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Abstract

We develop a framework for non-asymptotic anal-
ysis of deterministic samplers used for diffusion
generative modeling. Several recent works have
analyzed stochastic samplers using tools like Gir-
sanov’s theorem and a chain rule variant of the
interpolation argument. Unfortunately, these tech-
niques give vacuous bounds when applied to de-
terministic samplers. We give a new operational
interpretation for deterministic sampling by show-
ing that one step along the probability flow ODE
can be expressed as two steps: 1) a restoration
step that runs gradient ascent on the conditional
log-likelihood at some infinitesimally previous
time, and 2) a degradation step that runs the for-
ward process using noise pointing back towards
the current iterate. This perspective allows us
to extend denoising diffusion implicit models to
general, non-linear forward processes. We then
develop the first polynomial convergence bounds
for these samplers under mild conditions on the
data distribution.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) have emerged as a powerful
framework for generative modeling. One of the core com-
ponents is corrupting samples at different scales, slowly
molding the data into noise. The corruption process, also
known as the forward process, can be fully described by the
intermediate distributions, {qt}t∈[0,T ], it defines. Diffusion
models learn to revert the forward Process by approximating
the score function, i.e. the gradient of the log-likelihood, of
the intermediate distributions qt.
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Once the score function has been learned, one can gener-
ate samples by running the reverse stochastic differential
equation (SDE) associated with the forward Process (Ander-
son, 1982; Song et al., 2020). In practice however, one can
only run a suitable discretization of the SDE, and due to the
recursive nature of the sampling procedure, the discretiza-
tion error from previous steps can accumulate, leading to
sampling drift away from the true reverse process. Other
sources of error come from the approximation error in es-
timating the score (Sehwag et al., 2022; Ho et al., 2020;
Nichol & Dhariwal, 2021) and from the starting distribution.
Controlling the propagation of errors in the reverse SDE
has been studied in the recent works of Block et al. (2022);
De Bortoli et al. (2021); De Bortoli (2022); Liu et al. (2022);
Lee et al. (2022a); Pidstrigach (2022); Lee et al. (2022b);
Chen et al. (2022a;b).

A second family of sampling methods is that of deterministic
samplers. These samplers can be derived by deterministic
ODE processes that satisfy the same Fokker-Planck equa-
tions (and hence have the same marginals) as the reverse
SDE (Song et al., 2020). A different work, DDIM (Song
et al., 2021), derives deterministic samplers by considering
a non-Markovian diffusion process that leads to the same
training objective, but a different reverse process. The two
formulations turn out to be equivalent up to a reparametriza-
tion of the probability flow ODE (Song et al., 2020; Karras
et al., 2022). DDIM samplers can be interpreted as iterating
a combination of two steps: a restoration step that recovers
some rough final reconstruction of the current iterate at time
t, and a degradation step that corrupts this rough estimate to
time t + h. This interpretation allowed the generalization
of DDIM to general linear diffusions (Zhang et al., 2022;
Daras et al., 2022b; Bansal et al., 2022; Zhang et al., 2022).

While stochastic samplers are typically state-of-the-art for
image-generation, they require a large number of function
evaluations which makes them impractical for many appli-
cations. The gap between sample quality for deterministic
and stochastic samplers has been significantly narrowed in
the recent work of Karras et al. (2022). Deterministic sam-
plers are typically much faster (Song et al., 2021; Nichol
& Dhariwal, 2021) and also useful for computing likeli-
hoods (Ho et al., 2020; Song et al., 2020). Further, one of
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the most successful techniques for accelerating diffusion
models, Progressive Distillation (Salimans & Ho, 2022),
requires deterministic samplers. Finally, deterministic sam-
plers allow the exploration of the semantic latent space of
the trained network (Kwon et al., 2022).

Despite their significance, there is currently limited theoreti-
cal understanding for deterministic samplers. Specifically,
there is no analysis for their non-asymptotic convergence be-
havior, in contrast to stochastic samplers. The ODE analysis
is challenging because Girsanov’s theorem– the main tool
for bounding the propagation of errors when implementing
the reverse SDE– and related techniques all yield vacuous
bounds for deterministic samplers (see Section 5).

Our contributions are twofold. We first propose a new oper-
ational interpretation for the reverse ODE that generalizes
DDIM sampling to arbitrary, non-linear forward processes.

Theorem 1.1 (Informal, see Section 3). Denote by h the
infinitesimally small step size with which we discretize the
probability flow ODE. Let ℓ ∈ N be a parameter for which
ℓ → ∞ and ℓh → 0. For any forward process, running the
probability flow ODE for time h is equivalent to running
the following two steps: 1) restoring the current iterate to
ℓh time steps in the past via a step of gradient ascent on
conditional log-likelihood, 2) degrading this by (ℓ − 1)h
steps by simulating the forward process with noise pointing
in the direction of the current iterate.

We then complement this new asymptotic result with a non-
asymptotic proof that the sampler from this operational
interpretation converges to the true process. This yields a
deterministic sampling analogue of recent non-asymptotic
analyses of stochastic samplers for diffusion models (Chen
et al., 2022b; Lee et al., 2022b; Chen et al., 2022a):

Theorem 1.2 (Informal, see Theorem 4.3). Under mild as-
sumptions on the smoothness of the data distribution (in par-
ticular, the distribution can be arbitrarily non-log-concave),
the deterministic sampler arising from Theorem 1.1 gener-
ates samples for which the KL divergence with respect to
the data distribution is small provided ℓh and ℓ−1 are poly-
nomially small in the dimension and other problem-specific
parameters.

As a corollary, our techniques imply that the same bounds
hold for the Euler discretization of the probability flow ODE,
yielding, to our knowledge, the first non-asymptotic analysis
of this sampler.

2. Preliminaries
In this work we consider a general forward process driven
by a stochastic differential equation (SDE) of the form:

dxt = ft(xt) dt+ g(t) dWt, x0 ∼ q .

where (Wt) is a standard Brownian motion in Rd. Let qt
denote the law of xt, so that q0 = q.

Suppose we run the forward process up to a terminal time
T > 0. Under mild conditions on the diffusion (see e.g.
(Anderson, 1982; Föllmer, 1985; Cattiaux et al., 2022))
which are satisfied by the processes we consider in this
work, there is a suitable reverse process given by an SDE
such that the marginal distribution at time t is given by qT−t.
For convenience, we will often refer to qT−t as q←t .

In fact, there is an entire family of SDEs with this property.
For any λ > 0, consider the process (x←,λ

t )0≤t≤T given by

dx←,λ
t = −

{
fT−t(x

←,λ
t )

−1 + λ2

2
g(T − t)2∇ ln q←t (x←,λ

t )
}
dt

+λg(T − t)dWt , x←,λ
0 ∼ q←0 .

By checking the Fokker-Planck equations, one sees that the
marginal distribution of x←,λ

t is indeed given by q←t .

One notable process in this family corresponds to the case of
λ = 0. This is a deterministic process, denoted (x←t )0≤t≤T ,
driven by the probability flow ODE (Song et al., 2020).

dx←t = −{fT−t(x←t )− 1

2
g(T − t)2∇ ln q←t (x←t )} dt ,

with x←0 ∼ q←0 .

In the diffusion model literature, there are two popular
choices of forward process: the variance exploding (VE)
SDE (Song et al., 2020; Song & Ermon, 2019; 2020),

which corresponds to ft(xt) = 0, g(t) =

√
dσ2

t

dt for
some increasing function σ2

t ; and the variance preserv-
ing (VP) SDE (Ho et al., 2020), which corresponds to
ft(xt) = − 1

2βtxt, g(t) =
√
βt for some variance schedule

βt. These two choices are used in state-of-the-art diffu-
sion models (Dhariwal & Nichol, 2021; Kim et al., 2022)
and form the backbone of systems like DALL·E 2 (Ramesh
et al., 2022), Imagen (Saharia et al., 2022), and Stable Dif-
fusion (Rombach et al., 2022).

3. Operational Interpretation for the
probability flow ODE

3.1. Warmup: linear SDEs and DDIM

We begin by recalling the interpretation of the probability
flow ODE associated to the variance exploding (VE) (Song
et al., 2020) SDE as a denoising diffusion implicit model
(DDIM) (Song et al., 2021). For simplicity of exposition,
we specialize to the case of σ2

t = t, which corresponds to
the forward process

dxt = dWt, x0 ∼ q .
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According to (2), the associated probability flow ODE is:

dx←t =
1

2
∇ ln q←t (x←t ) dt, x←t ∼ qT ,

so that the marginal distribution of x←t is q←t for any 0 ≤
t ≤ T . The perspective of DDIM offers an interesting
operational interpretation of (3.1). Fix some infinitesimally
small step size h, and consider the following procedure for
forming x←t+h given x←t . We first produce an estimate for
the beginning x0 of the forward process. Note that

x←t = xT−t = x0 + ε
√
T − t

for ε ∼ N (0, Id), so by Tweedie’s formula (Efron, 2011),
the mean of the posterior distribution over x0 given x←t , i.e.
E[x0|xt], is exactly:

z ≜ E[x0|x←t ] = x←t + (T − t)∇ ln q←t (x←t ) .

Starting from z and degrading it along the forward process
from time 0 to time T − t, we would end up with z +
γ
√
T − t for some Gaussian noise γ ∼ N (0, Id).

Here is the key idea behind DDIMs: suppose we instead
took γ to be the solution to

x←t = z + γ
√
T − t ,

i.e. suppose we took γ to be the “simulated noise” that
would be needed to degrade z into x←t , rather than fresh
Gaussian noise.

Now imagine running the forward process to degrade z
from time 0 to time T − (t + h), but using this simulated
noise γ =

x←t −z√
T−t instead of Gaussian noise. It turns out

that the resulting vector, which we will define x←t+h to be, is
approximately what we would get by running the probability
flow ODE for time h starting at x←t !

Indeed, the result of degrading z in this fashion is

x←t+h = z +
√
T − (t+ h) · x

←
t − z√
T − t

= x←t + (T − t) ·

(
1−

√
1− h

T − t

)
· ∇ ln qT−t(x

←
t ).

As h → 0, x←t+h → x←t + 1
2∇ ln qT−t(x

←
t ) , so the above

interpretation indeed recovers the probability flow ODE
(3.1). The above generalizes without much difficulty to any
linear diffusion (Daras et al., 2022b; Bansal et al., 2022).

3.2. General diffusions

Let us now consider the setting where the forward process is
given by an arbitrary diffusion as in Eq. (2) in Section 2, so
that the associated probability flow ODE is given by Eq. (2).

Unfortunately, as soon as we step away from the linear set-
ting, the operational interpretation from the previous section
breaks down. The key issue is that when forming our es-
timate z for the beginning of the forward process, there
is no longer any simple expression for the posterior mean
conditioned on x←t .

Restoration operator. To get around this issue, our first
insight is: instead of deriving an estimate for the beginning
of the forward process, we instead derive one for the process
ℓh units of time in the past, i.e. at time T − t − ℓh of the
forward process. In the previous section, we implicitly took
ℓ = (T − t)/h, but now ℓ is a parameter that needs to be
tuned. Crucially, selecting ℓ such that ℓh → 0 allows us to
linearize around T − t. In analogy with (3.1), we get the
approximate relation

x←t = xT−t

≈ xT−t−ℓh + ℓh fT−t−ℓh(xT−t−ℓh)

+g(T − t− ℓh)
√
ℓh · ε

≈ xT−t−ℓh + ℓh fT−t(x
←
t ) + g(T − t)

√
ℓh · ε

for ε ∼ N (0, Id), where the approximations hold up to o(h)
additive error. Rearranging, we see that xT−t−ℓh is simply
x←t − ℓhfT−t(x

←
t ) plus some Gaussian noise of variance

ℓhg(T − t)2. So, again by Tweedie’s formula, we find that
the mean of the posterior distribution over xT−t−ℓh given
x←t is approximately

z ≜ x←t − ℓh {fT−t(x←t )− g(T − t)2∇ ln q←(x←t )} .

Borrowing terminology from (Bansal et al., 2022), we re-
fer to the map from x←t to z as the restoration operator.
Formally, for t > s > 0, define the restoration operator
Rt→s(·) by

Rt→s(x) ≜ x− (t− s)ft(x) + (t− s)g(t)2∇ ln qt(x)

so that z = RT−t→T−t−ℓh(x
←
t ).

Restoration operator as gradient ascent. There turns
out to be a different way of thinking about the restoration
operator, namely as one step of gradient ascent.

Formally, given times 0 < t < s, consider maximizing the
conditional log-likelihood ln q←s (· | x←t ). This is equivalent
to maximizing

ℓx←t (x) ≜ ln q←t (x←t | x←s = x) + ln q←s (x).

For s which is infinitesimally larger than t, the law of
x←t conditioned on x←s = x is Gaussian with mean
and covariance approximately x + fT−s(x

←
s ) (t − s) and

g(T − t)2(t− s) Id. We can thus compute the gradient of
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(3.2) to get

∇ℓx←t (x) ≈ 1

g(T − t)2(t− s)

(
Id + (t− s)∇fT−s(x)

)
·
(
x←t − x− fT−s(x) (t− s)

)
+∇ ln q←s (x) .

Now consider taking a single gradient step with learning
rate η starting from x←t to get x←t + η∇ℓx←t (x←t ). In Ap-
pendix A, we show that in the special case where q is Gaus-
sian and the forward process is Ornstein-Uhlenbeck, the
correct choice of learning rate to maximize the conditional
log-likelihood with just one step of gradient ascent is

η ≜ 2g(t)2 · (t− s) .

In this case, note that

x←t + η∇ℓx←t (x←t ) ≈ x←t − (t− s)fT−t(x
←
t )

−(t− s)2(∇fT−s(x
←
t ))fT−s(x

←
t )

+(t− s)g(T − t)2∇ ln q←s (x←t )

≈ x←t − (t− s)fT−t(x
←
t )

+(t− s)g(T − t)2∇ ln q←t (x←t ),

where in the second step we have dropped the second order
term (t − s)2(∇fT−s(x

←
t ))fT−s(x

←
t ) and approximated

(t − s)g(t)2∇ ln q←s (x←t ) to first order by (t − s)g(T −
t)2∇ ln q←t (x←t ). Observe now that for s = t − ℓh, the
update rule of (3.2) is the same as the update rule of (3.2).

Degradation operator. The remainder of the derivation
proceeds along similar lines to the previous section. Given
noise vector γ ∈ Rd, define the degradation operator
Dγ

s,t(·) by

Dγ
s→t(x) ≜ x+ fs(x)(t− s) + g(s)

√
t− s · γ .

This operator simply runs an Euler-Maruyama discretization
of the forward process, starting at time s, for time t − s,
with the noise taken to be γ.

Starting from z and degrading it along the forward pro-
cess from T − t − ℓh to time T − t, we would end up
with Dγ

T−t−ℓh→T−t(z) = z+ ℓh fT−t−ℓh(z) + g(T − t−
ℓh)

√
ℓh · γ for some Gaussian noise γ ∼ N (0, Id). As

before, we instead take γ to be the simulated noise needed
to degrade z into x←t , which in this case is given by the
solution to

x←t = z + ℓh fT−t−ℓh(z) + g(T − t− ℓh)
√
ℓh · γ .

To produce the next iterate x←t+h of the reverse process, we
use γ to degrade z from time T − t− ℓh to T − t− h. The

result is given by

x←t+h = z + (ℓ− 1)h fT−t−ℓh(z)

+g(T − t− ℓh)
√
(ℓ− 1)h · x

←
t − z − ℓh fT−t−ℓh(z)

g(T − t− ℓh)
√
ℓh

≈ z + (ℓ− 1)hfT−t(x
←
t )

+
√
1− 1/ℓ · ℓhg(T − t)2∇ ln qT−t(x

←
t )

= x←t − hfT−t(x
←
t ) + ℓh ·

(
1−

√
1− 1/ℓ

)
·g(T − t)2∇ ln qT−t(x

←
t ) .

where in the second step we approximated fT−t−ℓh(z) by
fT−t(x

←
t ) and dropped o(h) terms. Finally as ℓ → ∞, the

right-hand side converges to x←t −h {fT−t(x←t )− 1
2g(T −

t)2∇ ln qT−t(x
←
t )}, which recovers the Euler discretization

of the probability flow ODE. We note that this is the only
place that requires taking ℓ → ∞. Finally, as we take
h → 0, the above recovers the probability flow ODE (2).

3.3. Extensions to other samplers

The operational interpretation framework that we developed
to extend DDIM to non-linear forward processes can be
adapted in a relatively straightforward way to describe more
general samplers. For example, in Equation (2), we defined
a more general family of reverse processes, each of which
has the correct marginal law at time t. These can easily be
described by a similar operational interpretation.

Specifically, we use the same restoration operator as before
to arrive to z, which we then use to estimate the noise γ.
The critical change to the framework is that now, to corrupt
from z to x←t+h, instead of just using the estimated noise, we
use a linear combination of the estimated noise, γ and fresh
noise ν. Specifically, in the degradation operator, we use a
vector γ′, defined as follows:

γ′ =

√
1− λ2

ℓ− 1
γ +

1√
ℓ− 1

λν, ν ∼ N (0, Id) .

The parameter λ here controls how close the update rule
is to the deterministic sampler. Trivially, for λ = 0, we
have a fully deterministic sampler, as before. For λ = 1,
the sampler becomes the reverse SDE sampler of Song et al.
(2020). The coefficients have been chosen such that if γ
were actually a draw from N (0, Id) instead of simulated
noise, then γ′ would likewise be a draw from N (0, Id).

Note that

x̃λ
(k−1)h = z + (ℓ− 1)h f(k−ℓ)h(z)

+g((k − ℓ)h)
√
(ℓ− 1)h · γ′

≈ z + (ℓ− 1)h fkh(x̃
λ
kh) + g(kh)

√
(ℓ− 1)h · γ′
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= z + (ℓ− 1)h fkh(x̃
λ
kh) + g(kh)

√
(ℓ− 1)h ·

(
√
1− λ2

ℓ− 1
·
x̃λ
kh − z − ℓh f(k−ℓ)h(z)

g((k − ℓ)h)
√
ℓh

+
1√
ℓ− 1

λν
)

≈ z + (ℓ− 1)h fkh(x̃
λ
kh) + g(kh)

√
(ℓ− 1)h ·

(
√

1− λ2

ℓ− 1
· x̃

λ
kh − z − ℓh fkh(z)

g(kh)
√
ℓh

+
1√
ℓ− 1

λν
)

= x̃λ
kh − h fkh(x̃

λ
kh) + ℓh g(kh)2∇ ln qkh(x̃

λ
kh)

−
√
1− 1

ℓ
·
√
1− λ2

ℓ− 1
· ℓh g(kh)2∇ ln qkh(x̃

λ
kh)

+λ
√
h g(kh)2 ν

(ℓ→∞) = x̃λ
kh − h {fkh(x̃λ)

−1 + λ2

2
g(kh)2∇ ln qkh(x̃

λ)}+ λ
√
h g(kh)2ν ,

where in the second step we approximated f(k−ℓ)h(z) and
g((k−ℓ)h) by fkh(x̃

λ
kh) and g(kh), dropping o(h) terms; in

the fourth step we approximated f(k−ℓ)h(z) and g((k−ℓ)h)
by fkh(z) by g(kh); and in the last step we used that

lim
ℓ→∞

ℓ
(
1−

√
1− 1

ℓ
·
√
1− λ2

ℓ− 1

)
=

1 + λ2

2
.

4. Discretization Analysis
In what follows, we provide a non-asymptotic convergence
analysis for the DDIM-type samplers, i.e. for the update
rule of (3.2). To the best of our knowledge, this constitutes
the first KL convergence analysis for deterministic sampling
with diffusion models. Since our sampler corresponds to the
Euler discretization of the probability flow ODE plus some
excess terms whose contribution we ultimately show is neg-
ligible, the following analysis also implies non-asymptotic
convergence for the Euler discretization.

4.1. DDIM-type sampler

Motivated by the discussion in Section 3.2, our analysis will
focus on the process (x̃kh)k∈{0,...,T/h} defined backwards
in time as follows. The iterate x̃T is sampled from q←0 .
Given iterate x̃kh, the preceding iterate x̃(k−1)h is defined
as follows:

x̃(k−1)h = Dγ
(k−ℓ)h→(k−1)h(z)

for z ≜ Rkh→(k−ℓ)h(x̃kh) and γ ≜ Dγ
(k−ℓ)→kh(z) = x̃kh,

where R and D were defined in (3.2) and (3.2) respectively.
As z is the result of restoring the current iterate x̃kh,

z = x̃kh − ℓh fkh(x̃kh) + ℓh g(kh)2∇ ln qkh(x̃kh).

The next iterate x̃(k−1)h is given by degrading z for time
(ℓ − 1)h, with the noise vector taken to be the simulated

noise γ. More precisely γ is the noise vector that one could
have used to degrade z for time ℓh to obtain x̃kh. As γ
is the solution to Dγ

(k−ℓ)h→kh(z) = x̃kh, an equivalent
formulation is via

γ =
x̃kh − z − ℓh f(k−ℓ)h(z)

g((k − ℓ)h)
√
ℓh

.

Note that (4.1) is not well-defined when k < ℓ; in this
case, we take the update according to the Euler-Maruyama
discretization:

x̃(k−1)h = x̃kh−h(fkh(x̃kh)−
1

2
g(kh)2∇ ln qkh(x̃kh)) .

It will be convenient to denote x̃←kh ≜ x̃T−kh in the sequel.

4.2. Statement of results

We make the following mild assumptions on the forward
process (xt) and the data distribution:

Assumption 4.1. For all t ≥ 0, the following holds for
parameters Lf ;t, Lg, Lf ;x, Lsc,t, R, gmax, β,M ≥ 1, c > 0:

1. ft(x) is Lf ;t-Lipschitz in t and Lf ;x-Lipschitz in x.

2. g2(t) is Lg-Lipschitz in t.

3. ∥ft(0)∥ ≤ R.

4. g(t) ≤ gmax.

5. ∇ ln q←t (x) is Lsc,t-Lipschitz in x and satisfies

∥∇ ln
q←t
q←s

(x)∥ ≤ β|t− s|c(1 + ∥x∥+ ∥∇q←t (x)∥)

for all s ≥ 0. Denote supt≥0 Lsc,t by Lsc,∗.

6. ∇ft(x) and ∇2 ln q←t are Lhigh-Lipschitz in operator
norm.

Remark 4.2. We note that the first four Parts of Assump-
tion 4.1, as well as the first half of Part 6, are quite mild
and are satisfied by any reasonable choice of forward pro-
cess. For instance, for the Ornstein-Uhlenbeck process
dxt = −xt dt +

√
2dWt, we can take Lf ;t = 0, Lf ;x =

1, Lg = 0, gmax =
√
2, and ∇ft(x) = −Id for all x is

thus clearly Lipschitz in operator norm. Part 5 ensures
that the score functions ∇ ln q←t do not change much when
perturbed in space or time. The former is a standard assump-
tion in the literature on discretization bounds for score-based
generative modeling (Block et al., 2022; Chen et al., 2022b;
Lee et al., 2022a;b; Chen et al., 2022a), and the latter holds
for reasonable choices of forward process. For instance,
for the Ornstein-Uhlenbeck process, we can take c = 1/2
and β = Θ(L

√
d) (see e.g. Lemma C.12 from (Lee et al.,

2022a)).
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The most important distinction between Assumption 4.1
and the assumptions made in previous analyses for score-
based generative models is the second half of Part 6 where
we assume higher-order smoothness of q←t . As we will
see in Section C, this is essential to our analysis because
third-order derivatives of ln q←t naturally arise when one
computes the time derivative of the Fisher information as
described in Section 4.3. As discussed in that section, the
need to compute such time derivatives is unique to the ODE
setting, justifying why such an assumption was not needed
in prior analysis of stochastic samplers.

Under these conditions, we show that our discretization pro-
cedure approximates the true reverse process to prescribed
error ϵ provided ℓ and (ℓh)−1 are larger than some quantities
which are polynomially bounded in 1/ϵ and all parameters
from Assumption 4.1:
Theorem 4.3. Let ϵ > 0. Let p̃ denote the law of the process
(x̃←kh) at time T with this choice of learning rate. Suppose
Assumption 4.1 holds and define

Λ ≜ exp

(∫ T

0

(L2
f ;x + g2maxLsc,t) dt

)
and

Λ′ ≜ exp

(∫ T

0

(L2
f ;x + g2maxLsc,⌊t/h⌋h) dt

)
.

Then there exist quantities C1 and C2 which are polynomi-
ally bounded in Lf ;t, Lf ;x, Lg, R, gmax, β, Lsc,∗, Lhigh, Λ,
Λ′, d, E∥x←0 ∥2, and 1/ϵ such that KL (p̃∥q) ≤ ϵ provided
ℓ ≥ C1 and ℓh ≤ C−12 .

Remark 4.4. We briefly remark on the quantities Λ,Λ′ ap-
pearing in the above theorem. We typically think of Lf ;x and
gmax as of constant order, so Λ and Λ′ scale polynomially
with exp(

∫ T

0
Lsc,t dt) and exp(

∫ T

0
Lsc,⌊t/h⌋h dt). While

this scales exponentially in T , the exponential convergence
of reasonable forward processes like Ornstein-Uhlenbeck
means we should think of T as scaling logarithmically in
d/ϵ. And while naively one might suspect that Λ,Λ′ scale
exponentially with Lsc,∗, we show in Example 1 in Ap-
pendix C that these quantities actually scale polynomially
in d and other parameters like Lsc,∗, e.g. when the data
distribution is Gaussian. Altogether, this suggests that our
non-asymptotic guarantees are of polynomial complexity in
all relevant parameters from Assumption 4.1.

In practice, the process (x̃←kh) would be initialized at the
stationary measure q∗ of the forward process (after some
suitable re-scaling), rather than at q←0 . As observed in (Lee
et al., 2022a; Chen et al., 2022b; Lee et al., 2022b), the KL
divergence between the final iterate of the process under the
alternative initialization x̃←0 ∼ q∗ and the final iterate under
the initialization x̃←0 ∼ q←0 is at most the KL divergence
between the inital iterates of these two processes. But by sta-
tionarity of q∗, the latter KL is equivalent to the KL between

the stationary measure of the forward process and the the
law of the forward process at time T . This KL is typically
exponentially small in T , e.g. when the forward process
is an Ornstein-Uhlenbeck process. By passing from KL to
total variation via Pinsker’s inequality and applying triangle
inequality, we conclude that the total variation between x̃←T
under this alternative initialization and the data distribution
q is at most the sum of the error bound in Theorem 4.3
plus the distance between qT and the stationary distribution.
Formally:

Corollary 4.5. Let ϵ > 0. Let ft(x) = −x and g(t) =√
2, so that the forward process in (2) corresponds to the

standard Ornstein-Uhlenbeck process. Define the process
(xkh) to be the process given by the same updates as in (4.1)
but with xT sampled from N (0, Id) instead of q←0 . Let p
denote the law of x0. Suppose ∇2 ln q←t is Lhigh-Lipschitz
in operator norm. Then there exist quantities C1 and C2

which are polynomially bounded in d, Lsc,∗, Lhigh, Λ, Λ′,
and 1/ϵ such that

TV(p, q) ≤ ϵ+
√
KL (q∥N (0, Id)) exp(−T )

provided ℓ ≥ C1 and ℓh ≤ C−12 .

4.3. Proof overview

Our discretization analysis is an interpolation-style argu-
ment, similar to the kind used in the log-concave sampling
literature (Vempala & Wibisono, 2019; Chewi et al., 2021;
Wibisono & Yang, 2022) as well as some recent analyses of
score-based generative modeling (Lee et al., 2022a;b; Chen
et al., 2022a). Here we describe the setup for this argument
and highlight the key technical differences that manifest
when analyzing ODEs rather than SDEs.

We begin with a generic setting where we are given two
stochastic processes (yt)t∈[0,T ] and (y′t)t∈[0,T ] as follows.
The process (yt) is given by an arbitrary ODE

dyt = µt(yt) dt .

We will ultimately take µt to be −fT−t + 1
2g(T −

t)2∇ ln qT−t so that (4.3) is the probability flow ODE as-
sociated to the forward process in (2). The process (y′t) is
given by first taking a discrete-time approximation to (yt),
e.g. via the update rules

y′(k+1)h = y′kh + h · µ′kh(ykh)

for all integers k = 0, 1, . . . , T/h. We will ultimately take
µ′kh to be −fT−kh + 1

2g(T − kh)2∇ ln qT−kh plus error
terms coming from the approximations in (3.2) and from
taking ℓ → ∞ to ensure (3.2) approximates the Euler dis-
cretization of the probability flow ODE.

Then to get y′t for all real values t ∈ [0, T ], we consider a
linear interpolation of these iterates: if k = ⌊t/h⌋, then we

6
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define yt = ykh + (t− kh)µ′kh(ykh). We write this as

dy′t = µ′kh(y
′
kh) dt .

Provided these processes are both initialized at the same
distribution, that is, y0, y′0 ∼ π for some probability mea-
sure π over Rd, then we would like to control the statistical
distance between the marginal distributions on yt and on y′t
as a function of t. Denoting these distributions by πt and π′t
respectively, we prove the following generic bound which is
the technical core of our work. First, we make the following
assumptions about the two processes; when we specialize
these processes to (x←t ) and (x̃←t ), these assumptions will
follow from Assumption 4.1:

Assumption 4.6. For all 0 ≤ t ≤ T , there are parameters
Lt, L

′
t,M ≥ 1 and ζt > 0 such that:

1. ∇ lnπt and µt are Lt-Lipschitz.

2. ∇µt is M -Lipschitz in operator norm.

3. µ′t is L′t-Lipschitz.

4. E[∥µt(y
′
t)− µ′kh(y

′
kh)∥2] ≤ ζ2t .

5. h ≤ 1/2L′t for all 0 ≤ t ≤ T .

We briefly interpret these assumptions in the context of our
eventual application to bounding the error of our discretiza-
tion procedure. There, Conditions 1 and 2 apply to the
true continuous process. The former is an immediate con-
sequence of our (standard) assumption on the second-order
smoothness of the marginals of the true process. The latter
is an immediate consequence of our assumption on the third-
order smoothness, which is stronger than what is needed for
analyses of the reverse SDE but is likely necessary for our
analysis of the reverse ODE.

Conditions 3 and 4 are properties that we will eventually
establish for our discretization procedure (see Section D).
Roughly, they stipulate that the drift term in the discretized
probability flow ODE is Lipschitz and close on average to
the drift of the true ODE.

Lastly, Condition 5 simply corresponds to a constraint on
the step size of our discretization procedure.

For convenience, we will also define the quantities

L ≜ max
t

Lt, L′ ≜ max
t

L′t, ζ2 ≜
∫ T

0

ζ2t dt

Λ ≜ exp
(∫ T

0

Lt dt
)
, Λ′ ≜ exp

(∫ T

0

L′t dt
)
.

The main result of this section is a bound on the KL diver-
gence between π′T and πT :

Theorem 4.7.

KL (π′T ∥πT ) ≲ ΛO(1)L′1/2ζ2

+(ΛO(1) + Λ′O(1))(L
′1/2
0 d1/2 +MdT 1/2) ζT 1/2 .

The main ingredient in proving this is to bound the time
derivative of KL (π′t∥πt) uniformly across t ∈ [0, T ], from
which a bound on KL (π′t∥πt) follows by integrating.

One can explicitly compute this time derivative by appealing
to the time derivatives of the densities of π′t, πt, given by
the Fokker-Planck equations for the two processes:

∂tπt = −div(πt · µt), ∂tπ
′
t = −div(π′t · µ̂t,kh) ,

for µ̂t,kh(x) ≜ E[µ′kh(y′kh) | y′t = x]. Here µ̂t,kh is the
expectation over the drift at time kh conditioned on the
position at the future time t. A calculation (see Lemma C.5)
then reveals that

∂tKL (π
′
t∥πt) =

∫
π′t⟨∇ ln

π′t
πt

, µ̂t,kh − µt⟩ .

It is here where our analysis departs from typical appli-
cations of the interpolation method. Indeed, if the ODEs
driving yt and y′t were SDEs equipped with an additional
Brownian motion term, then (4.3) would come with an ad-
ditional negative term given by a multiple of the Fisher
information between π′t and πt. In equations, this means
that in lieu of (4.3), we would have

∂tKL (π
′
t∥πt) =

∫
π′t⟨∇ ln

π′t
πt

, µ̂t,kh − µt⟩

−C

∫
π′t∥∇ ln

π′t
πt

∥2,

for some C > 0 depending on the amount of Brownian
motion. The advantage of the Fisher information term in
(4.3) is that we can apply Young’s inequality to conveniently
upper bound the above by a multiple of∫

π′t ∥µ̂t,kh − µt∥2,

and avoid having to deal with ∇ ln
π′t
πt

altogether. Roughly
speaking, the quantity (4.3) corresponds to the expected
squared difference between the drift of the discrete process
at time kh versus the drift of the continuous process at time
t. This is small provided the former process doesn’t move
around too much between times kh and t, and provided
the drifts µ′kh and µt are sufficiently close on average. We
verify in Section D that both of these conditions are satisfied
by the probability flow ODE.

The situation is trickier in the ODE setting. To handle (4.3),

7
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we instead apply Cauchy-Schwarz to get

∂tKL (π
′
t∥πt) ≤

(∫
π′t∥∇ ln

π′t
πt

∥2
)1/2

×
(∫

π′t∥µ̂t,kh − µt∥
)1/2

,

after which the main technical obstacle is to ensure the
first term on the right-hand side, again corresponding to the
Fisher information between π′t and πt, does not explode
with t. In Lemmas C.6 and C.8, we show how to bound
the time derivative of this quantity polynomially in various
problem-specific parameters like dimension and smoothness
of µt. Altogether, this leads to the following bounds. We
defer the technical details to the supplement and provide a
brief proof sketch of how to control the time derivatives of
these quantities:
Lemma 4.8 (See Lemmas C.6 and C.8). For all 0 ≤ t ≤ T ,

Eπ′t
[∥∇ lnπ′t∥2] ≲ Λ′O(1)(L′0d+M2d2t)

Eπ′t
[∥∇ lnπt∥2] ≲ ΛO(1)(L′0d+M2d2t+ L′ζ2)

Proof sketch. When computing ∂t
∫
π′t∥∇ lnπ′t∥2, one

term that shows up is ∂t lnπ
′
t. Using the Fokker-Planck

equation for π′t, we can derive an expression for ∂t lnπ′t
(see Proposition C.7). This and a calculation with integra-
tion by parts reveals that

∂t

∫
π′t∥∇ lnπ′t∥2 = −2

∫
π′t
(
⟨∇div µ̂t,kh,∇ lnπ′t⟩

+ (∇ lnπ′t)
⊤(∇µ̂t,kh)(∇ lnπ′t)

)
≲ sup

x
∥∇µ̂t,kh(x)∥op

∫
π′t∥∇ lnπ′t∥2+

+

∫
π′t∥∇div µ̂t,kh∥2,

where in the last step we used Young’s inequality. Lip-
schitzness of µt allows us to bound sup∥∇µ̂t,kh∥op,
and higher-order smoothness of µt allows us to bound
∥∇divµ̂t,kh∥.

This is the only part of the analysis where third-order deriva-
tives appear and where Part 6 of Assumption 4.1, which
corresponds to Part 2 of Assumption 4.6, comes into play.
One subtlety in the argument above is deducing smoothness
of µ̂t,kh, a complicated-looking conditional expectation, to
smoothness of the true drift µt. To connect the two, we
exploit the fact that for step size h sufficiently small, the
discrete-time process is invertible (Lemma C.3) so that µ̂t,kh

can be expressed as µ′kh composed with a deterministic func-
tion.

Altogether, the bound on the Fisher information which is
implied by Lemma 4.8 allows us, as in the SDE case, to re-
duce controlling ∂tKL (π

′
t∥πt) to controlling the difference

in drifts as captured by Eq. (4.3), which we then carry out
in Appendix D.

5. Related Work
There has been great recent progress on diffusion mod-
els including recently outperforming other deep gener-
ative models such as Generative Adversarial Networks
(GANs) (Dhariwal & Nichol, 2021; Song et al., 2020; Daras
et al., 2022a; Kim et al., 2022). Applications range from
protein generation (Anand & Achim, 2022; Trippe et al.,
2022; Schneuing et al., 2022; Corso et al., 2022), medi-
cal imaging (Jalal et al., 2021; Arvinte et al., 2022), 3-D
data (Poole et al., 2022) and many more, e.g. see Yang et al.
(2022) for a comprehensive survey.

Non-asymptotic analysis of stochastic samplers, (Block
et al., 2022; De Bortoli et al., 2021; De Bortoli, 2022; Liu
et al., 2022; Lee et al., 2022a; Pidstrigach, 2022; Lee et al.,
2022b; Chen et al., 2022a;b) has drawn upon tools from the
rich literature on log-concave sampling (see (Chewi, 2022)
for a recent survey) to yield convergence guarantees for dif-
fusion models. These works focus on the setting where the
forward process is an Ornstein-Uhlenbeck process, and the
reverse process is given by a stochastic differential equation.
Notably, the very recent works of Chen et al. (2022b); Lee
et al. (2022b); Chen et al. (2022a) show under mild assump-
tions on the data distribution q (e.g. smooth and bounded
second moment) that a suitable discretization of the reverse
SDE run for polynomially many steps generates samples
that are close in statistical distance to the data distribution.

Prior to our work, no previous non-asymptotic bounds in KL
divergence were known for the probability flow ODE associ-
ated to any forward process. Prior analyses are insufficient
because they either rely on Girsanov’s theorem (Chen et al.,
2022b) or a chain rule-based variant (Chen et al., 2022a) of
the interpolation argument of Vempala & Wibisono (2019).

Informally, Girsanov’s theorem allows one to bound not
just the distance between the distributions over the final
iterates of the algorithm but even the distance between the
distributions over the trajectories of the two processes –
note that the latter distance upper bounds the former by the
data processing inequality. Stochasticity in every step of
the reverse process ensures that even the latter distance is
small. Without stochasticity however, there is no reason this
distance should even be finite.

The chain rule-based argument of (Chen et al., 2022a) es-
tablishes a similar bound to Girsanov’s; in particular, when
the algorithm and the idealized process are initialized to the
same distribution, the bounds these two arguments give are
identical.

Lastly, we remark that (Lee et al., 2022a) used an inter-
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polation argument without chain rule, but their analysis,
similar to existing analyses of Langevin Monte Carlo in the
log-sampling literature (Vempala & Wibisono, 2019; Chewi
et al., 2021), exploits the appearance of a certain Fisher
information term in the expression for the time derivative
of the KL divergence between the algorithm and the ideal-
ized process (see Section 4.3 for further details). For ODEs
however, this Fisher information term does not appear.

6. Conclusion
In this work we gave an operational interpretation for the
probability flow ODE as iterating a two-step process of
restoration via gradient ascent and degradation towards the
current iterate. This perspective also extends to reverse pro-
cesses with a Brownian motion component. Our operational
interpretation closely aligns with the samplers introduced
in (Bansal et al., 2022; Daras et al., 2022b) and generalizes
the framework of denoising diffusion implicit models (Song
et al., 2021) to general, non-linear forward processes.

The main technical contribution of our work was a non-
asymptotic analysis of the deterministic sampler arising
from our framework. While previous works (Chen et al.,
2022b; Lee et al., 2022b; Chen et al., 2022a) gave non-
asymptotic analyses for diffusion models when the underly-
ing reverse process is an SDE, to our knowledge our analy-
sis is the first of its kind in the ODE setting. Our proof is
based on an interpolation argument, but the key difference
with prior applications of this method is that the determin-
istic nature of the sampler necessitates controlling the time
derivative of the Fisher information between the algorithm
and the true reverse process.

Limitations and future directions. The most obvious
area for improvement would be to sharpen the quantita-
tive dependence on various parameters like dimension and
Lipschitz-ness of the score functions. Intuitively, the ab-
sence of Brownian motion in the probability flow ODE
should lead to better dimension dependence compared to
using an SDE, but in this work we are only able to establish
an iteration complexity for the deterministic sampler which
is some polynomial in d. Additionally, for convenience in
this work we ignore issues of score estimation error. While
it should be possible to use change-of-measure-type argu-
ments like in (Wibisono & Yang, 2022) to obtain guarantees
when the score estimation error has sub-Gaussian tails, new
ideas are needed to handle merely an L2 bound on the score
estimation error like in (Chen et al., 2022b; Lee et al., 2022b;
Chen et al., 2022a).

We also leave as an open question whether our assumption
of higher-order smoothness is really necessary to obtain
non-asymptotic guarantees for the probability flow ODE.

Apart from these technical improvements, we mention some
empirical directions to explore. First, our discretization pro-
cedure introduces a number of new hyperparameters that
one can try tuning to get improved performance in practice.
Even for linear diffusions, it would be interesting to explore
the effect of tuning ℓ, which under DDIM is currently taken
to be (T − t)/h. In addition, it seems interesting to explore
how parameters of the restoration procedure like the learn-
ing rate and number of steps of gradient ascent, or the use
of momentum or higher-order optimization methods can
lead to better samplers. We expect that different restoration
procedures can recover other discretization frameworks, e.g.
second-order ones like Heun’s method. Empirically, we
expect that optimizing the learning rate and number of steps
can lead to deterministic samplers with smaller computa-
tional overhead and higher sample quality.
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Supplement Roadmap. In Appendix A we motivate the choice of certain learning rate parameter that arises in Section 3.
In Appendix B we provide preliminary calculations for the proof of Theorem 4.3. In Appendix C, we give a generic bound
on the distance between two processes driven by ODEs with similar drifts, one of which is an interpolation of a discrete-time
process. Finally, in Appendix D we apply this generic bound to our setting, bound the difference in drifts between the
probability flow ODE and our sampler, and prove Theorem 4.3.

A. Tuning the Learning Rate
In this section we justify the choice of learning rate (3.2) in our gradient ascent interpretation of the restoration operator
by considering the special case where the data distribution q is isotropic Gaussian and the forward process is an Ornstein-
Uhlenbeck process.

First, recall the definition of the loss function ℓx←t from (3.2). In general, one step of gradient ascent with learning rate η
starting from x←t gives the iterate

x←t + η∇ℓx←t (x←t ) = x←t + η
(
− 1

g(T − t)2
(
Id + (t− s)∇fT−s(x

←
t )
)
fT−s(x

←
t ) +∇ ln q←s (x←t )

)
.

Now suppose q ∼ N (0, σ2 Id) and furthermore

ft(x) = −αx and g(t) = β
√
2 .

Then q←t is given by N (0, (e−2αtσ2 + β2

α (1− e−2αt)) Id), and the conditional log-likelihood ln q←s (x | x←t ) is quadratic
in x and is thus maximized at x for which ∇ℓx←t vanishes.

In this case, (3.2) simplifies to

∇ℓx←t ≈ 1

2β2(t− s)
(1 + α(s− t))(x←t − x(1 + α(s− t)))− 1

V[q←s ]
x ,

where V[q←s ] denotes the variance of q←s . Setting the right-hand side to zero and solving for x shows that

x =
1 + α(s− t)

V[qT−s] + (1 + α(s− t))2
x←t =

(
1 +

(
α− 2β2

V[qT−s]
)
· (t− s) +O(|t− s|2)

)
x←t

is an (approximate) stationary point of ∇ℓx←t .

The next iterate (A) after one gradient step simplifies to

x←t + η∇ℓx←t (x←t ) ≈ x←t − η

2β2(t− s)
(1 + α(s− t)) · α(s− t) · x←t − η

e−2αsσ2 + β2

α (1− e−2s)
x←t .

Finally, we observe that by taking
η ≜ 2β2(t− s) ,

the above simplifies to

x←t − (1+α(s− t)) ·α(s− t) ·x←t − 2β2(t− s)

e−2αsσ2 + β2

α (1− e−2s)
x←t =

(
1+
(
α− 2β2

V[qT−s]
)
· (t−s)+O(|t−s|2)

)
x←t ,

which agrees up to second-order terms with (A). Therefore, when the data is Gaussian and the forward process is an
Ornstein-Uhlenbeck process, as t− s → 0 the right choice of η to ensure to first order approximation that a single gradient
step takes us from x←t to the maximizer of the conditional log-likelihood ln q←s (x | x←t ) is given by (A), which corresponds
to (3.2) in the main text as claimed.

B. Proof Preliminaries
Let h > 0 and ℓ ∈ N be discretization parameters. Define

δℓ ≜ 1−
√
1− 1/ℓ =

1

2ℓ
+O(1/ℓ2)

12
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and

ξℓ = δℓ −
1

2ℓ
= O(1/ℓ2)

Recall the definition of the process (x̃kh)k∈{0,...,T/h} in Eq. (4.1). Here we rewrite the update rule in (4.1) to make clear its
similarity to the Euler-Maruyama discretization:

x̃(k−1)h = z + (ℓ− 1)h f(k−ℓ)h(z) + g((k − ℓ)h)
√

(ℓ− 1)h · γ

= z + (ℓ− 1)h f(k−ℓ)h(z) + g((k − ℓ)h)
√

(ℓ− 1)h ·
x̃kh − z − ℓh f(k−ℓ)h(z)

g((k − ℓ)h)
√
ℓh

= (1− δℓ)x̃kh + δℓz + (ℓδℓ − 1)hf(k−ℓ)h(z)

= x̃kh + (ℓξℓ − 1/2)hf(k−ℓ)h(z)

− δℓ
(
ℓh fkh(x̃kh)− ℓh g(kh)2∇ ln qkh(x̃kh)

)
.

Note that δℓηk = hg(kh)2 (1/2 + ℓξℓ), so we can further rewrite this as

= x̃kh + (ℓξℓ − 1/2)hf(k−ℓ)h(z)

− h(1/2 + ℓξℓ)
(
fkh(x̃kh)− g(kh)2∇ ln qkh(x̃kh)

)
= x̃kh − h {fkh(x̃kh)−

1

2
g(kh)2∇ ln qkh(x̃kh)}+ v

(1)
kh (x̃kh) + · · ·+ v

(3)
kh (x̃kh),

where the excess terms are given by

v
(1)
kh (x̃kh) ≜ ℓξℓhf(k−ℓ)h(z) · 1[k ≥ ℓ]

v
(2)
kh (x̃kh) ≜

h

2
(f(k−ℓ)h(z)− fkh(x̃kh)) · 1[k ≥ ℓ]

v
(3)
kh (x̃kh) ≜ hℓξℓ

(
−fkh(x̃kh) + g(kh)2∇ ln qkh(x̃kh)

)
1[k ≥ ℓ] · .

Note that as ℓ → ∞ and hℓ → 0, the excess terms tend to zero and the process (x̃kh) converges to the one given by the
Euler-Maruyama discretization.

In the subsequent sections, we make this quantitative via an interpolation argument. Let (x̃t)0≤t≤T denote the linear
interpolation of the discrete process (x̃kh)h=0,...,T/h, and let (x̃←t ) denote the time-reversed process x̃←t ≜ x̃T−t. Concretely,
for any kh ≤ t < (k + 1)h,

dx̃←t = −
{
fT−kh(x̃

←
kh)−

1

2
g(T − kh)2∇ ln q←kh(x̃

←
kh)

− 1

h
(v

(1)
T−kh(x̃

←
kh) + · · ·+ v

(3)
T−kh(x̃

←
kh))

}
dt.

We note that even in the absence of the excess terms above, in which case the above process would just be the Euler-
Maruyama discretization of the probability flow ODE, no existing works gave a non-asymptotic analysis showing that this
discretization converges polynomially to the continuous-time probability flow ODE. Our analysis in the sequel allows us to
both control the excess terms and establish such a non-asymptotic analysis.

C. Interpolation Argument
In this section we give general bounds for how the KL divergence between two distributions, one driven by a discretized
ODE and the other by a continuous-time one, changes over time. Throughout this section, we work with two stochastic
processes (yt)t∈[0,T ] and (y′t)t∈[0,T ] over Rd given by the ODEs

dyt = µt(yt) dt

dy′t = µ′kh(y
′
kh) dt, k = ⌊t/h⌋,

13
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where y0, y
′
0 ∼ π for some probability measure π over Rd. The process (y′t) is equivalent to a linear interpolation of a

discrete-time process where one goes from the k-th iterate y′kh to the (k + 1)-st iterate y′(k+1)h via the update

y′(k+1)h = y′kh + hµ′kh(y
′
kh) .

We let πt, π
′
t denote the law of yt, y′t respectively. When we eventually apply the estimates obtained in this section, we will

take (y′t) to be given by our discretization of the probability flow ODE, and we will take (yt) to be the true probability flow
ODE in continuous time.

The bounds in this section hold under the conditions of Assumption 4.6, restated here for convenience:

Assumption C.1. For all 0 ≤ t ≤ T , there are parameters Lt, L
′
t,M ≥ 1 and ζt > 0 such that:

1. ∇ lnπt and µt are Lt-Lipschitz.

2. ∇µt is M -Lipschitz in operator norm.

3. µ′t is L′t-Lipschitz.

4. E[∥µt(y
′
t)− µ′kh(y

′
kh)∥2] ≤ ζ2t .

5. h ≤ 1/2L′t for all 0 ≤ t ≤ T .

For convenience, we also recall the quantities defined in (4.3):

L ≜ max
t

Lt, L′ ≜ max
t

L′t, Λ ≜ exp
(∫ T

0

Lt dt
)
, Λ′ ≜ exp

(∫ T

0

L′t dt
)
, ζ2 ≜

∫ T

0

ζ2t dt

and restate the main claimed bound on the KL divergence between π′T and πT :

Theorem 4.7.

KL (π′T ∥πT ) ≲ ΛO(1)L′1/2ζ2

+(ΛO(1) + Λ′O(1))(L
′1/2
0 d1/2 +MdT 1/2) ζT 1/2 .

Example 1. Here we work out a simple example showing that when (yt) corresponds to the probability flow ODE that reverses
the Ornstein-Uhlenbeck process starting from a Gaussian distribution, Λ′ scales polynomially, rather than exponentially, in
d and L′.

Define π→t for 0 ≤ t ≤ T as the marginal distribution of running the Ornstein-Uhlenbeck process for time t starting from
N (0, 1

L Id) for some large L, and consider the associated reverse ODE

dyt = (yt +∇ lnπt(yt)) dt,

where πt ≜ π→T−t denotes the marginal laws of (yt)t∈[0,T ]. Concretely, πt is given by N (0, 1
Lt

Id) for Lt = (e−2(T−t)/L+

1− e−2(T−t))−1. Note that

Λ′ = exp
(∫ T

0

Lt dt
)
= exp

(1
2
ln(1 + (e2T − 1)L)

)
.

Because KL
(
N (0, 1

L Id)∥N (0, Id)
)
= d

2 (lnL−1+ 1
ℓ ) ≲ d lnL, we must run the forward process for time T ≈ 1

2 ln(d lnL)

for π→T to be close to N (0, Id). In this case, Λ′ ≲
√
dL lnL.

We begin by working out the Fokker-Planck equations for (π′t) and (πt).

Proposition C.2. The laws (π′t) and (πt) satisfy

∂tπt = −div(πt · µt)

∂tπ
′
t = −div(π′t · µ̂t,kh),

where
µ̂t,kh(x) ≜ E[µ′kh(y′kh) | y′t = x].

14
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When k is clear from context, we will denote µ̂t,kh by µ̂t to ease notation.

Proof. The Fokker-Planck equation for (πt) is given by

∂tπt = −div(πt · µt).

For the interpolated process (π′t), the Fokker-Planck for (π′t)kh≤t<(k+1)h conditioned on time kh, which we will denote by
(π′t|kh)kh≤t<(k+1)h, is given by

∂tπ
′
t|kh(x) = −divx(π

′
t|kh(x) · µ

′
kh(y

′
kh)).

If Π′kh denotes the probability measure over σ(y′t | 0 ≤ t ≤ kh), then if we integrate both sides of (C) with respect to Π′kh,
we get

∂tπ
′
t(x) = −

∫
divx(π

′
t(x | ξ) · µ′kh(y′kh))Π′kh(dξ)

= −divx

∫
π′t(x | ξ) · µ′kh(y′kh)Π′kh(dξ)

= −divx
(
π′t(x)

∫
µ′kh(y

′
kh)Π

′
kh|t(dξ | y′t = x)

)
= −divx(π

′
t(x) · E[µ′kh(y′kh) | y′t = x])

= −divx(π
′
t(x) · µ̂t,kh(x)).

It turns out that because we are assuming the step size h is sufficiently small in Condition 5 of Assumption 4.6, the
conditional expectation µ̂t,kh has a simple form. For any k, the ODE dy′t = µ′kh(y

′
kh) dt defines a map Fkh→t : Rd → Rd

for any kh ≤ t ≤ (k + 1)h via
Fkh→t(z) = z + (t− kh)µ′kh(z)

so that starting at z at time kh and running the ODE to time t, we end up at Fkh→t(z). When h is sufficiently small, Fkh→t

is invertible:

Lemma C.3. Let h ≤ 1/2L′. Then for any z, z′ ∈ Rd,

1

2
∥z − z′∥ ≤ ∥Fkh→t(z)− Fkh→t(z

′)∥ ≤ 3

2
∥z − z′∥.

In particular, Fkh→t has a unique, 2-Lipschitz inverse F−1kh→t : Rd → Rd, so

µ̂t,kh(x) = µ′kh(F
−1
kh→t(x)).

Furthermore, µ̂t,kh is O(L′t)-Lipschitz.

Henceforth, when k, h, t are clear from context, we will refer to the inverse F−1kh→t simply as F−1.

Proof. For the first bound, note that

∥Fkh→t(z)− Fkh→t(z
′)∥ ≥ ∥z − z′∥ − (t− kh)∥µ′kh(z)− µ′kh(z

′)∥ ≥ (1− h · L′kh) ∥z − z′∥,

so the lower bound in (C.3) follows by the fact that h ≤ 1/2L′. The upper bound follows analogously.

For the second part of the lemma, recall that bi-Lipschitz functions on Rd are bijective, so Fkh→t has a unique inverse
F−1kh→t. To see why the latter function is 2-Lipschitz, for any z0, z

′
0 we can take z = F−1kh→t(z0) and z′ = F−1kh→t(z

′
0) in the

lower bound of (C.3) to conclude that 1
2∥F

−1
kh→t(z0)− F−1kh→t(z

′
0)∥ ≤ ∥z0 − z′0∥ as desired. Eq. (C.3) then follows from

the fact that the distribution of y′kh conditioned on y′t = x is the point mass at F−1kh→t(x).

The only part that remains to be verified is Lipschitzness of µ̂t,kh. This follows from the fact that µ̂t,kh is the composition
of a L′t-Lipschitz function with a 2-Lipschitz function.

We will also use the following simple consequence of the third-order smoothness of µt (Condition 2 of Assumption 4.6):

15
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Lemma C.4. For all x, x′ ∈ Rd, then

sup∥∇div µt∥ ≤ Md and sup∥∇div µ̂t,kh∥ ≤ 2Md

Proof. The first bound is immediate from

|div µt(x)− div µt(x
′)| = |Tr∇µt(x)− Tr∇µt(x

′)| ≤ ∥∇µt(x)−∇µt(x
′)∥tr ≤ Md∥x− x′∥.

For the second bound, note that

|div µ̂t(x)− div µ̂t(x
′)| ≤ ∥∇µ′kh(F

−1(x))−∇µ′kh(F
−1(x′))∥op ≤ dM∥F−1(x)− F−1(x′)∥ ≤ 2Md

as claimed.

We are now ready to compute the time derivative of the KL divergence between π′t and πt.
Lemma C.5.

∂tKL (π
′
t∥πt) ≤ ζt

(∫
π′t∥∇ lnπ′t −∇ lnπt∥2

)1/2
Proof. We can compute

∂tKL (π
′
t∥πt) =

∫
(∂tπ

′
t) ln

π′t
πt

+

∫
π′t ∂t ln

π′t
πt

=

∫
(∂tπ

′
t) ln

π′t
πt

+

∫
π′t

∂t(π
′
t/πt)

π′t/πt

=

∫
(∂tπ

′
t) ln

π′t
πt

+

∫
πt ·

πt∂tπ
′
t − π′t∂tπt

πt
2

=

∫
(∂tπ

′
t) ln

π′t
πt

−
∫

π′t
πt

∂tπt

= −
∫

div(π′t · µ̂t,kh) ln
π′t
πt

+

∫
π′t
πt

div(πt · µt)

=

∫
π′t ⟨µ̂t,kh,∇ ln

π′t
πt

⟩ −
∫

πt ⟨∇
π′t
πt

, µt⟩

=

∫
π′t ⟨∇ ln

π′t
πt

, µ̂t,kh − µt⟩.

The lemma then follows by Cauchy-Schwarz, as∫
π′t∥µ̂t,kh − µt∥2 = Eπ′t

[∥µ′kh(F−1(y′t))− µt(y
′
t)∥2] = Eπ′t

[∥µ′kh(y′kh)− µt(y
′
t)∥2] ≤ ζ2t .

We need to control the Fisher information
∫
π′t∥∇ lnπ′t − ∇ lnπt∥2 in Lemma C.5. To do this, we will bound the time

derivatives of
∫
π′t∥∇ lnπ′t∥2 and

∫
π′t∥∇ lnπt∥2 in Lemmas C.6 and C.8 below and apply triangle inequality.

Lemma C.6.
∂t

∫
π′t∥∇ lnπ′t∥2 ≲ L′t

∫
π′t∥∇ lnπ′t∥2 +M2d2

In particular, by Grönwall’s inequality, for any 0 ≤ t ≤ T we have∫
π′t∥∇ lnπ′t∥2 ≲ Λ′O(1)(L′0d+M2d2t)

Proof. We have

∂t

∫
π′t∥∇ lnπ′t∥2 = −

∫
div(π′t · µ̂t)∥∇ lnπ′t∥2 +

∫
π′t∂t∥∇ lnπ′t∥2

= 2

∫
π′t
(
⟨µ̂t, (∇2 lnπ′t)∇ lnπ′t⟩+ ⟨∂t∇ lnπ′t,∇ lnπ′t⟩

)
= 2

∫
π′t
(
⟨µ̂t, (∇2 lnπ′t)∇ lnπ′t⟩+ ⟨∇(−div µ̂t − ⟨∇ lnπ′t, µ̂t⟩),∇ lnπ′t⟩

)
,
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where in the last step we used the first part of Proposition C.7 below. Note that we can write the latter term in the parentheses
in (C) as

⟨−∇div µ̂t − (∇2 lnπ′t)µ̂t − (∇µ̂t)∇ lnπ′t,∇ lnπ′t⟩.

Of these three terms, the second one exactly cancels with the first term in (C). Putting everything together, we get

∂t

∫
π′t∥∇ lnπ′t∥2 = −2

∫
π′t
(
⟨∇div µ̂t,∇ lnπ′t⟩+ (∇ lnπ′t)

⊤(∇µ̂t)(∇ lnπ′t)
)

≲ sup∥∇µ̂t∥op
∫

π′t∥∇ lnπ′t∥2 +
∫

π′t∥∇div µ̂t∥2,

where in the last step we used Young’s inequality. The first part of the lemma follows by Lemmas C.3 and C.4. For the
second part, Grönwall’s inequality tells us that

Eπ′t
[∥∇ lnπ′t∥2] ≤ Λ′O(1)(

∫
π∥∇ lnπ∥2 +M2d2t).

We conclude by noting that ∫
π∥∇ lnπ∥2 = −

∫
π∆ lnπ ≤ L′0d

by integration by parts and Condition 1 of Assumption 4.6.

We remark that Lemma C.6 is tight as h → 0 when the marginals {π′T−t}t∈[0,T ] are given by running the Ornstein-Uhlenbeck
process starting with a spherical Gaussian distribution.

In the above proof, we needed the following calculation:

Proposition C.7.

∂t lnπ
′
t = −div µ̂t,kh − ⟨∇ lnπ′t, µ̂t,kh⟩

∂t lnπt = −div µt − ⟨∇ lnπt, µt⟩.

Next, we carry out a calculation analogous to Lemma C.6 to bound the time derivative of Eπ′t
[∥∇ lnπt∥2]:

Lemma C.8.

∂t

∫
π′t∥∇ lnπt∥2 ≲ Lt

∫
π′t∥∇ lnπt∥2 +M2d2 + Ltζ

2
t .

In particular, by Grönwall’s inequality, for any 0 ≤ t ≤ T we have

Eπ′t
[∥∇ lnπt∥2] ≲ ΛO(1)(L′0d+M2d2t+ L′ζ2)

Proof. We have

∂t

∫
π′t∥∇ lnπt∥2 = −

∫
div(π′t · µ̂t)∥∇ lnπt∥2 +

∫
π′t∂t∥∇ lnπt∥2

= 2

∫
π′t
(
⟨µ̂t, (∇2 lnπt)∇ lnπt⟩+ ⟨∂t∇ lnπt,∇ lnπt⟩

)
= 2

∫
π′t
(
⟨µ̂t, (∇2 lnπt)∇ lnπt⟩+ ⟨∇(−div µt − ⟨∇ lnπt, µt⟩),∇ lnπt⟩

)
,

where in the last step we used the second part of Proposition C.7. Note that we can write the latter term in the parentheses in
(C) as

⟨−∇div µt − (∇2 lnπt)µt − (∇µt)∇ lnπt,∇ lnπt⟩.
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Of these three terms, the second one nearly cancels with the first term in (C). Putting everything together, we get the
inequality

∂t

∫
π′t∥∇ lnπt∥2 = −2

∫
π′t
(
⟨∇div µt,∇ lnπt⟩+ (∇ lnπt)

⊤(∇µt)(∇ lnπt)

+ (µt − µ̂t)
⊤(∇2 lnπt)∇ lnπt

)
≲ sup∥∇µt∥op

∫
π′t∥∇ lnπt∥2 +

∫
π′t∥∇div µt∥2

+ 2 sup∥∇2 lnπt∥op
(∫

π′t∥∇ lnπt∥2
)1/2(∫

π′t∥µt − µ̂t∥2
)1/2

≲ Lt

∫
π′t∥∇ lnπt∥2 +

∫
π′t∥∇div µt∥2 + Lt

∫
π′t∥µt − µ̂t∥2

where in the penultimate and final steps we used Young’s inequality, and in the final step we used Condition 1 of
Assumption 4.6. The first part of the lemma follows by Lemmas C.3 and Condition 4 of Assumption 4.6. The second part of
the lemma follows by Grönwall’s inequality and (C).

We can now combine Lemmas C.5, C.6, and C.8 to prove Theorem 4.7:

Proof of Theorem 4.7. By triangle inequality and Eqs. (C.6) and (C.8),(∫
π′t∥∇ lnπ′t −∇ lnπt∥2

)1/2
≲ (ΛO(1) + Λ′O(1))(L

′1/2
0 d1/2 +Mdt1/2) + ΛO(1)L′1/2ζt,

so integrating the bound in Lemma C.5 over t ∈ [0, T ], we get

KL (π′T ∥πT ) ≲ (ΛO(1) + Λ′O(1))(L
′1/2
0 d1/2 +MdT 1/2)

∫ T

0

ζt dt+ ΛO(1)L′1/2ζ2 .

We conclude by bounding
∫ T

0
ζt dt ≤ ζT 1/2 by Cauchy-Schwarz.

Finally, we record a norm bound which will be useful in the sequel:
Lemma C.9. For any 0 ≤ t ≤ T and any c > 0,

∂t E∥y′t∥2 ≤ E∥µ′kh∥2 + E∥y′t∥2 .

Proof. Recall that y′t = y′kh + (t− kh)µ′kh(y
′
kh), so

E∥y′t∥2 = E∥y′kh∥2 + (t− kh)2 E∥µ′kh(y′kh)∥2 + 2(t− kh)E⟨y′kh, µ′kh(y′kh)⟩ .

Differentiating with respect to t, we get

∂tE∥y′t∥2 = 2(t− kh)E∥µ′kh(y′kh)∥2 + 2E⟨y′kh, µ′kh(y′kh)⟩ = 2E⟨y′t, µ′kh(y′kh)⟩ ,

so the lemma follows by Young’s inequality.

D. Bounding the Difference in Drifts
We wish to apply Theorem 4.7 with (yt) and (y′t) given by (x←t ) and (x̃←t ) defined in Eqs. (2) and (B). For these processes,
the drifts (µkh) and (µ′t) in Eqs. (C) and (C) are given by

µt(x) ≜ −fT−t(x) +
1

2
g(T − t)2∇ ln q←t (x)

µ′kh(x) ≜ −fT−kh(x) +
1

2
g(T − kh)2∇ ln q←kh(x)−

1

h
(v

(1)
T−kh(x) + · · ·+ v

(3)
T−kh(x)) ,

and both processes are initialized at the distribution π = qT . In general, the marginal laws (πt) of the former process are
given by (q←t ). We will denote the marginal laws (π′t) of the latter process by (pt).

18
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D.1. Smoothness of drift

We now verify the first three parts of Assumption 4.6.

Lemma D.1. Part 1 of Assumption 4.6 holds with

Lt ≜ Θ(Lf ;x + g2maxLsc,t) .

Proof. By Part 5 of Assumption 4.1, ∇ ln q←t is Lsc,t-Lipschitz. As µt is the sum of an Lf ;x-Lipschitz function and a
1
2g

2
maxLsc,t-Lipschitz function, the claim follows.

Lemma D.2. Part 2 of Assumption 4.6 holds with

M ≜ (1 + g2max/2)Lhigh = Θ(g2maxLhigh) .

Proof. By Part 6 of Assumption 4.1, ∇µt is the sum of a Lhigh-Lipschitz function and a g2maxLhigh/2-Lipschitz function.

Lemma D.3. The restoration operator Rkh→(k−ℓ)h is O(1)-Lipschitz for all integers ℓ ≤ k ≤ T/h.

Proof. For any x, x′, we have

∥Rkh→(k−ℓ)h(x)−Rkh→(k−ℓ)h(x
′)∥ ≤ ∥x− x′∥+ ℓh ∥fkh(x)− fkh(x

′)∥
+ ℓh g(kh)2 ∥∇ ln qkh(x)−∇ ln qkh(x

′)∥
≤ (1 + ℓhLf ;x + ℓhg2maxLsc,kh) ∥x− x′∥ ≲ ∥x− x′∥.

Lemma D.4. 1
h (v1 + · · ·+ v3) is O(Lf ;x + g2maxLsc,kh)-Lipschitz.

Proof. By Lemma D.3, f(k−ℓ)h(z) = f(k−ℓ)h(Rkh→(k−ℓh)(x̃
←
kh) is a composition of an Lf ;x-Lipschitz function with an

O(1)-Lipschitz function in x̃←kh, so 1
hv1 is O(ℓξℓLf ;x)-Lipschitz. Similarly, 1

hv2 is the difference between an O(Lf ;x)-
Lipschitz function and an Lf ;x/2-Lipschitz function in x̃←kh, so it is O(Lf ;x)-Lipschitz. Finally, 1

hv3 is the sum of an
ℓξℓLf ;x ≪ Lf ;x-Lipschitz function and a g2maxLsc,kh-Lipschitz function, so it is (Lf ;x + g2maxLsc,kh-Lipschitz.

Lemma D.5. µ′kh as defined in (D) is O(Lf ;x + g2maxLsc,kh)-Lipschitz. In particular, Part 3 of Assumption 4.6 holds with

L′t ≜ Θ(Lf ;x + g2maxLsc,kh)

for all kh ≤ t < (k + 1)h.

Proof. Note that fT−kh(·)− 1
2g(T−kh)2∇ ln q←kh(·) is O(Lf ;x+g2maxLsc,kh)-Lipschitz, so the claim follows by Lemma D.4.

D.2. Distance between drifts

The bulk of our discretization analysis is devoted to verifying Part 4 of Assumption 4.6. For convenience, we will denote
v
(1)
T−kh(z), . . . , v

(3)
T−kh(z) by v1, . . . , v3. Henceforth, assume that

h ≪ min((RLf ;xℓ)
−1, (g2maxLsc,∗)

−1)

For any kh ≤ t ≤ (k + 1)h, we have

E∥µt(x̃
←
t )− µ′kh(x̃

←
kh)∥2 ≲ E∥fT−t(x̃←t )− fT−kh(x̃

←
kh)∥2

+ E∥g(T − t)2∇ ln q←t (x̃←t )− g(T − kh)2∇ ln q←kh(x̃
←
kh)∥2

+
1

h2
(E∥v1∥2 + · · ·E∥v3∥2) .

We first bound the excess terms v1, . . . , v3. We focus on the case T − kh ≥ ℓh, as otherwise v1 = v2 = v3 = 0 by
definition.

19
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Lemma D.6.
1

h2
E[∥v1∥2 + · · ·+ ∥v3∥2] ≲ ϵ1 max

k′∈{0,1,...,T/h}
E∥∇ ln q←k′h(x̃

←
k′h)∥2 + ϵ2

for

ϵ1 ≜ exp(O(L2
f ;xT ))(ℓ

−2 + ℓ2h2L2
f ;x) g

4
max

ϵ2 ≜ exp(O(L2
f ;xT ))(ℓ

−2 + ℓ2h2L2
f ;x)(E∥x̃←0 ∥2 +R2 + ℓ2h2L2

f ;t) .

Proof. Recall that
v1 = ℓξℓhfT−(k−ℓ)h(z) ,

so we have

E∥v1∥2 = ℓ2ξ2ℓh
2 E∥fT−(k−ℓ)h(z)∥2

≲ ℓ−2h2(E∥fT−(k−ℓ)h(x̃←kh)∥2 + L2
f ;x E∥z − x̃←kh∥2)

≲ ℓ−2h2(L2
f ;x E∥x̃←kh∥2 +R2 + L2

f ;x E∥z − x̃←kh∥2) .

Recall that

v2 =
h

2
(fT−(k−ℓ)h(z)− fT−kh(x̃

←
kh)) ,

so we have

E∥v2∥2 =
h2

4
E∥fT−(k−ℓ)h(z)− fT−kh(x̃

←
kh)∥2

≲ h2(ℓ2h2L2
f ;t + L2

f ;x ∥z − x̃←kh∥2) .

Recall that
v3 = hℓξℓ

(
−fT−kh(x̃

←
kh) + g(T − kh)2∇ ln q←(k+ℓ)h(x̃

←
kh)
)
,

so we have

E∥υ3∥2 = h2ℓ2ξ2ℓ E∥−fT−kh(x̃
←
kh) + g(T − kh)2∇ ln q←kh(x̃

←
kh)∥2

≲ ℓ−2h2(R2 + L2
f ;x E∥x̃←kh∥2 + g4max E∥∇ ln q←kh(x̃

←
kh)∥2)

Combining Eqs. (D.2), (D.2), and (D.2) we get

1

h2
E[∥v1∥2 + · · ·+ ∥v3∥2] ≲ (ℓ2h2L2

f ;t + ℓ−2R2) + ℓ−2g4max E∥∇ ln q←kh(x̃
←
kh)∥2

+ ℓ−2L2
f ;x E∥x̃←kh∥2 + L2

f ;x E∥z − x̃←kh∥2 .

Recall from (4.1) that
z = x̃kh − ℓh (fkh(x̃kh)− g(T − kh)2∇ ln q←kh(x̃kh)) ,

so

∥z − x̃←kh∥2 ≲ ℓ2h2(1 + ℓ2h2L2
f ;x) ∥fT−kh(x̃←kh)∥2 + ℓ2h2g4max ∥∇ ln q←kh(x̃

←
kh)∥2

≲ ℓ2h2 (L2
f ;x ∥x̃←kh∥2 +R2) + ℓ2h2g4max ∥∇ ln q←kh(x̃

←
kh)∥2,

where in the second step we used (D.2). Substituting this into (D.2) and using Lemma C.9 below to bound E∥x̃←kh∥2, we
obtain the desired bound.

Lemma D.7. For any integer 0 ≤ k ≤ T/h and any kh ≤ t < (k + 1)h,

E∥µt(x̃
←
t )− µ′kh(x̃

←
kh)∥2 ≲ ϵ′1 max

k′∈{0,1,...,T/h}
E∥∇ ln q←k′h(x̃

←
k′h)∥2 + ϵ′2

20
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for

ϵ′1 ≜ ϵ1 + h2L2
g + g4max(h

2L2
f ;x + h2g4maxL

2
sc,∗ + g4maxβ

2h2c) · exp(O(L2
f ;xT ))

ϵ′2 ≜ ϵ2 + g4maxβ
2h2c + (E∥x̃←0 ∥2 +R2 + ℓ2h2L2

f ;t)

× (h2L2
f ;x + h2g4maxLsc,∗ + g4maxβ

2h2c) · exp(O(L2
f ;xT )) .

In particular, for any δ > 0, if

ℓ ≳ δ−1/2(g2max +R+ ℓhLf ;t + E∥x←0 ∥2) · exp(O(L2
f ;xT ))

h ≲ min
{
poly(Lg, Lf ;t, R, gmax, Lsc,∗, Lf ;x,E∥x←0 ∥2)−1 ℓ−1δ1/2, (δ/(g4maxβ

2))1/2c
}
· exp(O(L2

f ;xT )) ,

then ϵ′1, ϵ
′
2 ≤ δ.

Proof. We can bound the first term on the right-hand side of (D.2) using Lipschitzness of f in time and space:

E∥fT−kh(x̃←kh)− fT−t(x̃
←
t )∥2 ≲ L2

f ;x E∥x̃←kh − x̃←t ∥2 + h2L2
f ;t .

For the second term on the right-hand side of (D.2), we can use Lipschitzness of g2 and the score:

E∥g(T − t)2 ∇ ln q←t (x̃←t )− g(T − kh)2 ∇ ln q←kh(x̃
←
kh)∥2

≲ h2L2
g E∥∇ ln q←kh(x̃

←
kh)∥2 + g(T − t)4 E∥∇ ln

q←kh
q←t

(x̃←kh)∥2 + g(T − t)4 L2
sc,tE∥x̃←kh − x̃←t ∥2

≲ (h2L2
g + g(T − t)4β2h2c)E∥∇ ln q←kh(x̃

←
kh)∥2

+ g(T − t)4β2h2c E∥x̃←kh∥2 + g(T − t)4β2h2c + g(T − t)4L2
sc,t E∥x̃←kh − x̃←t ∥2

≲ (h2L2
g + g4maxβ

2h2c)E∥∇ ln q←kh(x̃
←
kh)∥2

+ g4maxβ
2h2c E∥x̃←kh∥2 + g4maxβ

2h2c + g4maxL
2
sc,t E∥x̃←kh − x̃←t ∥2 .

Substituting the above bounds into (D.2), we get that

E∥µt(x̃
←
t )− µ′kh(x̃

←
kh)∥2

≲ (L2
f ;x + g4maxL

2
sc,t)E∥x̃←kh − x̃←t ∥2 + (h2L2

g + g4maxβ
2h2c)E∥∇ ln q←kh(x̃

←
kh)∥2

+ g4maxβ
2h2c E∥x̃←kh∥2 + g4maxβ

2h2c +
1

h2
E[∥v1∥2 + · · ·+ ∥v3∥2].

By applying the bounds for E∥x̃←kh − x̃←t ∥2 and E∥x̃←kh∥2 in Lemma D.8 and D.9 and noting that L2
f ;x + g4maxL

2
sc,t ≪ 1/h2

by (D.2), we see that the lemma follows from Lemma D.6 and the definition of ϵ′1, ϵ
′
2 in Eqs. (D.7), (D.7). Note that in the

assumed bounds on ℓ, h in the lemma statement, we substituted E∥x←0 ∥2 for E∥x̃←0 ∥2; this is because these two quantities
are identical.

D.3. Movement and norm bounds

Lemma D.8. For any integer 0 < k ≤ T/h and any kh ≤ t < (k + 1)h,

E∥x̃←t − x̃←kh∥2 ≲ h2 · exp(O(L2
f ;xT ))

(
E∥x̃0∥2 +R2 + ℓ2h2L2

f ;t

+ g4max max
k∈{0,1,...,T/h}

E∥∇ ln q←t (x̃←t )∥2
)
+ E[∥v1∥2 + · · ·+ ∥v3∥2] .

Proof. By definition of the interpolated process,

x̃←t = x̃←kh − (t− kh) {fT−kh(x̃←kh)−
1

2
g(T − kh)2∇ ln q←kh(x̃

←
kh) +

1

h
(v1 + · · ·+ v3)},

so
E∥x̃←t − x̃←kh∥2 ≲ h2 E∥fT−kh(x̃←kh)∥2 + h2g4max E∥∇ ln q←kh(x̃

←
kh)∥2 + E[∥v1∥2 + · · ·+ ∥v3∥2] .

21



Non-Asymptotic Analysis for DDIM-type Samplers 22

The proof is complete upon using Part 1 of Assumption 4.1 and Lemma D.9 to get

E∥fT−kh(x̃←kh)∥2 ≲ exp(O(L2
f ;xT ))

(
E∥x̃0∥2 +R2 + ℓ2h2L2

f ;t + g4max max
k∈{0,1,...,T/h}

E∥∇ ln q←t (x̃←t )∥2
)
,

where we have used that exp(O(L2
f ;xT )) · L2

f ;x = exp(O(L2
f ;xT )).

Lemma D.9. For all 0 ≤ t ≤ T ,

E∥x̃←t ∥2 ≲ exp(O(L2
f ;xT ))

(
E∥x̃←0 ∥2 +R2 + ℓ2h2L2

f ;t + g4max max
k∈{0,1,...,T/h}

E∥∇ ln q←kh(x̃
←
kh)∥2

)
.

Proof. By Lemma C.9,

∂t E∥x̃←t ∥2 ≲ E∥x̃←t ∥2 + E∥fT−kh(x̃←kh)∥2 + g4max E∥∇ ln q←kh(x̃
←
kh)∥2 +

1

h2
E[∥v1∥2 + · · ·+ ∥v3∥2]

≲ E∥x̃←t ∥2 + L2
f ;x E∥x̃←kh∥2 + g4max E∥∇ ln q←kh(x̃

←
kh)∥2 + E∥z − x̃←kh∥2 +R2 + ℓ2h2L2

f ;t

≲ E∥x̃←t ∥2 + L2
f ;x E∥x̃←kh∥2 + g4max E∥∇ ln q←kh(x̃

←
kh)∥2 +R2 + ℓ2h2L2

f ;t ,

where in the second step we used (D.2) and z is defined in (4.1), and in the third step we used (D.2) and the fact that ℓh ≪ 1
by (D.2). By Grönwall applied to the interval of times t ∈ [kh, (k + 1)h] along the reverse process, we find that

E∥x̃←t ∥2 ≲ exp(O(h)) ·
(
(1 + hL2

f ;x)E∥x̃←kh∥2 + h(g4max E∥∇ ln q←kh(x̃
←
kh)∥2 +R2 + ℓ2h2L2

f ;t)
)

≲ exp(cL2
f ;xh)E∥x̃←kh∥2 + h exp(O(h)) · (g4max E∥∇ ln q←kh(x̃

←
kh)∥2 +R2 + ℓ2h2L2

f ;t)

for all t ∈ [kh, (k + 1)h] for some absolute constant c > 0. In particular, this bound holds for t = (k + 1)h. Iterating this
T/h times, we obtain the desired bound.

Recall the definition of Λ,Λ′ in (4.3).

Lemma D.10. For all integers 0 ≤ k ≤ T/h,

E∥∇ ln q←kh(x̃
←
kh)∥2 ≲ ΛO(1)

(
(Lf ;x + g2maxLsc,∗)d+ g4maxL

2
highd

2T

+ Lsc,∗T max
t∈[0,T ]

E∥µt(x̃
←
t )− µ′⌊t/h⌋h(x̃

←
⌊t/h⌋h)∥

2
)

Proof. The proof follows from Lemmas D.1, D.2, D.5, and the bound in Lemma C.8 with ζt ≜ E∥µt(x̃
←
t )− µ′kh(x̃

←
kh)∥2

and ζ2 =
∫ T

0
ζ2t dt ≤ T maxt ζ

2
t . Note that in the definition of Λ and Λ′, we have a L2

f ;x term in the integrand even
though there is only an Lf ;x term in the definition of Lt in Lemma D.1. The reason for this looseness is to absorb the
exp(O(L2

f ;xT )) terms that appear elsewhere in the above analysis.

D.4. Putting everything together

Proof of Theorem 4.3. Let δ > 0 be a small parameter to be tuned later, and suppose h, ℓ satisfy (D.7). Then by integrating
the bound in Lemma D.7 over 0 ≤ t ≤ T and applying Lemma D.10, we conclude that

ζ2 ≜
∫ T

0

E∥µt(x̃
←
t )− µ′⌊t/h⌋h(x̃

←
⌊t/h⌋h)∥

2 dt

≲ δT + δΛO(1)
(
(Lf ;x + g2maxLsc,∗)dT + (1 + g2max)

2L2
highd

2T 2

+ Lsc,∗T

∫ T

0

E∥µt(x̃
←
t )− µ′⌊t/h⌋h(x̃

←
⌊t/h⌋h)∥

2 dt
)
.

Provided that
δ ≤ 1

2
Λ−O(1)L−1sc,∗T

−1 ,
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we can rearrange to conclude that

ζ2 ≲ δΛO(1)
(
(Lf ;x + g2maxLsc,∗)dT + g4maxL

2
highd

2T 2
)
.

By Theorem 4.7,

KL (π′T ∥πT ) ≲ (ΛO(1) + Λ′O(1))(L
′1/2
0 d1/2 +MdT 1/2) ζT 1/2 + ΛO(1)L′1/2ζ2

We will take δ sufficiently small that ζ2 ≤ 1, in which case by upper bounding L′0 by L′, the above is at most

≲ (ΛO(1) + Λ′O(1))(L′1/2d1/2 +MdT 1/2) ζT 1/2

≲ (ΛO(1) + Λ′O(1))
(
(L

1/2
f ;x + gmaxL

1/2
sc,∗)d

1/2 + g2maxLhighdT
1/2
)

×
(
(L

1/2
f ;x + gmaxL

1/2
sc,∗)d

1/2T 1/2 + g2maxLhighdT
)
δ1/2T 1/2

≲ (ΛO(1) + Λ′O(1))
(
(Lf ;x + g2maxLsc,∗)dT + g4maxL

2
highd

2T 2
)
δ1/2T 1/2

We take δ so that the above is at most the target accuracy ϵ. By (D.7), this can be achieved by taking h, ℓ satisfying the
bounds in the theorem statement.
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