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Abstract: This study investigated the seeds of algebraic thinking that Kindergarten students use 
when engaging with function tables and graphs. Through interviews with three Kindergarteners, 
we explored how they reasoned about functional relationships. Our results illustrate how the 
Kindergarteners used seeds of algebraic thinking when using function tables and graphs to 
represent and reason about functional relationships. Building on the seeds of algebraic thinking 
and Knowledge in Pieces frameworks, we categorized these seeds as either strategies (classify, 
pair, and compare) or ideas (seeds of covariation). Strategy seeds were goal-oriented, and seeds 
of covariation were elicited without any goal and reflected a broader understanding of change 
between quantities.  
 

Introduction 
In this study, we explored how students worked with functional relationships, representing them through tables 
and graphs. Our work is situated in the broader field of early algebra, as children engaged in algebraic thinking 
practices such as generalizing, representing, justifying, and reasoning with structure and relationships (Blanton et 
al., 2011). The fundamental assumption of early algebra is that engaging students in these practices earlier may 
better prepare them for formal algebra, a course often considered a gatekeeper to higher-level mathematics. Along 
with other researchers (e.g., Carraher & Schliemann, 2007; Stephens et al., 2017), we view functional thinking as 
an important entry point into algebra, offering opportunities to generalize and represent relationships between co-
varying quantities using language, notation, diagrams, tables, and graphs (Stephens et al., 2017).Since we are 
interested in students’ initial understandings, we draw from the seeds of algebraic thinking framework (Levin & 
Walkoe, 2022). The authors suggest that early algebraic ideas form from experience and later develop into more 
formal ones. For instance, children may understand concepts like balance, covariation, and comparison before 
formal instruction (Walkoe et al., 2022). While prior research has identified seeds as foundational resources, it 
has not clearly differentiated between those that are strategies and those that are emerging ideas (Levin & Walkoe, 
2022). We aim to explore these differences in the context of functional thinking. Specifically, we examine how 
Kindergarteners use seeds of algebraic thinking when engaging in the practice of representation through tables 
and function graphs. Our research questions are: What seeds of algebraic thinking do Kindergarten students use 
when working with tables and graphs to represent a functional relationship? What are characteristics of these 
seeds? 
 
Early algebraic thinking 
This study took place in the context of an early algebra classroom teaching experiment (Steffe et al., 2012). We 
define early algebra using Kaput’s (2008) conceptual analysis of algebra and frame it around four fundamental 
thinking practices: (1) generalizing mathematical relationships and structure; (2) representing generalized 
relationships in diverse ways; (3) reasoning with generalized relationships; and (4) justifying generalizations 
(Blanton et al., 2011; Kaput, 2008). In this study, we focus on representing because its role in early algebra 
learning remains relatively underexplored despite being foundational to algebraic thinking. Representing has been 
widely acknowledged as essential to mathematics learning (Goldin, 1998; Kaput, 1998), with significant emphasis 
placed on the importance of representational fluency (Fonger, 2019) and flexibility (Warner et al., 2009). Levin 
and Walkoe (2022) conceptualized the seeds of algebraic thinking framework by drawing on the Knowledge in 
Pieces framework (diSessa, 2018). These seeds are (1) formed in early experience, (2) small in grain size, and (3) 
used across different contexts (Levin & Walkoe, 2022). For instance, according to Walkoe et al. (2022), balance 
is a seed of algebraic thinking that children develop early on while learning to walk, ride a bike, or play on a 
teeter-totter. Balance is (1) formed in early experience, (2) sub-conceptual, and (3) can be applied (productively 
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 and unproductively) across diverse contexts, including algebraic contexts. The authors note that while adding one 
to both sides of an equation to maintain balance is a productive application of the idea, using the “constant 
difference” or “additive strategy” to reason about proportions, such as assuming that two cups of lemon juice to 
three cups of water is the same as three cups of lemon juice to four cups of water because “there is one more cup 
of water than lemon juice,” is an unproductive application of balance. Thus, balance as a seed of algebraic 
thinking is neither right nor wrong but can be used productively or unproductively depending on the context. In 
this study, we provide an in-depth illustration of seeds by showcasing different moments in which students used 
seeds of algebraic thinking to reason with function tables and graphs. The seeds of the algebraic thinking 
framework and Piaget's (1970) view of knowledge construction as emerging through interaction with the 
environment have theoretical similarities. For example, the seed of balance can be seen as an extension of Piaget's 
(1970) observations of children constructing an understanding of equilibrium while interacting with physical 
systems, such as balancing blocks or navigating a seesaw. In addition, Levin and Walkoe (2022) note that seeds 
can be formed through repeated experience in the world, which is one way that  Piaget describes the mental 
process of reflective abstraction (Ellis et al., 2024). Prior works have identified seeds of algebraic thinking, such 
as covariation schemes (Levin, 2018); replacement, inbetweeness, and closing-in (Levin & Walkoe, 2022); 
balance, boundedness, comparing (Walkoe et al., 2022), and sameness (Kieran & Martínez-Hernández, 2022). 
Some seeds, such as closing-in and comparing, can be described as actions, whereas seeds such as replacement, 
inbetweeness, and covariation can be characterized as ideas. Levin and Walkoe (2022) highlight the existence of 
this heterogeneity by explaining that a seed such as closing-in is a strategy that one uses which elicits the idea of 
inbetweeness where the latter can emerge without a specific goal. 
 
Method 
This paper reports on one part of a more extensive study on students’ understandings and uses of representations. 
The study took place at an elementary school in the Northeastern United States in a classroom of 17 Kindergarten 
students (ages 5-6). The school serves a demographically diverse population, with 68% minority (non-white) 
students, 16.3% of the students below the poverty level, and 35% English Language Learners. In the larger study, 
we taught fourteen weekly lessons: seven on generalized arithmetic and seven on functional thinking. A teacher-
researcher led the lessons and received occasional aid from the classroom teacher. Each lesson lasted 
approximately 30 minutes. We also conducted three individual interviews with three Kindergarten students before, 
during, and after the lessons. In this paper, we focus on the individual interviews. The seeds we illustrate in the 
results section are from the second and third interviews, where we asked Kindergarteners to represent the 
relationship 𝑦𝑦 = 2𝑥𝑥 using function tables and graphs. In the second interview, we asked the Kindergarteners about 
the relationship between the number of birds and bird wings. We gave them a preconstructed table and then asked 
them to interpret the information. We asked them about the different parts of the table, such as the headings, what 
each number represented, and the meaning of each column and row. Later, we asked the Kindergarteners to 
explore the relationship by having them identify and describe patterns, consider if these patterns would always 
hold, and use the table to examine how changes in one quantity affected the other. We began the third interview 
by asking the Kindergarteners to work with the same table as the second interview, and then we presented a graph 
of the relationship. We wanted the Kindergarteners to interpret the points that showed the number of birds and 
bird wings in a Cartesian graph. Two team members reviewed the interview transcripts alongside the video, 
checking for accuracy and adding information about gestures and notations made by the students. After multiple 
reviews by two team members, we identified seeds of algebraic thinking when we observed evidence of students' 
utterances and written work that were characteristic of the three attributes of seeds (i.e., (1) formed in early 
experience, (2) small in grain size, and (3) applicable in different contexts). We inferred that the student used a 
seed based on what they did (i.e., what they wrote or gestured) and said and asked ourselves, “Is this way of 
thinking formed early in experience, small in grain size, and can it be applied in other contexts? For example, we 
inferred the student was using a seed of covariation when they described a relationship between the number of 
birds and the number of bird wings, “as they get smaller, they get bigger.” The team collaboratively and iteratively 
reviewed the interview transcripts, until no new instances of seeds of algebraic thinking were identified. Some of 
our observations aligned with existing literature on seeds that students use in algebraic contexts and students’ 
understandings of mathematical representations. If that was the case, we used the same language used by those 
researchers to be explicit about the similarities between our observations and prior research. Otherwise, we 
described our findings using language that best captured the characteristics of the seed. To distinguish between 
ideas and strategies, we examined whether the seed was task-oriented and classified it as a strategy or represented 
a broader conceptual understanding and classified it as an idea. We coded students’ utterances with the seed’s 
name when we identified a seed. Once we coded the interview transcripts, we reviewed the coded utterances. We 
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 then selected those that best exemplified a student using a seed of algebraic thinking to reason with tables and 
graphs.  
 
Results 
We identified four types of seeds of algebraic thinking in our analysis: compare, pair, classify, and seeds of 
covariation. Compare, pair, and classify are strategies formed in early everyday experiences. These strategies 
helped students make sense of quantities and relationships in tables and graphs. In contrast, covariation is an idea, 
an intuitive understanding that changes in one quantity correspond to changes in another, such as recognizing that 
more birds mean more wings. Each seed was observed in table and graph contexts, offering insight into how 
Kindergarteners used them to interpret and represent functional relationships. In the following sections, we present 
some examples to illustrate how three students, Zoe, Alice, and Liam, used the different seeds of algebraic 
thinking. These seeds were not used in isolation; we observed Kindergarteners use more than one seed in any 
given task, but to clarify, we describe each seed separately. While we observed students using these seeds in both 
tables and graphs, we do not illustrate every instance in this paper due to space limitations. 
 
Compare 
Students compared when determining whether two or more values were greater than, less than, or equal to another 
value. This strategy revealed the Kindergarteners’ ability to identify differences or similarities and establish 
relationships between quantities. For example, when the interviewer asked Zoe about what the different parts of 
the graphs meant in the third interview, Zoe suggested comparing the two axes, “This one (points to the y-axis) 
has a bigger number than the last one. This one (points to the x-axis) has a little number in the last one.” Here, 
Zoe compared to evaluate the relative sizes of the values along the y-axis and x-axis. By comparing the “bigger” 
and “little” numbers, we infer that Zoe began to understand that each axis accounted for a different quantity.  
 
Pair 
We observed students pairing when they connected or grouped two related items, such as numerical values or 
corresponding elements in tables and graphs. For example, when Alice was asked what the points in the graph 
represented, she said that they matched the numbers in the y-axis while making lines that connected the point to 
the number (see Figure 1), “This dot (1, 2) is matching to the two. This one (2, 4) is matching to the four. This 
one (3, 6) is matching to the six. This one (4, 8) is matching to the eight.” In this case, Alice was pairing each 
point on the graph with a corresponding value on the y-axis. For her, the points are not isolated data markers but 
are understood as connected to numerical values on the y-axis. By drawing lines from each point to the 
corresponding number on the y-axis, Alice visually reinforced the connection, which she used to interpret the 
graph's points. 

 Figure 1 
                                           Alice pairing the points with the numbers in the y-axis  

 
Classify 
Students classified when they were working with the function table. For example, in the second interview, Alice 
classified the quantities in the table into two groups: birds and bird wings. When asked, “What’s it showing us?” 
Alice responded, “It is showing us one, two; two, four; three, six; four, eight.” The interviewer followed up, “One 
what?” to which Alice replied, “One bird. Two bird. Another two birds. Four birds.” The interviewer then pointed 
to the label “number of birds” and the column for “number of bird wings” and asked, “What do you think these 
numbers show us?” Alice answered, “How many wings there are.” When asked whether the numbers in the bird 
wings column were wings or birds, Alice confidently replied, “Wings.” The interviewer then asked, “Then what 
is this now? These numbers?” while pointing to the birds column. Alice responded, “Birds.” To clarify, the 
interviewer said, “Birds. So the left side is birds and the right side is wings?” Alice corrected, “Actually I said this 
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 one is birds” (pointing to the wings column) “and this one is wings” (pointing to the birds column). Even though 
Alice did not correctly identify which numbers referred to which group, she still classified to distinguish between 
two groups. This example shows how the table’s labels prompted Alice to classify the quantities. The table’s 
structure, with distinct columns for birds and wings, provided a visual prompt for Alice to classify according to 
their respective categories.                                               
 
Seeds of covariation 
Seeds of covariation were elicited when we asked the students to articulate the relationship between the number 
of birds and bird wings. For example, in the third interview, we saw Liam elicit a seed of covariation when he 
noticed that the number of bird wings was increasing while working with the graph. Referring to the point (1, 2), 
Liam remarked, “This means little goes to bigger.” When prompted to explain, he continued, “Did you know this 
little number—it makes a bigger number?” He elaborated by pointing to the number 2 on the y-axis and said, 
“Like, this gets a bigger number.” When asked if the numbers on the y-axis were getting bigger, Liam confirmed, 
“Yeah.” His observations in the graph context were tied to one variable, and his comment “little goes to bigger” 
explicitly pointed out how the bird wings increased with each point. 
 
Discussion and conclusion 
We observed students use five seeds of algebraic thinking, which we categorize into two types: strategies and 
ideas. These seeds align with Piaget’s (1970) framing of knowledge as constructed through action and interaction 
with the environment. Seeds such as classify, pair, and compare closely resemble core concepts and descriptions 
in Piaget’s theory of development. For instance, classifying aligns with Piaget’s (1970) observations of children 
sorting objects based on shared attributes. Regarding strategies, we observed that Kindergarteners used the 
classify, pair, and compare seeds to answer questions regarding both tables and function graphs. Our results 
indicate that strategy seeds such as classify, pair, and compare are foundational, goal-oriented actions that young 
learners employ to navigate early algebra tasks that involve the practice of representing (Blanton et al., 2011). 
These seeds are characterized by being goal-oriented because students use them to complete immediate objectives 
within the given context. For instance, when pairing, students connected values across representations. In one 
example, Alice paired points on a graph with their corresponding y-axis values by drawing lines, stating that each 
point “matched” to a specific number on the y-axis. This action allowed her to focus on linking elements directly 
related to the task at hand, supporting her understanding of the representation through a goal-oriented approach. 
We believe this may be a seed associated with a multiplicative object; a concept initially introduced by Piaget 
(1970) and then later developed in the context of functional relationships (Thompson & Carlson, 2017). While 
strategy seeds like pair are formed through early experiences and can be flexibly applied across various contexts 
(Levin & Walkoe, 2022), their goal-oriented nature lies in how students activate them to address a particular task's 
demands. In our study, strategy seeds enabled students to engage with representations. This goal-oriented 
application is a key characteristic of strategy seeds, highlighting their role in supporting students’ problem-solving 
processes within specific contexts. The other seeds we observed were seeds of covariation (Levin & Walkoe, 
2022). Unlike the strategy seeds we described, the seeds of covariation were not goal-oriented actions to complete 
a specific task. Instead, they represented an idea that the students elicited when engaging with the function tables 
and graphs while interacting with the interviewer. Covariation seeds are foundational ideas that can be connected 
to more formal covariational reasoning (Carlson et al., 2002) and functional thinking (Stephens et al., 2017). Our 
study explored the seeds of algebraic thinking that Kindergarteners used when working with tables and graphs to 
represent a functional relationship. In response to our first research question, we identified that Kindergarten 
students employ both strategies (i.e., classify, pair, and compare) and ideas (i.e., “y becomes bigger”). Regarding 
the nature of the seeds, strategy seeds allowed students to navigate specific tasks, while seeds of covariation were 
elicited without a specific goal. Strategy seeds were often task-specific, helping students address immediate 
objectives. In contrast, the seeds of covariation reflected an idea that transcended the immediate goal of solving 
the task (e.g., interpreting a row in a table). In future studies, we plan to explore students’ use of compare, classify, 
pair seeds and seeds of covariation, including the design of different tasks which would elicit the same seeds with 
varying contexts. Specifically, we might relate students’ use of compare, classify, and pair to their foundational 
ideas of covariation, similar to how Levin and Walkoe (2022) describe closing-in evoking boundedness. 
Examining the interplay between strategies and ideas and better understanding the role of context could deepen 
our understanding of how young learners’ early algebraic reasoning develops. 
 
 
 

ICLS 2025 Proceedings 1303 © ISLS



 

 References 
Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. 

Cai, E. Knuth (Eds) Early algebraization: A global dialogue from multiple perspectives.  
Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development of children's 

algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for 
Research in Mathematics Education, 46(1), 39-87. 

Carraher, D., & Schliemann, A. (2007). Early algebra and algebraic reasoning. Second handbook of research on 
mathematics teaching and learning. 2, 669-705. 

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling 
dynamic events: A framework and a study. Journal for research in mathematics education, 33(5), 352-
378. 

diSessa, A.A. (2018). A Friendly Introduction to “Knowledge in Pieces”: Modeling Types of Knowledge and 
Their Roles in Learning. In: Kaiser, G., Forgasz, H., Graven, M., Kuzniak, A., Simmt, E., Xu, B. (eds) 
Invited Lectures from the 13th International Congress on Mathematical Education. ICME-13 
Monographs. 

Ellis, A., Paoletti, T., Lockwood, E. (2024). Empirical and Reflective Abstraction. In: Dawkins, P.C., Hackenberg, 
A.J., Norton, A. (eds) Piaget’s Genetic Epistemology for Mathematics Education Research. Research in 
Mathematics Education. 169-208 

Fonger, N. L. (2019). Meaningfulness in representational fluency: An analytic lens for students’ creations, 
interpretations, and connections. The Journal of Mathematical Behavior, 54, 100678. 

Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. The Journal of 
Mathematical Behavior, 17(2), 137-165. 
Hamley, H. R. (1934). The Function Concept in School Mathematics. The Mathematical Gazette, 
18(229), 169–179. 
Kaput, J. (1998). Representations, Inscriptions, Descriptions and Learning: A Kaleidoscope of Windows. 
Journal of Mathematical Behavior, 17, 265-261. 

Kaput, J. (2008) What Is Algebra? What Is Algebraic Reasoning? In: Kaput, J.J., Carraher, D.W. and Blanton, 
M.L., (Eds.) Algebra in the Early Grades, Lawrence Erlbaum Associates. 5-17. 

Kieran, C., & Martínez-Hernández, C. (2022). Coordinating invisible and visible sameness within equivalence 
transformations of numerical equalities by 10-to 12-year-olds in their movement from computational to 
structural approaches. ZDM, 54(6), 1215-1227. 

Levin, M. (2018). Conceptual and procedural knowledge during strategy construction: A complex knowledge 
systems perspective. Cognition and Instruction, 36(3), 247-278. 

Levin, M. & Walkoe, J. (2022) Seeds of algebraic thinking: a Knowledge in Pieces perspective on the development 
of algebraic thinking. ZDM Mathematics Education 54, 1303–1314 .  
Piaget, J. (1970). Genetic Epistemology. W. W. Norton & Company, Inc. 
Schwartz, J., & Yerushalmy, M. (1992). Getting students to function in and with algebra. The concept of 
function: Aspects of epistemology and pedagogy, 25, 261-289. 

Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying 
principles and essential elements. In L. Steffe, P. Thompson (Eds.) Handbook of research design in 
mathematics and science education Routledge. 267-306.  

Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Murphy Gardiner, A. (2017). A 
learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 
19(3), 143-166. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking 
mathematically. Compendium for research in mathematics education, 421. 

Walkoe, J., Walton, M., & Levin, M. (2022). Supporting teacher noticing of moments of algebraic potential. 
수학교육학연구, 32(3), 271-286.  

Warner, L. B., Schorr, R. Y., & Davis, G. E. (2009). Flexible use of symbolic tools for problem solving, 
generalization, and explanation. ZDM, 41(5), 663-679. 

 
Acknowledgments 
This research was supported by the National Science Foundation’s DRK-12 Award #2201095. Any opinions, 
findings, conclusions, or recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation. 

ICLS 2025 Proceedings 1304 © ISLS

View publication stats

https://www.researchgate.net/publication/392621046



