
Diffusion Forcing: Next-token Prediction Meets

Full-Sequence Diffusion

Boyuan Chen
MIT CSAIL

boyuanc@mit.edu

Diego Martı́ Monsó∗

Technical University of Munich
diego.marti@tum.de

Yilun Du
MIT CSAIL

yilundu@mit.edu

Max Simchowitz
MIT CSAIL

msimchow@mit.edu

Russ Tedrake
MIT CSAIL

russt@mit.edu

Vincent Sitzmann
MIT CSAIL

sitzmann@mit.edu

Abstract

This paper presents Diffusion Forcing, a new training paradigm where a diffusion
model is trained to denoise a set of tokens with independent per-token noise
levels. We apply Diffusion Forcing to sequence generative modeling by training
a causal next-token prediction model to generate one or several future tokens
without fully diffusing past ones. Our approach is shown to combine the strengths
of next-token prediction models, such as variable-length generation, with the
strengths of full-sequence diffusion models, such as the ability to guide sampling
to desirable trajectories. Our method offers a range of additional capabilities, such
as (1) rolling-out sequences of continuous tokens, such as video, with lengths past
the training horizon, where baselines diverge and (2) new sampling and guiding
schemes that uniquely profit from Diffusion Forcing’s variable-horizon and causal
architecture, and which lead to marked performance gains in decision-making
and planning tasks. In addition to its empirical success, our method is proven to
optimize a variational lower bound on the likelihoods of all subsequences of tokens
drawn from the true joint distribution. Project website: https://boyuan.space/
diffusion-forcing/

1 Introduction

Probabilistic sequence modeling plays a crucial role in diverse machine learning applications including
natural language processing [6, 47], video prediction [31, 69] and decision making [3, 22]. Next-token
prediction models in particular have a number of desirable properties. They enable the generation of
sequences with varying length [32, 21, 37] (generating only a single token or an “infinite” number
of tokens via auto-regressive sampling), can be conditioned on varying amounts of history [21, 37],
support efficient tree search[70, 23, 25], and can be used for online feedback control [22, 3].

Current next-token prediction models are trained via teacher forcing [64], where the model predicts
the immediate next token based on a ground truth history of previous tokens. This results in two
limitations: (1) there is no mechanism by which one can guide the sampling of a sequence to
minimize a certain objective, and (2) current next-token models easily become unstable on continuous
data. For example, when attempting to auto-regressively generate a video (as opposed to text [6] or
vector-quantized latents [33]) past the training horizon, slight errors in frame-to-frame predictions
accumulate and the model diverges.

∗Work done as a visiting student at MIT.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

exposition, we reparametrize the mean µ in terms of noise prediction ϵ = (
√
1− ᾱt)

−1x
kt

t −
√
ᾱtµ.

This leads [28] to the following least squares objective:

L(θ) = Ek x0 ;

[

∥ϵk − ϵθ(x
k, k)∥2

]

, (2.3)

where xk =
√
ᾱtx

0 +
√
1− ᾱtϵ

k and ϵk ∼ N (0, I) . One can then sample from this model via

Langevin dynamics xk−1 ← 1√
αk

(xk
t − 1−αk√

1−ᾱk
ϵθ(x

k
t , k) + σkw) [28].

Guidance of Diffusion Models. Guidance [30, 16] allows biasing diffusion generation towards
desirable predictions at sampling time. We focus on classifier guidance [16]: given a classifier
c(y|xk) of some desired y (e.g. class or success indicator), one modifies the Langevin sampling

[29] gradient ϵθ(x
k, k) to be ϵθ(x

k, k)−√1− ᾱk∇xk log c(y|xk). This allows sampling from the
joint distribution of x and class label y without the need to train a conditional model. Other energies
such as a least-squares objective comparing the model output to a desirable ground truth have been
explored in applications such as decision making [16, 36].

Next-Token Prediction Models. Next-token prediction models are sequence models that predict the
next frame xt+1 given past frames x1:t. At training time, one feeds a neural network with x1:t and
minimizes ||x− x||2 for continuous data or a cross-entropy loss for discrete data [64]. At sampling
time, one samples the next frame xt+1 following p(xt+1|x1:t). If one treats xt+1 as xt+1, one can
use the same model to predict xt+2 and repeat until a full sequence is sampled. Unlike full-sequence
diffusion models, next-token models do not accept multi-step guidance, as prior frames must be fully
determined to sample future frames.

Diffusion Sequence Models. Diffusion has been widely used in sequence modeling. [43] use full-
sequence diffusion models to achieve controllable text generation via guidance, such as generating
text following specified parts of speech. [31] trains full-sequence diffusion models to synthesize short
videos and uses a sliding window to roll out longer conditioned on previously generated frames. [36]
uses full-sequence diffusion models as planners in offline reinforcement learning. This is achieved by
training on a dataset of interaction trajectories with the environment and using classifier guidance
at sampling time to sample trajectories with high rewards towards a chosen goal. [49] modifies
auto-regressive models to denoise the next token conditioned on previous tokens. It trains with
teacher forcing [64] and samples next-token auto-regressively for time series data. Most similar to
our work is AR-Diffusion [65], which trains full-sequence text diffusion with a causal architecture
with linearly dependent noise level along the time axis. We provide a detailed comparision between
this approach and ours in Appendix D.

3 Method

3.1 Noising as partial masking

Recall that masking is the practice of occluding a subset of data, such as patches of an image [26] or
timesteps in a sequence [15, 48], and training a model to recover unmasked portions. Without loss of
generality, we can view any collection of tokens, sequential or not, as an ordered set indexed by t.
Training next-token prediction with teacher forcing can then be interpreted as masking each token
xt at time t and making predictions from the past x1:t−1. Restricted to sequences, we refer to all
these practices as masking along the time axis. We can also view full-sequence forward diffusion, i.e.,
gradually adding noise to the data x0

1:T ≡ x1:T , as a form of partial masking, which we refer to as

masking along the noise axis. Indeed, after K steps of noising, xK
1:T is (approximately) pure white

noise without information about the original data.

We establish a unified view along both axes of masking (see Fig. 2). We denote x1:T for a sequence of

tokens, where the subscript indicates the time axis. As above, xkt

t denotes xt at noise level kt under
the forward diffusion process (2.1); x0

t = x is the unnoised token, and xK
t is white noise N (0, I).

Thus, (xkt

t)1≤t≤T denotes a sequence of noisy observations where each token has a different noise
level kt, which can be seen as the degree of partial masking applied to each token through noising.

3.2 Diffusion Forcing: different noise levels for different tokens

Diffusion Forcing (DF) is a framework for training and sampling arbitrary sequence lengths of noisy

tokens (xkt

t)1≤t≤T , where critically, the noise level kt of each token can vary by time step. In this

4

Algorithm 1 Diffusion Forcing Training

1: loop
2: Sample tajectory of observations (x1, ...,xT).
3: for t = 1, ..., T do
4: Sample independent noise level kt ∈

{0, 1, ...,K}
5: x

kt
t = ForwardDiffuse(xt, kt)

6: Define ϵt =
x

kt
t −
√

ᾱkt
xt√

1−ᾱkt

7: Update zt ∼ pθ(zt|zt−1,x
kt
t , kt).

8: Set ϵ̂t = ϵθ(zt−1,x
kt
t , kt)

9: end for
10: L =MSELoss([ϵ̂1, ..., ϵ̂n] , [ϵ1, ..., ϵn])
11: Backprop with L and update θ
12: end loop

Algorithm 2 DF Sampling with Guidance

1: Input: Model θ, scheduling matrix K, initial latent
z0, guidance cost c(·).

2: Initialize x1, . . . ,xT ∼ N (0, σ2
KI).

3: for row m = M − 1, ..., 0 do
4: for t = 1, . . . , T do
5: z

new
t ∼ pθ(zt | zt−1,xt,Km+1,t).

6: k ← Km,t, w ∼ N (0, I).

7: x
new
t ← 1

√
αk

(xt− 1−αk√
1−ᾱk

ϵθ(z
new
t ,xt, k))+

σkw

8: Update zt ← z
new
t .

9: end for
10: x1:H ←AddGuidance(xnew

1:H ,∇x log c(xnew
1:H))

11: end for
12: Return x1:T .

paper, we focus on time series data, and thus instantiate Diffusion Forcing with causal architectures

(where x
kt

t depends only on past noisy tokens), which we call Causal Diffusion Forcing (CDF). For
simplicity, we focus on a minimal implementation with a vanilla Recurrent Neural Network (RNN)
[11]. Potential transformer implementation of Diffusion Forcing is also possible but we defer its
discussion to Appendix C.1.

The RNN with weights θ maintains latents zt capturing the influence of past tokens, and these evolve

via dynamics zt ∼ pθ(zt|zt−1,x
kt

t , kt) with a recurrent layer. When an incoming noisy observation

x
kt

t is made, the hidden state is updated in a Markovian fashion zt ∼ pθ(zt|zt−1,x
kt

t , kt)
2. When

kt = 0, this is the posterior update in Bayes filtering; whereas when kt = K (and xK
t is pure noise

and thus uninformative), this is equivalent to modeling the “prior distribution” pθ(zt | zt−1) in Bayes
filtering. Given latent zt, an observation model pθ(x

0
t |zt) predicts xt.

Training. The dynamics model pθ(zt|zt−1,x
kt

t , kt) and the observation model pθ(x
0
t |zt) together

form a RNN unit. Such unit has the same input-output behavior as a standard conditional diffusion

model, using a conditioning variable zt−1 and a noisy token x
kt

t as input to predict the noise-free

xt = x0
t and thus, indirectly, the noise ϵkt via affine reparametrization [29]. We can thus directly

train (Causal) Diffusion Forcing with the conventional diffusion training objective. We parameterize

the aforementioned unit in terms of noise prediction ϵθ(zt−1,x
kt

t , kt). We then find parameters θ by
minimizing the loss

E
kt xt ϵt

zt∼pθ(zt|zt−1 x
kt
t �t)

T
∑

t=1

[

∥ϵt − ϵθ(zt−1,x
kt

t , kt)∥2
]

, (3.1)

where we sample k1:T uniformly from [K]T , x1:T from our training data, and ϵt ∼ N (0, σ2
kt
I) in

accordance with the forward diffusion process (see Algorithm 1 for pseudocode). Importantly, the
loss (3.1) captures essential elements of Bayesian filtering and conditional diffusion. In Appendix B.1,
we further re-derive common techniques in diffusion model training for Diffusion Forcing, which
proves extremely useful for video prediction experiments. In Appendix C.2, we discuss the need
of sampling k1:T uniformly. Finally, we prove the validity of this objective stated informally in the
following Theorem 3.1 in Appendix A.

Theorem 3.1 (Informal). The Diffusion Forcing training procedure (Algorithm 1) optimizes a

reweighting of an Evidence Lower Bound (ELBO) on the expected log-likelihoods ln pθ((x
kt

t)1≤t≤T),

where the expectation is averaged over noise levels k1:T ∼ [K]T and x
kt

t noised according to the
forward process. Moreover, under appropriate conditions, optimizing (3.1) also maximizes a lower
bound on the likelihood for all sequences of noise levels, simultaneously.

2We implement zt = pθ(zt|zt−1,x
kt
t , kt) to be deterministic, with zt representing a distribution over beliefs

rather than a sample from it. This allows training by backpropogating through the latent dynamics in Eq.(3.1).

5

Robustness to missing or noisy observations. Because it incorporates principles from Bayes
filtering, Diffusion Forcing can perform imitation learning while being robust to noisy or missing
observations. We demonstrate this by adding visual distractions and even fully occluding the camera
during execution. DF allows us to easily indicate these observations as “noisy” by using k > 0, in
which case DF relies heavily on its prior model to predict actions. Consequently, the success rate is
only lowered by 4% to 76%. In contrast, a next-frame diffusion model baseline attains a success rate
of 48%: it must treat perturbed observations as ground truth and suffers out-of-distribution error.

Potential for pre-training with video. Finally, in parallel to generating actions, Fig. 4 illustrates
that Diffusion Forcing is capable of generating a video of the robot performing the task given only an
initial frame, unifying diffusion policy/imitation learning and video generative modeling and paving
the way to pre-training on unlabeled video.

4.5 Time Series Forecasting: Diffusion Forcing is a Good General-purpose Sequence Model

In Appendix E, we show that DF is competitive with prior diffusion [49] and transformer-based [50]
work on multivariate time series forecasting, following the experimental setup of [53].

5 Discussion

Limitations. Our current causal implementation is based on an RNN. Applications to higher-
resolution video or more complex distributions likely require large transformer models following
instructions in Appendix C.1. We do not investigate the scaling behavior of Diffusion Forcing to
internet-scale datasets and tasks.

Conclusion. In this paper, we introduced Diffusion Forcing, a new training paradigm where a model
is trained to denoise sets of tokens with independent, per-token noise levels. Applied to time series
data, we show how a next-token prediction model trained with Diffusion Forcing combines the
benefits of both next-token models and full-sequence diffusion models. We introduced new sampling
and guidance schemes that lead to dramatic performance gains when applied to tasks in sequential
decision making. Future work may investigate the application of Diffusion Forcing to domains other
than time series generative modeling, and scale up Diffusion Forcing to larger datasets.

10

References

[1] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[2] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski,
D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang.
Gluonts: Probabilistic and neural time series modeling in python. Journal of Machine Learning
Research, 21(116):1–6, 2020.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019.

[4] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. English,
V. Voleti, A. Letts, V. Jampani, and R. Rombach. Stable video diffusion: Scaling latent video
diffusion models to large datasets, 2023.

[5] A. Block, A. Jadbabaie, D. Pfrommer, M. Simchowitz, and R. Tedrake. Provable guarantees
for generative behavior cloning: Bridging low-level stability and high-level behavior. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners. CoRR, abs/2005.14165, 2020.

[7] S. H. Chan. Tutorial on diffusion models for imaging and vision. arXiv preprint
arXiv:2403.18103, 2024.

[8] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative pretraining
from pixels. In International conference on machine learning, pages 1691–1703. PMLR, 2020.

[9] T. Chen. On the importance of noise scheduling for diffusion models, 2023.

[10] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion, 2024.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.

[12] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent
variable model for sequential data. Advances in neural information processing systems, 28,
2015.

[13] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smooth-
ing. In international conference on machine learning, pages 1310–1320. PMLR, 2019.

[14] E. de Bézenac, S. S. Rangapuram, K. Benidis, M. Bohlke-Schneider, R. Kurle, L. Stella,
H. Hasson, P. Gallinari, and T. Januschowski. Normalizing kalman filters for multivariate time
series analysis. In Advances in Neural Information Processing Systems, volume 33, 2020.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[16] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. CoRR,
abs/2105.05233, 2021.

[17] C. Feichtenhofer, Y. Li, K. He, et al. Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946–35958, 2022.

11

[18] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for deep data-driven
reinforcement learning. CoRR, abs/2004.07219, 2020.

[19] S. Gao, P. Zhou, M.-M. Cheng, and S. Yan. Masked diffusion transformer is a strong image
synthesizer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 23164–23173, 2023.

[20] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a
survey. Automatica, 25(3):335–348, 1989.

[21] F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with lstm.
In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ.
No. 470), volume 2, pages 850–855 vol.2, 1999.

[22] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. CoRR, abs/1912.01603, 2019.

[23] D. Hafner, T. P. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. CoRR, abs/1811.04551, 2018.

[24] T. Hang, S. Gu, C. Li, J. Bao, D. Chen, H. Hu, X. Geng, and B. Guo. Efficient diffusion training
via min-snr weighting strategy, 2024.

[25] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive control,
2022.

[26] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[28] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

[29] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. CoRR, abs/2006.11239,
2020.

[30] J. Ho and T. Salimans. Classifier-free diffusion guidance, 2022.

[31] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models,
2022.

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
nov 1997.

[33] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado.
Gaia-1: A generative world model for autonomous driving. arXiv preprint arXiv:2309.17080,
2023.

[34] S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu, W. Liang, and S.-C. Zhu. Diffusion-based gen-
eration, optimization, and planning in 3d scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16750–16761, 2023.

[35] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder. Forecasting with Exponential
Smoothing: The State Space Approach. Springer Science & Business Media, 2008.

[36] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. Proceedings of the International Conference on Machine Learning (ICML), 2022.

[37] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. CoRR, abs/2006.16236, 2020.

12

[38] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks:
Combating covariate shift in model-free imitation learning for fine manipulation. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6185–6191. IEEE, 2021.

[39] D. Kingma and R. Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

[40] R. G. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state
space models. In AAAI, 2017.

[41] G. Lai, W. Chang, Y. Yang, and H. Liu. Modeling long- and short-term temporal patterns with
deep neural networks. CoRR, abs/1703.07015, 2017.

[42] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on robot learning, pages 143–156. PMLR, 2017.

[43] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto. Diffusion-lm improves
controllable text generation, 2022.

[44] H. Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer Science & Business
Media, 2005.

[45] J. E. Matheson and R. L. Winkler. Scoring rules for continuous probability distributions.
Management Science, 22(10):1087–1096, 1976.

[46] A. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. CoRR,
abs/2102.09672, 2021.

[47] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, S. Biderman, H. Cao, X. Cheng,
M. Chung, L. Derczynski, X. Du, M. Grella, K. Gv, X. He, H. Hou, P. Kazienko, J. Kocon,
J. Kong, B. Koptyra, H. Lau, J. Lin, K. S. I. Mantri, F. Mom, A. Saito, G. Song, X. Tang,
J. Wind, S. Woźniak, Z. Zhang, Q. Zhou, J. Zhu, and R.-J. Zhu. RWKV: Reinventing RNNs for
the transformer era. In H. Bouamor, J. Pino, and K. Bali, editors, Findings of the Association
for Computational Linguistics: EMNLP 2023, pages 14048–14077, Singapore, Dec. 2023.
Association for Computational Linguistics.

[48] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

[49] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf. Autoregressive Denoising Diffusion Models
for Multivariate Probabilistic Time Series Forecasting. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
2021.

[50] K. Rasul, A.-S. Sheikh, I. Schuster, U. M. Bergmann, and R. Vollgraf. Multivariate probabilistic
time series forecasting via conditioned normalizing flows. In International Conference on
Learning Representations, 2021.

[51] D. Ruhe, J. Heek, T. Salimans, and E. Hoogeboom. Rolling diffusion models. arXiv preprint
arXiv:2402.09470, 2024.

[52] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. CoRR,
abs/2202.00512, 2022.

[53] D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, J. Gasthaus, and R. Medico. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. In NeurIPS,
2019.

[54] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191,
2020.

13

[55] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191,
2020.

[56] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proceedings of the International Conference on
Machine Learning (ICML), 2015.

[57] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. CoRR, abs/2010.02502,
2020.

[58] B. Tang and D. S. Matteson. Probabilistic transformer for time series analysis. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

[59] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, A. Joulin, G. Synnaeve,
J. Verbeek, and H. Jégou. Resmlp: Feedforward networks for image classification with data-
efficient training. CoRR, abs/2105.03404, 2021.

[60] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional image
generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

[61] R. van der Weide. Go-garch: A multivariate generalized orthogonal garch model. Journal of
Applied Econometrics, 17(5):549–564, 2002.

[62] C. Wei, K. Mangalam, P.-Y. Huang, Y. Li, H. Fan, H. Xu, H. Wang, C. Xie, A. Yuille, and
C. Feichtenhofer. Diffusion models as masked autoencoders. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 16284–16294, 2023.

[63] G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using
covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

[64] R. J. Williams and D. Zipser. A Learning Algorithm for Continually Running Fully Recurrent
Neural Networks. Neural Computation, 1(2):270–280, 06 1989.

[65] T. Wu, Z. Fan, X. Liu, Y. Gong, Y. Shen, J. Jiao, H.-T. Zheng, J. Li, Z. Wei, J. Guo, N. Duan,
and W. Chen. Ar-diffusion: Auto-regressive diffusion model for text generation, 2023.

[66] T. Wu, Z. Fan, X. Liu, H.-T. Zheng, Y. Gong, J. Jiao, J. Li, J. Guo, N. Duan, W. Chen, et al. Ar-
diffusion: Auto-regressive diffusion model for text generation. Advances in Neural Information
Processing Systems, 36:39957–39974, 2023.

[67] T. Yan, H. Zhang, T. Zhou, Y. Zhan, and Y. Xia. Scoregrad: Multivariate probabilistic time
series forecasting with continuous energy-based generative models, 2021.

[68] W. Yan, D. Hafner, S. James, and P. Abbeel. Temporally consistent transformers for video
generation, 2023.

[69] R. Yang, P. Srivastava, and S. Mandt. Diffusion probabilistic modeling for video generation.
Entropy, 25(10):1469, 2023.

[70] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023.

[71] H. Yu, N. Rao, and I. S. Dhillon. Temporal regularized matrix factorization. CoRR,
abs/1509.08333, 2015.

14

A Theoretical Justification

In this section, we provide theoretical justification for the train of Diffusion Forcing. The main
contributions can be summarized as follows:

• We show that our training methods optimize a reweighting of the Evidence Lower Bound
(ELBO) on the average log-likelihood of our data. We first establish this in full generality
(Theorem A.1), and then specialize to the form of Gaussian diffusion (Corollary A.2). We
show that the resulting terms decouple in such a fashion that, in the limit of a fully expressive
latent and model, makes the reweighting terms immaterial.

• We show that the expected likelihood over any distribution over sequences of noise levels
can be lower bounded by a sum over nonnegative terms which, when reweighted, correspond
to the terms optimized in the Diffusion Forcing training objective maximizes. Thus, for a
fully expressive network that can drive all terms to their minimal value, Diffusion Forcing
optimizes a valid surrogate of the likelihood of all sequences of noise levels simultaneously.

We begin by stating an ELBO for general Markov forward processes q(·), and generative models
pθ(·), and then specialize to Gaussian diffusion, thereby recovering our loss. We denote our Markov
forward process q(·) as

q(x1:K | x0) =
K
∏

k=1

q(xk | xk−1), (A.1)

and a parameterized probability model

pθ(((x
k
t)1≤k≤K , zt)t≥1) (A.2)

We assume that pθ satisfies the Markov property that

pθ(zt,x
kt

t | z1:t−1, (x
ks
s)1≤s<t) = pθ(zt,x

kt | zt−1) (A.3)

that is, the latent codes zt−1 is a sufficient statistic for xkt given the history. We say that pθ has

deterministic latents if pθ(zt | z1:t−1, (x
ks
s)1≤s<t,x

kt

t) is a Dirac delta.

Remark 1. In order for pθ to have deterministic latents and correspond to a valid probability distri-
bution, we need to view the latents zt not as individual variables, but as a collection of variables
zt(k1:t) indexed by t ∈ [T] and the history of noise levels k1:t ∈ {0, 1, . . . ,K}t. In this case, simply

setting zt(k1:t) = (k1:t, (x
ks
s)1≤s≤t tautologically produces deterministic latents. The reason for

indexing zt(k1:t) with k1:t then arises because, otherwise, pθ(zt | ((xks
s)1≤s≤t, (x

k′

s
s)1≤s≤t) would

be ill-defined unless ks = k′s for all 1 ≤ s ≤ t, and thus, pθ would not correspond to a joint
probability measure. The exposition and theorem that follows allow zt(k1:t) to be indexed on past
noise levels k1:t but suppresses dependence on k1:t to avoid notational confusion.

A.1 Main Results

We can now state our main theorem, which provides an evidence lower bound (ELBO) on the expected

log-likelihood of partially-noised sequences (xkt

t)1≤t≤T , under uniformly sampled levels kt and x
kt

t

obtained by noising according to q(·) as in (A.1). Notice that this formulation does not require an
explicit for of q(·) or pθ , but we will specialize to Gaussian diffusion in the following section.

Theorem A.1. Fix x0
1:T . Define the expectation over the forward process with random noise level

k1:T as

E
forward

[·] := E
k1 �T

unif∼ [K]

E
x
ks
s ∼q(xks

s |x0
s) 1≤s≤T

[·], (A.4)

and the expectation over the latents under pθ(·) conditioned on k1:T , (x
kt
s)1≤t≤T as

E
p z1:T

[·] := E
zs∼p(zs|zs−1 x

ks
s) �≤T

[

· | k1:T , (xkt

t)1≤t≤T

]

(A.5)

15

Then, as long as pθ satisfies the Markov property,

E
forward

[ln pθ((x
kt

t)1≤t≤T)] ≥ C(x0
1:T)

+ E
forward

E
p z1:T





T
∑

t=1





1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K
∑

j=2

j

K + 1
DKL

(

q(xj−1
t | xj

t ,x
0
t) ∥ pθ(xj

t | xj−1
t , zt−1)

)







 ,

where C(x0
1:T) is a constant depending only on x0

1:T (the unnoised data). Moreover, if the latents are

deterministic (i.e. pθ(zt | zt−1,x
kt

t) is a Dirac distribution), then the inequality holds with inequality

if and only if q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1), i.e. the variational approximation is
exact.

The proof of the above theorem is given in Appendix A.2. Remarkably, it involves only two
inequalities! The first holds with equality under deterministic latents and the second holds if and only

if variational approximation is exact: q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1). This tightness of
the ELBO suggests that the expression in Theorem A.1 is a relatively strong surrogate objective for
optimizing the likelihoods.

A.1.1 Specializing to Gaussian diffusion

We now special Theorem A.1 to Gaussian diffusion. For now, we focus on the “x-prediction”
formulation of diffusion, which is the one used in our implementation. The “ϵ-prediction” formalism,
used throughout the main body of the text, can be derived similarly (see Section 2 of [7] for a clean
exposition). The following theorem follows directly by apply standard likelihood and KL-divergence
computations for the DDPM [28, 7] to Theorem A.1.

Corollary A.2. Let

q(xk+1 | xk
t) = N (xk;

√

1− βkx
k−1, βkI), (A.6)

and define αk = (1 − βk), ᾱk =
∏k

j=1 αj . Suppose that we parameterize pθ(x
j
t | xj+1

t , zt−1) =

N (µθ(x
j+1
t , zt−1, j), σ

2
j), where further,

µθ(x
j
t , zt−1, j) =

(1− ᾱj−1)
√
αj

1− ᾱj

x
j
t +

(1− αj)
√
ᾱj−1

1− ᾱj

xθ(x
j
t , zt−1, j), σ2

j :=
(1− αj)(1−

√
ᾱj−1)

1− ᾱj

.

Then, as long as pθ satisfies the Markov property, we obtained

E
forward

[ln pθ((x
kt

t)1≤t≤T)] + C(x0
1:T) ≥ E

forward
E

p z1:T





T
∑

t=1

j

K + 1

K
∑

j=1

cj∥x0
θ(x

j
t , zt−1, j)− x0

t∥2




= E
forward

E
p z1:T

[

T
∑

t=1

1{kt ≥ 1} · ktckt
∥x0

θ(x
kt

t , zt−1, kt)− x0
t∥2
]

,

where above, we define cj =
(1−αj)

2ᾱj−1

2σ2(1−ᾱj)2
.

Proof. The first inequality follows from the standard computations for the “x-prediction” formulation
of Diffusion (see Section 2.7 of [7] and references therein). The second follows by replacing the sum

over j with an expectation over kt
unif∼ {0, 1, . . . ,K}.

We make a couple of remarks:

• As noted above, Corollary A.2 can also be stated for ϵ-prediction, or the so-called “v-
prediction” formalism, as all are affinely related.

• Define an idealized latent zt−1 consisting of all past tokens (xkt

t) as well as of their
noise levels kt. This is a sufficient statistic for zt−1, and thus we can always view

16

x0
θ
(xkt

t , zt−1, kt) = x0
θ
(xkt

t , z̄t−1, kt), where zt−1 is just compressing z̄t−1. When ap-
plying the expectation of x1:T ∼ q to both sides of the bound in Corollary A.2, and taking
an infimum over possible function approximator x0

θ, we obtain

inf
pθ

E
q

E
forward

E
p z1:T

∥x0
θ(x

kt

t , zt−1, kt)− x0
t∥2 = inf

pθ

E
q

E
forward

E
p z1:T

∥x0
θ(x

kt

t , z̄t−1)− x0
t∥2

= Varq[x
0
t | (xks

s)1≤s≤t, k1, . . . , kt].

This leads to a striking finding: with expressive enough latents and pθ, we can view the
maximization of each term in Corollary A.2 separately across time steps. The absence of
this coupling means that the weighting terms are immaterial to the optimization, and thus
can be ignored.

• Given the above remarks, we can optimize the ELBO by taking gradients through the
objective specified by Corollary A.2, and are free to drop any weighting terms (or rescale
them) as desired. Backpropagation through Ep z1:T

is straightforward due to deterministic
latents. This justifies the correctness of our training objective (3.1) and protocol Algorithm 1.

A.1.2 Capturing all subsequences

Theorem A.1 stipulates that, up to reweighting, the Diffusion Forcing objective optimizes a valid
ELBO on the expected log-likelihoods over uniformly sampled noise levels. The following theorem
can be obtained by a straightforward modification of the proof of Theorem A.1 generalizes this to
arbitrary (possibly temporally correlated) sequences of noise.

Theorem A.3. Let D be an arbitrary distribution over [K]T , and define Pt(j | k1:t−1) := PrD[kt =
j | k1:t−1]. Fix x0

1:T . Define the expectation over the forward process with random noise level k1:T
as

E
forward D

[·] := E
k1 �T∼D

E
x
ks
s ∼q(xks

s |x0
s) 1≤s≤T

[·], (A.7)

and the expectation over the latent under pθ(·) conditioned on k1:T , (x
kt
s)1≤t≤T as

E
p z1:T

[·] := E
zs∼p(zs|zs−1 x

ks
s) �≤T

[

· | k1:T , (xkt

t)1≤t≤T

]

(A.8)

Then, as long as pθ satisfies the Markov property,

E
forward D

[ln pθ((x
kt

t)1≤t≤T)] ≥ C(x0
1:T) + E

forward D
E

p z1:T

[

T
∑

t=1

Ξt

]

,where

Ξt :=



Pt(1 | k1:t−1) ln pθ(x
0
t | x1

t , zt−1) +

K
∑

j=2

jPt(j | k1:t−1)DKL

(

q(xj−1
t | xj

t ,x
0
t) ∥ pθ(xj

t | xj−1
t , zt−1)

)



 ,

where C(x0
1:T) is a constant depending only on x0

1:T (the noise-free data), and where the inequality

is an equality under the conditions that (a) pθ(zt | zt−1,x
kt

t) is a Dirac distribution (deterministic

latents), and (b) q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1), i.e. the variational approximation is
sharp.

In particular, in the Gaussian case of Corollary A.2, we have

E
forward D

[ln pθ((x
kt

t)1≤t≤T)] + C(x0
1:T) ≥ E

forward D
E

p z1:T

[

T
∑

t=1

1{kt ≥ 1}ktckt
∥x0

θ(x
kt

t , zt−1, kt)− x0
t∥2
]

,

The most salient case for us is the restriction of D to fixed sequences of noise k1, . . . , kT (i.e. Dirac
distributions on [K]T). In this case, Pt(j | k1:t−1) = 0 for all but j = kt, and thus our training

objective need not be a lower bound on Eforward D[ln pθ((x
kt

t)1≤t≤T)]. However, the terms in the
lower bound are, up to reweighting, an subset of those terms optimized in the training objective.
Thus, in light of the remarks following Corollary A.2, a fully expressive network can optimize all the
terms in the loss simultaneously. We conclude that, for a fully expressive neural network, optimizing
the training objective (3.1) is a valid surrogate for maximizing the likelihood of all possible noise
sequences.

17

A.2 Proof of Theorem A.1

Define E<t[·] as shorthand for E
k1:s

unif∼ [K]
E
x
ks
s ∼q(xks

s |x0
s) 1≤s≤t−1 Ezs∼p(zs|zs−1 x

ks
s) �≤t

[·]. We

begin with the following claim

Claim 1 (Expanding the latents). The following lower bound holds:

E
forward

[ln pθ((x
kt

t)1≤t≤T)] ≥
T
∑

t=1

E
<t

E
kt

unif∼ {0 1 �}
E

x
kt
t ∼q(x

kt
t |x0

t)

[

ln pθ(x
kt

t | zt−1)
]

, (A.9)

Moreover, this lower bound holds with equality if zs ∼ p(zs | zs−1,x
ks
s) is a Dirac distribution (i.e.,

deterministic latents).

Proof. Let’s fix a sequence k1:T . It holds that

pθ((x
kt

t)1≤t≤T) =

∫

z1:T

T
∏

t=1

p(xkt

t , zt | (xks
s , zs)s<t)

=

∫

z1:T

T
∏

t=1

p(xkt

t , zt | zt−1) (Markov Property)

=

∫

z1:T (k)

T
∏

t=1

p(zt | zt−1,x
kt

t)pθ(x
kt

t | zt−1)

= E
zs∼p(zs|zs−1 x

ks
s) �≤T

T
∏

t=1

pθ(x
kt

t | zt−1). (Importance Sampling)

Thus, by Jensen’s inequality,

ln pθ((x
kt

t)1≤t≤T) ≥ E
zs∼p(zs|zs−1 x

ks
s) �≤T

T
∑

t=1

ln pθ(x
kt

t | zt−1) = E
p z1:T

[

T
∑

t=1

ln pθ(x
kt

t | zt−1)

]

,

where the inequality is and equality when pθ(zs | zs−1,x
ks
s) is a Dirac distribution. By applying

Eforward to both sides of the above display, and invoking the Markov property of the latents, we
conclude that

E
forward

[ln pθ((x
kt

t)1≤t≤T)] ≥ E
forward

E
p z1:T

[

T
∑

t=1

ln pθ(x
kt

t | zt−1)

]

=

T
∑

t=1

E
<t

E
kt

unif∼ {0 1 �}
E

x
kt
t ∼q(x

kt
t |x0

t)

[

ln pθ(x
kt

t | zt−1)
]

.

We now unpack the terms obtained from the preceding claim.

Claim 2 (ELBO w.r.t. q). It holds that

E
x
kt
t ∼q(x

kt
t |x0

t)

[

ln pθ(x
kt

t | zt−1)
]

≥ C1(x0, kt) +

[

E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

]

.

where C1(x0, kt) is a constant depending only on x0 and kt, and where the inequality holds with

equality if and only if q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1).

18

Proof. We have that

E
x
kt
t ∼q(x

kt
t |x0

t)

[

ln pθ(x
kt

t | zt−1)
]

= E
x
kt
t ∼q(x

kt
t |x0

t)

[

ln

∫

pθ(x
kt:K
t | zt−1)dx

kt+1:K
t

]

= E
x
kt
t ∼q(x

kt
t |x0

t)

[

ln

(

E
x
kt+1:K

t ∼q(x
kt+1:K

t |xkt
t)

[

pθ(x
kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

])]

≥ E
x
kt
t ∼q(x

kt
t |x0

t)

[

E
x
kt+1:K

t ∼q(x
kt+1:K

t |xkt
t)

[

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

]]

((Jensen’s inequality))

= E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

[

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

]

(Markov property of q(·))

= C1(x0, kt) +

[

E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

]

,

where the constant C1(x0, kt) = E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

[

ln
q(x

kt+1:K

t |x0
t)

q(x
kt+1:K

t |xkt
t)

]

depends only on x0 and kt.

To check the conditions for equality, note that if q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1), then

E
x
kt+1:K

t ∼q(x
kt+1:K

t |xkt
t)

[

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | xkt

t)

]

= ln pθ(x
kt

t | zt−1) + E
x
kt+1:K

t ∼q(x
kt+1:K

t |xkt
t)

[

ln pθ(x
kt+1:K
t | zt−1,x

kt

t)
]

Since ln(·) is strictly concave, E
x
kt+1:K

t ∼q(x
kt+1:K

t |xkt
t)

[

ln pθ(x
kt

t | zt−1)
]

= 0 if and only if

pθ(x
kt+1:K
t | zt−1,x

kt

t) = q(xkt+1:K
t | xkt

t).

Claim 3 (Computing the expected ELBO).

E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

= C3(x0, kt) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1
∑

j=1

1{j ≥ kt}DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)

,

where C2(x0, kt) is some other constant depending on x0 and kt.

Proof. The proof invokes similar manipulations to the standard ELBO derivation for diffusion, but
with a few careful modifications to handle the fact that we only noise to level kt. As is standard, we
require the identity

q(xj
t | xj−1

t ,x0
t) = q(xj−1

t | xj
t ,x

0
t) ·

q(xj
t | x0

t)

q(xj−1
t | x0

t)
. (A.10)

19

Part 1: Expanding the likelihood ratios . Using the above identity, we obtain

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

= ln p(xK
t | zt−1) + ln

pθ(x
kt

t | xkt+1
t , zt−1)

q(xkt+1
t | x0

t)
+

K
∑

j=kt+2

ln
pθ(x

j−1
t | xj

t , zt−1)

q(xj
t | xj−1

t ,x0
t)

(i)
= ln p(xK

t | zt−1) + ln
pθ(x

kt

t | xkt+1
t , zt−1)

q(xkt+1
t | x0

t)
+

K
∑

j=kt+2

(

ln
pθ(x

j−1
t | xj

t , zt−1)

q(xj−1
t | xj

t ,x
kt

t)
+ ln

q(xj−1
t | x0

t)

q(xj
t | x0

t)

)

(ii)
= ln p(xK

t | zt−1) + ln
pθ(x

kt

t | xkt+1
t , zt−1)

q(xkt+1
t | x0

t)
+ ln

q(xkt+1
t | xkt

t)

q(xK
t | xkt

t)
+

K−1
∑

j=kt+1

ln
pθ(x

j
t | xj+1

t , zt−1)

q(xj
t | xj+1

t ,x0
t)

=
ln p(xK

t | zt−1)

q(xK
t | xkt

t)
+ ln pθ(x

kt

t | xkt+1
t , zt−1) +

K−1
∑

j=kt+1

ln
pθ(x

j
t | xj+1

t , zt−1)

q(xj
t | xj+1

t ,x0
t)

= ln
(

q(xkt

t | xkt+1
t)1{kt≥1}

)

+ ln
p(xK

t | zt−1)

q(xK
t | xkt

t)
+ ln

pθ(x
kt

t | xkt+1
t , zt−1)

q(xkt

t | xkt+1
t)1{kt≥1}

+
K−1
∑

j=kt+1

ln
pθ(x

j
t | xj+1

t , zt−1)

q(xj
t | xj+1

t ,x0
t)

,

where (i) uses A.10, (ii) invokes a cancellation in the telescoping sum, and the final display follows
from the computation

q(xkt

t | xkt+1
t)1{kt≥1} =

{

1 kt = 0

q(xkt

t | xkt+1
t) kt ≥ 1

. (A.11)

Observe that, because we don’t parameterize p(xK
t | zt−1), ln

(

q(xkt

t | xkt+1
t)1{kt≥1}

)

+

ln p(xK
t |zt−1)

q(xK
t |xkt

t)
can be regarded as some constant C ′(xkt

t ,xkt+1
t ,xK

t). Thus,

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)
= C ′(xkt

t ,xkt+1
t ,xK

t) + ln
pθ(x

kt

t | xkt+1
t , zt−1)

q(xkt

t | xkt+1
t)1{kt≥1}

+

K−1
∑

j=kt+1

ln
pθ(x

j
t | xj+1

t , zt−1)

q(xj
t | xj+1

t ,x0
t)

(A.12)

Part 2: Taking expecations. We can now simplify to taking expectations. Observe that

E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

ln
pθ(x

j
t | xj+1

t , zt−1)

q(xj
t | xj+1

t ,x0
t)

= DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)

,

and similarly,

E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

ln
pθ(x

kt

t | xkt+1
t , zt−1)

q(xkt

t | xkt+1
t)1{kt≥1}

=

{

ln pθ(x
0
t | x1

t , zt−1) kt = 0

DKL

(

q(xkt

t | xkt+1
t ,x0

t) ∥ pθ(xkt

t | xj+1
t , zt−1)

)

kt ≥ 1.

Finally, E
x
kt:K

t ∼q(x
kt:K

t |x0
t)
C ′(xkt

t ,xkt+1
t ,xK

t) is a constant C2(kt,x0) depending only on kt,x0.

Thus, from (A.12)

E
x
kt:K

t ∼q(x
kt:K

t |x0
t)

ln
pθ(x

kt:K
t | zt−1)

q(xkt+1:K
t | x0

t)

= C2(kt,x0) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1
∑

j=max{1 �t}
DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)

= C2(kt,x0) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1
∑

j=1

1{j ≥ kt}DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)

.

20

Completing the proof of the ELBO. We are now ready to complete the proof. By combining the
previous two claims, we have

E
x
kt
t ∼q(x

kt
t |x0

t)

[

ln pθ(x
kt

t | zt−1)
]

≥ C3(x0, kt) + 1{kt = 0} ln pθ(x0
t | x1

t , zt−1) +

K−1
∑

j=1

1{j ≥ kt}DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)

,

where C3(x0, kt) = C1(x0, kt) + C2(x0, kt) and where again, the above is an equality when

q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1). Taking an expectation over kt
unif∼ {0, 1, . . . ,K}, we

have

E
kt

unif∼ {0 1 �}
[1{kt = 0}] = 1

K + 1
, E

kt
unif∼ {0 1 �}

1{j ≥ kt} =
j + 1

K + 1
. (A.13)

and consequently,

E
kt

unif∼ {0 1 �}
E

x
kt
t ∼q(x

kt
t |x0

t) 1≤t≤T

ln pθ((x
kt

t)1≤t≤T)

≥ C4(x
0
t) +

1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K−1
∑

j=1

j + 1

K + 1
DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)

Invoking Claim 1,

E
forward

[ln pθ((x
kt

t)1≤t≤T)]

≥
T
∑

t=1

E
<t

E
kt

unif∼ {0 1 �}
E

x
kt
t ∼q(x

kt
t |x0

t)

[

ln pθ(x
kt

t | zt−1)
]

=

T
∑

t=1

E
<t



C4(x
0
t) +

1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K−1
∑

j=1

j + 1

K + 1
DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)





We conclude by observing that
∑T

t=1 E<t

[

C4(x
0
t)
]

is a constant C(x0
1:T), and that

E
<t

[

ln pθ(x
0
t | x1

t , zt−1)
]

= E
forward

E
p z1:T

[

ln pθ(x
0
t | x1

t , zt−1)
]

E
<t

[

DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)]

= E
forward

E
p z1:T

[

DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)]

,

since both terms only depend on k1:t−1, (x
ks
s)1≤s≤t−1 and z1:t−1. We conclude then that

E
forward

[ln pθ((x
kt

t)1≤t≤T)] ≥ C(x0
1:T)

+ E
forward

E
p z1:T





T
∑

t=1





1

K + 1
ln pθ(x

0
t | x1

t , zt−1) +

K−1
∑

j=1

j + 1

K + 1
DKL

(

q(xj
t | xj+1

t ,x0
t) ∥ pθ(xj

t | xj+1
t , zt−1)

)







 ,

as needed. Lastly, we recall that the above is an equality under the conditions that

(a) pθ(zt | zt−1,x
kt

t) is a Dirac distribution, and (b) q(xkt+1:T
t | xkt

t) ≡ pθ(x
kt+1:T
t | xkt

t , zt−1),
and we reindex j ← j+1 to ensure consistency with indexing in standard expositions of the diffusion
ELBO.

B Additional Method Details

B.1 Fused SNR reweighting

SNR reweighting [24] is a widely used technique to accelerate the convergence of image diffusion
models. In short, it reweighs the diffusion loss proportional to the signal-to-noise ratio (SNR) of

21

noisy xk. In Diffusion Forcing, conditioning variable zt−1 can also contain a non-trivial amount of

information about xt, in addition to x
kt

t . For example, in a deterministic markovian system, if x
kt−1

t−1

has its noise level kt−1 = 0, the posterior state zt−1 contains all the information needed to predict x0
t

regardless of the noise level of xkt

t .

Therefore we re-derive SNR reweighting to reflect this change in Diffusion Forcing. We call this
technique Fused SNR reweighting. We follow the intuition of original SNR reweighting to loosely
define SNR in a sequence with independent levels of noises at different time steps. Denote St as the

normalized SNR reweighting factor for xkt

t following its normal derivation in diffusion models. For
example, if one uses min snr strategy [24], its reweighting factor will always fall between [0, C]
which we divide by C to get St ∈ [0, 1]. Define signal decay factor 0 < γ < 1, measuring what

proportion of signal in x
kt−1

t−1 contribute to denoising x
kt

t . This is the simple exponential decay
model of sequential information. Now, define cumulated SNR recursively as the running mean of
St: S̄t = γS̄t−1 + (1 − γ)St to account for signals contributed by the entire noisy history to the
denoising at time step t. The other factor that contributes to the denoising is St of noisy observation

x
kt

t . To combine them, we use a simplified model for independent events. Notice St and S̄t always
falls in range [0, 1], and therefore can be reinterpreted as probabilities of having all the signal one

needs to perfect denoise x
kt

t . Since the noise level at t is independent of prior noise levels, we can
view St and S̄t−1 as probabilities of independent events and thus can composed to define a joint
probability S′

t = 1− (1− St)(1− S̄t−1), and we use this S′
t as our fused SNR reweighting factor

for diffusion training.

In our experiments, we choose to follow the min-SNR reweighting strategy [24] to derive the S. Our
Fused SNR reweighting proves extremely useful to accelerate the convergence of video prediction,
while we didn’t observe a boost on non-image domains so we didn’t use it there.

B.2 Architecture

Video Diffusion We choose both the raw image x and latent state z to be 2D tensors with channel,
width, and height. For simplicity, we use the same width and height for x and z. We then implement

the transition model p(xkt

t |zt−1) with a typical diffusion U-net [46]. We use the output of the U-net
as the input to a gated recurrent unit (GRU) and use zt−1 as the hidden state feed into a GRU. The
output of GRU is treated as zt. For observation model p(xt|zt), we use a 1-layer resnet [27] followed
by a conv layer. We combine these two models to create an RNN layer, where the latent of a particular

time step is zt−1, input is xkt

t and output is x. One can potentially obtain better results by training
Diffusion Forcing with a causal transformer architecture. However, since RNN is more efficient for
online decision-making, we also stick with it for video prediction and it already gives us satisfying
results.

We choose the number of channels in z to be 16 for DMlab and 32 for Minecraft. In total, our
Minecraft model consists of 36 million parameters and our DMlab model consists of 24 million
parameters. We can potentially obtain a better Minecraft video prediction model with more parameters,
but we defer that to future works to keep the training duration reasonable (< 1 day). In maze planning,
the number of total parameters is 4.33 million.

Non-Video Diffusion For non-spatial x that is not video nor images, we use residue MLPs [59]
instead of Unet as the backbone for the dynamics model. Residue MLP is basically the ResNet [27]
equivalent for MLP. Similar to video prediction, we feed the output of resMLP into a GRU along
with zt−1 to get zt. Another ResMLP serves as the observation model.

B.3 Diffusion parameterization

In diffusion models, there are three equivalent prediction objectives, x0, ϵ [28], and v parameteriza-
tion [52]. Different objectives lead to different reweighting of loss at different noise levels, together
with SNR reweighting. For example, ϵ parameterization and v parameterization are essential in
generating pixel data that favors high-frequency details.

In our experiments, we use v parameterization for video prediction and found it essential to both
convergence speed and quality.

22

We observe that x0 parameterization is strongly favorable in planning and imitation learning, likely
because they don’t favor an artificial emphasis on high-frequency details. We observe the benefits of
v-parameterization in time-series prediction.

B.4 Noise schedule

We use sigmoid noise schedule [9] for video prediction, linear noise schedule for maze planning, and
cosine schedule for everything else.

B.5 Implementation Details of Sampling with Guidance

Corner case of sampling noise In our sampling algorithm, due to the flexibility of the scheduling

matrix K, there are corner cases when x
kt

t is required to stay at its same noise level during a sampling

step. The core question of this corner case is whether we should updatexkt

t at all. One option is just
copying over the old value. The other option is to run a backward diffusion followed by a forward
diffusion back to its old noise level to resample under the diffusion process. While we conclude
this can be an open question, we prefer the later approach, resampling, and use it in Monte Carlo
Guidance to generate multiple samples. We note that even if one takes the first approach, the guidance

gradient can still flow back in the time steps before t as the dynamics model p(zt|xkt

t , zt−1) can still
propagate the guidance gradient to zt−1.

Other than Monte Carlo Guidance, this corner case only happens when kt = 0 or kt = K throughout
our experiments. That is, we chose our K such that once any token gets diffused slightly, it will keep

diffusing. In the case of kt = K, keeping x
kt

t at the same noise level implies it will stay as white
noise, and we don’t even need to sample another white noise. In case kt = 0, the time step is already
completely diffused either approach should give us the same result so we just opt for copying over
for simplicity.

Guidance for maze planning In maze planning, our main baseline Diffuer [36] discards the reward
from the dataset and directly plans with the goal position and velocity. We adopt the same convention
for Diffusion Forcing. One can perform guidance on goal position using log-likelihood ||pT − g||,
but a flexible horizon model should not require users to manually specify a T to reach its goal, instead
we want it to try to reach the goal for any possible horizon. Therefore we use the reward model
∑

t ||pT − g|| so any time step can be the final step to reach the goal. This objective is challenging
due to the non-convex nature of 2D maze, but we found Diffusion Forcing can still reliably find plans
without bumping into walls. However, we also observe that the agent tend to leave the goal location
due to the nature of the provided dataset - the goal location is just one possible waypoint for the robot
to pass through, and there are no trajectories that simply stay at the goal. We also tried this reward for
guidance with Diffuser, but it didn’t work even with a good amount of tuning.

B.6 Performance Optimization

Accelerating the diffusion sampling of Diffusion Forcing is similar to that of normal diffusion models.
We adopt DDIM [57] sampling for the diffusion of each token. While we use K = 1000 steps of
diffusion, we sample with only 100 DDIM for video prediction and 50 for non-video domains.

While Diffusion Forcing can be implemented with transformers, we use an RNN as the backbone for
Diffusion Forcing experiments it’s widely used in decision-making for its flexibility and efficiency in
online decision-making systems. To further reduce training time and GPU memory usage, we use
frame-stacking to stack multiple observed images as a single x. This is due to the fact that adjacent
tokens can be very similar - e.g. recording the same motion at higher fps can lead to this. We deem
that it’s wasteful if we roll out the dynamics model multiple times to generate almost identical tokens.
For video datasets, we manually examine how many time steps it takes to require a minimal level
of prediction power instead of copying frames over. There is another reason why we use frame
stacking - many diffusion model techniques such as different noise schedules are designed to model
x with correlated elements or redundancy. Low-dimensional systems may need drastically different
hyperparameters when they lack the data redundancy these techniques are tested on. Frame stacking
is thus also helpful for our non-image experiments so we can start with canonical hyperparameters of
diffusion models. We use a frame stack of 4 for DMlab video prediction, 8 for Minecraft, and 10 for
maze planning.

23

At sampling time, we also have a design choice to reduce compute usage, as reflected in line 8 of
Algorithm 2. In line 8, we directly assign znew

t to zt, instead of recalculating zt with posterior model
p(zt|zt−1,x

new
t , k − 1). Since the model is trained to condition on zt estimated from arbitrary noisy

history, we recognize that both are valid approaches. The reason why the choose line 8 is twofold.
First, it cuts the compute by half, avoiding computing posterior every step. Second, this happens to
be what we want for stabilization - znew

t already contains the information of the clean xnew
t under our

simplified observation model, and happens to be estimated with k = kt, a noise level higher than that
of xnew

t . This happens to implement the behavior we want for stabilization.

B.7 Sampling schedule for causal uncertainty

Inference is depicted in Algorithm 2 and Figure 2. In Equation B.1, we illustrate a specific instantiation
of the K matrix we used for causal planning. For simplicity, we denote the case where a latent z0 is
given and aim to generate x1:H+1.

Kpyramid =































K K K ... K
K − 1 K K ... K
K − 2 K − 1 K ... K

...
...

...
. . .

...
1 2 3 ... H
0 1 2 ... H − 1
...

...
...

. . .
...

0 0 0 ... 1
0 0 0 ... 0































(B.1)

Diffusion Forcing begins by sampling our sequences as white noise with noise level K. It then
denoises along each row m = 1, . . . ,M of K in decreasing order. It does so by proceeding
sequentially through frames t = 1, . . . , T , updating the latent (Line 5 of Algorithm 2), and then
partially applying the backward process to noise level k = Km dictated by the scheduling matrix K
(Line 6-7 of Algorithm 2). We call a K like this pyramid scheduling, as the tokens in the far future
are kept at higher noise level than near future.

B.8 Metrics for Maze Planning

We report the episode reward of Diffusion Forcing for different maze planning environments in
Table 1. However, we found that the episode reward isn’t necessarily a good metric: Intuitively, maze
planning should reward smart agents that can find the fastest route to the goal, not a slow-walking
agent that goes there at the end of the episode. The dataset never contains data on the behavior
of staying at the goal, so agents are supposed to walk away after reaching the goal with sequence
planning methods. Diffuser may had an unfair advantage of just generating slow plans, which happens
to let the agent stay in the neighborhood of the goal for more steps and get a very high reward as a
result. This metric seems to exploit flaws in the environment design - a good design would involve a
penalty of longer time taken to reach the goal. Therefore, in future works based on our paper, we
encourage alternative metrics like the time it takes to reach the goal for the first time, which Diffusion
Forcing excels at.

B.9 Implementation Details of Timeseries Regression

We follow the implementation of pytorch-ts, where the validation set is a random subset of the
training set with the same number of sequences as the test set. We use early stopping when validation
crps-sum hasn’t increased for 6 epochs. We leverage the same architecture (1 mlp and 4 grus) as well
as a batch size of 32.

B.10 Compute Resources

All of our experiments use fp16 mixed precision training. Time series, maze planning, composition-
ally, and visual imitation experiments can be trained with a single 2080T i with 11GB of memory.
We tune the batch size such that we fully use the memory of GPUs. This translates to a batch size of

24

2048 for maze planning and compositional experiments, and 32 for visual imitation learning. While
we use early stopping on the validation set for time series experiments, we did not carefully search for
the minimal number of training steps required, though the model usually converges between 50k to
100k steps. The above environments thus usually take 4− 8 hours to train although there is without
doubt a significant potential for speed up.

Video prediction is GPU intensive. We use 8 A100 GPUs for both video prediction datasets. We
train for 50K steps with a batch size of 8× 16. It usually takes 12 hours to converge at 40K steps of
training (occasional validation time also included).

C Additional Intuitions and Explainations

C.1 Extension to transformer backbone

While this paper focuses on a causal implementation of Diffusion Forcing with RNNs, it’s easy to
adopt Diffusion Forcing with modern architectures like transformers. One can simply modify a
transformer-based sequence diffusion model to train with independent noise levels across tokens
and follow the techniques listed in Section B.1. A strict implementation of causal Diffusion Forcing
would involve a causal attention mask on the transformer. However, Diffusion Forcing’s fractional
masking can do something more interesting: Consider the scenario that we use a transformer without
a causal mask. We can still implement causality by controlling noise. By labeling the future as full
white noise, there is no information leaked into the past tokens. By labeling future tokens as free of
noise, we make the model completely non-causal. By labeling the future tokens as noisy, a slight
amount of information about the future is provided for the prediction of past tokens. This effectively
states that one only needs a non-causal architecture, but controlling fractional noise of the future, to
achieve partial or complete causality. These extensions are beyond the scope of this paper, but we
already verified their effectiveness and thus provide them as intuitions for future works.

C.2 The need for independent noise levels

When training Diffusion Forcing, we choose to sample per-token noise level following i.i.d uniform
distribution from [1, 2...K]. One may wonder about the necessity of this choice. Here we discuss the
unique abilities of independent noise and the compute overhead added by it.

The use of independent noise confers a number of special capabilities in our model, including
stabilization of autoregressive rollout 3.3, modeling causal uncertainty 3.3, and removing the need
for expensive reconstruction guidance when conditioning on context C.6. None of these capabilities
can be achieved by full-sequence diffusion. AR-diffusion [66] and Rolling Diffusion [51] can only
achieve the first and third one. There are more sampling-time applications such as flexible frame
interpolation. Finally, we also saw the practical benefits of using independent noise in hyperparameter
tuning. One can simply try different sampling schemes to figure out the most effective one for their
applications. All these capabilities only require training the model once with Diffusion Forcing. In
contrast, any tuning of the sampling scheme would require re-training the model for AR-diffusion
and Rolling Diffusion.

On the other hand, we didn’t observe much computing overhead when comparing Diffusion Forcing
to full-sequence diffusion, as soon as one closely follows our training techniques like B.1. The
empirical evidence is based on our experiments with an experimental transformer implementation
of Diffusion Forcing and is thus not fully consistent with the main paper. However, we present
the high-level descriptions below for readers interested in more insights: The complexity added by
independent noise levels is in the temporal dimension. Therefore, we first adopt a standard technique
for video diffusion models - image pre-training, to abstract away the complexity of the image pixels
themselves. Then the complexity left is temporal prediction only. We then take the pre-trained
image-only model and continue training it on video data. It turns out the sampling result of Diffusion
Forcing with fewer training steps in this second stage is already better than that of full-sequence
diffusion at convergence. We speculate that the better result is due to the same data-augmentation
effect described in prior works [39]. This shows that the overhead added by independent noise is
well-warranted when considering the overall training compute (including image pre-training).

25

C.3 Guidance as planning

As stated in Section 2, one can use the gradient of the logarithmic of a classifier log c(y|xk
t) to guide

the sampling process of diffusion model towards samples with a desired attribute y. For example, y can
refer to the indicator of a success event. However, we can consider the logarithmic of a more general

energy function c(xk
t). This has the interpretation as Pr

(

y|xk
t

)

, where Pr
[

y = 1 | xk
t

]

= ec(x
k
t).

Some popular candidate energies include

c(xk
t) = E

[

∑

t′>t

r′(x
kt′

t′) | xk
t

]

, (C.1)

corresponding to a cost-to-go; we can obtain unbiased estimates of this gradient by using cumulative

reward c(xk
t) =

∑

t′>t r′(x
kt′

t′). We can also use goal distance c = −∥xkT

T − g∥2 as a terminal
reward. We provide details about the guidance function deployed in the maze2d planning experiment
in Appendix B.5.

C.4 Noising and stabilizing long-horizon generations

Here, we explain in detail how we use noising to stabilize long-horizon generation. At each time t,

during the denoising, we maintain a latent zksmall

t−1 from the previous time step, with 0 < ksmall ≪
K corresponding to some small amount of noise. We then do next token diffusion to diffuse

the token xt across noise levels xK
t ,xK−1

t , . . . ,x0
t (corresponding to Algorithm 2 with horizon

T = 1, initial latent zkt−1, and noise schedule Km 1 = m); this process also produces latents

zKt , zK−1
t , . . . , z0t associated with each noise level. From these, we use the latent zksmall

t to repeat

the process. This noised latent can be interpreted as an implementation of conditioning on x
ksmall

t

in an autoregressive process. In a potential transformer implementation of Diffusion Forcing as we
discussed in Appendix C.1, one can instead run a forward diffusion on a fully diffused token to
achieve stabilization.

It is widely appreciated that adding noise to data ameliorates long-term compounding error in behavior
cloning applications [38, 42], and even induces robustness to non-sequential adversarial attacks [13].

In autoregressive video generation, the noised x
ksmall

t is in-distribution for training, because Diffusion
Forcing trains from noisy past observation in its training objective. Hence, this method can be
interpreted as a special case of the DART algorithm for behavior cloning [42], where the imitiator (in
our case, video generator) is given actions (in our case, next video frames) from noisy observations
(in our case, noised previous frames). Somewhat more precisely, because we use both tokens at
training time to train Diffusion Forcing, and using slightly noised tokens for autoregression at test
time, our approach inherits the theoretical guarantee of the HINT algorithm [5].

C.5 Why Monte Carlo Guidance relies on Diffusion Forcing

Monte Carlo Guidance provides substantial variance reduction in our estimate of cost-to-go guidance
(C.1). This technique crucially relies on the ability to roll out future tokens from current ones to
use these sample rollouts to get Monte Carlo estimates for gradients. This is not feasible with
full-sequence diffusion, because this requires denoising all tokens in tandem; thus, for a given fixed
noise level, there is no obvious source of randomness to use for the Monte Carlo estimate. It may be
possible to achieve variable horizon via the trick proposed in the following subsection to simulate
future rollouts, but to our knowledge, this approach is nonstandard.

C.6 Does the replacement technique lead to flexible horizons in full-sequence diffusion?

A naive way to obtain flexible horizon generation in full-sequence diffusion is via the “replacement
trick”: consider a full sequence model trained to diffuse x1:T , which we partition into x1:t−1,xt:T].
Having diffused tokens x1:t−1, we can attempt to denoise tokens of the form [xk

1:t−1,x
k
t:T], where

we fix xk
1:t−1 = x1:t−1 to be the previously generated token, and only have score gradients update the

remaining xk
t:T . One clear disadvantage of this method is inefficiency - one still needs to diffuse the

whole sequence even when there is one step left at t = T − 1. What’s more, [31] points out that this
approach of conditioning, named “conditioning by replacement”, is both mathematically unprincipled

26

At sampling time, one fully diffuses the next token before adding the diffused observation to history
to perform an autoregressive rollout. The diffusion process would thus look like

[xK
1 ,xK

2 ,xK
3]⊤

[x
K 2
1 ,xK

2 ,xK
3]⊤,

[x0
1,x

K
2 ,xK

3]⊤,

[x0
1,x

K 2
2 ,xK

3]⊤

[x0
1,x

0
2,x

K
3]⊤,

[x0
1,x

0
2,x

K 2
3]⊤,

[x0
1,x

0
2,x

0
3]

⊤.

Notably, Diffusion Forcing can also perform this sampling scheme at sampling time for applications
like imitation learning, when one wants to diffuse the next action as fast as possible.

Full Sequence Diffusion. Full sequence diffusion models accept a noisy sequence and denoises
level-by-level

[xK
1 ,xK

2 ,xK
3]⊤

[x
K 2
1 ,x

K 2
2 ,x

K 2
3]⊤,

[x0
1,x

0
2,x

0
3]

⊤.

Notably, Diffusion Forcing can also perform this sampling scheme at sampling time.

Diffusion Forcing with causal uncertainty As shown in Figure 2, to model causal uncertainty,
Diffusion Forcing keeps the far future more uncertain than the near future by having a larger noise
level k, at any time of diffusion. An example pattern looks like this:

[xK
1 ,xK

2 ,xK
3]⊤

[x
K 2
1 ,xK

2 ,xK
3]⊤,

[x0
1,x

K 2
2 ,xK

3]⊤,

[x0
1,x

0
2,x

K 2
3]⊤

[x0
1,x

0
2,x

0
3]

⊤

Notable, [65] is the first one to propose such a linear uncertainty sampling scheme for causal diffusion
models, although Diffusion Forcing provides a generalization of such scheme in combination with
other abilities.

Diffusion Forcing with stablization Previously we introduced the autoregressive sampling scheme
that Diffusion Forcing can also do. However, such a scheme can accumulate single-step errors
because it treats predicted x as ground truth observation. Diffusion Forcing addresses this problem
by telling the model that generated images should be treated as noisy ground truth, as shown in 2.

It first fully diffuses the first token,

[xK
1 ,xK

2 ,xK
3]⊤

[x
K 2
1 ,xK

2 ,xK
3]⊤,

[x0
1,x

K
2 ,xK

3]⊤

Then, it feed the diffused x0
1 into the model but tell it is of a slightly higher noise level, as x1

1 to
diffuse x2.

[x1
1,x

K 2
2 ,xK

3]⊤

[x1
1,x

0
2,x

K
3]⊤

Then, it feeds the diffused x0
2 into the model but tells it is of a higher noise level, as x1

2.

[x1
1,x

1
2,x

K 2
3]⊤,

[x1
1,x

1
2,x

0
3]

⊤.

28

tasks in time series prediction. We adopt multiple time series datasets with real-world applications
from GluonTS [2] and evaluate Diffusion Forcing with strong baselines with standard metrics in this
domain. In this section, we mainly focus on the results and analysis. For a detailed description of
datasets and the metric, we refer the reader to Appendix F.4.

Problem Formulation Let X = {xt}Tt=1 be a sequence (multivariate time series) of D-dimensional

observations xt ∈ R
D of some underlying dynamical process, sampled in discrete time steps

t ∈ {1, . . . , T}, where T ∈ N. In the problem setting of probabilistic time series forecasting, the
sequence X = {Xc,Xp} is split into two subsequences at time step t0 ∈ N with 1 < t0 ≤ T : the

context window Xc := {xt}t0−1
t=1 (also called history or evidence) of length t0−1, and the prediction

window Xp := {xt}Tt=t0
of length T − t0 + 1 (also known as the prediction horizon). Then, the task

is to model the conditional joint probability distribution

q(xt0:T | x1:t0−1) :=

T
∏

t=t0

q(xt | x1:t−1) (E.1)

over the samples in the prediction window. If we know the distribution in (E.1), we can sample
forecast prediction sequences given some initial context from the evidence sequence. However,
most time-dependent data generation processes in nature have complex dynamics and no tractable
formulation of q(xt0:T | x1:t0−1). Instead, we construct a statistical model that approximates the
generative process in (E.1) and estimates quantiles via Monte Carlo sampling of simulated trajectories.
In this way, confidence levels or uncertainty measures can be calculated, and point forecasts can be
produced as the mean or median trajectory [35].

Table 2: Results for time series forecasting. We report the test set CRPSsum (the lower, the better) of
comparable methods on six time series datasets. We measure the mean and standard deviation of our
method from five runs trained with different seeds.

Method Exchange Solar Electricity Traffic Taxi Wikipedia

VES [35] 0.005 ± 0.000 0.900 ± 0.003 0.880 ± 0.004 0.350 ± 0.002 - -

VAR [44] 0.005 ± 0.000 0.830 ± 0.006 0.039 ± 0.001 0.290 ± 0.001 - -

VAR-Lasso [44] 0.012 ± 0.000 0.510 ± 0.006 0.025 ± 0.000 0.150 ± 0.002 - 3.100 ± 0.004

GARCH [61] 0.023 ± 0.000 0.880 ± 0.002 0.190 ± 0.001 0.370 ± 0.001 - -

DeepAR [54] - 0.336 ± 0.014 0.023 ± 0.001 0.055 ± 0.003 - 0.127 ± 0.042

LSTM-Copula [53] 0.007 ± 0.000 0.319 ± 0.011 0.064 ± 0.008 0.103 ± 0.006 0.326 ± 0.007 0.241 ± 0.033

GP-Copula [53] 0.007 ± 0.000 0.337 ± 0.024 0.025 ± 0.002 0.078 ± 0.002 0.208 ± 0.183 0.086 ± 0.004

KVAE [40] 0.014 ± 0.002 0.340 ± 0.025 0.051 ± 0.019 0.100 ± 0.005 - 0.095 ± 0.012

NKF [14] - 0.320 ± 0.020 0.016 ± 0.001 0.100 ± 0.002 - 0.071 ± 0.002

Transformer-MAF [50] 0.005 ± 0.003 0.301 ± 0.014 0.021 ± 0.000 0.056 ± 0.001 0.179 ± 0.002 0.063 ± 0.003

TimeGrad [49] 0.006 ± 0.001 0.287 ± 0.020 0.021 ± 0.001 0.044 ± 0.006 0.114 ± 0.020 0.049 ± 0.002

ScoreGrad sub-VP SDE [67] 0.006 ± 0.001 0.256 ± 0.015 0.019 ± 0.001 0.041 ± 0.004 0.101 ± 0.004 0.043 ± 0.002
Ours 0.003 ± 0.001 0.289 ± 0.002 0.023 ± 0.001 0.040 ± 0.004 0.075 ± 0.002 0.085 ± 0.007

Results. We evaluate the effectiveness of Diffusion Forcing as a sequence model on the canonical
task of multivariate time series forecasting by following the experiment setup of [53, 50, 49, 58, 67]
Concretely, we benchmark Diffusion Forcing on the datasets Solar, Electricity, Traffic, Taxi, and
Wikipedia. These datasets have different dimensionality, domains, and sampling frequencies, and
capture seasonal patterns of different lengths. The features of each dataset are detailed in Table 3. We
access the datasets from GluonTS [2], and set the context and prediction windows to the same length
for each dataset. Additionally, we employ the same covariates as [49]. We evaluate the performance of
the model quantitatively by estimating the Summed Continuous Ranked Probability Score CRPSsum

via quantiles. As a metric, CRPSsum measures how well a forecast distribution matches the ground
truth distribution. We provide detailed descriptions of the metric in Appendix F.4. We benchmark
with other diffusion-based methods in time series forecastings, such as TimeGrad [49] and the
transformer-based Transformer-MAF [50]. In particular, the main baseline of interest, TimeGrad [49],
is a next-token diffusion sequence model trained with teacher forcing. We track the CRPSsum metric
on the validation set and use early stopping when the metric has not improved for 6 consecutive
epochs, while all epochs are fixed to 100 batches across datasets. We then measure the CRPSsum on
the test set at the end of the training, which we report in Table 2. We use the exact same architecture
and hyperparameters for all time series datasets and experiments. Diffusion Forcing outperforms all
prior methods except for [67] with which Diffusion Forcing is overall tied, except for the Wikipedia
dataset, on which Diffusion Forcing takes fourth place. Note that time series is not the core application

30

Figure 8: Visualization shows Diffusion Forcing trained on 72 frames is able to rollout 180 frames on
Minecraft dataset without sliding window. The visualization shows a non-cherry-picked subsampling
of these 180 frames, although Diffusion Forcing can roll out much longer (such as 2000 frames) on
this dataset.

E.4 Additional results in planning

We provide some additional visualizations of causal planning in 15. We also present additional
visualization of Diffusion Forcing performing model predictive control in action. As shown in
figure 14, Diffusion Forcing can generate plans of shorter horizons since it’s flexible horizon.

32

Figure 9: Diffusion Forcing trained on 72 frames is able to rollout 180 frames on Minecraft dataset
without sliding window. The visualization shows a non-cherry-picked subsampling of these 180
frames, although Diffusion Forcing can roll out much longer (such as 2000 frames) on this dataset.
The first few frames marked in red are the ground truth images of the dataset used for conditioning.

E.5 Real robot experiment setup

In Figure 16 we visualize our robot experiment setup with corruption on observation. The dataset is
collected when the target bag isn’t present, while we test with such a bag in the scene zero-shot for
the imitation learning experiment with observation corruption. The typical failure mode is when the
robot no longer reacts to the visual clues of the randomized location of objects. We didn’t observe
the robot act wildly due to visual distractors.

F Additional details about datasets

F.1 Dataset for video diffusion

We adopt the video prediction dataset Minecraft and DMlab used by TECO[68].

Minecraft Navigation The Minecraft navigation dataset consists of first-person-view videos of
random walks in the Minecraft ‘swamp‘ biome. The agent walks via a technique called ‘sprint jump‘
which allows it to jump across blocks without getting stuck at 1 block obstacles. The agent walks
straight most of the time, with small chances of turning left or right. The height and width of the
video is 128 pixels and we trim long videos to subsequences of 72 frames. The dataset comes with
paired action data but we discard them to bring more stochasticity to the prediction task. Due to
limited compute, we only train on about 10% of the total subsequences.

One problem we noticed about the dataset is when the agent runs into obstacles with a height of 2
blocks or more. In this case, the agent will get stuck and the entire video sequence will consist of grey
granite patterns or brown dirty patterns. This leads to a huge amount of frames with these patterns,
making video models predict meaningless frames. Yet, we deem this as a problem of this dataset
itself.

DMLab Navigation Deepmind Lab navigation dataset consists of random walks in a 3D maze
environment. For DMLab, the resolution is 64 pixels and we use subsequences of 48 frames. We also
disregard the provided actions due to training.

We note that the VQ-VAE latent that stable video diffusion [4] diffuses is also only 128× 128× 3,
indicating Diffusion Forcing has the potential to scale up to higher resolution images with pre-trained

33

Figure 10: Visualization shows Diffusion Forcing trained on 36 frames is able to rollout 180 frames
on DMLab dataset without sliding window. The visualization shows a non-cherry-picked subsampling
of these 180 frames, although Diffusion Forcing can roll out almost infinitely on this dataset. The
first few frames marked in red are the ground truth images of the dataset used for conditioning.

image encoder and decoders. Due to the sheer size of the datasets, we only use about 10% of the total
data sequences for training due to limited computing, as we observe that doing so already allows us
to make good generations from initial frames from the test set.

F.2 Dataset for planning

D4RL [18] is a standard offline RL benchmark featuring a wide range of reinforcement learning
environments. Each environment is associated with a provided dataset of offline interactions with the
environment featuring state, action, and reward trajectories.

Like Diffuer [36], we choose the 3 maze environments as they are challenging long-horizon, multi-
modal, sparse reward problems uniquely suited for visualization and evaluating planning algorithms.
The IDs for the 3 used environments are “maze2d-medium-v1”, “maze2d-large-v1”, “maze2d-umaze-

34

Figure 11: Visualization shows Diffusion Forcing trained on 36 frames is able to rollout 180 frames
on DMLab dataset without sliding window. The visualization shows a non-cherry-picked subsampling
of these 180 frames, although Diffusion Forcing can roll out almost infinitely on this dataset. The
first few frames marked in red are the ground truth images of the dataset used for conditioning.

v1”. In each environment, one controls the acceleration of a robot to walk it towards a goal. The
observation space is 4 dimensional, featuring 2D location and velocity. The action space is 2D
acceleration. The agent always receives a random start location and the goal is to reach a fixed goal
position for each maze. The agent receives a reward of 1 if it is within a circle of radius 0.5 centered
at the goal state, and 0 otherwise.

The offline RL dataset for the maze environments consists of random walks in the maze. Specifically,
the authors first designate all intersections and turn in the maze as waypoints and code an agent to
navigate between waypoints with some randomization. As a result, the random walks are generated
in a way that the path is collision-free with the walls. The random walks introduce stochasticity to
the dataset, as trajectories in the dataset are never towards a specific goal.

35

Figure 12: Additional non-cherry-picked video prediction results on DMLab dataset, generated
within maximum training length. The first few frames marked in red are the ground truth images of
the dataset used for conditioning.

There are a few choices adopted from our main baseline Diffuser [36]: we disregard the reward in the
dataset and plan with goals only. We also evaluate a multi-goal variant of each environment (labeled
as “multi” in Table 1), where the goal is randomized just like the starting position.

F.3 Dataset for robot learning

We choose a long horizon robotic manipulation task as described in Section 4.4: Consider a tabletop
with three slots where we can place objects. One places an apple at slot A or slot B randomly, and
then places an orange at the other slot between A and B. A robot is challenged to swap the position
of two fruits using the third slot C. That is, it can only move a fruit to an empty slot at a time. For
example, when the apple is at slot A and the orange is at slot B, it may move the apple to slot C,
leaving slot A empty. Then move the orange to slot A and finally move the apple from slot C to slot B.
In figure 4, we illustrate the non-markovian property of the task: When the apple is at slot B and the
orange is at slot C, one cannot tell what the immediate action is without knowing the initial positions
of objects.

We put stickers on the table indicating a circular region occupied by any slot. Each circular region is
designed to be about double the diameter of a fruit. To make sure the task requires visual feedback,
we also randomize the location of a fruit inside the slot. We collected 150 expert demonstrations of
a Franka robot performing the task using VR teleoperation and impedance control. Among them,
each initial slot configuration makes up half of the dataset. We record videos from two camera
views, one from a hand camera and one in the front capturing all three slots. Each demonstration

36

Figure 13: Additional non-cherry-picked video prediction results on the Minecraft dataset, generated
within maximum training length. The first few frames marked in red are the ground truth images of
the dataset used for conditioning.

also comes with 6 dof actions of the robot hand. During the data collection, since one successful
demonstration will swap the position of two objects, its end configuration will naturally serve as the
starting configuration of the other randomized location, which we leverage to save time.

Each demonstration comprises 500 − 600 frames and actions. We train Diffusion Forcing on the
entire sequence. However, since adjacent frames are visually close, we pad and downsample the
videos to 40 frames where each frame is bundled with 15 actions.

F.4 Dataset for time series

Table 3: Characteristics of the GluonTS datasets used to benchmark
Diffusion Forcing in the domain of time series forecasting.

Dataset Dimension Domain Frequency Steps Prediction length

Exchange 8 R
+ BUSINESS DAY 6,071 30

Solar 137 R
+ HOUR 7,009 24

Electricity 370 R
+ HOUR 5,833 24

Traffic 963 (0,1) HOUR 4,001 24

Taxi 1,214 N 30-MIN 1,488 24

Wikipedia 2,000 N DAY 792 30

We use a set of time series datasets accessible via GluonTS [2], which are adopted from prior
works like [71, 41, 55]. These datasets capture real-world data of high-dimensional dynamics like
monetary exchange rates or the electricity grid. In Table 3, we provide a summary of the features of
these datasets, such as the dimensionality, the domains, the sampling frequency, the length of the
multivariate sequence in the training set, and the prediction length. We access the datasets in Table 3
via GluonTS and wrap the data processing functions implemented in GluonTS in our own dataloaders.
Each dataset consists of one long multivariate sequence, which is the training split, and a set of short
sequences that make up the test split. We construct a validation set of the same cardinality as the
held-out test set as a randomly sampled subset of subsequences from the training set. All splits are
normalized by the mean and the standard deviation of the features in the training split.

Covariates Often, statistical models that approximate (E.1) benefit from manually curated features

as additional input to the observations. A sequence of covariates C = {ct}Tt=1 can be constructed
to help the model recognize seasonal patterns and other temporal dependencies. We follow the
implementation in [50] to construct the covariate sequence as a function of the frequency of each
dataset in Table 3. As such, our covariates are composed of lagged inputs, as well as learned
embeddings and handcrafted temporal features that encode information such as the hour of the day
or the day of the month, depending on the sampling rate of the particular time series that is being

37

Figure 14: Example MPC planning for maze medium environment. Blue indicated trajectories
actually executed already. Red is the plan.

Figure 15: Example plans generated for maze medium (above) and maze large (below) environments.

modeled. Therefore, covariates are known for the entire interval [1, T], even at inference. We can
easily incorporate covariates into the probabilistic framework as

q(xt0:T | x1:t0−1, c1:T) :=

T
∏

t=t0

q(xt | x1:t0−1, c1:T). (F.1)

The benefit obtained from covariates is highly dependent on the characteristics of both the dataset
and the model used, as well as the feature engineering practices followed.

38

Figure 16: We randomly throw a target bag on the table as a strong visual distractor. Diffusion
Forcing can be prompted to treat observation as corrupted rather than ground truth.

Metric The Continuous Ranked Probability Score (CRPS) [45] is a scoring function that measures
how well the forecast distribution matches the ground truth distribution:

CRPS(F, x) =

∫

R

(F (z)− I {x ≤ z})2 dz ,

where F (z) is the univariate cumulative distribution function (CDF) over the predicted value, x is
a ground truth observation, and I {x ≤ z} is the indicator function that is one if x ≤ z and zero
otherwise. By summing the D-dimensional time series along the feature dimension for simulated

samples (resulting in Fsum(t)) and ground truth data (as
∑

i x
0
i), we can report the CRPSsum

CRPSsum = Et∼U(t0 �)

[

CRPS

(

Fsum(t),
∑

i

x0
i

)]

as the average over the prediction window. The lower the CRPSsum value, the better the predicted
distribution match the data distribution.

First, we manually sum the time series along the feature dimension and estimate the CDF Fsum(t) via
19 quantile levels at each time step t from 100 sampled trajectories. We then use the implementation
in GluonTs [2] to compute the CRPS, which we report as CRPSsum in Table 2. While we aggregate
the data manually, we verify that the numerical error relative to the GluonTS implementation remains
orders of magnitude below the precision threshold of the reported metric.

39

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported by experimental
results and are contextualized with respect to competing methods.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the final section of the paper (5).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

40

Answer: [Yes]

Justification: Derivations of relevant expressions are provided in the supplement.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide reproducibility details for each experiment in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

41

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code has been released publicly.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details are provided in the paper and supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report all quantitative results in terms of the mean and standard deviation
over several runs.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

42

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were performed on the same device, the details of which are
described in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, we conform to the Code of Ethics. At this time
we do not see our method providing a straightforward avenue for abuse by bad actors.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the low-level nature of our method, we do not see it directly facilitating
any negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

43

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data used is cited in accordance with the provided licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

44

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

45

	Introduction
	Related Work and Preliminaries
	Method
	Noising as partial masking
	Diffusion Forcing: different noise levels for different tokens
	New Capabilities in Sequence Generation
	Diffusion Forcing for Flexible Sequential Decision Making

	Experiments
	Video Prediction: Consistent, Stable Sequence Generation and Infinite Rollout.
	Diffusion Planning: MCG, Causal Uncertainty, Flexible Horizon Control.
	Controllable Sequential Compositional Generation
	Robotics: Long horizon imitation learning and robust visuomotor control
	Time Series Forecasting: Diffusion Forcing is a Good General-purpose Sequence Model

	Discussion
	Theoretical Justification
	Main Results
	Specializing to Gaussian diffusion
	Capturing all subsequences

	Proof of thm:mainelbo

	Additional Method Details
	Fused SNR reweighting
	Architecture
	Diffusion parameterization
	Noise schedule
	Implementation Details of Sampling with Guidance
	Performance Optimization
	Sampling schedule for causal uncertainty
	Metrics for Maze Planning
	Implementation Details of Timeseries Regression
	Compute Resources

	Additional Intuitions and Explainations
	Extension to transformer backbone
	The need for independent noise levels
	Guidance as planning
	Noising and stabilizing long-horizon generations
	Why Monte Carlo Guidance relies on Diffusion Forcing
	Does the replacement technique lead to flexible horizons in full-sequence diffusion?
	Further connection to Bayesian filtering
	Connection to other sequence training schemes

	Extended Related Work
	Additional Experiment Results
	Multivariate Probabilistic Time Series Forecasting
	Additional results in compositional generation
	Additional results in video prediction (wo/ cherry picking)
	Additional results in planning
	Real robot experiment setup

	Additional details about datasets
	Dataset for video diffusion
	Dataset for planning
	Dataset for robot learning
	Dataset for time series

