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Abstract
Neural Radiance Field (NeRF) has emerged as a powerful tech-
nique for 3D scene representation due to its high rendering quality.
Among its applications, mobile NeRF video-on-demand (VoD) is
especially promising, bene�ting from both the scalability of the
mobile devices and the immersive experience o�ered by NeRF. How-
ever, streaming NeRF videos over real-world networks presents sig-
ni�cant challenges, particularly due to limited bandwidth and tem-
poral dynamics. To address these challenges, we propose NeRFlow,
a novel framework that enables adaptive streaming for NeRF videos
through both bitrate and viewpoint adaptation. NeRFlow solves
three fundamental problems: �rst, it employs a rendering-adaptive
pruning technique to determine voxel importance, selectively re-
ducing data size without sacri�cing rendering quality. Second, it
introduces a viewpoint-aware adaptation module that e�ciently
compensates for uncovered regions in real time by combining pre-
encoded master and sub-frames. Third, it incorporates a QoE-aware
bitrate ladder generation framework, leveraging a genetic algo-
rithm to optimize the number and con�guration of bitrates while
accounting for bandwidth dynamics and ABR algorithms. Through
extensive experiments, NeRFlow is demonstrated to e�ectively im-
prove user Quality of Experience (QoE) by 31.3% to 41.2%, making
it an e�cient solution for NeRF video streaming.
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1 Introduction
Volumetric videos are gaining popularity due to their immersive
viewing experience, with the global market projected to exceed 5000
million by 2030 [45]. Among various techniques, Neural Radiance
Field (NeRF) has emerged as a leading solution since its introduc-
tion in 2020. NeRF represents 3D scenes using a neural network
that maps 3D coordinates to view-dependent colors and densities,
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enabling high-quality multi-view synthesis [16, 57]. Compared to
point clouds and meshes, NeRF o�ers superior photorealism and
memory e�ciency.

NeRF has been adopted in mobile applications for travel, medical
imaging, gaming, and shopping [12, 46, 55, 56]. In these applica-
tions, users download NeRF data via mobile networks (e.g., Wi-Fi
or cellular) and render it on their devices for real-time 3D interac-
tion. Recent advances have extended NeRF from static to dynamic
scenes [17, 44], paving the way for NeRF video streaming.

However, streaming NeRF videos to mobile devices in real-world
networks remains challenging. Our analysis shows that network
conditions still face 1) limited bandwidth and 2) temporal �uctu-
ations, which prevent smooth streaming even for state-of-the-art
(SOTA) models [58] (§3.1).

To address the above challenges, we propose NeRFlow, a novel
framework for NeRF video streaming that adapts to dynamic real-
world network conditions. NeRFlow’s core idea focuses on two
types of adaptations: bitrate adaptation and viewpoint adaptation.
For bitrate adaptation, NeRFlow encodes NeRF videos at multiple
bitrates rather than relying on a single version, enabling dynamic
selection of the most suitable bitrate based on current network con-
ditions. For viewpoint adaptation, it streams only the parts of the
data closely related to the viewer’s perspective, further reducing
data volume. While these two types of adaptation are common in
traditional video streaming [6, 19, 38], NeRF’s implicit data repre-
sentation introduces unique challenges that require tailored solu-
tions. Speci�cally, we realize NeRFlow by addressing the following
challenges.

ù In-e�cient NeRF video compression: Traditional 2D videos lever-
age “pixels” with explicit RGB information, which allow the encoder
to accurately assess pixel importance and selectively retain key de-
tails during compression (e.g., areas containing high-frequency
information [39], and areas with more brightness [35]). In contrast,
NeRF videos leverage “voxels” (i.e., 3D unit) but contain neural-
based features. This implicit representation makes it di�cult for
the encoder to identify which parts of the representation are more
important, resulting in uniform compression that ultimately de-
grades rendering quality. This implicit representation also makes
it di�cult to apply previous streaming optimizations designed for
VR/point clouds [25, 38, 47, 66], as their downsampling decisions
are based on the explicit RGB information visible to users [19, 48].
Solution: We tackle this problem with a rendering-adaptive prun-
ing method based on two key observations. First, although NeRF
uses implicit feature representation, voxel importance can be in-
ferred from intermediate variables in the rendering process. Second,
users’ viewpoints are consistently concentrated in a few speci�c
regions across di�erent users. Therefore, by evaluating each voxel’s
contribution to rendering, particularly for these concentrated view-
points, we selectively prune less important voxels instead of com-
pressing all voxels uniformly. This approach e�ectively reduces
data size while preserving quality.
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ù Resource-intensive NeRF encoding: Generating more bitrates
provides �ner-grained bitrate selection for ABR control, it also
introduces signi�cant computational overhead. Unlike 2D videos,
NeRF videos encode 3D spatial information with multi-dimensional
features for each voxel, making them considerably larger than
traditional 2D videos. Moreover, encoding NeRF videos requires
intensive 3D space sampling, which further increases computation
time. These factors make it impractical to pre-generate multiple
bitrates for NeRF videos, posing a signi�cant burden on the server’s
computational resources.
Solution: We solve this problem through a novel bitrate genera-
tion framework. Speci�cally, to consider both bandwidth and ABR
algorithm when deciding the optimal NeRF encoding bitrates, we
model the bitrate generation process as an optimization problem,
aiming to select the minimal set of encoding bitrates while main-
taining QoE. We use the genetic algorithm (GA) to e�ciently solve
this problem. By building up a faithful virtual player and using the
feedback of the ABR algorithm for GA iteration, our method can
automatically capture the environment dynamics and �nd the most
suitable encoding bitrates.

ù Artifact due to data incompleteness: When transmitted data
fails to fully cover the user’s viewpoint, artifacts may occur, se-
verely degrading the viewing experience. NeRF videos are partic-
ularly vulnerable to this issue due to their complex feature space,
which encodes far more information than traditional RGB chan-
nels. Unlike explicit representations such as mesh and point clouds,
where missing data can often be reconstructed through interpola-
tion [23, 33, 36], NeRF’s implicit representation lacks this capability.
As a result, even the loss of a small number of voxels can signif-
icantly disrupt rendering quality and negatively impact the user
experience.
Solution: To address this issue, we adopt a hybrid transmission
strategy using a master frame and sub-frames. The key insight is
that the importance of NeRF voxels for rendering is highly con-
centrated, meaning only a small number of voxels require compen-
sation through sub-frames. This allows us to manage the overall
transmission overhead, even if splitting the raw feature slightly re-
duces coding e�ciency. Speci�cally, by employing a voxel selection
algorithm based on rendering contributions and pre-generating a
lookup table o�ine, we can accurately and e�ciently identify the
required voxels in real time.

In summary, this paper makes the following contributions:

• We analyze network traces and NeRF models, revealing that
current networks cannot e�ectively support NeRF video
streaming, motivating the need for adaptive streaming tech-
niques (§3).

• We present NeRFlow, a novel framework for NeRF video
streaming under dynamic network conditions. By address-
ing key algorithmic and system challenges through three
core modules, NeRFlow reduces data size, maintains user
experience, and balances QoE and encoding overhead (§4).

• We evaluate NeRFlow through comprehensive experiments,
showing that it improves QoE by 31.3% to 41.2% compared
to the baseline (§5).

Figure 1: Left: frame-level NeRF rendering; Right: intergrating
frame-level representation to NeRF video (better viewed in color).

2 Background
NeRF video represents volumetric video using implicit multi-dimensional
features instead of explicit RGB values [16, 43, 57], and this allows
NeRF video to model complex visual e�ects such as transparency
and dynamic lighting. NeRF video generation involves two steps: 1)
generating a NeRF for each frame as a static scene, and 2) integrat-
ing multiple frames into a dynamic video by leveraging temporal
similarity.

Representing each frame with NeRF: NeRF represents each
frame of a volumetric video using an implicit neural network (NN).
When provided with the input coordinate x 2 R3 and the viewing
direction d 2 R2, the NN model �⇥ can generate a density f (x)
and color c(x, d), i.e., �⇥ : (x, d) d (c,f). Given a ray r = o + Cd
casting from the viewpoint o 2 R3, the pixel color ⇠̂ (r) can be
calculated by accumulating the density and color of the sampling
points (denoted as G8 ) along the ray:

⇠̂ (r) =
#’
8=1

)8 · U8 · ci (1)

U8 = 1 � 4G? (�f8X8 ), )8 =
8�1÷
9=1

(1 � U 9 ) (2)

in which f8 is the distance between adjacent sample points, )8 de-
notes the accumulated transmittance when reaching point G8 , and
U8 means the probability that the ray terminates at point G8 . In-
stead of using a fully implicit representation, which su�ers from
slow training and inference due to heavy neural network querying,
recent work has proposed combining a voxel-based structure to
improve learning and rendering [4, 53, 60]. A voxel is a 3D unit, like
a pixel in 2D space, and they are organized into grids. In traditional
computer graphics, voxels store explicit data like color and den-
sity [13], but in NeRF, they store implicit features. With a density
grid Vf and a color feature grid Vc, the density f and color c will
be represented as:

f = 8=C4A? (x,Vf ), c = �⇥ (8=C4A? (x,Vc ), d) (3)

where 8=C4A? (·) means the tri-linear interpolation function on the
grids. We have also illustrated the process in Figure 1 (see the left
part). After getting the rendered results, we can calculate the dif-
ference between the ground truth and update �⇥, Vf , Vc through
backpropagation. Therefore, the data structure of NeRF representa-
tion usually contains three parts: the obtained tensor with multi-
dimension features (i.e., Vf , Vc) and an MLP (i.e., �⇥).
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Figure 2: Network capacity v.s.
NeRF models.

Figure 3: The impact of tempo-
ral dynamics in networks.

Integrating frames into video: After obtaining per-frame fea-
ture/density grids (for simplicity, we use ft = {Vt

f ,Vt
c}), we can

then compress the data size by generating per-frame motion Mt
and residual rt through spatial-temporal coherency [28, 58]. Similar
to 2D video, motion Mt in NeRF video represents the movement
of corresponding voxels between adjacent frames, which is a grid.
Notably, since NeRF operates in feature space, Mt is usually de-
rived together with the raw feature (i.e., ft) through training pro-
cess [51, 58]. As denoted in Figure 1, encoding NeRF video has three
main steps: i.e., 1) predicted frame generation, 2) residual calcu-
lation, and 3) 3D data encoding. Predicted frame is generated by
warping previous feature grid ft�1 into the current frame ft through
samplingMt; residual rt is calculated by comparing the di�erence
between the predicted frame and the real frame; 3D data encoding
is used to convert generated residual/motion into bit streams.

We also give a detailed example in Figure 1. The �rst frame
is encoded independently as a key frame without a motion grid.
Starting from the second frame (f1), we predict the frame (f̂1) using
the previous frame’s reconstruction and the trained motion grid
(step 1). The residual rt is then calculated as the di�erence between
the actual frame (f1) and the predicted frame (f̂1) (step 2). The mo-
tion grid (Mt) and residual (rt) are more compact than raw frame
data [58] and are encoded using a 3D encoder (DCT, quantization,
entropy encoding) to produce multiple bitrates by varying quanti-
zation parameters (step 3). Larger quantization parameter leads to
higher compression ratio but more quality degradation. 3D DCT is
similar to traditional DCT, but it extends the transformation into
three dimensions instead of two. Therefore, unlike the 2D DCT,
which operates on image frames, the 3D DCT processes a volu-
metric block, capturing correlations across spatial and volumetric
dimensions. This enables more e�cient compression by exploiting
redundancy within the volume, making it particularly useful for
volumetric data compression. Decoding reverses these steps with
entropy decoding, de-quantization, and 3D IDCT. We have also
shown the components of 3D encoder in Figure 1. To clarify and
distinguish with 3D encoder, we denote the encoder that includes
residual calculation as NeRF encoder.

3 Motivation and Challenges
3.1 Streaming NeRF Videos in the Wild is

Non-trivial
Although NeRF representation is promising, the following charac-
teristics of current network conditions prevent e�cient NeRF video
streaming.

Limited bandwidth capacity.We �rst use a public dataset [63]
to measure real-world bandwidth distribution. This dataset is col-
lected by a product-level web player, which supports users watch
VoD across di�erent platforms. This player has been used by mil-
lions of users under mixed network conditions around the world in
the past few years. Therefore, it can be regarded as a good sample
for current network conditions. The results are shown in Figure 2
(see the top sub-�gure). We can see that the average bandwidth
value is about 36.87 Mbps, and for most of the traces (over 94%),
the bandwidths are below 100 Mbps. Actually, this capacity cannot
handle NeRF videos. For demonstration, we further investigate the
data sizes and reconstruction performance of various NeRF models,
including static-based models (i.e., representing each frame sepa-
rately, and no integration from frames to video) like DVGO [51]
and INGP [44], and dynamic-based models (i.e., leveraging tem-
poral coherency to integrate frames into video) like DeVRF [37],
INGP-T [9], TiNeuVox [14], and ReRF [58]. Speci�cally, we calculate
the average bandwidth requirement for each model at 30 FPS. The
results are shown in Figure 2 (see the bottom sub�gure). We can see
that the dynamic-based models can achieve smaller model sizes but
may su�er from performance issues. E.g., the bandwidth require-
ment for INGP and DVGO is over 2⇥104 Mbps, and their PSNR is
greater than 37dB, while INGP-T and TiNeuVox can compress the
bandwidth to about 200-300 Mbps, but their PSNRs only achieve
27-30dB. At the same time, we can also see that the SOTA model
ReRF is quite promising: it reduces the bandwidth by over 100 times
(to about 200 Mbps) with only a 1dB PSNR degradation compared
to the best static model (i.e., INGP). However, ReRF still remains
too large to be streamed under real-world network conditions.

Signi�cant temporal dynamics. Only considering network
capacity is insu�cient, as real network bandwidth is also equipped
with temporal dynamics. In Figure 3 (the top sub-�gure), we arbi-
trarily select a trace from our dataset as an example and present
how bandwidth varies over time. We can see that between 125
and 175 seconds, the bandwidth peaks at nearly 1800 Mbps but
drops below 20 Mbps. These �uctuations can signi�cantly degrade
performance when transmitting NeRF video at a single bitrate. For
illustration, we set up an experimental scenario to simulate a user
downloading a NeRF video encoded with ReRF frame-by-frame
from the server. Speci�cally, to better indicate the in�uence of tem-
poral dynamics, we select all 5G traces to make sure the average
capacity is enough. We monitor the user’s player bu�er and record
the user’s rebu�ering time (i.e., the time interval when the bu�er
in the player’s device is empty until new data is downloaded). We
present the rebu�ering time distribution across all network traces
in Figure 3 (see the bottom sub-�gure). We can see that even for 5G
traces, the user can still su�er rebu�ering events across almost all
traces. In addition, more than 20% of the traces have a rebu�ering
time exceeding 10 seconds. This is expected: when the network de-
teriorates, the user cannot download frames that match the current
conditions, which causes the bu�er to run empty.

The above observations highlight the limitations of current net-
works for NeRF video transmission and motivate the use of adap-
tation techniques to enhance streaming. Speci�cally, bitrate adap-
tation can be employed to select the appropriate bitrate to adapt
to network conditions, while viewpoint adaptation further reduces
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Figure 4: NeRF encoder su�ers quality degra-
dation.

Figure 5: NeRF video encoding is resource-
intensive.

Figure 6: NeRF representation is sensitive to
data incompleteness.

data volume by transmitting only the data relevant to the predicted
viewpoint.

For bitrate adaptation, we will include two main processes: 1)
bitrate ladder construction (i.e., encode raw video into multi-
ple bitrates) and 2) bitrate selection (i.e., use certain ABR algo-
rithm to select the proper bitrate based on network conditions). For
viewpoint adaptation, we will also include two main processes: 1)
viewpoint prediction (i.e., estimate the user’s expected viewing
region), and 2) foveated streaming (i.e., transmit only the voxels
contributing to the predicted viewpoint.) For these processes, bitrate
selection for NeRF video can directly leverage existing ABR algo-
rithms for 2D videos, as both types can be treated as “media �les”;
similarly, viewpoint prediction for traditional volumetric videos
like point-cloud can also be seamlessly extended to NeRF video, as
users interact with the rendered images rather than the underlying
data format, making viewing behavior independent of how the pre-
rendered data is represented. However, bitrate ladder construction
and foveated data transmission can be quite challenging as NeRF
videos are represented in features and NNs.

3.2 Challenges of Bitrate Adaptation and
Viewpoint Adaptation for NeRF Video

First, NeRF encoder su�ers from quality degradation. As shown
in Figure 1, NeRF videos store implicit features instead of explicit
RGB, which prevents the encoder from identifying important voxels,
forcing uniform compression and leading to a loss of quality. To
demonstrate this, we examine the SOTA model ReRF. ReRF follows
the NeRF encoder pipeline shown in Figure 1: i.e., �rst calculate
motion and residual, and then compresses them using 3D encoder.
We test ReRF with di�erent QPs and present the results in terms
of PSNR and bandwidth requirements. The results are shown in
Figure 4. We can see that although ReRF can reduce the bitrate from
a maximum of 250 Mbps to less than 25 Mbps when using smaller
QPs, the corresponding loss in rendering quality is signi�cant. For
instance, when the bitrate is reduced to around 40 Mbps (which
is the average bandwidth level in our dataset, see Figure 2), the
quality degradation exceeds 4 dB.

Second, constructing bitrate ladders for NeRF videos is resource-
intensive. From a transmission perspective, generating as many
bitrates as possible is ideal, since it enables the ABR algorithm to
do �ne-grained control in response to network dynamics. However,
this approach is impractical because NeRF encoding is far less e�-
cient than traditional 2D video encoding, and generating as many
bitrates can introduce signi�cant server cost. There are two main
reasons: First, the data size is enormous. NeRF videos store 3D spa-
tial content, making them much larger than traditional 2D videos.

Additionally, implicit feature channels are signi�cantly higher than
explicit RGB channels (e.g., ReRF has 13 channels for each voxel.).
Second, generating a predicted frame based on the motion grid
involves 3D space sampling, which is quite time-consuming [58].
For demonstration, we test the encoding time per NeRF frame and
present the results in Figure 5. As we can see, encoding a single
frame takes over 3 seconds on average, which is more than 100
times slower than 2D video (as comparison, H.265 achieves 33 ms
encoding per frame even for 4K videos). It is also notable that as
frames are interdependent (i.e., encoding the next frame requires
completing the encoding/decoding of the previous frame see Fig-
ure 1), parallel processing is di�cult to apply.

Third, NeRF videos are more sensitive to data incompleteness.
When performing viewpoint-based adaptation, all data within the
user’s viewpoint should be available; otherwise, artifacts may ap-
pear, and negatively impacts the user experience. Unfortunately,
NeRF videos are particularly sensitive to this issue due to their
implicit feature representation. For illustration, we analyze how
quality degrades whenwe randomly drop only one small 8x8x8 cube
from each frame of a NeRF video (each frame contains 270*270*280
voxels). We test across all video frames provided by [58], and the
results are shown in Figure 6 (bottom sub-�gure). We can see that
the average rendering quality drops by more than 1.2 dB, with over
20% of frames experiencing a reduction of more than 2 dB. This
sensitivity primarily stems from the rich information contained in
NeRF’s voxels. On the one hand, the feature dimensions in NeRF are
signi�cantly higher compared to traditional RGB representations;
on the other hand, the rendering process involves interpolating
voxel data, meaning a single voxel can in�uence the rendering re-
sults of multiple pixels. Moreover, unlike explicit representations
such as 360-degree videos or point clouds, NeRF’s implicit features
lack spatial continuity, making it impossible to compensate for
missing data through interpolation or estimation based on nearby
voxels.

In summary, to apply bitrate and viewpoint adaptation, we still
need to 1) increase the compression quality for the NeRF encoder, 2)
decrease the server cost by carefully determining howmany bitrates
we will generate, and 3) ensure all voxels within the viewpoint
should be transmitted.

4 System Overview
Figure 7 illustrates the transmission structure of our system, com-
prising o�ine and online procedures. During the o�ine phase, the
server pre-processes raw NeRF videos to generate all necessary
data (i.e., bitrate ladder construction). In the online phase, the client
selects the appropriate bitrate (bitrate selection), and the server
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Figure 7: System overview of NeRFlow, which consists of a pruning module, a decision module, and an adaptive module.

Figure 8: Ray-level and
sample-level importance.

(a) Single user viewpoint distribution (b) Viewpoint overlap across users

Figure 9: Viewpoints are concentrated in certain regions.

Figure 10: Assigning impor-
tance to voxels.

determines which speci�c data to transmit based on the predicted
viewpoint (foveated streaming). NeRFlow is central to this system,
managing bitrate ladder construction and foveated streaming. It
achieves high compression e�ciency, viewpoint adaptability, and
low server overhead through three core modules: Pruning Module,
Adaptive Module, and Decision Module.

The pruning module calculates voxel importance via an Impor-
tance Calculator to generate an importance grid, which is used to
prune less important voxels and produce a compact Pruned Fea-
ture. The adaptive module splits raw features into sub-features for
data-level �exibility and builds a lookup table for viewpoint-based
online adaptation. The decision module reduces encoding overhead
by selecting a limited set of QPs instead of using all possible ones.
The pruned features and sub-features are then encoded as master
frames and sub-frames for transmission.

4.1 Rendering-adaptive Pruning
Inspired by recent e�orts in NeRF compression [9, 34], our goal
for pruning module is to compresses NeRF video size while pre-
serving visual quality. Its approach relies on two key observations.
First, while voxel importance cannot be directly assessed due to
NeRF’s implicit features, it can be inferred from its contributions
to rendering e�ects. This importance is evaluated at two levels. At
the ray level, voxels that contribute to more rays are deemed more
important, as the rendered result depends on the ray r, according
to Eq.(1). At the sample level, even along the same ray, voxel con-
tributions vary. Based on Eq.(1) and Eq.(2), the contribution of each
sampled point G8 is determined by )8 · U8 , meaning samples with
higher )8 · U8 play a more critical role in the �nal rendering.

To illustrate the two levels of importance, we provide an example
in Figure 8. At the ray level, voxel E1 is more important than E2
since it is utilized by three rays, whereas E2 is used by only one.
At the sample level, for a ray crossing voxels E3 and E4 (shown as
a red line), if )4 · U4 is larger than )3 · U3, then E4 is considered
more important than E3. These two levels allow us to quantify each
voxel’s contribution to rendering e�ects.

Our measurements also demonstrate the potential for further
compression by leveraging heterogeneous importance, which leads
to our second observation: the majority of users’ movements are
concentrated in certain regions. Speci�cally, we use an IRB-approved
dataset released by [62]. This dataset records gaze data from 10 users
watching volumetric videos with a HoloLens. Each trace records
the location (i.e., x, y, and z) and orientation (i.e., yaw and pitch) for
over 2000 frames. We �rst partition the space into non-overlapping
regions by discretizing (G,~, I,~0F , ?8C2⌘). Then we randomly se-
lect one user and sort the regions in descending order based on
the number of this user’s viewpoints that are located within them.
The results are shown in Figure 9(a). We can see that the user’s
viewpoints are highly skewed: over 76% gaze trajectories are lo-
cated in the top-30% regions. At the same time, we also investigate
the region preference across users. Speci�cally, we split user traces
evenly into training and testing sets and examine the overlap of
regions as we vary the selection from the top 1% to the top 100%.
The results are shown in Figure 9(b). We can �nd that these regions
are quite consistent across users. E.g., for top-30% regions, there are
over 54% regions are identical in training set and testing set. This
is reasonable, as video content inherently provides heterogeneous
information and naturally varies in its attractiveness to users (e.g.,
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in a dancing scene, users are more likely to focus on the front view
rather than the top).

In fact, these two observations allow us to compress NeRF videos
more e�ectively: on the one hand, di�erent viewpoints inherently
hold varying signi�cance to users, and the �rst level of impor-
tance naturally captures this user preference; on the other hand,
unlike previous methods that uniformly compress voxel features,
our approach uses the second level of importance to apply varying
compression levels to di�erent voxels, resulting in better overall
rendering quality.

Then we give the details of how we calculate the importance.
Formally, given a sample G8 , we can compute its importance score
based on Eq.(1) and Eq.(2):

�G8 = )8 · U8 (4)

Then, this importance score will be assigned to its neighboring
voxels by calculating the distance between the sample and the
voxels (on normalized grid interval) in coordinate space, and the
larger the distance the smaller the assigned value:

�G8; = (1 � |E; � G8 | ) · �G8 (5)

in which E; are the voxels falling in the neighborhood of G8 and
|E; � G8 |  1 (as shown in Figure 10). Through the aforementioned
equations, we obtain the sample-level importance, and we then only
need to accumulate all sampled rays (i.e., ray-level importance) to
get the �nal importance:

�; =
’
G8 2X

�G8; (6)

where X denotes the samples of all rays. Through the above pro-
cess, we will generate an importance grid, and the value of each
voxel records the actual contribution to the rendering results. After
obtaining the importance scores of all voxels, we can then sort them
in an ascending order. Speci�cally, we can de�ne the cumulative
function as:

� (\ ) =
Õ
�; · 1Õ
�;

(7)

in which 1 is the indicator and 1 = 1 only when �; < \ . Here \ is a
hyper-parameter determined as needed. This function de�nes the
cumulative distribution of voxel importance scores, and we can use
this function to analyze di�erent videos. Take the video provided
in [58] as the example, we set \ = 0.99 (i.e., we want to �nd the
voxels contributing top 99% importance) and analyze the number
of such important voxels for all frames. The results are shown in
Figure 11. We can see that the distribution of voxel importance is
highly skewed: i.e., we �nd that the top 99% contribution is made by
only 0.55% voxels on average, and this highly skewed phenomenon
is consistent across all frames based on the CDF. To demonstrate
that our pruning method has minimal impact on quality, we choose
one direction and prune out the less important voxels with \ =
0.99. We compare the rendered images with and without pruning.
The results are shown in Figure 12. We can see that our method
well preserves visual quality (the size is reduced by more than
50%.). Notably, NeRFlow’s compression e�ciency stems from both
ray-level and sample-level optimizations. This ensures that while
increased viewpoint diversity may reduce ray-level bene�ts (e.g., in
larger scenes with more objects), the advantages at the sample
level remain (as demonstrated in §5.3). Additionally, collecting

Figure 11: The highly skewed dis-
tribution of voxel importance.

Figure 12: The rendering re-
sults before/after pruning.

viewpoints from users incurs minimal overhead, as each data entry
only involves frame index and viewpoint. Privacy concerns can
also be mitigated through anonymization and de-identi�cation,
similar to how browsing traces are handled in recommendation
systems [22].

4.2 Viewpoint-aware adaptation
Rendering-adaptive pruning can cover most user viewing traces.
However, due to individual user variability, some user viewpoints
still fall outside the calculated important regions. As shown in
Figure 9(b), even with all regions from the training set, 9.8% of
regions in the testing set remain uncovered. Given NeRF’s high
sensitivity to data incompleteness (Figure 6), it is crucial to bridge
this gap with a compensatory approach.

To address this issue, we propose an Adaptive Module. The core
idea is to split the raw feature into multiple small, non-overlapping
sub-features in addition to generating the pruned feature through
the importance calculator. The pruned feature, referred to as the
master frame, serves as the primary data for user viewpoints, while
the sub-features, encoded as sub-frames, act as backups to compen-
sate for regions not included in the master frame (as illustrated in
Figure 13). This dual-frame approach ensures robust coverage of
user viewpoints while maintaining e�cient data transmission.

O�line data preparation. Master frames are generated by en-
coding pruned features through NeRF encoder (i.e., Figure 1), and
we need to determine how to generate these sub-frames. There will
be two straightforward ideas. The �rst one is to directly use and
transmit raw feature without encoding. However, this is impractical
as uncompressed features are extremely large (each frame is 2.2
GB). Even if the sub-frame contains only a small portion of the
data, its size would still exceed that of the master frame, negating
the bene�ts of our pruning e�orts described in §4.1. The second
idea is to leverage NeRF encoder to compress sub-frames. However,
this approach introduces signi�cant pre-encoding time (see Fig-
ure 5), contradicting our goal of reducing the encoding overhead for
server. To address this problem, we decide to only use 3D encoder:
i.e., we remove deform/residual calculation. This approach has two
bene�ts: on the one hand, the per-frame compression time is signif-
icantly reduced since no feature space sampling is required. More
importantly, it supports parallel processing as each sub-feature is
compressed independently (i.e., we do not need to encode/decode
to calculate residual). To demonstrate these bene�ts, Figure 14(a)
compares the encoding time of 3D encoder with NeRF encoder. We
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Figure 13: Using sub-features to compensate for uncovered part of
the viewpoint.

(a) Encoding time (b) Frame size

Figure 14: Comparing 3D encoder and NeRF encoder in terms of
time and size.

can see that 3D encoder achieves a 17.5x speedup in per-frame en-
coding time. Notably, a key drawback of removing residual/motion
calculation is the reduced compression e�ciency, as it fails to ex-
ploit temporal redundancy between frames: Figure 14(b) compares
the CDF of the frame sizes for 3D encoder and NeRF encoder. We
can see that the frame size will be enlarged about 5x. However, this
ine�ciency of encoding sub-frames only has minimal impact on
the transmitted data volume: on one hand, the master frame (i.e.,
pruned feature) already integrates most of the viewpoints when cal-
culating the voxel importance; on the other hand, the distribution
of voxel importance is highly skewed (i.e. Figure 11), therefore there
will only be a small number of voxels need to be transmitted. We
have also demonstrate this in our evaluation section. It is notable
that the sub-feature should not be too small, as it will make 3D
DCT less e�cient to characterize data redundancy. Based on our
experiments, we set the sub-feature size to 8×8×8 voxels.

Online transmission control. After generating and encod-
ing sub-frames o�ine, we determine which to transmit based on
users’ viewpoints (i.e., online transmission control). Traditional
volumetric video methods (e.g., point clouds) often use frustum-
based approaches [19, 38], which transmit sub-frames containing
voxels within the viewpoint frustum. However, this approach is
too coarse-grained for NeRF videos, as it selects too many voxels,
resulting in excessive sub-frames and high transmission overhead.
To address this, we leverage the importance calculator from 4.1.
Using Eq.(7), we identify the top 99% of voxel indices relevant to
the current viewpoint and select the corresponding sub-frames.
This method signi�cantly reduces the number of selected voxels
without compromising rendering quality. As shown in Figure 15,

Figure 15: The voxel number compared with frustum method.

our approach selects 70% fewer voxels on average compared to the
frustum-based method.

Notably, real-time computation for Eq.(7) is impractical (e.g., in
30 FPS). Therefore, we propose to o�ine generate a lookup table:
i.e., we discretize the overall space into regions based on (x, y, z, yaw,
pitch) and pre-calculate the top-99% voxel indices for each region
using Eq.(7). Then the lookup table uses regions as keys and stores
the corresponding top-99% voxel indices as values. We acknowledge
that computing the lookup table may introduce additional overhead;
however, this can be mitigated by using a coarser space division
interval.

Since there have been plenty of methods focused on viewport
prediction, we do not dive deep on this problem and directly use
the method from [38], which uses several linear regression models
to independently predict each dimension of viewpoint. our online
adaptation logic is outlined as: we will get the required voxels based
on predicted users’ viewpoint through lookup table; then we will
calculate the voxels not covered by the master frame, and transmit
these voxels through sub-frames.

4.3 QoE-aware Bitrate Generation
Problem Formulation: Considering the encoding overhead of
NeRF videos (see Figure 5), we aim to select the minimum number of
QPs without compromising the users’ experience. Mathematically,
suppose the number of total QP settings is ⇢ (in our settings, QP
ranges from 1 to 100, i.e., ⇢ = 100), then we can formulate the
problem as

min
⇢’

@?=1
�@? (8)

s.t. �@? = {0, 1} (@? = 1, · · · , ⇢). (9a)’
=2N

&>⇢ (
ÿ

�@? ,=) � ⇠ (9b)

where �@? is a binary value indicating whether we choose QP=@? ;
N denotes networking environment; &>⇢ (·) represents the user’s
quality of experience. Modeling QoE for NeRF video is out of this
paper’s scope, so we use the QoE de�nition from 2D video as an
example in this paper (notably, our method can be adapted to other
QoE de�nitions): i.e., suppose the NeRF video contains ! frames,
then the QoE can be represented as:

&>⇢ = Z
!’
8=1

@8 � b
!’
8=1
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|@8+1 � @8 | (10)
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Figure 16: Variation of size and PSNR across
frames.

Figure 17: Process of how to get the PSNR
predictor.

Figure 18: Prediction results for di�erent
models.

i.e., the weighted sum of quality @8 (here we use PSNR), rebu�ering
time '8 , and smoothness when downloading all frames. Notably,
'8 relates to the bandwidth (denoted as ⇠8 ), current bu�er length
(denoted as ⌫8 ), and also the frame size (we denote it as B8 ) [50, 64].

Designing an algorithm for this problem is non-trivial due to the
following two aspects: on the one hand, solving the above prob-
lem requires knowing the PSNR and the size of the NeRF video
at di�erent QPs in advance (i.e., @8 and B8 ). However, these values
are typically available only after encoding, which contradicts our
goal of minimizing pre-encoding overhead. On the other hand,
even if we know these values, solving the optimization problem
remains challenging as QoE depends on various factors (e.g., ABR
algorithm and network distribution), which is hard to predict. More-
over, the solution space is huge (i.e., there will be ⇢! possible QP
combinations), which makes the problem even more complex. To
address the above concerns, we propose a predictor to characterize
video features and an optimizer to solve the optimization problem.
Speci�cally, the predictor provides necessary information to the
optimizer.

Predictor: Formally, we want to predict the PSNR @8@? and data
size (denoted as B8@? ) of each frame 8 for all possible QPs (i.e.,@? 2 ⇢).
Fortunately, predicting sizes is relatively manageable. In Figure 16
(see the top sub-�gure), we present how data sizes vary along the
frames for di�erent QPs, and the values are normalized by the raw
video size. We can see that the normalized data size is quite stable
across frames. E.g., with &%� , the encoded frame size consistently
accounts for about 69% of the raw video size. This actually indicates
that for each QP, we only need to calculate the frame sizes of the
�rst several frames, and then directly apply these normalized data
sizes to the remaining frames.

Despite the stability in data size, PSNR does not exhibit the same
consistency. For illustration, Figure 16 also shows the normalized
PSNR values of two QPs across all frames (see the bottom sub-
�gure). As denoted, the values vary signi�cantly. E.g., for &%⌫ , the
normalized PSNR �uctuates over 20% (i.e., from 0.6 to 0.8). The
results indicate that we cannot simply encode the �rst few frames
and reuse their normalized PSNRs for the remaining frames. This
phenomenon is explainable: the video inherently has temporal
dynamics, which can cause variations in the NeRF’s quality across
di�erent frames (E.g., highly dynamic scenes may lead to lower
NeRF video quality).

To solve this problem, we use three steps to predict PSNRs. We
�rst render multiple 2D images for each frame based on the view-
points and the raw NeRF video (we denote the images rendered
at frame 8 as %8raw), for each of which we can calculate its PSNR
(denoted as @8raw). Second, we will use 2D encoder (in our experi-
ment, we use MPEG [30]) to encode %8raw into %8@? with di�erent
QPs, and we then calculate the PSNR between %8@? and %8raw, which

we denote as @8,img
@? . Finally, we would like to generate a prediction

model � to predict @8&% based on @8raw and @8,img
@? , i.e.,

@8@? = �(@8raw,
ÿ

@
8,img
@? ), for @? 2 ⇢ (11)

The rationales behind this design are two folds: on the one hand, to
capture the temporal dynamics within the video, we use rendering
results of the raw NeRF (i.e., the use of @8raw); On the other hand,
since the quantization process for NeRF video extends directly from
2D videos (as shown in Figure 1), we can use the quantization
results on rendered images to infer the corresponding quantization
outcomes for theNeRF (i.e., the use of@8,img

@? ).We present the process
of how we train the prediction model in Figure 17 (denoted as
Training Process). Notably, we still need to quantize a few frames
of the NeRF video (e.g., the �rst several frames) to get the labels
for the prediction model (denoted as Label Generation in Figure 17).
However, this represents only a small fraction of the total video
length, and the storage and time overhead of encoding these 2D
images are negligible.

We have tested di�erent prediction models, including Linear
Regression (LR), Random Forest (RF), K Nearest Neighbor (KNN),
XGBoost (XB), and Support Vector Regression (SVR). We use the �rst
10% frames as a training set, and the rest 90% frames as a testing set,
and the results are shown in Figure 18 (the top sub-�gure). We can
see that all prediction models demonstrate good accuracy, with RF
performing the best across all results. Therefore, we �nally select
RF as our prediction model. In addition, we also test RF’s accuracy
with di�erent training set sizes (i.e., the number of frames), and the
results are also shown in Figure 18 (the bottom sub-�gure). We can
see that as more frames are utilized, the prediction error gradually
decreases and stabilizes. Considering both accuracy and encoding
overhead, we �nally use 10% of the frames to train the model.

Optimizer: Since this problem 1) lacks an explicit expression
and 2) has a huge solution space, �nding the closed-form solution



NeRFlow: Towards Adaptive Streaming for NeRF Videos MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Figure 19: The work�ow of GA-based optimizer.

is infeasible. Therefore, we will use the following two techniques to
solve the problem. First, we convert the hard constraint in Eq.(9) to
a soft constraint and adjust the objective function as a dual form [1]:

max
’
=2N

&>⇢ (
ÿ

�4 ,=) � _
⇢’
4=1

�4 (12)

where _ is the penalty factor that balances the trade-o� between
QoE and transcoding overhead (i.e., higher _ means we care more
about encoding overhead). Second, we consider adopting the Ge-
netic Algorithm (GA) [29] to approximate the solution. The basic
idea of GA is to use natural evolution process to model the solution
search process. GA is suitable in this problem due to the follow-
ing properties: First, it can well avoid local optima: it iteratively
improves a set of candidate solutions through selection (i.e., choos-
ing whether to retain speci�c solutions), crossover (i.e., combining
multiple di�erent solutions), and mutation (i.e., exploring new solu-
tions), to converge to the optimal solution gradually. Second, GA
does not rely on speci�c problem properties (such as continuity
or di�erentiability), making it well-suited for our problem, where
QoE lacks an explicit expression and the solution space is discrete.
The iteration logic of the GA-based optimizer has been presented
in Figure 19. Speci�cally, inspired by recent advances in ABR sim-
ulation work [3, 49], we implement a virtual player to simulate
the playback process of the NeRF video and use it to assist GA in
�nding the optimal solution. The virtual player’s input consists of
three parts: the QPs selected by GA (along with the correspond-
ing PSNR predicted by our aforementioned predictor, denoted as
video info in Figure 19 and Figure 7), networking traces, and the
ABR algorithm. The output is the user’s QoE (as de�ned in Eq.(10)),
which serves as feedback to iterate GA. The virtual player works
as follows. Given timestamp C: , we �rst calculate the download
time X: for chunk : as X: = B:/⇠: (⇠: is the bandwidth recorded in
networking traces). We then update the current bu�er size ⌫:+1 as
⌫:+1 = max[(⌫: � X: ), 0] + !, in which ! is the chunk length (e.g.,
1 second in our experiment). The rebu�ering event occurs when
there is no data in player’s bu�er. Therefore the rebu�ering time
can be calculated as ': = max[(⌫: � X: ), 0].

5 Evaluation
5.1 Methodology
Dataset. For NeRF videos, we use the Kpop dataset provided by [58].
Speci�cally, we retrain the model and generate the corresponding
NeRF representation following [51, 58]. We use two public datasets
for network traces: Solis [40] and Pu�er [63]. For viewpoints, we
use the dataset provided in [62] which records movement from ten
users watching the volumetric video.

Implementation We split the user viewpoint dataset into 70%
for training and 30% for testing. For rendering-adaptive pruning

(§4.1), we generate the importance grid and master frame using all
viewing traces from the training set. The voxel pruning criterion
is set to \ = 0.99, with further analysis in §5.3. For sub-frame
generation, the raw NeRF feature grid is divided into 8 ⇥ 8 ⇥ 8
non-overlapping cubes, each treated as a sub-frame. Viewpoint
prediction is achieved using linear regression models. For QoE-
aware bitrate generation, we set Z = 1, b = 4.3, and l = 1 in Eq.(10)
as previous work [20, 42]. We use HYB [2] as the ABR algorithm to
generate optimal QPs and evaluate other ABR algorithms in §5.3.
We set _ = 0.02 in Eq.(12) and discuss its impact in §5.3.

5.2 Results and Discussion
Compression e�ciency:We start with analyzing the e�ciency
of our rendering-adaptive pruning method through an evaluation
of the master frame. We investigate the bandwidth requirement
and PSNR under di�erent QPs for NeRFlow and ReRF [58]. The
results are shown in Figure 20, and we can obtain the following
observations. First, compared with ReRF, NeRFlow achieves a much
smaller bandwidth requirement with negligible quality loss. For ex-
ample, we can see that in the highest quality (i.e., QP=100), NeRFlow
reduces about 20% data size with only 0.4 dB PSNR reduction. Specif-
ically, we can see for bandwidth around 40 Mbps (i.e., the average
level in our measurement. See Figure 2), the PSNR only drops 1 dB
compared with the highest quality NeRF video (recall that ReRF
drops over 4 dB. See Figure 4). This is rational: on the one hand,
NeRFlow prunes out voxels, therefore reducing data size; on the
other hand, the pruned voxels are carefully selected by well lever-
aging their heterogeneous contribution made to the rendering ef-
fects, therefore having less impact on rendering quality. Second,
NeRFlow’s bene�ts are consistent across all QPs, and even obtain
higher bene�ts for low QPs. E.g., we can see that the size reduction
for QP=90 is about 62%, while for QP=20, the size is reduced over
77%. For better demonstration, we also present the size reduction
of each QP in Figure 20 (see the bottom sub-�gure). This is because
the e�ciency of entropy encoding is in�uenced by the distribution
of data after quantization (i.e., the more scattered the distribution,
the lower the encoding e�ciency). In the case of NeRFlow, pruning
out voxels helps concentrate the data distribution, especially at
lower quantization levels, further improving encoding e�ciency
and reducing data size.

User QoE: We then use the three users’ traces from testing
dataset to evaluate NeRFlow in an end-to-end way. We �rst present
the bitrate ladders generated after applying NeRFlow to the Solis
and Pu�er datasets. Speci�cally, NeRFlow generates the ladders
with �ve bitrates (QP=40, 64, 79, 83, 88) for Solis, and seven for
Pu�er (QP=17, 37, 59, 68, 79, 84, 88). This di�erence is reasonable
given that the Pu�er dataset contains more varied network con-
ditions, necessitating a broader bitrate range. We then evaluate
NeRFlow by comparing its QoE with that of ReRF. For fair com-
parison, we apply the same QPs as NeRFlow for ReRF, and encode
it into multiple bitrates (denoted as ReRF-ABR). It is also notable
that ReRF-ABR will not have foveated streaming logic as it encodes
all features in a uniform way. The results are depicted in the top
sub-�gures of Figure 21 and Figure 22. We can see that NeRFlow
signi�cantly outperforms ReRF-ABR in terms of QoE, with con-
sistent improvements across datasets. For example, in the Solis



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Rui-Xiao Zhang et al.

Figure 20: Evaluation for data size and qual-
ity

Figure 21: QoE evaluation and breakdowns
on Solis dataset.

Figure 22: QoE evaluation and breakdowns
on Pu�er dataset

(a) Overhead for user A (b) Overhead for user B (c) Overhead for user C

Figure 23: The bandwidth overhead required to transmit sub-frames for three users. We can see that the overhead is manageable.

dataset, NeRFlow increases the average QoE by 31% (i.e., 27.0 v.s.
20.6), while in the Pu�er dataset, it achieves an improvement of
41% (i.e., 23.2 v.s. 16.4). This result is expected as NeRFlow provides
better compression e�ciency while maintaing quality.

We further break down the QoE to better understand NeRFlow’s
performance gains, and the results are also illustrated in Figure 21
and Figure 22 (bottom sub-�gure). We can see that a signi�cant
portion of NeRFlow’s superior performance is due to its ability to
maintain quality. For instance, NeRFlow improves average PSNR
by 6.1 dB (28.4 v.s. 22.3 dB) in the Solis dataset and by 6.4 dB (28.3
v.s. 21.9) in the Pu�er dataset. Additionally, NeRFlow also performs
better in rebu�ering (e.g., NeRFlow reduces over 21.1% and 10.5%).

As sub-frames are used to compensate for regions not covered
by master frames, we analyze the bandwidth required to transmit
these sub-frames. Speci�cally, for each frame, we calculate the pro-
portion of the overall bandwidth occupied by the sub-frames. We
then compute the CDFs separately for three users in our test set and
present the results in Figure 23 (top sub-�gure). We observe that
sub-frames introduce minimal overhead. For instance, the average
overhead for all three users is below 1.1%, with the third user’s
overhead as low as 0.15%. These results align with our measure-
ments shown in Figure 9(a) and Figure 9(b), which indicate that
user viewpoints are highly concentrated.

At the same time, we analyze how the bandwidth overhead varies
with time for three tested users, and the results are also shown in

Figure 23 (bottom sub-�gure). We can obtain the following obser-
vations. First, for the same user, the sub-frame overhead �uctuates
at di�erent period of time. This is reasonable as user viewpoints
shift dynamically over time. Second, for di�erent users, the time
periods with the highest sub-frame overhead also di�er from each
other. E.g., for the �rst user, the peak overhead is located between
60-150th frames, while for the second user, it comes from 0-80th
frames). This highlights the fact that there exists heterogeneity in
user viewing preferences, and it further suggests that relying solely
on master frames is insu�cient.

5.3 NeRFlow Deep Dive
The factors in�uencing compression e�ciency. As pointed
in §4.1, the size reduction of master frame is in�uenced by the
viewpoint distribution. E.g., in some complex scenes with more
objects, the viewers may be interested in multiple points, which can
introduce more diverse viewpoints. In these cases, the compression
bene�ts from ray-level will be degraded since each voxel is equally
important at the ray level. To illustrate, we create synthetic viewing
traces with the video at the center and evenly distributed viewpoints
(�xed height). We gradually expand the view range from 10% to
100% and analyze the resulting size reduction, as shown in Figure 24
(top sub-�gure).We can see that as the view range increases, the size
reduction decreases. However, even at a 100% view range, NeRFlow
still achieves a 15% size reduction, since it can still perform voxel
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Figure 24: The in�uence of selected view-
points and importance threshold \ .

Figure 25: QoE evaluation and breakdowns
on Solis dataset.

Figure 26: QoE evaluation and breakdowns
on Pu�er dataset.

Figure 27: The necessity of GA-based opti-
mizer.

Figure 28: The in�uence of _. Figure 29: NeRFlow with di�erent ABR algo-
rithms.

pruning based on sample-level importance. Actually, as long as
the user’s viewpoint isn’t uniformly distributed (which is quite
common in real-world), our method remains e�ective.

Second, the pruning threshold \ a�ects compression e�ciency.
We examine how frame size and quality change with \ , as shown in
Figure 24 (bottom). Lower \ (fewer voxels selected) yields greater
size reduction but larger quality loss. We also observe diminishing
returns in size reduction as \ decreases, consistent with Figure 11,
since voxel importance becomes more uniform at lower \ , making
e�ective pruning more di�cult.

The necessity of online adaptation. We conduct an ablation
study to evaluate the e�ectiveness of the adaptation module by
comparing NeRFlow with and without it. As shown in Figures 25
and 26, the absence of the adaptation module leads to signi�cant
QoE degradation (39.8% for Solis and 74.1% for Pu�er). This drop
is primarily due to reduced quality, with PSNR decreasing by 8
dB in Solis, as relying solely on the master frame fails to cover
all viewpoints. We also observe a slight increase in rebu�ering
time due to the additional overhead from transmitting sub-frames
(see Figure 23). Notably, NeRFlow without the adaptation module
performsworse than ReRF-ABR (Figure 21), as ReRF’s uniform voxel
compression avoids data incompleteness. These results highlight
the necessity of the adaptation module.

The e�ectiveness of GA-based optimizer.We evaluate the
e�ectiveness of NeRFlow’s QoE-aware bitrate generation by com-
paring it with two baselines that use the same pruning and adaptive

modules but di�er in QP selection. The �rst baseline (Single) uses a
single QP, chosen o�ine to maximize QoE on our dataset. The sec-
ond baseline (Equalizer) uses the same number of QPs as NeRFlow
but selects them based on evenly dividing the network bandwidth
distribution and picking QPs closest to the average bandwidth of
each segment. We assess performance using utility (Eq.(12)), QoE,
and transcoding penalty. As shown in Figure 27, NeRFlow outper-
forms both baselines across all datasets, highlighting the importance
of its GA-based optimizer in capturing network dynamics. We also
investigate the in�uence of the penalty coe�cient _ in Eq.(12), and
the results are shown in Figure 28. We can see that with _ increas-
ing, NeRFlowwill select less number of QPs (see the top sub-�gure);
at the same time, the achieved QoE will also gradually decrease
(see the bottom sub-�gure). This is expected, as more QPs provide
more candidates, potentially allowing the ABR algorithm to make
more �ne-grained decisions in response to network dynamics.

NeRFlowwith di�erent ABR algorithms. To demonstrate that
our framework is generalizable, we also integrate NeRFlow with
di�erent ABR algorithms and compare with ReRF-ABR. Speci�cally,
we choose a rate-based algorithm named Festive [26] and a bu�er-
based algorithm named BBA [21] (it is notable that for both ABR
algorithms, we will re-run the pipeline to get the best QPs). For ease
of comparison, ReRF-ABR is implemented with HYB. The results
are shown in Figure 29. We can see that regardless of whether
BB or Festive is used, NeRFlow achieves signi�cantly higher QoE
compared to ReRF-ABR. Notably, this performance advantage is
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(a) Cellular (ave: 61.2 Mbps, std: 35.1
Mbps)

(b) WI-FI (ave: 18.0 Mbps, std: 6.4 Mbps)

Figure 30: Real-world network performance

consistent across both the Solis and Pu�er datasets. Additionally,
we can also observe that NeRFlow integrated with HYB outperforms
both Festive and BB.

5.4 Real-world Experiments.
To further evaluate NeRFlow, we also conduct real-world experi-
ments using the test pipeline for traditional VoDs (we manully add
extra data to simulate the overhead of viewpoint mismatch). We use
iPerf [24] to collect network traces, based on which we determine
QPs and generate multiple 2D videos to act as NeRF videos. We
then deploy an HTTP server, and modify dash.js [15] to support
HYB and download the videos. We test NeRFlow under cellular
and Wi-Fi conditions. In our real-world test, cellular network has
higher average bandwidth than WI-FI (61.2 v.s. 18.0 Mbps), but also
higher variation (35.1 v.s. 6.4 Mbps). For ease of illustration, we also
encode ReRF into multiple bitrates and implement it with dash.js.
The results are shown in Figure 30. We can see that NeRFlow per-
forms well under both network conditions (especially well controls
rebu�ering events). Also, the comparison results with ReRF-ABR
are consistent with our trace-driven experiment: i.e., the bene�ts
mainly come from higher PSNR, which is explainable as NeRFlow
can better compress video data through our pruning technique. It
is also notable that even in cellular networks, which exhibit greater
variability compared to Wi-Fi, NeRFlow still achieves better PSNR
and shorter rebu�ering time.

6 Related Work
Our work is closely related to two areas: volumetric video streaming
and NeRF-based volumetric representation.

Volumetric video streaming: Existing research mainly focuses
on point-cloud or mesh-based approaches. Some work aims at com-
pressing spatial information, such as [18, 32], which optimizes
spatial partitioning for point clouds to reduce data redundancy.
Other approaches focus on color space information, e.g., repre-
senting volumetric data using multiple 2D views and applying 2D
encoders for compression, likemulti-angle projection [25, 38, 47, 66]
and converting depth maps to grayscale images [31]. Additionally,
many studies utilize user viewing information for dynamic down-
sampling, such as ViVo [19] and QV4 [48]. While NeRFlow shares a
similar high-level idea of achieving e�cient transmission through
compression, the implicit nature of NeRF requires new designs for
both compression and transmission.

Novel volumetric representation:Traditional volumetric videos
often rely on explicit representations like point clouds andmeshes [5,
41], but these su�er from limited rendering quality. Recent ad-
vances have shifted focus to neural representations such as NeRF,
with research targeting improvements in rendering speed and qual-
ity [11, 54, 60], as well as model compression through pruning [10],
tensor decomposition [7], and encoding [44, 65]. However, these
methods generally overlook transmission adaptability and can com-
plement our work. Some studies do consider NeRF transmission [8],
but they focus on static models and require retraining, limiting scal-
ability to video scenarios. Gaussian Splatting has recently emerged
for its fast, high-quality rendering [27, 61], but its point-based
nature leads to signi�cantly larger data sizes, e.g., 500 Mbps for
30 FPS [52], making it less transmission-friendly. While 2D video
codecs have been applied to compress GS features [59], such meth-
ods still require retraining and fail to adapt to dynamic network
conditions. In contrast, NeRFlow o�ers a scalable, adaptable design
that can also be extended to GS.

7 Conclusion
We have introduced NeRFlow, a novel framework designed to en-
able adaptive streaming for NeRF videos under real-world network
conditions. By addressing key challenges of limited bandwidth
and temporal dynamics, NeRFlow optimizes the streaming process
through rendering-adaptive pruning, viewpoint-aware adaptation,
and QoE-aware bitrate ladder generation. Our extensive experi-
ments demonstrate that NeRFlow signi�cantly improves user Qual-
ity of Experience (QoE) by 31.3% to 41.2%, making it an e�cient
framework for NeRF video streaming.
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