NeRFlow: Towards Adaptive Streaming for NeRF Videos

Rui-Xiao Zhang! Tianchi Huang?

'University of Illinois Urbana-Champaign

Abstract

Neural Radiance Field (NeRF) has emerged as a powerful tech-
nique for 3D scene representation due to its high rendering quality.
Among its applications, mobile NeRF video-on-demand (VoD) is
especially promising, benefiting from both the scalability of the
mobile devices and the immersive experience offered by NeRF. How-
ever, streaming NeRF videos over real-world networks presents sig-
nificant challenges, particularly due to limited bandwidth and tem-
poral dynamics. To address these challenges, we propose NeRFlow,
anovel framework that enables adaptive streaming for NeRF videos
through both bitrate and viewpoint adaptation. NeRFlow solves
three fundamental problems: first, it employs a rendering-adaptive
pruning technique to determine voxel importance, selectively re-
ducing data size without sacrificing rendering quality. Second, it
introduces a viewpoint-aware adaptation module that efficiently
compensates for uncovered regions in real time by combining pre-
encoded master and sub-frames. Third, it incorporates a QoE-aware
bitrate ladder generation framework, leveraging a genetic algo-
rithm to optimize the number and configuration of bitrates while
accounting for bandwidth dynamics and ABR algorithms. Through
extensive experiments, NeRFlow is demonstrated to effectively im-
prove user Quality of Experience (QoE) by 31.3% to 41.2%, making
it an efficient solution for NeRF video streaming.

CCS Concepts

« Information systems — Multimedia information systems.

Keywords
Content Delivering, Neural Radiance Field, Video Streaming

ACM Reference Format:

Rui-Xiao Zhang! TianchiHuang? BoChen' Klara Nahrstedt!, !University
of Tllinois Urbana-Champaign ~ 2Tsinghua University . 2025. NeRF Low: To-
wards Adaptive Streaming for NeRF Videos. In The 23rd Annual Interna-
tional Conference on Mobile Systems, Applications and Services (MobiSys ’25),
June 23-27, 2025, Anaheim, CA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3711875.3729160

1 Introduction

Volumetric videos are gaining popularity due to their immersive
viewing experience, with the global market projected to exceed 5000
million by 2030 [45]. Among various techniques, Neural Radiance
Field (NeRF) has emerged as a leading solution since its introduc-
tion in 2020. NeRF represents 3D scenes using a neural network
that maps 3D coordinates to view-dependent colors and densities,

Please use nonacm option or ACM Engage class to enable CC licensem

This work is licensed under a Creative Commons Attribution 4.0 International License.
MobiSys 25, June 23-27, 2025, Anaheim, CA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1453-5/2025/06

https://doi.org/10.1145/3711875.3729160

Bo Chen' Klara Nahrstedt!
*Tsinghua University

enabling high-quality multi-view synthesis [16, 57]. Compared to
point clouds and meshes, NeRF offers superior photorealism and
memory efficiency.

NeRF has been adopted in mobile applications for travel, medical
imaging, gaming, and shopping [12, 46, 55, 56]. In these applica-
tions, users download NeRF data via mobile networks (e.g., Wi-Fi
or cellular) and render it on their devices for real-time 3D interac-
tion. Recent advances have extended NeRF from static to dynamic
scenes [17, 44], paving the way for NeRF video streaming.

However, streaming NeRF videos to mobile devices in real-world
networks remains challenging. Our analysis shows that network
conditions still face 1) limited bandwidth and 2) temporal fluctu-
ations, which prevent smooth streaming even for state-of-the-art
(SOTA) models [58] (§3.1).

To address the above challenges, we propose NeRFlow, a novel
framework for NeRF video streaming that adapts to dynamic real-
world network conditions. NeRFlow’s core idea focuses on two
types of adaptations: bitrate adaptation and viewpoint adaptation.
For bitrate adaptation, NeRF1low encodes NeRF videos at multiple
bitrates rather than relying on a single version, enabling dynamic
selection of the most suitable bitrate based on current network con-
ditions. For viewpoint adaptation, it streams only the parts of the
data closely related to the viewer’s perspective, further reducing
data volume. While these two types of adaptation are common in
traditional video streaming [6, 19, 38], NeRF’s implicit data repre-
sentation introduces unique challenges that require tailored solu-
tions. Specifically, we realize NeRF1ow by addressing the following
challenges.

> In-efficient NeRF video compression: Traditional 2D videos lever-
age “pixels” with explicit RGB information, which allow the encoder
to accurately assess pixel importance and selectively retain key de-
tails during compression (e.g., areas containing high-frequency
information [39], and areas with more brightness [35]). In contrast,
NeRF videos leverage “voxels” (i.e., 3D unit) but contain neural-
based features. This implicit representation makes it difficult for
the encoder to identify which parts of the representation are more
important, resulting in uniform compression that ultimately de-
grades rendering quality. This implicit representation also makes
it difficult to apply previous streaming optimizations designed for
VR/point clouds [25, 38, 47, 66], as their downsampling decisions
are based on the explicit RGB information visible to users [19, 48].
Solution: We tackle this problem with a rendering-adaptive prun-
ing method based on two key observations. First, although NeRF
uses implicit feature representation, voxel importance can be in-
ferred from intermediate variables in the rendering process. Second,
users’ viewpoints are consistently concentrated in a few specific
regions across different users. Therefore, by evaluating each voxel’s
contribution to rendering, particularly for these concentrated view-
points, we selectively prune less important voxels instead of com-
pressing all voxels uniformly. This approach effectively reduces
data size while preserving quality.

https://doi.org/10.1145/3711875.3729160
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3711875.3729160

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

> Resource-intensive NeRF encoding: Generating more bitrates
provides finer-grained bitrate selection for ABR control, it also
introduces significant computational overhead. Unlike 2D videos,
NeRF videos encode 3D spatial information with multi-dimensional
features for each voxel, making them considerably larger than
traditional 2D videos. Moreover, encoding NeRF videos requires
intensive 3D space sampling, which further increases computation
time. These factors make it impractical to pre-generate multiple
bitrates for NeRF videos, posing a significant burden on the server’s
computational resources.
Solution: We solve this problem through a novel bitrate genera-
tion framework. Specifically, to consider both bandwidth and ABR
algorithm when deciding the optimal NeRF encoding bitrates, we
model the bitrate generation process as an optimization problem,
aiming to select the minimal set of encoding bitrates while main-
taining QoE. We use the genetic algorithm (GA) to efficiently solve
this problem. By building up a faithful virtual player and using the
feedback of the ABR algorithm for GA iteration, our method can
automatically capture the environment dynamics and find the most
suitable encoding bitrates.

> Artifact due to data incompleteness: When transmitted data
fails to fully cover the user’s viewpoint, artifacts may occur, se-
verely degrading the viewing experience. NeRF videos are partic-
ularly vulnerable to this issue due to their complex feature space,
which encodes far more information than traditional RGB chan-
nels. Unlike explicit representations such as mesh and point clouds,
where missing data can often be reconstructed through interpola-
tion [23, 33, 36], NeRF’s implicit representation lacks this capability.
As a result, even the loss of a small number of voxels can signif-
icantly disrupt rendering quality and negatively impact the user
experience.
Solution: To address this issue, we adopt a hybrid transmission
strategy using a master frame and sub-frames. The key insight is
that the importance of NeRF voxels for rendering is highly con-
centrated, meaning only a small number of voxels require compen-
sation through sub-frames. This allows us to manage the overall
transmission overhead, even if splitting the raw feature slightly re-
duces coding efficiency. Specifically, by employing a voxel selection
algorithm based on rendering contributions and pre-generating a
lookup table offline, we can accurately and efficiently identify the
required voxels in real time.

In summary, this paper makes the following contributions:

o We analyze network traces and NeRF models, revealing that
current networks cannot effectively support NeRF video
streaming, motivating the need for adaptive streaming tech-
niques (§3).

e We present NeRFlow, a novel framework for NeRF video
streaming under dynamic network conditions. By address-
ing key algorithmic and system challenges through three
core modules, NeRFlow reduces data size, maintains user
experience, and balances QoE and encoding overhead (§4).

o We evaluate NeRFlow through comprehensive experiments,
showing that it improves QoE by 31.3% to 41.2% compared
to the baseline (§5).

Rui-Xiao Zhang et al.

f
ﬁ
nc Enc
3D 3D
Dec Dec

(3D DCT]—*[Quantization }—»[Entropy Encoding |

ai Feature/density
grid (V/Vy)

Figure 1: Left: frame-level NeRF rendering; Right: intergrating
frame-level representation to NeRF video (better viewed in color).

2 Background

NeRF video represents volumetric video using implicit multi-dimensional

features instead of explicit RGB values [16, 43, 57], and this allows
NeRF video to model complex visual effects such as transparency
and dynamic lighting. NeRF video generation involves two steps: 1)
generating a NeRF for each frame as a static scene, and 2) integrat-
ing multiple frames into a dynamic video by leveraging temporal
similarity.

Representing each frame with NeRF: NeRF represents each
frame of a volumetric video using an implicit neural network (NN).
When provided with the input coordinate x € R? and the viewing
direction d € R?, the NN model Fg can generate a density o(x)
and color ¢(x,d), i.e, Fg : (x,d) --> (¢,0). Givenarayr = o+ td
casting from the viewpoint o € R3, the pixel color C(r) can be
calculated by accumulating the density and color of the sampling
points (denoted as x;) along the ray:

N
é(l‘):ZTi'ai’ci (1)
i=1
i-1
ai=1-exp(-0i6;), Ti:l_[(l_aj) @)
j=1

in which o; is the distance between adjacent sample points, T; de-
notes the accumulated transmittance when reaching point x;, and
a; means the probability that the ray terminates at point x;. In-
stead of using a fully implicit representation, which suffers from
slow training and inference due to heavy neural network querying,
recent work has proposed combining a voxel-based structure to
improve learning and rendering [4, 53, 60]. A voxel is a 3D unit, like
a pixel in 2D space, and they are organized into grids. In traditional
computer graphics, voxels store explicit data like color and den-
sity [13], but in NeRF, they store implicit features. With a density
grid V5 and a color feature grid V, the density ¢ and color ¢ will
be represented as:

=interp(x,Vys), c¢=Fg(interp(x,V,),d) (3)

where interp(-) means the tri-linear interpolation function on the
grids. We have also illustrated the process in Figure 1 (see the left
part). After getting the rendered results, we can calculate the dif-
ference between the ground truth and update Fg, V¢, V. through
backpropagation. Therefore, the data structure of NeRF representa-
tion usually contains three parts: the obtained tensor with multi-
dimension features (i.e., V4, V¢) and an MLP (i.e., Fg).

NeRFlow: Towards Adaptive Streaming for NeRF Videos

3
P x10
1 . — a2
é Avg: 36.87, 2,
0 2 A,
10° 10! 102 “ 00 50 100 150 200 250
Bandwidth (Mbps) Time (s)
g 40T ReRF NGP G 1.0
ot INGPT 505
= 30 iNeuVe
o Wi eL‘J lox DeVRF__
102 103 104 105 0 10 20 30 40 50

Bw Requirement (Mbps) Rebuffering Time (s)
Figure 2: Network capacity v.s. Figure 3: The impact of tempo-
NeRF models. ral dynamics in networks.

Integrating frames into video: After obtaining per-frame fea-
ture/density grids (for simplicity, we use f; = {Vt, Vl}), we can
then compress the data size by generating per-frame motion M¢
and residual r¢ through spatial-temporal coherency [28, 58]. Similar
to 2D video, motion M; in NeRF video represents the movement
of corresponding voxels between adjacent frames, which is a grid.
Notably, since NeRF operates in feature space, M is usually de-
rived together with the raw feature (i.e., fy) through training pro-
cess [51, 58]. As denoted in Figure 1, encoding NeRF video has three
main steps: i.e., 1) predicted frame generation, 2) residual calcu-
lation, and 3) 3D data encoding. Predicted frame is generated by
warping previous feature grid f;_1 into the current frame f; through
sampling My; residual r¢ is calculated by comparing the difference
between the predicted frame and the real frame; 3D data encoding
is used to convert generated residual/motion into bit streams.

We also give a detailed example in Figure 1. The first frame
is encoded independently as a key frame without a motion grid.
Starting from the second frame (f;), we predict the frame () using
the previous frame’s reconstruction and the trained motion grid
(step 1). The residual r¢ is then calculated as the difference between
the actual frame (f1) and the predicted frame (ﬁ) (step 2). The mo-
tion grid (M¢) and residual (r¢) are more compact than raw frame
data [58] and are encoded using a 3D encoder (DCT, quantization,
entropy encoding) to produce multiple bitrates by varying quanti-
zation parameters (step 3). Larger quantization parameter leads to
higher compression ratio but more quality degradation. 3D DCT is
similar to traditional DCT, but it extends the transformation into
three dimensions instead of two. Therefore, unlike the 2D DCT,
which operates on image frames, the 3D DCT processes a volu-
metric block, capturing correlations across spatial and volumetric
dimensions. This enables more efficient compression by exploiting
redundancy within the volume, making it particularly useful for
volumetric data compression. Decoding reverses these steps with
entropy decoding, de-quantization, and 3D IDCT. We have also
shown the components of 3D encoder in Figure 1. To clarify and
distinguish with 3D encoder, we denote the encoder that includes
residual calculation as NeRF encoder.

3 Motivation and Challenges
3.1 Streaming NeRF Videos in the Wild is
Non-trivial

Although NeRF representation is promising, the following charac-
teristics of current network conditions prevent efficient NeRF video
streaming.

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

Limited bandwidth capacity. We first use a public dataset [63]
to measure real-world bandwidth distribution. This dataset is col-
lected by a product-level web player, which supports users watch
VoD across different platforms. This player has been used by mil-
lions of users under mixed network conditions around the world in
the past few years. Therefore, it can be regarded as a good sample
for current network conditions. The results are shown in Figure 2
(see the top sub-figure). We can see that the average bandwidth
value is about 36.87 Mbps, and for most of the traces (over 94%),
the bandwidths are below 100 Mbps. Actually, this capacity cannot
handle NeRF videos. For demonstration, we further investigate the
data sizes and reconstruction performance of various NeRF models,
including static-based models (i.e., representing each frame sepa-
rately, and no integration from frames to video) like DVGO [51]
and INGP [44], and dynamic-based models (i.e., leveraging tem-
poral coherency to integrate frames into video) like DeVRF [37],
INGP-T [9], TiNeuVox [14], and ReRF [58]. Specifically, we calculate
the average bandwidth requirement for each model at 30 FPS. The
results are shown in Figure 2 (see the bottom subfigure). We can see
that the dynamic-based models can achieve smaller model sizes but
may suffer from performance issues. E.g., the bandwidth require-
ment for INGP and DVGO is over 2x10* Mbps, and their PSNR is
greater than 37dB, while INGP-T and TiNeuVox can compress the
bandwidth to about 200-300 Mbps, but their PSNRs only achieve
27-30dB. At the same time, we can also see that the SOTA model
ReRF is quite promising;: it reduces the bandwidth by over 100 times
(to about 200 Mbps) with only a 1dB PSNR degradation compared
to the best static model (i.e., INGP). However, ReRF still remains
too large to be streamed under real-world network conditions.

Significant temporal dynamics. Only considering network
capacity is insufficient, as real network bandwidth is also equipped
with temporal dynamics. In Figure 3 (the top sub-figure), we arbi-
trarily select a trace from our dataset as an example and present
how bandwidth varies over time. We can see that between 125
and 175 seconds, the bandwidth peaks at nearly 1800 Mbps but
drops below 20 Mbps. These fluctuations can significantly degrade
performance when transmitting NeRF video at a single bitrate. For
illustration, we set up an experimental scenario to simulate a user
downloading a NeRF video encoded with ReRF frame-by-frame
from the server. Specifically, to better indicate the influence of tem-
poral dynamics, we select all 5G traces to make sure the average
capacity is enough. We monitor the user’s player buffer and record
the user’s rebuffering time (i.e., the time interval when the buffer
in the player’s device is empty until new data is downloaded). We
present the rebuffering time distribution across all network traces
in Figure 3 (see the bottom sub-figure). We can see that even for 5G
traces, the user can still suffer rebuffering events across almost all
traces. In addition, more than 20% of the traces have a rebuffering
time exceeding 10 seconds. This is expected: when the network de-
teriorates, the user cannot download frames that match the current
conditions, which causes the buffer to run empty.

The above observations highlight the limitations of current net-
works for NeRF video transmission and motivate the use of adap-
tation techniques to enhance streaming. Specifically, bitrate adap-
tation can be employed to select the appropriate bitrate to adapt
to network conditions, while viewpoint adaptation further reduces

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

Rui-Xiao Zhang et al.

i 1.0 1.0
« 30 Avg: 3.61 .
z % 0.5 % 0.5 Avg: 1.23 dB
2 -4dB © ©

25 ! 00 —— Quality Degradation
. 0.0
200 150 100 50 2 3 4 0 2 4 6 8
Bandwidth Requirement (Mbps) Encoding Time (s) PSNR (dB)

Figure 4: NeRF encoder suffers quality degra- Figure 5: NeRF video encoding is resource- Figure 6: NeRF representation is sensitive to

dation. intensive.

data volume by transmitting only the data relevant to the predicted
viewpoint.

For bitrate adaptation, we will include two main processes: 1)
bitrate ladder construction (i.e., encode raw video into multi-
ple bitrates) and 2) bitrate selection (i.e., use certain ABR algo-
rithm to select the proper bitrate based on network conditions). For
viewpoint adaptation, we will also include two main processes: 1)
viewpoint prediction (i.e., estimate the user’s expected viewing
region), and 2) foveated streaming (i.e., transmit only the voxels
contributing to the predicted viewpoint.) For these processes, bitrate
selection for NeRF video can directly leverage existing ABR algo-
rithms for 2D videos, as both types can be treated as “media files”;
similarly, viewpoint prediction for traditional volumetric videos
like point-cloud can also be seamlessly extended to NeRF video, as
users interact with the rendered images rather than the underlying
data format, making viewing behavior independent of how the pre-
rendered data is represented. However, bitrate ladder construction
and foveated data transmission can be quite challenging as NeRF
videos are represented in features and NNs.

3.2 Challenges of Bitrate Adaptation and
Viewpoint Adaptation for NeRF Video

First, NeRF encoder suffers from quality degradation. As shown
in Figure 1, NeRF videos store implicit features instead of explicit
RGB, which prevents the encoder from identifying important voxels,
forcing uniform compression and leading to a loss of quality. To
demonstrate this, we examine the SOTA model ReRF. ReRF follows
the NeRF encoder pipeline shown in Figure 1: i.e., first calculate
motion and residual, and then compresses them using 3D encoder.
We test ReRF with different QPs and present the results in terms
of PSNR and bandwidth requirements. The results are shown in
Figure 4. We can see that although ReRF can reduce the bitrate from
a maximum of 250 Mbps to less than 25 Mbps when using smaller
QPs, the corresponding loss in rendering quality is significant. For
instance, when the bitrate is reduced to around 40 Mbps (which
is the average bandwidth level in our dataset, see Figure 2), the
quality degradation exceeds 4 dB.

Second, constructing bitrate ladders for NeRF videos is resource-
intensive. From a transmission perspective, generating as many
bitrates as possible is ideal, since it enables the ABR algorithm to
do fine-grained control in response to network dynamics. However,
this approach is impractical because NeRF encoding is far less effi-
cient than traditional 2D video encoding, and generating as many
bitrates can introduce significant server cost. There are two main
reasons: First, the data size is enormous. NeRF videos store 3D spa-
tial content, making them much larger than traditional 2D videos.

data incompleteness.

Additionally, implicit feature channels are significantly higher than
explicit RGB channels (e.g., ReRF has 13 channels for each voxel.).
Second, generating a predicted frame based on the motion grid
involves 3D space sampling, which is quite time-consuming [58].
For demonstration, we test the encoding time per NeRF frame and
present the results in Figure 5. As we can see, encoding a single
frame takes over 3 seconds on average, which is more than 100
times slower than 2D video (as comparison, H.265 achieves 33 ms
encoding per frame even for 4K videos). It is also notable that as
frames are interdependent (i.e., encoding the next frame requires
completing the encoding/decoding of the previous frame see Fig-
ure 1), parallel processing is difficult to apply.

Third, NeRF videos are more sensitive to data incompleteness.
When performing viewpoint-based adaptation, all data within the
user’s viewpoint should be available; otherwise, artifacts may ap-
pear, and negatively impacts the user experience. Unfortunately,
NeRF videos are particularly sensitive to this issue due to their
implicit feature representation. For illustration, we analyze how
quality degrades when we randomly drop only one small 8x8x8 cube
from each frame of a NeRF video (each frame contains 270*270*280
voxels). We test across all video frames provided by [58], and the
results are shown in Figure 6 (bottom sub-figure). We can see that
the average rendering quality drops by more than 1.2 dB, with over
20% of frames experiencing a reduction of more than 2 dB. This
sensitivity primarily stems from the rich information contained in
NeRF’s voxels. On the one hand, the feature dimensions in NeRF are
significantly higher compared to traditional RGB representations;
on the other hand, the rendering process involves interpolating
voxel data, meaning a single voxel can influence the rendering re-
sults of multiple pixels. Moreover, unlike explicit representations
such as 360-degree videos or point clouds, NeRF’s implicit features
lack spatial continuity, making it impossible to compensate for
missing data through interpolation or estimation based on nearby
voxels.

In summary, to apply bitrate and viewpoint adaptation, we still
need to 1) increase the compression quality for the NeRF encoder, 2)
decrease the server cost by carefully determining how many bitrates
we will generate, and 3) ensure all voxels within the viewpoint
should be transmitted.

4 System Overview

Figure 7 illustrates the transmission structure of our system, com-
prising offline and online procedures. During the offline phase, the
server pre-processes raw NeRF videos to generate all necessary
data (i.e., bitrate ladder construction). In the online phase, the client
selects the appropriate bitrate (bitrate selection), and the server

NeRFlow: Towards Adaptive Streaming for NeRF Videos

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

\

Client | Bitrate Selection \

r E
- Pruning Module |
Bitrate Ladder ! .
Server Construction == : @) T . NeRFIOW :
Offllne‘ | Calculator Impdrtance] & - : |
------- = T 7~~~ Vonline \ ' — Grid e 9 —>|NeRF Encl—»lTraining LabeIsH Predictor | |
Viewpoint | Viewpoint [MFoveated \ I | To \fﬁ NeRE Praned !
Prediction treamin v ! « 2w Ne rune — - !
Streami | | | Collceted “ B~ Video Feature Selected QPs IOptlmlzer H Video Info Il
\] iewpoints] i @ :
[[
- - - - [@ @ @ A Network| 1
I Viewpoint Information | INeRF Video Datal ST L ookup foe,ABR 1—» Traces | !
] \ i Table Calculator | @ ,
l
I

15
S
<10
c
o
g 76.2 %
g5 i
£
0
0 20 40 60 80 100
Rank (%)

(a) Single user viewpoint distribution

Figure 8: Ray-level and
sample-level importance.

Coverage (%)

Splited Sub-feature|
Adaptive Module (4.2)

Decision Module

+ B2

0 20

40 60
Rank (%)

80 100

(b) Viewpoint overlap across users Figure 10: Assigning impor-

tance to voxels.

Figure 9: Viewpoints are concentrated in certain regions.

determines which specific data to transmit based on the predicted
viewpoint (foveated streaming). NeRFlow is central to this system,
managing bitrate ladder construction and foveated streaming. It
achieves high compression efficiency, viewpoint adaptability, and
low server overhead through three core modules: Pruning Module,
Adaptive Module, and Decision Module.

The pruning module calculates voxel importance via an Impor-
tance Calculator to generate an importance grid, which is used to
prune less important voxels and produce a compact Pruned Fea-
ture. The adaptive module splits raw features into sub-features for
data-level flexibility and builds a lookup table for viewpoint-based
online adaptation. The decision module reduces encoding overhead
by selecting a limited set of QPs instead of using all possible ones.
The pruned features and sub-features are then encoded as master
frames and sub-frames for transmission.

4.1 Rendering-adaptive Pruning

Inspired by recent efforts in NeRF compression [9, 34], our goal
for pruning module is to compresses NeRF video size while pre-
serving visual quality. Its approach relies on two key observations.
First, while voxel importance cannot be directly assessed due to
NeRF’s implicit features, it can be inferred from its contributions
to rendering effects. This importance is evaluated at two levels. At
the ray level, voxels that contribute to more rays are deemed more
important, as the rendered result depends on the ray r, according
to Eq.(1). At the sample level, even along the same ray, voxel con-
tributions vary. Based on Eq.(1) and Eq.(2), the contribution of each
sampled point x; is determined by T; - a;, meaning samples with
higher T; - a; play a more critical role in the final rendering.

To illustrate the two levels of importance, we provide an example
in Figure 8. At the ray level, voxel v; is more important than vy
since it is utilized by three rays, whereas v, is used by only one.
At the sample level, for a ray crossing voxels v3 and v4 (shown as
a red line), if Ty - a4 is larger than T3 - a3, then vy is considered
more important than v3. These two levels allow us to quantify each
voxel’s contribution to rendering effects.

Our measurements also demonstrate the potential for further
compression by leveraging heterogeneous importance, which leads
to our second observation: the majority of users’ movements are
concentrated in certain regions. Specifically, we use an IRB-approved
dataset released by [62]. This dataset records gaze data from 10 users
watching volumetric videos with a HoloLens. Each trace records
the location (i.e., x, y, and z) and orientation (i.e., yaw and pitch) for
over 2000 frames. We first partition the space into non-overlapping
regions by discretizing (x, y, z, yaw, pitch). Then we randomly se-
lect one user and sort the regions in descending order based on
the number of this user’s viewpoints that are located within them.
The results are shown in Figure 9(a). We can see that the user’s
viewpoints are highly skewed: over 76% gaze trajectories are lo-
cated in the top-30% regions. At the same time, we also investigate
the region preference across users. Specifically, we split user traces
evenly into training and testing sets and examine the overlap of
regions as we vary the selection from the top 1% to the top 100%.
The results are shown in Figure 9(b). We can find that these regions
are quite consistent across users. E.g., for top-30% regions, there are
over 54% regions are identical in training set and testing set. This
is reasonable, as video content inherently provides heterogeneous
information and naturally varies in its attractiveness to users (e.g.,

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

in a dancing scene, users are more likely to focus on the front view
rather than the top).

In fact, these two observations allow us to compress NeRF videos
more effectively: on the one hand, different viewpoints inherently
hold varying significance to users, and the first level of impor-
tance naturally captures this user preference; on the other hand,
unlike previous methods that uniformly compress voxel features,
our approach uses the second level of importance to apply varying
compression levels to different voxels, resulting in better overall
rendering quality.

Then we give the details of how we calculate the importance.
Formally, given a sample x;, we can compute its importance score
based on Eq.(1) and Eq.(2):

=T a @

Then, this importance score will be assigned to its neighboring
voxels by calculating the distance between the sample and the
voxels (on normalized grid interval) in coordinate space, and the
larger the distance the smaller the assigned value:

0= (1= op—x;]) - I)

in which v; are the voxels falling in the neighborhood of x; and
|o; — xi| < 1 (as shown in Figure 10). Through the aforementioned
equations, we obtain the sample-level importance, and we then only
need to accumulate all sampled rays (i.e., ray-level importance) to
get the final importance:

L= 1 ©)

xjeX

where X denotes the samples of all rays. Through the above pro-
cess, we will generate an importance grid, and the value of each
voxel records the actual contribution to the rendering results. After
obtaining the importance scores of all voxels, we can then sort them
in an ascending order. Specifically, we can define the cumulative
function as:

201 <7>

X

in which 1 is the indicator and 1 = 1 only when I; < 0. Here 0 is a
hyper-parameter determined as needed. This function defines the
cumulative distribution of voxel importance scores, and we can use
this function to analyze different videos. Take the video provided
in [58] as the example, we set 6 = 0.99 (i.e., we want to find the
voxels contributing top 99% importance) and analyze the number
of such important voxels for all frames. The results are shown in
Figure 11. We can see that the distribution of voxel importance is
highly skewed: i.e., we find that the top 99% contribution is made by
only 0.55% voxels on average, and this highly skewed phenomenon
is consistent across all frames based on the CDF. To demonstrate
that our pruning method has minimal impact on quality, we choose
one direction and prune out the less important voxels with 6 =
0.99. We compare the rendered images with and without pruning.
The results are shown in Figure 12. We can see that our method
well preserves visual quality (the size is reduced by more than
50%.). Notably, NeRFlow’s compression efficiency stems from both
ray-level and sample-level optimizations. This ensures that while
increased viewpoint diversity may reduce ray-level benefits (e.g., in
larger scenes with more objects), the advantages at the sample
level remain (as demonstrated in §5.3). Additionally, collecting

F(8) =

Rui-Xiao Zhang et al.

1.0
0.8

0.6 Avg: 0.55

w
Co04
02

0.0

0.50 0.55 0.60 ReRF Our method
Percentage (%) PSNR: 33.024 PSNR: 33.021

Figure 11: The highly skewed dis- Figure 12: The rendering re-
tribution of voxel importance. sults before/after pruning.

viewpoints from users incurs minimal overhead, as each data entry
only involves frame index and viewpoint. Privacy concerns can
also be mitigated through anonymization and de-identification,
similar to how browsing traces are handled in recommendation
systems [22].

4.2 Viewpoint-aware adaptation

Rendering-adaptive pruning can cover most user viewing traces.
However, due to individual user variability, some user viewpoints
still fall outside the calculated important regions. As shown in
Figure 9(b), even with all regions from the training set, 9.8% of
regions in the testing set remain uncovered. Given NeRF’s high
sensitivity to data incompleteness (Figure 6), it is crucial to bridge
this gap with a compensatory approach.

To address this issue, we propose an Adaptive Module. The core
idea is to split the raw feature into multiple small, non-overlapping
sub-features in addition to generating the pruned feature through
the importance calculator. The pruned feature, referred to as the
master frame, serves as the primary data for user viewpoints, while
the sub-features, encoded as sub-frames, act as backups to compen-
sate for regions not included in the master frame (as illustrated in
Figure 13). This dual-frame approach ensures robust coverage of
user viewpoints while maintaining efficient data transmission.

Offline data preparation. Master frames are generated by en-
coding pruned features through NeRF encoder (i.e., Figure 1), and
we need to determine how to generate these sub-frames. There will
be two straightforward ideas. The first one is to directly use and
transmit raw feature without encoding. However, this is impractical
as uncompressed features are extremely large (each frame is 2.2
GB). Even if the sub-frame contains only a small portion of the
data, its size would still exceed that of the master frame, negating
the benefits of our pruning efforts described in §4.1. The second
idea is to leverage NeRF encoder to compress sub-frames. However,
this approach introduces significant pre-encoding time (see Fig-
ure 5), contradicting our goal of reducing the encoding overhead for
server. To address this problem, we decide to only use 3D encoder:
i.e., we remove deform/residual calculation. This approach has two
benefits: on the one hand, the per-frame compression time is signif-
icantly reduced since no feature space sampling is required. More
importantly, it supports parallel processing as each sub-feature is
compressed independently (i.e., we do not need to encode/decode
to calculate residual). To demonstrate these benefits, Figure 14(a)
compares the encoding time of 3D encoder with NeRF encoder. We

NeRFlow: Towards Adaptive Streaming for NeRF Videos

— |,

~ - Pruned
7 171 Feature
LL_ ~ '_j:_77Sub-Feature

® 7| | &

\/

Figure 13: Using sub-features to compensate for uncovered part of
the viewpoint.

1.00 e [NeRF Encoder
0.75 ¢ 0.75| —— 3D Encoder
w 17.5 x w 5.0 x
0 0.50 00.50
o o
0.25] —— NeRF Encoder 0.25 ¢
—— 3D Encoder
0.001{- + 0.00
10° 10°
Encoding Time (s) Size (MB)

(a) Encoding time (b) Frame size

Figure 14: Comparing 3D encoder and NeRF encoder in terms of
time and size.

can see that 3D encoder achieves a 17.5x speedup in per-frame en-
coding time. Notably, a key drawback of removing residual/motion
calculation is the reduced compression efficiency, as it fails to ex-
ploit temporal redundancy between frames: Figure 14(b) compares
the CDF of the frame sizes for 3D encoder and NeRF encoder. We
can see that the frame size will be enlarged about 5x. However, this
inefficiency of encoding sub-frames only has minimal impact on
the transmitted data volume: on one hand, the master frame (i.e.,
pruned feature) already integrates most of the viewpoints when cal-
culating the voxel importance; on the other hand, the distribution
of voxel importance is highly skewed (i.e. Figure 11), therefore there
will only be a small number of voxels need to be transmitted. We
have also demonstrate this in our evaluation section. It is notable
that the sub-feature should not be too small, as it will make 3D
DCT less efficient to characterize data redundancy. Based on our
experiments, we set the sub-feature size to 8x8x8 voxels.

Online transmission control. After generating and encod-
ing sub-frames offline, we determine which to transmit based on
users’ viewpoints (i.e., online transmission control). Traditional
volumetric video methods (e.g., point clouds) often use frustum-
based approaches [19, 38], which transmit sub-frames containing
voxels within the viewpoint frustum. However, this approach is
too coarse-grained for NeRF videos, as it selects too many voxels,
resulting in excessive sub-frames and high transmission overhead.
To address this, we leverage the importance calculator from 4.1.
Using Eq.(7), we identify the top 99% of voxel indices relevant to
the current viewpoint and select the corresponding sub-frames.
This method significantly reduces the number of selected voxels
without compromising rendering quality. As shown in Figure 15,

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

1.0

0.0

0.20 0.22 0.24 0.26 0.28 0.30 0.32

Voxels (normalized)

Figure 15: The voxel number compared with frustum method.

our approach selects 70% fewer voxels on average compared to the
frustum-based method.

Notably, real-time computation for Eq.(7) is impractical (e.g., in
30 FPS). Therefore, we propose to offline generate a lookup table:
i.e., we discretize the overall space into regions based on (x, y, z, yaw,
pitch) and pre-calculate the top-99% voxel indices for each region
using Eq.(7). Then the lookup table uses regions as keys and stores
the corresponding top-99% voxel indices as values. We acknowledge
that computing the lookup table may introduce additional overhead,;
however, this can be mitigated by using a coarser space division
interval.

Since there have been plenty of methods focused on viewport
prediction, we do not dive deep on this problem and directly use
the method from [38], which uses several linear regression models
to independently predict each dimension of viewpoint. our online
adaptation logic is outlined as: we will get the required voxels based
on predicted users’ viewpoint through lookup table; then we will
calculate the voxels not covered by the master frame, and transmit
these voxels through sub-frames.

4.3 QoE-aware Bitrate Generation

Problem Formulation: Considering the encoding overhead of
NeRF videos (see Figure 5), we aim to select the minimum number of
QPs without compromising the users’ experience. Mathematically,
suppose the number of total QP settings is E (in our settings, QP
ranges from 1 to 100, i.e., E = 100), then we can formulate the
problem as

E
min Z Igp (®)
qp=1
st Igp={0,1} (gp=1,---,E). (9a)
Z QoE(U Igp,n) = C (9b)

neN

where Iy, is a binary value indicating whether we choose QP=gp;

N denotes networking environment; QoE(-) represents the user’s
quality of experience. Modeling QoE for NeRF video is out of this
paper’s scope, so we use the QoE definition from 2D video as an
example in this paper (notably, our method can be adapted to other
QOE definitions): i.e., suppose the NeRF video contains L frames,
then the QoE can be represented as:

L L L-1
QOE={) qi—&) Ri—w) |qi — qil (10)
i=1 i=1 i=1

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

0.8

Size (Norm)

0 50 100 150 200
Frame ldx
—)
£ |
5 1
g 0.8 :
< 1
% | RaV\{ NeRF|
a6 : Video
0 50 100 150 200 TTTTTTTETTETS
Frame ldx

Rui-Xiao Zhang et al.

PSNR
Predictor| @

t Model e
Training

0.45

--------------- 0.1 0.2 0.3 0.4 0.5 0.6

Frame Num (normalized)

Figure 16: Variation of size and PSNR across Figure 17: Process of how to get the PSNR Figure 18: Prediction results for different

frames. predictor.

i.e., the weighted sum of quality g; (here we use PSNR), rebuffering
time R;, and smoothness when downloading all frames. Notably,
R; relates to the bandwidth (denoted as C;), current buffer length
(denoted as B;), and also the frame size (we denote it as s;) [50, 64].

Designing an algorithm for this problem is non-trivial due to the
following two aspects: on the one hand, solving the above prob-
lem requires knowing the PSNR and the size of the NeRF video
at different QPs in advance (i.e., ¢; and s;). However, these values
are typically available only after encoding, which contradicts our
goal of minimizing pre-encoding overhead. On the other hand,
even if we know these values, solving the optimization problem
remains challenging as QoE depends on various factors (e.g., ABR
algorithm and network distribution), which is hard to predict. More-
over, the solution space is huge (i.e., there will be E! possible QP
combinations), which makes the problem even more complex. To
address the above concerns, we propose a predictor to characterize
video features and an optimizer to solve the optimization problem.
Specifically, the predictor provides necessary information to the
optimizer.

Predictor: Formally, we want to predict the PSNR qép and data

size (denoted as sf]p) of each frame i for all possible QPs (i.e., gp € E).
Fortunately, predicting sizes is relatively manageable. In Figure 16
(see the top sub-figure), we present how data sizes vary along the
frames for different QPs, and the values are normalized by the raw
video size. We can see that the normalized data size is quite stable
across frames. E.g., with QPy4, the encoded frame size consistently
accounts for about 69% of the raw video size. This actually indicates
that for each QP, we only need to calculate the frame sizes of the
first several frames, and then directly apply these normalized data
sizes to the remaining frames.

Despite the stability in data size, PSNR does not exhibit the same
consistency. For illustration, Figure 16 also shows the normalized
PSNR values of two QPs across all frames (see the bottom sub-
figure). As denoted, the values vary significantly. E.g., for QPp, the
normalized PSNR fluctuates over 20% (i.e., from 0.6 to 0.8). The
results indicate that we cannot simply encode the first few frames
and reuse their normalized PSNRs for the remaining frames. This
phenomenon is explainable: the video inherently has temporal
dynamics, which can cause variations in the NeRF’s quality across
different frames (E.g., highly dynamic scenes may lead to lower
NeRF video quality).

models.

To solve this problem, we use three steps to predict PSNRs. We
first render multiple 2D images for each frame based on the view-
points and the raw NeRF video (we denote the images rendered
at frame i as Ply,,), for each of which we can calculate its PSNR
(denoted as ¢’,,). Second, we will use 2D encoder (in our experi-
ment, we use MPEG [30]) to encode PriaW into Pzizp with different

Ps, and we then calculate the PSNR between P!, and PL ., which
qp raw

we denote as q;,;mg_ Finally, we would like to generate a prediction
iimg .

model ® to predict quP based on ¢!, and qqp - ie.,

@p = V(qhaws | a5), forgp € E (11)

The rationales behind this design are two folds: on the one hand, to
capture the temporal dynamics within the video, we use rendering
results of the raw NeRF (i.e., the use of g,,); On the other hand,
since the quantization process for NeRF video extends directly from
2D videos (as shown in Figure 1), we can use the quantization
results on rendered images to infer the corresponding quantization

outcomes for the NeRF (i.e., the use of q;’;,mg). We present the process
of how we train the prediction model in Figure 17 (denoted as
Training Process). Notably, we still need to quantize a few frames
of the NeRF video (e.g., the first several frames) to get the labels
for the prediction model (denoted as Label Generation in Figure 17).
However, this represents only a small fraction of the total video
length, and the storage and time overhead of encoding these 2D
images are negligible.

We have tested different prediction models, including Linear
Regression (LR), Random Forest (RF), K Nearest Neighbor (KNN),
XGBoost (XB), and Support Vector Regression (SVR). We use the first
10% frames as a training set, and the rest 90% frames as a testing set,
and the results are shown in Figure 18 (the top sub-figure). We can
see that all prediction models demonstrate good accuracy, with RF
performing the best across all results. Therefore, we finally select
RF as our prediction model. In addition, we also test RF’s accuracy
with different training set sizes (i.e., the number of frames), and the
results are also shown in Figure 18 (the bottom sub-figure). We can
see that as more frames are utilized, the prediction error gradually
decreases and stabilizes. Considering both accuracy and encoding
overhead, we finally use 10% of the frames to train the model.

Optimizer: Since this problem 1) lacks an explicit expression
and 2) has a huge solution space, finding the closed-form solution

NeRFlow: Towards Adaptive Streaming for NeRF Videos

—»I Selected QPs Video l lNetworking
Info Traces
y

GA—basedH QoE Virtual ABR]
Optimizer Feedback Player Algorithm

Figure 19: The workflow of GA-based optimizer.

is infeasible. Therefore, we will use the following two techniques to
solve the problem. First, we convert the hard constraint in Eq.(9) to
a soft constraint and adjust the objective function as a dual form [1]:

max Z QoE(UIe,n) —Ai[e (12)
neN e=1

where A is the penalty factor that balances the trade-off between
QoE and transcoding overhead (i.e., higher A means we care more
about encoding overhead). Second, we consider adopting the Ge-
netic Algorithm (GA) [29] to approximate the solution. The basic
idea of GA is to use natural evolution process to model the solution
search process. GA is suitable in this problem due to the follow-
ing properties: First, it can well avoid local optima: it iteratively
improves a set of candidate solutions through selection (i.e., choos-
ing whether to retain specific solutions), crossover (i.e., combining
multiple different solutions), and mutation (i.e., exploring new solu-
tions), to converge to the optimal solution gradually. Second, GA
does not rely on specific problem properties (such as continuity
or differentiability), making it well-suited for our problem, where
QoE lacks an explicit expression and the solution space is discrete.
The iteration logic of the GA-based optimizer has been presented
in Figure 19. Specifically, inspired by recent advances in ABR sim-
ulation work [3, 49], we implement a virtual player to simulate
the playback process of the NeRF video and use it to assist GA in
finding the optimal solution. The virtual player’s input consists of
three parts: the QPs selected by GA (along with the correspond-
ing PSNR predicted by our aforementioned predictor, denoted as
video info in Figure 19 and Figure 7), networking traces, and the
ABR algorithm. The output is the user’s QoE (as defined in Eq.(10)),
which serves as feedback to iterate GA. The virtual player works
as follows. Given timestamp f, we first calculate the download
time &y for chunk k as 8 = s /Cy. (Cy. is the bandwidth recorded in
networking traces). We then update the current buffer size By, as
By = max[(Bg — 8), 0] + L, in which L is the chunk length (e.g.,
1 second in our experiment). The rebuffering event occurs when
there is no data in player’s buffer. Therefore the rebuffering time
can be calculated as Ry = max[(B — d;),0].

5 Evaluation

5.1 Methodology

Dataset. For NeRF videos, we use the Kpop dataset provided by [58].
Specifically, we retrain the model and generate the corresponding
NeRF representation following [51, 58]. We use two public datasets
for network traces: Solis [40] and Puffer [63]. For viewpoints, we
use the dataset provided in [62] which records movement from ten
users watching the volumetric video.

Implementation We split the user viewpoint dataset into 70%
for training and 30% for testing. For rendering-adaptive pruning

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

(§4.1), we generate the importance grid and master frame using all
viewing traces from the training set. The voxel pruning criterion
is set to 6 = 0.99, with further analysis in §5.3. For sub-frame
generation, the raw NeRF feature grid is divided into 8 X 8 X 8
non-overlapping cubes, each treated as a sub-frame. Viewpoint
prediction is achieved using linear regression models. For QoE-
aware bitrate generation, we set { = 1, £ = 4.3, and w = 1 in Eq.(10)
as previous work [20, 42]. We use HYB [2] as the ABR algorithm to
generate optimal QPs and evaluate other ABR algorithms in §5.3.
We set A = 0.02 in Eq.(12) and discuss its impact in §5.3.

5.2 Results and Discussion

Compression efficiency: We start with analyzing the efficiency
of our rendering-adaptive pruning method through an evaluation
of the master frame. We investigate the bandwidth requirement
and PSNR under different QPs for NeRFlow and ReRF [58]. The
results are shown in Figure 20, and we can obtain the following
observations. First, compared with ReRF, NeRFlow achieves a much
smaller bandwidth requirement with negligible quality loss. For ex-
ample, we can see that in the highest quality (i.e., QP=100), NeRF Low
reduces about 20% data size with only 0.4 dB PSNR reduction. Specif-
ically, we can see for bandwidth around 40 Mbps (i.e., the average
level in our measurement. See Figure 2), the PSNR only drops 1 dB
compared with the highest quality NeRF video (recall that ReRF
drops over 4 dB. See Figure 4). This is rational: on the one hand,
NeRFlow prunes out voxels, therefore reducing data size; on the
other hand, the pruned voxels are carefully selected by well lever-
aging their heterogeneous contribution made to the rendering ef-
fects, therefore having less impact on rendering quality. Second,
NeRF1low’s benefits are consistent across all QPs, and even obtain
higher benefits for low QPs. E.g., we can see that the size reduction
for QP=90 is about 62%, while for QP=20, the size is reduced over
77%. For better demonstration, we also present the size reduction
of each QP in Figure 20 (see the bottom sub-figure). This is because
the efficiency of entropy encoding is influenced by the distribution
of data after quantization (i.e., the more scattered the distribution,
the lower the encoding efficiency). In the case of NeRFlow, pruning
out voxels helps concentrate the data distribution, especially at
lower quantization levels, further improving encoding efficiency
and reducing data size.

User QoE: We then use the three users’ traces from testing
dataset to evaluate NeRFlow in an end-to-end way. We first present
the bitrate ladders generated after applying NeRFlow to the Solis
and Puffer datasets. Specifically, NeRFlow generates the ladders
with five bitrates (QP=40, 64, 79, 83, 88) for Solis, and seven for
Puffer (QP=17, 37, 59, 68, 79, 84, 88). This difference is reasonable
given that the Puffer dataset contains more varied network con-
ditions, necessitating a broader bitrate range. We then evaluate
NeRFlow by comparing its QoE with that of ReRF. For fair com-
parison, we apply the same QPs as NeRFlow for ReRF, and encode
it into multiple bitrates (denoted as ReRF-ABR). It is also notable
that ReRF-ABR will not have foveated streaming logic as it encodes
all features in a uniform way. The results are depicted in the top
sub-figures of Figure 21 and Figure 22. We can see that NeRFlow
significantly outperforms ReRF-ABR in terms of QoE, with con-
sistent improvements across datasets. For example, in the Solis

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

Rui-Xiao Zhang et al.

1.0 1.0
30 —s— NeRFlow
o« w —— ReRF-ABR
E —=— ReRF 1dB 505 —_ NeRFIow gos
251 —e— NeRFlow I f ReRF-ABR
1 0.0% 0.0
200 150 100 50 0 20.0 22.5 25.0 30.0 -10 0 10 20 30
§ Bandwidth Requirement (Mbps) QoE QoE
5" 101 W NeRFlow Lot EEE NeRFlow
N [Z3 ReRF-ABR Z=3 ReRF-ABR
el 100
&
= 5 o 10°
8 10 !
»n 100 80 60 40 20 PSNR Rebuffer (s) Smoothness PSNR Rebuffer (s) Smoothness

Quantization Parameter

Figure 20: Evaluation for data size and qual-

Figure 21: QoE evaluation and breakdowns

Figure 22: QoE evaluation and breakdowns

ity on Solis dataset. on Puffer dataset
1.0 1.0 1.00
—+— Overhead
w [T . o, L . o,
8 0.8 Avg: 1.09% 8 0.8 Avg: 0.95% 8 0.95 Avg: 0.15%
—+— Overhead —+— Overhead
0.6
0 2 4 6 8 00 25 50 75 100 125 0 1 2 3 4 5
Overhead (%) Overhead (%) Overhead (%)
S S S
o o5 kel
© © © 1
() 2 [[
£ £ £
[[[
> > >
oo do Soy AV ‘—" \1\
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Frame idx Frame idx Frame idx

(a) Overhead for user A

(b) Overhead for user B

(c) Overhead for user C

Figure 23: The bandwidth overhead required to transmit sub-frames for three users. We can see that the overhead is manageable.

dataset, NeRFlow increases the average QoE by 31% (i.e., 27.0 v.s.
20.6), while in the Puffer dataset, it achieves an improvement of
41% (i.e., 23.2 v.s. 16.4). This result is expected as NeRFlow provides
better compression efficiency while maintaing quality.

We further break down the QoF to better understand NeRFlow’s
performance gains, and the results are also illustrated in Figure 21
and Figure 22 (bottom sub-figure). We can see that a significant
portion of NeRFlow’s superior performance is due to its ability to
maintain quality. For instance, NeRFlow improves average PSNR
by 6.1 dB (28.4 v.s. 22.3 dB) in the Solis dataset and by 6.4 dB (28.3
v.s. 21.9) in the Puffer dataset. Additionally, NeRFlow also performs
better in rebuffering (e.g., NeRFlow reduces over 21.1% and 10.5%).

As sub-frames are used to compensate for regions not covered
by master frames, we analyze the bandwidth required to transmit
these sub-frames. Specifically, for each frame, we calculate the pro-
portion of the overall bandwidth occupied by the sub-frames. We
then compute the CDFs separately for three users in our test set and
present the results in Figure 23 (top sub-figure). We observe that
sub-frames introduce minimal overhead. For instance, the average
overhead for all three users is below 1.1%, with the third user’s
overhead as low as 0.15%. These results align with our measure-
ments shown in Figure 9(a) and Figure 9(b), which indicate that
user viewpoints are highly concentrated.

At the same time, we analyze how the bandwidth overhead varies
with time for three tested users, and the results are also shown in

Figure 23 (bottom sub-figure). We can obtain the following obser-
vations. First, for the same user, the sub-frame overhead fluctuates
at different period of time. This is reasonable as user viewpoints
shift dynamically over time. Second, for different users, the time
periods with the highest sub-frame overhead also differ from each
other. E.g., for the first user, the peak overhead is located between
60-150th frames, while for the second user, it comes from 0-80th
frames). This highlights the fact that there exists heterogeneity in
user viewing preferences, and it further suggests that relying solely
on master frames is insufficient.

5.3 NeRFlow Deep Dive

The factors influencing compression efficiency. As pointed
in §4.1, the size reduction of master frame is influenced by the
viewpoint distribution. E.g., in some complex scenes with more
objects, the viewers may be interested in multiple points, which can
introduce more diverse viewpoints. In these cases, the compression
benefits from ray-level will be degraded since each voxel is equally
important at the ray level. To illustrate, we create synthetic viewing
traces with the video at the center and evenly distributed viewpoints
(fixed height). We gradually expand the view range from 10% to
100% and analyze the resulting size reduction, as shown in Figure 24
(top sub-figure). We can see that as the view range increases, the size
reduction decreases. However, even at a 100% view range, NeRF Low
still achieves a 15% size reduction, since it can still perform voxel

NeRFlow: Towards Adaptive Streaming for NeRF Videos

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

X
= 0.75 1.0 1.0
o /_/"J —a— NeRFlow
© 0.50 —e— NeRFlow w/o Online
3 8 0.5 —=— NeRFlow 805 /
& 0.25 —— NeRFlow w/o Online
9 0.0 — 0.0
@ 20 40 60 80 100 175 200 225 250 27.5 30.0 -10 0 10 20 30
5 Selected Viewpoint Ratio (%) QoE QoE
()
S 08 —— PSNR | @ 10 BN NeRFlow Lot EEE NeRFlow
E 32; ZZ2 NeRFlow w/o Online 71 NeRFlow w/o Online
207 - s g w07
=o. ize g 10°
N 30
»n 100 0.95 0.90 0-865 0.80 0.75 0.70 PSNR Rebuffer (s) Smoothness PSNR Rebuffer (s) Smoothness

Figure 24: The influence of selected view-

points and importance threshold 6. on Solis dataset.

Figure 25: QoE evaluation and breakdowns

Figure 26: QoE evaluation and breakdowns
on Puffer dataset.

40 B NeRFlow B NeRFlow-HYB
Z3 Equalizer 501 ZZ3 NeRFlow-BB
20 [Single Il NeRFlow-F
XJ ReRF-ABR
o M L m
Utility QoE Transcoding Penalty 5. 25 w
Solis Dataset S 20 8
60 c
BB NeRFlow & 30
40 Z—4 Equalizer % 10
EEN Single 9
20 9 2 20
&9 2
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Utility

QoE Transcoding Penalty
Puffer Dataset

Figure 27: The necessity of GA-based opti-
mizer.

pruning based on sample-level importance. Actually, as long as
the user’s viewpoint isn’t uniformly distributed (which is quite
common in real-world), our method remains effective.

Second, the pruning threshold 6 affects compression efficiency.
We examine how frame size and quality change with 6, as shown in
Figure 24 (bottom). Lower 6 (fewer voxels selected) yields greater
size reduction but larger quality loss. We also observe diminishing
returns in size reduction as 6 decreases, consistent with Figure 11,
since voxel importance becomes more uniform at lower 6, making
effective pruning more difficult.

The necessity of online adaptation. We conduct an ablation
study to evaluate the effectiveness of the adaptation module by
comparing NeRFlow with and without it. As shown in Figures 25
and 26, the absence of the adaptation module leads to significant
QoE degradation (39.8% for Solis and 74.1% for Puffer). This drop
is primarily due to reduced quality, with PSNR decreasing by 8
dB in Solis, as relying solely on the master frame fails to cover
all viewpoints. We also observe a slight increase in rebuffering
time due to the additional overhead from transmitting sub-frames
(see Figure 23). Notably, NeRFlow without the adaptation module
performs worse than ReRF-ABR (Figure 21), as ReRF’s uniform voxel
compression avoids data incompleteness. These results highlight
the necessity of the adaptation module.

The effectiveness of GA-based optimizer. We evaluate the
effectiveness of NeRFlow’s QoE-aware bitrate generation by com-
paring it with two baselines that use the same pruning and adaptive

Figure 28: The influence of A.

Solis Dataset Puffer Dataset

Penalty Coefficient A

Figure 29: NeRFlow with different ABR algo-
rithms.

modules but differ in QP selection. The first baseline (Single) uses a
single QP, chosen offline to maximize QoE on our dataset. The sec-
ond baseline (Equalizer) uses the same number of QPs as NeRFLow
but selects them based on evenly dividing the network bandwidth
distribution and picking QPs closest to the average bandwidth of
each segment. We assess performance using utility (Eq.(12)), QoE,
and transcoding penalty. As shown in Figure 27, NeRFlow outper-
forms both baselines across all datasets, highlighting the importance
of its GA-based optimizer in capturing network dynamics. We also
investigate the influence of the penalty coefficient A in Eq.(12), and
the results are shown in Figure 28. We can see that with A increas-
ing, NeRFlow will select less number of QPs (see the top sub-figure);
at the same time, the achieved QoE will also gradually decrease
(see the bottom sub-figure). This is expected, as more QPs provide
more candidates, potentially allowing the ABR algorithm to make
more fine-grained decisions in response to network dynamics.
NeRFlow with different ABR algorithms. To demonstrate that
our framework is generalizable, we also integrate NeRFlow with
different ABR algorithms and compare with ReRF-ABR. Specifically,
we choose a rate-based algorithm named Festive [26] and a buffer-
based algorithm named BBA [21] (it is notable that for both ABR
algorithms, we will re-run the pipeline to get the best QPs). For ease
of comparison, ReRF-ABR is implemented with HYB. The results
are shown in Figure 29. We can see that regardless of whether
BB or Festive is used, NeRFlow achieves significantly higher QoE
compared to ReRF-ABR. Notably, this performance advantage is

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

B NeRFlow
XY ReRF-ABR

B NeRFlow

XN ReRF-ABR
10t

10°
PSNR Rebuffer (s) Smoothness PSNR

Rebuffer (s) Smoothness

(a) Cellular (ave: 61.2 Mbps, std: 35.1 (b) WI-FI (ave: 18.0 Mbps, std: 6.4 Mbps)
Mbps)

Figure 30: Real-world network performance

consistent across both the Solis and Puffer datasets. Additionally,
we can also observe that NeRF 1low integrated with HYB outperforms
both Festive and BB.

5.4 Real-world Experiments.

To further evaluate NeRFlow, we also conduct real-world experi-
ments using the test pipeline for traditional VoDs (we manully add
extra data to simulate the overhead of viewpoint mismatch). We use
iPerf [24] to collect network traces, based on which we determine
QPs and generate multiple 2D videos to act as NeRF videos. We
then deploy an HTTP server, and modify dash.js [15] to support
HYB and download the videos. We test NeRFlow under cellular
and Wi-Fi conditions. In our real-world test, cellular network has
higher average bandwidth than WI-FI (61.2 v.s. 18.0 Mbps), but also
higher variation (35.1 v.s. 6.4 Mbps). For ease of illustration, we also
encode ReRF into multiple bitrates and implement it with dash.js.
The results are shown in Figure 30. We can see that NeRFlow per-
forms well under both network conditions (especially well controls
rebuffering events). Also, the comparison results with ReRF-ABR
are consistent with our trace-driven experiment: i.e., the benefits
mainly come from higher PSNR, which is explainable as NeRFlow
can better compress video data through our pruning technique. It
is also notable that even in cellular networks, which exhibit greater
variability compared to Wi-Fi, NeRFlow still achieves better PSNR
and shorter rebuffering time.

6 Related Work

Our work is closely related to two areas: volumetric video streaming
and NeRF-based volumetric representation.

Volumetric video streaming: Existing research mainly focuses
on point-cloud or mesh-based approaches. Some work aims at com-
pressing spatial information, such as [18, 32], which optimizes
spatial partitioning for point clouds to reduce data redundancy.
Other approaches focus on color space information, e.g., repre-
senting volumetric data using multiple 2D views and applying 2D
encoders for compression, like multi-angle projection [25, 38, 47, 66]
and converting depth maps to grayscale images [31]. Additionally,
many studies utilize user viewing information for dynamic down-
sampling, such as ViVo [19] and QV4 [48]. While NeRFlow shares a
similar high-level idea of achieving efficient transmission through
compression, the implicit nature of NeRF requires new designs for
both compression and transmission.

Rui-Xiao Zhang et al.

Novel volumetric representation: Traditional volumetric videos
often rely on explicit representations like point clouds and meshes [5,
41], but these suffer from limited rendering quality. Recent ad-
vances have shifted focus to neural representations such as NeRF,
with research targeting improvements in rendering speed and qual-
ity [11, 54, 60], as well as model compression through pruning [10],
tensor decomposition [7], and encoding [44, 65]. However, these
methods generally overlook transmission adaptability and can com-
plement our work. Some studies do consider NeRF transmission [8],
but they focus on static models and require retraining, limiting scal-
ability to video scenarios. Gaussian Splatting has recently emerged
for its fast, high-quality rendering [27, 61], but its point-based
nature leads to significantly larger data sizes, e.g., 500 Mbps for
30 FPS [52], making it less transmission-friendly. While 2D video
codecs have been applied to compress GS features [59], such meth-
ods still require retraining and fail to adapt to dynamic network
conditions. In contrast, NeRFlow offers a scalable, adaptable design
that can also be extended to GS.

7 Conclusion

We have introduced NeRF1low, a novel framework designed to en-
able adaptive streaming for NeRF videos under real-world network
conditions. By addressing key challenges of limited bandwidth
and temporal dynamics, NeRFlow optimizes the streaming process
through rendering-adaptive pruning, viewpoint-aware adaptation,
and QoE-aware bitrate ladder generation. Our extensive experi-
ments demonstrate that NeRFlow significantly improves user Qual-
ity of Experience (QoE) by 31.3% to 41.2%, making it an efficient
framework for NeRF video streaming.

ACKNOWLEDGMENTS

We thank our shepherd and reviewers for their valuable feedback,
which has greatly improved the quality of this paper. This work
was supported by NSF CNS 21-06592, NSF CNS 19-00875, NSF CCF
22-17144.

References

[1] Peter Adby. 2013. Introduction to optimization methods. Springer Science &
Business Media.

[2] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe: Auto-
tuning video ABR algorithms to network conditions. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 44-58.

[3] Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish Agarwal,

Mohammad Alizadeh, and Devavrat Shah. 2023. {CausalSim}: A Causal Frame-

work for Unbiased {Trace-Driven} Simulation. In 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23). 1115-1147.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Pe-

ter Hedman. 2023. Zip-nerf: Anti-aliased grid-based neural radiance fields. In

Proceedings of the IEEE/CVF International Conference on Computer Vision. 19697—

19705.

Saifullahi Aminu Bello, Shangshu Yu, Cheng Wang, Jibril Muhmmad Adam, and

Jonathan Li. 2020. Deep learning on 3D point clouds. Remote Sensing 12, 11

(2020), 1729.

Abdelhak Bentaleb, Bayan Taani, Ali C Begen, Christian Timmerer, and Roger

Zimmermann. 2018. A survey on bitrate adaptation schemes for streaming media

over HTTP. IEEE Communications Surveys & Tutorials 21, 1 (2018), 562-585.

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. Tensorf:

Tensorial radiance fields. In European conference on computer vision. Springer,

333-350.

Bo Chen, Zhisheng Yan, Bo Han, and Klara Nahrstedt. 2024. NeRFHub: A Context-

Aware NeRF Serving Framework for Mobile Immersive Applications. In Proceed-

ings of the 22nd Annual International Conference on Mobile Systems, Applications

[4

[5

—_
2

=

NeRFlow: Towards Adaptive Streaming for NeRF Videos

[9

=

[10

(11

[12]

[13]

[14]

[15]

[16]

(17

[18

[19]

[20

[
=

[22]

[23

[24

[25]

[26]

[27

[28

[29]

[30]

[31

and Services. 85-98.

Yihang Chen, Qianyi Wu, Mehrtash Harandi, and Jianfei Cai. 2024. How Far
Can We Compress Instant-NGP-Based NeRF?. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 20321-20330.

Zhigin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2023.
Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field
rendering on mobile architectures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 16569-16578.

Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. 2022.
Gaussian activated neural radiance fields for high fidelity reconstruction and
pose estimation. In European Conference on Computer Vision. Springer, 264-280.
Abril Corona-Figueroa, Jonathan Frawley, Sam Bond-Taylor, Sarath Bethapudi,
Hubert PH Shum, and Chris G Willcocks. 2022. Mednerf: Medical neural radiance
fields for reconstructing 3d-aware ct-projections from a single x-ray. In 2022 44th
annual international conference of the IEEE engineering in medicine & Biology
society (EMBC). IEEE, 3843-3848.

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In
Proceedings of the 2009 symposium on Interactive 3D graphics and games. 15-22.
Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu
Liu, Matthias Niefiner, and Qi Tian. 2022. Fast dynamic radiance fields with
time-aware neural voxels. In SSGGRAPH Asia 2022 Conference Papers. 1-9.

Dash Industry Forum. 2024. dash.js: Reference Client for the MPEG DASH Stan-
dard. https://github.com/Dash-Industry-Forum/dash.js. Version 4.0.0, available
at https://github.com/Dash-Industry-Forum/dash.js.

Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu, and Jonathan Li. 2022.
Nerf: Neural radiance field in 3d vision, a comprehensive review. arXiv preprint
arXiv:2210.00379 (2022).

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
Valentin. 2021. Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings
of the IEEE/CVF international conference on computer vision. 14346—-14355.
Diogo C Garcia and Ricardo L de Queiroz. 2018. Intra-frame context-based octree
coding for point-cloud geometry. In 2018 25th IEEE International Conference on
Image Processing (ICIP). IEEE, 1807-1811.

Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-aware mobile volumetric
video streaming. In Proceedings of the 26th annual international conference on
mobile computing and networking. 1-13.

Tianchi Huang, Xin Yao, Chenglei Wu, Rui-Xiao Zhang, Zhengyuan Pang, and
Lifeng Sun. 2019. Tiyuntsong: A self-play reinforcement learning approach for
ABR video streaming. In 2019 IEEE International Conference on Multimedia and
Expo (ICME). IEEE, 1678-1683.

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM.
187-198.

Weiming Huang, Baisong Liu, and Hao Tang. 2019. Privacy protection for rec-
ommendation system: a survey. In Journal of Physics: Conference Series, Vol. 1325.
IOP Publishing, 012087.

Zhenyang Hui, Youjian Hu, Yao Ziggah Yevenyo, and Xianyu Yu. 2016. An
improved morphological algorithm for filtering airborne LiDAR point cloud
based on multi-level kriging interpolation. Remote Sensing 8, 1 (2016), 35.

The iPerf Developers. 2024. iPerf3: A TCP, UDP, and SCTP Network Bandwidth
Measurement Tool. https://iperf.fr. Version 3.17.1, available at https://iperf.fr.
Euee S Jang, Marius Preda, Khaled Mammou, Alexis M Tourapis, Jungsun Kim,
Danillo B Graziosi, Sungryeul Rhyu, and Madhukar Budagavi. 2019. Video-
based point-cloud-compression standard in MPEG: From evidence collection to
committee draft [standards in a nutshell]. IEEE Signal Processing Magazine 36, 3
(2019), 118-123.

Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive. In Proceed-
ings of the 8th international conference on Emerging networking experiments and
technologies. 97-108.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans.
Graph. 42, 4 (2023), 139-1.

Georgios Kouros, Minye Wu, Sushruth Nagesh, Shubham Shrivastava, Punarjay
Chakravarty, and Tinne Tuytelaars. 2023. Ref-DVGO: Reflection-Aware Direct
Voxel Grid Optimization for an Improved Quality-Efficiency Trade-Off in Reflec-
tive Scene Reconstructio. arXiv preprint arXiv:2308.08530 (2023).

Annu Lambora, Kunal Gupta, and Kriti Chopra. 2019. Genetic algorithm-A
literature review. In 2019 international conference on machine learning, big data,
cloud and parallel computing (COMITCon). IEEE, 380-384.

Didier Le Gall. 1991. MPEG: A video compression standard for multimedia
applications. Commun. ACM 34, 4 (1991), 46-58.

Kyungjin Lee, Juheon Yi, and Youngki Lee. 2023. Farfetchfusion: Towards fully
mobile live 3d telepresence platform. In Proceedings of the 29th Annual Interna-
tional Conference on Mobile Computing and Networking. 1-15.

MobiSys "25, June 23-27, 2025, Anaheim, CA, USA

Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim.
2020. GROOT: a real-time streaming system of high-fidelity volumetric videos.
In Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking. 1-14.

David Levin. 2004. Mesh-independent surface interpolation. In Geometric model-
ing for scientific visualization. Springer, 37-49.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. 2023. Compress-
ing volumetric radiance fields to 1 mb. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 4222-4231.

Shaochen Li, Hongbin Guo, Wanggqian Sun, and Xiaofei Sun. 2022. A low-
illuminance image enhancement method in YUV color space. In 2022 14th In-
ternational Conference on Measuring Technology and Mechatronics Automation
(ICMTMA). IEEE, 286-291.

Haojie Liu, Kang Liao, Chunyu Lin, Yao Zhao, and Meiqin Liu. 2020. Plin: A
network for pseudo-lidar point cloud interpolation. Sensors 20, 6 (2020), 1573.
Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang, David Junhao Zhang,
Jussi Keppo, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. 2022. Devrf: Fast
deformable voxel radiance fields for dynamic scenes. Advances in Neural Infor-
mation Processing Systems 35 (2022), 36762-36775.

Yu Liu, Bo Han, Feng Qian, Arvind Narayanan, and Zhi-Li Zhang. 2022. Vues:
Practical mobile volumetric video streaming through multiview transcoding. In
Proceedings of the 28th Annual International Conference on Mobile Computing And
Networking. 514-527.

Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. 2021. Generalizing face
forgery detection with high-frequency features. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 16317-16326.

Gerui Lv, Qinghua Wu, Qingyue Tan, Weiran Wang, Zhenyu Li, and Gaogang Xie.
2023. Accurate Throughput Prediction for Improving QoE in Mobile Adaptive
Streaming. IEEE Transactions on Mobile Computing (2023).

Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot. 2015. 3d
mesh compression: Survey, comparisons, and emerging trends. ACM Computing
Surveys (CSUR) 47, 3 (2015), 1-41.

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the conference of the ACM special
interest group on data communication. 197-210.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99-106.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM
transactions on graphics (TOG) 41, 4 (2022), 1-15.

Grand View Research. 2023. Volumetric Video Market Size, Share Trends Analysis
Report By Volumetric Capture (Hardware, Software, Services), By Delivery Platforms,
By Application, By Region, And Segment Forecasts, 2023 - 2030. Technical Report.
Michael Rubloff. 2023. Google announces new Google Maps experience featuring
Neural Radiance Fields (NeRFs). https://neuralradiancefields.io/googleannounces-
new- google- maps- experience-featuring- neural-radiance-fields/

Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo
Cesar, Philip A Chou, Robert A Cohen, Maja Krivokuca, Sébastien Lasserre,
Zhu Li, et al. 2018. Emerging MPEG standards for point cloud compression.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 1 (2018),
133-148.

Yuang Shi, Bennett Clement, and Wei Tsang Ooi. 2024. QV4: QoE-based
Viewpoint-Aware V-PCC-encoded Volumetric Video Streaming. In Proceedings of
the 15th ACM Multimedia Systems Conference. 144-154.

Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From theory to
practice: Improving bitrate adaptation in the DASH reference player. ACM Trans-
actions on Multimedia Computing, Communications, and Applications (TOMM) 15,
2s (2019), 1-29

Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA: Near-
optimal bitrate adaptation for online videos. IEEE/ACM transactions on networking
28, 4 (2020), 1698-1711.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields reconstruction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 5459-5469.
Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing.
2024. 3dgstream: On-the-fly training of 3d gaussians for efficient streaming of
photo-realistic free-viewpoint videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 20675-20685.

Jiakai Sun, Zhanjie Zhang, Jiafu Chen, Guangyuan Li, Boyan Ji, Lei Zhao, Wei
Xing, and Huaizhong Lin. 2023. Vgos: Voxel grid optimization for view synthesis
from sparse inputs. arXiv preprint arXiv:2304.13386 (2023).

Shilei Sun, Ming Liu, Zhongyi Fan, Qingliang Jiao, Yuxue Liu, Liquan Dong, and
Lingqin Kong. 2024. Efficient ray sampling for radiance fields reconstruction.
Computers & Graphics 118 (2024), 48-59.

TaoXi Technology. 2021. 3D Modeling Techniques for Products Based on Neural
Rendering. https://www.alibabacloud.com/blog/3d-modelingtechniques-for-
products-based-on-neural-rendering_598327

https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://iperf.fr
https://iperf.fr
https://neuralradiancefields.io/googleannounces-new-google-maps-experience-featuring-neural-radiance-fields/
https://neuralradiancefields.io/googleannounces-new-google-maps-experience-featuring-neural-radiance-fields/
https://www.alibabacloud.com/blog/3d-modelingtechniques-for-products-based-on-neural-rendering_598327
https://www.alibabacloud.com/blog/3d-modelingtechniques-for-products-based-on-neural-rendering_598327

MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

[56] Jim Thacker. 2023. Use NeRFs in Unreal Engine with Luma AI's new plu-
gin. https://www.cgchannel.com/2023/04/use-nerfs-in-unreal-enginewith-
luma-ais-new-plugin/

[57] Chen Wang, Xian Wu, Yuan-Chen Guo, Song-Hai Zhang, Yu-Wing Tai, and Shi-
Min Hu. 2022. Nerf-sr: High quality neural radiance fields using supersampling. In
Proceedings of the 30th ACM International Conference on Multimedia. 6445-6454.

[58] Liao Wang, Qiang Hu, Qihan He, Ziyu Wang, Jingyi Yu, Tinne Tuytelaars, Lan
Xu, and Minye Wu. 2023. Neural residual radiance fields for streamably free-
viewpoint videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 76-87.

[59] Penghao Wang, Zhirui Zhang, Liao Wang, Kaixin Yao, Siyuan Xie, Jingyi Yu,
Minye Wu, and Lan Xu. 2024. V" 3: Viewing Volumetric Videos on Mobiles via
Streamable 2D Dynamic Gaussians. ACM Transactions on Graphics (TOG) 43, 6
(2024), 1-13.

[60] Sen Wang, Wei Zhang, Stefano Gasperini, Shun-Cheng Wu, and Nassir Navab.
2023. VoxNeRF: Bridging voxel representation and neural radiance fields for
enhanced indoor view synthesis. arXiv preprint arXiv:2311.05289 (2023).

[61] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,

Wenyu Liu, Qi Tian, and Xinggang Wang. 2024. 4d gaussian splatting for real-time
dynamic scene rendering. In Proceedings of the IEEE/CVF Conference on Computer

[62]

(63

[64]

[65]

Rui-Xiao Zhang et al.

Vision and Pattern Recognition. 20310-20320.

Nan Wu, Kaiyan Liu, Ruizhi Cheng, Bo Han, and Puqi Zhou. 2024. Theia: Gaze-
driven and Perception-aware Volumetric Content Delivery for Mixed Reality
Headsets. In Proceedings of the 22nd Annual International Conference on Mobile
Systems, Applications and Services. 70-84.

Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). 495-511.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication.
325-338.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
2021. Plenoctrees for real-time rendering of neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 5752-5761.

[66] Junzhe Zhang, Tong Chen, Dandan Ding, and Zhan Ma. 2023. G-PCC++: En-

hanced Geometry-based Point Cloud Compression. In Proceedings of the 31st
ACM International Conference on Multimedia. 1352-1363.

https://www.cgchannel.com/2023/04/use-nerfs-in-unreal-enginewith-luma-ais-new-plugin/
https://www.cgchannel.com/2023/04/use-nerfs-in-unreal-enginewith-luma-ais-new-plugin/

	Abstract
	1 Introduction
	2 Background
	3 Motivation and Challenges
	3.1 Streaming NeRF Videos in the Wild is Non-trivial
	3.2 Challenges of Bitrate Adaptation and Viewpoint Adaptation for NeRF Video

	4 System Overview
	4.1 Rendering-adaptive Pruning
	4.2 Viewpoint-aware adaptation
	4.3 QoE-aware Bitrate Generation

	5 Evaluation
	5.1 Methodology
	5.2 Results and Discussion
	5.3 NeRFlow Deep Dive
	5.4 Real-world Experiments.

	6 Related Work
	7 Conclusion
	References

