
GoFetch: Breaking Constant-Time Cryptographic Implementations

Using Data Memory-Dependent Prefetchers

Boru Chen

UIUC

Yingchen Wang

UT Austin

Pradyumna Shome

Georgia Tech

Christopher W. Fletcher

UC Berkeley

David Kohlbrenner

University of Washington

Riccardo Paccagnella

Carnegie Mellon University

Daniel Genkin

Georgia Tech

Abstract

Microarchitectural side-channel attacks have shaken the foun-

dations of modern processor design. The cornerstone defense

against these attacks has been to ensure that security-critical

programs do not use secret-dependent data as addresses. Put

simply: do not pass secrets as addresses to, e.g., data memory

instructions. Yet, the discovery of data memory-dependent

prefetchers (DMPs)—which turn program data into addresses

directly from within the memory system—calls into question

whether this approach will continue to remain secure.

This paper shows that the security threat from DMPs is

significantly worse than previously thought and demonstrates

the first end-to-end attacks on security-critical software using

the Apple m-series DMP. Undergirding our attacks is a new

understanding of how DMPs behave which shows, among

other things, that the Apple DMP will activate on behalf of

any victim program and attempt to “leak” any cached data

that resembles a pointer. From this understanding, we de-

sign a new type of chosen-input attack that uses the DMP to

perform end-to-end key extraction on popular constant-time

implementations of classical (OpenSSL Diffie-Hellman Key

Exchange, Go RSA decryption) and post-quantum cryptogra-

phy (CRYSTALS-Kyber and CRYSTALS-Dilithium).

1 Introduction

For over a decade, modern processors have faced a myriad

of microarchitectural side-channel attacks, e.g., through the

caches [63, 91], TLBs [42, 78, 82], branch predictors [6, 35],

on-chip interconnects [31, 64, 85], memory management

units [43, 50, 81], speculative execution [51, 54], voltage-

frequency scaling [77, 87, 88] and more.

The most prominent class of these attacks occurs when

the program’s memory access pattern becomes dependent on

secret data. For example, cache and TLB side-channel attacks

arise when the program’s data memory access pattern be-

comes secret dependent. Other attacks, e.g., those monitoring

on-chip interconnects, can be viewed similarly with respect to

the program’s instruction memory access pattern. This has led

to the development of a wide range of defenses—including

the ubiquitous constant-time programming model [52, 61],

information flow-based tracking [41, 79, 94], and more—all

of which seek to prevent secret data from being used as an

address to memory/control-flow instructions.

Recently, however, Augury [83] demonstrated that Apple

m-series CPUs undermine this programming model by intro-

ducing a Data Memory-dependent Prefetcher (DMP) that will

attempt to prefetch addresses found in the contents of pro-

gram memory. Thus, in theory, Apple’s DMP leaks memory

contents via cache side channels, even if that memory is never

passed as an address to a memory/control-flow instruction.

Despite the Apple DMP’s novel leakage capabilities, its

restrictive behavior has prevented it from being used in attacks.

In particular, Augury reported that the DMP only activates

in the presence of a rather idiosyncratic program memory

access pattern (where the program streams through an array

of pointers and architecturally dereferences those pointers).

This access pattern is not typically found in security critical

software such as side-channel hardened constant-time code—

hence making that code impervious to leakage through the

DMP. With the DMP’s full security implications unclear, in

this paper we address the following questions:

Do DMPs create a critical security threat to high-value

software? Can attacks use DMPs to bypass side-channel

countermeasures such as constant-time programming?

1.1 Our Contribution

This paper answers the above questions in the affirmative,

showing how Apple’s DMP implementation poses severe

risks to the constant-time coding paradigm. In particular, we

demonstrate end-to-end key extraction attacks against four

state-of-the-art cryptographic implementations, all deploying

constant-time programming.

Analyzing DMP Activation Patterns. We start by re-

examining the findings in Augury [83], here we find that

Augury’s analysis of the DMP activation model was overly

restrictive and missed several DMP activation scenarios.

Through new reverse engineering, we find that the DMP ac-

tivates on behalf of potentially any program, and attempts

to dereference any data brought into cache that resembles a

pointer. This behavior places a significant amount of program

data at risk, and eliminates the restrictions reported by prior

work. Finally, going beyond Apple we confirm the existence

of a similar DMP on Intel’s latest 13th generation (Raptor

Lake) architecture with more restrictive activation criteria.

Breaking Constant-Time Cryptography. Next, we show

how to exploit the DMP to break security-critical software.

We demonstrate the widespread presence of code vulnerable

to DMP-aided attacks in state-of-the-art constant-time cryp-

tographic software, spanning classical to post-quantum key

exchange and signing algorithms. Our key insight is that while

the DMP only dereferences pointers, an attacker can craft pro-

gram inputs so that when those inputs mix with cryptographic

secrets, the resulting intermediate state can be engineered

to look like a pointer if and only if the secret satisfies an

attacker-chosen predicate. For example, imagine that a pro-

gram has secret s, takes x as input and computes and then

stores y = s⊕x to its program memory. The attacker can craft

different x and infer partial (or even complete) information

about s by observing whether the DMP is able to dereference

y. We first use this observation to break the guarantees of a

standard constant-time swap primitive [53] recommended for

use in cryptographic implementations. We then show how to

break complete cryptographic implementations designed to

be secure against chosen-input attacks.

Summary of Contribution. We contribute the following.

1. Reverse Engineering Apple and Intel DMPs. We

reverse engineer the DMP found on Apple CPUs and dis-

cover new activation criteria (Section 4).

2. Developing DMP Exploitation Techniques. Using our

new understanding of the DMP, we develop a new type of

victim-agnostic chosen-input attack and associated attack

primitives (e.g., eviction set construction) that does not

require the attacker and victim to share memory. We use

these primitives to mount a proof-of-concept attack on

constant-time swap operations (Section 5).

3. Breaking Constant-Time Cryptography. Undergirded

by our chosen-input attack framework, in Sections 6 and 7

we develop end-to-end key-extraction attacks on constant-

time implementations of classical cryptography (OpenSSL

Diffie-Hellman Key Exchange and Go RSA decryption)

and post-quantum cryptography (CRYSTALS-Kyber and

CRYSTALS-Dilithium).

1.2 Disclosure

We disclosed to Apple, OpenSSL, Go Crypto, and the CRYS-

TALS team. Apple is investigating our PoC. OpenSSL re-

ported that local side-channel attacks (i.e., ones where an

attacker process runs on the same machine) fall outside of

their threat model. The Go Crypto team considers this attack

to be low severity. The CRYSTALS team agreed that pinning

to the Icestorm cores without DMP could be the short-term

solution and hardware fixes are needed in the long term.

2 Background

Cache Architecture. Modern processors use a hierarchy

of caches to reduce memory access latency. Typically, higher-

level caches are smaller and faster to access, while lower-level

caches are larger but slower to access. For example, the Apple

processors we study in this paper have two cache levels, a core-

private L1 and a shared L2. These caches are set-associative,

meaning that they contain a fixed number of cache sets, each

of which can fit a fixed number of cache lines. Cache lines

are the basic unit for cache transactions. Multi-level caches

have an inclusion policy that determines how the presence of

a cache line in one level affects its presence in other levels.

Most of our experiments were conducted on the Apple M1’s

4 Firestorm (performance) cores, which are the only ones to

have a DMP. Each Firestorm core has a 128 KByte, 8 way set-

associative L1 data cache with 64 Byte cache lines and these

4 Firestorm cores share a 12 MByte, 12 way set-associative

L2 data cache with 128 Byte cache lines. The shared L2 cache

is inclusive of the L1 caches, i.e. every cache line present in

the L1 is also present in the L2 [93].

Cache Side-Channel Attacks. In a cache side-channel at-

tack, an attacker infers a victim program’s secret by observing

the side effects of the victim program’s secret-dependent ac-

cesses to the processor cache. These attacks typically consist

of three steps, during which the attacker (i) brings the cache

into a known state, (ii) lets the victim execute, and (iii) checks

the state of the cache to learn information about the victim’s

execution during step (ii). Two techniques commonly used to

mount cache side-channel attacks are Flush+Reload [91] and

Prime+Probe [63]. In Flush+Reload, an attacker that shares

memory with a victim flushes individual shared cache lines

and later reloads them to figure out if the victim accessed

them. In Prime+Probe, the attacker builds an eviction set of

addresses that map to the same cache set as the victim’s target

cache line, primes the cache set with the eviction set, and later

probes it to figure out whether the victim accessed the target

line / displaced a line in the eviction set.

Classical Prefetchers. Prefetchers are a hardware opti-

mization used to hide memory access latency. Prefetchers live

in the memory system, typically between the L1 and L2 or

between the L2 and DRAM, and work by pre-loading data

into the cache before it is requested by the core. In particular,

given a program memory access pattern, classical prefetchers

try to predict the next addresses the program will access based

on its access pattern (an address trace) thus far.

Classical Prefetcher Security Implications. Several prior

works have analyzed the security implications of classical

prefetchers [17, 25, 26, 30, 75, 90, 97]. These works demon-

strate that, through unintended interactions with prefetchers,

victim programs can create cache state changes that can be

measured by the attacker to leak information. Fortunately,

leakage through these attacks is limited to the victim’s access

pattern and can be mitigated through constant-time program-

ming practices that ensure the program memory access pattern

does not depend on secrets.

Data Memory-Dependent Prefetchers (DMPs). DMPs are

a class of prefetchers designed to prefetch irregular memory

access patterns. In contrast to classical prefetchers, which only

take the memory access pattern as an input, DMPs also take

into account the contents of data memory directly to determine

what to prefetch. The computer architecture literature and

industry patents proposed several types of DMPs [7, 8, 16, 24,

28,49,83,95,96], which differ in the irregular access patterns

that they are designed to speed up (e.g., linked-list traversals,

sparse matrix traversals).

DMP Security Implications. Vicarte et al. were the first to

perform an analysis of the security implications of DMPs [71].

In the worst case, they found that proposed (but not known

to be implemented) indirect memory prefetchers could be

used to build universal read gadgets that leak a program’s

entire memory, similar to Spectre [51, 59]. More recently,

Augury demonstrated that modern Apple processors employ

a type of DMP referred to as an Array-of-Pointers (AoP)

DMP [83]. We describe this DMP’s behavior in more detail

in Section 4.1.

3 Threat Model and Setup

In this paper we assume a typical microarchitectural attack

scenario, where the victim and attacker have two different

processes co-located on the same machine.

Software. For our cryptographic attacks, we assume the

attacker runs unprivileged code and is able to interact with

the victim via nominal software interfaces, triggering it to

perform private key operations. Next, we assume that the

victim is constant-time software that does not exhibit any

(known) microarchitectural side-channel leakage. Finally, we

assume that the attacker and the victim do not share memory,

but that the attacker can monitor any microarchitectural side

channels available to it, e.g., cache latency. As we test unpriv-

ileged code, we only consider memory addresses commonly

allocated to userspace (EL0) programs by macOS.

Hardware. Unless otherwise specified, we focus on Apple

hardware. The M1-based experiments of Section 4 are run

on a Mac Mini with an Apple M1 running macOS 13.5. For

our investigation into the M2/M3 microarchitecture, we used

a Mac Mini with an Apple M2 (running macOS 14.2.1) and

a MacBook Pro with an Apple M3 (running macOS 14.2).

Finally, when investigating Intel’s DMP implementation, we

used an Intel Core i9-13900K (Raptor Lake) CPU, running

Ubuntu 23.04 with kernel version 6.2.0.

…

…

… …

…

…

Figure 1: We compare memory access patterns and subse-

quent prefetches. The first row represents the activation pat-

tern reported by Augury [83]: a streaming dereference access

pattern causes the DMP to dereference out-of-bounds pointers.

In the second row, we show that architectural/program-level

dereferences are unnecessary; we see DMP activations even

when the training array contains non-pointer values. In the

third row, we show that the DMP even dereferences the in-

bounds pointers that are architecturally accessed (but, again,

not dereferenced). Finally, the last row shows that a single

access to a memory location results in all pointers stored in

the incident cache line being dereferenced.

4 Microarchitectural Characterization

4.1 Revisiting DMP Data Access Patterns

In this section, we investigate the access patterns required

to activate the M1 DMP. We show that the M1 DMP deref-

erences more pointers and with fewer program assumptions

than was claimed by Augury [83]. Figure 1 summarizes the

subsection’s findings.

Augury. We begin by reviewing the M1 DMP activation

pattern and methodology described in Augury. Augury’s code,

summarized in Listing 1 (left), first allocates an array (aop)

of length M and fills aop with pointers to memory addresses

that correspond to unique L2 cache lines. Next, it evicts these

cache lines from the L2 via cache thrashing (by loading an ar-

ray eight times the size of the cache). The code then accesses

(loads) and dereferences the first N elements of the aop, where

N ≤ M. We call aop[0], . . . , aop[N-1] the in-bounds point-

ers and aop[N], . . . , aop[M-1] the out-of-bounds pointers.

Augury inferred the DMP’s activity by adding code after

the loop to time how long it would take to dereference pointers

in the aop. We call these test accesses. The main finding was

that the latency of test accesses for out-of-bounds pointers in

some index range [N,N +δ) corresponded to L2 cache hits.

This is noteworthy because the code itself never dereferenced

pointers located after aop[N]. Augury attributed this behavior

to a new form of prefetcher, with prefetch distance δ.

uint64_t* aop[M];

// Fill aop with pointers

// to unique addresses

// or random values

for (i=0; i<N; i++) {

*aop[i%N];

}

// Measure latency to

// set of test addresses

uint64_t* aop[M];

// Fill aop with pointers

// to unique addresses

// or random values

for (i=0; i<N; i++) {

aop[i%N];

}

// Measure latency to

// set of test addresses

Listing 1: Left: The DMP activation code pattern studied by

Augury [83]. Right: The DMP activation pattern studied in

this work. For both, assume N ≤ M. Both code patterns fill

the aop before the loop begins and use a mod operation to

inhibit speculative execution.

Observing DMP Activations. We reproduce Augury’s ex-

periments by setting N = 256 and M = 264, choosing a set of

test pointers, and then either filling the out-of-bounds region

with those pointers or random values. When the pointers are

present, a test access (dereference) to one takes ∼ 250 cycles,1

as shown in Figure 2a. When the pointers are not present, the

same test accesses take significantly longer. A cutoff of 300

cycles (red dash line) cleanly differentiates between the two

cases and thus DMP activations. This corresponds to the L2

hit time and matches Augury’s findings, consistent with δ ≥ 8.

Avoiding Architectural Pointer Dereferencing. To deter-

mine if the architectural pointer dereferences are required to

trigger DMP activations we use the code in Listing 1 (right),

where the in-bounds region does not contain pointers nor

does the aop traversal loop perform any pointer dereferences.

Again, we either fill the out-of-bounds region with test point-

ers or random values. See Figure 1 (second row).

As seen in Figure 2b, when the out-of-bounds region con-

tains pointers, test accesses are < 300 cycles despite no ar-

chitectural dereferences occurring to the in-bounds pointers.

From this, we deduce that architectural dereferences are not re-

quired for the DMP to activate, i.e., that the DMP will prefetch

out-of-bounds pointers without them.

In-bounds DMP Dereferencing. We then further check if

the in-bounds pointers are also dereferenced by the DMP as

they are no longer architecturally dereferenced in Listing 1

(right). This is the memory access pattern outlined in Figure 1

(third row), where we iterate over an array containing valid

pointers without performing any dereferences.

Figure 2c shows that for N = 8, we can still consistently

differentiate between the two cases. This indicates that if the

aop contains data which can be interpreted as valid pointers,

merely iterating over it is sufficient to activate the DMP.

One Load, Single Pointer. Finally, we consider how general

the memory access pattern can be by performing a single data

1We collect timing measurements by configuring and reading performance

counters (PMC2-PMC7) for cycle counting via kperf.

256 257 258 259 260 261 262 263
Test Index

0
100
200
300
400
500
600
700
800

Ac
ce

ss
 L

at
en

cy
 (c

yc
le

s) No Pointer Contain Pointer

(a) Row 1: Traversing the AoP

with dereferences; out-of-bounds

pointers are prefetched

256 257 258 259 260 261 262 263
Test Index

0
100
200
300
400
500
600
700
800

Ac
ce

ss
 L

at
en

cy
 (c

yc
le

s) No Pointer Contain Pointer

(b) Row 2: Traversing the AoP

without dereferences; out-of-

bounds pointers are prefetched

0 1 2 3 4 5 6 7
Test Index

0
100
200
300
400
500
600
700
800

Ac
ce

ss
 L

at
en

cy
 (c

yc
le

s) No Pointer Contain Pointer

(c) Row 3: Traversing the AoP

without dereferences; in-bounds

pointers are prefetched

0 1 2 3 4 5 6 7
Test Index

0
100
200
300
400
500
600
700
800

Ac
ce

ss
 L

at
en

cy
 (c

yc
le

s) No Pointer Contain Pointer

(d) Row 4: One load to AoP;

pointers within the incident cache

line are prefetched

Figure 2: Median, minimum, and maximum test access laten-

cies (over 32 samples for each bar) using the access patterns

of Figure 1. The x axis corresponds to the test access latency

for the pointer at the corresponding index in the aop in case it

contains the pointer. Blue bars (No Pointer) are for when the

test pointer is not in the aop array, while red bars (Contain

Pointer) are for when the pointer is in the array.

load and no architectural dereference, as shown in Figure 1

(fourth row). Even though the program only loads one aop

index, other pointers in the same cache line are also brought

into the cache. Figure 2d shows that with a single load,2 we

observe similar results to traversing the entire (N = 8) aop

in Figure 2c. We further repeat the experiment but vary the

number of pointers in the cache line from 1 to 8. In all cases,

we observe DMP activations/dereferences for all pointers in

aop, indicating that even a single pointer can trigger the DMP.

4.2 DMP Activation Criteria

Having established what memory access patterns activate

the DMP, this section investigates where data must reside in

the memory hierarchy to be DMP-searched for pointers. We

show that the DMP dereferences pointers specifically on L1

cache fills and features two mechanisms to prevent redundant

prefetches: a history filter and a do-not-scan hint. In this

section, we make use of standard eviction sets, i.e., eviction

sets for individual cache sets. We generate these eviction sets

using standard techniques from prior work [84].3

History Filter. We start by rerunning the experiments from

2Replacing the load with the store instruction, we find that none of point-

ers in the accessed cache line are dereferenced.
3This is in contrast with Augury, which, as we mentioned in Section 4.1,

relied on cache thrashing to precondition the cache.

Section 4.1 using standard L2 eviction sets to evict both the

aop array and the L2 cache lines that are pointed to by pointers

in the aop array. We call these L2 lines the target lines.

We observe that the DMP only reliably dereferences each

pointer once, on the first access to its aop entry. That is, even if

the previously prefetched target line is evicted from the cache,

along with its aop entry, the DMP no longer activates when

seeing that pointer in the future. This observation suggests

that the decision to dereference a pointer is made based on not

only the program’s access pattern but also some additional

mechanism. An Apple patent suggests that this mechanism

might be a history filter that “attempts to identify whether

a given memory pointer candidate likely corresponds to a

candidate that has been recently prefetched, in which case the

given candidate may be discarded as a likely duplicate” [46].

The same patent suggests that this filter may be organized as

a direct-mapped 128-entry or 256-entry structure.

History Filter Reverse Engineering. To corroborate the

history filter hypothesis, we design a new experiment where

aop only contains a single pointer ptr. First, we access aop,

causing the DMP to dereference ptr. We then evict aop

and the target line for ptr from the cache using standard

eviction sets. Next, we read S unique pointers stored in a

different array, causing the DMP to inspect and dereference

S additional pointers. Finally, we re-access aop and check if

this second access causes the DMP to dereference ptr. We

run the experiment 100 times for each value of S and report

the success rate (i.e., the percentage of times that the DMP

activated on the second aop access) in Figure 3.

1 2 4 8 16 32 64 128 256
Number of different ptrs

0
10
20
30
40
50
60
70
80

Su
cc

es
s R

at
e

(%
)

Figure 3: The percentage of experiments where the DMP

re-activates when ptr is re-accessed (Success Rate, y-axis),

as a function of the number of unique pointers accessed in

between the first and second access to ptr (x-axis). Observe

that Success Rate increases with the number of unique inter-

mediate pointer accesses.

We observe that the DMP only reliably re-activates on

ptr when S ≥ 128. This behavior is likely due to the lim-

ited capacity of the history filter. That is, accessing S unique

pointers results in the record of ptr’s target getting evicted

from the filter when S ≥ 128. We hypothesize that Augury’s

methodology was not affected by the history filter because

its aggressive cache thrashing technique (i.e., accessing an

array eight times the size of the cache) had a side effect of

also flushing the history filter.

We further find that the history filter is a per-core structure

and is reset if a core remains idle for an extended period of

time. Specifically, the DMP reliably re-activates even when

S = 0 if we (i) reschedule our experiment to a different core

between the first and the second aop access or (ii) run the

experiment on one core but leave the core idle for 100µs or

more between the first and the second aop access.

L1 and L2 Cache Fills. The above observations indicate

that the DMP activates when an aop entry is accessed from

DRAM and the record of its target is not present in the history

filter. Next, we investigate at which stage of a DRAM fetch

the DMP scans the data for pointers. Recall that the M1 has

an L2 line size of 128 Bytes and an L1 line size of 64 Bytes.

With each pointer containing 8 Bytes, L2 lines can thus be

split into “lower” and “upper” halves, each of which is an

independent L1 line that can store 64/8 = 8 pointers. When a

program accesses either the lower or upper half, the accessed

L1 line will be filled into both the L1 and L2 caches, while

the other half will only be filled into the L2 cache.4 In order

to differentiate between L1 and L2 fills, we populate a L2

line size-aligned aop with 16 unique pointers and run the

experiment from Listing 1 (right) in Section 4.1 with N = 1

and M = 16. Before each repetition, we use cache thrashing

(as in Section 4.1) to evict the aop and its target lines from

both the cache and the history filter.

Figure 4 (top) summarizes our findings, repeating each ex-

periment 100 times and using the 300 cycle threshold from

Section 4.1 for L2 cache hits. Here, we observe that when

the program accesses aop[0], the DMP only dereferences

aop[0], · · · , aop[7]. We run 7 more variants of this experi-

ment, varying the single aop[i] access from i = 1, · · · ,7 and

observe the same behavior for each choice of i. Next, we run

8 more variants of the same experiment, this time making a

single access to aop[i] for i = 8, · · · ,15. In this case, we ob-

serve that aop[8], · · · , aop[15] are all dereferenced for each

choice of i, as shown in Figure 4 (bottom). We conclude that

when filling an L2 cache line from DRAM, the DMP derefer-

ences all pointers in the specific L1 line that is accessed, and

not those in the other half of the L2 line.

We run 8 more variants of the above experiment. For these,

before making an access to aop[i] for i = 0, · · · ,7, we first

make an access to aop[8]. We then repeat this setup while ex-

ploring the opposite case: before making an access to aop[i]

for i = 8, · · · ,15, we first make an access to aop[0]. As dis-

cussed above, the first access brings aop[i] from DRAM

to the L2 cache and aop[i] further moves to the L1 cache

with the second access. We observe that the DMP reliably

dereferences the contents of the L1 line containing aop[i].

This means that L2 to L1 fills can also activate the DMP.

Do-not-scan Hint. The above experiments suggest that

4We empirically verify this by subsequently timing an access to the other

half and observing that its access latency corresponds to the that of an L2 hit.

0

50

100

Su
cc

es
s R

at
e

(%
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position Offset

0

50

100

Su
cc

es
s R

at
e

(%
)

Figure 4: Which pointers in an L2 line are dereferenced when

an access is made to data in that line? Top: the code accesses

aop[0]. Bottom: the code accesses aop[8]. We conclude that

the DMP dereferences pointers in the specific L1 line (either

the upper or lower half of the L2 line) the code accessed.

the DMP searches for pointers in L1 cache lines during L1

fills, regardless of whether the L1 line is fetched from DRAM

or the L2. To corroborate this hypothesis, we design another

variant of the single-pointer experiment from Section 4.1.

The experiment starts by loading the aop into the L1 and

subsequently using eviction sets to either (i) evict the aop

from the L1 or (ii) evict the aop from both the L1 and L2.

In both cases, the experiment also evicts the target line from

the cache and accesses a separate set of 256 pointers to evict

the record of the target line from the history filter. Finally,

the experiment re-accesses aop and tests if this second aop

access causes the DMP to re-dereference ptr.

Interestingly, we observe that the DMP does not re-

dereference ptr when the experiment re-accesses aop and

aop was only evicted from the L1. However, when the aop is

also evicted from the L2, the DMP re-dereferences it. This

means that even if the previously prefetched target line is

evicted from both the cache and the history filter, the DMP

does not dereference that pointer again unless its aop entry is

also evicted from both the L1 and L2. This behavior matches

a mechanism also described in the previously referenced Ap-

ple patent [46], where the L2 sets a “do-not-scan” hint on

L1 cache fills to prevent a previously scanned L1 cache line

from being redundantly re-scanned. Fortunately, in our ex-

periments, evicting the aop from both the L1 and the L2 is

sufficient to clear the “do-not-scan” hint on the aop.

4.3 Restrictions on Dereferenced Pointers

In the previous section, we learned that the DMP activates

on L1 fills and dereferences the pointers inside it if and only

if those pointers’ targets are not in the history filter and the

filled line is not marked with the "do-not-scan" hint. We now

investigate what pointers can be dereferenced by the DMP.

For this, we again use Listing 1 (right) with N = 1 and M = 1

and rely on cache thrashing to ensure that the aop is uncached.

We then try testing different pointer values in the aop, and

checking for DMP activations.

4GByte Prefetch Region. We begin by investigating if

the DMP requires there to be a relationship between the ad-

dress of the aop entry and the value of the aop entry (i.e.,

the pointer). We call the address of the aop entry the en-

try’s/pointer’s position. To understand what the requirements

are for one pointer to be dereferenced, we carry out a series of

experiments that vary a pointer’s position and value. See one

such experiment in Figure 5 which shows that the pointer’s

position and value must be related for DMP activation to oc-

cur. Overall, we discover that the DMP only dereferences a

pointer if the aop entry and target line are in the same 4 GByte-

aligned region (Figure 6). In other words, that the upper 32

bits of their addresses match. Apple’s patent [46] mentions

similar pointer detection heuristic.

0x
38

0x
39

0x
3a

0x
3b

0x
3c

0x
3d

0x
3e

0x
3f

0x
40

0x
41

0x
42

0x
43

0x
44

0x
45

0x
46

0x
47

Pointer Position

0x38

0x39

0x3a

0x3b

0x3c

0x3d

0x3e

0x3f

0x40

0x41

0x42

0x43

0x44

0x45

0x46

0x47

Po
in

te
r v

al
ue

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Figure 5: For various combinations of pointer position and

value, when does the DMP dereference the pointer? Here,

we sweep within the region between 0x380000000 and

0x480000000. The white diagonal shows the degenerate case

when the pointer’s value equals its position, which is invalid.

The lower 28 bits of the addresses are omitted for brevity.

Top Byte Ignore. The address space standards in ARMv8

direct the processor to ignore the top byte of the virtual ad-

dress [2]. To learn whether the DMP follows this specification,

we perform a series of experiments flipping different upper

bits in a valid pointer. We then perform a test access to check

whether, after these bit flips, the DMP still dereferences the

original pointer. Figure 7 shows the results. We perform 16

experiments, where each flips a bit in the address starting at

bit 48 and ending at bit 63. We observe that the DMP does not

…

Figure 6: Outline of the placement of the target line and the

aop entry. Following the observation from Figure 5, if the aop

entry and target line straddle a 4GByte boundary, the DMP

won’t dereference the pointer.

dereference the original pointer if a bit in the range [48,55] is

flipped. However, if a bit in the range [56,63] is flipped, the

original pointer gets dereferenced. We conclude that the DMP

ignores the upper 8 bits of a pointer when dereferencing it,

which matches the “Top-Byte-Ignore” in ARMv8.

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Flip Bit Index

0
20
40
60
80

100

Su
cc

es
s R

at
e

(%
)

Figure 7: Activation success rate for a pointer when it is

accessed by the program, after having one bit flipped between

bit 48 to 63.

Auxiliary next-line prefetch. Finally, we investigate the

amount of data prefetched when the DMP dereferences a

pointer. We test this by performing a test access to not only a

pointer’s target line, but also to nearby lines. Apart from the

target line, we also observe L2 hits to cache lines immediately

next to the target line. We hypothesize that this is due to

a next-line prefetcher being triggered alongside the DMP,

which matches the adjacent-line prefetch behavior described

in Apple’s patent [46].

4.4 A Model for the DMP’s Behavior

We now summarize the previous two subsections and make

several new observations.

Step 1: Observing Cache Line Data. The DMP scans

the data in an L1 line when that line is filled to the L1, if

the line is not marked with the “do-not-scan” hint (i.e., the

line has not been scanned since it was brought into the cache;

Section 4.2). The DMP performs the scan by checking each

pointer size-aligned chunk (the first 64 bits, second 64 bits,

etc.) in the cache line.5

Step 2: Address Check. Next, the DMP applies additional

checks and filters to each chunk (candidate pointer) to see if it

should be dereferenced. Bits [63:56] are ignored (Section 4.3).

5Pointers in aop should be 64-bit aligned, which is also discussed in [83].

Further, per Section 4.3, the cache line that stores the pointer

(its position) must be in the same 4 GByte (log2 4 GByte =
32 bits)-aligned region as the cache line that the pointer points

to (its target). In other words, the DMP checks whether bits

[55:32] of the candidate pointer match the corresponding

bits of the address of the target cache line. Finally, the DMP

checks if the candidate pointer is present in the history filter

(Section 4.2). If bits [55:32] match and the pointer is not in

the history filter, the DMP attempts to prefetch two L2 lines.

Specifically, it first prefetches the cache line targeted by the

64-bit chunk, ignoring the top byte value. Next, it triggers

the CPU’s next line prefetcher and fetches the neighboring

cache line also into the CPU’s L2 cache (Section 4.3). Both

prefetched addresses are then inserted to the history filter.

As part of the prefetching process, the DMP looks up the

translation lookaside buffer (TLB) and triggers page table

walks to obtain the physical address corresponding to each

candidate pointer (which is a virtual address [32]). On a TLB

miss, the DMP inserts the missing translations into the TLB.6

4.5 Other Microarchitectures

We investigated the DMP behavior on other microarchitec-

tures including the Apple M2/M3 and Intel’s 13th Generation

(Raptor Lake) CPUs, and display results in Figures 8a and 8b.

As the Apple M3 behaves similarly to the M2, we omit its

figure. In these two figures, the x-axis refers to the four access

patterns shown as the rows in Figure 1, while the y-axis is

the access latency for test accesses. For simplicity, we only

show latencies for test accesses to the first pointer in each

pattern. The Intel i9-13900K (Raptor Lake) shows a distin-

guishable timing difference only for the first access pattern

from Figure 1, whereas the M2/M3 activates on all the pat-

terns discussed previously. We conclude that while DMPs are

present on Raptor Lake machines, they require different acti-

vation patterns. Finally, we leave the systematic investigation

and exploration of Intel’s DMPs to future work.

Row 1 Row 2 Row 3 Row 40
100
200
300
400
500
600
700
800

Ac
ce

ss
 L

at
en

cy
 (c

yc
le

s)

No Pointer Contain Pointer

(a) Apple M2

Row 1 Row 2 Row 3 Row 40
100
200
300
400
500
600
700
800

Ac
ce

ss
 L

at
en

cy
 (c

yc
le

s)

No Pointer Contain Pointer

(b) Intel Raptor Lake

Figure 8: We test four access patterns shown in Figure 1 on

Apple M2 (left) and Intel 13th generation Raptor Lake (right).

6Prior work [83] also observes that the M1 DMP fills TLB entries for

pointers in the aop.

5 Attacking Constant-Time Conditional Swap

To mitigate microarchitectural side channels, cryptographic

code follows the constant-time programming principle: A

secret should not determine which instructions to execute,

which memory to access, or be used as input for variable-time

instructions [11, 13, 14, 21–23, 61].

We now show how the DMP can break cryptographic secu-

rity even when code is written to follow the constant-time prin-

ciple. To introduce ideas and attacker tools, this section show-

cases a Proof-of-Concept (PoC) attack on a core constant-time

cryptographic primitive [53] called ct-swap which condi-

tionally swaps the contents of two arrays a and b based on

a secret bit secret. We start with ct-swap to simplify the

presentation. Later sections will reuse the ideas and processes

described here to break real cryptographic code.

Constant Time Swap Overview. Listing 2 swaps the

contents of array a and b based on the value of secret

in a constant-time manner. The underlying swap opera-

tion for each 64-bit entry is borrowed from OpenSSL.7

To achieve constant-time behavior, Line 4 in Listing 2

first extends secret to be a machine-sized word; i.e.,

0x0000000000000000 or 0xFFFFFFFFFFFFFFFF based on

the value of secret. Next, for each loop iteration, Line 6

of Listing 2 computes a masked delta between the contents

of the current elements of a and b. Finally, Lines 7 and 8

actually conditionally swap the contents of the two elements,

based on the value of secret.

1 void ct-swap(uint64_t secret, uint64_t *a, uint64_t *b,

2 size_t len) {

3 uint64_t delta;

4 uint64_t mask = ~(secret-1);

5 for (size_t i = 0; i < len; i++) {

6 delta = (a[i] ^ b[i]) & mask;

7 a[i] = a[i] ^ delta;

8 b[i] = b[i] ^ delta;

9 }

10 }

Listing 2: Code snippet of constant-time swap. The contents

of a and b is conditionally swapped based on secret.

5.1 Attack Overview and Challenges

Emulating realistic attack scenarios, we assume that ct-swap

runs in a victim process, separate from the attacker’s address

space. We assume a simple but common protocol between

victim and attacker, where the victim takes input from the

attacker to populate the ct-swap’s a and b arrays and then

executes ct-swap. The outcome of the swap is never directly

revealed, nor is the value of secret. The attacker can learn

page offsets (not randomized by ASLR) of array a and b by

7constant_time_cond_swap_64: https://github.com/openssl/
openssl/blob/1751185154ab1f1a796e0f39567fe51c8e24b78d/

include/internal/constant_time.h.

investigating the victim’s program in advance. The attacker

process’ goal is to extract the value of secret from the victim,

using microarchitectural side channels and the DMP.

Chosen-Input Attack. We now overview how the attacker

uses the DMP to extract secret. At a high level, the attacker

populates one of ct-swap’s arrays (a or b—let us assume

it chooses b) with a pointer ptr of its choosing, and then

arranges for the DMP to dereference the contents of the other

array (a) during the conditional swap computation. Then,

the attacker uses conventional cache side-channel analysis to

observe whether ptr was dereferenced by the DMP due to

ct-swap’s computation over a, which in turn reveals whether

the swap occurred and therefore the value of secret.

Overcoming DMP Activation Criteria. To correctly at-

tribute the DMP’s activation to ptr being moved from b to

a, the attacker must ensure that the DMP’s activation criteria

are only satisfied when accessing a (and not b). Based on

Section 4.2, one necessary prerequisite to activate the DMP

on an aop load is to evict the aop from the L2 cache. Thus,

we need a means to evict a8 (but not b).

Overcoming Address Space Separation. Yet, since the

attacker runs in a separate process from the victim and without

any shared memory, we must replace the Flush+Reload in

Section 4 with Prime+Probe. In particular, we must build an

eviction set to detect whether ptr was dereferenced by the

DMP inside the victim process. However, it is not clear how

to build eviction sets for ptr’s target line (or a mentioned

above),9 as we cannot time accesses to these since they are

located inside the victim’s address space.

5.2 Compound Eviction Set Construction

We now present a novel technique—compound eviction

set generation—which solves the above problem by using

ct-swap’s access to a as well as DMP dereferences to ptr to

simultaneously build eviction sets for both elements.

Establishing a Timing Source. To start, we need to distin-

guish between L2 hits and misses. However, as the attacker

is running without elevated privileges, it is unable to access

nanosecond-accurate timers on Apple CPUs, instead being

limited to the system’s 42 ns timer. Unfortunately, we empir-

ically find that this timer is not sufficient to reliably mount

Prime+Probe attacks. We sidestep this issue by using the

multi-thread timer approach of [45, 68, 72]. Here, the main

idea is to use a dedicated counting thread, which constantly in-

crements a shared variable with the attacker process in a tight

loop. By loading the value of the shared variable, the attacker

8Triggering the DMP also requires that a is refilled after it is evicted. We

rely on the victim to perform this refill. For example, ct-swap reads a in a

loop, which will cause each cache line making up a to be accessed (refilled)

multiple times (len> 1).
9We assume that the base addresses of a and b have different page-offset

bits, so that the eviction set for a would not evict b, which also holds for later

attacks.

process is thus able to obtain high resolution timestamps,

allowing us to distinguish L2 hits from misses.

Generating Standard Eviction Sets. Next, we need to gen-

erate a large number of standard L2 eviction sets, i.e., eviction

sets targeted to individual L2 sets. The M1 has 8192 (213) L2

cache sets, indexed with 6 (upper) bits from the physical page

frame and 7 (lower) bits from the page offset. We generate

standard eviction sets for all these L2 sets by extending the

technique used in Section 4.2 (detailed in Appendix A).

Generating Compound Eviction Sets. With all standard

L2 eviction sets in hand, we now need to test which of these

are capable of evicting the target of ptr. As described in Sec-

tion 5.1, this is non-trivial because observing the dereference

of ptr via DMP activations requires an eviction set for a

which we cannot create with standard techniques.

To solve this problem, we will build and test what we call

compound eviction sets, which simultaneously evict both the

target of ptr and a. We build candidate compound eviction

sets as pairs (EVa, EVptr) of standard L2 eviction sets, where

EVa (respectively EVptr) is an eviction set whose page-offset

bits are compatible with a (respectively ptr).

We proceed as follows. First, the attacker will place ptr

in both a and b. This is so that dereferences to a can occur

regardless of the secret value. Next, the attacker tests whether

each candidate compound set, denoted (EVa,EVptr), can evict

both a and ptr’s target by priming all lines in EVptr and

continuously traversing EVa, and then probing/timing EVptr.

If the probe results in an L2 miss, the target of ptr filled

the cache and displaced a line in EVptr. This simultaneously

implies that EVa evicted a because evicting a is the only

way that the DMP would have dereferenced ptr. If the probe

results in all L2 hits, either EVa or EVptr were not eviction

sets for a or ptr, respectively.

The complexity of compound eviction set finding is propor-

tional to the number of possible candidates. With the knowl-

edge of page offsets of a and ptr, the attacker can reduce

the number of potential L2 sets each of them maps to from

8192 to 64. Meanwhile, EVa only needs to be a superset of

the standard eviction. We group 810 standard eviction sets as

one EVa in our PoCs, which leads to 512 candidates overall.

We run our compound eviction sets construction algorithm 10

times and the mean time for all L2 eviction set generation is

263.9 seconds, while 113.6 seconds for finding the compound

eviction set. Overall, we find that we are able to reliably con-

struct these compound eviction sets using the above-described

technique, allowing us to proceed to using the DMP in order

to recover secret from within ct-swap’s address space.

5.3 Proof-of-Concept Results

With the compound eviction set (EVa, EVptr) for a and ptr’s

target in hand, we now demonstrate a proof-of-concept at-

10The group size is not “the bigger the better”, since EVa needs to evict

array a before the victim loads a.

tack on ct-swap to learn the secret secret. For all proof-

of-concept attacks, we use three attacker processes. The

first process establishes a TCP connection with the victim

process and transmits the value of ptr to the victim. The

victim process upon receiving ptr subsequently executes

ct-swap(a,b,secret) where a is some dummy value, b is

full of multiple copies of ptr, and secret is a hardcoded

value. In parallel, we use the second attacker process to con-

tinuously traverse EVa, evicting a from the CPU’s L2 cache

during the execution of Line 7 of Listing 2. Finally, the third

attacker process provides a high-resolution timing source via

a counting thread that constantly increments a shared variable.

After transmitting the value of ptr to the victim, our first at-

tacker process uses the Prime+Probe channel built on EVptr to

monitor the DMP activation. We perform 3200 attack trials,11

for both values of secret. Figure 9 summarizes our findings,

with the timing distributions for secret=1 and secret=0

being clearly distinguishable.

600 625 650 675 700 725 750 775 800
Prime+Probe Latency (ticks)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

secret=1
secret=0

Figure 9: Prime+Probe latency of constant-time swap subrou-

tine. If ptr shows up in a (secret=1), the attacker observes a

high latency; otherwise (secret=0) it observes a low latency.

6 Attacking Classical Cryptography

We demonstrate that Go’s RSA implementation and

OpenSSL’s Diffie-Hellman Key Exchange (DHKE) imple-

mentation, despite being constant-time, can leak secrets via

the DMP side-channel. Both systems are otherwise secure

against malicious inputs, but feature subroutines that activate

the DMP based on the secret key. We draw inspiration from

prior chosen-ciphertext side-channel attacks [4, 5, 9, 19, 20,

38, 39, 47, 52, 60, 89, 92], and adapt those techniques for the

specific implementations considered in this section.

6.1 Go’s RSA Encryption

Our targeted RSA implementation uses Montgomery multi-

plication, which implicitly blinds the RSA secret key except

11Based on Section 4.2, the attacker has to reset the history filter to achieve

re-dereferences to the same ptr. In our PoC, while the methods discussed

in Section 4.2 could help, we experimentally find that the TCP socket code

used in the victim process to receive inputs from the attacker generates a

sufficient amount of traffic to reset the history filter.

during a single, necessary modular operation.12 We find that

an attacker can craft ciphertexts to exploit this modular opera-

tion and extract a partial RSA secret key by observing DMP

activations.13 They can then use the standard Coppersmith

method to recover the entire RSA secret key [29, 70].

Go’s RSA (1.20+) encryption overview. RSA is a public-

key cryptosystem. Go (1.20+) RSA implementation follows

the specification in RFC 8017 [62]. RSA has a public ex-

ponent e (65537 in Go’s RSA). An RSA secret key con-

sists of two primes p and q, and an integer d such that ed ≡
1 mod (p− 1)(q− 1). An RSA public key is (N = p ∗ q,e).
Without loss of generality we assume p > q. Go’s RSA uses

the Chinese remainder theorem (CRT) to accelerate decryp-

tion.

PoC overview. In our PoC, we target Go’s RSA-2048

(1.20). Similarly to [92], our threat model assumes that the

victim (server) generates a pair of static public and secret keys.

The attacker sends a ciphertext to the victim, and the victim

decrypts the ciphertext using its secret key.14 The public N

is 2048 bits long, and the secret p and q are about 1024 bits

long. Factoring N into p and q breaks RSA-2048. In our PoC,

the attacker extracts the 560 most significant bits of p by

observing DMP activations, and then uses the Coppersmith

method to break RSA-2048.

DMP-vulnerable subroutine in Go’s RSA. Listing 3

shows the DMP-vulnerable subroutine in Go’s RSA Decrypt.

Decrypt takes in an RSA secret key and a ciphertext c, and

outputs a plaintext m = cd mod N. Due to CRT, Decrypt

breaks this exponentiation into two: m = cDp mod p and m =
cDq mod q, where Dp and Dq are CRT-related parameters.

The first step of m= cDp mod p is to compute t0 = c mod p.

A key observation is that if c< p, t0 remains as c. On the other

hand, if c g p, t0 becomes c− l ∗ p, which is unpredictable

because l is an unknown integer. Suppose c contains a ptr:

• If c < p, t0 = c contains the ptr and activates the DMP.

• If c g p, t0 ̸= c is random and does not activate the DMP.

In this case, we can extract p bit by bit by observing DMP

activations resulting from loading t0. This allows us to treat

t0 as the AoP a in Section 5.15

Challenge ciphertext construction. Next, we show how

to construct c to extract the 560 most significant bits of p

(one at a time). In Figure 10, assume the attacker has already

recovered the n−1 most significant bits of p and targets the

n-th bit. Since p is 1024-bit, the attacker sets the leading 1024

bits of the 2048-bit c to be 0. They set the next n−1 bits of

c to be the recovered n−1 bits of p, and the n-th bit of c to

12Updates to Go 1.20 cryptography: https://words.filippo.io/disp
atches/go-1-20-cryptography/

13In Sections 6 and 7, DMP activation particularly refers to DMP derefer-

ences to the attacker-chosen ptr.
14The attack does not apply to the RSA signature scheme because signa-

tures are calculated as s = hd mod N, where h is the message hash. Since

hash is a one-way function, the attacker does not have precise control of h.
15t0 is a Go bigmod.Natwhose internal representation is an array of 64-bit

integers (on 64-bit machine).

1 // m = c ^ Dp mod P

2 m = bigmod.NewNat().Exp(t0.Mod(c, P), // t0 = c mod P

3 priv.Precomputed.Dp.Bytes(), P)

4 // m2 = c ^ Dq mod Q

5 m2 = bigmod.NewNat().Exp(t0.Mod(c, Q), // t0 = c mod Q

6 priv.Precomputed.Dq.Bytes(), Q)

Listing 3: DMP-vulnerable subroutine in Go’s RSA (1.20)

Decrypt. c is the attacker’s challenge ciphertext that contains

a ptr. t0 functions as the AoP a in Section 5 because t0 =
c mod p would activate the DMP if and only if c< p. Attacker

can then extract p adaptively by observing DMP activations.

be 1. Then, the attacker sets the remaining bits of c to be all

0, except the lower 448 bits that are filled with 7 64-bit ptrs.

The 16 bits immediately before the ptrs are always set to 0

and unused.

Figure 10: Challenge ciphertext construction to leak the n-th

most significant bit of the p in Go’s RSA-2048.

Assuming p> q, if the attacker observes no DMP activation

from t0 = c mod p, they can conclude that c g p and the n-th

bit of p is 0 with 1− 1
2576−n ≈ 1 probability. On the other

hand, if the attacker observes the DMP activation, they can

conclude that c < p and the n-th bit of p must be 1. Since
1

2576−n becomes non-negligible as n approaches 576, we stop

the attack at n = 560.

Experimental result. We now use the previous ciphertext

construction strategy and the Coppersmith method to extract

the full RSA secret key.16 When targeting each of the 560 top

bits of p, we collect 32 Prime+Probe latency data points to

mitigate background noise. The median of the collected data

is then compared to a profiled threshold: 742±38 ticks when

c triggers the DMP activation versus 664±124 ticks when c

does not trigger. We repeat the experiment targeting bit n if

the collected data are outliers due to system noise. The end-to-

end attack takes 49 minutes on average to finish. More details

about compound eviction set generation and noise tolerance

for Go’s RSA are in Appendix F.

6.2 OpenSSL Diffie-Hellman Key Exchange

Our targeted OpenSSL DHKE implementation utilizes a

window-based exponentiation algorithm. This creates a vul-

nerability given DMP: if an attacker crafts a malicious public

key and correctly guesses the target window of the secret key,

a multiplication subroutine will generate a ptr value. The at-

tacker can then exploit DMP activations to adaptively extract

the DH secret key.

16The implementation of the Coppersmith method used by our paper:

https://github.com/mimoo/RSA-and-LLL-attacks

Cryptography Online Time (minutes) Offline Time (minutes)

� � �

RSA-2048 5 18 26 ∼ 0

DH-2048 5 6 127 ∼ 0

Kyber-512 6 10 43 286

Dilithium-2 5 13 577 274

Table 1: Experimental results of four cryptographic attack

PoCs. We show the mean of three runs of each PoC. On-

line time refers to the required time for a co-located attacker

process, which includes � standard eviction sets generation;

� compound eviction set finding; � DMP leakage. Offline

time is the post-processing (e.g. lattice reduction) time to

complete secret key recovery. We do not include the time for

the offline signature collection phase of Dilithium-2.

OpenSSL DHKE (1.1.1q) overview. DHKE allows two

parties, Alice and Bob, to agree on a shared secret over an

insecure channel [33]. The public parameters are a prime p

and a generator g that generates a cyclic order-q subgroup of

Z
∗
p. DHKE requires p to be a safe prime such that q = p−1

2
.17

Alice and Bob generate their own secret keys x ∈ Zq and

y ∈ Zq. Alice sends her public key gx mod p to Bob and Bob

sends his gy mod p to Alice. They both compute the shared

secret (gx)y mod p = (gy)x mod p. The security of DHKE re-

lies on the computational Diffie–Hellman (CDH) assumption

that given gx mod p, gy mod p, and g, it is computationally

difficult to compute gxy mod p.

PoC overview. Following [40,60], our threat model assumes

that the victim (server) and attacker (client) do a DH key

exchange. The victim (server) generates a random 2048-bit

DH public parameter p and shares it with the attacker (client).

The victim generates its own static secret key s. The attacker

sends a challenge public key c to the victim, who computes

cs mod p using the OpenSSL window-based exponentiation.

The window size w is 6. The attacker extracts s window after

window by observing DMP activations.

DMP-vulnerable subroutine in OpenSSL DHKE. The

victim breaks s into k windows s0∥s1∥...∥sk−1 with each

window of size w. Listing 4 shows a simplified version of

the algorithm that computes cs mod p window by window,

where we replace most of the code with descriptive com-

ments and only highlight the DMP-vulnerable subroutine

bn_mul_mont_fixed_top. To start with, a variable tmp is

initialized to cs0 . At the end of each while loop iteration i (i

starts from 1), tmp= cs0∥...∥si .

During iteration i, an invariant holds after Line 5: tmp =
(cs0∥s1∥...∥si−1)2w

. If the attacker already recovered the prefix

s0∥s1∥...∥si−2, they can guess si−1 and construct c strategi-

cally. If their guess is correct, tmp will contain a ptr after

Line 5, triggering the DMP. Consequently, the subroutine

17Why Diffie-Hellman prefers safe primes: https://www.johndcook.c
om/blog/2017/01/12/safe-primes-sylow-theorems-and-cryptog

raphy/

bn_mul_mont_fixed_top is DMP-vulnerable, and tmp is the

AoP a in Section 5.

1 // tmp = c^(s0)

2 while (bits > 0) {

3 for (i = 0; i < w; i++)

4 if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))

5 goto err;

6 // bits -= w;

7 // tmp = tmp * c^(si)

8 }

Listing 4: bn_mul_mont_fixed_top is our DMP-vulnerable

subroutine in OpenSSL DHKE (1.1.1q). The secret key s is

broken into k windows s0∥s1∥...∥sk−1 with a window size

w. An attack who knows s0∥s1∥...∥si−2 can guess si−1 and

construct c such that if the guess is correct, tmp contains ptr

after Line 5. The attacker can then extract s adaptively.

Challenge public key construction. Next, we show how to

construct the challenge public key c. All multiplication is in

Montgomery form, so every operand is pre-multiplied with

a public constant R. Assume the attacker already recovered

s0∥s1∥...∥si−2. To target si−1, the attacker makes a guess of

its value and constructs c by solving the equation

(cs0∥s1∥...∥si−1)2w

·R ≡ tmp mod p (1)

where the 2048-bit attacker-controlled output buffer tmp con-

tains a ptr.

Let E denote the exponent (s0∥s1∥...∥si−1)∗ (2
w). We start

by assuming that the exponent E is an odd number.

If E is an odd number, we first move R to the right-hand

side of the equation by doing an inverse:

cE ≡ R−1 ·tmp mod p (2)

Since p is a safe prime, gcd(p − 1,E) = 1 (E is odd),

the modular inverse E−1 (E−1 · E ≡ 1 mod (p − 1)) ex-

ists due to Fermat’s little theorem, and c can be solved as

(tmp ·R−1)E−1
mod p [38].

However, E = (s0∥s1∥...∥si−1) ∗ (2
w) is an even number.

An even number can be factorized as an odd number multi-

plied by 2n. In order to convert an even number to an odd

number, we need to eliminate the 2n. Tonelli-Shanks algo-

rithm explains how to calculate the modular square root for

n times, but only half of the elements in Z
∗
p are quadratic

residues, which means that a given number might not have

recursive modular square roots of depth-n [73,80] . This prob-

lem can be overcome because tmp has 32 64-bit elements

and only one needs to be the ptr. We can adjust any of the

other 31 64-bit elements to ensure that tmp ·R−1 mod p has

recursive modular square roots of depth-n. Once the 2n factor

is eliminated, we can apply the odd-E case outlined above.

Experimental result. For a target window i, there are only

2w (64) possible values of si. For each guess of si, we collect

32 Prime+Probe latency data points to mitigate background

noise. We repeat an experiment if the collected data contains

outliers due to system noise. We compare the median of our

collected data with a profiled threshold to determine if our

guess of si is correct. After testing all 64 values, we expect to

observe 1 high Prime+Probe latency (correct guess) and 63

low Prime+Probe latencies (incorrect guesses). If the number

of positive and negative measurements deviates from this, we

redo the experiment for this window. When the challenge

public key c triggers the DMP, the Prime+Probe latency is

701±65 ticks, compared to 641±10 when it does not. The

experiment takes 2.3 hours to complete, and we extract the

victim secret key s. Appendix F provides further details about

compound eviction set generation and noise tolerance for

OpenSSL DHKE.

7 Attacking Post-Quantum Cryptography

We demonstrate that the implementation of two CRYSTALS

cryptographic primitives, Kyber and Dilithium, though de-

signed to be constant-time, can leak secrets via the DMP side

channel.18 Kyber is an IND-CCA2-secure (secure against

adaptive chosen-ciphertext attack) NIST-selected key encap-

sulation mechanism (KEM) [12]. Dilithium is a NIST-selected

digital signature scheme [56]. Both Kyber and Dilithium rely

on the hardness of Module-LWE (MLWE).

Notation: R denotes the ring (Z[x]/xn + 1). Rq denotes

the ring (Zq[x]/xn + 1). Rk
q denotes the space of length-k

vectors whose elements are in Rq. Rk×l
q denotes the space of

k× l matrices whose elements are in Rq. For a polynomial

p, p[i] denotes the i-th coefficient of p. For a vector v, v[i]
denotes the i-th polynomial of v, and v[i][j] denotes the j-th

coefficient of v[i]. For a vector v ∈ Rk
q (or matrix A ∈ Rk×l

q),

vT (or AT) denotes its transpose. +x, denotes rounding x

to the closest integer, rounding up in the case of ties. Bη

and Sη denote the centered binomial and uniform random

distribution respectively. A number sampled from Bη or Sη is

within the range [−η,η]. When we say that v ∈ Rk
q is sampled

from Bη (Sη), we mean that each coefficient of polynomials

in v is sampled from Bη (Sη). Bτ denotes the set of sparse

polynomials in R where τ coefficients are either −1 or 1 and

the rest are 0.

7.1 Kyber

Kyber decapsulation relies on a decryption subroutine. De-

cryption failure leaks the Kyber secret key [34, 65–67, 74].

While Kyber does not expose decryption failures to the at-

tacker, the attacker can use the DMP side channel to construct

a decryption failure oracle and then extract the secret key.

Kyber overview. A KEM uses a public key encryption

(PKE) scheme to secure symmetric key material. Kyber builds

18CRYSTALS: Cryptographic Suite for Algebraic Lattices https://pq

-crystals.org/index.shtml

upon a PKE scheme called Kyber.CPAPKE, which is chosen-

plaintext secure (CPA-secure). Kyber is a Fujisaki-Okamoto

(FO) transformation of the underlying Kyber.CPAPKE, which

turns a CPA-secure PKE into a IND-CCA2-secure KEM [37].

Kyber.CPAPKE key generation samples the secret key s,e∈
Rk

q from Bη1
, with η1 being a small integer. The public key

consists of t∈ Rk
q and a random A∈ Rk×k

q , where t=As+e.19

Leaking either s or e breaks Kyber.

Kyber.CPAPKE encryption takes in the public key (t,A), a

256-bit message M, and a seed r as the source of randomness.

M = M0M1...M255 is converted to a polynomial mp ∈ Rq,

where mp(x) = ∑255
i=0 Mi ∗ +

q
2
, ∗ xi. Then, it samples r ∈ Rk

q

from Bη1
, e1 ∈ Rk

q from Bη2
, and e2 ∈ Rq from Bη2

, with η1

and η2 being small integers. It computes u = AT r+ e1, and

v = tT r+ e2 +mp. The ciphertext is (u,v).

Kyber.CPAPKE decryption takes in the ciphertext (u,v),
and the secret key (s,e). It computes v− sT u = mp + eT r+
e2 − sT e1. Coefficients in mp are either 0 or + q

2
,. Coefficients

in eT r+e2 − sT e1 are small integers. Decryption recovers the

plaintext M by rounding each coefficient of v− sT u to 1 if the

coefficient is closer to + q
2
, than to 0; and to 0 otherwise.

Decryption failure occurs with negligible probability when

processing normal ciphertexts. Let M′ denote the decrypted

plaintext. If decryption fails, resulting in M′
i ̸= Mi (the i-th bit

is flipped), this happens only if the i-th coefficient of the error

vector (eT r+ e2− sT e1)[i]g + q
4
,.

PoC overview. We target the Kyber-512 reference implemen-

tation, where n = 256, q = 3329, k = 2, η1 = 3, and η2 = 2.

Our threat model assumes that the victim (server) and attacker

(client) want to derive a shared secret using Kyber. The vic-

tim (server) generates a pair of static Kyber secret and public

keys. The secret s has two (k = 2) polynomials, each with 256

coefficients. The attacker guesses a value for s[i][j] and then

crafts a plaintext M containing a ptr. They encrypt M using

the victim’s public key and send the ciphertext to the victim

for decryption.

DMP-vulnerable subroutine in Kyber. Kyber’s DMP-

vulnerable subroutine is indcpa_dec, the CPAPKE decryp-

tion function. It decrypts the challenge ciphertext that en-

crypts a plaintext M containing a ptr, and stores the decrypted

M′ into a buffer buf. If the decryption is successful, M′ = M

and buf contains ptr. Otherwise, M′ ̸= M and buf does not

contain ptr.

Kyber is CCA secure. Decapsulation would reject a mal-

formed ciphertext without exposing M′ = M or M′ ̸= M to

the attacker. However, the attacker can learn decryption fail-

ure or success by observing whether ptr is dereferenced by

the DMP. This behavior is not an implementation issue but

fundamental to the FO transform. As a result, subroutine

indcpa_dec is DMP-vulnerable and buf is the AoP a in Sec-

tion 5.

19The security level of Kyber scales with k. A MLWE matrix from Rk×k
q is

analogous to a nk×nk matrix in LWE.

Challenge ciphertext construction. We demonstrate how

to construct a ciphertext (u,v) that allows the attacker to build

a decryption failure oracle using DMP activations. Recall:

u = AT r+ e1

v = tT r+ e2 +mp (3)

Suppose the attacker attempts to learn the first coefficient of

the first polynomial in s: s[0][0]. They prepare a plaintext M

with a ptr in M0...63 and fill the rest with 0s: M = ptr||00...00.

They manipulate other variables to ensure the following: if

0 < s[0][0], (u,v) decrypts to M; otherwise, it decrypts to M′

with the first bit flipped (M′0 = M0·1). To achieve this, they

can set r = (0,0) (a length-2 vector of degree-0 polynomials),

e2 = + q
4
, (a degree-0 polynomial), and e1 =(1,0). This results

in a ciphertext of u = (1,0), v = mp + e2.

Decryption computes v− sT u:

v− sT u = mp + e2− sT e1

= mp + e2− (s[0],s[1])T (1,0)

= mp + +
q

4
,− s[0] (4)

The first entry of v− sT u is mp[0]+ + q
4
,− s[0][0], contain-

ing a deliberately introduced large error + q
4
,− s[0][0]. De-

cryption would fail if + q
4
, − s[0][0] g + q

4
,. The ciphertext

construction ensures that decryption failure depends on the

value of s[0][0]:

• If + q
4
, − s[0][0] < + q

4
, (0 < s[0][0]), M′ = M =

ptr||00...00, and buf activates the DMP.

• If + q
4
,− s[0][0]g + q

4
, (0g s[0][0]), M′ ̸= M because the

first bit is flipped (M′0 =M0·1), and buf cannot activate

the DMP.

The attacker can learn the exact value of s[0][0] by tuning

e2 and observing DMP activations. To trigger DMP activation

on buf (e.g., eviction set construction), we employ the same

method as the chosen-input attack from Section 5.1.

We now present a simplified version of our attack. Kyber

includes an extra compression and decompression step. In Ap-

pendix B, we detail how to overcome the compression when

constructing the challenge ciphertext.

The secret key has 256×2 = 512 coefficients. Ideally, the

attacker should be able to apply the same process above to

target any coefficient of s. However, due to findings in Sec-

tion Section 4.3, the DMP cannot leak every coefficient of s: If

we break s into chunks of 64, the leading 8 and trailing 7 bits

are not recoverable via the DMP. As a result, 392 out of 512

coefficients can be recovered by observing DMP activations.

We feed the recovered 392 coefficients as 392 hints into the

lattice reduction tool from May et al., to recover the entire

secret key [58]. In Appendix C, we provide more details about

why certain coefficients are not recoverable, and how we use

the lattice reduction tool.

Experimental result. In our PoC, there are 392 recoverable

secret coefficients. We construct 8 challenge ciphertexts to

adaptively learn each coefficient, as its potential value ranges

from -3 to 3. See Appendix B for why we need 8 ciphertexts.

For each ciphertext, we collect 32 Prime+Probe latency data

points to mitigate background noise. We repeat the experiment

if the data we collect contains outliers due to system noise.

We compare the median of our collected data with a profiled

threshold to determine the activation status of the DMP. When

the ciphertext triggers the DMP (decryption succeeds), the

Prime+Probe latency is 713±22 ticks, compared to 616±14

ticks when it does not (decryption fails). The experiment

takes 59 minutes to complete. After that, we spend another

5 hours on lattice reduction to extract the entire secret key.

More details about compound eviction set generation and

noise tolerance for Kyber are in Appendix F.

7.2 Dilithium

Dilithium relies on the "Fiat-Shamir with Aborts" [56], and

its security depends on the privacy of its nonce y [55].

Dilithium is secure against chosen-message attacks, meaning

a polynomial-time attacker cannot learn secret information

by observing signatures. However, Dilithium might gener-

ate data in y that resembles a pointer. By monitoring DMP

activations, an attacker could obtain knowledge of y, derive

linear equations involving the secret key, and ultimately ex-

tract the entire secret key. Prior research has explored similar

attacks that exploit side channels to learn intermediate val-

ues during Dilithium signing, allowing secret key reconstruc-

tion [15, 27, 48, 57, 76, 86].

Dilithium overview. Dilithium key generation samples

the secret key s1 ∈ Rl
q from Sη and s2 ∈ Rk

q from Sη, with

η being a small integer. The public key consists of t ∈ Rk
q

and a random A ∈ Rk×l
q , where t = As1 + s2. Leaking either

s1 or s2 breaks Dilithium. Dilithium also has a public key

compression, which we discuss in Appendix D.

Dilithium signature generation uses rejection sampling to

generate digital signatures [55]. In Algorithm 1 we present

a simplified version that focuses on the part relevant to our

attack. The algorithm generates a signature (z,c) of a message

M using the secret key s1. z is initialized to § (Line 2). In a

while loop, the algorithm samples a private nonce y, which is

a length-l vector of polynomials with coefficients randomly

sampled from [−γ1,γ1] (Line 4). Then, the algorithm samples

a random c from Bτ, and c depends on M (Line 5). c is a

sparse polynomial with exactly τ number of 1 or -1, and the

non-zero entries have randomized positions. The algorithm

computes z = y+ cs1 (Line 6), but will only accept (z,c) if it

leaks no secrets, and reject (z,c) otherwise. Note that y must

be kept private. Leaking y leaks s1 = z−y
c

. Leaking partial

information of y might also compromise s1 [18].

PoC overview. The victim (a Dilithium signing server)

generates a pair of Dilithium secret and public keys. Our threat

1 Sign(s1,M)

2 z :=§
3 while z =§ do

4 y← Sℓγ1
// A length-l vector of random

and small polynomials

5 c ∈ Bτ // A sparse polynomial (depending

on M) with τ number of 1 or -1

6 z := y+ cs1

// Reject z (set z to §) if z leaks

information about the secret key

7 return (z,c)

8 end

Algorithm 1: The main body of the Dilithium sign al-

gorithm is a while loop that creates a signature (z,c) of

message M under the secret key s1. The algorithm returns

(z,c) if it does not leak any secret information.

model assumes that the victim is a signing server. The attacker

can choose arbitrary messages and request digital signatures

from the victim. The attacker can parse the signatures offline

and replay certain messages later.

We target CIRCL’s implementation of deterministic

Dilithium-2 (written in Go), where n = 256, q = 8380417,

k = l = 4, γ1 = 217, η = 2, and τ = 39 [36].20 Dilithium is

deterministic when the private nonce y in Algorithm 1 is

generated with deterministic randomness. Our attack is moti-

vated by the observation: the server might naturally produce

data that resembles a ptr in y. While the exact value of y

should remain secret, the underlying MLWE structure allows

an attacker to approximate y through z. If a ptr appears in z,

the attacker infers its presence within y and confirms this by

observing DMP activations. Successful confirmation reveals

partial knowledge of s1.

Our PoC consists of an offline and online signature col-

lection phase. During the offline phase, the attacker sends m

message to the server requesting signatures and collects m′

pairs of {(z,c),M}, where z contains a ptr. During the online

phase, the attacker re-submits the collected m′ messages to

the server for signatures. The attacker can distinguish which

pair {(z,c),M} causes the ptr to show up in y via DMP acti-

vations, and then derive a linear equation of s1. The attacker

further uses the lattice reduction tool to recover s1 [58].

DMP-vulnerable subroutine in CIRCL Dilithium. The

DMP-vulnerable subroutine is the z = y+ cs1 in Algorithm 1

Sign. CIRCL uses an array of unsigned 32-bit integers to rep-

resent a polynomial. Every coefficient of y and z is stored as

an unsigned 32-bit integer. We pick y as the AoP a from Sec-

tion 5. The range of coefficients in y is [−217,217], and that

of coefficients in cs1 is [−78,78].
Let’s take the first two 32-bit coefficients of y (y[0][0],

20CIRCL: Cloudflare’s Interoperable Reusable Cryptographic Library

https://github.com/cloudflare/circl/

y[0][1]) and z (z[0][0], z[0][1]) as an example. Assume that

z[0][1] ∥ z[0][0] forms a valid 64-bit ptr, pointing to the same

4GByte region where y lives. If we break ptr into two 32-bit

halves (ptr1 ∥ ptr0), then z[0][1] = ptr1 and z[0][0] = ptr0.

We can derive the range of (y[0][0], y[0][1]):

y[0][1] = z[0][1]− cs1[0][1] ∈ [ptr1−78,ptr1 +78]

y[0][0] = z[0][0]− cs1[0][0] ∈ [ptr0−78,ptr0 +78] (5)

The takeaway from Equation (5) is that if z[0][1] ∥ z[0][0] is a

ptr, y[0][1] ∥ y[0][0] might also be a ptr!

To elaborate, we know z[0][1] ∥ z[0][0] forms a ptr. If

we want y[0][1] ∥ y[0][0] to also form a ptr, we only need

y[0][1] = z[0][1] or cs1[0][1] = 0. The value of y[0][0] is less

important because cs1[0][0] is small, variations in which will

only cause y[0][1] ∥ y[0][0] to map to the same or an adjacent

cache line as ptr. As a result, z = y+cs1 is DMP-vulnerable.

If the attacker sets y as the AoP a from Section 5, they can

learn cs1[0][1] = 0 by observing DMP activations. The same

idea applies to all other coefficients of y and z.

Offline and Online signature collection In the offline phase,

the attacker sends m random messages for signatures. Recall

that z is a length-4 vector of 256-degree polynomials. The

attacker collects m′ pairs of {(z,c),M} where for an i ∈ [0,3]
and an even j ∈ [0,255], z[i][j+1] ∥ z[i][j] forms a ptr, which

lives in the same 4GByte region as y.21

In the online phase, the attacker re-submits the m′ messages

collected offline. If the attacker observes a DMP activation,

the attacker can deduce that y[i][j+1] = z[i][j+1], and derive

one linear equation of s1: cs1[i][j+1] = 0. After gathering at

least 876 linear equations, the attacker uses the lattice reduc-

tion tool to recover s1 [58].

In Appendix E, we discuss more details about our PoC

including a theoretical bound of m and m′, and how to loose

some conditions above for the practicality of the PoC.

Experimental result. In our PoC, we request m = 4×109

messages during the offline collection phase. We parse the

signatures and collect m′ = 3× 105 ones with the property

that z[i][j+1] ∥ z[i][j] forms a ptr. In the online phase, resub-

mitting the m′ messages, we observe a Prime+Probe latency

of 772±152 ticks when the message triggers the DMP, com-

pared to 657±106 ticks when it does not. To minimize false

positives, we accept a message as triggering the DMP only

after observing 10 consecutive positive signals. The entire

experiment takes 10 hours. An additional 5 hours are spent

on lattice reduction to extract the full secret key. More details

about compound eviction set generation and noise tolerance

for CIRCL Dilithium are in Appendix F.

21Both base addresses of z and y are 64-bit aligned, so that entries at even

indexes are 64-bit aligned as well.

8 Countermeasures

This paper demonstrates that information disclosure through

the Apple m-series DMP is significantly greater than previ-

ously believed, and puts constant-time cryptography at risk.

A drastic solution would be to completely disable the DMP.

However, as doing so will incur heavy performance penal-

ties and is likely not possible on M1 and M2 CPUs,22 in this

section we discuss alternative defensive approaches.

Using Efficiency Cores. As pointed out by Augury [83],

the DMP does not activate on code running on Icestorm cores.

Thus, a sensible short-term security posture is to run all cryp-

tographic code on Icestorm cores. This strategy is simple,

general, and does not require user code changes. Yet, it is

brittle because any future Apple part could silently enable

the DMP on Icestorm cores. Finally, restricting cryptogra-

phy to run on Icestorm cores will likely incur a significant

performance penalty.

Blinding. An alternative solution is to apply cryptographic

blinding-like techniques. For example, by instrumenting the

code to add/remove masks to sensitive values before/after be-

ing stored/loaded from memory. These ideas could be applied

in different ways depending on the sensitive program. For

instance, in our attack on Diffie-Hellman Key Exchange, one

can generate a random number to mask the secret key for ev-

ery key exchange [44]. The major downside of this approach

is that it requires potentially DMP-bespoke code changes to

every cryptographic implementation, as well as heavy perfor-

mance penalties for some cryptographic schemes.

Ad-Hoc Defenses. Finally, one can imagine point defenses

that interfere with specific steps in the attack. For example,

changing victims to better validate inputs or scheduling poli-

cies to forbid co-location [69]. The downside of these ap-

proaches is that they are ad-hoc and leave the root cause (the

DMP) unaddressed.

Hardware Support. Longer term, we view the right so-

lution to be to broaden the hardware-software contract to

account for the DMP. At a minimum, hardware should expose

to software a way to selectively disable the DMP when run-

ning security-critical applications. This already has nascent

industry precedent. For example, Intel’s DOIT extensions

specifically mention disabling their DMP through an ISA ex-

tension [3]. Longer term, one would ideally like finer-grain

control, e.g., to constrain the DMP to only prefetch from

specific buffers or designated non-sensitive memory regions.

9 Conclusions

In this paper we showed that DMPs pose a significant security

threat to modern software, breaking a wide variety of state-

of-the-art cryptographic implementations. At a high level,

22We observe that setting the data independent timing (DIT) [1] bit disables

the DMP behavior on M3, which is not the case with M1 and M2.

if the attacker has the ability to secret-dependently write a

pointer to memory, the DMP enables it to learn partial or com-

plete information about that secret. While we demonstrate

end-to-end attacks on four cryptographic implementations,

more programs are likely at risk given similar attack strategies.

Given our findings that DMPs also exist on the Apple M2/M3

and Intel 13th Generation CPUs, the problem seemingly tran-

scends specific processors and hardware vendors and thus

requires dedicated hardware countermeasures.

Acknowledgments

This work was partially supported by the Air Force Office of

Scientific Research (AFOSR) under award number FA9550-

20-1-0425; the Defense Advanced Research Projects Agency

(DARPA) under contract numbers W912CG-23-C-0022 and

HR00112390029; the National Science Foundation (NSF)

under grant numbers 1954712, 1954521, 2154183, 2153388,

and 1942888; the Alfred P. Sloan Research Fellowship; and

gifts from Intel, Qualcomm, and Cisco.

References

[1] Arm Armv8-A Architecture Registers. https://developer.arm.c
om/documentation/ddi0595/2021-12/.

[2] ARM Cortex-A Series Programmer’s Guide for ARMv8-A. https://

developer.arm.com/documentation/den0024/a.

[3] Data Operand Independent Timing Instruction Set Architecture (ISA)

Guidance. https://www.intel.com/content/www/us/en/deve
loper/articles/technical/software-security-guidance/

best-practices/data-operand-independent-timing-isa-g

uidance.html.

[4] Onur Aciiçmez. Yet another microarchitectural attack: exploiting i-

cache. In CSAW, 2007.

[5] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting

secret keys via branch prediction. In CT-RSA, 2006.

[6] Onur Aciicmez, Jean-Pierre Seifert, and Cetin Kaya Koc. Predicting

Secret Keys via Branch Prediction. IACR, 2006.

[7] Sam Ainsworth and Timothy M. Jones. Graph Prefetching Using Data

Structure Knowledge. In ICS, 2016.

[8] Sam Ainsworth and Timothy M. Jones. An Event-Triggered Pro-

grammable Prefetcher for Irregular Workloads. In ASPLOS, 2018.

[9] Monjur Alam, Haider Adnan Khan, Moumita Dey, Nishith Sinha,

Robert Callan, Alenka Zajic, and Milos Prvulovic. One&Done: A

Single-Decryption EM-Based attack on OpenSSL’s Constant-Time

blinded RSA. In USENIX Security, 2018.

[10] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van de Pol,

and Yuval Yarom. Amplifying side channels through performance

degradation. In ACSAC, 2016.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-

soir, and Michael Emmi. Verifying Constant-Time implementations.

In USENIX Security, 2016.

[12] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,

Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler,

and Damien Stehlé. Crystals-kyber algorithm specifications and sup-

porting documentation (version 3.02). NIST submissions, 2021.

[13] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David

Pichardie. System-level non-interference for constant-time cryptogra-

phy. In CCS, 2014.

[14] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure com-

pilation of side-channel countermeasures: The case of cryptographic

“constant-time”. In CSF, 2018.

[15] Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, Steven

Madec, Damien Vergnaud, and David Vigilant. Exploiting intermediate

value leakage in dilithium: a template-based approach. In CHES, 2023.

[16] Abhishek Bhattacharjee. Breaking the Address Translation Wall by

Accelerating Memory Replays. IEEE Micro, 2018.

[17] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay.

Hardware Prefetchers Leak: A Revisit of SVF for Cache-Timing At-

tacks. In MICROW, 2012.

[18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on

deterministic lattice signatures. CHES, 2018.

[19] David Brumley and Dan Boneh. Remote timing attacks are practical.

In USENIX Security, 2005.

[20] Elad Carmon, Jean-Pierre Seifert, and Avishai Wool. Photonic side

channel attacks against rsa. In HOST, 2017.

[21] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen,

Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time founda-

tions for the new spectre era. In PLDI, 2020.

[22] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,

Yunlu Huang, Ranjit Jhala, and Deian Stefan. Fact: A flexible, constant-

time programming language. SecDev, 2017.

[23] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,

Riad S Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit

Jhala, and Deian Stefan. Fact: a dsl for timing-sensitive computation.

In PLDI, 2019.

[24] Mustafa Cavus, Resit Sendag, and Joshua J. Yi. Informed Prefetching

for Indirect Memory Accesses. ACM Trans. Archit. Code Optim., 2020.

[25] Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson. New

Cross-Core Cache-Agnostic and Prefetcher-based Side-Channels and

Covert-Channels. In ArXiV, 2023.

[26] Yun Chen, Lingfeng Pei, and Trevor E. Carlson. AfterImage: Leaking

Control Flow Data and Tracking Load Operations via the Hardware

Prefetcher. In ASPLOS, 2023.

[27] Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing.

An efficient non-profiled side-channel attack on the crystals-dilithium

post-quantum signature. In ICCD, 2021.

[28] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless,

content-directed data prefetching mechanism. ACM SIGPLAN Notices,

2002.

[29] Don Coppersmith. Finding a small root of a bivariate integer equation;

factoring with high bits known. In EUROCRYPT, 1996.

[30] Patrick Cronin and Chengmo Yang. A fetching tale: Covert communi-

cation with the hardware prefetcher. In HOST, 2019.

[31] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John Mc-

Calpin, and Mengjia Yan. Don’t mesh around:Side-Channel attacks

and mitigations on mesh interconnects. In USENIX Security, 2022.

[32] Peter J Denning. Virtual memory. ACM Computing Surveys (CSUR),

2(3):153–189, 1970.

[33] Whitfield Diffie and Martin E Hellman. New directions in cryptography.

In Democratizing Cryptography: The Work of Whitfield Diffie and

Martin Hellman. 2022.

[34] Jintai Ding, Scott Fluhrer, and Saraswathy Rv. Complete attack on

rlwe key exchange with reused keys, without signal leakage. In ACISP,

2018.

[35] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-

marev. BranchScope: A New Side-Channel Attack on Directional

Branch Predictor. In ASPLOS, 2018.

[36] Armando Faz-Hernández and Kris Kwiatkowski. Introducing CIRCL:

An Advanced Cryptographic Library. Cloudflare, June 2019. Available

at https://github.com/cloudflare/circl. v1.3.3 Accessed May,

2023.

[37] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-

metric and symmetric encryption schemes. In CRYPTO, 1999.

[38] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer.

Stealing keys from PCs using a radio: Cheap electromagnetic attacks

on windowed exponentiation. In CHES, 2015.

[39] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via

low-bandwidth acoustic cryptanalysis. In CRYPTO, 2014.

[40] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the Fourth Be

With You: A Microarchitectural Side Channel Attack on Several Real-

World Applications of Curve25519. In CCS, 2017.

[41] Google/LLVM. Speculative Load Hardening. https://llvm.org/
docs/SpeculativeLoadHardening.html, 2018.

[42] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-

lation leak-aside buffer: Defeating cache side-channel protections with

TLB attacks. In USENIX Security, 2018.

[43] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano

Giuffrida. Aslr on the line: Practical cache attacks on the mmu. In

NDSS, 2017.

[44] Da Harkins. Dragonfly key exchange. RFC 7664, November 2015.

[45] Lorenz Hetterich and Michael Schwarz. Branch different-spectre at-

tacks on apple silicon. In DIMVA, 2022.

[46] Tyler J Huberty, Stephan G Meier, and Mridul Agarwal. Content-

directed prefetch circuit with quality filtering, February 6 2018. US

Patent 9,886,385.

[47] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisen-

barth, and Berk Sunar. Seriously, get off my cloud! cross-vm rsa key

recovery in a public cloud. IACR, 2015.

[48] Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-

channel attacks on ω-small polynomial sampling: With applications to

ntru, ntru prime, and crystals-dilithium. In HOST, 2021.

[49] Anirudh Mohan Kaushik, Gennady Pekhimenko, and Hiren Patel.

Gretch: A Hardware Prefetcher for Graph Analytics. ACM Trans.

Archit. Code Optim., 2021.

[50] Taehun Kim, Hyeongjin Park, Seokmin Lee, Seunghee Shin, Junbeom

Hur, and Youngjoo Shin. Devious: Device-driven side-channel attacks

on the iommu. In S&P, 2023.

[51] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative

execution. In S&P, 2019.

[52] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In CRYPTO, 1996.

[53] Adam Langley, Mike Hamburg, and Sean Turner. Rfc 7748: Elliptic

curves for security, Jan 2016.

[54] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and

Mike Hamburg. Meltdown: Reading Kernel Memory from User Space.

In USENIX Security, 2018.

[55] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice

and factoring-based signatures. In ASIACRYPT, 2009.

[56] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter

Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. Crystals-dilithium

algorithm specifications and supporting documentation (version 3.1).

NIST submission, 2021.

[57] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre

Seifert. Profiling side-channel attacks on dilithium: A small bit-fiddling

leak breaks it all. In SAC, 2022.

[58] Alexander May and Julian Nowakowski. Too Many Hints - When LLL

Breaks LWE. In ASIACRYPT, 2023.

[59] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon

Verwaest. Spectre is here to stay: An analysis of side-channels and

speculative execution. In ArXiV, 2019.

[60] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,

Johannes Mittmann, and Jörg Schwenk. Raccoon attack: Finding and

exploiting Most-Significant-Bit-Oracles in TLS-DH (E). In USENIX

Security, 2021.

[61] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The

Program Counter Security Model: Automatic Detection and Removal

of Control-Flow Side Channel Attacks. In ICISC, 2005.

[62] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch.

Pkcs# 1: Rsa cryptography specifications version 2.2. RFC 8017,

November 2016.

[63] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and

Countermeasures: The Case of AES. In CT-RSA, 2006.

[64] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord

of the ring (s): Side channel attacks on the CPU On-Chip ring intercon-

nect are practical. In USENIX Security, 2021.

[65] Yue Qin, Chi Cheng, and Jintai Ding. An efficient key mismatch attack

on the nist second round candidate kyber. Cryptology ePrint Archive,

2019.

[66] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai

Ding. A systematic approach and analysis of key mismatch attacks on

lattice-based nist candidate kems. In ASIACRYPT, 2021.

[67] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam

Bhasin, and Anupam Chattopadhyay. Pushing the limits of generic

side-channel attacks on lwe-based kems-parallel pc oracle attacks on

kyber kem and beyond. In CHES, 2023.

[68] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. Pac-

man: Attacking arm pointer authentication with speculative execution.

In ISCA, 2022.

[69] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, You, Get off of My Cloud: Exploring Information Leakage in

Third-Party Compute Clouds. In CCS, 2009.

[70] Keegan Ryan and Nadia Heninger. Fast practical lattice reduction

through iterated compression. In CRYPTO, 2023.

[71] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak,

Caroline Trippel, Adam Morrison, David Kohlbrenner, and Christo-

pher W. Fletcher. Opening Pandora’s Box: A Systematic Study of New

Ways Microarchitecture Can Leak Private Data. In ISCA, 2021.

[72] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-

gard. Fantastic timers and where to find them: High-resolution microar-

chitectural attacks in javascript. In FC, 2017.

[73] Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the

Second Manitoba Conference on Numerical Mathematics (Winnipeg),

1973.

[74] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang.

Find the bad apples: An efficient method for perfect key recovery under

imperfect sca oracles–a case study of kyber. In CHES, 2023.

[75] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and

Junbeom Hur. Unveiling hardware-based data prefetcher, a hidden

source of information leakage. In CCS, 2018.

[76] Hauke Steffen, Georg Land, Lucie Kogelheide, and Tim Güneysu.

Breaking and protecting the crystal: Side-channel analysis of dilithium

in hardware. In PQCrypto, 2023.

[77] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel

Genkin, and Yuval Yarom. Hot Pixels: Frequency, Power, and Temper-

ature Attacks on GPUs and ARM SoCs. In USENIX Security, 2023.

[78] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos.

TLB; DR: Enhancing TLB-based attacks with TLB desynchronized

reverse engineering. In USENIX Security, 2022.

[79] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore,

Frederic T. Chong, and Timothy Sherwood. Complete Information

Flow Tracking from the Gates Up. In ASPLOS, 2009.

[80] Alberto Tonelli. Bemerkung über die auflösung quadratischer congruen-

zen. Nachrichten von der Königl. Gesellschaft der Wissenschaften und

der Georg-Augusts-Universität zu Göttingen, 1891.

[81] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh

Razavi. Malicious management unit: Why stopping cache attacks

in software is harder than you think. In USENIX Security, 2018.

[82] Stephan Van Schaik, Kaveh Razavi, Ben Gras, Herbert Bos, and Cris-

tiano Giuffrida. Revanc: A framework for reverse engineering hardware

page table caches. In EuroSec, 2017.

[83] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,

Grant Garrett-Grossman, Adam Morrison, Christopher W Fletcher, and

David Kohlbrenner. Augury: Using data memory-dependent prefetch-

ers to leak data at rest. In S&P, 2022.

[84] Pepe Vila, Boris Köpf, and José F Morales. Theory and practice of

finding eviction sets. In S&P, 2019.

[85] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. Meshup: Stateless

cache side-channel attack on cpu mesh. In S&P, 2022.

[86] Ruize Wang, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Single-trace

side-channel attacks on crystals-dilithium: Myth or reality? IACR,

2023.

[87] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav

Shacham, Christopher W Fletcher, and David Kohlbrenner. Hertzbleed:

Turning Power Side-Channel Attacks Into Remote Timing Attacks on

x86. In USENIX Security, 2022.

[88] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang,

Grant Garrett-Grossman, Christopher W. Fletcher, David Kohlbrenner,

and Hovav Shacham. DVFS frequently leaks secrets: Hertzbleed attacks

beyond SIKE, cryptography, and CPU-only data. In S&P, 2023.

[89] Zixuan Wang, Mohammadkazem Taram, Daniel Moghimi, Steven

Swanson, Dean Tullsen, and Jishen Zhao. Nvleak: Off-chip side-

channel attacks via non-volatile memory systems. In USENIX Security,

2023.

[90] Chong Xiao, Ming Tang, and Sylvain Guilley. Exploiting the microar-

chitectural leakage of prefetching activities for side-channel attacks.

Journal of Systems Architecture, 2023.

[91] Yuval Yarom and Katrina Falkner. Flush+Reload: A high resolution,

low noise, L3 cache side-channel attack. In USENIX Security, 2014.

[92] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A

Timing Attack on OpenSSL Constant Time RSA. IACR, 2016.

[93] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and Christo-

pher W. Fletcher. Synchronization storage channels (S2C): Timer-less

cache Side-Channel attacks on the apple m1 via hardware synchroniza-

tion instructions. In USENIX Security, 2023.

[94] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrel-

las, and Christopher W. Fletcher. Speculative Taint Tracking (STT): A

Comprehensive Protection for Speculatively Accessed Data. In MICRO,

2019.

[95] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas

Devadas. IMP: Indirect Memory Prefetcher. In MICRO, 2015.

[96] Xiangyao Yu, Christopher J. Hughes, and Nadathur Rajagopalan

Satish. Hardware prefetcher for indirect access patterns, February

2017. US9582422B2.

[97] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsa-

tiansup, Daniel Genkin, and Yuval Yarom. BunnyHop: Exploiting the

Instruction Prefetcher. In USENIX Security, 2023.

A Standard eviction sets generation algorithm

Algorithm 2 briefly presents the method to generate eviction

sets covering all L2 sets. We start with generating eviction

sets with a fixed page offset, which map to L2 sets differed by

upper 6 bits. To this end, we sweep a pool of pages to identify

new evict targets, and test if the fixed offset into one of them

has conflicts with the current eviction set group. If there is no

conflict, it means that this evict target maps to a new L2 set

whose eviction set is not included in the current group. With

this evict target, we use the techniques from Vila et al. [84]

to generate a matching eviction set and add it into the group.

Finally, for each of the 64 (26) eviction sets, we fix the upper

6 bits, and generate eviction sets for every combination of the

lower 7 bits for a total of 8192 eviction sets.

1 victim_pool←{pool of consecutive pages};
2 cur_evset_group←{};
3 num_valid_evset← 0;

4 victim_addr← victim_pool.next();
5 while num_valid_evset < 64 do

6 if cur_evset_group.len() ̸= 0 then

7 f lag← true;

8 while f lag is true do

9 victim_addr← victim_pool.next();
10 f lag←

cur_evset_group.test(victim_addr);

11 end

12 end

13 evset← evset_gen(victim_addr);
14 cur_evset_group.append(evset);
15 num_valid_evset← num_valid_evset +1;

16 end

Algorithm 2: Generating eviction sets for all L2 sets.

B Kyber challenge ciphertext construction

with compression

Compression and decompression. Kyber.CPAPKE

uses compression (Compq(x,d)) and decompression

(Decompq(x,d)) to reduce transmission overhead.

Compq(x,d) and Decompq(x,d) are defined in Equa-

tions (6) and (7).

Compq(x,d) = +
2d

q
· x, mod 2d (6)

Decompq(x,d) = +
q

2d
· x, (7)

When the input to Compq(x,d) or Decompq(x,d) is x∈Rq

or x ∈ Rk
q, the function is applied to each coefficient of x (x)

individually.

In our PoC, we target Kyber-512. Given a (u,v), the fi-

nal ciphertext is u′ = Compq(u,du) and v′ = Compq(v,dv),
with du = 10, dv = 4. Upon receiving (u′,v′), the server

decompresses them as: u′′ = Decompq(u
′,du) and v′′ =

Decompq(v
′,dv). Check out the Kyber specification for more

details [12].

Challenge ciphertext construction. We follow the example

in Section 7.1 to show how an attacker can learn s[0][0] even

with the extra layer of compression and decrompression. To

recap, the plaintext M contains a ptr in M0...63 with the rest

being 0: M = ptr||00...00. We set r = (0,0), e2 = 0, and

e1 = (+ q
16
,,0). Now the ciphertext u = e1, v = mp.

Both u and v are compressed to u′ = Compq(u,du), v′ =
Compq(v,dv). Just before the attacker sends out (u′,v′) to

the server for decapsulation, the first coefficient of v′, v′[0],
is replaced with + q

16
g, with g ranging from 1 to 8.23 The

server receives (u′,v′), decompresses them to (u′′,v′′), and

then decrypts (u′′,v′′) to M′.
In Equation (8), we show the relationship between s[0][0]

and the first bit of the decrypted M′ (M′0) [66]. In Table 2, we

tabulate M′0 while iterating through all possible combinations

of g and s[0][0], with g ranges from 1 to 8, and s[0][0] ranges

from -3 to 3. As we increment g from 1 to 8, the specific value

of s[0][0] determines the point where M′0 transitions from ’0’

to ’1’. As a result, crafting 8 such ciphertexts is sufficient

to recover s[0][0] even with compression and decompression.

The same idea applies to all other coefficients in s.

M′0 = +
2

q
(+ q

16
g,− s[0][0]+ q

16
,), mod 2 (8)

g

s[0][0]
-3 -2 -1 0 1 2 3

1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

3 1 1 0 0 0 0 0

4 1 1 1 0 0 0 0

5 1 1 1 1 0 0 0

6 1 1 1 1 1 0 0

7 1 1 1 1 1 1 0

8 1 1 1 1 1 1 1

Table 2: Value of M′0 with all possible combinations of g and

s[0][0].

C Difficulties in Kyber secret key recovery

DMP ignores certain bit flips. Our ciphertext construction

technique relies on whether the decrypted M′ contains ptr or

a version of ptr with one flipped bit. However, our reverse

engineering results in Section 4.3 reveal limitations on DMP

23More information about why we set these parameters with these specific

values can be found here: https://github.com/AHaQY/Key-Mismatc
h-Attack-on-NIST-KEMs/blob/1a28e14164fc065f2ddb176bf390e5b

e99184c46/kyber_key_mismatch_attack/kyber512-3/indcpa.c.

sensitivity. First, the upper 8-bits of ptr is ignored by the

DMP. Second, the lower 7 bits is the L2 cache line offset,

which means that any bit flip in this area won’t influence

which cache line to be brought by the DMP. As a result, for a

64-bit ptr, bit flips in upper 8 and lower 7 bits will be ignored

by the DMP.

Additionally, if the 7th bit of ptr is ’1’, flipping it to ’0’

creates a new pointer ptr’. While the DMP won’t dereference

ptr, the next-line prefetcher would bring in the target line of

ptr as a side effect of dereferencing ptr’, which delivers a

false DMP activation signal. To prevent this, we ensure the

7th bit of ptr is always ’0’.

Lattice reduction for Kyber. From previous analysis,

DMP is only able to extract 392 ((64−15)∗8) coefficients

from Kyber-512 secret key. Latest LWE lattice reduction

work [58] shows that, to reconstruct Kyber-512 secret key,

449 mod-q hints are sufficient to do the lattice reduction. A

mod-q hint consists of a vector v (v ∈ Zn∗k
q), a scalar l (l ∈ Z)

and modulus q, where ïv,sð ≡ l mod q. Applying a stronger

lattice reduction technique like BKZ would reduce the number

of hints needed, but result in an exponentially larger block

size and increased time consumption.

Suppose the DMP has recovered the i-th bit of s[0]: s[0][i].
We construct v as a basis vector such as v[0][i] = 1, and all

other entries are 0. We can convert this leakage into a mod-q

hint: ïv,sð ≡ s[0][i] mod q.

However, we only have 392 mod-q hints instead of the

449 reported by May and Nowakowski as necessary for their

lattice reduction tool to successfully reconstruct the secret

key [58]. To determine if the increased block size resulting

from fewer mod-q hints is manageable on modern computers,

we replicated the exact setting of [58] while varying the num-

ber of mod-q hints. Specifically, we tested increments from

380 to 440 mod-q hints with a stride of 4, using 4 Kyber-512

instances for each setting. All experiments were conducted

on an Intel Xeon Platinum 8352Y with 128 logical cores and

1.48 TB of RAM.

Fig. 11 illustrates how block size and time consumption de-

crease with more mod-q hints. On our experimental platform,

we could successfully reconstruct the secret key with as few

as 384 mod-q hints. With 392 hints, the average block size is

21, and the average time cost is 7.5 hours.

D Dilithium with public key compression

In Section 7.2, we choose to use a simplified version of

Dilithium without public key compression. In the real im-

plementation, the public key pair is more complicated: pk =
(ρ, t1) and sk = (ρ,K, tr,s1,s2, t0). ρ is the compression of

A. tr is derived from ρ and t1. K is used to generate y. t is

partitioned into t0 and t1

The partition of t affects our attack. In order to apply the

lattice reduction technique from [58], t should be known by

380 388 396 404 412 420 428 436
Modular Hints

5

10

15

20

25

30

Bl
oc

k
Si

ze

380 388 396 404 412 420 428 436
Modular Hints

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
Co

ns
um

pt
io

n
(h

ou
rs

)

Figure 11: The block size and time consumption reported by

the lattice reduction tool from May and Nowakowski with

increasing number of mod-q hints [58].

the attacker. However, with public key compression, t0, the

lower part of t, is hidden in the secret key sk.

However, the security proof of Dilithium does not rely on

t0 being a secret [56]. Even more, prior work indicated that

t0 is leaked for every signatures, which means that t0 can be

recovered by simply collecting signatures.

E Offline signature collection for Dilithium

In Section 7.2, we collect many pairs of {(z,c),M} during the

offline phase. We select pairs {(z,c),M} from the collected

data where, for a specific index i ∈ [0,3] and an even index

j ∈ [0,255], the adjacent coefficients z[i][j+1] ∥ z[i][j] form

a ptr = ptr1 ∥ ptr0 that points to the same 4GB memory

region where y resides. We re-submit the M of the selected

pairs to the server during the online phase. If y[i][j + 1] =
z[i][j+1], then y[i][j+1] ∥ y[i][j] will match the upper 32 bits

of the base address of y and would trigger the DMP. While

the lower 32 bits are not strictly necessary for the attack, we

can practically reduce overhead in the compound eviction

set generation process by ensuring a constraint: all selected

z[i][j+1] ∥ z[i][j] should map to the same page. This aligns

with the ease of generating EVptr with divergence in the lower

7 bits of the L2 set number.

Notations. We define Zg as the set of pairs {(z,c),M}
where, for indices i ∈ [0,3] and even indices j ∈ [0,255], the

following conditions hold: z[i][j+1] = ptr1 and z[i][j][31 :

14] = const.24

We further define Yg as the set of pairs {(z,c),M} ∈ Zg

that also has cs1[i][j+1] = 0. {(z,c),M} ∈ Yg means that the

underlying y[i][j+1] ∥ y[i][j] forms a ptr.

Next, we give a theoretical bound on m, the number of

signature requests we need to make offline. To this end, first,

we compute the probability of randomly collecting signa-

tures and finding a pair {(z,c),M} ∈ Zg. Then, we compute

the probability of a random {(z,c),M} ∈ Yg condition on

{(z,c),M} ∈ Zg.

24const= 0b000000000000000100.

Probability of {(z,c),M} ∈ Zg. There are in total 512

pairs of z[i][j+1] ∥ z[i][j] in z, and z[i][j+1] and z[i][j] are

independent from each other. The coefficients of z fall into

the range [−217,217]. Given a random message M and its

signature (z,c), the probability that {(z,c),M} ∈ Zg equals

to the probability that there exists one z[i][j+1] ∥ z[i][j] such

that z[i][j+1] = ptr1 and z[i][j][31 : 14] = const:

Pr[(z[i][j+1] ∥ z[i][j]) ∈ Zg]

=512×Pr[z[i][j+1] = ptr1]∗Pr[z[i][j][31 : 14] = const]

=
512

218
× 214

218
=

1

213
(9)

Probability of {(z,c),M} ∈ Yg. Assuming there exists one

pair {(z,c),M} ∈ Zg. Given {(z,c),M} ∈ Zg, the probability

of {(z,c),M} ∈Yg (the underlying y[i][j+1] ∥ y[i][j] forms a

ptr) equals to the probability of cs1[i][j+1] = 0. According

to Central Limit Theorem, the distribution of coefficients

of cs1 converges to normal distribution (µ = 0,σ =
√

78).

The probability of cs1[i][j+1] = 0 is 0.045. As a result, the

probability of {(z,c),M} ∈ Yg is 1
213 ∗0.045.

Bounding m. We define a random variable D, representing

the number of pairs {(z,c),M} ∈ Yg among m requests in

the offline collection phase. Equation (10) shows the prob-

ability of D = x among m requested messages. Each pair

{(z,c),M} ∈ Yg corresponds to one modular-q hint, which

can be integrated into the LWE lattice reduction tool [58].

Prior work shows that 876 modular-q hints are enough to

break Dilithium-2. Therefore, we need to collect m signatures

such that Pr[D < 876] is negligible. Let P1 denote 1
213 ∗0.045.

Pr[D = x] =

(

m

x

)

Px
1 ×

(

m

m− x

)

(1−P1)
m−x (10)

Since m is large, the binomial distribution of D can be

approximated with a normal distribution with µ = mP1, σ =
mP1(1−P1). Assigning m to be 2× 108, the probability of

failure Pr[D < 876] turns out to be negligible, which means

that theoretically the upper bound of m, the number of mes-

sages requested by the attacker in the offline collection phase

is ∼ 200 millions.

In practice, there are pairs {(z,c),M} ∈ Yg that are not rec-

ognized by the DMP. On the one hand, pointers introduced by

M such that {(z,c),M} ∈Yg can map to a hot set and through

Prime+Probe channel, the attacker cannot tell if the high la-

tency is caused by DMP or other traffics. On the other hand,

to eliminate false positives, the decision boundary is strict,

i.e. not regarded as a valid linear equation unless observing

consecutive 10 times positive signals. This strategy would

increase the false negative. Moreover, mod-q hints created

by pairs {(z,c),M} ∈ Yg are not confirmed to be indepen-

dent, which cut off several collections noticed by the DMP.

To have an idea how many requested messages the attacker

need in the real world, we request 4× 109 messages from

the victim25, among which 354161 pairs {(z,c),M} ∈ Zg.

In our experimental results (Table 1), across three exper-

iments, we consume 154875 messages in the worst case,

while 36560 messages in the best case. Reflect the result

back to the offline collection phase side. In the worst case,
154875
354161

× 4× 109 ≈ 1.75× 109 requests are required. In the

best case, 36560
354161

× 4× 109 ≈ 4.13× 108 requests are suffi-

cient.

F Compound eviction sets generation and

noise tolerance tips

Compound eviction sets generation. To generate a com-

pound eviction set (EVa, EVptr), the attacker must solve two

problems. First, they must identify the address of a as well as

valid (and quiet) pages to search for ptr. Second, they must

confirm ptr injection to a.

For the first problem, both DHKE-2048 (OpenSSL) and

Kyber-512 (reference implementation) allocate a in the same

4GByte region as the dyld cache, which is an ideal target for

ptr. The virtual address of the dyld shared library is only

randomized by macOS at boot time and the attacker can re-

cover it with another unprivileged process by running vmmap.

RSA-2048 (Go) and deterministic Dilithium-2 (CIRCL) allo-

cate a in a stable address region beyond 0x14000000000.26

Pages in this region are always valid even with ASLR, which

makes it an ideal target for ptr.

For the second problem, in RSA-2048 (Go), as long as the

ciphertext c is smaller than p and q, ptr will be preserved in

a. In DHKE-2048 (OpenSSL), the first window of secret, s0,

is always 1. Hence, the attacker can inject the ptr to a for the

first iteration by solving Equation (2) with E = 1. In Kyber-

512 (reference), ptr can be injected by correctly encrypting

message m with ptr. Dilithium-2 (CIRCL) is tricky as the

attacker cannot confirm ptr injection to y (a in Dilithium),

but has a pool of messages from which a subset correctly

injects ptr. Moreover, the so-called semi-confirmation in

Dilithium significantly increases the compound eviction set

search space. To address this, the attacker can decouple EVa

and EVptr by first targeting sig.z, where the attacker can

confirm ptr injection. Note that the compound eviction set

to sig.z shares the same EVptr with that of y, thus having

the right EVptr makes generating EVa for y efficient.

Noise tolerance. We observed several sources of noise or

failure when checking for the existence of ptr in a.

First, the background noise of the Prime+Probe channel

could result in false positives. To address this, we take 32 la-

tency observations (Sections 6 and 7) and apply the following

strategies for our cryptography targets. To start off, during

the attack process, the attacker also performs the background

25To speed up the message collection, we did the trick creating 100 threads

of victim instances with the same secret key to do the collection.
26This specific address is a function of the target program.

test accesses by sending random messages. Having these re-

dundant measurements interleaved with normal test accesses

establishes confidence that it is the DMP causing high laten-

cies in the normal test accesses. Second, an attacker can detect

errors in RSA-2048 (Go) and DHKE-2048 (OpenSSL), and

is able to roll back and redo the experiment in such cases. In

RSA (Go), if one bit is wrong 0/1, the ciphertext c will always

be smaller/larger than p, resulting in the attacker recovering

consecutive 1/0 bits, an unlikely pattern in practice. In DHKE-

2048 (OpenSSL), if an erroneous si−1 is chosen at the i-th

window, the attacker will not observe any DMP signal for the

next window, because the challenge c for subsequent windows

is based on correctness of si−1. This method is not applicable

for Kyber-512 (reference) and Dilithium-2 (CIRCL), because

the recovery of each coefficient in Kyber/Dilithium is inde-

pendent of the others. An attacker can always repeat the attack

several times and take a majority vote.

Second, a may change its virtual address at runtime, render-

ing EVa ineffective and causing false negatives. To detect this,

the attacker must check known-good ptr injection to infer

the validity of the current compound eviction set. As long as

this happens infrequently, the attacker can then re-generate

the compound eviction set.

Third, the interval between each load to a may be shorter

than traversing EVa. One solution is to decrease the size of

EVa until it matches that of a standard eviction set. If travers-

ing a standard eviction set is too expensive, a possible solution

is to degrade the performance of the victim program [10].

	Introduction
	Our Contribution
	Disclosure

	Background
	Threat Model and Setup
	Microarchitectural Characterization
	Revisiting DMP Data Access Patterns
	DMP Activation Criteria
	Restrictions on Dereferenced Pointers
	A Model for the DMP's Behavior
	Other Microarchitectures

	Attacking Constant-Time Conditional Swap
	Attack Overview and Challenges
	Compound Eviction Set Construction
	Proof-of-Concept Results

	Attacking Classical Cryptography
	Go's RSA Encryption
	OpenSSL Diffie-Hellman Key Exchange

	Attacking Post-Quantum Cryptography
	Kyber
	Dilithium

	Countermeasures
	Conclusions
	Standard eviction sets generation algorithm
	Kyber challenge ciphertext construction with compression
	Difficulties in Kyber secret key recovery
	Dilithium with public key compression
	Offline signature collection for Dilithium
	Compound eviction sets generation and noise tolerance tips

