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Abstract—Efficient single instance segmentation is critical for
unlocking features in on-the-fly mobile imaging applications, such
as photo capture and editing. Existing mobile solutions often
restrict segmentation to portraits or salient objects due to com-
putational constraints. Recent advancements like the Segment
Anything Model improve accuracy but remain computationally
expensive for mobile, because it processes the entire image
with heavy transformer backbones. To address this, we propose
TraceNet, a one-click-driven single instance segmentation model.
TraceNet segments a user-specified instance by back-tracing the
receptive field of a ConvNet backbone, focusing computations on
relevant regions and reducing inference cost and memory usage
during mobile inference. Starting from user needs in real mobile
applications, we define efficient single-instance segmentation
tasks and introduce two novel metrics to evaluate both accuracy
and robustness to low-quality input clicks. Extensive evaluations
on the MS-COCO and LVIS datasets highlight TraceNet’s ability
to generate high-quality instance masks efficiently and accurately
while demonstrating robustness to imperfect user inputs.

Index Terms—Efficient Segmentation, Mobile Application,
Deep Learning, Machine Learning

I. INTRODUCTION

In recent years, the rapid development of mobile devices
and applications has driven researchers to explore efficient
segmentation methods that enable smooth performance in
mobile editing or capturing apps. Efficient segmentation ap-
proaches (1; 2; 3; 4; 5; 6; 7) usually build upon efficient
neural network architectures (8; 9; 10), limit the number of
semantic categories, or focus on the salient subject in the
scene. One successful application of efficient segmentation
approaches is the portrait mode that is widely supported in
default camera apps on mobile phones1, which leverages the
portrait segmentation technique together with the lens blur
algorithms. To further enrich the set of imaging tools in
the mobile capturing and editing softwares, we propose to
use intuitive user inputs (such as an arbitrary click on the
instance) to enable efficient single-instance segmentation. The
proposed formulation relaxes the limitation of existing efficient
segmentation that applies only to the salient subject in the
scene. As shown in Figure 1(a), with a click of the dog,
unicorn, or pumpkin, we expect to get its segmentation mask
instantly. With the click-based single-instance segmentation,
automatic images manipulation, such as depth-of-field effects,
background replacement and image enhancement, therefore
can be enabled on an arbitrary instance in the image.

Incorporating user clicks into efficient segmentation tasks
poses unique challenges. User clicks are inherently random
and can land anywhere within the instance’s region, making it

1iphone portrait mode: https://support.apple.com/en-us/HT208118, Pixel6
portrait mode: https://store.google.com/us/magazine/pixel camera?hl=en-US
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Fig. 1. (a) IOS viewfinder: segment one object. (b) Blue: Clickable regions
supported by our algorithm; Yellow: Predicted Mask. Note: When a user taps
an object, the system (in your phone) processes this input as a pixel ”click,”

difficult to derive a precise bounding box to locate the instance.
One straightforward solution is to run an efficient instance
segmentation model to produce masks for all instances in
the image, followed by querying the desired mask based on
the user click. However, this approach wastes computational
resources by generating masks for irrelevant instances. Alter-
native methods include click-based interactive segmentation
and promptable segmentation models. While these approaches
can incorporate click prompts, they often fail to guaran-
tee efficiency. For instance, many require computationally
expensive processes, such as generating features across the
entire image or performing multiple optimization stages. A
prominent example is Segment Anything Model (11), which
uses a transformer-based image encoder to produce a full



image embedding. While powerful, this results in an inference
time of approximately 0.15 seconds on an Nvidia A100 GPU,
making it impractical for mobile devices due to the significant
computational overhead.

In this paper, we step back from the most popular SAM
research that targets at a more powerful and generalizable
segmentation model. Instead, we study on one click efficient
segmentation which is motivated by the demands of on-the-fly
image editing mobile applications. The task aims at efficiently
segmenting one instance that a user queries with a positive
click. In practical scenarios of one-click efficient segmentation,
a user’s click might not always accurately target the center of
the desired instance. To improve user experience, we propose
a metric of user click tolerance in addition to segmentation
accuracy. This metric measures the proportion of the region
that a user tap can fall into for a high-quality single-instance
mask, as shown in Figure 1 (b).

Our key insight into the proposed problem is that a user’s
click acts as a strong prior in the one-click segmentation task.
The click explicitly indicates the presence of a single object
of interest at the specified position. By leveraging this prior,
the model can effectively eliminate redundancy and achieve
significant efficiency gains. Building on this idea, we revisit
convolutional networks (ConvNets) for efficient segmentation
and refine the concept of the receptive field to precisely locate
and crop redundant regions at a fine-grained level, and thereby
avoiding the need for intensive feature computation across the
entire image during inference. Central to our segmentation
framework is a novel component called the Receptive Field
Tracer (RFT). The RFT back-traces computational dependen-
cies across ConvNet layers, managing feature regions where
heavy computations are applied and preserving only the acti-
vated neuron components in the forwarding path.

To directly condition the final segmentation results directly
on these modified feature regions, we build our framework
upon recently proposed conditional instance segmentation
methods (5). These methods predict local query features
around the selected instance and dynamically condition the
instance-aware mask head on these localized features. By
integrating the RFT and ConvNet-based segmentation, our
framework, named TraceNet, focuses computational resources
exclusively on regions relevant to the target instance. Benefited
from the RFT and the conditional ConvNet design, TraceNet
achieves high accuracy, efficiency, and robustness in one
instance segmentation tasks, making it highly suitable for
deployment on resource-constrained mobile devices.

Overall, our contribution can be summarized as follows:

• Motivated by real-world demands, we proposed and for-
mulated a one click efficient segmentation as a new
form of efficient segmentation for a single instance, and
designed evaluation protocols.

• We propose a solution of TraceNet for one click efficient
segmentation. TraceNet conditions the instance-aware
mask head on local features around the user’s click and
efficiently controls the usage of local features.

• We evaluated the proposed TraceNet on MS-COCO (12)
and LVIS (13). TraceNet demonstrates high computa-
tional efficiency while achieving high accuracy on the
mask prediction of user-specified instances along with a
high user click tolerance.

II. RELATED WORK

The proposed problem of one tap efficient segmentation aligns
closely with a broad line of segmentation research that lever-
ages user clicks.
Click-based Interactive Segmentation. Most of existing in-
teractive segmentation pipelines optimize for the minimal user
clicks so that the IoU (Intersection over Union) between the
predicted foreground mask and the groundtruth mask exceeds
a pre-defined threshold. Classic methods in this field typically
utilize low-level image features and the properties of clicks,
such as Graphcut (14) and Intelligent Scissors (15; 16). In
contrast, CNN-based models (17; 18; 19; 20; 21; 22; 23; 24)
encode the click map and concatenate with RGB channel as
inputs of neural networks.
Promptable Segmentation. In addition to these specialized
interactive segmentation models, vision foundation models
have also demonstrated capability in this area. SAM (11), in
particular, has attracted significant attention for its remarkable
zero-shot generalization to new image distributions and tasks.
SAM operates by conditioning its mask decoder on combined
output embeddings from a heavy image encoder and a prompt
encoder, inherently functioning as an interactive segmenter for
any instance. MobileSAM (25) makes SAM more mobile-
friendly by distilling the knowledge from SAM’s heavy en-
coder into a more lightweight one.
However, our task differs from conventional interactive seg-
mentation, as it focuses on efficiently segmenting a single in-
stance rather than segmenting anything or everything. Guided
by a user’s tap within one instance, TraceNet can selectively
encode the instance/tap-relevant features and thus benefit from
efficiency gains as it avoids redundant feature calculation
across the entire image.

III. TASK AND METHOD

Problem Formulation. Given an input image I 2 RH⇥W⇥3

and a user click c = (x, y) 2 RH⇥W . The goal of click-driven
single-instance segmentation is to predict a pixel-level mask of
the instance located at (x, y). The ground-truth is defined by
{Mgt}, where Mgt 2 {0, 1}H⇥W is the groundtruth mask
that user queries with the click c, where c 2 Mgt. The
expected model is a learned function that maps I and c

to a single-instance mask Mpred, targeting a satisfying IoU
between Mpred and Mgt, and robustness w.r.t the click c.
TraceNet Overview. As illustrated in Figure 2, TraceNet
comprises a Receptive Field Tracer (RFT) and a ConvNet
module for instance segmentation.When a user taps on the
screen, the device’s hardware processes the signal and converts
it into the digital representation of a single pixel. The ConvNet
model is pre-loaded on the device, while the RFT dynamically
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Fig. 2. - Overall architecture of TraceNet. Receptive Field Tracer (RFT) back
traces the receptive field region and perform autocropping in ConvNet.

influences computations by backtracking the ConvNet’s recep-
tive field based on the tap location and performing automatic
cropping. Further details about the RFT are provided in III-A,
with the ConvNet module described in III-B.

A. Receptive Field Tracer (RFT) in TraceNet

RFT Overview. With the user click information, the model
can identify the target instance and focuses computation ac-
cordingly, reducing unnecessary processing in other regions.
To achieve this, we introduce RFT, designed to eliminate re-
dundant computations inherent in exhaustive instance searches
in existing segmentation algorithms. As shown in Figure 2,
RFT uses the user click as input, backtracks the receptive
field (in blue grids) across model layers in the computational
graph, and autocrops regions (in gray background) that do not
contribute to the output associated with the click. This method
significantly enhances memory efficiency and inference speed.
Additionally, RFT is highly compatible with most ConvNet-
based instance segmentation algorithms, as it does not impose
restrictive architectural requirements.
Back-tracing Mechanism. Designing an algorithm for recep-
tive field back-tracing is a non-trivial task, as it must efficiently
traverse layers while propagating the click information to
guide computation. To address this, we propose a Depth-
First Search (DFS) algorithm for backtracing in ConvNets. As
illustrated in Figure 3, the receptive field of each layer in the
computational graph for instance segmentation is recursively
backtraced using DFS, starting from the downstream layers
and moving toward the upstream layers.

Details will be discussed in the following sections: first,
we provide a formal definition of the receptive field region at
each layer of a neural network. Next, we describe the post-
order DFS algorithm, illustrating how receptive field back-
tracing operates in arbitrary pure convolutional neural network
models, deriving all recursive cases. Finally, we explain how
RFT leverages the results to manage computations in other
components during inference, including autocropping and au-

topadding. A detailed algorithm block for RFT is provided in
the Appendix.
Receptive Field Revisited. In the context of deep learning
(26; 27), receptive field region refers to the region in the input
that produces the feature. Receptive field is defined as the size
of the region. The concept of receptive field is important for
researchers to diagnose how CNN works in a sense that a unit
in the model output is only affected by units in receptive field
regions in the input image. A formal definition of the receptive
field region of a simple n-layer convolutional neural network
can be formulated as follows. Assume the pixels on each layer
are indexed by (i, j), with the most upper-left pixel at (0, 0).
Denote the (i, j)th pixel on the p-th layer as x

p

i,j
. p 2 [n]

in a n-layer convolutional neural network where x
0
i,j

and x
n

i,j

respectively denote the pixel value in the input image and the
model output. By definition the receptive field region of the
unit x

n

i,j
is the set of all units in x

0 that contribute to x
n

i,j
.

The receptive field region of a set of units is the union of the
receptive field region of all units in the set. We extend the
concept of the receptive field more than in the input images
and define the p-layer receptive field region r

p of the unit xn

i,j

to be the set of all units in the output feature map of the pth
layer xp that contribute to x

n

i,j
, for any p 2 [n]. Note that we

can consider only single channel of the input and output of
each layer in the context of calculating receptive field regions
and similar results can be derived for layers with multiple
channels.
Receptive Field Depth First Search. The click-driven seg-
mentation aims at precisely localizing the region that con-
tributes to local output features around user clicks and re-
ducing spatial redundancy of convolution operations as much
as possible across all the layers of the model. i.e only com-
putation within the layer receptive field region is preserved in
forward pass. We introduce a click-driven receptive field back-
tracing algorithm to compute receptive field regions at each
layer of the neural network from deep to shallow. To illustrate
the algorithm, we construct a directed acyclic computation
graph for arbitrary model, where the nodes correspond to
layer operations and inputs, and directed edges represent
dependency between layers. (Note that most modern convo-
lutional neural networks designs rely on layers with multiple
child nodes and more than one back-tracing paths exist.) To
deal with arbitrary neural network model, the calculation of
receptive field region at each layer is conducted in post-order
Depth First Search with an intuition that p-layer receptive
field region can be represented as a function of receptive field
regions of all the child nodes of the p-layer node. In post-order
Depth First Search, the receptive field region of the p-layer
will be calculated after all the child nodes of the p-layer have
been visited. The search algorithm ensures single visit of each
node and results in a worst-case complexity of O(|E|+ |N |),
where E represents the edge set and N represents the node
set in the computation graph of the model.
Recursive Case Setup: from p+1 to p. For simplicity of
notation, we first describe the problem setup of receptive field
region calculation in computation graph with only one path
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Fig. 3. One click driven receptive field back tracing in the acyclic computation
graph (visualized directly by onnx) of instance segmentation.

including all nodes. The setup can be naturally extended to
arbitrary computational graph with the Depth First Search
solution. Consider a pure convolutional neural network model
with P layer operations and the layer index p 2 [P ]. i.e,
for any p 2 [P � 1], the node representing the pth layer
in the computation graph has one and only one child node
representing the (p + 1)th layer. The layer operation type(p)
can be one of the common operations in Neural Network
including Convolution, Activation, Pooling, Normalization,

Interpolation. Define the feature map fp as the output feature
map of the pth layer. For any p 2 [P � 1], We want to
derive a recursive and invertible mapping function that maps
r
p+1 with respect to fp+1 to r

p with respect to fp, based
on the type of the layer (p + 1) and a list of parameters
Ap+1 that characterize the layer (p+1): rp = F (rp+1

, Ap+1)
And we formulate detailed recursive cases on convolution,
normalization, pooling, and interpolation in Appendix.
Extended Setup for Arbitrary Computation Graph. Sup-
pose the p-layer has m children denoted as pl such that l 2 [m].
Denote the receptive field region r

p with respect to the pth
layer output fp, rp =

S
l2[m] F (rp

l

, Apl) where F denotes the
recursive and invertible mapping function that maps receptive
field region of child nodes to the receptive field region with
respect to current feature map, based on the type of the
child layer operation. Note that the union of the outputs of
multiple mapping function F might be the union of more than
one rectangular regions. In our PyTorch implementation, we
approximate the receptive field region rp by the smallest rect-
angular region that fully covers all the back-traced rectangular
regions before we further compute the receptive field region at
a higher nodes. Note that the smallest rectangular region can be
trivially computed by simply comparing the coordinate values
of sides of all rectangular receptive field regions. The design
choice is based on two practical reasons. 1) Multiple back-
traced rectangular regions are often greatly overlapped with
each other. Thus, negligible theoretical computation overheads
are introduced by computing features in the approximated
receptive field region; 2) Pytorch implementations are much
more efficient in computing features in a rectangular patch.

At each layer, exact input and output of individual F function
are memorized by the receptive field region controller for
AutoCropping in the forwarding pass.
AutoCropping and AutoPadding. After (approximate) layer
receptive field regions have been computed from leaf to root
in the computation graph, we can compute features within
the approximate receptive field regions from root to leaf.
For any p layer and any child node p

l of the p layer, the
receptive field region controller crops the feature map with
the memorized output of the F function and pads it with
the memorized padding value at four boarders for next-layer
feature computation in p

l. Any feature value that is outside
the approximate layer receptive field r

p does not contribute to
final-layer features around the user click.

B. Conditional ConvNet for RFT

ConvNet Design. The Conv component of TraceNet includes
a feature pyramid backbone that extracts multi-level feature
maps from the input image, a conditional filter head that
predicts the parameters of the mask head with local features
around the click, a compact mask head conditioned on the
user-specified instance in their filters. This design is directly
inspired from Condinst (5), a dynamic instance-aware Con-
vNet conditioned on instances.
Backbone Module. Following the design of Feature Pyramid
Network (28), we extract a 5-level feature pyramid over
ResNet (29). Each level of our feature pyramid is used to
extract local features around the click at different scales.
The feature pyramid design is essential because no scaling
information of the user-specified instance is provided.
Mask Branch Conditioned on Instance. The mask branch
is in the format of Fully Convolutional Neural Network (30)
for an image-level prediction. The mask branch is applied to a
feature map extracted from the backbone. (i.e P3 with down-
sampling ratio of 8). Compared to the mask branch design
in Mask RCNN (31), the design eliminates needs for ROI
operations by performing convolution in image-level. Besides,
the computation overhead of the mask head in our model is
much more lightweight. It only consists of 3 1x1 convolution
layers with 8 channels each, while the unconditioned mask
branch in Mask-RCNN often has four convolution layers with
256 channels. The intuition behind the compact design can be
explained as follows. When the parameters of mask branch
in our model are conditioned on local features around user-
specified instance, the characteristics (geometry of the instance
and relative location of the instance with respect to the user
query click) of the user specified instance can be encoded in
the mask branch with the help of conditional filter head. To
fully exploit the encoded spatial characteristic, we concatenate
the P3 feature map with a map of relative coordinates from
all locations to the user click query. Similar designs also exist
in other conditional instance segmentation algorithms (5; 32).
When applied to the concatenated inputs, the mask branch
can naturally focus on the pixels of the user specified instance
and predict the mask in an instance-aware manner. A sigmoid
is applied make the mask prediction class-agnostic. Finally,



a bilinear 4x upsampling is performed on the output mask.
The upsampling results in 2x downsampling mask prediction
compared to the resolution of the input image.
Conditional Filter Head and Box Head. The conditional
filter head is adopted with slight modification from Condinst
(5), which is based on FCOS (33). In FCOS and Condinst,
each pixel location on multi-level feature map can be as-
sociated with an instance in the original image by a sim-
ple mapping. i.e. The pixel (x, y) at the feature map with
downsamling ratio of s can be mapped to the imput image as�⌅

s

2

⇧
+ xs,

⌅
s

2

⇧
+ ys

�
. Condinst introduces a conditional filter

head to encode characteristics of the instance associated with
the location in the feature map in pixel-level fashion and a box
head to regress the bounding box location of the same instance.
The conditional filter head is used to predict a 169-dimension
vector of parameters ✓a,b for the above mentioned mask
branch for the mask of instance located at (a, b) in the feature
map. The box head predicts a 4-dimension vector encoding
relative distance between the pixel and four boundaries of the
bounding box. Both heads take the features extracted from
heavy classification and box tower, which consists of four 3x3
stride 1 convolutional layers with dimension 256 followed by
ReLU activation and Batch Normalization (34). The centerness
head is not included in the Figure 2 and we refer readers to
more details in FCOS (33).

IV. EXPERIMENTS
TABLE I

MIOU-T AND MTA ON LVIS, MTA ON COCO.

Method mIoU-T mTA(LVIS) mTA(COCO)

ritm-h32 (22) 0.328 0.238 0.349
focuscut-R-50 (35) 0.253 0.0734 0.117
focuscut-R-101 (35) 0.228 0.0744 0.138
TraceNet-R-50-FPN 0.286 0.272 0.346
TraceNet-R-101-FPN 0.294 0.257 0.395

Evaluation Formulation. Denote a set of groundtruth mask�
M

i

gt

 
, where M i

gt
is the groundtruth mask of the i-th instance

in the dataset. Denote a set of clicks
�
c
i,j
 

where each element
c
i,j is the j-th click, ci,j 2 M

i

gt
. Denote a set of predicted

mask as
n
M

i,j

pred

o
, where M

i,j

pred
is the predicted mask of the

i-th instance when being queried by c
i,j .

A. Evaluation Protocol

Because Mpred depends on the user click c, we propose a
new metric, the mean tap Intersection over Union (mIoU-T),
to measure the average segmentation accuracy of all possible
user clicks within the groundtruth instance mask. The user
click tolerance is measured by a proposed metric mean tap
Area (mTA). mTA calculates the ratio between area of feasible
clicking area and the area of groundtruth instance mask. The
feasible clicking area covers potential clicks that can generate
an instance mask with the IoU over a predefined threshold.
Mean Tap Intersection Over Union. Since the predicted
mask Mpred depends on the user click, IoU cannot be directly
applied to measure the expectation of mask quality with

Fig. 4. Generated clicks from band-1 (left most) to band-5 (right most).

Fig. 5. mIoU-T and mTA over different band regions in COCO and LVIS

different user clicks. We propose mIoU-T that measures the
average quality of a set of predicted masks

n
M

i,j

pred

o
over a

set of instances with groundtruth mask M
i

gt
.

mIoUT =

P
i,j

Area(M i,j

pred
\M

i

gt
)

P
i,j

Area(M i,j

pred
[M

i
gt)

(1)

This is a general metric that works on arbitrary numbers of
one-shot click queries and arbitrary numbers of instances. In
our experiment, the number of clicks is a constant within each
instance. i.e for any i, j 2 [k], where k is a constant value
indicating the size of the set of candidate one-shot click.
Mean Tap Area. Besides the expectation of predicted mask
quality, the user click tolerance is measured, i.e., the proportion
of the region that a user click can fall into for a high-quality
single-instance mask. We propose to use mTA to measure user
click tolerance. To calculate the feasible region of user click,
for any i,

�
c
i,j
 

should be constructed as a set of all pixels
in the M

i

gt
. mTA is calculated as below:

mTA =

P
i,j

1(IoU(M i,j

pred
,M

i

gt
) � �)

P
i
Area(M i

gt)
(2)

where � is a pre-defined IoU threhold and 1 is an indicator
function. We use Eq. IV-A rather than averaging among each
of the trials to treat instances of various sizes equally.
B. Implementation Detail

Dataset. We train and evaluate TraceNet on MS-COCO (12)
and LVIS (13). MS-COCO is a large-scale dataset for object
detection and instance segmentation with over 82k training
images and 600k instance-level mask annotations. LVIS is a
dataset for large vocabulary instance segmentation. It has 2-
million mask annotation over 1k entry-level categories.



TABLE II
MIOU-T OVER CATEGORIES ON COCO DATASET.

Method person car chair bottle cup dining table traffic light bowl Category Total
mobilesam (25) 0.4877 0.5129 0.3530 0.6043 0.6405 0.2571 0.3425 0.3675 0.4331
focuscut-R-50 (35) 0.4128 0.3734 0.3703 0.3705 0.4715 0.2206 0.3652 0.4631 0.3774
focuscut-R-101 (35) 0.4759 0.4150 0.3961 0.3079 0.3610 0.2735 0.3122 0.4411 0.4217
TraceNet-R-50-FPN 0.4306 0.4796 0.3285 0.090 0.1631 0.5010 0.2925 0.2541 0.3977
TraceNet-R-101-FPN 0.4542 0.5186 0.3787 0.0958 0.1798 0.5207 0.4471 0.2733 0.4312

TABLE III
COMPUTATION COST TO RETRIEVE AN INSTANCE FROM AN IMAGE OF

SIZE OF 1024 X 768. FULLNET REFERS TO OUR MODEL WITHOUT RFT.
Method throughput (FPS) latency (ms) FLOPs

mobilesam (25) 40.81 24.50 -
ritm-h32 (22) 11.37 87.94 406.5G
focuscut-R-50 (35) 44.33 22.56 52.55G
focuscut-R-101 (35) 37.86 26.42 67.18G
FullNet-R-50-FPN - - 86.67G
FullNet-R-101-FPN - - 118.28G
TraceNet-R-50-FPN 48.85 20.47 34.47G
TraceNet-R-101-FPN 41.96 23.83 66.67G

Fig. 6. Qualitative Results: first column as groundtruth, others as model
predictions. More qualitative results are in Appendix.

Click Simulation with Morphological Transformations.
Since no clicks are provided in the dataset, we have to simulate
user clicks within all instances in the dataset. During evalua-
tion, 25 user clicks

�
c
i,j
 

are simulated within all instances
in the dataset. As is illustrated by the figure in the Appendix,
we sample 25 clicks for one instance, with each five clicks
randomly sampled in one of the five bands around the moment
of the instance. The boundary between bands is constructed
with the help of morphological transformations: Suppose the
instance is bounded by a bounding box in H ⇥W . Then
we construct an binary image I 2 {0, 1}H⇥W , where only
the pixel value at moment of the instance is one. The first
boundary between bands is generated by performing dilation
on the I with kernel size H/5⇥W/5. More boundaries are
generated by performing the same dilation operation repeat-
edly. The generated clicks are visualized in Figure 4.
Training details. We refer the training protocol, the loss
function and hyper-parameters settings to the Appendix, as
they are highly similar to CondInst (5) and FCOS (33).
Baselines. ritm (22) is a computationally heavy click based
interactive segmentation model with the strongest one click
performance before SAM (11). focuscut (35) is a state-of-the-
art efficient click based interactive segmentation model with

the resnet backbone. For fair comparison, focuscut, ritm and
our models are trained on LVIS + COCO. Mobilesam is trained
on a significant larger dataset proposed in the SAM paper.
mIoU-T. We evaluate overall IoU-T performance of our
method on COCO and LVIS. As shown in the Table 1 and table
2, the TraceNet with ResNet backbone outperforms focuscut
with the same backbone. The performance is slightly lower
than heavy ritm and mobilesam with more training data. In
the category analysis, our model achieves good performance
on common and large object categories (e.g dinning table and
car) but loses performance in small ones (e.g. bottle and cup)
compared to baselines. The intuition is that global features
eliminated by RFT module are important when extracting
segmentation masks of relatively small objects.
mTA. mTAs of TraceNet on COCO are 0.346 and 0.395
with ResNet-50 and RestNet-101 backbone, respectively. It
indicates that over 30% of the user taps can result in a good
instance mask with IoU larger than 0.7. A significant drop in
terms of mTA is observed on LVIS. Since the LVIS dataset
is providing more fine-grained annotations of the image in
COCO. Overall, TraceNet achieves significantly better mTA.
Performance Profiling over Band. The mIoU-T and mTA
performance over 5 different bands are profiled in Figure 5.
Both mIoU-T and mTA generally drop with increasing dis-
tance from tap to the instance center.
Computation analysis. Efficiency is one of the most impor-
tant objectives of one-tap segmentation task for mobile de-
vices. In Table 3, we make an analysis on FLOPs, throughput
in one second and latency of inference process of the algo-
rithm. With the help of RFT, TraceNet saves 60.2% of com-
putations on R-50-FPN Backbone and 43.6% of computations
on R-101-FPN, compared to the full inference process which
is denoted as FullNet (for ablation). TraceNet significantly
outperforms all baselines in terms of computation efficiency.
For memory consumption, the minimum parameters should be
stored for inference TraceNet is only 12.5M and is sufficient to
meeting the requirements of mobile devices. We include more
FLOP results in Appendix with more transformer models.

V. CONCLUSION

In this paper, we propose and formulate click-driven one
instance segmentation task as well as design the evaluation
protocol. We built a solution TraceNet that back-traces the
receptive field region at each layer with respect to local
features around the user query tap. Extensive experiments
demonstrate effectiveness and efficiency of TraceNet.



REFERENCES

[1] Jiale Cao, Rao Muhammad Anwer, Hisham Cholakkal,
Fahad Shahbaz Khan, Yanwei Pang, and Ling Shao,
“Sipmask: Spatial information preservation for fast im-
age and video instance segmentation,” Proc. European

Conference on Computer Vision, 2020.
[2] Youngwan Lee and Jongyoul Park, “Centermask: Real-

time anchor-free instance segmentation,” 2020.
[3] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and

Chunhua Shen, “Solov2: Dynamic and fast instance
segmentation,” Proc. Advances in Neural Information

Processing Systems (NeurIPS), 2020.
[4] Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo

Liu, Ding Liang, Chunhua Shen, and Ping Luo, “Po-
larmask: Single shot instance segmentation with polar
representation,” arXiv preprint arXiv:1909.13226, 2019.

[5] Zhi Tian, Chunhua Shen, and Hao Chen, “Conditional
convolutions for instance segmentation,” in Proc. Eur.

Conf. Computer Vision (ECCV), 2020.
[6] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae

Lee, “Yolact++: Better real-time instance segmentation,”
IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020.
[7] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae

Lee, “Yolact++: Better real-time instance segmentation,”
IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020.
[8] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen, “Mobilenetv2: In-
verted residuals and linear bottlenecks,” in CVPR, 2018.

[9] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and
Hartwig Adam, “Searching for mobilenetv3,” in ICCV,
2019.

[10] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam, “Encoder-decoder
with atrous separable convolution for semantic image
segmentation,” in ECCV, 2018.

[11] Alexander Kirillov et al., “Segment anything,” 2023

IEEE/CVF International Conference on Computer Vision

(ICCV), pp. 3992–4003, 2023.
[12] Tsung-Yi Lin et al., “Microsoft coco: Common objects

in context,” in European conference on computer vision.
Springer, 2014, pp. 740–755.

[13] Agrim Gupta, Piotr Dollar, and Ross Girshick, “Lvis: A
dataset for large vocabulary instance segmentation,” in
Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2019, pp. 5356–5364.
[14] Y.Y. Boykov and M.-P. Jolly, “Interactive graph cuts

for optimal boundary & region segmentation of objects
in n-d images,” in Proceedings Eighth IEEE Interna-

tional Conference on Computer Vision. ICCV 2001, 2001,
vol. 1, pp. 105–112 vol.1.

[15] Eric N. Mortensen and William A. Barrett, “Intelligent

scissors for image composition,” in Proceedings of

the 22nd Annual Conference on Computer Graphics

and Interactive Techniques, New York, NY, USA, 1995,
SIGGRAPH ’95, p. 191–198, Association for Computing
Machinery.

[16] Eric N. Mortensen and William A. Barrett, “Interactive
segmentation with intelligent scissors,” Graph. Models

Image Process., vol. 60, no. 5, pp. 349–384, sep 1998.
[17] Won-Dong Jang and Chang-Su Kim, “Interactive image

segmentation via backpropagating refinement scheme,”
in Proceedings of The IEEE Conference on Computer

Vision and Pattern Recognition, 2019.
[18] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton

Konushin, “f-brs: Rethinking backpropagating refine-
ment for interactive segmentation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 8623–8632.
[19] Qin Liu, Meng Zheng, Benjamin Planche, Srikrishna

Karanam, Terrence Chen, Marc Niethammer, and Ziyan
Wu, “Pseudoclick: Interactive image segmentation with
click imitation,” 2022.

[20] Zheng Lin, Zhao Zhang, Lin-Zhuo Chen, Ming-Ming
Cheng, and Shao-Ping Lu, “Interactive image segmen-
tation with first click attention,” in 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2020, pp. 13336–13345.
[21] Xi Chen, Zhiyan Zhao, Yilei Zhang, Manni Duan,

Donglian Qi, and Hengshuang Zhao, “Focalclick: To-
wards practical interactive image segmentation,” in
IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2022, New Orleans, LA, USA, June

18-24, 2022. 2022, pp. 1290–1299, IEEE.
[22] Konstantin Sofiiuk, Ilya A. Petrov, and Anton Konushin,

“Reviving iterative training with mask guidance for in-
teractive segmentation,” in 2022 IEEE International

Conference on Image Processing (ICIP), 2022.
[23] Minghao Zhou, Hong Wang, Qian Zhao, Yuexiang Li,

Yawen Huang, Deyu Meng, and Yefeng Zheng, “Inter-
active segmentation as gaussian process classification,”
2023.

[24] Qin Liu, Zhenlin Xu, Gedas Bertasius, and Marc Ni-
ethammer, “Simpleclick: Interactive image segmentation
with simple vision transformers,” 2023.

[25] Chaoning Zhang et al., “Faster segment anything: To-
wards lightweight sam for mobile applications,” arXiv

preprint arXiv:2306.14289, 2023.
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