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Abstract

Large language models (LLMs) have revolution-
ized machine learning due to their ability to cap-
ture complex interactions between input features.
Popular post-hoc explanation methods like SHAP
provide marginal feature attributions, while their
extensions to interaction importances only scale to
small input lengths (= 20). We propose Spectral Ex-
plainer (SPEX), a model-agnostic interaction attri-
bution algorithm that efficiently scales to large input
lengths (= 1000). SPEX exploits underlying nat-
ural sparsity among interactions—common in real-
world data—and applies a sparse Fourier transform
using a channel decoding algorithm to efficiently
identify important interactions. We perform exper-
iments across three difficult long-context datasets
that require LLMs to utilize interactions between
inputs to complete the task. For large inputs, SPEX
outperforms marginal attribution methods by up to
20% in terms of faithfully reconstructing LLM out-
puts. Further, SPEX successfully identifies key fea-
tures and interactions that strongly influence model
output. For one of our datasets, HotpotQA, SPEX
provides interactions that align with human annota-
tions. Finally, we use our model-agnostic approach
to generate explanations to demonstrate abstract rea-
soning in closed-source LLMs (GPT-40 mini) and
compositional reasoning in vision-language models.

1. Introduction

Large language models (LLMs) perform remarkably well
across many domains by modeling complex interactions
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among features'. Interactions are critical for complex tasks
like protein design, drug discovery, or medical diagnosis,
which require examining combinations of hundreds of fea-
tures. As LLMs are increasingly used in such high-stakes
applications, they require trustworthy explanations to aid
in responsible decision-making. Moreover, LLM explana-
tions enable debugging and can drive development through
improved understanding (Zhang et al., 2023a).

Current post-hoc explainability approaches for LLMs fall
into two categories: (i) methods like Shapley values (Lund-
berg & Lee, 2017) and LIME (Ribeiro et al., 2016) compute
marginal feature attribution but do not consider interactions.
As a running example, consider a sentiment analysis task
(see Fig. 1(a)) where the LLM classifies a review containing
the sentence “Her acting never fails to impress”. Marginal at-
tribution methods miss this interaction, and instead attribute
positive sentiment to “never” and “fails” (see Fig. 1(a)). (ii)
Interaction indices such as Faith-Shap (Tsai et al., 2023)
attribute interactions up to a given order d. That is, for n
input features, they compute attributions by considering all
O(n?) interactions. This becomes infeasible for small n
and d. This motivates the central question of this paper:

Can we perform interaction attribution at scale for a large
input space n with reasonable computational complexity?

We answer this question affirmatively with Spectral Ex-
plainer (SPEX) by leveraging information-theoretic tools
to efficiently identify important interactions at LLM scale.
The scale of SPEX is enabled by the observation that LLM
outputs are often driven by a small number of sparse in-
teractions between inputs (Tsui & Aghazadeh, 2024; Ren
et al., 2024a). See Fig. 1 for examples of sparsity in vari-
ous tasks. SPEX discovers important interactions by using
a sparse Fourier transform to construct a surrogate expla-
nation function. This sparse Fourier transform searches
for interactions via a channel decoding algorithm, thereby
avoiding the exhaustive search used in existing approaches.

Our experiments show we can identify a small set of in-
teractions that effectively and concisely reconstruct LLM
outputs with n ~ 1000. This scale is far beyond what

'LLM features refer to inputs at any granularity, e.g, tokens,
sentences in a prompt or image patches in vision-language models.
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(a) SENTIMENT ANALYSIS
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.. Her acting never fails to impress. She

brings depth and authenticity to every role. e

Her performances consistently draw the ...

(b) RETRIEVAL AUGMENTED GENERATION

(c) VISUAL QUESTION ANSWERING

Rio Summer || Winter -,.hvay ﬁ e E‘
Music || Carnival || in Brazil || in Brazil |(of Brazil -‘" Rio 7 *\i

PROMPT
Is this a positive or negative review?

PROMPT

GENERATED RESPONSE GENERATED RESPONSE

Positive.

never falls Interactions:

What is the weather like during Rio Carnival?

Rio Carnival generally takes place during the summer season in
Brazil. The weather at this time is typically hot and humid.

Rio Carnival &
Summer in Brazil

PROMPT
What is shown in this image?

GENERATED RESPONSE

A dog playing with a basketball.

Rio Carnival & Interaction:

Winter in Brazil

Interaction:

Marginal attributions: |never| | fails

=
Summer
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Figure 1: (a) Sentiment analysis: SPEX identifies the double negative “never fails”
. (b) Retrieval augmented generation: SPEX explains the output of a RAG pipeline,

attributions to “never” and ‘“fails”

=
Rio Winter
Carnival in Brazil

. Marginal approaches assign positive

finding a combination of documents the LLM used to answer the question and ignoring unimportant information. (c) Visual
question answering: SPEX identifies interaction between image patches required to correctly summarize the image.

current interaction attribution benchmarks consider, e.g.,
SHAP-IQ (Muschalik et al., 2024) only considers datasets
with no more than 20 features. This is summarized in Fig 2;
marginal attribution methods scale to large n but ignore
crucial interactions. On the other hand, existing interaction
indices do not scale with n. SPEX both captures interac-
tions and scales to large n. For an s sparse Fourier transform
containing interactions of at most degree d, SPEX has com-
putational complexity at most O(sdn). In contrast, popular
interaction attribution approaches scale as (n<).

Evaluation Overview. We compare SPEX to popular fea-
ture and interaction indices across three standard datasets.
Algorithms and experiments are made publicly available?.

¢ Faithfulness. SPEX more faithfully reconstructs (= 20%
improvement) outputs of LLMs as compared to other meth-
ods across datasets. Moreover, it learns more faithful re-
constructions with fewer model inferences.

¢ Identifying Interactions. SPEX identifies a small num-
ber of influential interactions that significantly change
model output. For one of our datasets, HotpotQA, SPEX
provides interactions that align with human annotations.

* Case Studies. We demonstrate how one might use SPEX
to identify and debug reasoning errors made by closed-
source LLMs (GPT-40 mini) and for compositional rea-
soning in a large multi-modal model.

https://github.com/basics—1lab/
spectral-explain
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Figure 2: Marginal attribution approaches scale to large
n, but do not capture interactions. Interaction indices only
work for small n. SPEX computes interactions and scales.

2. Related Work

LLMs are capable of generating rationalizations for their
outputs, but such rationalizations are another form of model
output, susceptible to the same limitations (Sarkar, 2024).
In contrast, this work focuses on explanations in the form
of feature attributions that are grounded in the model’s in-
puts and outputs, and can be applied to any ML model.
i.e., model-agnostic methods. Moreover, model-agnostic
methods can be applied to LLMs incapable of explaining
their own output such as protein language models as well as
encoder-only models (see experiments in Sec. 6)

Model-Agnostic Feature Attributions LIME (Ribeiro
etal., 2016), SHAP (Lundberg & Lee, 2017), and Banzhaf
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Figure 3: SPEX utilizes channel codes to determine masking patterns. We observe the changes in model output depending
on the used mask. SPEX uses message passing to learn a surrogate function to generate interaction-based explanations.

values (Wang & Jia, 2023) are popular model-agnostic fea-
ture attribution approaches. SHAP and Banzhaf use game-
theoretic tools for feature attribution, while LIME fits a
sparse linear model. Chen et al. (2018) utilize tools from
information theory for feature attributions. Other methods
(Sundararajan et al., 2017; Binder et al., 2016) instead utilize
internal model structure to derive feature attributions.

Interaction Indices Tsai et al. (2023) and Sundararajan
et al. (2020) extend Shapley values to consider interactions.
Fumagalli et al. (2023) provide a general framework towards
interaction attribution but can only scale to at most n ~
20 input features. Ren et al. (2023; 2024b) theoretically
study sparse interactions, a widely observed phenomenon
in practice. Kang et al. (2024) show that sparsity under
the Mobius transform (Harsanyi, 1958) can be theoretically
exploited for efficient interaction attribution. In practice,
the proposed algorithm fails due to noise being amplified
by the non-orthogonality of the Mobius basis. Our work
utilizes the orthonormal Fourier transform, which improves
robustness by preventing noise amplification. Hsu et al.
(2024) apply tools from mechanistic interpretability such as
circuit discovery for interaction attribution.

Feature Attribution in LLMs Enouen et al. (2023); Paes
et al. (2024) propose hierarchical feature attribution for lan-
guage models that first groups features (paragraphs) and
then increase the feature space via a more fine-grained anal-
ysis (sentences or words/tokens). Cohen-Wang et al. (2024)
provide marginal feature importances via LASSO. These
works do not explicitly compute interaction attributions.

3. Overview: Fourier Transform Formulation

We review background on the Fourier transform for SPEX.

Model Input Let x be the input to the LLM where x
consists of n input features, e.g., words. For x = “Her
acting never fails to impress”, n = 6. In Fig. 1(b) and (c),
n refers to the number of documents or image patches. For
S C [n], we define xg as a masked input where S denotes

the coordinates in x we retain, replacing all others with
the [MASK] token. For example, if S = {1,2,4,5,6},
then the masked input xg is “Her acting [MASK] fails to
impress”. Masks can be more generally applied to any input.
In Fig. 1(b) and (c), masks are applied over documents and
image patches respectively.

Value Function For input x, let f(xg) € R be the output
of the LLM under masking pattern S. In sentiment analysis,
(see Fig. 1(a)) f(xg) is the logit of the positive class. If
X is “Her acting [MASK] fails to impress”, this masking
pattern changes the score from positive to negative. For text
generation tasks, we use the well-established practice of
scalarizing generated text using the negative log-perplexity?
of generating the original output for the unmasked input
x (Paes et al., 2024; Cohen-Wang et al., 2024). Since we
only consider sample-specific explanations for a given x,
we suppress dependence on x and write f(xg) as f(.9).

Fourier Transform of Value Function LetFy = {0,1}",
and addition between two elements in F5 as XOR. Since
there are 2" possible masks .S, we equivalently write f :
F? — R, where f(S) = f(m) with S = {i : m; = 1}.
That is, m € FZ is a binary vector representing a masking
pattern. If m; = 0 we evaluate the model after masking the
i™ input. The Fourier transform F : % — R of f is:

fm) = > (1) F(k). 6))

keFy

The Fourier transform is an orthonormal transform onto a
parity (XOR) function basis (O’Donnell, 2014).

Sparsity [ is sparse if F'(k) ~ 0 for most of the k € FZ.
Moreover, we call f low degree, if large F'(k) have small
|k|. Ren et al. (2024b); Kang et al. (2024); Valle-Perez
et al. (2018); Yang & Salman (2019) and experiments in Ap-
pendix B establish that deep-learning based value functions
f are sparse and low degree. See Fig. 1 for examples.

3Other approaches to scalarization exist: text embedding simi-
larity, BERT score, etc. See (Paes et al., 2024) for an overview.
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4. Problem Statement

Our goal is to compute an approximate surrogate f . SPEX
finds a small set of k with [k| < n denoted /C, and F'(k)
for each k € IC such that

fm) =Y " (=1)™HF(k). ©)

ke

This goal is motivated by the Fourier sparsity that commonly
occurs in real-world data and models. Some current interac-
tion indices (Tsai et al., 2023) determine K by formulating
it as a LASSO problem, and solving it via ¢;-penalized
regression (Tibshirani, 1996),

F= argminz ‘f(m) - f(m)‘2 —|—)\HFH1. 3)
F m

For given order d, this approach requires enumeration of all
O(n?) interactions. This leads to an explosion in computa-
tional complexity as n grows, as confirmed by our experi-
ments (see Fig 4(a)). To resolve this problem, we need to
find an efficient way to search the space of interactions.

Ideas behind SPEX The key to efficient search is realiz-
ing that we are not solving an arbitrary regression problem:
(i) the Fourier transform (1) imparts algebraic structure and
(ii) we can design the masking patterns m with sparsity and
that structure in mind. SPEX exploits this by embedding a
BCH Code (Lin & Costello, 1999), a widely used algebraic
channel code, into the masking patterns. In doing so, we
map the problem of searching the space of interactions onto
the problem of decoding a message (the important k) from
a noisy channel. We decode via the Berlekamp-Massey
algorithm (Massey, 1969), a well-established algebraic al-
gorithm for decoding BCH codes.

5. SPEX: Algorithm Overview

We now provide a brief overview of SPEX (see Fig. 3). A
complete overview is provided in Appendix A. The high-
level description consists of three parts:

Step 1: Determine a minimal set of masking patterns m to
use for model inference, and query f(m) for each m.

Step 2: Efficiently learn the surrogate function f from the
set of collected samples f(m).

Step 3: Use f and its transform F to identify important
interactions for attribution.

5.1. Masking Pattern Design: Exploiting Structure

We first highlight two important properties of Fourier trans-
form related to masking design structure.

Aliasing (Coefficient Collapse) Property: For b < n and
M e ]FSX", letw : ]Fg — R denote a subsampled version of

f- Then u has Fourier transform U:

u(@) = f(MTe) < U(G)= > Fk). @&
Mk=j

Shift Property: For any function f : F§ — R, if we shift
the input by some vector p € FZ, the Fourier transform
changes as follows:

fp(m) = f(m+p) <= Fpk) = (-1)PYF(k). (5)

Designing Aliasing The aliasing property (4) dictates that
when sampling according to M € F5*™, all F(k) with
image j = Mk are added together. If only one dominant
F(k) satisfies Mk = j, which can happen due to sparsity,
we call it a singleton. We want M to maximize the number
of singletons, since we ultimately use singletons to recover
the dominant coefficients and estimate F'. SPEX uses M
with elements chosen uniformly from Fs. Such M has
favorable properties regarding generating singletons.

Designing Shifts Once we create singletons, we need to
identify them, extract the dominant index k, and estimate
F(K). The shift property (5) is critical for this task since
the sign of the dominant F'(k) changes depending on (p, k).
Thus, each time we apply a shift vector, we gather (poten-
tially noisy) information about the dominant k. Finding
k and estimating ﬁ’(k) can be modeled as communicating
information over a noisy channel (Shannon, 1948), where
the communication protocol is controlled by the shift vec-
tors. We use the aforementioned BCH channel code, which
requires only ~ ¢ log(n) shifts to recover k. The parameter
t controls the robustness of the decoding procedure. Gen-
erally, if the maximum degree is |k| = d, we choose ¢t > d.
If t — |k| > 0, we use the additional shifts to improve the
estimation of F'(k). Since most of the time |k| is less than
5, we fix ¢ = b for experiments in this paper.

Combined Masking Combining ideas from above, we
construct C' = 3 independently sampled M, and p shifting
vectors p;, which come from rows of a BCH parity ma-
trix. Then, for ¢ € [C] and i € [p], we entirely sample
the function u. ;(£) = f(M/] £ + p;). The total number of
samples is ~ C2° log(n). We note that all model inference
informed by our masking pattern can be conducted in par-
allel. The Fourier transform of each u. ;, denoted U, ;, is
connected to the transform of the original function via
Uei@) = D (~)PME(k). ©)

k : M.k=j

5.2. Computing the Surrogate Function

Once we have the samples, we use an iterative message
passing algorithm to estimate F'(k) for a small (a-priori
unknown) set of k € K.
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Bipartite Graph We construct a bipartite graph depicted
in Fig. 5. The observations U.(j) = (Uc,0(§),- .., Ucp())
are factor nodes, while the values F’ (k) correspond to vari-
able nodes. F'(k) is connected to U, (j) if M.k = j.

Message Passing The messages from factor to variable
are computed by attempting to decode a singleton via the
Berlekamp-Massey algorithm. If a k is successfully de-
coded, k is added to K and F'(k) is estimated and sent to
factor node £'(k). The variable nodes send back the average
of their received messages to all connected factor nodes.
The factor nodes then update their estimates of F, and at-
tempt decoding again. The process repeats until conver-
gence. Once complete the surrogate function is constructed
from K and F'(k) according to (2). Complete step-by-step
details are in Appendix A, Algorithm 4.

6. Experiments

Datasets We use three popular datasets that require the
LLM to understand interactions between features.

1. Sentiment is primarily composed of the Large Movie
Review Dataset (Maas et al., 2011), which contains
both positive and negative IMDb movie reviews. The
dataset is augmented with examples from the SST dataset
(Socher et al., 2013) to ensure coverage for small n. We
treat the words of the reviews as the input features.

2. HotpotQA (Yang et al., 2018) is a question-answering
dataset requiring multi-hop reasoning over multiple
Wikipedia articles to answer complex questions. We
use the sentences of the articles as the input features.

3. Discrete Reasoning Over Paragraphs (DROP) (Dua et al.,
2019) is a comprehension benchmark requiring discrete
reasoning operations like addition, counting, and sorting
over paragraph-level content to answer questions. We
use the words of the paragraphs as the input features.

Models For DROP and HotpotQA, (generative question-
answering tasks) we use Llama-3.2-3B-Instruct
(Grattafiori et al., 2024) with 8-bit quantization. For Sen-
timent (classification), we use the encoder-only fine-tuned
Disti1BERT model (Sanh et al., 2019; Odabasi, 2025).

Baselines We compare against popular marginal metrics
LIME, SHAP, and the Banzhaf value. For interaction in-
dices, we consider Faith-Shapley, Faith-Banzhaf, and the
Shapley-Taylor Index. We compute all benchmarks where
computationally feasible. That is, we always compute
marginal attributions and interaction indices when n is suffi-
ciently small. In figures, we only show the best performing
baselines. Results and implementation details for all base-
lines can be found in Appendix B.

Hyperparameters SPEX has several parameters to deter-
mine the number of model inferences (masks). We choose

C = 3, informed by Li et al. (2014) under a simplified
sparse Fourier setting. We fix ¢ = 5, which is the error cor-
rection capability of SPEX and serves as an approximate
bound on the maximum degree. We also set b = 8; the
total collected samples are ~ C2°¢log(n). An empirical
validation of these selections on the sentiment dataset is
presented in Appendix B.5.1. For /; regression-based inter-
action indices, we choose the regularization parameter via
5-fold cross-validation.

6.1. Metrics

We compare SPEX to other methods across a variety of
well-established metrics to assess performance.

Faithfulness: To characterize how well the surrogate func-
tion f approximates the true function, we define faithfulness
(Zhang et al., 2023b):
F_or2
lr =7l

where || f||* = Y epy f(m)? and f = 2237 cpn f(m).

Faithfulness measures the ability of different explanation
methods to predict model output when masking random
inputs. We measure faithfulness over 10,000 random test
masks per-sample, and report average R? across samples.

Top-r Removal: We measure the ability of methods to
identify the top r influential features to model output:

ey L) fm)
RenO="m
m* = argmax f(1) = f(m)].

Recovery Rate@r: Each question in HotpotQA contains
human-labeled annotations for the sentences required to
correctly answer the question. We measure the ability of
interaction indices to recover these human-labeled anno-
tations. Let S« C [n] denote human-annotated sentence
indices. Let S; denote feature indices of the i most im-
portant interaction for a given interaction index. Define the
recovery ability at r for each method as follows

1Sy N S

1 T
Recovery@r = - Z W )

i=1

Intuitively, (9) measures how well interaction indices cap-
ture features that align with human-labels.

6.2. Faithfulness and Runtime

Fig. 4 shows the faithfulness of SPEX compared to other
methods. We also plot the runtime of all approaches for the
Sentiment dataset for different values of n. All attribution
methods are learned over a fixed number of training masks.
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Figure 4: (a) SPEX uniformly outperforms all baselines in terms of faithfulness. High order Faith-Banzhaf indices have
competitive faithfulness, but rapidly increase in computational cost. (b) The DROP dataset contains only larger examples,
so we primarily compare against first order methods. (c) Our approach remains competitive in this task as well, and still

outperforms marginal approaches for large 7.
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Figure 5: Depiction of the message passing algorithm for
computing the surrogate function in SPEX.

Comparison to Interaction Indices SPEX maintains com-
petitive performance with the best-performing interaction
indices across datasets. Recall these indices enumerate all
possible interactions, whereas SPEX does not. This differ-
ence is reflected in the runtimes of Fig. 4(a). The runtime
of other interaction indices explodes as n increases while
SPEX does not suffer any increase in runtime.

Comparison to Marginal Attributions For input lengths
1 too large to run interaction indices, SPEX is significantly
more faithful than marginal attribution approaches across
all three datasets.

Varying number of training masks Results in Appendix
B show that SPEX continues to out-perform other ap-
proaches as we vary the number of training masks.

Sparsity of SPEX Surrogate Function Results in Ap-
pendix B, Table 3 show surrogate functions learned by
SPEX have Fourier representations where only ~ 107100
percent of coefficients are non-zero.

6.3. Removal

Fig. 6 plots the change in model output as we mask the top
r features for different regimes of n.

Small n SPEX is competitive with other interaction in-
dices for Sentiment, and out-performs them for HotpotQA
and DROP. Performance of SPEX in this task is particularly
notable since Shapley-based methods are designed to iden-
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Figure 6: On the removal task, SPEX performs competitively with 2" order methods on the Sentiment dataset, and
out-performs all approaches on DROP and HotpotQA dataset for n € [32,63]. When n is too large to compute other

interaction indices, we outperform marginal methods.

tify a small set of influential features. On the other hand,
SPEX does not optimize for this metric, but instead learns
the function f(-) over all possible 2" masks.

Large n SPEX out-performs all marginal approaches, in-
dicating the utility of considering interactions.

6.4. Recovery Rate of Human-Labeled Interactions

We compare the recovery rate (9) for r = 10 of SPEX
against third order Faith-Banzhaf and Faith-Shap interaction
indices. We choose third order interaction indices because
all examples are answerable with information from at most
three sentences, i.e., maximum degree d = 3. Recovery rate
is measured as we vary the number of training masks.

Results are shown in Fig. 7a, where SPEX has the highest
recovery rate of all interaction indices across all sample
sizes. Further, SPEX achieves close to its maximum per-
formance with few samples, other approaches require many
more samples to approach the recovery rate of SPEX.

Example of Learned Interaction by SPEX Fig. 7b dis-
plays a long-context example (128 sentences) from Hot-
potQA whose answer is contained in the three highlighted
sentences. SPEX identifies the three human-labeled sen-
tences as the most important third order interaction while
ignoring unimportant contextual information. Other third
order methods are not computable at this length.

7. Case Studies

In this section, we apply SPEX to two case studies: de-
bugging incorrect responses and visual question answering.
Refer to Appendix B for further details on implementation.

7.1. Debugging Incorrect LLM Responses

LLMs often struggle to correctly answer modified versions
of popular puzzle questions, even when these alterations
trivialize the problem (Williams & Huckle, 2024). In this
spirit, we consider a variant of the classic trolley problem:

A runaway trolley is heading away from five people
who are tied to the track and cannot move. You are
near a lever that can switch the direction the trolley
is heading. Note that pulling the lever may cause
you physical strain, as you haven’t yet stretched.

True or False: You should not pull the lever.

GPT-40 mini (OpenAl, 2024) incorrectly selects the an-
swer false 92.1% of the time. To understand the response,
we run SHAP and SPEX over a value function that mea-
sures the logit associated to the output true.

Fig. 8 presents the results of these methods: words and
interactions highlighted in green contribute positively to
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Question:
The magazine that nominated George Rainsford for their Best Ac-
tor award in 2017 comes out every week on what day of the week?

Title: George Rainsford (actor)
George Rainsford is an English actor and has been nominated
for a Best Actor award in the 2017 TV Choice Awards. (-

Title: NFL regular season
The National Football League (NFL) regular season begins the...

Title: TV Choice
TV Choice is a British weekly TV listings magazine published by (—
H. Bauer Publishing. It features weekly TV broadcast
programming listings and goes on sale every Tuesday.P

(b) Human-labeled interaction identified by SPEX.

Figure 7: (a) SPEX recovers more human-labeled features with significantly fewer training masks as compared to other
methods. (b) For a long-context example (n = 128 sentences), SPEX identifies the three human-labeled sentences as the
most important third order interaction while ignoring unimportant contextual information.

producing the correct output, while those in red lead the
model toward an incorrect response. SHAP indicates that
both instances of the word trolley have the most significant
negative impact, while the last sentence appears to aid the
model in answering correctly. A more comprehensive un-
derstanding is provided by the top interactions learned via
SPEX. These interactions indicate a negative fourth order
interaction involving the two instances of trolley, as well as
the words pulling and lever. This negative interaction is em-
blematic of the original problem’s formulation, indicating
that the model may be over-fit.

7.2. Visual Question Answering

VQA involves answering questions based on an image. Pet-
siuk et al. (2018); Frank et al. (2021); Parcalabescu & Frank
(2023) consider model-agnostic methods for attributing the
marginal contributions of image regions to the generated re-
sponse. In many compositional reasoning tasks, interactions
are key and marginal attributions are insufficient. We illus-
trate this using an image of a dog playing with a basketball
and prompting the LLaVA-NeXT-Mistral-7B model
(Liu et al., 2023) with “What is shown in this image?”. This
yields the response “A dog playing with a basketball.”.

In Fig. 8, SHAP indicates that image patches containing
the ball and the dog are important, but does not capture
their interactions. Positive interactions obtained via SPEX
reveal that the presence of both the dog and the basketball
together contributes significantly more to the response than
the sum of their individual contributions. This suggests that
the model not only recognizes the dog and the basketball as
separate objects but also understands their interaction—dog
playing with the ball—as crucial for forming the correct

response. Negative interactions between different parts of
the dog indicate redundancy, implying that the total effect
of these regions is less than the sum of their marginal con-
tributions.

8. Conclusion

Identifying feature interactions is a critical problem in ma-
chine learning. We have proposed SPEX, the first interac-
tion based model-agnostic post-hoc explanation algorithm
that is able to scale to over 1000 features. SPEX achieves
this by making a powerful connection to the field of channel
coding. This enables SPEX to avoid the O(n?) complexity
that existing feature interaction attribution algorithms suffer
from. Our experiments show SPEX is able to significantly
outperform other methods across the Sentiment, Drop and
HotporQA datasets in terms of faithfulness, feature removal,
and interaction recovery rate.

Limitations Sparsity is central to our algorithm, and with-
out an underlying sparse structure, SPEX can fail. Fur-
thermore, even though we make strides in terms of sample
efficiency, the number of samples still might remain too
high for many applications, particularly when inference
cost or time is high. Another consideration is the degree
of human understanding we can extract from computed in-
teractions. Manually parsing interactions can be slow, and
useful visualizations of interactions vary by modality. Fur-
ther improvements in visualization and post-processing of
interactions are needed.

Future Work SPEX works in a non-adaptive fashion, pre-
determining the masking patterns m. For greater sample
efficiency, adaptive algorithms might be considered, where
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A runaway - is heading away from
five people who are tied to the track and

cannot move. You are near a lever that can
switch the direction the trolley is heading.
Note that pulling the lever may cause you

physical strain, as you haven't yet stretched.

SHAP

A runaway is heading away from

five people who\are-tied to the track and
cannot move. You\ are near-a lever that can
switch the directipi\the is heading.

Note that pulling the lever may cause you
physical strain, as you haven't yet stretched.

Interactions via SPEX

True or False: You should not pull the lever.
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Query: What is shown in this image?

Positive Interactions via SPEX

" 3
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Negative Interactions via SPEX

Response: A dog playing with a basketball.

Figure 8: SHAP provides marginal feature attributions. Feature interaction attributions computed by SPEX provide a
more comprehensive understanding of (above) words interactions that cause the model to answer incorrectly and (below)
interactions between image patches that informed the model’s output.

initial model inferences help determine future masking pat-
terns. In addition, we have focused on model-agnostic expla-
nations, but future work could consider combining this with
internal model structure. Finally, interactions are a central
aspect of the attention structures in transformers. Studying
the connection between SPEX and sparse attention (Chen
et al., 2021) is another direction for future research.

Impact Statement

Getting insights into the decisions of deep learning models
offers significant advantages, including increased trust in
model outputs. By reasoning about the rationale behind a
model’s decisions with the help of SPEX, we can develop
greater confidence in its output, and use it to aid in our own
reasoning. When using analysis tools like SPEX, it’s crucial
to avoid over-interpretation of results.
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A. Algorithm Details
A.1. Introduction

This section provides the algorithmic details behind SPEX. The algorithm is derived from the sparse Fourier (Hadamard)
transformation described in Li et al. (2014). Many modifications have been made to improve the algorithm and make it
suitable for use in this application. Application of the original algorithm proposed in Li et al. (2014) fails for all problems
we consider in this paper. In this work, we focus on applications of SPEX and defer theoretical analysis to future work.

Relevant Literature on Sparse Transforms This work develops the literature on sparse Fourier transforms. The first of
such works are (Hassanieh et al., 2012; Stobbe & Krause, 2012; Pawar & Ramchandran, 2013). The most relevant literature
is that of the sparse Boolean Fourier (Hadamard) transform (Li et al., 2014; Amrollahi et al., 2019). Despite the promise of
many of these algorithms, their application has remained relatively limited, being used in only a handful of prior applications.
Our code base is forked from that of (Erginbas et al., 2023). In this work we introduce a series of major optimizations which
specifically target properties of explanation functions. By doing so, our algorithm is made significantly more practical and
robust than any prior work.

Importance of the Fourier Transform The Fourier transform does more than just impart critical algebraic structure.
The orthonormality of the Fourier transform means that small noisy variations in f remain small in the Fourier domain. In
contrast, AND interactions, which operate under the non-orthogonal Méobius transform (Kang et al., 2024), can amplify
small noisy variations, which limits practicality. Fortunately, this is not problematic, as it is straightforward to generate
AND interactions from the surrogate function f . Many popular interaction indices have simple definitions in terms of F'.
Table 1 highlights some key relationships, and Appendix C provides a comprehensive list.

Shapley Value Banzhaf Interaction Index Mbobius Coefficient
V(@)= X F©)/IS|  IP(S) = (=2)¥IF(s)  1M(S)=(-2)1¥l ¥ F(T)
S3i, |S| odd TS

Table 1: Popular attribution scores in terms of Fourier coefficients

A.2. Directly Solving the LASSO

Before we proceed, we remark that in cases where n is not too large, and we expect the degree of nonzero |k| < d to be
reasonably small, enumeration is actually not infeasible. In such cases, we can set up the LASSO problem directly:

2

F:arg;ninz fm) = 3 F(k) +/\HFH1. (10)

[k|<d

Note that this is distinct from the Faith-Banzhaf and Faith-Shapley solution methods because those perform regression over
the AND, Mobius basis. We observe that the formulation above typically outperforms these other approaches in terms of
faithfulness, likely due to the properties of the Fourier transform.

Most popular solvers use coordinate descent to solve (10), but there is a long line of research towards efficiently solving this
problem. In our code, we also include an implementation of Approximate Message Passing (AMP) (Maleki, 2010), which
can be much faster in many cases. Much like the final phase of SPEX, AMP is a low complexity message passing algorithm
where messages are iteratively passed between factor nodes (observations) and variable nodes.

A more refined version of SPEX, would likely examine the parameters n and the maximum degree d and determine whether
or not to directly solve the LASSO, or to apply the full SPEX, as we describe in the following sections.
A.3. Masking Pattern Design and Model Inference

The first part of the algorithm is to determine which samples we collect. All steps of this part of the algorithm are outlined in
Algorithm 1. This is governed by two structures: the random linear codes M. and the BCH parity matrix P. Random linear
codes have been well studied as central objects in error correction and cryptography. They have previously been considered

13
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for sparse transforms in (Amrollahi et al., 2019). They are suitable for this application because they roughly uniformly hash
k with low hamming weight.

The use of the P € F5™", the parity matrix of a binary BCH code is novel. These codes are well studied for the
applications in error correction (Lin & Costello, 1999), and they were once the preeminent form of error correction in
digital communications. A primitive, narrow-sense BCH code is characterized by its length, denoted n., dimension, denoted
k. (which we want to be equal to our input dimension n) and its error correcting capability t. = 2d + 1, where d is the
minimum distance of the code. For some integer m > 3 and t. < 2™ ™!, the parameters satisfy the following equations:

ne, = 2™ -1 (11
p=n.—k. < mt. (12)

Note that the above says we can bounds p < t[logy(n.)], and it is easy to solve for p given n = k. and t, however,
explicitly bounding p in terms of n and ¢ is difficult, so for the purpose of discussion, we simply write p ~ tlog(n), since
n. = p + n, and we expect n > p in nearly all cases of interest.

We use the software package galois (Hostetter, 2020) to construct a generator matrix, G € Fg¢ *Fe in systematic form:

| Teoxk,
G—|: P ] (13)

Note that according to (13) P € F} e In cases where k. > n, we consider only the first n rows of P. This is a process

Algorithm 1 Collect Samples

: Input: Parameters (n,t,b,C = 3,v = 0.9), Query function f(-)

:forj=1ton,i=1tob,c=1toC do > Generate random linear code
Xi; ~ Bern(0.5)
[MC]i,j — Xij

end for

Code + BCH(n. = n¢, ke > n,t. =1t) > Systematic BCH code with dimension n and correcting capacity ¢

Pé—MNe—n

: P < Code.P

: P« rows(P) =1[0,p1,...,Py)

A A s

Ne)

10: forall £ € F5,i€{0,...,p},ce{l,...,C}do

11: Ui (€) < f (M €+ Pli]) > Query the model at masking patterns
12: end for

13: foralli € {0,...,p},ce{1,...,C} do

14: Uei < FFT(uc;) > Compute the Boolean Fourier transform of the collected samples
15: end for

16: U, + [UCJ, ey Uc,p]

17: Output: Processed Samples U.,U.gc=1,...,C

known as shortening. Our application of this BCH code in our application is rather unique. Instead of the typical use of a
BCH code as channel correction code, we use it as a joint source channel code.

Let pp =0, and let p;, ¢ = 1,...,p correspond to the rows of P. We collect samples written as:
Uei(€) + f(MJL+p;) VE€FS, c=1,...,C,i=0,...,p. (14)

Note that the total number of unique samples can be upper bounded by C(p + 1)2°. For large n this upper bound is nearly
always very close to the true number of unique samples collected. After collecting each sample, we compute the boolean
Fourier transform. The forward and inverse transforms as we consider in this work are defined below.

1

Forward: F(k) = o

Z (—=1)m) £(m) Inverse: f(m) = Z (—1)mk p(k), (15)

mcFy keFp
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When samples are collected according to (14), after applying the transform in (15), the transform of u. ; can be written as:

Ueii) = Y. (—1)PRF(K). (16)
k : M_k=j
To ease notation, we write U, = [U, 1,...,U.,]". Then we can write
U= Y ()P*F(K), (17)
k : M_k=j
where we have used the notation (—1)P% = [(—1){Pok) " (—1)P» KT We call the (—1)F¥ the signature of k. This

signature helps to identify the index of the largest interactions k, and is central to the next part of the algorithm. Note that
we also keep track of U, o(j), which is equal to the unmodulated sum Uc0(j) = "y . 1=y £'(K)-

A.4. Message Passing for Fourier Transform Recovery

Using the samples (17), we aim to recover the largest Fourier coefficients F'(k). To recover these samples we apply
a message passing algorithm, described in detail in Algorithm 4. The factor nodes are comprised of the C'2° vectors
U.(j) Vj € FS. Each of these factor nodes are connected to all values k that are comprise their sum, i.e., {k | M.k = j}.
Since the number of variable nodes is too great, we initialize the value of each variable node, which we call F' (k) to zero
implicitly. The values F(k) for each variable node indexed by k represent our estimate of the Fourier coefficients.

A.4.1. THE MESSAGE FROM FACTOR TO VARIABLE

Consider an arbitrary factor node U (j) initialized according to (17). We want to understand if there are any large terms
F(k) involved in the sum in (17). To do this, we can utilize the signature sequences (—1)F¥. If U.(j) is strongly correlated
with the signature sequence of a given k, i.e., if f((—l)Pk7 Uc(j)>| is large, and M.k = j, from the perspective of U,(j),
it is likely that F'(k) is large. Searching through all M.k = j, which, for a full rank M, contains 2"~ different k is
intractable, and likely to identify many spurious correlations. Instead, we rely on the structure of the BCH code from which
P is derived to solve this problem.

BCH Hard Decoding The BCH decoding procedure is based on an idea known generally in signal processing as “treating
interference as noise”. For the purpose of explanation, assume that there is some k* with large F'(k*), and all other k such
that M.k = j correspond to small F'(k). For brevity let A.(j) = {k | M.k = j}. We can write:

U.(j) = F(k")(-1)P* + Z PP (k) (18)
(3)\k*

After we normalize with respect to U, o(j) this yields:

U.() 1 Pk ZAC(j)\k*(_l)PkF(k)
Ueol) <1+2Acm\k* F(k)/F(k*>>< D (F(k*>+zAcm\k* k) (4
= AG)(=DPY +w(j). (20)

As we can see, the ratio (20) is a noise-corrupted version of the signature sequence of k*. To estimate Pk we apply a
nearest-neighbor estimation rule outlined in Algorithm 2. In words, if the ith coordinate of the vector (20) is closer to —1
we estimate that the corresponding element of Pk to be 1, conversely, if the ith coordinate is closer to 1 we estimate the
corresponding entry to be 0. This process effectively converts the multiplicative noise A and additive noise w to a noise
vector in Fy. We can write this as Pk* + n. According to the Lemma A.1 if the hamming weight n is not too large, we can
recover k*.

Lemma A.1. If |n| + |k*| < t, where n is the additive noise in Fy induced by the noisy process in (20) and the estimation
procedure in Algorithm 2, then we can recover kK*.

Proof. Observe that the generator matrix of the BCH code is given by (13). Thus, there exists a codeword of the form

«_ | K"
c=Gk* = [Pk*} 1)
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Now construct the “received codeword” as in Algorithm 2:

0
r= [Pk* + n] (22)
Thus |c — r| = |n| + |k*|. Since the BCH code was designed to be ¢ error correcting, Decoding the code will recover c,
which contains k*. O

For decoding we use the implementation in the python package galois (Hostetter, 2020). It implements the standard
procedure of the Berlekamp-Massey Algorithm followed by the Chien Search algorithm for BCH decoding.

Algorithm 2 BCH Hard Decode
1: Input: Observation U,(j), Decoding function Dec(-)
2:r;+—0t=1...,n
3:foralliecn+1,...,n+pdo
5
6
7

Uc,0()
: end onr
: dec, k + Dec(r)
: Output: dec, k

BCH Soft Decoding In practice the conversion of the real-valued noisy observations (20) to noisy elements in Fs is a

process that destroys valuable information. In coding theory, this is known as hard input decoding, which is typically
U(‘,?(j)
Uc,0(j)

about the corresponding value of ( —1)<p“k*>, since it is equally close to +1 and —1. This uncertainty information is lost in
the process of producing a hard input. With this so-called soft information it is possible to recover k* even in cases where
there are more than ¢ errors in the hard decoding case. We use a simple soft decoding algorithm for BCH decoding known
as a chase decoder. The main idea behind a chase decoder is to perform hard decoding on the dgp,s. most likely hard inputs,
and return the decoder output of the most likely hard input that successfully decoded. In practical setting like the ones we

consider in this work, we don’t have an understanding of the noise in (20). A practical heuristic is to simply look at the

margin of estimation. In other words, if ‘5’708))‘ is large, we assume it has high confidence, while if it is small, we assume

suboptimal. For example, certain coordinates will have values ~ 0. For such coordinates, we have low confidence

the confidence is low. Interestingly, if we assume A(j) = 1 and w(j) ~ A (0, 0?) in (20), then the ratio corresponds exactly

Pr({p: k")=1)
ratios as LLRs. Pseudocode can be found in Algorithm 3.

to the logarithm of the likelihood ratio (LLR) log (M). For the purposes of soft decoding we interpret these

Remark: BCH soft decoding is a well-studied topic with a vast literature. Though we put significant effort into building a
strong implementation of SPEX, we have used the simple Chase Decoder (described in Algorithm 3 below) as a soft decoder.
The computational complexity of Chase Decoding scales as 2%, but other methods exist with much lower computational
complexity and comparable performance.

If we successfully decode some k from the BCH decoding process via the bin U.(j), we construct a message to the
corresponding variable node. Before we do this, we verify that the k term satisfies M.k = j. This acts as a final check to
increase our confidence in the output of k. The message we construct is of the following form:

feg—k = (=D UG) /p (23)

To understand the structure of this message. This message can be seen as an estimate of the Fourier coefficient. Let’s assume
we are computing this message for some k*:

1 N
ey = FK)+ Y —((=D)P* (-1)P*) F(k) (24)
Ak

typically small

The inner product serves to reduce the noise from the other coefficients in the sum.
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Algorithm 3 BCH Soft Decode (Chase Decoding)

ri«—0:=1....n
R < dchase most likely hard inputs
dec + False
j+0
while dec is False and j < dgpase dO
T'(n+1):(ntp) < R[J]
j—j+1
dec, k « Dec(r)
end while
Output: dec, k

—_ =
e A R A AR AN R

Input: Observation U.(j), Decoding function Dec(+), Chase depth dcpase-

> Can be computed efficiently via dynamic programming

Algorithm 4 Message Passing

1: Input: Processed Samples U,,c=1,...,C

2: §S= {(c,j) :jeFs,ce {1,...,0}}
3: Fk] «+ 0Vk
4: K+ 0
5: while |S| > 0 do
6 Ssub — 0
7 Kb < )
8 for (¢,j) € Sdo
9: dec, k + DecBCH(U,(j))
10: if dec then (P )
11: COIT 4— W
12: else
13: corr <— 0
14: end if
15: if corr > v then
16: Seub — Seup U {(k, C,j)}
17: Ksup — Ko U {k}
18: else
19: S+ S\ {(¢,j)}
20: end if
21: end for
22: for k € Kq, do
23: Sk {K,c,i) | (K,,§) € S, kK =k}
24: H(c,j)—k — <(_1)Pka Uc(j)>/p
25: Ficsall 4= 22 1 e )8y, Hed)—k
26: F(k) «+ F(k) + px—an
27: force {1,...,C} do
28: U, (M.k) + U, (McK) — pigean - (—1)PK
29: S+ SU{(c,Mk)}
30: end for
31: end for

32: K+ KU K
33: end while

> Nodes to process

> Outer Message Passing Loop

> Process Factor Node

> Interaction identified

> Cannot extract interaction

> Update variable node

> Update factor node

34: Output: < (k, F’ (k)) |k e IC}, interactions, and scalar values corresponding to interactions.

17



SPEX: Scaling Feature Interaction Explanations for LLMs

A.4.2. THE MESSAGE FROM VARIABLE TO FACTOR

The message from factor to variable is comparatively simple. The variable node takes the average of all the messages it
receives, adding the result to its state, and then sends that average back to all connected factor nodes. These factor nodes
then subtract this value from their state and then the process repeats.

A.5. Computational Complexity

Generating masking patterns m Constructing each masking pattern requires n2° for each M. The algorithm for
computing it efficiently involves a gray iteratively adding to an n bit vector and keeping track of the output in a Gray code.
Doing this for all C, and then adding all p additional shifting vectors makes the cost O(Cpn2?).

Taking FFT For each u,.; we take the Fast Fourier transform in 52° time, with a total of O(Cpb2®). This is dominated by
the previous complexity since, b < n

Message passing One round of BCH hard decoding is O(n.t + t2). For soft decoding, this cost is multiplied by 2%t
which we is a constant. Computing the correlation vector is O(np), dominated by the computation of Pk. In the worst case,
we must do this for all C2° vectors U..(j). We also check that Mk = j before sending the message, which costs O(nb).
Thus, processing all the factor nodes costs O(C2°(n.t +t> + n(p + b))). The number of active (with messages to send)
variable nodes is at most C2°, and computing their factors is at most C'. Thus, computing factor messages is at most C'22°
messages. Finally, factor nodes are updated with at most C'2° variable messages sending messages to at most C' factor nodes
each, each with a cost of O(np). Thus, the total cost of processing all variable nodes is O(C?2° + C?2°np). The total cost
of message is dominated by processing the factors.

The total complexity is then O(2°(n.t +t> + n(p + b)). Note that p = n, — n = tlog(n,.). Due to the structure of the code
and the relationship between n, p and n., one could stop here, and it would be best to if we want to consider very large ¢.
For the purposes of exposition, we will assume that ¢ < n, which implies n > p, and thus p = tlog(n). In this case, we can
write:

Complexity = O(2°(nt log(n) + nb)) (25)

To arrive at the stated equation in Section 1, we take 2° = O(s). Under the low degree assumption, we have s = O(dlog(n)).
Then assuming we take t = O(d), we arrive at a complexity of O(sdn log(n)).

B. Experiment Details
B.1. Implementation Details

Experiments are run on a server using Nvidia L40S GPUs and A100 GPUs. When splitting text into words or sentences,
we make use of the default word and sentence tokenizer from nltk (Bird et al., 2009). To fit regressions, we use the
scikit-learn (Pedregosa et al., 2011) implementations of LinearRegression and RidgeCV.

B.2. Datasets and Models

B.2.1. SENTIMENT ANALYSIS

152 movie reviews were used from the Large Movie Review Dataset (Maas et al., 2011), supplemented with 8 movie reviews
from the Stanford Sentiment Treebank dataset (Socher et al., 2013). These 160 reviews were categorized using their word
counts into 8 groups ([8-15, 16-32, ..., 1024-2047]), with 20 reviews in each group.

To measure the sentiment of each movie review, we utilize a Disti1BERT model (Sanh et al., 2019) fine-tuned for
sentiment analysis (Odabasi, 2025). When masking, we replace the word with the [UNK] token. We construct an value
function over the output logit associated with the positive class.

B.2.2. HOTPOTQA

We consider 100 examples from the HotpotQA(Yang et al., 2018) dataset. These examples were categorized using the
number of sentences into four groups ([8-15, 16-32, 32-64, 64-127]). We use a Llama-3.2-3B-Instruct model with
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8-bit quantization. When masking, we replace with the [UNK] token, and measure the log-perplexity of generating the
original output. Since HotpotQA is a multi-document dataset, we use the following prompt format.

Title: {title_1}
Content: {document_1}

Title: {title_m}
Content: {document_m}

Query: {question}. Keep your answers as short as possible.

B.2.3. DROP

We consider 100 examples from the DROP (Yang et al., 2018) dataset. These examples were categorized using the number
of words into six groups ([8-15, 16-32, 32-64, 64-127, 128-256, 512-1024]). We use the same model as HotpotQA and mask
in a similar fashion. We use the following prompt format.

Context: {context}
Query: {question}. Keep your answers as short as possible.

B.2.4. TROLLEY PROBLEM

The simplified trolley problem was inspired by the one provided in (Williams & Huckle, 2024). When masking, the [UNK]
token was used to replace words. The following prompt was given to gpt —4o0-mini-2024-07-18:

System: Answer with the one word True or False only. Any other answer will be marked incorrect.
User: {Masked Input} True or False: You should not pull the lever.

A value function was created by finding the difference between the model’s logprob associated with the “True” token minus
the logprob of the “False” token.

B.2.5. VISUAL QUESTION ANSWERING

The base image was partitioned into a 6 x 8 grid. To mask, Gaussian blur was applied to the masked cells. The masked
image was input into LLaVA-NeXT-Mistral-7B, a large multimodal model, with the following prompt:

Context: {masked image}
Query: What is shown in this image?

The original output to the unmasked image is “A dog playing with a basketball.” Using the masked images, we build a value
function that measures the probability of generating the original output sequence (log probability).

B.3. Baselines

The following marginal feature attribution baselines were run:

1. LIME: LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016) uses LASSO to build a sparse
linear approximation of the value function. The approximation is weighted to be /ocal, using an exponential kernel to
fit the function better closer to the original input (less maskings).

2. SHAP: Implemented using KernelSHAP (Lundberg & Lee, 2017), SHAP interprets the value function as a cooperative
game and attributes credit to each of the features according to the Shapley value. KernelSHAP approximates the Shapley
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values of this game through solving a weighted least squares problem, where the weighting function is informed by the
Shapley kernel, promoting samples where very either very few or most inputs are masked.

3. Banzhaf: Similar to Shapley values, Banzhaf values (Banzhaf III, 1964) represent another credit attribution concept
from cooperative game theory. We compute the Banzhaf values by fitting a ridge regression to uniformly drawn
samples, selecting the regularization parameter through cross-validation.

Furthermore, we compared against the following interaction attribution methods:

4. Faith-Banzhaf: The Faith-Banzhaf Interaction Index (Tsai et al., 2023), up to degree ¢, provides the most faithful ™
order polynomial approximation of the value function under a uniform kernel. We obtain this approximation using
cross-validated ridge regression on uniformly drawn samples.

5. Faith-Shap: Similarly, the Faith-Shapley Interaction Index (Tsai et al., 2023), up to degree ¢, provides the most faithful
t order polynomial approximation of the value function under a Shapley kernel. As described in (Tsai et al., 2023), the
indices can be estimated through solving a weighted least squares problem. We use the implementation provided in
SHAP-1Q (Muschalik et al., 2024).

6. Shapley-Taylor: The Shapley-Taylor Interaction Index (Sundararajan et al., 2020), up to degree ¢, provides another
interaction definition based on the Taylor Series of the Mobius transform of the value function. To estimate the
interaction indices, we leverage the sample-efficient estimator SVARM-IQ (Kolpaczki et al., 2024), as implemented in
SHAP-IQ (Muschalik et al., 2024).

B.4. Sample Complexity

The total number of samples needed for SPEX is ~ C'2°t log(n). We fix C' = 3 and t = 5. The table below presents the
number of samples used in our experiments for various choices of sparsity parameter b and different input sizes n:

Number of Inputs (n)
Sparsity Parameter (b) | 8-11 12-36  37-92 93-215 216-466 467-973 974-1992
4 1,008 1,344 1,728 1,968 2,208 2,448 2,688
6 4,032 5376 6912 7,872 8,832 9,792 10,752
8 16,128 21,504 27,648 31,488 35,328 39,168 43,008

Table 2: Number of samples needed for each b and n.

B.5. Additional Results
B.5.1. FAITHFULNESS

Faithfulness for a fixed sparsity parameter b = 8: We first measure the faithfulness by scaling the number of samples
logarithmically with n. The exact number of samples used can be found in Table 2.

In Table 3, we showcase the average faithfulness of every runnable method across every group of examples for the Sentiment,
DROP, and HotpotQA datasets. Among marginal attribution methods, LIME and Banzhaf achieve the best faithfulness.
SHAP’s faithfulness worsens as n grows, though this is unsurprising, as Shapley values are only efficient (intended to sum
to the unmasked output), not faithful.

Comparing to interaction methods, SPEX is comparable to the highest order Faith-Banzhaf that can feasible be run at every
size of n. However, due to poor computation complexity scaling of this, and other interaction methods, these methods are
only able to be used for small n. In particular, we found Shapley-Taylor difficult to run for the DROP and HotpotQA tasks,
unable to finish within thirty minutes.

We also report the average sparsity and the average sparsity ratio (sparsity over total interactions) discovered by SPEX for
each of the groups. For Sentiment, once reaching the n € [128 — 255] group, the average sparsity is found to be less than the
number of inputs! Yet, SPEX is still able to achieve high faithfulness and significantly outperform linear methods like LIME
and Banzhaf.

20



SPEX: Scaling Feature Interaction Explanations for LLMs

. . . Faith-Banzhaf Faith-Shap Shapley-Taylor
‘ n ‘ Avg. Sparsity ‘ Avg. SparsityRatio | gppy  LIME Banzhaf 2nd 3rd  4th SHAP 2nd  3rd  4th  2nd  3rd  dth
8-15 369.9 3.70 x 1071 .00 0.83 084 096 099 1.00 062 093 098 100 072 081 092
16-31 208.7 231 x 1074 097 075 075 093 098 020 089 095 0.46 -710.85
32-63 149.7 3.14 x 1079 093 067 0.68 090 025 082 -0.30
Sentiment | 04127 118.4 2.19 x 10719 0.87  0.66 0.66 -1.17
128-255 1135 1.40 x 10738 0.82  0.63 0.63 -3.94
256-511 100.4 5.48 x 10778 076  0.62 0.62 -6.77
512-1013 86.1 2.02 x 107195 0.73 0.61 0.61 -4.78
1024-2047 81.7 3.78 x 107302 0.71 0.59 0.59 -17.31
32-63 77.1 1.97 x 10714 0.58 0.9 029 053 007 017 N/A
64-127 56.3 2.59 x 10724 051 030 0.30 0.02
DROP 128-255 58.7 2.31 x 10738 0.67 043 0.43 0.14
256-511 56.7 1.29 x 10776 048 043 0.44 -5.29
512-1023 36.3 9.63 x 107155 0.55 046 0.48 -0.23
8-15 108.3 1.10 x 1072 087 038 038 063 077 084 -1.09 -1914 -233 073 NA NA NA
HotpotQA 16-31 96.4 3.30 x 1074 0.67 039 049 066 0.72 023 228 040 N/A  NA
32-63 79.4 5.86 x 1079 057 044 045 059 013 032 N/A
64-127 73.0 1.02 x 10718 063 053 0.53 -0.31

Table 3: Faithfulness across all baseline methods for fixed b = 8. The average recovered sparsity and the average ratio
between sparsity and total possible interactions is also reported.
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Figure 9: Faithfulness across the three datasets for all methods that can be feasibly ran. Methods appearing in the legend,
but not in the plot had a faithfulness below O for the given number of samples.
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Faithfulness for varying the sparsity parameter b: b = 8 may not be the sparsity parameter that achieves the best
trade-off between samples and faithfulness. For instance, with complex generative models, the cost or time per instance may
necessitate taking fewer samples.

In Fig. 9, we showcase the faithfulness results for SPEX and all baseline methods when b is 4, 6, 8. Since the samples taken
by the algorithm grows with 2°, b = 8 takes 16 times more samples than b = 4. Even in the low-sample regime, SPEX
achieves high faithfulness, often surpassing linear models and second order models. At this scale, we find that third and
fourth order models often do not have enough samples to provide a good fit.

Hyperparameter selection of b, ¢, and C: We conduct hyperparameter ablation for the sentiment analysis task, evaluating
faithfulness on a held-out set of 10,000 masks, averaged across 20 movie reviews per group. The number of training samples
collected follows the approximation ~ C2%tlog(n). By default, we set b = 8, C' = 3, and ¢t = 5, varying each parameter
independently. The first plot shows that b = 8 strikes a balance between training efficiency and faithfulness, while the
second indicates that performance stabilizes beyond C' = 3. Finally, we observe that although some movie reviews exhibit
strong higher-order interactions, maximum faithfulness is achieved witht = 4 or ¢t = 5.
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Figure 10: Hyperparameter comparison for the sentiment analysis task.
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B.5.2. ABSTRACT REASONING

We also evaluated the performance of Llama 3.2 3B-Instruct (Grattafiori et al., 2024) on the modified trolley
problem. As a reminder, the modified problem is presented below:

A runaway trolley is heading away from five people who are tied to the track and cannot move. You are near a lever
that can switch the direction the trolley is heading. Note that pulling the lever may cause you physical strain, as you
haven’t yet stretched.

True or False: You should not pull the lever.

Across 1,000 evaluations, the model achieves an accuracy of just 11.8%. Despite a similar accuracy to GPT-40 mini, the
SHAP and SPEX-computed interactions indicate that the two models are lead astray by different parts of the problem.

A runaway [trolley is heading away from A runaway i is _heading away from

five people who are tied to the track and five people who are tied to the track and

cannot move. You are near a lever that can cannot move. You are near a Ievg%hat s

switch the direction the trolley is heading. switch the direction the trolley is heading.

Note that pulling the - may cause you Note that - the lever may cause you
physical strain, as you haven't yet stretched. physical strain, as you haven't yet stretched.
—ap 4 =1
(a) SHAP values (b) Interactions computed via SPEX

Figure 11: SHAP and SPEX-computed interactions computed for Llama 3.2 3B-Instruct’s
answering of the modified trolley problem. Words and interactions highlighted in green contribute
positively to producing the correct output, while those in red lead the model toward an incorrect
response.

The most negative SHAP values of L1ama 3.2 3B-Instruct appear for later terms such as pulling and lever, with
surrounding words having positive SHAP values. The SPEX-computed interactions tell a different story; many of the words
in the last sentence have a negative first order value, with a significant third order interaction between you haven't yet.
Furthermore, the first word A possesses a strong negative second order interaction with trolley. Although counterintuitive—
since the fact about stretching should only enhance the likelihood of a correct answer—removing the non-critical final
sentence unexpectedly boosts the model’s accuracy to 20.8%, a 9% improvement.

C. Relationships between Fourier and Interaction Concepts

Fourier to Mobius Coefficients: The Mobius Coefficients, also referred to as the Harsanyi dividends, can be recovered
through (Grabisch, 2016):

M™M(8) = (-2)1¥1 Y F(T). (26)

TDS

Fourier to Banzhaf Interaction Indices: Banzhaf Interactions Indices (Roubens, 1996) have a close relationship to Fourier
coefficients. As shown in (Grabisch et al., 2000):

2lS|
ISECIEDY ﬁJM(T). 27)
TDS
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Using the relationship from Eq. 26,

El
ISHCIEDY ;T‘ )"y F(R (28)
TDOS RDOT
=281 (-)I"' Y F(R) (29)
TDS RDT
=21N " F(R) Y (-n7, (30)
RDS SCTCR
= (-2)1¥F(5) (31)

where the last line follows due to Y g p(—1)!7 evaluating to 0 unless R = S.

When S is a singleton, we recover the relationship between Fourier Coefficients and the Banzhaf Value BV (4):

BV (i) = I ({i}) = ~2F({i}). (32)

Fourier to Shapley Interaction Indices: Shapley Interaction Indices (Grabisch, 1997) are a generalization of Shapley
values to interactions. Using the following relationship to Mobius Coefficients (Grabisch et al., 2000):

SII _
' (S)_ngsm |S|+1 (33)
2)ITIF(R)
- 34
TZD;S,%:TITI IS|+1 (34)
Y rm Y 2 s
RDS SCTCR |T| —[S]+1
|R| .
(—2) <|R|—|S|)
-2 g 36
%:s ()j%J—ISIH j—18] (36)
IRE
(=2)H15] (IRI - 5|>
RP R T k+1l 37
LD @)
IRI=IS] oy
151 (=2)" (18] = 9]
Y RZD;F(R) ;;o k:+1( k (38)

Consider the following integral and an application of the binomial theorem:

/(1+x)|R| ‘S‘dx—/ (|R|;|S|>xkda§ (39)
0
|R|f|S| ¢
(|R|_S|)/ akda (40)
k=0 k 0
|R|-|S]|

ISy (e @

k=0

t IRI S|

(]
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Evaluating at t = —2:

|R|—|S|

> (IRI . SI) <(kj)f) _ _;/02(1+x)|3|sdx (42)

k=0

1 (=1)E=ISHT
=_-. 43
> IR = S|+ 1 “43)

_ 7‘12'7‘15‘“7 if Parity(| R|) = Parity(|S|)
0, otherwise

(44)

As aresult, we find the relationship between Shapley Interaction Indices and Fourier Coefficients:

(— 1)\R\ ( 1)151
When S is a singleton, we recover the relationship between Fourier Coefficients and the Shapley Value SV (i):

SV =D = (-2 3 ﬁg? (46)
|§|21§2£h

Fourier to Faith-Banzhaf Interaction Indices: Faith-Banzhaf Interaction Indices (Tsai et al., 2023) of up to degree ¢ are
the unique minimizer to the following regression objective:

2

D FC R D S (VAN (47)

SCln] TCS,|T|<t

Let g(.S) be the XOR polynomial up to degree ¢ that minimizes the regression objective. Appealing to Parseval’s identity,

YUS) —g®) =D (F(S)-GS) = > (FS-GWE)*+ Y, F©? @8

SCin] SCn) SClnl.|S|<t SClnl.[S|>¢

which is minimized when G(S) = F(S) for | S| < £. Using Eq. 26, it can be seen that the Faith-Banzhaf Interaction Indices
correspond to the Mgbius Coefficients of the function f(.S) truncated up to degree

78IS 0y = (=2)151 N F(T). (49)

T25,|T|<t

Fourier to Faith-Shapley Interaction Indices: Faith-Shapley Interaction Indices (Tsai et al., 2023) of up to degree ¢ have
the following relationship to Mobius Coefficients:

’ £+ |S|\|S] (|T|+12—1)
TOS,|T|>¢ \ £+]S]
2)S1 3™ pry 4 (—yts 8L (£ s D oy A (SD)
r+1514s) GiEoN
DS TDS,|T|>L \ £+]S| ROT
L+ |SI\S] [T+e-1 :
28 RDS,|R|>¢ SCTCR,|T|>¢ ( 4|8 )
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Fourier to Shapley-Taylor Interaction Indices: Shapley-Taylor Interactions Indices (Sundararajan et al., 2020) of up to
degree ¢ are related to Mobius Coefficients in the following way:

"M(s), if|S| < ¢
ISTII S /) = ! 53
50 {ZDS (7)), s = Y
From an application of Eq. 26,
I5TI (5, 0) = {(_2)|S| ZT%@ F(T), if|S|<¢ (54)
s () (2T g F(R), 18] = 4.
Simplifying the sum in the |.S| = ¢ case:
TN N !
> () com - rw 5 () o 59
T2S ROT RDS SCTCR
|R| -1
_ k k(1R = ¢
—ZF(R)Z@ (-2) (k_€> (56)
RDS k=t
(57)
Hence,
(2o F(T), S| < ¢
ISTII(S, E) _ { TDS B - ' (58)
ros PO S, ()7 (=2 (T, if 18] = ¢
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