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Abstract

We introduce Goedel-Prover, an open-source language model that achieves
state-of-the-art (as of April 5 2025) performance in automated formal proof
generation for mathematical problems. A key challenge in this field is
the scarcity of formalized mathematical statements and proofs, which we
address through the following approaches. First, we train LLMs to convert
natural language math problems from the Numina dataset to equivalent
formal statements in Lean 4. This process creates the dataset Goedel-Pset-
v1, which includes 1.64 million formal statements. Next, we develop a large
dataset of formal proofs by training a series of provers. Each new prover
can prove many statements that previous ones could not, and these new
proofs are added to the training set for the next prover. Finally, we obtain
the dataset Goedel-Pset-v1-solved, which contains proofs for over 800K
statements from Goedel-Pset-v1. Supervised fine-tuning (SFT) of DeepSeek-
Prover-V1.5-Base on Goedel-Pset-v1-solved (i.e., no RL) yields a model
that achieves a success rate of 57.6% (Pass@32) on miniF2F benchmark,
surpassing the previous leader DeepSeek-Prover-V1.5 (trained using SFT +
RL on a proprietary dataset) by 7.6%. On PutnamBench, Goedel-Prover-SFT
successfully solves 7 problems (Pass@512), ranking first on the leaderboard.
Further RL training (including DPO) improves Goedel-Prover-SFT’s success
rate to over 60% (Pass@32) on miniF2F.

To aid future research, we provide an extensive discussion of our training
methodology and design choices. We also fully open-source our codes,
models, dataset, and formal proofs for 29.7K problems in Lean Workbook,
nearly doubling the 15.7K solved by prior provers.

1 Introduction

Recent advancements in large language models (LLMs) have demonstrated remarkable
capabilities in reasoning tasks, especially in solving mathematical problems (Guo et al.,
2025; Yang et al., 2024a). These models excel at reasoning through natural language, which
we refer to informal reasoning. However, natural language-based reasoning is difficult to
automatically verify by machines, which undermines the reliability of informal reasoning in
practical applications. This also makes it more difficult to further improve the reasoning
capabilities of language models. In contrast to informal reasoning, formal reasoning allows
reasoning in a machine-verifiable format, opening up new possibilities for verification and
automation. In particular, proof assistants such as Lean (De Moura et al., 2015; Moura
& Ullrich, 2021), Isabelle (Paulson, 1994), and Coq (Barras et al., 1997) provide formal
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Figure 1: (Left) Pass@32 performance on miniF2F for whole-proof generation, compared to
previous SOTA models. (Middle) A comparison of Goedel-Proverand DeepSeek-Prover-
V1.5 on miniF2F performance across varying inference budgets, ranging from Pass@32, 64,
128, ..., to 4 x 6400. (Right) Goedel-Prover-SFT solves 29.7K problems in the Lean Workbook.
In comparison, InternLM2.5-Step-Prover (Wu et al., 2024) and InternLM-Math-Plus (Ying
et al., 2024b) collectively solved 15.7K samples.

languages that can express reasoning in a way that can be mechanically verified. Thus, it is
of great interest to train LLMs to write proofs in these formal languages.

A significant challenge in training LLMs for theorem proving in formal languages is the
scarcity of formalized math statements and proofs. Writing proofs for theorems expressed
in formal languages is highly demanding and necessitates considerable domain expertise.
Therefore, existing publicly available datasets for formal languages are limited in size. For
example, the Lean Workbook (including Lean Workbook Plus) dataset (Ying et al., 2024a; Wu
et al., 2024) comprises a total of 140K formal statements, where formal statements refer to
problem statements in Lean without proofs. However, only 15.7K of these statements come
with formal proofs, which were found by InternLM2.5-StepProver and InternLM-Math-Plus
(Ying et al., 2024a; Wu et al., 2024; Ying et al., 2024b). Additionally, the Open Bootstrapped
Theorems dataset (Wang et al., 2024) includes 107K statements with proofs sourced from
Mathlib4 (mathlib4, 2023). However, Mathlib4 exhibits significant distribution shift from
general problem-solving benchmarks, such as the widely used miniF2F (Zheng et al., 2021).
See Section 4 for details.

In contrast to the scarcity of data in formal languages, there is a vast amount of math prob-
lems and solutions written in informal language. For example, Numina (Li et al., 2024a) in-
cludes 860K high-quality question and answer pairs sourced from MATH (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), AMC (aop), AIME (MAA, 2024), the AoPS Forum (aop),
Chinese K-12 Exams (Shao et al., 2024), World Olympiads, and synthetic data (Mitra et al.,
2024). We start by training LLMs to formalize the problem statements in this dataset into
Lean. To increase the diversity of the formalization styles, we train two formalizers. One is
trained on informal and formal (I-F) statement pairs from Lean Workbook, while the other
is trained on I-F statement pairs annotated by Claude-sonnet-3.5 (Anthropic, 2024). We use
these two formalizers to formalize the statements and then employ LLMs to ensure that the
formal statements preserve the content of the informal statements. Our efforts result in 1.64
million formal statements.

Using this extensive dataset of formal statements, we employ expert iteration (Polu et al.,
2022) to train the prover to generate proofs. Notably, we train a model to generate complete
proofs solely based on statements, without interacting with the Lean compiler during the
generation process. This approach is referred to as the whole-proof generation method (Jiang
et al.,, 2022; Wang et al., 2024; Xin et al., 2024a;b). At the beginning of the expert iteration,
we generate 16 proof candidates using DeepSeek-Prover-V1.5-RL (the previous SOTA) for
each formal statement in our dataset, and then we verify the correctness of each candidate
using Lean compiler. The correct proofs are then collected to train our iter-1 prover based
on DeepSeek-Prover-V1.5-Base. In subsequent rounds, we utilize our iter-k prover to collect
new proofs and add them to the training data. We then perform supervised fine-tuning
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Figure 2: The figures show the performance of our model on the four datasets at each
iteration. We gradually increase the size of the problem set and add more training data. The
details of each iteration are shown in Table 8.

starting from DeepSeek-Prover-V1.5-Base for another round, resulting in the iter-(k + 1)
prover. We conduct a total of 8 iterations and observe a consistent improvement starting
from the first iteration.

We demonstrate that expert iteration, with large-scale formalized statements, can lead to
SOTA performance in formal proof generation. Specifically,

¢ Our model, Goedel-Prover-SFT, outperforms DeepSeek-Prover-V1.5-RL (the previous
SOTA model) by 7.6% on miniF2F, achieving a Pass@32 score of 57.6% (i.e., the prover
generated 32 proofs for a problem, and 57.6% of the problems have at least one correct
proof verified by Lean) compared to DeepSeek-Prover-V1.5-RL’s 50.0%, as shown in
Figure 1 (left). It consistently surpasses DeepSeek-Prover-V1.5-RL across all sampling
budgets, including Pass@32, 64, and up to 25600, as shown in Figure 1 (middle).

¢ We have cumulatively solved 29.7K problems in Lean Workbook, significantly increasing
the existing 15.7K proofs found by Intern. M2.5-StepProver and InternLM-Math-Plus
(Wu et al., 2024; Ying et al., 2024b), as shown in Figure 1 (right).

* Goedel-Prover-SFT solves 7 problems on PutnamBench by Pass@512!, securing the #1
position on the leaderboard (Table 2).

» We open source our codes?, models® 4 5 ¢, datasets” 8, and the new proofs discovered’ in
the Lean Workbook to facilitate future research.

To understand the factors behind Goedel-Prover’s strong performance, we provide an
in-depth discussion of our training recipe, analyzing the effects of scaling up training
data, the diversity introduced by autoformalization, correlations among datasets, and
alternative data synthesis strategies. Furthermore, although our final model is trained
purely through supervised fine-tuning, we also explore direct preference optimization
(DPO) and reinforcement learning (RL) techniques built on top of it. Our Goedel-Prover-
DPO and Goedel-Prover-RL achieve a success rate over 60% (Pass@32) on miniF2F. However,
we also find that DPO and RL-trained models tend to overfit to “shortcuts” and benefit less
from increased inference-time compute.

IWe initially solved 8 problems on PutnamBench. However, after discussing with the authors of
PutnamBench, we discovered that one of the problems was mis-formalized. Therefore, this problem is
not included in our count, and we report a total of 7 problems here.

2https ://github.com/Goedel-LM/Goedel-Prover

3https ://huggingface.co/Goedel-LM/Goedel-Prover-SFT

4https ://huggingface.co/Goedel-LM/Goedel-Prover-DPO

5https ://huggingface.co/Goedel-LM/Goedel-Formalizer-32B-SonnetAnnotated

6https ://huggingface.co/Goedel-LM/Goedel-Formalizer-32B-LeanWorkbookAnnotated

“https://huggingface.co/datasets/Goedel-LM/Goedel-Pset-v1

8https://huggingface.co/datasets/Goedel-LM/Goedel-Pset-v1-solved

Ihttps: //huggingface.co/datasets/Goedel-LM/Lean-workbook-proof's
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2 Method

We begin by translating informal statements (expressed in natural language) into formal
statements (represented in Lean). Using these formal statements, we iteratively train our
prover with proofs generated by the prover and verified by the Lean compiler. The details
of each step are elaborated in the following parts.

2.1 Statement Formalization

We first train the statement formalizers to translate informal statements in Numina into
formal statements as shown in Figure 3. To enhance the diversity of formalized statements,
we train two models to formalize informal statements.

* Formalizer A: We train the Formalizer A model using Formal and Informal (F-I) state-
ment pairs sourced from Lean Workbook.

¢ Formalizer B: We employ Claude-sonnet-3.5 to formalize 230K statements from Numina.
From this set, we extract 170K statements that successfully passed Lean compilation.
These 170K F-I statement pairs are then used to train Formalizer B.

Both Formalizer A and B are trained using supervised fine-tuning with Qwen?2.5-Coder-
32B!0. The training of these two formalizers takes less than 24 hours on 8 H100 GPUs. See
Appendix A.1 for examples of formalized statements from these two formalizers, where we
observe that even for the same problem, the style of the formalized statement can impact
the prover’s performance.

Formal and Informal (F-I) statement pair

Let a, b, and ¢ be real numbers that

F-I statement Itniormalt satisfying 3a+b+c=-3, a+3b+c=9, and
pairs statement | ; 4 h+3c=19. Prove that the product
abc = —56.

theorem mathd_algebra_338 (a b c : R) (ho : 3% a+b +c =

Formal | 35) (h, :a+3xbsc=9) (ha:a+b+3xc=19):a
Qwen2.5- A g statement | x b % ¢ = -56 := by
Trainin Formalizer :
Coder-32B 9

Figure 3: This figure illustrates the training of the formalizers. The term “F-I statement
pairs” refers to pairs consisting of Formal and Informal (F-I) statements. An example is
shown on the right-hand side. We train two formalizers, Formalizer A and B, using F-I
statement pairs sourced from various origins.

Quality assessment. We employ two tests to assess the quality of the formalized state-
ments. First, the formalized statement must conform to Lean syntax and can successfully
compile, with the potential proof replaced by the placeholder “:= by sorry”. This syntax
check is known as the Compiling Correctness (CC) Test in the literature (Ying et al., 2024a).
Second, the formalized statement must accurately capture the original informal problem,
incorporating all assumptions, conditions, and implicit definitions. We refer to this second
test as the Faithfulness and Completeness (FC) Test. For the FC test, we use Qwen2.5-72B-
Instruct!'!, details are presented in Appendix A.2. We also conducted a study comparing
LLM and human ratings for the FC test and found an agreement rate of 85.7%.

In addition to formalizing the 860K open-sourced Numina (Li et al., 2024a) datasets, we also
formalize a private 68K collection of math problems from Art of Problem Solving (AOPS),
which has been collected and processed by the Numina group (Li et al., 2024a). Out of a
total of 928K informal statements, 760K have two valid formalized statements generated
by Formalizer A and B, while 123K contain only one valid formalized statement. After
formalizing both the Numina and AOPS datasets, we further incorporate 140K statements

1Ohttps ://huggingface.co/Qwen/Qwen2.5-Coder-32B
Hhttps: //huggingface.co/Qwen/Qwen2.5-72B-Instruct
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from Lean Workbook, including Lean Workbook Plus. As a result, we have a total of 1.78M
formal statements.

2.2 Expert Iteration

After obtaining a large collection of formalized statements in Section 2.1, we employ expert
iteration to train the prover (Liu et al., 2024; Wu et al., 2024; Li et al., 2024b), which is
illustrated in Figure 4. Specifically, we first utilize DeepSeek-Prover-V1.5-RL!? to generate
16 proofs for each statement. We then verify these proofs with the Lean compiler. If at least
one proof solves the statement, we retain one proof per statement. In cases where multiple
proofs are available, we randomly sample one solution. These collected proofs are used
for supervised fine-tuning (SFT) based on DeepSeek-Prover-V1.5-Base!3, resulting in the
iter-1 prover. We continue this expert iteration process; each time, we use the iter-k prover
to generate answers and cumulatively collect correct solutions to train DeepSeek-Prover-
V1.5-Base for the next iteration, the iter-(k + 1) prover. To prevent data leakage, we ensured
that no statements in the training set were identical to those in the evaluation benchmarks.
Refer to Appendix B for more details on each iteration.

We experiment with learning rates of 1 x 10~# and 5 x 107>, training for either 1 or 2 epochs.
We use the packing trick (Tunstall et al., 2022) with a small batch size of 8 to speed up the
training. In each iteration, the training time for 1 epoch is approximately 12 hours using 4
H100 GPUs. The inference time for the 1.78M statements set by Pass@16 is 6 hours, utilizing
64 H100 GPUs. Additionally, the verification time for these proofs requires 10 hours with
8,000 CPUs.

Proof 1
Formalized Generated
Proof 2
ctatements » Inference ﬁ -
I Proof 3
Goedel- £ LEAN
Prover H ' verification

‘ - ’.'l
Iterating
Proof 1

--} g, — Vel X
X

Proof 1

Figure 4: This figure illustrates the process of expert iteration. Each time, we utilize our iter-k
prover to collect new proofs and add them to the training data. We then conduct supervised
fine-tuning starting from DeepSeek-Prover-V1.5-Base for another round, resulting in the
iter-(k + 1) prover.

3 Results

Benchmarks. Following the works of (Wang et al., 2024; Xin et al., 2024a; Wu et al., 2024;
Li et al., 2024b), we primarily use miniF2F (Zheng et al., 2021) as our main evaluation
benchmark. We also track the problems solved by our prover in Lean Workbook (Ying
et al., 2024a) and investigate the performance on ProofNet (Azerbayev et al., 2023) and
PutnamBench (Tsoukalas et al., 2024). Additionally, we uniformly sample a subset from our
formalized dataset to create a held-out evaluation dataset. Below, we provide descriptions
of each dataset.

12https ://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-RL
13https ://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-Base
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Whole-Proof Generation Model | Pass Performance
TheoremLamma (Wang et al., 2024) 128 33.6%
Deepseek-Prover-V1 (Xin et al., 2024a) 32 46.1% + 0.5%
DeepSeek-Prover-V1.5-SFT (Xin et al., 2024b) 32 48.2% + 0.6%
DeepSeek-Prover-V1.5-RL (Xin et al., 2024b) 32 50.0% =+ 0.5%
Goedel-Prover-SFT 32 57.6% =+ 0.7%
DeepSeek-Prover-V1.5-SFT (Xin et al., 2024b) 3200 53.3%
DeepSeek-Prover-V1.5-RL (Xin et al., 2024b) 3200 54.9%
Goedel-Prover-SFT 3200 62.7%
DeepSeek-Prover-V1.5-SFT (Xin et al., 2024b) | 4 x 6400 55.8%
DeepSeek-Prover-V1.5-RL (Xin et al., 2024b) | 4 x 6400 58.5%
Goedel-Prover-SFT 4 x 6400 64.7%

Table 1: Whole-proof generation performance on miniF2F.

¢ miniF2F (Zheng et al., 2021) is a formal theorem proving benchmark, consisting of 488
problem statements (244 validation and 244 test problems) in Lean. The problems are
drawn from high-school exercises, as well as high-school level competitions including
the AIME, AMC, and the International Mathematical Olympiad (IMO). The original
benchmark was released in Lean 3, and for our analysis, we use the version of miniF2F in
Lean 4.9.0 provided by Xin et al. (2024a).

* ProofNet (Azerbayev et al, 2023) is a formal theorem proving benchmark of
undergraduate-level mathematics, consisting of 371 problem statements in Lean (185
validation and 186 test problems). The problems are primarily drawn from undergrad-
uate pure mathematics textbooks, covering topics such as real and complex analysis,
linear algebra, abstract algebra, and topology. The original benchmark was released in
Lean 3, and for our analysis, we use the version of ProofNet in Lean 4.9.0 provided by
Xin et al. (2024a).

¢ Lean Workbook (Ying et al., 2024a) is a large-scale Lean 4 problem set formalized from
natural language math problems (mainly from the forum AOPS), which consists of 140K
statements in Lean 4. We also monitor the problems solved by our model during the
expert iteration process. Notably, the problem set from Lean Workbook is included
in this training, which is consistent with DeepSeek-Prover-V1.5 (Xin et al., 2024a) and
InternLM2.5-StepProver (Wu et al., 2024).

* PutnamBench (Tsoukalas et al., 2024) is a formal theorem proving benchmark on compe-
tition mathematics problems sourced from the William Lowell Putnam Mathematical
Competition years 1962 - 2023. PutnamBenchcomprises 644 Lean 4 statements, covering
algebra, analysis, number theory, geometry, combinatorics, probability and set theory.

¢ NuminaTest. We randomly sample 250 statements from our formalized Numina dataset
and use them as a held-out testing set. We refer to this subset as NuminaTest.

Main results. The performance on miniF2F is shown in Table 1. The Pass@32 performance
of our Goedel-Prover-SFT is 57.6%, surpassing the previous SOTA open source model,
DeepSeek-Prover-V1.5-RL, by 7.6%. We observe that our Goedel-Prover-SFI’s Pass@32
is even better than DeepSeek-Prover-V1.5-RL’s Pass@3200 by 2.7%. Furthermore, when
both evaluated by Pass@3200, our model achieves 62.7%, surpassing DeepSeek-Prover-V1.5-
RL’s 54.9% by 7.8%. Figure 1 illustrates the inference time scaling curve for our Goedel-
Prover-SFT, DeepSeek-Prover-V1.5-RL and DeepSeek-Prover-V1.5-SFI. Goedel-Prover-SFT
demonstrates significant improvements over both DeepSeek-Prover-V1.5-RL and DeepSeek-
Prover-V1.5-SFT across all inference compute budgets. Figure 2 illustrates the performance
of our model during each iteration. Overall, we observe a relatively consistent improvement
in performance across iterations.

PutnamBench performance. Goedel-Prover-SFT solves 7 out of 644 problems in Putnam-
Bench (Pass@512), achieving the first place on the PutnamBench leaderboard. The previous
SOTA method ABEL (Gloeckle et al.) solves 7 with a slightly higher inference budget
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Ranking Model Type Num-solved Compute (Pass) Size
1 Goedel-Prover-SFT WPG 7 512 7B
1 ABEL (Gloeckle et al.) TS 7 596 8B
3 Goedel-Prover-SFT WPG 6 32 7B
3 InternLM2.5-StepProver (Wu et al., 2024) TS 6 2x32x600 7B
5 InternLM 7B (Ying et al., 2024b) WPG 4 4096 7B
6 GPT-4o WPG 1 10 N/A (API)
7 COPRA (GPT-40) (Thakur et al., 2023) WPG 1 1 N/A (API)
8 ReProver w/ retrieval (Yang et al., 2024b) WPG 0 1 0.6B
9 ReProver w/o retrieval (Yang et al., 2024b) WPG 0 1 0.6B

Table 2: Number of problems solved on PutnamBench statements (out of 644). Goedel-
Prover-SFT achieves the first place in the leaderboard. The performance numbers for
existing works are taken from the leaderboard. Here ¢ inidicates open-source models. Type
abbreviations: WPG = Whole-Proof Generation, TS = Tree Search Method.

Formalization Model | miniF2F  ProofNet NuminaTest | Average

Formalizer A only 56.5% 13.8% 59.6% 43.3%
Formalizer B only 56.2% 15.2% 60.0% 43.8%
Formalizer Aand B | 57.6% 15.2% 61.2% | 44.7%

Table 3: An ablation study on using two formalizers to formalize the statements. Using
statements formalized by both formalizers improves the model’s performance, illustrating
the value of diverse formalization styles.

(Pass@596) and InternL M2.5-Step-Prover (Wu et al., 2024) solves 6 (Pass@2 x 32 x 600). The
performance is summarized in Table 2.

Proofs found in Lean Workbook. The Lean Workbook, which includes Lean Workbook-
plus (Ying et al., 2024a; Wu et al., 2024), formalizes 140K high-quality problems sourced
from AOPS and the Compfiles data. Currently, proofs for only 15.7K statements in Lean
Workbook have been found and made open-source by InternLM2.5-StepProver (Wu et al.,
2024) and InternLM-Math-Plus (Ying et al., 2024b). In contrast, our model has discovered
a significantly larger set of proofs within Lean Workbook, cumulatively solving 29.7K
problems, as shown in Figure 1 (right). We open-source all the proofs found by our model
to benefit the research community.

Tactic Usage and Proof Quality. We conducted a detailed analysis of the proofs generated
by Goedel-Prover-SFT to examine its tactic usage, proof quality, and the sources of its
performance gains. We found that its most frequently used tactic is have, which is used
to introduce and prove intermediate lemmas, indicating a capacity for structured, multi-
step reasoning. This contrasts with baseline models that more heavily favor automation
tactics like norm_num. Furthermore, Goedel-Prover-SFT employs a more diverse set of tactics.
While powerful automation tactics like linarith and simp are utilized, their frequency of
use is comparable to or even less than in baseline models. These findings suggest that
the performance gains are due to more nuanced proof strategies and deeper reasoning
capabilities, rather than simply exploiting built-in automation. See Appendix C for further
details on the comparison of tactic usage and proof quality.

4 Dissecting the training recipe

Scaling up the number of formal statements improves model performance. Figure 5
shows the performance of provers (average on miniF2F, ProofNet and NuminaTest) trained
on different sizes of the formal statement set. For each statement, the corresponding proof
is obtained using Goedel-Prover-SFT. We observe a consistent improvement in model
performance as the size of the statement set increases, underscoring the value of scale in
training effective provers.
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Model Training Dataset miniF2F  ProofNet NuminaTest Average
Deepseek-RL - 50.0% 16.0% 53.6% 39.9%
Iter-6 prover Iter-5 proofs 56.6% 13.3% 59.2% 43.0%
Iter-6 prover  Iter-5 proofs + Mathlib4  54.1% 15.6% 58.8% 42.8%

Table 4: Incorporating Mathlib4 into the training data enhances performance on ProofNet
but reduces performance on miniF2F and NuminaTest, suggesting distribution shift between
Mathlib4/ProofNet and other datasets.
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Increasing the diversity of formalization styles is beneficial. Table 3 presents the
performance of iter-8 provers trained on different formalization styles of statements,
with proofs generated by the iter-7 prover. We find that a prover trained on a mix-
ture of styles—combining statements produced by both Formalizer A and Formalizer
B—outperforms provers trained on a single formalization style. This result suggests that ex-
posure to diverse formalization patterns improves the model’s generalization and reasoning
ability.

We evaluate model performance across different training iterations and hyperparameter
settings, and compute the correlation of performance across multiple datasets (see Figure 6).
We observe that the model performance on ProofNet is negatively correlated with the perfor-
mance on miniF2F, Lean Workbook, and NuminaTest. Furthermore, we investigate the effect
of including Mathlib4 in the training data. As shown in Table 4, incorporating Mathlib4
improves performance on ProofNet but leads to a performance drop on miniF2F. These
findings suggest a distribution shift between ProofNet/Mathlib4 and the other datasets.
Specifically, Mathlib4 and ProofNet tend to focus on the manipulation of mathematical
concepts, whereas datasets like miniF2F, Lean Workbook, and NuminaTest contain more
Olympiad-style problems that emphasize complex reasoning over formal mathematical
content. Illustrative examples are provided in Appendix D. Despite the observed distri-
bution shift, we continue to include Mathlib4 in the training set from the sixth iteration
onward, following the approach of DeepSeek-Prover-V1.5-RL (Xin et al., 2024b) and Theo-
remLamma (Wang et al., 2024), with the aim of enhancing the model’s general capability
across a broader range of mathematical domains. Additional training details can be found
in Appendix B.

Alternative approach for data synthesis. In addition to autoformalizing statements and
use the prover to provide proofs, we also explored alternative strategies for constructing
training datasets, focusing on solving difficult problems by a divide-and-conquer strategy.
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Trainine method Pass@32 Pass@3200 Average Average number of
& (minif2f) (minif2f) proof length tactic “try”

SFT 57.5% 62.7% 298 1.50

DPO 60.3% 64.6% 486 10.89

Length-penalized DPO 59.8% 63.1% 308 1.11

GRPO 60.5% 63.1% 355 5.16

Table 5: Models’ behavior under different training methods. RL methods show improvement
on miniF2F at Pass@32, but the improvement at Pass@3200 is limited . Furthermore, RL
models are prone to excessively favor patterns such as try, which also causes the proof
length to increase.

Inspired by Jiang et al. (2022), we implemented the following pipeline: (1) generate a proof
for a formal statement using OpenAl’s ol-preview model, (2) extract a high-level “sketch”
of the proof and (3) apply DeepSeek-Prover-V1.5-RL to prove the subgoals provided by the
sketch. If all the subgoals are successfully completed, we obtain a valid proof for the original
problem. Implementation details are provided in Appendix E. However, this pipeline turned
out to be ineffective in practice. When applied to the miniF2F validation set (244 problems),
it successfully solved only 76 problems—considerably fewer than the 158 problems solvable
by DeepSeek-Prover-V1.5-RL alone. Moreover, out of the 76 problems solved, only one is
not solved by DeepSeek-Prover-V1.5-RL, implying that the marginal gain from this pipeline
is limited.

Exploring DPO and RL training. We further explored DPO and RL training on top of
Goedel-Prover-SFT. We implemented offline Direct Preference Optimization (DPO) (Rafailov
et al., 2023) and online Group Relative Policy Optimization (GRPO) (Shao et al., 2024),
implementation details are provided in Appendix F. Table 5 shows that although DPO
and GRPO improve the model’s Pass@32 performance, the average proof length grows
substantially, and the frequency of certain patterns increases sharply. This phenomenon
indicates that the model is overfitting to some syntactic patterns or “shortcuts”, which is
related to “reward hacking” (Chen et al., 2024). For example, the Lean tactic try allows
trying a tactic and continuing execution regardless of whether it works or not. Although
often harmless—and occasionally useful—its overuse can lead to ineffective proofs and
substantial verification costs. The RL-trained model begins to excessively favor this pattern,
ultimately impairing its reasoning and generalization capabilities.

Further experiments show that adding a length penalty during DPO training helps reduce
this overfitting. However, we observe that scaling up inference-time compute yields sig-
nificantly smaller gains for models fine-tuned with either GRPO or length-penalized DPO,
compared to the SFT model. As shown in Table 5, these models achieve a 3% improvement
over Goedel-Prover-SFT on Pass@32, but this gain diminishes when increasing inference-
time compute—for example, at Pass@3200. This indicates that RL training may reduce
output diversity, leading to less efficient inference-time scaling.

5 Related Work

Automated theorem proving. Automated theorem proving (ATP) is a long-standing
problem in symbolic Al (Robinson & Voronkov, 2001). Traditional approaches represent
theorems in first-order logic and prove them using decision procedures (De Moura & Bjerner,
2008; Barbosa et al., 2022) and search (Kovéacs & Voronkov, 2013; Schulz et al., 2019). The
proof search has been enhanced by replacing handcrafted heuristics with machine learning
techniques (Urban et al., 2011; Kaliszyk et al., 2018). However, approaches based on first-
order logic struggle to scale to complex theorems and often do not yield human-readable
proofs.

In recent years, learning-based theorem proving has undergone a significant transformation.
A notable approach, introduced by Polu & Sutskever (2020), involves leveraging large
language models to assist in theorem proving with proof assistants such as Lean (De Moura



Published as a conference paper at COLM 2025

et al., 2015; Moura & Ullrich, 2021) and Isabelle (Paulson, 1994). Follow-up research has
explored various avenues, such as retrieving useful lemmas (Irving et al., 2016; Mikula et al.,
2024; Yang et al., 2024b), utilizing Monte Carlo tree search for proof discovery (Lample et al.,
2022), and harnessing the capabilities of large language models (LLMs) for natural language
reasoning (Jiang et al., 2022; Lin et al., 2024). Notably, Polu et al. (2023) was the first to
apply expert iteration (Anthony et al., 2017) to theorem proving. This method alternates
between two phases: (1) attempting to prove unsolved theorems and (2) enhancing the
prover by incorporating newly discovered proofs into its training data. Expert iteration
has yielded significant improvements in several recent provers (Wu et al., 2024; Xin et al.,
2024b), including our Goedel-Prover.

Most automated theorem provers operate in a stepwise manner, generating individual proof
steps that are then assembled into complete proofs using proof search algorithms. Recently,
researchers have shown that generating entire proofs is feasible (First et al., 2023; Xin et al.,
2024a; Wang et al., 2024). This approach avoids the costly search process, resulting in lower
latency and potentially offering a more efficient use of computational resources during
testing. While Goedel-Prover also generates whole proofs, our data and methodology can,
in principle, be adapted to develop stepwise provers as well.

Autoformalization and synthetic data generation. The shortage of high-quality formal
mathematical data poses a significant bottleneck in training theorem-proving models.
While techniques like reinforcement learning may reduce the reliance on human-written
proofs (Google DeepMind, 2024), there remains a need for a substantial number of formal
theorem statements. A promising approach is to synthesize formal statements through
autoformalization, where large language models (LLMs) translate informal mathematical
statements into formal ones (Wu et al., 2022; 2024; Xin et al., 2024a;b).

DeepSeek-Prover (Xin et al., 2024a) and InternLM2.5-StepProver (Wu et al., 2024) have
successfully implemented this strategy to formalize a large volume of statements into Lean
for expert iteration. We adopt a similar approach. The difference is: while Liu et al. (2024)
focuses on formalizing their internal dataset, we concentrate on formalizing the Numina
dataset (Li et al., 2024a) alongside a privately collected dataset. Additionally, we train two
formalizers to enhance the diversity of formalization styles, which we demonstrate to be
beneficial in Section 3.

6 Conclusion and Discussion

We introduced Goedel-Prover, a new state-of-the-art open-source model for automated
theorem proving. Our main contribution is a method to overcome the prevalent issue of
data scarcity. By autoformalizing natural language problems and applying expert iteration,
we created a massive dataset of over 800,000 formal statements with verified proofs. Our
model, trained via supervised fine-tuning (SFT) on this data, achieves a 57.6% Pass@32
success rate on miniF2F, surpassing the previous leader by 7.6%, and ranks first on the
PutnamBench leaderboard. We are open-sourcing our models, code, datasets, and the 29.7K
new proofs we found for the Lean Workbook to spur further research.

While we explored reinforcement learning based algorithms (DPO/RL), we found that these
methods, despite initial gains, encouraged “reward hacking” (e.g., overfitting to shortcuts
like the try tactic) and scaled poorly with increased inference compute. This underscores
the robustness of our SFT approach on large-scale, high-quality data.

Future work can build on this strong foundation by incorporating online interaction with
the proof assistant for dynamic proof generation, by integrating external symbolic tools
like SymPy to handle complex calculations, and by incorporating O1 (Jaech et al., 2024) /R1-
like (Guo et al., 2025) long chain-of-thought capabilities to enhance the model’s multi-step
reasoning abilities when tackling complex theorems. By making our entire pipeline public,
we aim to provide a powerful new resource to accelerate progress in open-source automated
theorem proving. Detailed discussions are provided in Appendix G.
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Appendix

A Statement Formalization Details

A.1 Examples of formalized statements

Table 6 presents two examples in which both Formalizer A and Formalizer B yield reasonable
formalizations. However, our final prover exhibits varying performance on these formalized
statements, highlighting the influence of formalization style on model effectiveness.

Example 1 Example 2
Informal The function f(x) = 2/ +3x2 4+ | If x and log,,x are real
Statement ax + 1 is an even function, then a | numbers and log,,x < 0,
equals a = 0. show that 0 < x < 1.
theorem lwb_style_examplel (a : R) theorem lwb_style_example2
(f : R>R) (x a : R)
(he : ¥V x, f x =2%bs x + 3 ®* x*2 + a * x + 1) (ho : Real.logb 10 x = a)
(ha = ¥V x, f (-x) =fx): (has : a<0) :
FOI'maliZerA a = := by sorry O<xAX<1 := by sorry
Output Pass rate: 14/16 Pass rate: 0/16

def IsEven (f : R»> R) : Prop :=V x, f (-x) = f x

theorem sonnet_style_examplel theorem sonnet_style_example2

(f : R>R) {x a: R}

(h_def : ¥ x, f x = 28(|x|) + 3%xA2 + axx + 1) (h1 : x = 10%a)

(h_even : IsEven f) (h2 : a<0):
Formalizer B (a:R):a=0:= bysorry 0 <xAx<1z:= bysorry
Output Pass rate: 0/16 Pass rate: 5/16

Table 6: Comparison of formalizer outputs for two examples. In Example 1, Formalizer A
defines the “even function” directly by stating f(—x) = f(x). In contrast, Formalizer B first
introduces a function called “IsEven” and then defines the even function using “IsEven”.
Notably, our prover successfully solves the statements provided by Formalizer A but fails
with those from Formalizer B. Example 2 is similar; however, our prover fails to solve the
statement provided by Formalizer A but succeeds with the one from Formalizer B.

A.2 Quality Assessment Details

For the FC test, we use Qwen2.5-72B-Instruct'* with prompt shown in Figure 7. For
each formalized statement, we generate four independent judgments, and the FC score is
calculated as #{“Appropriate” in four Judgments} /4. For example, if the four judgments
produced by Qwen2.5-72B-Instruct include three “Appropriate” and one “Inappropriate”,
the overall FC score is calculated as 0.75. We filter out formalized statements with an FC
score less than 0.5.

For each informal statement in Numina, we generate eight formalized statements from each
formalizer, resulting in 16 formalized statements per problem. Each statement undergoes
the CC and FC Test, and we retain only those valid statements. We then randomly select
one valid statement from each formalizer. For example, if five out of eight statements from
Formalizer A and three from Formalizer B are valid, we randomly choose one from each. If
a formalizer produces no valid statements, we exclude all its statements for that problem.
The statistics for each test conducted on both formalizers are summarized in Table 7.

B Expert Iteration Details

The main training pipeline is illustrated in Section 2.2. When we implement the expert
iteration algorithm, we gradually add the data. From iter-0 to iter-3, we gradually add

14https://huggingface.co/Qwen/QwenZ.5—7ZB—Instruct
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You will receive a math problem consisting of its natural language statement and, in
some cases, a natural language proof or solution, along with its formal statement in
LEAN 4.

Please evaluate whether the formal LEAN statement appropriately translates the natural
language statement based on the following criteria:

1. Key Elements: The problem's essential components are correctly represented in LEAN
code.

2. Mathematical Accuracy: The translation preserves the accuracy of the mathematical
content.

3. Structural Fidelity: The translation aligns closely with the original problem,
maintaining its structure and purpose.

4. Comprehensiveness: All assumptions, conditions, and goals present in the natural
language statement are included in the LEAN translation.

Your answer should be in the following format:
Thought: [Your Answer]

Judgement: [Your Answer, one of {Appropriate, Inappropriate}]

Figure 7: Prompts for Faithfulness and Completeness (FC) Test.

Model \ Pass Formalizer A Formalizer B
CC Test Pass@1 76.74% 88.48%
CC Test Pass@8 95.93% 98.59%
FC Test Pass@1 48.06% 80.42%
FC Test Pass@8 88.01% 97.22%
CC + FC Test | Pass@1 45.72% 76.41%
CC + FC Test | Pass@8 82.33% 95.78%

Table 7: Quality assessment of the formalized statement

the statements formalized by Claude-sonnet-3.5. At iter-3, we train the Formalizer B and
add the formalized statements generated by Formalizer B for iter-4 to iter-6. At iter-7, we
begin to add the statements generated by Formalizer A. We also add Mathlib4 data into the
training dataset for better ProofNet performance when starting from iter-6.

Tteration Statements Training Data
Lean Workbook Formalized | Lean Workbook Solved Formalized Solved Mathlib4
Iter-0 140K 0 20.6K 0 0
Iter-1 140K 140K 20.6K 72.4K 0
Iter-2 140K 270K 23.0K 128.7K 0
Iter-3 140K 270K 24.4K 161.2K 0
Iter-4 140K 882K 25.4K 425.8K 0
Iter-5 140K 882K 27.0K 436.5K 0
Iter-6 140K 882K 27.8K 443.2K 104K
Iter-7 140K 1.64M 28.8K 887.7K 104K
Iter-8 140K 1.64M 29.7K 915.7K 104K
Iter-9 140K 1.64M 30.3K 928.2K 104K

Table 8: Expert iteration details.
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C Analysis of Tactic Usage and Proof Quality

In this section, we provide a detailed analysis of the proofs generated by Goedel-Prover-SFT,
focusing on the diversity of tactics used, the reliance on high-level automation, and overall
proof quality. This analysis studies whether performance improvements of our model
might solely stem from better exploitation of Lean’s built-in automation rather than from
enhanced reasoning capabilities. We compare our model against the DeepSeek-Prover-V1.5-
RL baseline on the miniF2F benchmark.

C.1 Tactic Diversity and Frequency

To understand the strategic differences between the models, we first examine the most
frequently used tactics. Table 9 lists the top 10 tactics for both Goedel-Prover-SFT and
the baseline. Notably, the most used tactic for our model is have, which is crucial for
constructing structured proofs by introducing and proving intermediate lemmas. This
contrasts with the baseline, which most frequently uses norm_num, a powerful but more
opaque automation tactic. This suggests that Goedel-Prover-SFT is not simply overusing
automated tactics but is capable of producing more interpretable and structured proofs.

Rank DeepSeek-Prover-V1.5-RL Goedel-Prover-SFT
Tactic Count % Tactic Count %
1 norm_num 193  18.9% | have 200 16.8%
2 have 121  11.9% | linarith 116  9.7%
3 linarith 94 9.2% | norm_num 9% 8.1%
4 simp 52 51% | simp_all 54  4.5%
5 decide 42 41% | simp 49  41%
6 simp_all 35 34% | only 44 3.7%
7 omega 30 29% | omega 36  3.0%
8 only 30 2.9% | nlinarith 32 2.7%
9 with 25 25% | ring.nf 28  2.4%
10 nlinarith 23 2.3% | Finset 27  2.3%

Table 9: Top 10 most-used tactics on miniF2F for Goedel-Prover-SFT and the baseline.

Furthermore, Table 10 provides a direct comparison of the usage of common high-level
automation tactics. For most of these tactics, Goedel-Prover-SFT either uses them less
frequently or at a similar rate as the baseline. This evidence further supports the conclusion
that our model’s improved performance comes from more nuanced and varied proof
strategies rather than a simple over-reliance on automation.

Tactic DeepSeek-Prover-V1.5-RL Goedel-Prover-SFT
Count % of Proofs Avg per Proof | Count % of Proofs Avg per Proof

aesop 0 0% 0 1 0.7% 0.01
decide 42 8.1% 0.34 21 4.9% 0.15
linarith 94 40.7% 0.76 116 33.1% 0.82
nlinarith 23 13.0% 0.19 32 19.0% 0.23
normnum | 193 46.3% 1.57 96 43.7% 0.68
omega 30 17.1% 0.24 36 20.4% 0.25
ring 11 8.1% 0.09 20 9.9% 0.14
simp 52 30.1% 0.42 49 26.1% 0.35

Table 10: Frequency of common high-level automation tactics used in successful proofs on
miniF2F.
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C.2 Problem Difficulty and Proof Complexity

To assess whether Goedel-Prover-SFT is solving more difficult problems, we analyze the
length of the generated proofs and the number of solved problems from challenging com-
petition sources like AIME and AMC. As shown in Table 11, Goedel-Prover-SFT not only
solves more problems overall but also generates a higher proportion of multi-step proofs
(>3 lines) and solves more problems from the AIME and AMC categories. This indicates
that our model is indeed tackling more complex problems that require deeper reasoning.

Model \ Total Solved 1line 2-3lines >3lines AMC/AIME Solved
DeepSeek-Prover-V1.5-RL 123 6 31 86 15
Goedel-Prover-SFT 142 10 37 95 19

Table 11: Analysis of proof length and problem difficulty on miniF2F.

Finally, we examined the overall diversity of tactics employed by each model, as summarized
in Table 12. Goedel-Prover-SFT utilizes a significantly broader range of unique tactics,
further demonstrating its ability to formulate more varied and sophisticated proof strategies.
This wider tactical repertoire allows it to address a broader spectrum of mathematical
challenges beyond those solvable by a more limited set of automated tactics.

Model | Total Proofs  Total Tactics Used =~ Unique Tactics
DeepSeek-Prover-V1.5-RL 123 1019 112
Goedel-Prover-SFT 142 1190 158

Table 12: Tactic diversity in successful proofs on miniF2F.

D More examples on style difference

D.1 Mathlib4 and miniF2F

We observe a notable difference in the distribution of Mathlib4 compared to that of general
problem-solving benchmarks, such as the widely used miniF2F (Zheng et al., 2021). For
instance, miniF2F largely consist of competition and Olympic-style problems, which require
complex reasoning, while only depending on a relatively small set of elementary facts about
integers, real numbers, counting, and geometry. On the contrary the statements in Mathlib4
focus on the simple manipulation of advanced mathematical concepts. Figure 8 and 9 show
the statement and proof in Mathlib4 and miniF2F respectively. It can be easily seen that
both the statement and proof rely on pre-defined objects. Unlike miniF2F statements, the
example in Figure 8 can not even pass the lean compilation, given that pre-defined objects
are missing.

theorem ndrec_eq_ndrecC : @Acc.ndrec = @Acc.ndrecC := by
funext o r motive intro a t rw [Acc.ndrec, rec_eq_recC, Acc.ndrecC]

Figure 8: A Mathlib4 example which relies on pre-defined objects @Acc.ndrec and
@Acc.ndrecC

D.2 ProofNet and miniF2F

The problems in ProofNet are primarily drawn from undergraduate pure mathematics
textbooks, covering topics such as real and complex analysis, linear algebra, abstract alge-
bra, and topology. These topics largely rely on the abstract and general formulations of
mathematical definitions in Mathlib4 (mathlib4, 2023). We show two examples in Table 13
to illustrate the style difference between ProofNet and miniF2F.
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/-- If $3a + b + ¢ = -3, a+3b+c = 9, a+b+3c = 198, then find $abc$. Show that it is -56.-/
theorem mathd_algebra_338 (abc : R) (ho : 3%xa+b+c==3) (ha : a+3%b+c=9)
(hz :a+b+3%c=19):axbxcs=-56:=by

/-

Given the equations:

1. \(3a + b + c = -3\)

2. \(a +3b+c=29\)

3. \(a + b+ 3c =19\)

'| We need to find the value of \(abc\). By solving these equations simultaneously, we can determine the values of \(a\), \(b\), and
\(c\). Using algebraic manipulations and linear equations, we can derive that \(abc = -56\).
=/

-- We need to solve for a, b, and c using the given equations.
-- We will use linear algebra techniques to solve these equations.
. have hs : a%bxc=-56 := by
-~ We will use nlinarith to solve the system of linear equations derived from the given conditions.
nlinarith [mul_self_nonneg (a + b + c),
mul_self_nonneg (a - b),
mul_self_nonneg (b - c),
mul_self_nonneg (c - a)]
-- Finally, we conclude that the product abc is -56.
i exact hs

Figure 9: A miniF2F example which does not rely on pre-defined objects

Example from ProofNet Example from miniF2F
Informal Prove that no order can be de- | Show that for any natural num-
Statement fined in the complex field that | ber 1, 7 does not divide 2" 4 1.

turns it into an ordered field.

theorem exercise_1_8 :

-3 (r:C=>C>» Prop), theorem imo_1964_p1_2 (n : N)
IsLinearOrder € r := by sorry -7 | 22n+1:=Dby sorry
Formal State-
ment
Comments This problem involves the no- | This problem comes from IMO

tion of order, which is un- | but only involves division.
dergraduate level. Its formal
statement uses the definition
IsLinearOrder in Mathlib4.

Table 13: Comparison of Examples from ProofNet and miniF2F. ProofNet largely relies
on the abstract and general formulations of mathematical results in Mathlib4. In contrast,
miniF2F largely consists of high-school competition and Olympic style problems, which
require complex reasoning.

E Alternative approach for synthesizing data

We also considered other pipeline beyond autoformalizing statement and expert iteration
for collecting proof data. Inspired by Jiang et al. (2022), we implemented the following
pipeline:

Step1. We prompt OpenAl’s ol-preview model to generate a proof for a formal statement.
We ask the model to generate the proof step-by-step, use "have"” tactic to structure the proof.
For each proof step, the subgoal of this step is indicated by "have”, following by proofs for
this subgoal.

Step 2. We remove the proofs for the subgoal provided by ol-preview in each "have"
block (these proofs often involves detailed lean syntax, and is usually incorrect). That
is, we only keep the “sketch” of the proof. We then put this proof sketch into Lean com-
piler, to automatically extract each subgoal and corresponding conditions, to form several
subproblems.

Step 3. We apply DeepSeek-Prover-V1.5-RL to try to proof the subproblems. We try
each subproblem for 32 times. If all subproblems are successfully proved, assembling these
subproofs into the sketch gives us a valid proof for the original problem.
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Figure 10 shows the only problem solved by this pipeline that DeepSeek-Prover-V1.5-RL
does not solve, which is a non trivial problem that requires relatively complex reasoning.
Though this pipeline has shown potential, the efficiency is quite low. Only one additional
problem is proved using this pipeline, among 244 problems in miniF2F validation set.
This might due to the fact that this pipeline is overly complicated, since failure of each
subproblem might lead to the failure for the entire problem.

theorem aimeII_2001_p3 (x : N » Z) (hs : x 1 = 211) (hz : x 2 = 375) (hs : x 3 = 420)
(ha : x4 =523) (he : ¥n25,xn=x(nN-1) -x (n-2) +x (n-3)-x(n-4)):
X 531 + x 753 + x 975 = 898 := by
-- First, compute xs using the recurrence relation
have hs : x 5 = 267 := by
have hs := hs 5 (by norm_num)
simp_all
-- Next, observe that the sequence repeats every 10 terms
-- We will prove that for all n 21, x (n + 10) = x n
have period_10 : ¥ n 2 1, x (n + 10) = x n := by
intro n hn
induction n with
| zero =>
simp_all
succ n ih =>
simp_all [Nat.succ_eq_add_one]
linarith [he 10 (by linarith), he 11 (by linarith), he 12 (by linarith), he 13 (by linarith), he 14 (by linarith),
he 15 (by linarith), he 16 (by linarith), he 17 (by linarith), he 18 (by linarith), he 19 (by linarith)]
-- Compute Xxs31
have x531_eq : x 531 = x 1 := by
simpa [h1, hz, hs, ha, hs, period_10] using (show 531 % 10 = 1 by norm_num)
-- Compute X753
have x753_eq : x 753 = x 3 := by
Tw [show 753 = 10 % 75 + 3 by norm_num]
simp [period_10, hs, hs, hs, h2, hi]
-- Compute Xs7s
have x975_eq : x 975 = x 5 := by
norm_num [period_10, x531_eq, x753_eq]
-- Sum the values
have sum_eq : x 531 + X 753 + x 975 = x 1 + X 3 + X 5 i= by
norm_num [ha, hz, hs, hs, hs, x531_eq, x753_eq, x975_eq]
-- Using the periodicity condition, we simplify the sum to x_1 + x_3 + x_5
linarith [h1, hs, hs]

Figure 10: A non trivial problem solved by the divide-and-conquer pipeline

F RL training details

E1 DPO training

For DPO training, we construct pairwise data on problems with pass ratio in (0, 1/4] (from
previous training dataset). To be specific, for each problem, we do Pass@16, and the pass
ratio (0, 1/4] means we select samples where Goedel-Prover-SFT generates 1-4 correct proofs
within 16 trails. We construct DPO pairs by randomly select a correct proof and wrong proof
from the 16 trials. We sample 508K proved problems from the original dataset, and among
which 30K problems with the aforementioned pass ratio is selected. We use a learning rate

of 5 x 107 and train for two epoches.

Our experiments reveal that through DPO training, the model is easy to learn “shortcuts”.
Figure 11 shows one typical output of the DPO model. It repeatedly use tactics all_goals
and try, which might be shortcuts learned in DPO training. To mitigate the model’s
tendency to produce verbose, lengthy proofs by repeatedly utilizing these shortcuts, we
implement length regularization in our DPO framework. Specifically, when multiple correct
answers are available for a given statement, we select the one with the shortest length. All
other settings remain unchanged from the original DPO implementation.

E2 GRPO training

We collect 80K problem statements whose pass ratio is within (0, 1/2]. We will also explore
different design choices for the included problems in the subsequent discussion. Using
these problem statements, we employed the Goedel-Prover-SFT as our base model and
conducted reinforcement learning (RL) training within the OpenRLHF framework, utilizing
the GRPO algorithm. During the RL training, we generated 16 proofs for each problem and
verified their correctness through compilation. Correct proofs received a reward of +8, while
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theorem mathd_numbertheory_135 (n AB C : N) (he : n =3 A 17 + 3 A 10) (hy : 11 | n + 1)
(hz : [A, B, C].Pairwise (- # +)) (hs : {A, B, C} < Finset.Icc 0 9) (hs : Odd A A Odd C)
(hs : -3 | B) (he : Nat.digits 10 n = [B, A, B, C, C, A, C, B, A]) :
100 * A + 10 * B + C = 129 := by

digits_of_number n = [B, A, B, C, C, A, C, B, A] := by
simpa [Nat.digits_eq_nil_of_1t] using hs
simp at he
have := he
simp_all [Nat.digits_of_1t]
all_goals
try norm_num
try decide
all_goals
try rcases this with (h, h')
try contradiction
all_goals
try linarith
all_goals
try ring_nf at *
all_goals
try ring_nf at *
all_goals
try omega
all_goals
try decide
all_goals
try norm_num

Figure 11: Example of output of DPO model. The model is repeatedly using all_goals and
try.

incorrect proofs received a penalty of -8. We search for the learning rate among 1 x 1072,
5x107%,2 x 1076, and 1 x 10~ and choose the learning rate 5 x 10~%. We explored initial
KL penalty values of 0.03, 0.003, 0.00003, and 0. Our findings indicate that the KL penalty
does not significantly impact training. Consequently, we selected 0.003 as the penalty
weight.We used a batch size of 256 and also tested a batch size of 128, which achieved very
similar performance. After training the RL model for one epoch, we found that increasing
the number of epochs does not enhance the final testing accuracy.

Mismatch between reinforcement learning (RL) reward and test accuracy. Figure 12
plots the average training reward and Pass@16 accuracy across training batches. Notably,
we observe a mismatch between the reward and accuracy trends: while the average reward
continues to increase throughout training, the Pass@16 accuracy plateaus after approxi-
mately 20 training steps. This discrepancy may stem from the misalignment between the
optimization objective and the evaluation metric. GRPO encourages generating successful
proofs more frequently, rewarding higher success rates across samples. In contrast, the
Pass@N metric only considers whether a problem is solved at least once, irrespective of how
many successful attempts occur. As a result, improvements in reward do not necessarily
translate into better Pass@N performance.

Exploration of included prompts for training RL. We previously mentioned that we use
statements with a pass ratio within (0, 1/2] for training the RL model. This selection is based
on the fact that these samples are challenging yet manageable for the current checkpoint.
We also conducted experiments with pass ratios of (0,1/4], (0,3/4], and (0, 1]. Our findings
indicate that balancing the difficulty of the chosen prompts is crucial, and we compared
their performance in terms of final testing results in Table 14.

Exploration on the reward design for timeout samples. Typically, when using the Lean
compiler to verify a Lean proof, we encounter three possible outcomes: successful com-
pilation, failure with returned errors, or a timeout within the predefined time limit. We
experiment with various rewards for the timeout samples, while maintaining a fixed reward
of +8 for correct proofs that compile successfully and -8 for incorrect proofs that fail to
compile. The results in Table 15 demonstrates that setting the reward for timeouts to be the
same as that for failures results in improved performance across these experiments.
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GRPO Training Reward/Accuracy Curves
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Figure 12: This figure illustrates the average reward/accuracy of each batch during GRPO
training. A correct proof corresponds to a reward +8, while failed one has a reward -8.

Prompt Pass Ratio | Prompt Number | mini-F2F Accuracy(%)

0,1/4] 30K 58.2
0,1/2] 62K 60.4
(0,3/4] 115K 59.8

0, 1] (sub-sample) 200K 59.2

Table 14: Results of included different prompts for training RL.

G Discussion

We delve into the characteristics of proofs generated by Goedel-Prover-SFT and discuss
potential directions for improvement, particularly regarding the proof style adopted by the
model, the role of search as well as online interaction in proof generation, and the integration
of external symbolic computation tools such as SymPy.

The Proof Style. We observe that the proofs provided by Goedel-Prover-SFT often rely on
high-level tactics such as nlinarith and simp_all among others. These high-level tactics
handle multiple reasoning steps internally, delegating the resolution of intermediate steps
to their built-in automation. For example, the nlinarith tactic can automatically solve
certain linear and non-linear equalities and inequalities. Figure 13 shows a typical proof
generated by our prover. The first several steps involve only trivial transformations of the
original problem, whereas the final line uses nlinarith to immediately achieve the goal.
Whether this style of proof is sufficient for complex reasoning remains an important area for
exploration.

Search and online interaction. Currently, Goedel-Prover-SFT generates the entire proof
for the problem at once, without receiving further feedback. While our current approach
is appealing in terms of computation, incorporating search and interaction in future work
could enhance performance. For example, once a tactic is generated by our prover, it can
interact with the Lean compiler to receive feedback on how the goal changes after the tactic
is applied. This information can then be utilized in generating the next tactic, potentially
improving the overall proof strategy (Wu et al., 2024).

Timeout Reward | Testing Timeout Ratio  Testing Accuracy

0 4.5% 58.7%
-8 1.7% 60.2%
-16 0.8% 59.2%

Table 15: Investigation on the reward for timeout samples
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theorem lean_workbook_13176 (x y z : R) (hx : x > 0) (hy : y>0) (hz : z>0) (h: x*xy *xz=1) :
1/ (xA2+x+1)+1/ (yr2+y+1)+1/(zA2+z+1)21 :=by

-- Establish that the denominators are positive.

have h1 : @ < x » 2 + x + 1 := by nlinarith

have h2 : 0 <y » 2 +y + 1 := by nlinarith

have h3 : 0 <z 2 2 + z + 1 := by nlinarith

-- Clear the denominators by multiplying through by the product of the denominators.

field_simp [h1, h2, h3]

-- Rewrite the inequality in a form suitable for linear arithmetic.

Tw [le_div_iff (by positivity)]

-- Use linear arithmetic to prove the inequality.

nlinarith [sg_nonneg (x + y + z), sg-nonneg (x - y), sg-nonneg (y - z), sg-nonneg (z - x)]

Figure 13: Example of proof style, where intermediate steps are absorbed in high-level
tactics

SymPy. Future work may aim to leverage other software packages to enhance Lean’s
capabilities. For instance, Lean’s ring tactic can handle algebraic simplifications by applying
axioms such as distributivity, associativity, and commutativity. However, a combination of
tactics is required for non-algebraic transformations of transcendental functions, such as log-
arithmic and trigonometric functions, and other advanced simplifications beyond commuta-
tive rings. We explored using a Python-based computer algebra system, SymPy (Meurer
et al., 2017), to simplify complex expressions in theorem statements and feed the simplified
form into the prover. Specifically, we parse equations of the form A = B within the goals
of Lean theorem statements, construct the SymPy expression A — B, and then apply the
simplify method in Lean. This procedure directly solves 9.4% of miniF2F by simplifying
the statements to 0 = 0. In addition, it solves 0.8% of the problems in miniF2F that were
unsolved by Goedel-Prover-SFT with Pass@32, but did not improve Goedel-Prover-SFT with
Pass@3200. Thus, SymPy simplification is not part of any of our reported results. However,
we think such procedures need further exploration.
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