train the model.

Lpretrained(U) =
∑

i

logP (ui | ui−k, . . . , ui−1; Θ) (1)

TABLE I: Rank score definitions for PPO finetuning

Reward Definition

1.0 High performance relevant valid circuit

0.5 Low performance relevant valid circuit

-0.5 Irrelevant valid circuit

-1.0 Invalid circuit

Here, k represents the size of the context window, and the

conditional probability P is modeled by a neural network

with parameters Θ. During the generation phase, the model is

initially provided with just one context token, “VSS,” which

serves as the starting node for all Eulerian circuits. From this

single token, the model generates the rest of the sequence,

completing it to represent an entire circuit topology.

C. Finetuning model to target high performance circuit

The pre-trained model in EVA has developed foundational

knowledge of circuit connections across various circuit types,

enabling it to achieve baseline discovery efficiency by gener-

ating valid circuits. To further enhance its ability to efficiently

generate high-performance circuits within limited attempts,

EVA fine-tunes this model to align with human preferences

for both type and performance. Building on the foundation

provided by pretraining, EVA can leverage a small set of

performance-labeled topologies to guide generation towards

high-performance designs. EVA introduces two fine-tuning

strategies that balance training stability and overfitting.

1) Proximal policy optimization: EVA adopts PPO [15]

as one of its reinforcement learning with human feedback

(RLHF) strategies. PPO uses limited labeled samples to train

a reward model as a labeler, enabling the pre-trained model

to generate new samples, which are then labeled by the

reward model for fine-tuning based on human preferences.

Specifically, EVA utilizes a Plackett-Luce ranking model [19]

for sequence reward, ranking multiple classes as shown in

Table I. The reward model combines a rule-based checker with

a multiclass classifier: it first checks if a generated circuit is

valid (i.e., simulatable with default sizing) and then classifies

circuit type and performance. To train this multiclass classifier,

a limited set of circuit topologies is initially labeled for type

and performance. For instance, if EVA aims to discover high-

performance Op-Amps, only Op-Amps are relevant, while

other types are irrelevant. The figure of merit (FoM) deter-

mines whether relevant circuits are high-performance, with

Otsu’s method [20] setting the FoM threshold. Once labeled,

EVA adds a three-output linear layer on top of the final

transformer layer, outputting a reward value after softmax.

With the trained reward model, PPO performs optimization

as shown in Algorithm 1. The major components of PPO are

defined as follows:

Agent: The agent is the policy model Ãθ, which is the pre-

trained model fine-tuned to align with human preferences.

EVA adds a value head to it, which consists of a simple linear

layer that takes hidden states as input and outputs a single

scalar per token. The value function provides an estimate of

the expected cumulative reward from any given state.



Algorithm 1 PPO RLHF Finetuning

Require: Policy model Ãθ, Reference model Ãθref , Reward

model Rφ, Epochs Nepochs, PPO epochs Nppo, Batch size

D, Minibatch size B, Value loss coefficient vc

1: for epoch = 1 to Nepochs do

2: Let Ãθ generate a batch of sequences with size D and

corresponding values and store them as x, y, V

3: Compute PPO rewards r from Eq. (2)

4: for ppo epoch = 1 to Nppo do

5: Randomly sample minibatch (xb, yb, Vb, rb)
6: Repredict Vbnew

for minibatch using Ãθ

7: Calculate Lpolicy, Lvalue from Eq. (3) and Eq. (4)

8: Calculate LPPO = −Lpolicy + vc · Lvalue

9: Backpropagate and update Ãθ

10: end for

11: end for

Environment: The environment is the reward model Rφ.

This environment assigns rewards based on whether generated

sequences meet criteria defined in Table I.

Action: The action is discrete by selecting a token yt (i.e.,

device-pin) from a pre-defined tokenizer’s look-up table based

on the current context xt (i.e., generated sequence).

State: The state is the current context xt.

Reward: Starting from the initial state x0 (i.e., “VSS”), the

RL agent takes a discrete action by predicting the next token

yt given the current state xt in each time step t, and the

environment returns a reward rt at that step. EVA defines the

PPO reward function as follows:

rt = Rφ(x, y)− ³ log

(

Ãθ(yt | xt)

Ãθref (yt | xt)

)

(2)

Here, Rφ (x, y), is the reward model’s score that measures

how well the entire sequence aligns with preference defined in

Table I. The second term is a penalty that discourages Ãθ from

deviating too much from Ãθref , with ³ controlling the strength

of this penalty. The reference model Ãθref is a fixed version

of the pre-trained language model that the policy model was

initially based on.

In PPO, the entire sequence or circuit topology acts as a

trajectory, with the objective of optimizing the policy model

Ãθ to generate sequences that maximize the expected accumu-

lated reward via the advantage A and the policy loss Lpolicy.

Concurrently, PPO refines value prediction Vbnew
using the

value loss Lvalue. As shown in Algorithm 1, each epoch begins

with PPO generating rollouts (sequences) using the policy

model, and the reward model Rφ assigns rewards r, where

each r corresponds to a rollout. PPO then performs minibatch

optimization. The policy loss Lpolicy is designed to maximize

the expected advantage of the actions taken by the agent while

preventing large, destabilizing updates to the policy.

Lpolicy = Et [min (L ·At, clip(L, 1− ÷, 1 + ÷) ·At)]

where L =
Ãθ (ybt | xbt)

Ãθold
(ybt | xbt)

(3)

Here, advantages At = ·t + ³» · At+1 where ·t = rbt +
³Vb

(

xbt+1

)

− Vb (xbt) measure how much better (or worse)

an action at time t is compared to the expected outcome

calculated from value function Vb(xbt+1
). L represents the

probability ratio between the current and previous policies

during minibatch optimization. With the clip objective, the

policy loss in PPO strikes a balance between exploiting the

current advantage—encouraging the model to increase the

probability of actions that yield higher expected rewards—and

maintaining stable, incremental updates to the policy. In PPO,

the value loss Lvalue is calculated to enhance the accuracy of

the model’s value function.

Lvalue =
1

2
· (Vbnew

(xbt)−Gt)
2

(4)

The value loss Lvalue is the squared difference between the

newly predicted value Vbnew
(xbt) and the target return Gt. The

Gt = At + Vb (xbt) represents the total expected reward for

the trajectory from t onward, including the estimated value

of future states. By incorporating both immediate and future

rewards, Gt is a robust target for updating the value function.

2) Directed preference optimization: PPO is effective in

preventing overfitting by continually generating new training

data [21]. However, its complexity and stability issues arise

from its sensitivity to hyperparameters and dependence on a

reward model. To address these challenges in a simpler and

more stable way, EVA introduces a finetuning strategy based

on DPO [16]. Unlike PPO, which requires a separate reward

model to label newly generated data, DPO finetunes the pre-

trained model using a static dataset with expert-labeled data.

This approach enhances stability, as the training labels are

accurate and unaffected by the reward model’s classification

reliability. Moreover, DPO’s objective function is simplified

compared to PPO, with only a single hyperparameter, ³, which

controls the extent of Ãθ deviation from the reference model.

LDPO (Ãθ;Ãref) = −E(x,yw,yl)∼D
[

log Ã

(

³ log
Ãθ (yw | x)

Ãref (yw | x)
− ³ log

Ãθ (yl | x)

Ãref (yl | x)

)]

(5)

DPO utilizes the Bradley-Terry model [22] as its prefer-

ence framework, focusing on pairwise comparisons (win or

lose) rather than the multi-rank model employed in PPO.

Specifically, optimizing LDPO guides the pre-trained model

to identify analog circuit topologies that maximize the ex-

pression log πθ(yw|x)
πref (yw|x) − log πθ(yl|x)

πref (yl|x)
, thus encouraging it to

generate ”winning” topologies while discouraging ”losing”

ones. Given the complexity of human preferences for analog

circuit topologies, EVA still relies on human experts to label

circuit topologies according to a multi-rank model, as defined

in Table I. For any four data points where each belongs to

a unique class, EVA transforms these into six unique win-

lose pairs for DPO training (e.g., High performance relevant

valid circuit > Low performance relevant valid circuit, High

performance relevant valid circuit > Irrelevant valid circuit,

etc.).



IV. EXPERIMENTS

A. Experiments Setup

Datasets: The EVA circuit dataset comprises 3470 unique

and real-world topologies across 11 circuit types: Op-Amps,

LDOs, Bandgap references, Comparators, PLLs, LNAs, PAs,

Mixers, VCOs, Power converters, and Switched Capacitor

Samplers from public resources [23]–[28]. Each circuit’s

performance was assessed through circuit simulation, and a

corresponding label was assigned based on its performance

metrics and label definition defined in Table I.

EVA training setup: EVA splits the topology dataset into

training and validation sets with a 9:1 ratio, ensuring the

validation topologies remain unseen during training. EVA uses

a depth-first search (DFS) to identify the Eulerian circuit

for each topology. To prevent overfitting, it permutes DFS

traversal order, creating multiple unique Eulerian circuits per

topology, expanding the original 3470 topologies to 234393

sequences. EVA’s generation model is a decoder-only trans-

former with 6 layers, 6 attention heads, and 11.825 million

parameters, with a vocabulary size of 1029 and maximum

sequence length of 1024. The reward model architecture is

detailed in Section III-C1.

Baseline: To compare with EVA, we select AnalogCoder [11],

Artisan [12], and LaMAGIC [13] as the representative ML

baselines for analog circuit topology synthesis and select

CktGNN [1] as the representative ML baselines for novel

analog circuit topology discovery at the schematic level. The

differences between these methods and EVA are discussed in

Section II. We follow original work to produce their results.

Evaluation tasks and metrics: We evaluate generative quality

across the following metrics: (1) Validity: An unsized circuit

is valid if it can be simulated in SPICE without errors (e.g.,

floating or shorting nodes). Each method generates 1000

topologies, and we report the percentages that are valid. (2)

Novelty: Each method generates 1000 topologies, and we

measure the percentage of them that are different from the

topologies in the dataset. To quantify the topology difference,

We converted them into graphs and computed the maximum

mean discrepancy (MMD) [29] between these and real-world

graphs converted from our circuit dataset. (3) Versatility: The

number of distinct analog circuit types generated indicates

versatility. (4) Training sample efficiency: Efficiency is eval-

uated by comparing the number of labeled topologies (i.e.,

with known performance) required for training. (5) Discovery

efficiency: Given the time cost of performance evaluation,

each method only generates 10 topologies, and we report the

maximum FoM (e.g., gain, bandwidth, power for Op-Amps)

after sizing with a genetic algorithm and SPICE evaluation.

B. Necessity of pretraining and finetuning

We first perform an ablation study to evaluate the necessity

of both pretraining and fine-tuning. As shown in Figure 3,

PPO results reveal that the pretrain-only model establishes a

solid foundation in generating irrelevant valid circuits (score

= −0.5) and low-performance relevant valid circuits (score

Fig. 3: PPO score and DPO validation reward accuracy

comparison between Pretrain + Finetune, Pretrain only, and

Finetune only while targeting Op-Amp design as an example.

Fig. 4: EVA’s PPO loss and DPO loss after pretraining while

targeting Op-Amp design as an example.

= 0.5). However, it lacks the ability to specifically target

high-performance relevant valid circuits (score = 1), necessi-

tating further fine-tuning. Similar observations are evident in

DPO results, where the pretrain-only model shows no strong

preference for winning topologies, as indicated by 0 reward

accuracy. This suggests the model predominantly generates

losing topologies during generation, i.e., log πθ(yw|x)
πref (yw|x) <

log πθ(yl|x)
πref (yl|x)

. In contrast, the finetune-only model lacks the

foundational understanding of circuit connectivity, making it

challenging to effectively train on a limited number of labeled

samples to generate valid topologies. For PPO, EVA’s vast

design space (10291024), dominated by invalid topologies,

leads to an extremely sparse reward signal (i.e., most rewards

are suboptimal). As a result, guiding the finetune-only model

to discover high-performance relevant valid circuits from

scratch becomes infeasible using a simple reward model. On

the other hand, DPO results indicate that even an untrained

model can achieve reward accuracy exceeding 50%, highlight-

ing a limitation in this metric. Specifically, the metric only

measures the preference for generating winning topologies,

log πθ(yw|x)
πref (yw|x) > log πθ(yl|x)

πref (yl|x)
, without assessing the actual

generation quality of winning topologies Ãθ (yw | x) or losing

topologies Ãθ (yl | x). This limitation is further validated in

Table II, where EVA (DPO only) fails to generate any valid

topologies. In conclusion, EVA can effectively target high-

performance relevant valid circuits only through a combination

of pretraining and finetuning.



TABLE II: Performance comparison between EVA and existing analog circuit topology generation work.

Evaluation metric Validity (%) ↑
Novelty

Versatility ↑
# of labeled topology ↓ FoM@10 [12], [13] ↑

Diff circuit (%) ↑ MMD ↓ Op-Amp Power converter Op-Amp Power converter

AnalogCoder [11] 66.1 0 0 7 11 N/A 232.1 N/A
Artisan [12] 82 0 0 1 14000 N/A 12769.5 N/A
CktGNN [1] 68.5 93 0.313 1 10000 N/A 311.3 N/A
LaMAGIC [13] 75 3 0.001 1 N/A 132000 N/A 2.2

EVA (Pretrain) 84 99 0.0518 11 0 0 274.1 2.5

EVA (PPO only) 0 N/A N/A 11a 850 362 N/A N/A

EVA (DPO only) 0 N/A N/A 11a 850 362 N/A N/A

EVA (Pretrain+PPO) 94 99 0.0509 11a 850 362 13647.2 3.3

EVA (Pretrain+DPO) 83 99 0.0491 11a 850 362 13763.8 3.4

a Targeting another circuit type requires redo fine-tuning, which takes less than an hour on an A100 GPU.

C. Comparison between PPO and DPO for EVA finetuning

We compare PPO and DPO for EVA fine-tuning in terms

of training stability and generation quality. PPO, an online RL

method, dynamically generates new topologies and samples

rewards from the environment, but its training instability stems

from the stochastic reward signal rbt , leading to noisy advan-

tage estimates At and oscillations in Lpolicy. In contrast, DPO,

an offline RL method, optimizes the relative log-likelihood

between winning and losing topologies using static preference

data, avoiding noisy rewards. For generation, PPO demon-

strates superior validity by optimizing for both preference and

reward-based quality through continuous exploration of new

topologies. This enables it to overcome degeneration issues

and produce valid, diverse outputs that outperform the pre-

trained model. DPO, however, shifts the model’s preference

to high-performance topologies in the dataset without learning

from new data, leading to degeneration in validity. This de-

generation is characterized by a reduction in both winning and

losing topology generation likelihoods in Figure 4, with the

latter declining faster. At low learning rates, this degeneration

is manageable, and our results focus on these settings, as

shown in the Figure 4 and Table II. Higher learning rates,

while not depicted, can cause the model to collapse, generating

repetitive tokens. Despite these limitations, DPO excels in

targeted discovery, producing higher-FoM topologies within

10 attempts and achieving lower MMD values, which indicate

a closer resemblance to real-world circuits.

D. Comparison between EVA and prior arts

Finally, we compare EVA with prior methods:

Validity: EVA demonstrates higher validity than previous

methods. Top-down approaches like CktGNN and LaMAGIC

rely on predefined representations, which limit their general-

ization to other circuit types and restrict the range of topologies

they can be trained on. In contrast, EVA’s universal circuit

representation and bottom-up generation framework enable

pretraining on diverse analog circuits with more training data.

Novelty: EVA excels in discovering novel circuits compared

to AnalogCoder and Artisan, which primarily reuse existing

topologies or subblocks. LaMAGIC is confined to a small

design space (fewer than 4 devices), limiting its ability to dis-

cover new topologies. While CktGNN and EVA both support

larger circuits (around 20 and 60 devices, respectively), Ckt-

GNN is trained on synthetic datasets, which lack critical real-

world features. EVA, trained on real-world circuits, improves

MMD by over 6× and generates around 99% novel circuits.

Versatility: EVA outperforms Artisan, CktGNN, and LaM-

AGIC, which can only design one type of circuit. While

AnalogCoder supports seven circuit types, it is limited to

a synthesis library of just 20 topologies. EVA, trained on

a dataset with 11 circuit types and over 3000 topologies

(minimum 30 per type), demonstrates unparalleled versatility.

Sample efficiency: Unlike prior work that typically uses

performance-labeled topology to train a model from scratch,

EVA first pretrains on an unlabeled dataset to build a strong

foundation in circuit connectivity. This enables efficient fine-

tuning with only a small labeled dataset, achieving up to 364×
greater training sample efficiency compared to other methods.

Discovery efficiency: CktGNN and EVA (Pretrain) lack tar-

geted discovery, often producing low-performance circuits

within 10 attempts. AnalogCoder’s synthesis library only con-

tains simple circuits, which also limits the FoM of the circuit it

synthesized. After finetuning, EVA is able to align with human

preference and target high-performance circuits within limited

attempts. Combining the foundation knowledge it learned from

all sorts of analog circuit types during pretraining, EVA is able

to discover unseen topologies with superior FoM compared to

dedicated synthesizers like Artisan and LaMAGIC, excelling

in both Op-Amp and power converter.

V. CONCLUSION

In this work, we propose EVA, a versatile and efficient

generative engine for discovering novel analog circuit topolo-

gies. EVA employs a bottom-up generation framework using

a decoder-only transformer to sequentially predict device pin

connections, starting from a VSS pin. By pretraining on

an unlabeled dataset of circuit topologies, EVA establishes

a strong foundation for topology generation, enabling fine-

tuning with minimal performance-labeled data. Through fine-

tuning strategies based on PPO or DPO, EVA achieves high

discovery efficiency, targeting high-performance circuits while

minimizing wasteful evaluations. EVA paves the way for AI-

driven discovery in analog circuit, unlocking unprecedented

potential for innovation in next-generation technologies.
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