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Graduate student instructors (GSIs) in mathematics play a pivotal role in shaping undergraduate 
education and are the future of collegiate mathematics faculty. As part of their development, 
GSIs are expected to engage in teaching-focused professional development (TPD), particularly 
in evidence-based strategies like Active Learning (AL) methods. However, higher education is 
only beginning to explore how to effectively measure GSIs' growth in teaching skills through 
such TPD. This study examines the learning process of 47 novice GSIs from three universities, 
specifically focusing on their evolving understanding of AL before and after participating in 
TPD. By analyzing the GSIs' own definitions of AL, the research highlights changes in their 
knowledge and alignment with the intended TPD outcomes. The findings provide insight into the 
effectiveness of TPD on AL, while also offering recommendations for structuring future 
evaluations of TPD impact on GSI teaching knowledge and skills. 

Keywords: Active Learning, Graduate Student Instructors, Teaching Assistants, Professional 
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Mathematics graduate students are a substantial proportion of the undergraduate teaching 
workforce in the United States (Belnap & Allred, 2009; Speer et al. 2010) and their pedagogical 
knowledge and methods are greatly influenced during this time as novice college mathematics 
instructors (Deshler et al., 2015; Speer and Murphy, 2009). During their experiences as graduate 
student instructors (GSIs, graduate students who are instructors of record for a mathematics or 
statistics course), research has indicated that teaching-focused professional development (TPD) 
improves GSIs’ knowledge and skills for effective teaching (Deshler et al., 2015; Yee & Rogers 
2017; Hauk & Speer, 2023). Decades of work have also demonstrated that active learning (AL) 
approaches—using teaching strategies that actively engage all students in the classroom—are 
among the most effective (Freemen et al., 2014; Gobstein et al., 2016). AL has received 
significant discussion on its value within the classroom, with overwhelming recognition of its 
success with appropriate TPD (Reinholz, 2023). For example, Reinholz et al. (2022) reported on 
how and why supervision of collaborative learning is critical for AL strategies to be effective. 
Indeed, without addressing a classroom culture, student collaborations may include 
microaggressions that drastically limit the effectiveness of AL. Thus to prepare GSIs for 
implementing AL well, they need equitable and effective TPD (National Academy of Science, 
Engineering, and Medicine, 2023). 
How can we know if TPD is effective? Specifically, how can we gather data and assess the 

impact among GSIs of AL-focused TPD opportunities?  It requires data upon which to evaluate 
effectiveness, which, in turn, requires data collected around the objective or aim of the TPD (Yee 
et al., 2024; Deshler et al., 2015). In recent years, research in undergraduate mathematics 
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education has begun exploring ways to evaluate the effectiveness of TPD (Yee et al, 2023; Yee 
et al, 2024). 

Purpose and Rationale 
The purpose of this study was to research how collecting and analyzing data on GSI learning 

in an AL-focused TPD activity might be part of evaluation of TPD effectiveness. Prior research 
has indicated that to improve practical understanding of AL, instructors need to (1) recognize 
exemplars through readings about AL methods (McConnell et al., 2017), (2) visualize and 
imagine themselves using varying AL methods (Yee, 2021), and (3) become aware of the 
nuances inherent in the enactment of AL (Laursen & Rasmussen, 2019). Our approach was to 
focus on how GSIs’ definitions of AL changed during their TPD experience.  
Unpacking GSIs’ meaning making for educational definitions is important particularly for 

GSIs in mathematics where deductive and axiomatic structures put significant weight on 
definitions. For example, a series cannot both converge and diverge because the definition of 
convergence and divergence is binary, founded in the logic that a mathematical statement is 
either true or false, hence dependent upon the definition (Vinner, 2002). Thus a mathematical 
definition’s utility is uniform. However, definitions in educational research rely on human 
participants and evidence, as seen in the diverse use of AL across different disciplines. How a 
chemistry lab uses AL is distinct from how a mathematics classroom uses AL because chemistry 
labs inherently engage students through lab experiments, resulting in facilitating labs being the 
focus for AL. Our rationale for this study emphasizes GSIs’ definitions of AL as dynamic and 
not static. To this end, our research question for this study was: How do novice GSIs’ definitions 
of AL change after participating in an AL-focused professional learning activity? For this study, 
novice refers to GSIs who are within their first two years of teaching. 

Relevant Literature for Framing the Professional Development 

Dimensions and Pillars of Active Learning 
Four pillars for AL support instructors in developing a definition of AL: (1) Students 

engaging deeply with coherent and meaningful mathematical tasks, (2). Students collaboratively 
processing mathematical ideas, (3) Instructors inquiring into student thinking, (4) Instructors 
fostering equity in their design and facilitation choices (Gobstein et al., 2016; Laursen & 
Rasmussen, 2019; Smith et al., 2021; Yee et al., 2024). Recent work in developing TPD for 
operationalizing a definition of AL has come out of the SEMINAL project (and coding of over 
100 mathematics instructor definitions of AL; Williams et al., 2020). In leveraging this previous 
work, we sought to attend to novice GSIs with their beginning understanding of AL. This led to 
another dimension of interest: interconnectedness. Together with the four pillars, the dimensions 
reflected on and considered in our AL-focused TPD and research were: (1) Role of students, (2) 
Role of mathematics, (3) Role of the teacher, (4) Role of equity, (5) Interconnectedness of the 
other roles. The fifth dimension was added because our research team agreed that how the four 
roles are connected is just as important as any single role. For example, the interconnectedness 
dimension focused on if novice GSIs could recognize that the role of equity affects the role of 
the teacher and students.  

Critical Reflection by Assessing Definitions 
The larger scope of this work strives to understand how GSI conceptions of AL for 

productive use in the classroom change over time. This study focuses on definitions for multiple 
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reasons. We understand how educational definitions can be perceived differently from 
mathematicians' use of definitions (Tall & Vinner, 1981). Ultimately, learning to integrate 
definitions for teaching is a process. This study is not trying to argue or search for a “right” or 
“correct” definition of AL. Indeed, Williams et al.’s (2022) work shows the diverse ways in 
which experienced mathematicians view AL. The goal of this study was for GSIs to reflect on 
how their AL definition might change as they built experience as instructors. Consequently, the 
AL-focused TPD activity was designed to have GSIs critically reflect (Brookfield, 2017) on AL 
definitions by actively engaging in assessing their own and others’ definitions. To that end, 
similar to other classroom practices used to help novice GSIs use AL (e.g. Observation 
Protocols, Yee et al., 2022), this study did not use assessment of AL understanding, but rather 
assessment for AL understanding. 

Description of Module, Lessons, and Activities 
The AL-focused TPD module included two 50-minute sessions with novice GSIs as (Lesson 

1 and Lesson 2) as well as pre- and post-lessons assignment. Figure 1 describes the module.  
Overarching Goal of Module*: The goal of this unit is to have novice GSIs grow their definition, understanding, and implementation of AL. 
Full description of activity is at (Yee et al. 2024) 
Pre-Module Assignment:  
1. Read Active learning in the college classroom by Faust and Paulson, 1998. 
2. In the context of Mathematics teaching and learning, please type your own definition of active learning in as much detail as possible. 
Lesson 1 Objectives: 
● GSIs will Identify what students and 
instructors can do with a selected set 
of active-learning strategies. 

● Justify their decisions on what 
students and instructors can do with a 
selected set of active-learning 
strategies in their classroom. 

Lesson 1 Activities (50 Minutes)* 
● GSIs are given a list of 10 common GSI strategies 
● GSIs are given a table with rows indicating ways students are engaging during the activity and 
columns about how the instructor is engaged during the activity. GSIs then work in small groups 
to list each AL strategy in what cells they find most relevant. 

● GSIs negotiate with one another how they would enact the activity relative to what the 
instructor is doing and what the students are doing. 

● GSIs recognize that direct instruction is just one of many teaching methods and quite limited 
within the scope of what students can and can’t do. 

Lesson 2 Objectives: 
● Notice and articulate distinctions and 
dimensions of definitions of Active 
Learning 

● Revise their initial definition of 
Active Learning. 

Lesson 2 Activities (50 Minutes) 
● GSIs review the rubric (see Figure 2) and practice evaluating three pre-generated definitions 
according to the rubric. 

● GSIs then review their own definition 
● Classroom discussion is had around any issues of confusion with the rubric and what they notice 
and wonder about their own pre-module AL definition 

Figure 1. Active learning module structure and components 
GSIs began by reading a collegiate AL article (Faust & Paulson, 1998) and creating their 

own initial definition of AL. Lesson 1 had them engage with 10 AL strategies by asking the GSI 
to envision (1) what the student is doing and (2) what the instructor is doing for each. Lesson 2 
had the GSIs see a rubric for evaluating definitions of AL along the five dimensions using a scale 
from 1 to 5 (see Figure 2). GSIs then practiced and made sense of the rubric with three AL 
definition examples that were pre-generated to identify how the dimensions of AL are used. 
Finally, GSIs reviewed their own definition and discussed what GSIs noticed and how they 
might want to change their definition. 
This report focuses on the Lesson 2 objectives. The activity was designed after multiple 

iterations of a smaller activity (Lesson Plan 1) so that results could be used to interpret and 
justify conclusions about GSI’s change in definitions. By looking for changes in definitions 
(especially relating to equity), we collected data to determine if the TPD objectives had been 
met. Furthermore, through assessment and reflection, we could determine how to improve the 
TPD itself. Ultimately, the rubric is not just to rate definitions, but a means to understand the 
components of the definition (i.e. assessment for AL understanding). 
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Methods 
To answer our research questions, this study used a sequential mixed methods approach 

where qualitative coding was followed by quantitative analysis. GSIs’ original definitions (pre-
module assignment) and the GSIs’ revised definition were qualitatively coded using the rubric by 
the research team after the entire module TPD was completed (post-module assignment). Figure 
2 offers an abridged rubric, while the full rubric can be found at https://bit.ly/RUME2025.  
 (1) Missing 

Element (𝛼) 
(2) Basic  

Definition (𝛼) 
(3) Specific 

Example(s) (𝛽) 
(4) Sufficient 
Definition (𝛾) 

(5) Rich and Nuanced 
Definition (𝛾) 

R
ol
e 
of
 S
tu
de
nt
s 

 

No mention 
of students or 
what students 
are doing 

Includes broad 
mentions that students 
are active or actively 

engaged 

Can articulate what 
the student is doing 
during a specific 
example of active 

learning 
 

Describes what students are 
doing inside and/or outside the 
classroom; definition may 

include active engagement with 
mathematical learning, or peer-

to-peer interaction 

Describes what students are doing inside and 
outside the classroom, including active 

engagement with mathematical learning, peer-
to-peer interaction to communicate 

mathematical reasoning 

R
ol
e 
of
 

M
at
he
m
at
ic
s No mention 

of the 
mathematics 

Mention of math class 
or doing math (in 

general) 

Gives examples of 
specific mathematics 
content (e.g., chain 

rule) 

Reflect on the mathematical 
content that was difficult to 
understand, that has become 

clearer conceptually than it was. 

Defines how specialized mathematics 
knowledge for teaching is directly involved 

with the active learning strategy, including how 
mathematical reasoning is embedded to build 

student understanding 

R
ol
e 
of
 

T
ea
ch
er
s No mention 

of the teacher 
or what 

teachers are 
doing 

Mention of the teacher 
in general (“the teacher 
plans active learning”) 

Gives specific 
examples of active 
learning strategies 
such as think-pair-

share 

Describes formative 
assessment(s) and how student 
feedback will be incorporated 

to inform teaching 
 

Describes what the teacher is doing to 
orchestrate active learning, including planning 
considerations, instructor use of student 
thinking, and how the instructor engages 

students 

R
ol
e 
of
 E
qu
ity
 No mention 

of equity 
Mention equity within 
the classroom around 
content, student, or 
teacher access; 
reference to “all 
students” such as 
active learning 

Gives specific 
inclusive teaching 
strategies related to 
implementing 
active learning 

 

Illustrate how the specific 
strategies will provide 
equitable access to the 

learning activity. May provide 
examples linking ideas to 

practice such as equity versus 
equality 

Describes equity considerations and 
intentionality for using inclusive teaching 
practices, such as norm setting for engaging 
students in discussions; includes discussion of 
how active learning is not automatically 
equitable; may talk about other equitable or 

inclusive teaching strategies. 

In
te
rc
on
ne
ct
ed
-

ne
ss
 

No 
connections 
among the 
four 

different 
roles 

Defines active 
learning by what it is 
not (“not lecture”), 
and does not connect 
across dimensions 

At least one 
connection is 

stated between two 
of the roles 

(teacher, students, 
math, equity) 

Definition touches on more 
than one connection across 
more than two of the roles 
(teacher, student, math, and 

equity) 

Definition touches on roles of students, 
teachers, and mathematics, with attention to 
equity, interactions, and mathematical sense 

making and communication; 
acknowledgement that the roles are 

interconnected 

Figure 2. Abridged rubric used to assess active learning definitions by graduate student instructors 
The data was then quantitatively analyzed to determine what changes, and frequency of those 
changes, occurred among participants’ definition components and qualities. 𝛼, 𝛽, and 𝛾 are 
categorical codes described further in the findings. 

Participants and Data Collection 
47 novice GSIs from three universities in the midwestern and southeastern United States 

participated in the GSI TPD. All novice GSIs had just begun as full instructor-of-record in 
introductory mathematics and statistics courses. All three providers of the TPD were researchers 
in this study. Participants submitted their initial and final definitions of AL via an online form, 
either during a TPD activity or as homework. Participants’ prior understanding of AL from the 
providers was limited. Students had perhaps heard the language around students should be 
“active,” but AL was never formalized beyond personal experiences with teaching.  

Data Analysis 
Three members of the research team completed the qualitative coding of all 47 GSIs’ pre- 

and post-definitions using the rubric (Figure 2). They all coded 20 GSIs’ pre- and post-
definitions along all five rubric dimensions, then met to compare, discuss, and agree on initial 
codes. They discussed how to align the rubric, then discussed and revised their individual codes 

27th Annual Conference on Research in Undergraduate Mathematics Education 582

https://bit.ly/RUME2025


 

 

until the whole research team agreed on coding for the initial set of 20 GSIs. The remaining 27 
GSIs were split evenly among this same group so that each researcher coded for 9 GSIs’ pre- and 
post-definitions along all five rubric dimensions on their own. Inconsistencies were discussed 
until interrater reliability was 95%. 
For example, one student wrote in their pre-definition, “My own description of it would 

include things such as collaborative problem solving, hands-on activities, flipped classroom, peer 
teaching, project based or discovery learning,” which the research team agreed was a score of 1 
in all categories, except Role of Students (score 5). The post definition for the same student was:  
Multiple participants are involved in AL inside a classroom: the instructor creates 
learning opportunities with equitable access points and then facilitates tasks so that 
everyone in the class is involved with the task, while simultaneously collecting feedback 
from the students to navigate and decide on the next learning actions and goals. All 
students have an opportunity to be actively involved in the learning process, while 
following the established classroom norm of promoting the construction of their own 
knowledge and ideas simultaneously respecting others' experiences and perspectives. 
Students engage in tasks to develop understanding and become an active participant/ a 
primary stakeholder in their learning and further investigate their understanding in and 
outside of the classroom by taking ownership of their own learning outcomes. 

Researchers scored this student’s post definition as still a 1 in Role of Mathematics and a 4 for 
Interconnectedness, but a 5 for the Role of Student, Instructor, and Equity. 

Findings 

Pre- and Post-Definition Descriptive Discussion 
Upon completion of the initial coding, the research team decided to group some rubric score 

values into broader categories. The 𝛼 category comprises scores of 1 (Missing Element) and 2 
(Basic Definition), representing, at best, the inclusion of a rubric dimension in a GSI’s definition 
with little specificity. The 𝛽 category represents a score of 3 (Specific Examples(s)). And the 𝛾 
category comprises scores of 4 (Sufficient Definition) and 5 (Rich and Nuanced Definition), 
representing the inclusion of a rubric dimension in a GSI’s definition at a level of complexity 
beyond a basic statement or concrete example. These three broader categories were introduced to 
help identify trends via quantitative analysis, both in describing pre- and post-definitions 
individually and in understanding changes from pre- to post-definitions overall.  
Table 1 provides a summary of how GSIs’ pre- and post-definitions were coded and 

organized by rubric item category (ranging from less rich in the 𝛼 category to more nuanced in 
the 𝛾 category). This provides evidence for the initial and end states of GSIs’ definitions through 
the activity. 
Table 1. Number of GSIs’ pre- and post-definitions by category 

 Pre-Definition (N=47) Post-Definition (N=47) 
 𝜶 𝜷 𝜸 𝜶 𝜷 𝜸 

Role of Students 25 9 13 6 11 30 
Role of Mathematics 44 0 3 36 2 9 
Role of Teachers 28 17 2 9 32 6 
Role of Equity 46 1 0 38 5 4 

Interconnectedness 20 20 7 0 12 35 
𝛼 = rubric score of 1 or 2; 𝛽 = rubric score of 3; 𝛾 = rubric score of 4 or 5 

As seen in Table 1, the category with the largest number of GSIs’ pre-definitions was the 𝛼 
category for every rubric dimension. Pre-definitions were especially highly concentrated in the 𝛼 
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category for both Role of Mathematics and Role of Equity, meaning that the Roles of 
Mathematics and Equity were either missing or included in a basic way for nearly all GSIs’ pre-
definitions. The other rubric dimensions (Role of Students, Role of Teachers, And 
Interconnectedness) were distributed more widely across all categories. 
Regarding post-definitions, Table 1 shows that Role of Mathematics and Role of Equity 

remain relatively highly concentrated in the 𝛼 category, but these are the only rubric dimensions 
for which the 𝛼 category had the largest number of post-definitions. Researchers expected that 
GSIs’ definitions would change after having worked with the rubric in Figure 2, but it is 
noteworthy that no post-definitions fell into the 𝛼 category for Interconnectedness. This is likely 
because many of GSIs’ pre-definitions completely lacked mention of certain rubric elements 
(such as the “Role of Mathematics” or the “Role of Equity”) and therefore had fewer 
opportunities to make connections between roles. The rubric prompted GSIs to think about and 
include all roles (and naturally make more connections among the roles) in their definitions. 

Changes in Definition 
We observed a deepening in richness of GSIs’ definitions of AL by observing their change in 

category from their pre-definition to their post-definition. For simplicity, a GSI’s definition 
became richer by category if it was assigned rubric scores for pre- and post-definitions that 
represented a shift in category from 𝛼 to 𝛽, from 𝛽 to 𝛾, or from 𝛼 to 𝛾. Among the 47 GSI 
participants, it was most common (17 of 47 participants, 36%) for a definition to become richer 
by category in three different rubric dimensions. Two GSIs saw their definitions become richer 
by category across all five rubric dimensions (15%), while seven GSIs saw no increased richness 
by category in any rubric dimension. 
Researchers note that since GSIs’ were given the rubric prior to constructing their post-

definitions, one might expect to observe GSIs’ definitions becoming somewhat uniformly richer 
by category across all rubric dimensions (after considering rubric dimensions where GSIs’ pre-
definitions were concentrated in richer categories, see Table 1). This was not the case at all. The 
“Interconnectedness” rubric dimension saw the most substantial enrichment of definitions, with 
35 of 47 participants’ definitions (74%) becoming richer by category, even though this rubric 
dimension started with the fewest pre-definitions in the 𝛼 category. Conversely, the “Role of 
Mathematics” and “Role of Equity” rubric dimensions began with the most pre-definitions in the 
𝛼 category and yet saw the least amount of enrichment by category. 
Role of Mathematics and Role of Equity: All but three GSIs’ pre-definitions fell into the 𝜶 

category for the “Role of Mathematics” rubric dimension, yet only nine definitions became 
richer by category in this dimension through the activity. Looking at the “Role of Equity” rubric 
dimension is even more extreme—all but one pre-definition fell into the 𝜶 category, yet only 
eight definitions became richer by category. To better understand the changes in richness for the 
Role of Mathematics and the Role of Equity, a more granular analysis of the participants’ post-
definitions was done with participants’ whose pre-definition was an 𝜶 category. Table 2 details 
the exact change in rubric score (not just category) for all pre-definitions within the 𝜶 category. 
Table 2 illustrates 8 out of 47 post-definitions (17%) received a score of 1 to represent the 

Role of Mathematics as being a “Missing Element.” However, 23 of 35 of the GSIs’ definitions 
(65%) that started at a pre-definition score of 1 (“Missing Element”) grew to a post-definition 
score of 2 (“Basic Definition”). These GSIs’ definitions became richer within the 𝛼 category. 
Ultimately, pre-definitions that began in the 𝛼 category lacked concrete examples of how 
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mathematics takes a role in the AL process (𝛽 category) or how mathematical content and 
reasoning shapes or is shaped by the AL process more broadly (𝛾 category). 
Table 2. Number of GSIs pre- to post-definition rubric score shifts in 𝛼 category 

 Pre-Definition Rubric Score  Post-Definition Rubric Score 
 (α category) 1 2 3 4 5 

Role of Mathematics  1 (N=35) 6 23 1 5 0 
2 (N=9) 2 4 1 2 0 

Role of Equity  1 (N=41) 20 15 2 2 2 
2 (N=5) 1 2 2 0 0 

Table 2 also states 21 out of 47 post-definitions (45%) received a score of 1 to represent the 
Role of Equity as being a “Missing Element.” 15 of the 41 (37%)  post-definitions began with a 
pre-definition of score of 1 shifted richness towards a “Basic Definition” (score 2) for the Role of 
Equity, yet 20 of the 41 (49%) had a pre- and post-definition score of 1 within the Role of 
Equity. Even more so than for the Role of Mathematics, GSIs’ definitions infrequently 
incorporated specific examples or sufficiently rich/nuanced conceptualizations of the Role of 
Equity in AL. 

Discussion & Implications 
Despite limited research on GSI learning (e.g., Deshler et al. 2015; Yee et al., 2023) this 

study represents a transferable model for assessing the impacts of GSI TPD. Like Williams et al. 
(2022), we found that AL definitions rarely included any mention of equity or mathematics, 
much less nuanced and rich treatments of these complex topics. In answering our research 
question, this AL-focused TPD, overall, did lead to more nuanced and richer GSI AL definitions. 
Although one might expect that exposure to the rubric for AL definitions would result in uniform 
improvements to GSIs' definitions of AL, we did not see that. Instead, we saw that most GSIs 
improved in their definition with the Role of the Teacher, Role of the Student, and 
Interconnectedness. Although the considerations of mathematics and equity did not show overall 
categorical growth beyond the 𝛼 category, we did see more mentions of mathematics and/or 
equity. The surface attention to equity was not surprising; it typically takes far more equity-
focused TPD for GSIs to develop nuanced conceptualizations of equity (Reinholz, 2023; 
Reinholz et al., 2022). Thus, one implication for GSI TPD is that GSIs need longitudinal TPD 
experiences focused on developing their conceptions of equitable mathematics teaching and 
learning.  
An additional implication for TPD providers is that the model we used for assessing the 

impacts of the AL TPD on GSIs' definitions is transferrable to other pedagogical topics. Thus, 
this study answers the call of many for more research on what makes for effective TPD (e.g., 
Deshler et al., 2015; Hauk & Speer, 2023; Yee & Rogers, 2017; Yee et al., 2023; Yee et al., 
2024). One limitation of our study is that we just focused on GSIs' definitions of AL; future 
studies should look for connections between growth in GSIs' AL definitions and enactment 
practices of AL. We recommend some longitudinal future studies to look at more lasting 
impacts, and to assess if sustained TPD can further improve not only GSIs' AL definitions, but 
also their AL practices. 
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