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SAMPLING IS AS EASY AS LEARNING THE SCORE:
THEORY FOR DIFFUSION MODELS WITH MINIMAL DATA
ASSUMPTIONS

Sitan Chen* Sinho Chewi! Jerry Li' Yuanzhi Li’ Adil SalimY Anru R. Zhang|

ABSTRACT

We provide theoretical convergence guarantees for score-based generative models
(SGMs) such as denoising diffusion probabilistic models (DDPMs), which con-
stitute the backbone of large-scale real-world generative models such as DALL-E
2. Our main result is that, assuming accurate score estimates, such SGMs can
efficiently sample from essentially any realistic data distribution. In contrast to
prior works, our results (1) hold for an L?-accurate score estimate (rather than
L°-accurate); (2) do not require restrictive functional inequality conditions that
preclude substantial non-log-concavity; (3) scale polynomially in all relevant
problem parameters; and (4) match state-of-the-art complexity guarantees for dis-
cretization of the Langevin diffusion, provided that the score error is sufficiently
small. We view this as strong theoretical justification for the empirical success of
SGMs. We also examine SGMs based on the critically damped Langevin diffusion
(CLD). Contrary to conventional wisdom, we provide evidence that the use of the
CLD does not reduce the complexity of SGMs.

1 INTRODUCTION

Score-based generative models (SGMs) are a family of generative models which achieve state-of-
the-art performance for generating audio and image data (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Dhariwal & Nichol, 2021; Kingma et al., 2021; Song et al., 2021a;b; Vahdat et al., 2021);
see, e.g., the recent surveys (Cao et al., 2022; Croitoru et al., 2022; Yang et al., 2022). For example,
denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) are
a key component in large-scale generative models such as DALL-E 2 (Ramesh et al., 2022). As
the importance of SGMs continues to grow due to newfound applications in commercial domains,
it is a pressing question of both practical and theoretical concern to understand the mathematical
underpinnings which explain their startling empirical successes.

As we explain in Section 2, at their mathematical core, SGMs consist of two stochastic processes,
the forward process and the reverse process. The forward process transforms samples from a data
distribution ¢ (e.g., images) into noise, whereas the reverse process transforms noise into samples
from g, hence performing generative modeling. Running the reverse process requires estimating the
score function of the law of the forward process; this is typically done by training neural networks on
a score matching objective (Hyvérinen, 2005; Vincent, 2011; Song & Ermon, 2019).

Providing precise guarantees for estimation of the score function is difficult, as it requires an
understanding of the non-convex training dynamics of neural network optimization that is currently
out of reach. However, given the empirical success of neural networks on the score estimation task,
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a natural and important question is whether accurate score estimation implies that SGMs provably
converge to the true data distribution in realistic settings. This is a surprisingly delicate question, as
even with accurate score estimates, as we explain in Section 2.1, there are several other sources of
error which could cause the SGM to fail to converge. Indeed, despite a flurry of recent work (Block
et al., 2020; De Bortoli et al., 2021; De Bortoli, 2022; Lee et al., 2022a; Pidstrigach, 2022; Liu et al.,
2022), prior analyses fall short of answering this question, for (at least) one of three main reasons:

1. Super-polynomial convergence. The bounds obtained are not quantitative (e.g., De Bortoli et al.,
2021; Pidstrigach, 2022), or scale exponentially in the dimension and other problem parameters
like time and smoothness (Block et al., 2020; De Bortoli, 2022; Liu et al., 2022), and hence are
typically vacuous for the high-dimensional settings of interest in practice.

2. Strong assumptions on the data distribution. The bounds require strong assumptions on the true
data distribution, such as a log-Sobelev inequality (LSI) (see, e.g., Lee et al., 2022a). While the
LSI is slightly weaker than strong log-concavity, it ultimately precludes the presence of substantial
non-convexity, which impedes the application of these results to complex and highly multi-modal
real-world data distributions. Indeed, obtaining a polynomial-time convergence analysis for SGMs
that holds for multi-modal distributions was posed as an open question in (Lee et al., 2022a).

3. Strong assumptions on the score estimation error. The bounds require that the score estimate
is L*-accurate (i.e., uniformly accurate), as opposed to L?-accurate (see, e.g., De Bortoli et al.,
2021). This is problematic because the score matching objective is an L? loss (see Section A.1 in
the supplement), and there are empirical studies suggesting that in practice, the score estimate is
not in fact L°°-accurate (e.g., Zhang & Chen, 2022). Intuitively, this is because we cannot expect
that the score estimate we obtain will be accurate in regions of space where the true density is
very low, simply because we do not expect to see many (or indeed, any) samples from there.

Providing an analysis which goes beyond these limitations is a pressing first step towards theoretically
understanding why SGMs actually work in practice.

1.1 OUR CONTRIBUTIONS

In this work, we take a step towards bridging theory and practice by providing a convergence
guarantee for SGMs, under realistic (in fact, quite minimal) assumptions, which scales polynomially
in all relevant problem parameters. Namely, our main result (Theorem 2) only requires the following
assumptions on the data distribution g, which we make more quantitative in Section 3:

A1 The score function of the forward process is L-Lipschitz.
A2 The (2 + n)-th moment of g is finite, where 7 > 0 is an arbitrarily small constant.
A3 The data distribution ¢ has finite KL divergence w.r.t. the standard Gaussian.

We note that all of these assumptions are either standard or, in the case of A2, far weaker than what
is needed in prior work. Crucially, unlike prior works, we do not assume log-concavity, an LSI, or
dissipativity; hence, our assumptions cover arbitrarily non-log-concave data distributions. Our main
result is summarized informally as follows.

Theorem 1 (informal, see Theorem 2). Under assumptions A1-A3, and if the score estimation error
in L? is at most O(¢), then with an appropriate choice of step size, the SGM outputs a measure which
is e-close in total variation (TV) distance to q in O(L?d/e?) iterations.

Our iteration complexity is quite tight: it matches state-of-the-art discretization guarantees for the
Langevin diffusion (Vempala & Wibisono, 2019; Chewi et al., 2021a).

We find Theorem 1 surprising, because it shows that SGMs can sample from the data distribution ¢
with polynomial complexity, even when g is highly non-log-concave (a task that is usually intractable),
provided that one has access to an accurate score estimator. This answers the open question of
(Lee et al., 2022a) regarding whether or not SGMs can sample from multimodal distributions, e.g.,
mixtures of distributions with bounded log-Sobolev constant. In the context of neural networks, our
result implies that so long as the neural network succeeds at the score estimation task, the remaining
part of the SGM algorithm based on the diffusion model is completely principled, in that it admits a
strong theoretical justification.
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In general, learning the score function is also a difficult task. Nevertheless, our result opens the
door to further investigations, such as: do score functions for real-life data have intrinsic (e.g.,
low-dimensional) structure which can be exploited by neural networks? A positive answer to this
question, combined with our sampling result, would then provide an end-to-end guarantee for SGMs.

More generally, our result can be viewed as a black-box reduction of the task of sampling to the
task of learning the score function of the forward process, at least for distributions satisfying our
mild assumptions. Existing computational hardness results for learning natural high-dimensional
distributions like mixtures of Gaussians (Diakonikolas et al., 2017; Bruna et al., 2021; Gupte et al.,
2022) and pushforwards of Gaussians by shallow ReLL.U networks (Daniely & Vardi, 2021; Chen
et al., 2022a;b) thus immediately imply hardness of score estimation for these distributions. To our
knowledge this yields the first known information-computation gaps for this task.

Arbitrary distributions with bounded support. The assumption that the score function is Lips-
chitz entails in particular that the data distribution has a density w.r.t. Lebesgue measure; in particular,
our theorem fails when q satisfies the manifold hypothesis, i.e., is supported on a lower-dimensional
submanifold of R?. But this is for good reason: it is not possible to obtain non-trivial TV guarantees,
because the output distribution of the SGM has full support. Instead, we show in Section 3.2 that
we can obtain polynomial convergence guarantees in the bounded Lipschitz metric by stopping the
SGM algorithm early, or in the Wasserstein metric by an additional truncation step, under the sole
assumption that the data distribution ¢ has bounded support, without assuming that ¢ has a density.
Since data distributions encountered in real life satisfy this assumption, our results yield the following
compelling takeaway:

Given an L?-accurate score estimate, SGMs can sample from (essentially) any data distribution.

Critically damped Langevin diffusion (CLD). Using our techniques, we also investigate the use
of the critically damped Langevin diffusion (CLD) for SGMs, which was proposed in (Dockhorn
et al., 2022). Although numerical experiments and intuition from the log-concave sampling literature
suggest that the CLD could potentially speed up sampling via SGMs, we provide theoretical evidence
to the contrary. Based on this, in Section 3.3, we conjecture that SGMs based on the CLD do not
exhibit improved dimension dependence compared to the original DDPM algorithm.

1.2 PRIOR WORK

We now provide a detailed comparison to prior work. By now, there is a vast literature on providing
precise complexity estimates for log-concave sampling; see, e.g., Chewi (2022) for an exposition on
recent developments. The proofs in this work build upon the techniques developed in this literature.
However, our work addresses the significantly more challenging setting of non-log-concave sampling.

The work of De Bortoli et al. (2021) provides guarantees for the diffusion Schrédinger bridge (Song
et al., 2021b). However, as previously mentioned their result is not quantitative, and they require an
L°°-accurate score estimate. The works Block et al. (2020); Lee et al. (2022a); Liu et al. (2022) instead
analyze SGMs under the more realistic assumption of an L2?-accurate score estimate. However, the
bounds of Block et al. (2020); Liu et al. (2022) suffer from exponential dependencies on parameters
like dimension and smoothness, whereas the bounds of Lee et al. (2022a) require ¢ to satisfy an LSI.

The recent work of De Bortoli (2022), motivated by the manifold hypothesis, considers a different
pointwise assumption on the score estimation error which allows the error to blow up at time 0 and at
spatial co. We discuss the manifold setting in more detail in Section 3.2. Unfortunately, the bounds
of De Bortoli (2022) also scale exponentially in problem parameters such as the manifold diameter.

We also mention that the use of reversed SDEs for sampling is implicit in the interpretation of
the proximal sampler (Lee et al., 2021) given by Chen et al. (2022c). Our work can be viewed as
expanding upon the theory of Chen et al. (2022c) using a different forward channel (the OU process).

Concurrent work. Very recently, Lee et al. (2022b) independently obtained results similar to our
results for DDPM. While our assumptions are technically somewhat incomparable (they assume the
score error can vary with time but assume the data is compactly supported), our quantitative bounds
are stronger. Additionally, the upper and lower bounds for CLD are unique to our work.
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2 BACKGROUND ON SGMSs

Throughout this paper, given a probability measure p which admits a density w.r.t. Lebesgue measure,
we abuse notation and identify it with its density function. Additionally, we will let ¢ denote the data
distribution from which we want to generate new samples. We assume that ¢ is a probability measure
on R? with full support, and that it admits a smooth density written ¢ = exp(—U) (we relax this
assumption in Section 3.2).

In this section, we provide a brief exposition to SGMs, following Song et al. (2021b).

2.1 BACKGROUND ON DENOISING DIFFUSION PROBABILISTIC MODELING (DDPM)

Forward process. In denoising diffusion probabilistic modeling (DDPM), we start with a forward
process, which is a stochastic differential equation (SDE). For clarity, we consider the simplest
possible choice, which is the Ornstein—Uhlenbeck (OU) process

dX; = —X;dt +vV2dB;,  Xo~q, (1)

where (B;),, is a standard Brownian motion in R?. The OU process is the unique time-homogeneous
Markov process which is also a Gaussian process, with stationary distribution equal to the standard
Gaussian distribution v on R¢. In practice, it is also common to introduce a positive smooth function
g : R4y — R and consider the time-rescaled OU process

dX; = —g(t)* X, dt + V2 g(t) dB Xo~q. 2)

Although our analysis could be extended to consider these variants, in this work we stick with the
choice g = 1 for simplicity; see Song et al. (2021b) for further discussion.

The forward process has the interpretation of transforming samples from the data distribution ¢ into
pure noise. From the well-developed theory of Markov diffusions, it is known that if g, := law(X;)
denotes the law of the OU process at time ¢, then ¢; — ~? exponentially fast in various divergences
and metrics such as the 2-Wasserstein metric Ws; see Bakry et al. (2014).

Reverse process. If we reverse the forward process (1) in time, then we obtain a process that
transforms noise into samples from ¢, which is the aim of generative modeling. In general, suppose
that we have an SDE of the form

dXt = bt(Xt) dt + o dBt ,

where (0¢),~ is a deterministic matrix-valued process. Then, under mild conditions on the pro-
cess (e.g., Follmer, 1985; Cattiaux et al., 2022), which are satisfied for all processes under considera-
tion in this work, the reverse process also admits an SDE description. Namely, if we fix the terminal
time 7' > 0 and set

X5 = Xr_4, fort € [0,77,

then the process (X{~);¢(o 7 satisfies the SDE
dX;_ = bz_(Xg_)dt—f—O'Tft d.Bt7
where the backwards drift satisfies the relation

b + b5, = 0,0/ Ving, ¢ = law(Xy). 3)

Applying this to the forward process (1), we obtain the reverse process
AX{ ={X{ +2Vingr (X))} dt +v2dB:,  X§ ~ar, @)

where now (By), e[o,7] 18 the reversed Brownian motion.! Here, V In g; is called the score function
for g;. Since ¢ (and hence g; for ¢t > 0) is not explicitly known, in order to implement the reverse
process the score function must be estimated on the basis of samples. The mechanism behind this is
the idea of score matching which goes back to Hyvérinen (2005); Vincent (2011): roughly speaking,

"For ease of notation, we do not distinguish between the forward and the reverse Brownian motions.
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Gaussian integration by parts implies that minimizing the L?(¢;) loss achieved by an estimate s; for
the score V In g; is equivalent to minimizing the L?(q;) loss in predicting, given a sample from the
forward process at time ¢, what noise was applied to the corresponding sample at time O to obtain it.
We defer an exposition of the details of score matching to Sections A.1 and D of the supplement.

In light of this, it is thus most natural to assume an L?(g;) error bound E,, [||s: — VIn¢:||?] < €2,
for the score estimator s;. If s; is taken to be the empirical risk minimizer for a suitable function class,
then guarantees for the LQ(qt) error can be obtained via standard statistical analysis, see, e.g., Block

et al. (2020).

Discretization and implementation. We now discuss the final steps required to obtain an im-
plementable algorithm. First, in the learning phase, given samples )_((()1), e ,X'(()n) from g (e.g., a
database of natural images), we train a neural network via score matching, see Song & Ermon (2019).
Let h > 0 be the step size of the discretization; we assume that we have obtained a score estimate

sin of VIn gy, foreach time £ = 0,1,..., N, where T'= Nh.

In order to approximately implement the reverse SDE (4), we first replace the score function V In g7
with the estimate sp_;. Then, for ¢ € [kh, (k 4+ 1)h] we freeze the value of this coefficient in the
SDE at time kh. It yields the new SDE

dX; = {X; +2s7r_n(Xi)}dt +V2dB,,  t€[kh, (k+1)h]. (5)
Since this is a linear SDE, it can be integrated in closed form; in particular, conditionally on X, the
next iterate X (: +1)h has an explicit Gaussian distribution.

There is one final detail: although the reverse SDE (4) should be started at g7, we do not have access
to g directly. Instead, taking advantage of the fact that g7 ~ ~?, we instead initialize the algorithm
at X§~ ~ 74, i.e., from pure noise.

Let p; := law(X;") denote the law of the algorithm at time ¢. The goal of this work is to bound
TV(pr, q), taking into account three sources of error: (1) estimation of the score; (2) discretization
of the SDE with step size > 0; and (3) initialization of the algorithm at v¢ rather than at qz.

2.2 BACKGROUND ON THE CRITICALLY DAMPED LANGEVIN DIFFUSION (CLD)

The critically damped Langevin diffusion (CLD) is based on the forward process
dXt = _‘7t dt 3
dV, = —(X; +2V,)dt +2dB; .

Compared to the OU process (1), this is now a coupled system of SDEs, where we have introduced a
new variable V representing the velocity process. The stationary distribution of the process is ~24,
the standard Gaussian measure on phase space R? x R?, and we initialize at X ~ qand Vj ~ fyd.

(6)

More generally, the CLD (6) is an instance of what is referred to as the kinetic Langevin or the
underdamped Langevin process in the sampling literature. In the context of strongly log-concave
sampling, the smoother paths of X lead to smaller discretization error, thereby furnishing an algorithm

with 6(\/E /e) gradient complexity (as opposed to sampling based on the overdamped Langevin
process, which has complexity O(d/e?)), see Cheng et al. (2018); Shen & Lee (2019); Dalalyan &
Riou-Durand (2020); Ma et al. (2021). The recent paper Dockhorn et al. (2022) proposed to use the
CLD as the basis for an SGM and they empirically observed improvements over DDPM.
Applying (3), the corresponding reverse process is

dX; = -V, dt,

d‘i/f(i = (Xf —+ 2 ‘7;7 —+ 4v1) hl QT_t(Xf, ‘Zf;)) dt 4+ 2dBt ,
where q; = lavv()_( ts I_/t) is the law of the forward process at time ¢. Note that the gradient in the

score function is only taken w.r.t. the velocity coordinate. Upon replacing the score function with an
estimate s, we arrive at the algorithm

dX; = -V, dt,
AV,© = (X7 + 2V, +dsr_en(X55, Vi) dt +2d By,
for ¢t € [kh, (k + 1)h]. We provide further background on the CLD in Section C.1.

)
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3  RESULTS
We now formally state our assumptions and our main results.

3.1 RESULTS FOR DDPM

For DDPM, we make the following mild assumptions on the data distribution q.
Assumption 1 (Lipschitz score). For all t > 0, the score V In q; is L-Lipschitz.

Assumption 2 (second moment bound). For some n > 0, E,[||-|*T7] is finite. We also write
m3 = E,[||-|] for the second moment of q.

For technical reasons, we need to assume that ¢ has a finite moment of order slightly but strictly
bigger than 2, but our quantitative bounds will only depend on the second moment m3.

Assumption 1 is standard and has been used in the prior works Block et al. (2020); Lee et al. (2022a).
However, unlike Lee et al. (2022a); Liu et al. (2022), we do not assume Lipschitzness of the score
estimate. Moreover, unlike Block et al. (2020); De Bortoli et al. (2021); Liu et al. (2022), we do not
assume any convexity or dissipativity assumptions on the potential U, and unlike Lee et al. (2022a)
we do not assume that g satisfies a log-Sobolev inequality. Hence, our assumptions cover a wide
range of highly non-log-concave data distributions. Our proof technique is fairly robust and even
Assumption 1 could be relaxed (as well as other extensions, such as considering the time-changed
forward process (2)), although we focus on the simplest setting in order to better illustrate the
conceptual significance of our results.

We also assume a bound on the score estimation error.
Assumption 3 (score estimation error). Forallk =1,...,N, Ey,, [|lskn — VIngenl?] <

— score

This is the same assumption as in Lee et al. (2022a), and as discussed in Section 2.1, it is a natural
and realistic assumption in light of the derivation of the score matching objective.
Our main result for DDPM is the following theorem.

Theorem 2 (DDPM, see Section B of supplement). Suppose that Assumptions 1, 2, and 3 hold. Let
pr be the output of the DDPM algorithm (Section 2.1) at time T, and suppose that the step size
h :=T/N satisfies h < 1/L, where L > 1. Then, it holds that

TV(pr,q) < /KL(q || v?) exp(=T) + (LVdh + Lmah) VT +  geore VT

discretization error score estimation error

convergence of forward process

To interpret this result, suppose that, e.g., KL(q || v¢) < poly(d) and my < d.2 Choosing T' <
log(KL(q || v)/¢) and h =< L—Q and hiding logarithmic factors,

L%d
TV(pTa Q) < 0(6 + gscore) ) for N = 6( ) .

2

In particular, in order to have TV (pr, q) < ¢, it suffices to have score error egcore < 5(6)

We remark that the iteration complexity of N = @( ) matches state-of-the-art complexity bounds
for the Langevin Monte Carlo (LMC) algorithm for samphng under a log-Sobolev inequality (LSI),
see Vempala & Wibisono (2019); Chewi et al. (2021a). This provides some evidence that our
discretization bounds are of the correct order, at least with respect to the dimension and accuracy
parameters, and without higher-order smoothness assumptions.

3.2 CONSEQUENCES FOR ARBITRARY DATA DISTRIBUTIONS WITH BOUNDED SUPPORT

We now elaborate upon the implications of our results under the sole assumption that the data
distribution ¢ is compactly supported, supp ¢ C B(0, R). In particular, we do not assume that ¢ has a

2For many distributions of interest, e.g., the standard Gaussian distribution or product measures, in fact we
have mp = O(\/ﬁ) Also, for applications to images in which each coordinate (i.e., pixel) lies in a bounded
range [—1, 1], we also have my < V.
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smooth density w.r.t. Lebesgue measure, which allows for studying the case when ¢ is supported on a
lower-dimensional submanifold of R as in the manifold hypothesis. This setting was investigated
recently in De Bortoli (2022).

For this setting, our results do not apply directly because the score function of g is not well-defined
and hence Assumption 1 fails to hold. Also, the bound in Theorem 2 has a term involving KL(q || v%)
which is infinite if ¢ is not absolutely continuous w.r.t. v¢. As pointed out by De Bortoli (2022),
in general we cannot obtain non-trivial guarantees for TV (pr, ¢), because pr has full support and
therefore TV (pr, g) = 1 under the manifold hypothesis. Nevertheless, we show that we can apply
our results using an early stopping technique.

Namely, using the following lemma, we obtain a sequence of corollaries.

Lemma 3 (Lemma 21 in supplement). Suppose that supp q C B(0, R) where R > 1, and let g,
denote the law of the OU process at time t, started at q. Let ey, > 0 be such that ey, < Vd and

3
sett =< 5%%/(\/3 (RV V). Then, (1) Wa(qs, q) < ew,, (2) q; satisfies KL(q; || v%) < %,
2

2
and (3) for every t' > t, qp satisfies Assumption 1 with L < %{M_
Wa
By substituting ¢; for this choice of ¢ in place of ¢ in Theorem 2, we obtain Corollary 4 below. We
remark that taking ¢; as the new target corresponds to stopping the algorithm early: instead of running
the algorithm backward for a time 7', we run the algorithm backward for a time 7" — ¢ (note that 7" — ¢
should be a multiple of the step size h).

Corollary 4 (compactly supported data). Suppose that q is supported on the ball of radius R > 1.
Lett < E%Vz /(\/E (RV \/ﬁ)) Then, the output py_; of DDPM is epv-close in TV to the distribution
qt, which is ey, -close in Wy, to q, provided that the step size h is chosen appropriately according to

~ 4 ~
Theorem 2 and N = © (w) and escore < O(eTV).

€TV Ewy

Observing that both the TV and W; metrics are upper bounds for the bounded Lipschitz metric
deL(p,v) ==sup{[ fdu— [ fdv| f:R? — [~1,1] is 1-Lipschitz}, we immediately obtain the
following corollary.

Corollary 5 (compactly supported data, BL metric). Suppose that q is supported on the ball of
radius R > 1. Let t < 5%%/(\/& (RV V/d)). Then, the output p_,; of the DDPM algorithm satisfies
dBL(Pr—t,q) < €, provided that the step size h is chosen appropriately according to Theorem 2 and
N = O(d*R* (R V Vd)* /1) and e4eore < O(eTv).

Finally, if the output pr_; of DDPM at time T — ¢ is projected onto B(0, Ry) for an appropriate
choice of Ry, then we can also translate our guarantees to the standard W, metric, which we state as
the following corollary.

Corollary 6 (compactly supported data, W5 metric; see Section B.5 in supplement). Suppose that
q is supported on the ball of radius R > 1. Let t < &%, /(Vd (R V V/d)), and let pp_ g, denote

the output of DDPM at time T — t projected onto B(0, Ry) for Ry = ©(R). Then, it holds that
Wa(pr—t,Rry,q) < € provided that the step size h is chosen appropriately according to Theorem 2,

N = O(d*R8 (R V Vd)*/e'?), and ecore < O(e1v).

Note that the dependencies in the three corollaries above are polynomial in all of the relevant problem
parameters. In particular, since the last corollary holds in the W5 metric, it is directly comparable
to De Bortoli (2022) and vastly improves upon the exponential dependencies therein.

3.3 RESULTS FOR CLD

In order to state our results for score-based generative modeling based on the CLD, we must first
modify Assumptions 1 and 3 accordingly.

Assumption 4. For allt > 0, the score V,, 1n q; is L-Lipschitz.

Assumption 5. Forallk =1,...,N, Eq,, [lIskn — Vo Inqin|?] < €20re-
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If we ignore the dependence on L and assume that the score estimate is sufficiently accurate, then
the iteration complexity guarantee of Theorem 2 is N = ©(d/e?). On the other hand, recall from
Section 2.2 that based on intuition from the literature on log-concave sampling and from empirical
findings in Dockhorn et al. (2022), we might expect that SGMs based on the CLD have a smaller
iteration complexity than DDPM. We prove the following theorem.

Theorem 7 (CLD, see Section C of supplement). Suppose that Assumptions 2, 4, and 5 hold. Let pr
be the output of the SGM algorithm based on the CLD (Section 2.2) at time T, and suppose the step
size h == T/N satisfies h < 1/L, where L > 1. Then, there is a universal constant ¢ > 0 such that
TV(pr,q @ ~?%) is bounded, up to a constant factor, by

VKL [7) + Fi(q |79 exp(—eT) + (VR + L) VT 4 gxcoreVT
N—_——

discretization error score estimation error

convergence of forward process

where F(q || v?) is the relative Fisher information FI(q || v¢) := E4[||V In(q/7%)|?].

Note that the result of Theorem 7 is in fact no better than our guarantee for DDPM in Theorem 2.
Although it is possible that this is an artefact of our analysis, we believe that it is in fact fundamental.
As we discuss in Remark C.2, from the form of the reverse process (7), the SGM based on CLD lacks
a certain property (that the discretization error should only depend on the size of the increment of
the X process, not the increments of both the X and V' processes) which is crucial for the improved
dimension dependence of the CLD over the Langevin diffusion in log-concave sampling. Hence, in
general, we conjecture that under our assumptions, SGMs based on the CLD do not achieve a better
dimension dependence than DDPM.

We provide evidence for our conjecture via a lower bound. In our proofs of Theorems 2 and 7, we
rely on bounding the KL divergence between certain measures on the path space €([0, 7]; R?) via
Girsanov’s theorem. The following result lower bounds this KL divergence, even for the setting in
which the score estimate is perfect (€4core = 0) and the data distribution ¢ is the standard Gaussian.

Theorem 8 (Section C.5 of supplement). Let pr be the output of the SGM algorithm based on the
CLD (Section 2.2) at time T, where the data distribution q is the standard Gaussian fyd, and the score
estimate is exact (€score = 0). Suppose that the step size h satisfies h < 1/(T V 1). Then, for the
path measures Pr and QY% of the algorithm and the continuous-time process (7) respectively (see
Section C for details), it holds that KL(Q%- || Pr) > dhT.

Theorem 8 shows that in order to make the KL divergence between the path measures small, we
must take & < 1/d, which leads to an iteration complexity that scales linearly in the dimension d.
Theorem 8 is not a proof that SGMs based on the CLD cannot achieve better than linear dimension
dependence, as it is possible that the output pr of the SGM is close to ¢ ® v? even if the path
measures are not close, but it rules out the possibility of obtaining a better dimension dependence via
our Girsanov proof technique. We believe that it provides compelling evidence for our conjecture,
i.e., that under our assumptions, the CLD does not improve the complexity of SGMs over DDPM.

We remark that in this section, we have only considered the error arising from discretization of the
SDE. It is possible that the score function V,, In q; for the SGM with the CLD is easier to estimate
than the score function for DDPM, providing a statistical benefit of using the CLD. Indeed, under the
manifold hypothesis, the score V In ¢, for DDPM blows up at ¢ = 0, but the score V,, In g; for CLD
is well-defined at ¢ = 0, and hence may lead to improvements over DDPM. We do not investigate
this question here and leave it as future work.

4 TECHNICAL OVERVIEW
We now give a detailed technical overview for the proof for DDPM (Theorem 2). The proof for CLD
(Theorem 7) follows along similar lines.

Recall that we must deal with three sources of error: (1) the estimation of the score function; (2) the
discretization of the SDE; and (3) the initialization of the reverse process at ¢ rather than at g7-.

First, we ignore the errors (1) and (2), and focus on the error (3). Hence, we consider the
continuous-time reverse SDE (4), initialized from 7d (resp. qr) and denote by p; (resp. qr—¢)
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its marginal distributions. Note that o = ~? and that ¢y = ¢, the data distribution. First, us-
ing the exponential contraction of the KL divergence along the (forward) OU process, we have
KL(qr || 7?) < exp(—2T) KL(q||~?). Then, using the data processing inequality along the backward
process, we have TV(pr, q) < TV(79, gr). Therefore, using Pinsker inequality, we get

TV(pr,q) < TV(y%, qr) < \/KL(gr | 7?) < exp(=T)/KL(q [| v9),

i.e., the output pr converges to the data distribution ¢ exponentially fast as T" — oc.

Next, we consider the score estimation error (1) and the discretization error (2). Using Girsanov’s
theorem, these errors can be bounded by

(k4+1)h

N—-1
SR / lsr—in (Xi5) — Vingr_ (X2 dt ®)
k=0 kh

(see the inequality (15) in the supplement). Unlike other proof techniques, such as the interpolation
method in Lee et al. (2022a), the error term (8) in Girsanov’s theorem involves an expectation under
the law of the true reverse process, instead of the law of the algorithm (see Lee et al. (2022a)). This
difference allows us to bound the score estimation error using Assumption 3 directly, which allows
a simpler proof that works under milder assumptions on the data distribution. However, the use of
Girsanov’s theorem typically requires a technical condition known as Novikov’s condition, which fails
to hold under under our minimal assumptions. To circumvent this issue, we use an approximation
argument relying on abstract results on the convergence of stochastic processes. A recent concurrent
and independent work Liu et al. (2022) also uses Girsanov’s theorem, but assumes that Novikov’s
condition holds at the outset.

5 CONCLUSION

In this work, we provided the first convergence guarantees for SGMs which hold under realistic
assumptions (namely, L2-accurate score estimation and arbitrarily non-log-concave data distributions)
and which scale polynomially in the problem parameters. Our results take a step towards explaining
the remarkable empirical success of SGMs, at least assuming the score is learned with small L2 error.

The main limitation of this work is that we did not address the question of when the score function
can be learned well. In general, studying the non-convex training dynamics of learning the score
function via neural networks is challenging, but we believe that the resolution of this problem, even
for simple learning tasks, would shed considerable light on SGMs. Together with the results in this
paper, it would yield the first end-to-end guarantees for SGMs.

In light of the interpretation of our result as a reduction of the task of sampling to the task of score
function estimation, we also ask whether there are interesting situations where it is easier to learn the
score function (not necessarily via a neural network) than to (directly) sample.
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A PRELIMINARIES
In this section, we review the notion of score matching and provide a list of notation for the proofs.

A.1 PRIMER ON SCORE MATCHING

In order to estimate the score function V In g, consider minimizing the L?(q;) loss over a function
class &

misrtliergze By, [lls: — VIngl*], )
where % could be, e.g., a class of neural networks. The idea of score matching, which goes back
to Hyvirinen (2005); Vincent (2011), is that after applying integration by parts for the Gaussian
measure, the problem (9) is equivalent to the following problem'

mlsrzlergze st(Xy) + ——

1 —exp H } (10)

where Z; ~ normal(0, I) is 1ndependent of Xpand X; = exp(— XO + /1 — exp(—2t) Z;, in the
sense that (9) and (10) share the same minimizers. We give a self-contained derivation in Appendlx D
for the sake of completeness. Unlike (9), however, the objective in (10) can be replaced with an

empirical version and estimated on the basis of samples X(()l), - ,X(()n) from ¢, leading to the
finite-sample problem

n

1
minimize — E
stEF n “

¢ 1 Ol
(X} )+ ——= 7
((Xe7) 1 — exp(—2t) ¢

where (Zt(i)) ie[n) are i.i.d. standard Gaussians independent of (Xéi))i e[n)- Moreover, if we parame-
1
v/ 1—exp(—2t)

L N i
minimize - ﬁZHZt(Xt())*Zt()HZ’

Zt€—4/1—exp(—2t)

terize the score as s; = — Zt, then the empirical problem is equivalent to

which has the illuminating interpretation of predicting the added noise Zt(i) from the noised data

)_(t(i), i.e., denoising.

NOTATION

For a measurable mapping 7" : X — X and a measure p on X, where X is a measurable space, the
notation Ty refers to the pushforward of 11 by the mapping T, i.e., if X ~ p, then T'(X) ~ Ty p.

Stochastic processes and their laws.

¢ The data distribution is ¢ = qq.

* The forward process (1) is denoted (Xt)te[o ) and X; ~ G-

* The reverse process (4) is denoted (X )te[O AL where Xf = Xrp_4 ~ qr_q.

* The SGM algorithm (5) is denoted (X~ )¢ 7> and X~ ~ p;. Recall that we initialize at
po = %, the standard Gaussian measure.

s The process (X, 7qT>t€[0 T] is the same as (X;7),c(o7)> except that we initialize this

process at g rather than at y¢. We write X, 97 ~ pjT.

Conventions for Girsanov’s theorem. When we apply Girsanov’s theorem, it is convenient to
instead think about a single stochastic process, which for ease of notation we denote simply via
(Xt)1e[0,7)> and we consider different measures over the path space C([0, T; R4).

The two measures we consider over path space are:
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* Q% , under which (Xt)te[o,T] has the law of the reverse process (4);
* P{", under which (X;), c[o,r) has the law of the SGM algorithm initialized at g7 (corre-
sponding to the process (X, ’QT)te[o,T} defined above).

We also use the following notion from stochastic calculus (Le Gall, 2016, Definition 4.6):

* A local martingale (Lt)te[O,T] is a stochastic process s.t. there exists a sequence of non-
decreasing stopping times T, — T's.t. L™ = (LT, )ie[o, 1] iS @ martingale.

Other parameters. We recall that 7 > 0 denotes the total time for which we run the forward
process; h > 0 is the step size of the discretization; L. > 1 is the Lipschitz constant of the score
function; m3 := E,[||-||?] is the second moment under the data distribution; and £score is the L? score
estimation error.

Notation for CLD. The notational conventions for the CLD are similar; however, we must also
consider a velocity variable V. When discussing quantities which involve both position and velocity
(e.g., the joint distribution g; of (X;, V})), we typically use boldface fonts.

B PROOFS FOR DDPM

B.1 PRELIMINARIES ON GIRSANOV’S THEOREM AND A FIRST ATTEMPT AT APPLYING
GIRSANOV’S THEOREM

First, we recall a consequence of Girsanov’s theorem that can be obtained by combining Pages
136-139, Theorem 5.22, and Theorem 4.13 of Le Gall (2016).

Theorem 9. Fort € [0,T), let Ly = fg bs dBy where B is a Q-Brownian motion. Assume that
Eq fOT bs]|? ds < oco. Then, £ is a Q-martingale in L?(Q). Moreover, if

t 1 t
Eo&(L)r =1, where &(L), ::exp(/ bsstfi/ ||bsH2ds), (11)
0 0

then (L) is also a Q-martingale and the process

t
t— By — / bSdS
0
is a Brownian motion under P == (L)1 Q, the probability distribution with density (L)1 w.rt. Q.

If the assumptions of Girsanov’s theorem are satisfied (i.e., the condition (11)), we can apply
Girsanov’s theorem to () = Q% and

by = V2 (s7—kn(Xpn) — VIngr_i(Xy)),
where ¢ € [kh, (k + 1)h]. This tells us that under P = (L) Q% , there exists a Brownian motion
(B)iego.ry st
dB, = V2 (s7xn(Xkn) — VIngr (X)) dt + dp; . (12)
Recall that under ()%~ we have a.s.

dX, = {X, +2VIngr_(X,)}dt + V2dB,, Xo~qr. 13)

The equation above still holds P-a.s. since P < Q- (even if B is no longer a P-Brownian motion).
Plugging (12) into (13) we have P-a.s.,

dXy = {X; + 257 (Xen) } At + V2dB; Xo ~qr.

3We still have X ~ gr under P because the marginal at time ¢ = 0 of P is equal to the marginal at time
t = 0 of Q% . That is a consequence of the fact that £(L) is a (true) Q7 -martingale.
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In other words, under P, the distribution of X is the SGM algorithm started at g7, i.e., P = Pq‘{T =
E(L)r Q% . Therefore,
dQ%

KL(QT || PF") = Eqy In P =Eqs In&(L)7! (14)

(k+1)h
= EQ; / HsTfkh(th) —Vlan,t(Xt)||2dt,

kh
where we used Eqs- £¢ = 0 because £ is a martingale.

The equality (14) allows us to bound the discrepancy between the SGM algorithm and the reverse
process.

B.2 CHECKING THE ASSUMPTIONS OF GIRSANOV’S THEOREM AND THE GIRSANOV
DISCRETIZATION ARGUMENT

In most applications of Girsanov’s theorem in sampling, a sufficient condition for (11) to hold, known
as Novikov’s condition, is satisfied. Here, Novikov’s condition writes

(k+1)h
EQ(— exp Z/ ‘ST kh th) Vlan_t(Xt)HZdt) < 00,

and if Novikov’s condition holds, we can apply Girsanov’s theorem directly. However, under
Assumptions 1, 2, and 3 alone, Novikov’s condition need not hold. Indeed, in order to check
Novikov’s condition, we would want X to have sub-Gaussian tails for instance.

Furthermore, we also could not check that the condition (11), which is weaker than Novikov’s
condition, holds. Therefore, in the proof of the next Theorem, we use a approximation technique to
show that

KL(Q | Pf7) = Eos In S5k

S < Eor mé&L)! (15)

N— (k+1)h
Z / HSTfkh(th) —V]HqT,t(Xt)szt.
k=0

We then use a discretization argument based on stochastic calculus to further bound this quantity. The
result is the following theorem.

Theorem 10 (discretization error for DDPM). Suppose that Assumptions 1, 2, and 3 hold. Let Q%
and P{" denote the measures on path space corresponding to the reverse process (4) and the SGM
algorithm with L*-accurate score estimate initialized at q. Assume that L > 1 and h < 1/ L. Then,

TV(PE Q)< KL(QF || PET) S (Siope + L2+ LPm3h?) T

( score
Pmof. We start by proving

(k+1)h
Z Eos / sz (Xin) — V0 gr—o(XO)IP dt < (ore + Ldh + Lm3h?) T

Then, we give the approximation argument to prove the inequality (15).
Bound on the discretization error. For ¢ € [kh, (k + 1)h], we can decompose
EQs [[ls7—kn(Xkn) — VIngr_(X)|1?]
S Eqs llsr—kn(Xen) — VIngr—gn (Xin)|1?]
+ B IV Ingr—pn(Xan) — VIngr—(Xpn) %]
+ IEQ‘T— [[IVIngr—¢(Xkn) — Vin QT—t(Xt)||2]

qT—kh

2
< Sne + Ba [V T ()| ] + 22 By (1%~ XuP) ()

qr—t
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We must bound the change in the score function along the forward process. If S : R? — R is the
mapping S(x) = exp(—(t — kh)) z, then gr_gn = Sgqr— * normal(0,1 — exp(—2 (¢ — kh))).
We can then use Lee et al. (2022a, Lemma C.12) (or the more general Lemma 17 that we prove in
Section C.4) with o« = exp(t — kh) = 1+ O(h) and 02 = 1 — exp(—2 (t — kh)) = O(h) to obtain

2
HVIn %(th)H < LPdh+ LPh? || Xin|® + (14 L) B ||V Inqr—¢ (Xen) ||
—t

< L2dh + L2R? || X ||> + L2B? |V Ingr (X))
where the last line uses L > 1.

For the last term,

IVIngr—e(Xin) |* S IV Ingr—e(Xo)|* + [V In gr—e(Xin) = Vingr—o(Xy)|J?
S IV Ingr—e(Xo)|* + L2 | Xpn — X,

where the second term above is absorbed into the third term of the decomposition (16). Hence,

Eqs [Is7—kn(Xin) — VIngr—(Xy)||?]
S €2 + L2dh + L?1* Eqs [ Xin|1?]

~ 6\SCOI"e

+ L2h* Eqg [V Ingr—o (X0)|I°] + L? Eqg [[| Xin — Xul|] -

Using the fact that under @)%, the process (Xt>te[o,T] is the time reversal of the forward process

(X, )y e[o,7]> We can apply the moment bounds in Lemma 11 and the movement bound in Lemma 12
to obtain
Eqs [Isr—kn(Xkn) — VIngr—i(Xy)|?]
S el oo + L2dh + L?h? (d 4+ m3) + L3dh? + L* (m3h? + dh)

< €2 e + L2dh + L*m3h?.

~v T score

Approximation argument. For ¢ € [0, 7], let £; = fot bs dBs where B is a Q% -Brownian motion
and we define

be = V2 {87 (X)) — VIngr_(X:)},
for t € [kh, (k4 1)h]. We proved that Eq« fOT bs]1?ds < (€20 + L2dh + LPm3h*) T < oc.

score

Using Le Gall (2016, Proposition 5.11), (€(£)¢)¢e[o,7] is a local martingale. Therefore, there exists
a non-decreasing sequence of stopping times T}, ,** T' s.t. (€(£)¢aT, )tc[o,4) 1S @ martingale. Note
that £(L)iar, = E(L™); where LI = Lyar, . Since E(L™) is a martingale, we have

Eqs E(L™)r = Eqs E(L™)o =1,
e, Eq« E(L)r, =1

We apply Girsanov’s theorem to L} = fot bs 1j0,7,)(s) dBs, where B is a Qf -Brownian mo-

tion. Since Eq« fOT 1bs Ljo,7,1(5)[|* ds < Eqs fOT |bs]|? ds < oo (see the last paragraph) and
Eqs €(L™)r = 1, we obtain that under P" := (L") Q7 there exists a Brownian motion 5" s.t.
fort € (0,77,

dBy = V2 {s7—kn(Xpn) — VIngr—¢(Xe)} Loz, (8) dt + dBy"
Recall that under ()%~ we have a.s.
dXy = {Xt'i‘2V1116]T7::(Xt)}d15—f—\/EdB,g7 Xo~qr.

The equation above still holds P™-a.s. since P" < % . Combining the last two equations we then
obtain P"-a.s.,

dXy = {Xe+2 s7—pn (Xin)} Lo,z (8) dtH{ X +2 VIngr_o(Xy)} Lig,, 7y () dt+V2dB), (17)
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and Xy ~ gr. In other words, P™ is the law of the solution of the SDE (17). At this stage we have
the bound

. _ I I
KL(QF || P") = Boy n&(0)7! = By [~Lr, +3 [ Il ds] =Bog 5 [ IR as
1
<Eop g [ 117 (Rt 2+ LPmp) T

where we used that Eq« L7, = 0 because £ is a Q7 -martingale and 7}, is a bounded stopping
time (Le Gall, 2016, Corollary 3.23). Our goal is now to show that we can obtain the final result by
an approximation argument.

We consider a coupling of (P"),, ., P{": a sequence of stochastic processes (X™),, .y over the
same probability space, a stochastic process X and a single Brownian motion W over that space s.t.*

AdX7 = { X7 +2 57 kn(XP5)} Lo (8) dt+{ X7 +2 VIngr_o(X7)} L, 7y (8) dt+V2dW,

and
dXy = {Xs + 2sp_pn (X)) dt + V24w,

with X¢ = X} a.s. and Xy ~ ¢g7. Note that the distribution of X™ (resp. X) is P" (resp. PI‘ZT).
Let £ > 0 and consider the map 7. : C([0, T]; R%) — €([0, T]; R?) defined by
Te(w)(t) =w(t AT —¢).

Noting that X;* = X, for every ¢t € [0,7},] and using Lemma 13, we have 7.(X") — 7.(X) ass.,
uniformly over [0, T'|. Therefore, 7., P" — 7. 4 P{" weakly. Using the lower semicontinuity of the
KL divergence and the data-processing inequality (Ambrosio et al., 2005, Lemma 9.4.3 and Lemma
9.4.5), we obtain

KL((r) 4 Q5 | () PA) < liminf KL((r.) @5 | ()3 P")
< liminf KL(Q% || P™)
<

~ ( score

+ L%dh + L*m2h*) T .

Finally, using Lemma 14, 7. (w) — w as ¢ — 0, uniformly over [0, T']. Therefore, using Ambrosio
et al. (2005, Corollary 9.4.6), KL((7z) Q% || (m2)x Pf") — KL(Q% || PET) as € N\, 0. Therefore,

KL(Q% || PE) < + L?dh + L*m3h*) T

( score

We conclude with Pinsker’s inequality (TV? < KL). O

B.3 PROOF OF THEOREM 2

‘We can now conclude our main result.

Proof of Theorem 2. We recall the notation from Section 4. By the data processing inequality,
TV(pr,q) < TV(Pr, Pf") + TV(P", Q%) < TV(gr,7") + TV(PI", Q) -

Using the convergence of the OU process in KL divergence (see, e.g., Bakry et al., 2014, Theorem
5.2.1) and applying Theorem 10 for the second term,

TV(pr,q) S \/KL(q | 74) exp(=T) + (escore + LVdh + Lmzh) VT,

which proves the result. O

*Such a coupling always exists, see Le Gall (2016, Corollary 8.5).
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B.4 AUXILIARY LEMMAS

In this section, we prove some auxiliary lemmas which are used in the proof of Theorem 2.

Lemma 11 (moment bounds for DDPM). Suppose that Assumptions I and 2 hold. Let (Xt)te[O.T]
denote the forward process (1).

1. (moment bound) For all t > 0,

E[| Xe[*) < dVm3.

2. (score function bound) For all t > 0,

E[||V Ing,(X,)[?] < Ld.

Proof. 1. Along the OU process, we have X, 2 exp(—t) Xo + /1 — exp(—2t) £, where
& ~ normal(0, 1) is independent of X,. Hence,

E[][X.[2] = exp(~20) E[| X|?] + {1 — exp(~20)} d < d v m3. O

2. This follows from the L-smoothness of In ¢; (see, e.g., Vempala & Wibisono, 2019, Lemma
9). We give a short proof for the sake of completeness.

If & f = Af — (VU V) is the generator associated with ¢; < exp(—Uy;), then
0=E, LU, =E, AU, — B, [|[VU|]?] < Ld — B, [| VU |*].

Lemma 12 (movement bound for DDPM). Suppose that Assumption 2 holds. Let (X;)
the forward process (1). For0 < s < twithd =t — s, if § <1, then

te(0,1] denote

E[| X — X,||] < 6*m3 + dd.
Proof. We can write

B ) =] [ a2

t
< 5/ E[|| X, ||?] dr 4 6d < 62 (d +m3) + 6d

< 6°m3 +4d,

where we used Lemma 11. O

We omit the proofs of the two next lemmas as they are straightforward.

Lemma 13. Consider f,, f : [0,T] — R? s.t. there exists an increasing sequence (Ty,)nen C [0, T
satisfying the conditions

e T, = Tasn — oo,
o fu(t) = f(t) foreveryt <T,.

Then, for every € > 0, f,, — f uniformly over [0, T — €|. In particular, f,,(- NT —e) — f(- AT —¢)
uniformly over [0, T).

Lemma 14. Consider f : [0, T] — R? continuous, and f. : [0,T] — R s.t. f.(t) = f(t AN (T —¢))
fore > 0. Then f. — f uniformly over [0,T] as e — 0.
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B.5 PROOF OF COROLLARY 6

Proof of Corollary 6. For Ry > 0, let I, denote the projection onto B(0, Ry). We want to prove
that Wo((I1g, ) #pr—+, q) < €. We use the decomposition

Wa((gy)#pr—t,9) < Wo(Ilry)wpr—ts (HRy)#q:) + Wo((IlRr,)#4t, q) -

For the first term, since (I, )xpr— and (IIg,)4q; both have support contained in B(0, Ry), we
can upper bound the Wasserstein distance by the total variation distance. Namely, Rolland (2022,
Lemma 9) implies that

Wa((IRro)wpr—t, (R, ) a) S RO\/TV((HRO)#PTm (Iro ) 44:) + Ro exp(—Ro) -
By the data-processing inequality,
TV((ILgy ) gpr—t, (HRe)#q) < TV(pr—t,qt) < €1v )

where ey is from Corollary 4, yielding

Wa((HRry)#pr—t, TRy ) #0:) S Rov/eTv + Roexp(—Ro) .
Next, we take Ry > R so that (I, )xq = ¢. Since IIg, is 1-Lipschitz, we have

Wo((Ir, )4, q) = Wa((ry)#qe, (Mg, ) 2q) < Walgr,q) < ews, »

where eyy, is from Corollary 4. Combining these bounds,
Wo((Iry)#pr—t,9) < RovETv + Roexp(—Ro) + ew, -

We now take ey, = £/3, Ry = O(R), and epy = O(¢2/R?) to obtain the desired result. The
iteration complexity follows from Corollary 4. O

C PROOFS FOR CLD

C.1 BACKGROUND ON THE CLD PROCESS

More generally, for the forward process we can introduce a friction parameter -y > 0 and consider
dX, =V, dt,
AV, = =X, dt — vV, dt + /27 dB, .

If we write 8; := (X;, V;), then the forward process satisfies the linear SDE

do, = A,Yét dt + X, dB;, where A, = {_01 _1,}/} and ¥, = [\/%—7} .

The solution to the SDE is given by
t

0; = exp(tA,) 0y + / exp{(t —s) A,} ¥,dB;, (18)
0
which means that by the 1t6 isometry,
¢
law (6;) = exp(tAy ), law(6) * normal (O,/ exp{(t —s) A,} ZWZAT/ exp{(t — s) AI} ds) .
0

Since det A, = 1, A, is always invertible. Moreover, from tr A, = —, one can work out that the

spectrum of A, is
LA el
spec(A,) = {—§i Z—l}.

However, A, is not diagonalizable. The case of v = 2 is special, as it corresponds to the case when
the spectrum is {—1}, and it corresponds to the critically damped case. Following Dockhorn et al.
(2022), which advocated for setting v = 2, we will also only consider the critically damped case.
This also has the advantage of substantially simplifying the calculations.
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C.2 GIRSANOV DISCRETIZATION ARGUMENT

In order to apply Girsanov’s theorem, we introduce the path measures P#" and Q% , under which

dX; = -V, dt,
AVy = {X; + 2 Vi + 4 87— (Xpn, Vien) } dt +2d By,

for ¢t € [kh, (k + 1)h], and

dX; = -V, dt,

dV, = {X; + 2V, +4V, Ingr_+(X;, V3) } dt + 2d By,
respectively.

Applying Girsanov’s theorem, we have the following theorem.
Corollary 15. Suppose that Novikov’s condition holds:

N-1  (k+1)h
Borep(2 [ lsrun(Xun Via) - Vulnar—o(X, Vi) [P de) < 0.
=0 Jkn
Then,
dQ%
KL(Q7 || Pf") = Eqg In ﬁ
N-1 (k+1)h
=2 Z Eqs / 87— kn(Xns Vin) — Vo Ingr (X, V2)||* dt .
k=0 kh

Similarly to Appendix B.2, even if Novikov’s condition does not hold, one can use an approximation
to argue that the KL divergence is still upper bounded by the last expression. Since the argument
follows along the same lines, we omit it for brevity.

Using this, we now aim to prove the following theorem.

Theorem 16 (discretization error for CLD). Suppose that Assumptions 2, 4, and 5 hold. Let Q%
and P}" denote the measures on path space corresponding to the reverse process (1) and the SGM
algorithm with L2-accurate score estimate initialized at qr. Assume that L > 1 and h < 1/L. Then,

TV(P{", Q7)< KLQT || PF") S (eX0re + L2dh + L*m3h*) T

score

Proof. Fort € [kh, (k + 1)h], we can decompose

Eqs [lIst—kn (Xin: Vin) — Vo Ingr_(Xe, Vi) ||?]
S EqQs [lIsr—kn(Xkn, Vin) — Vo Ingr— g (Xgn, Vien) I?]
+ EQ: [[IVo In qr—kn (Xin, Vin) — Vo Inqr—¢(Xien, Vien) I’
+Eqs (Vo Ingr—t(Xxn, Vin) — Vo Inqr— (X, V) [|°]
qr—kh

< 5§core + EQQ‘T |:HVU In K(thr th)’

2
} + L?Eqs [ (Xkn, Van) — (X4, Vi) IIK19)

The change in the score function is bounded by Lemma 17, which generalizes Lee et al. (2022a,
Lemma C.12). From the representation (18) of the solution to the CLD, we note that

qr_gn = (MO)#qT,t « normal(0, M)
with

M() = exp((t — kh) A2) s

t—kh
M, :/ exp{(t — kh — s) A} DoXT exp{(t — kh — 5) AJ} ds.
0
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In particular, since || Az|lop < 1, | A5 op < 1, and [|[Zallop < 1it follows that | Mp|op = 1+O(h)
and || M ||op = O(h). Substituting thlS into Lemma 17, we deduce that if b < 1/L, then
qr—kh dr—kh

2
(Xkns Vin) ‘ ’
qr—¢ qr—¢

< LPdh + L2 (| Xen||? + [Vinl?) + (1 + L) h? |V In qr— ¢ (Xpn, Vin)|I?

< L2dh+ L2B? (| Xnl|* + Vi |?) + L2A* |V In qr—e (Xin, Vin) 1
where in the last step we used L > 1.

val (th,th H HVIH

For the last term,

IV I gr— o (Xen, Vin) |2 S IV Ingr—o(Xe, VOII® + L2 [[(Xkns Vin) — (X6, VI,
where the second term above is absorbed into the third term of the decomposition (19). Hence,
EQ;[HST k(X Vin) — Vo Ingr—(Xy, V) |17
< €xcore + L2dh + L1 Eqg [|| Xynl|* + || Vi I°]

+ L0 Eqy [IIV Ingr—i (Xe, Vi)II?]
+ L*Eqe [[|(Xkn, Van) — (Xe, Vo)II?] -

By applying the moment bounds in Lemma 18 together with Lemma 19 on the movement of the CLD
process, we obtain

Eqs H|ST ki (Xin, Vin) — Vo Ingr—i(Xe, V) |I7]
+ L2dh + L2h? (d +m3) + L>dh?® + L? (dh + m3h?)
< €lre + LPdh + L*m3h*
The proof is concluded via an approximation argument as in Section B.2. O

~ score

Remark. We now pause to discuss why the discretization bound above does not improve upon the
result for DDPM (Theorem 10). In the context of log-concave sampling, one instead considers the
underdamped Langevin process

dX; =V,

which is discretized to yield the algorithm
dXt = ‘/t ’

dV, = —VU(Xyp) dt — v Vi dt + \/2yd By,
fort € [kh, (k4 1)h]. Let Pr denote the path measure for the algorithm, and let Qr denote the path
measure for the continuous-time process After applying Girsanov’s theorem, we obtain

(k+1)h
KL@r || Pr) = ZEQT | IvU) - VUK .

In this expression, note that VU depends only on the position coordinate. Since the X process is
smoother (as we do not add Brownian motion directly to X), the error ||VU(X;) — VU (Xyn)|?
is of size O(dh?), which allows us to take step size h < 1/+/d. This explains why the use of the
underdamped Langevin diffusion leads to improved dimension dependence for log-concave sampling.

In contrast, consider the reverse process, in which
N-1

(k+1)
KL@QF || Pf)=2) Eqp /kh 87—k (Xins Vin) — Vo Ingr (X, V2)||* dt .
—0

Since discretization of the reverse process involves the score function, which depends on both X
and V', the error now involves controlling ||V} — 2, which is of size O(dh) (the process V is not
very smooth because it includes a Brownian motion component). Therefore, from the form of the
reverse process, we may expect that SGMs based on the CLD do not improve upon the dimension
dependence of DDPM.

In Section C.5, we use this observation in order to prove a rigorous lower bound against discretization
of SGMs based on the CLD.
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C.3 PROOF OF THEOREM 7

Proof of Theorem 7. By the data processing inequality,
TV(pTa qO) S TV(PTa P’jq'T) + TV(ij“T7 QF) S TV(qTa 72d) + TV(ij'Ta Q:I(T) .

In Ma et al. (2021), following the entropic hypocoercivity approach of Villani (2009), Ma et al.
consider a Lyapunov functional L which is equivalent to the sum of the KL divergence and the Fisher
information,

L 19*) = KL(p | 7*®) + Fl(p || 7*9)
which decays exponentially fast in time: there exists a universal constant ¢ > 0 such that for all ¢ > 0,
L(ge || 7*?) < exp(—ct) L(go | ¥*) -

Since go = ¢ ® 7% and v2¢ = 74 ® 7%, then L(qo || v*¢) < KL(q || v%) + FI(q || v¢). By Pinsker’s
inequality and Theorem 16, we deduce that

TV(pr.q0) < \/KL(q | 4) + Fl(q || 7) exp(—cT) + (score + LV + Lmgh) VT,

which completes the proof. O

C.4 AUXILIARY LEMMAS

We start with a perturbation lemma for the score function.

Lemma 17 (score perturbation lemma). Let 0 < ( < 1. Suppose that My, M € R?*¥*24 gre two
matrices, where M is symmetric. Also, assume that || My — Is4||op < ¢, so that My is invertible.
Let q = exp(—H) be a probability density on R*? such that V H is L-Lipschitz with L <
Then, it holds that

(M) 4q * normal (0, M)

q

1
4 HMl HOP :

|V 0)|| < Ly/IMillop d + L 18] + (¢ + L | Miop) | VEL(O)].

Proof. The proof follows along the lines of Lee et al. (2022a, Lemma C.12). First, we show that

— i 1
when My = Ioq,if L < 5 Mo then

q * normal(0, M) <
|V ; 0)| < L\/I Millopd + L[ Millop [VH(O).  0)

Let 8 denote the subspace & := range M. Then, since

(g * normal(0, M))(6) = /9+S exp(—% 6 —6' M- 0'))) q(de’),

where M~ 1 is well-defined on 8, we have

q = normal(0, M)

om0
loss V@I 00 ME O )08
T s en(—5 00 M (0 - 0)))q(d8)

= [[Eqy VH — VH(0)]|-

Here, g is the measure on 8 4 8 such that
1
q0(40") o exp(—3 (0 — 6", M, (6 - 9))) q(d6").

Note that since L < then if we write gg(0’) o exp(—Hg(0')), we have

N S
2[[Muflop >

1
Vil (——r—-L)1; = —— 1 onf +3§.
o= (oo ~ D= 3,
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Let 8, € argmin Hy denote a mode. We bound
[Eqy VH — VH(8)| < LEg/g,|0" = 0|l < LEgrq, 6" — 6] + L6, — 6]
For the first term, (Dalalyan et al., 2019, Proposition 2) yields

Eornge|0" = 04l < \/2[[Mi]lopd.

For the second term, since the mode satisfies VH (6,) + M; ' (6, — ) = 0, we have
16, — 6|l < [ Malop [[VH(0,)|| < L [[Millop [0+ — 01| + [[Mi|op [VH (6)]]
which is rearranged to yield
10+ — 0| < 2| Mllop [[VH(O)]|.
After combining the bounds, we obtain the claimed estimate (20).
Next, we consider the case of general M. We have
(M) 4 q * normal (0, M7 ) (9)H

q
M) g * normal (0, M;

(MO)#q

We can apply (20) with (Mj).«q in place of g, noting that (M) .q x exp(—H') for H' := H oM,
which is L’-smooth for L' := L || M |2, < L. to get

HVIn

)(O)H + ||y (Moq)#q

< va( (e)H.

(Mp) 4q * normal(0, M,
(MO)#‘I

)
(0)|| < Ly/IMillop d + L | Mo | MoV H (Mo8) |

S L/ [1Millop d + L || M lop |V H (M)

IVH(M8)|| < [[VH(0)|| + L |[(Mo — L) 0| S [VH(6)| + LC 0] -

HVIn

Note that

We also have
(My) .q
HVInT#(O)H — | MoVH(M,8) — VH(6)|

< || MoV H (My6) — MyVH(6)|| + |MyVH(6) — VH(0)|
S LMo — I>a) 0] + C[IVH(0)[| < LS8 + CIVH(9)]) -

Combining the bounds,

M), q * normal(0, M)
—— )]

S Ly [1Millop d + LC (1 + L[ Mllop) [|6]] + (€ + L[| Malop) [ VH ()]
S Iy IMillop d + LC (|01 + (¢ + L || M lop) [[VH(0)]]

so the lemma follows. ]

|1

Next, we prove the moment and movement bounds for the CLD.

Lemma 18 (moment bounds for CLD). Suppose that Assumptions 2 and 4 hold. Let (X, Vt)te[o,T]
denote the forward process (6).

1. (moment bound) For all t > 0,
E[[(Xe, V)[*] S d +m3.
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2. (score function bound) For all t > 0,

E[||VInq (X, V) ||?] < Ld.

Proof. 1. We can write
E[[|(Xe, VOIIP] = W5 (g1, 60) S W3 (g, v*") + W3 (v, 60) S d+ W3 (g, v*?) .

Next, the coupling argument of Cheng et al. (2018) shows that the CLD converges exponen-
tially fast in the Wasserstein metric associated to a twisted norm |||-||| which is equivalent
(up to universal constants) to the Euclidean norm ||-||. It implies the following result, see,
e.g., Cheng et al. (2018, Lemma 8):

W3 (g, v*Y) S W3(q,7*") S W3(q,00) + W3 (d0,v*)) S d+m3.

2. The proof is the same as in Lemma 11.
O

Lemma 19 (movement bound for CLD). Suppose that Assumptions 2 holds. Let (X;, V) te0,1]
denote the forward process (6). For 0 < s < twithd =t —s,if§ <1,

E[[| (X, Vi) — (X, Vi) [1?] < 0%m3 + 6d.
Proof. First,

B[ % - %)% = E]|

t _ 2 t _
[ vear <o [CEUTIIar £ 8 @),
S S
where we used the moment bound in Lemma 18. Next,

_ b 2 b _
)17 - V) =[] [ (X - 20 a4 28 - B[] S8 [ B + I ar + 00

S

<6 (d+m3) +6d,

where we used Lemma 18 again. O

C.5 LOWER BOUND AGAINST CLD

When proving upper bounds on the KL divergence, we can use the approximation argument described
in Section B.2 in order to invoke Girsanov’s theorem. However, when proving lower bounds on the
KL divergence, this approach no longer works, so we check Novikov’s condition directly for the
setting of Theorem 8.

Lemma 20 (Novikov’s condition holds for CLD). Consider the setting of Theorem 8. Then, Novikov’s
condition 15 holds.

We defer the proof of Lemma 20 to the end of this section. Admitting Lemma 20, we now prove
Theorem 8.

Proof of Theorem 8. Since qo = v ® v¢ = ~2? is stationary for the forward process (6), we have
q: = v for all t > 0. In this proof, since the score estimate is perfect and gr = 2%, we simply
denote the path measure for the algorithm as Pr = P;". From Girsanov’s theorem in the form of

Corollary 15 and from s7_gp(z,v) = V, Ingr_gp(z,v) = —v, we have
N-1 (k+1)h
KLQF || Pr)=2) Eq: / Vi — Ve[ dt. @1
k=0 kh
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To lower bound this quantity, we use the inequality [z + y[|> > 3|/z[|* — |ly||? to write, for
t € [kh, (k+ 1)h]

Eqy [IVin = Vil = Ell[Vr—kn — Vr—i?]

_E H/T kh{ XS—2175}ds+2(BT,kh—BT,t)H2}

T—kh
> 2E[|| Br_n — Br—:|?] H/ (X, —2V}ds‘H
T—kh -
> 20t~ k)~ (e~ k) [ B[S+ 2T ds
T—t
T—kh B N
> 9 (t - kh) — (t - kh) / E2 [ X% + 8 | V2[?] ds
T—t

Using the fact that X, ~ 4% and Vi ~ ~ for all s € [0, T}, we can then bound
EQH[HVM —Vil?] > 2d (t — kh) = 10d (t — kh)* > d (t — kh),
provided that 4 < 5. Substituting this into (21),
(k+1)h

KL(Q% || Pr) >2dZ/ (t — kh)*>dt = dh®N = dhT .

This proves the result. O
This lower bound shows that the Girsanov discretization argument of Theorem 16 is essentially tight
(except possibly the dependence on L).

We now prove Lemma 20.

Proof of Lemma 20. Similarly to the proof of Theorem 8 above, we note that

|87 —1n (Xnn, Van) — Vo Ingr—o(Xe, V)||? = Vr—rn — Vo
T— k}h _ _ 2
- H/ ~X, —2V,}ds + 2 (Br_wn — Br_t)

S h? sup (Il)_(sll2 +IVall?) + sup |Br—kn — B>
5€[0,T] s€[T—(k+1)h,T—kh]

Hence, for a universal constant C' > 0 (which may change from line to line)

(k+1)h
Eq: exp Z/ |87 —kn(Xkns Vin) — Vv1DQT—t(Xt7Vt)\|2dt)

N-1

< Eexp(CTh2 sup (||X 12+ IVall?) + Ch > sup | B gn — BsH?) :
€, o SEIT—(k+1)h,T—kh)

By the Cauchy—Schwarz inequality, to prove that this expectation is finite, it suffices to consider the
two terms in the exponential separately.

Next, we recall that
dXt = ‘7% dt B
AV, = —(X, + 2 V) dt + 2dB;.
Define Y; := X; + V;. Then, dY; = —Y; dt 4+ 2 dB;, which admits the explicit solution

Y; = exp(—t) Yo + 2/0t exp{—(t — s)} dB; .
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Also, dX; = — X, dt + Y; dt, which admits the solution

X; = exp(—t) Xo + /0 exp{—(t —s)} Y, dt.

Hence,
[Xell + [[Vell < 21 Xell + [[Yell S 1 Xoll + sup [[Ysl
s€[0,T]
and
sup IVl S 1%+ %61+ sup {exp(- o[ ewisra.|}
telo

= || Xoll + IVoll + sup exp(— ) | Bexp(an) -1zl
te[0,T]

where B is another standard Brownian motion and we use the interpretation of stochastic integrals
as time changes of Brownian motion (Steele, 2001, Corollary 7.1). Since (Xo, Vp) ~ ~24 has
independent entries, then
d
Eexp(CTR? {||Xo” + [VolI*}) = [ [ Eexp(CTh? (e;, Xo)*) Eexp(CTh? (e}, Vo)?) < oo
j=1

provided that h < 1/ VT. Also, by the Cauchy—Schwarz inequality, we can give a crude bound:
writing 7(t) = (exp(2t) — 1)/2,

Eexp(CTh2 sup_exp(—2t) IIBrmllz)
tel0,T)

[E exp (2CTh2 tzl[lp ! exp(—2t) || B-) ”2” -

) ~ 9 1/2
x []Eexp(2CTh sup exp(—2t) [| B | )]
te(1,T)]

where, by standard estimates on the supremum of Brownian motion (see, e.g., Chewi et al., 2021b,

Lemma 23), the first factor is finite if h < 1/ VT (again using independence across the dimensions).
For the second factor, if we split the sum according to exp(—2t) < 2* and use Holder’s inequality,

Eexp(CTh2 sup exp(—2t)|\BT(t)||2>
te[1,T)

K 5 1/K
SH[]Eexp(CKTh2 sup exp(—2t)||Br<t>H2ﬂ

k=1 st
where K = O(T). Then,
Eexp(CT?W  sup exp(~21) | Byp)

2k <g<2k+1

< ]Eexp(CTthQ_k sup ||BT(t)|\2) < oo
1<t<2k+1
provided h < 1/T, where we again use Chewi et al. (2021b, Lemma 23) and split across the
coordinates. The Cauchy—Schwarz inequality then implies

Eexp(CTH sup (| X[1? +[|Vs]|?)) < oo
s€[0,T]

For the second term, by independence of the increments,

N-1
Eexp(Ch Y sup 1B — B.J?)
= selT—(k+1)h,T—kh]
N-1
= H Eexp(Ch sup | Br—kn —BSH2) {]Eexp(Ch sup || Bsl| )}
bt s€[T—(k+1)h,T—kh] s€[0,h]

By Chewi et al. (2021b, Lemma 23), this quantity is finite if 4 < 1, which completes the proof. [
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D DERIVATION OF THE SCORE MATCHING OBJECTIVE

In this section, we present a self-contained derivation of the score matching objective (10) for the
reader’s convenience. See also Hyvérinen (2005); Vincent (2011); Song & Ermon (2019).

Recall that the problem is to solve

mi;lien;ze Eq [llse — VIng|?].

This objective cannot be evaluated, even if we replace the expectation over ¢; with an empirical
average over samples from ¢;. The trick is to use an integration by parts identity to reformulate the
objective. Here, C' will denote any constant that does not depend on the optimization variable s;.
Expanding the square,

Eq,[llse = VIng || = Eq, [llse]|* — 2 (s, VIng,)] + C.

We can rewrite the second term using integration by parts:
/<3t7V1n(1t> dgr = /<5t7v%> = - /(diV s¢) dgy
=— //(div St) (exp(—t) zo + 1 —exp(—2t) zt) dq(zo) dyd(z) ,

where v¢ = normal(0, I;) and we used the explicit form of the law of the OU process at time .
Recall the Gaussian integration by parts identity: for any vector field v : R — R,

/(div v)dy? = /(az,v(az)) dy?(z).

Applying this identity,

/ (50, V Ingy) dgy = / (z2es s1(a2)) dq(0) dy(z2)

1
/1 — exp(—2t)
where z; = exp(—t) g + /1 — exp(—2t) z;. Substituting this in,

Eglllse — ¥ Ingl] = E[ s (X0) |2 + 1_;(_%) (Zo,si(X0)| +C
1 2
- E{ s(Xe) + 1 — exp(—2t) i } <

where X ~ q and Z; ~ 7% are independent, and X; := exp(—t) Xy + /1 — exp(—2t) Z;.

E DEFERRED PROOFS

Lemma 21. Suppose that suppq C B(0, R) where R > 1, and let q; denote the law of the OU
process at time t, started at q. Let € > 0 be such that ¢ < \/d and set t < 2 /(v/d (R V V/d)). Then,

1. Wa(qs,q) <e.

2. qq satisfies

_ VARV V)
~ 2 N

KL(ge | v%) .

3. Foreveryt' >t, qu satisfies Assumption 1 with
2
dR? (R V V/d)
LS ———.
€
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Proof. 1. For the OU process (1), we have X; = exp(—t) Xo + /1 — exp(—2t) Z, where
Z ~ normal(0, I;) is independent of Xy. Hence, for ¢t < 1,

= 2
Wg(q,(h) < E[H (1 - eXP(*t)) Xo+ /1 — exp(—2t) ZH ]
— (1 —exp(—1)) E[|| Xo[?] + (1 — exp(=2t)) d S R** + dt .
We now take t < min{e/R, £2/d} to ensure that W3 (g, ¢;) < 2. Since ¢ < V/d, it suffices
to take t < £2/(Vd (R V Vd)).
2. For this, we use the short-time regularization result in Otto & Villani (2001, Corollary 2),
which implies that

W3(a.v") - Wi(g,00) + Wi(v% &) _ Vd(RV Vd)

3
4t ~ t ~ g2 '

KL(g: [ 7*) <

3. Using Mikulincer & Shenfeld (2022, Lemma 4), along the OU process,

1 exp(—2t) R? 9 1
I, — I, < —V21 DN S—
T ep(20) T A explzE ¢S TV mal@) S g e
With our choice of ¢, it implies

2

1 —2t') R? 1 R? _dR?(RVvV+Vd
192 10 g llop S ()R 1B AR (R V)

1—exp(—2t') (1 —exp(—=2t'))2 "~ ¢t 2 gt
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