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ABSTRACT

Concept bottleneck models (CBM) aim to improve model interpretability by pre-
dicting human level “concepts” in a bottleneck within a deep learning model archi-
tecture. However, how the predicted concepts are used in predicting the target still
either remains black-box or is simplified to maintain interpretability at the cost
of prediction performance. We propose to use Fast Interpretable Greedy Sum-
Trees (FIGS) to obtain Binary Distillation (BD). This new method, called FIGS-
BD, distills a binary-augmented concept-to-target portion of the CBM into an in-
terpretable tree-based model, while maintaining the competitive prediction perfor-
mance of the CBM teacher. FIGS-BD can be used in downstream tasks to explain
and decompose CBM predictions into interpretable binary-concept-interaction at-
tributions and guide adaptive test-time intervention. Across 4 datasets, we demon-
strate that our adaptive test-time intervention identifies key concepts that signifi-
cantly improve performance for realistic human-in-the-loop settings that only al-
low for limited concept interventions. All code is made available on Github. 1

1 INTRODUCTION

Deep learning (DL) has achieved impressive performance in various domains such as computer
vision (CV) and natural language processing (NLP). Despite their success, DL models are often
uninterpretable. Concept bottleneck models (CBMs) (Koh et al., 2020) aim to improve the inter-
pretability of DL models by explaining predictions in terms of human-understandable “concepts”.
CBMs can functionally be decomposed into two models: an input-to-concept model and a concept-
to-target (CTT) model. Prior CBM work typically uses a linear CTT model for interpretability (Koh
et al., 2020; Wong et al., 2021; Ludan et al., 2024). This limits the expressivity of the overall CBM,
hurting downstream performance which instead requires CTT models that can capture more com-
plex relationships between concepts. CBMs, especially with practitioner intervention (i.e., check
correctness and edit prediction if necessary), have the potential to improve the trustworthiness and
usability of models for cases like medical diagnosis (Oikarinen et al., 2023; Yuksekgonul et al.,
2023). However, current concept intervention work does not account for difficulties of interventions
in high pressure environments with practitioners lacking full domain experience: a surprisingly
common scenario where machine learning could be most effectively utilized.

In this work, we address the lack of CTT model interpretability in all concept settings, especially
when using complex models to capture complicated CTT relationships (i.e. NLP). We propose
the distillation of the CTT portion of the CBM (CTT CBM) with an interpretable Fast Greedy
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Sum-Trees (FIGS) model (Tan et al., 2025). This allows human practitioners to understand the
predictions made by the CTT CBM through a sum of contributions depending on interactions of
concepts. The FIGS model, through it’s construction, also adaptively proposes and ranks concepts
that are of highest priority for a practitioner to intervene on. The proposed distillation and adaptive
test-time intervention process is visualized in Figure 1.

Figure 1: The CBM incorrectly identifies “long legs” in the image, perhaps due to the spurious
correlations between water and long legged birds like seagulls. FIGS adaptive test-time intervention
(ATTI) recommends a small number (2) of concepts based on a binarization of predicted concepts
(including “long legs”) to intervene on, which results in the correct prediction.

2 RELATED WORK

2.1 CONCEPT MODELS

To improve model interpretability, models can be bottlenecked on human-level “concepts,” popular-
ized by Koh et al. (2020). The usage of concepts to understand models has expanded to analyzing
models post-hoc (Yuksekgonul et al., 2023), using other models (i.e. LLMs) or adapting models to
iteratively generate and refine concepts for tasks (Oikarinen et al., 2023; Schrodi et al., 2024; Chen
et al., 2019; Li et al., 2024; Ludan et al., 2024). Some concept models further learn soft rules (Ve-
muri et al., 2024) or (decision tree) structures (Nauta et al., 2021), using the predicted concepts to
improve interpretability and practitioner usage. Xu et al. (2024) propose energy based CBMs to
address limitations of CBMs in capturing nonlinear interactions, and similarly recognize the lack of
a principled approach to test-time intervention.

2.2 KNOWLEDGE AND MODEL DISTILLATION

In knowledge and model distillation, introduced by Hinton et al. (2015), a compact student model
is trained on the predictions of a larger, more complex teacher model to improve inference speed,
computation, or even interpretability, while maintaining competitive predictive performance (Jiao
et al., 2020). Having an interpretable model that mimics a complex model through distillation can
increase the trustworthiness of complex models, streamlining their use into real-life environments.

3 FIGS BINARY DISTILLATION – FIGS-BD

We utilize the Fast Interpretable Greedy Sum-Trees (FIGS) algorithm (Tan et al., 2025) to distill
the CTT CBMs. We modify the original FIGS algorithm by restricting the maximum depth of
the trees learned to maintain interpretability and introduce a multi-output variant to distill the
soft-labels (i.e. target logits or probabilities) of CTT CBMs. The FIGS composition of a flexible,
yet upper bounded, number of trees and “rules” is inherently interpretable, and practitioners can
thus understand predictions made by the (CTT) CBM (and the FIGS student model) as a sum of
interactions between concepts. In traditional CBMs, predicted concepts are often logits, which are
highly uninterpretable and bring about unnecessary uncertainty to practitioners. An “on” or “off”
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Figure 2: Effectiveness of adaptive test-time interventions for different concept-to-target models.
Note the x-axis enumerates the number of interactions (of at most 3 concepts) intervened on.

binary representations of concepts alleviates this uncertainty and lack of interpretability. Thus,
we binarize CBM predicted concepts with data-driven (minimize distance between true concepts)
or interpretable (> 0) thresholds, and distill the CTT CBM using these binary concepts, (teacher)
predicted target logits, and FIGS, which we call FIGS-BD.

Why FIGS? Predicting targets from binary concepts constitutes learning a Boolean function
f : {0, 1}d → R. All Boolean functions can be expressed as Fourier series (Spiro, 2016). Learning
this Fourier series exactly requires exponential samples and time; FIGS-BD instead greedily
approximates f by constructing a sum of shallow trees.

4 DATASETS AND TEACHER MODELS

Our experiments contain two tasks: CV and NLP. For CV, we train CBMs (Koh et al., 2020) on
the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) and the TravelingBirds (Koh
et al., 2020) dataset, which is a variant of CUB where the image backgrounds associated with each
bird class are changed from train to test time. CUB and TravelingBirds both pose as challenging
prediction tasks with a high number of classes, while TravelingBirds also showcases a distribution
shift from train to test time. For NLP, we train LLM-based Text Bottleneck Models (TBMs) * (Lu-
dan et al., 2024) on the AGNews topic classification dataset (Zhang et al., 2015) and the CEBaB
restaurant reviews (Abraham et al., 2022) dataset (regression task). These two datasets are deemed
to have complicated concept interactions in nature that could not be captured in previous TBM work
with a linear CTT model (Ludan et al., 2024). More details of experiments are in Appendix A.1.

5 DISTILLATION AND PREDICTION PERFORMANCE

Table 1 displays the best test performing CBM/TBM models (with CTT model specified), as well
as FIGS and XGBoost (Chen & Guestrin, 2016) student models’ test prediction performance on
the CUB, TravelingBirds, AGNews, and CEBaB datasets. A complete table, with other compara-
tive baselines (decision tree and random forest), is in Appendix A.3. Depending on the dataset, the
relationship between concept and target can either be very simple or very complex. CUB and Trav-
elingBirds have a fairly linear CTT relationship. For AGNews and CEBaB, complex Transformer
models capture the CTT relationship the best, necessitating distillation to improve interpretability
and prediction understanding. As evident in the small difference between teacher and student model
prediction performance, FIGS-BD is distilling effectively, even in out-of-sample data. FIGS-BD
achieves over 92.5 % of the performance of its teacher CBM on the test sets of all surveyed datasets,
while generalizing better than the original CBM in some cases (CEBaB). FIGS-BD performs closely
with XGBoost in the CUB and CEBaB datasets, and even outperforms XGBoost in the AGNews and
TravelingBirds datasets despite being smaller (significantly less rules) and more interpretable (XG-
Boost fits a separate model for each class, while FIGS-BD fits a single multi-output model).

*Following the definition in Section 1, a TBM is also a CBM. However we refer to the models used in the
NLP tasks as TBMs in the following sections to differentiate from the CBMs used in the CV tasks.
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Table 1: Best CBM/TBM test prediction performance with FIGS-BD and XGBoost student models
across the 4 datasets. “Teacher Pred” and “Student Pred” denote teacher and student test prediction
performance, respectively.

Dataset Teacher Student Teacher Pred Student Pred

CUB (Acc %) CBM Linear FIGS-BD 79.8 75.9
- XGBoost - 75.9

TravelingBirds (Acc %) CBM Linear FIGS-BD 51.8 47.9
- XGBoost - 47.7

AGNews (Acc %) TBM Transformer FIGS-BD 89.6 88.8
- XGBoost - 88.0

CEBaB (R-squared) TBM Transformer FIGS-BD 0.868 0.871
- XGBoost - 0.877

6 ADAPTIVE TEST-TIME INTERVENTION USING FIGS-BD

Figure 3: Performance of CBM linear with adaptive test-time interventions for concepts suggested
by different CTT models. FIGS ATTI greatly out-performs Linear ATTI.

In high-stakes environments (e.g., emergency rooms), practitioners cannot intervene across all con-
cepts but rather can only do so for a limited number of concepts. In such scenarios, identifying an
important ranking of concepts is crucial for accurate prediction. In this subsection, we consider the
task: adaptive test-time intervention (ATTI) in which a human is allowed to intervene on a small
number of concepts for a given test-example. We show how FIGS-BD can be used to adaptively
rank the most important concepts for a human to validate before prediction.

We propose constructing a sample-specific ranking of concepts based on the highest variance of
absolute predictions (across the target dimension) path, from where the concepts are identified, that
the sample falls down. Algorithm 1 describes this process in pseudo code. Similarly, for linear
CTT portions, we propose ranking concepts based on the highest variation of absolute values of the
product of fitted coefficients and predicted concept values. We believe that higher variance (across
the target dimension) represents “volatile” contributions that are the most important to intervene on.
More details can be found in Appendix A.2.

Quantitative prediction improvement on CUB and TravelingBirds We conduct an experiment
where a practitioner is allowed to intervene on the top↑k interactions of concepts for a test sample
recommended by various TTI methods. We consider top concepts recommended by FIGS-BD, a
linear CTT, as well as random selection. We plot the results in Figure 3. FIGS identifies concepts
that are much more relevant for making a correct prediction, indicating its utility in identifying
relevant concepts for humans to validate.

Additionally, we conduct an ablation study comparing the original linear CTT model (CBM Lin-
ear) with linear ATTIs and the FIGS-BD CTT model (CBM FIGS) with FIGS ATTIs. We plot the
results in Figure 2. The FIGS-BD CTT model quickly surpasses the linear with a practitioner’s
interventions, reaching drastically higher test accuracy %s with a moderate to large number of in-
terventions. Specifically, in as few as 3 and 1 interaction interventions for CUB and TravelingBirds,
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respectively, the FIGS-BD CTTs outperforms linear CTTs. This highlights the impact of editing
with binary values (rather than with predicted training data quantiles) and the effectiveness of FIGS
ATTI. On TravelingBirds, FIGS-BD requires far less interventions (7) to reach the same accuracy
as the maximum intervened on (30) linear model, potentially further disentangling the detrimental
spurious correlation that was propagated into the original linear CTT model.

Figure 4: Left: number of uncorrectable samples of each intervention method. Right: count of
iterations of intervention needed of each method to flip a wrong prediction into a correct one.

Effectiveness for correcting model prediction on AGNews and CEBaB Unlike CUB and Trav-
elingBirds, AGNews and CEBaB lack human-labeled concepts. To address this, we manually anno-
tate a small set of misclassified samples from these datasets with concept labels *. We then evaluate
different intervention methods by measuring how many iterations of interventions it takes to “flip”
an incorrect prediction to a correct one, intervening sequentially via ATTI interactions rankings.

Figure 4 shows results on AGNews and CEBaB (combined) using the linear CTT model with various
ATTI strategies. FIGS ATTI consistently achieves successful flips with fewer iterations compared
to other ATTIs. Moreover, it results in fewer uncorrectable samples (i.e., samples for which all
recommended interventions fail to correct the prediction), and its uncorrectable samples are a strict
subset of those from other methods, indicating that it successfully recovers some cases others cannot.
In contrast, linear ATTI even underperforms random ATTI, suggesting that linear models struggle
to recommend reliable concepts for intervention.

As a case study, we highlight an example from CEBaB where FIGS ATTI was the only method able
to correct the model’s incorrect prediction, requiring just one intervention. The linear CTT model
initially misclassified the review "My dining experience was one of the best.

The food and service was outstanding. Everyone was very friendly

just could have turned down the volume of the music a little." with
a rating of 5 instead of the ground-truth rating of 4. The model overemphasized the concept
"Customer Expectations", which was not present in the review. FIGS ATTI correctly
identified "Customer Expectations", "Overall Satisfaction", and "Service

Quality" as the most critical concepts for intervention, enabling a human to downweight the
erroneous concept and produce the correct rating. In contrast, the other methods failed to surface
this issue in their recommended interactions. In short, FIGS-BD ATTI’s superior performance
results from its ability to identify concept interactions are crucial in determining between two
competing classes effectively for human intervention.

7 CONCLUSION

In this paper, we propose FIGS-BD: an algorithm to distill binary-augmented concept-to-target por-
tions of CBMs to interpret their predictions as contributions of concept interactions. From the FIGS-
BD student model, we introduce adaptive test-time introduction, which requires CBMs to propose a
small number of concepts to be validated before prediction. FIGS-BD identifies more relevant con-
cepts for accurate prediction. Future work involves extension to post-hoc CBMs, further empirical
evaluation, and counterfactual predictions with FIGS.

*Annotations were performed by three PhD students specializing in statistics or computer science.
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A APPENDIX

A.1 MODEL ARCHITECTURES AND HYPERPARAMETERS

For all datasets and CBM/TBM models, we utilize code and the majority of architectures provided
by the authors of respective papers. For more complex concept-to-target (CTT) portions of the
CBM, we modified provided code and scripts to train and evaluate the model. For FIGS models, we
have contributed to the imodels (Singh et al., 2021) package (specifically, the FIGS implementa-
tion) to restrict the maximum depth of trees, handle multi-output prediction tasks, and create cross
validation (CV) models. We have then adapted that model for ATTIs.

A.1.1 CUB AND TRAVELING BIRDS

The Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) and the TravelingBirds (Koh
et al., 2020) dataset contain n = 11, 788 photos of birds with 200 bird class labels. Every ob-
servation in the dataset comes with human-labelled annotations regarding concepts present in the
image, which facilitates our ATTI experiments. We reduce the number of concepts used in the same
procedure as described in Koh et al. (2020). We utilize the code, instructions, and some trained
models provided by Koh et al. (2020). We modify parts of their Github repository to incorporate
more complex concept-to-target models. Specifically, we include MLP with 1 hidden layer, MLP
with 2 hidden layers, and a simple Transformer model (encoder-only). All MLPs have the same hid-
den size, set to be 250 for CUB and TravelingBirds. The Transformer model utilizes multi-headed
attention (Vaswani et al., 2023) with 4 heads, a MLP with 1 hidden layer of hidden size 250, and
then a linear classifier layer. For the input-to-concept portion of the CBM, we utilize the Inception
V3 (Szegedy et al., 2015) model, and for the overall model, utilize the overall Joint training process
with ω = 0.01. All hyperparameters regarding training are the same as in Koh et al. (2020). Due
to the complicated 200 class prediction task posed by CUB and TravelingBirds, we utilize a FIGS
CV model to determine the hyperparameters that result in the strongest FIGS-BD model. We use an
interpretable rule of > 0 (anpositive concept prediction results in 1, negative results in 0) to binarize
concept features before FIGS distillation. We search over [125, 200] rules, [30, 40] trees, and [3, 4]
max depth. For CV results in Table 1, the post cross-validation fitted FIGS-BD model results in 200
rules, 30 trees, and max depth of 3 for both CUB and TravelingBirds.
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A.1.2 AGNEWS AND CEBAB

AGNews contains n = 7, 600 news articles and 4 class labels (world, sports, business, and sci/tech)
for news topic classification. CEBaB contains n = 1, 713 restaurant views and their corresponding
ratings (1-5) from customers as labels, and we formulate it as a regression task. For both datasets, we
randomly split them into n = 1, 500 train set and n = 250 test set for training and evaluation. To be
comparable to the original TBM (Ludan et al., 2024) paper, we use GPT-4 (GPT-4-0613) (Ope-
nAI et al., 2024) as the underlying LLM for concept generation and concept measurement in the
input-to-concept portion of the TBMs. The original TBM code uses Scikit-learn (Pedregosa et al.,
2011) for training linear regression (regression task) and logistic regression (classification task) for
the concept-to-target portions of the TBMs. We modify parts of their code to incorporate more
complex concept-to-target models. Specifically we include MLP with 1 hidden layer, MLP with 2
hidden layers, and a simple Transformer model (encoder-only). All MLPs have the same size set
to be 50 for both AGNews and CEBaB datasets. The Transformer model utilizes two blocks of
multi-headed attention (4 heads) + MLP with 1 hidden layer (hidden size 52) module, and then a
linear classifier layer. All hyperparameters regarding training are the same as in Ludan et al. (2024),
except for the refinement trial size, which we set to be 500 for training the more complicated CTT
models (MLPs and the simple transformer). We use one-hot-encoding to binarize concept features
before FIGS distillation. We search over [100, 200, 250] rules, [20, 30, 50] trees, and [3, 4] max
depth. For the NLP results in Table 1, the post cross-validation fitted FIGS-BD model results in 154
rules, 50 trees, and max depth of 3 for both CEBaB and AGNews.

A.2 ADAPTIVE TTI INTERVENTIONS

Algorithm 1 FIGS-BD ATTI algorithm
1: FIGSBD ATTI(fFIGS: FIGS-BD model, x: Rnconcepts )
2: all trees = trees(fFIGS)
3: tree predictions = []
4: tree paths = []
5: for tree in all trees do

6: tree prediction.append(tree.predict(x))
7: tree paths.append(pathtree(x))
8: end for

9: predictions and paths = zip(tree predictions, tree paths)
10: rankings = sort(predictions and paths, lambda xpred : var(|xpred|) or max(|xpred|)))
11: return rankings

FIGS-BD ranks interactions of concepts that are embedded in the structure of its collection of
trees. The ranking procedure is described in pseudo code in Algorithm 1. Thus, every set or
interaction of concepts to be intervened on in Figure 3 are of size maximum depth of grown tree.
Note that this is not always equal to the maximum depth hyperparameter of the model, as the FIGS
model does not have to grow to full depth. Additionally, concepts are re-used in some learned
interactions, so intervention is not as effective after many interventions have occurred (and are thus
the most impactful for the earlier sets of interactions intervened on). For each observation, these
interactions of varying size are ranked based on a heuristic function (variance of absolute value
of multi-output prediction and maximum of absolute value for 1-dimensional output prediction).
For random ATTI, we randomly choose concepts without replacement and group/parse them of
corresponding size to every FIGS ATTI to make them comparable to FIGS ATTI. For linear ATTI,
we rank the nconcepts concepts based on variance of absolute value of product of concept prediction
and concept coefficient, and group/parse them of corresponding size to every FIGS ATTI to make
them comparable to FIGS ATTI. Note that when talking about variance, we refer to the variance of
predictions across the multi-output target dimension.

For all of our experiments, the best FIGS-BD student models grow to depths of 3, which
means that the maximum size of every interaction or cluster of concepts intervened on is 3.

For CUB and TravelingBirds, as done by Koh et al. (2020) for interventions, we replace the
predicted concept values with the 5th quantile and 95th quantile of the predicted concept in the
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training data if the true concept is 0 and 1 for the original CBM (linear CTT), respectively. This
is denoted as “map” in Figure 1. This can result in prediction performance degrading as replacing
predicted values for a specific instance with training values, even if the pre-intervention and
post-intervention concept values agree in some way (one could perhaps argue for equivalence in
sign meaning an agreement, but there is no exact way without uncertainty to determine if a CBM
predicted a concept correctly).

A.3 FULL CBM AND STUDENT MODEL PREDICTION AND DISTILLATION RESULTS

Table 2 contains all teacher and student test prediction performances across a variety of teacher mod-
els and selection of student (regression) models: FIGS, XGBoost (Chen & Guestrin, 2016), Random
Forest (RF) (Breiman, 2001), and Decision Tree (DT) (Breiman et al., 1984). The teacher models
vary in their concept-to-target portion, in which we consider Linear, MLP1, MLP2, and Transformer
concept-to-target models. Note that FIGS-BD was trained using cross-validation, meaning that it is
likely that if the teacher model is more complex, the FIGS-BD student model consists of more trees,
more rules, and more depth. For CUB and TravelingBirds, we restricted XGBoost and RF to 30 trees
(the same amount as the cross-validation-chosen FIGS-BD model). We depth-restricted XGBoost,
RF, and DT to 3 (same as cross-validation chosen FIGS-BD model), 7 or 8, and 7 or 8, respectively,
and chose the best performing model. We choose depth or 7 or 8 because there are 200 classes in the
CUB and TravelingBird tasks, so we need enough expressivity (and leaf nodes: 27 = 128, 28 = 256)
to achieve strong performance. For AGNews and CEBaB, we restricted XGBoost and RF to 50 trees,
and depth-restricted XGBoost, RF, and DT to 3 (same as cross-validation chosen FIGS-BD model),
2 or 3, and 2 or 3, respectively, following the same logic. The results displayed consist of XGBoost,
RF, and DT of depth 3, 8, and 8, respectively for CUB and TravelingBirds, and of depth 3 for all
three models for AGNews and CEBaB.

On all datasets, XGBoost displays strong performance, but we note that XGBoost was not restricted
in terms of number of rules (only restricted in depth and tree) and XGBoost also grows a separate
estimator per class/task, for example, resulting in 30 · 200 = 6000 total trees (for CUB and Travel-
ingBirds) with max depth 3. Thus, XGBoost is highly uninterpretable and grows highly inefficient
and dense trees. On the other hand, FIGS-BD grows sparser and is a number-of-rules restricted
model, consisting of only 30 trees of max depth 3 for CUB and TravelingBirds. RF and DT perform
significantly worse than XGBoost and FIGS-BD, while RF is also highly uninterpretable.
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Table 2: Full CBM (teacher model) and student model test prediction performance across the
datasets. “Teacher Pred” and “Student Pred” denote teacher and student test prediction performance,
respectively. Top prediction performance for each dataset and model role (teacher or student) in
bold. The second-best student performance is underlined. RF and DT denote Random Forest and
Decision Tree, respectively.

Dataset Teacher Student Teacher Pred Student Pred

CUB (Acc %)

CBM Linear FIGS-BD 79.8 75.9

- XGBoost - 75.9

- RF - 64.4
- DT - 50.2
CBM MLP1 FIGS-BD 79.0 73.7
- XGBoost - 74.1

- RF - 65.3
- DT - 51.8
CBM MLP2 FIGS-BD 78.0 72.7
- XGBoost - 74.2

- RF - 65.4
- DT - 48.0
CBM Transformer FIGS-BD 77.4 72.2
- XGBoost - 73.0

- RF - 66.2
- DT - 51.5

TravelingBirds (Acc %)

CBM Linear FIGS-BD 51.8 47.9

- XGBoost - 47.7
- RF - 38.4
- DT - 28.5
CBM MLP1 FIGS-BD 49.2 48.5
- XGBoost - 50.1

- RF - 41.5
- DT - 31.5
CBM MLP2 FIGS-BD 49.6 49.1
- XGBoost - 49.7

- RF - 42.0
- DT - 33.7
CBM Transformer FIGS-BD 47.5 47.1
- XGBoost - 47.2

- RF - 43.4
- DT - 32.2

AGNews (Acc %)

TBM Linear FIGS-BD 84.8 83.2
- XGBoost - 86.8

- RF - 82.8
- DT - 81.2
TBM MLP1 FIGS-BD 84.4 80.8
- XGBoost - 83.6

- RF - 76.4
- DT - 78.8
TBM MLP2 FIGS-BD 80.8 79.2
- XGBoost - 82.0

- RF - 76.8
- DT - 76.8
TBM Transformer FIGS-BD 89.6 88.8

- XGBoost - 88.0
- RF - 83.2
- DT - 83.2

CEBaB (R-squared)

TBM Linear FIGS-BD 0.761 0.797
- XGBoost - 0.804

- RF - 0.784
- DT - 0.785
TBM MLP1 FIGS-BD 0.837 0.873
- XGBoost - 0.882

- RF - 0.864
- DT - 0.863
TBM MLP2 FIGS-BD 0.808 0.833

- XGBoost - 0.833

- RF - 0.813
- DT - 0.812
TBM Transformer FIGS-BD 0.868 0.871
- XGBoost - 0.877

- RF - 0.847
- DT - 0.786

11


