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Graduate student instructors (GSIs) in mathematics play a pivotal role in shaping undergraduate
education and are the future of collegiate mathematics faculty. As part of their development,
GSlIs are expected to engage in teaching-focused professional development (TPD), particularly
in evidence-based strategies like Active Learning (AL) methods. However, higher education is
only beginning to explore how to effectively measure GSIs' growth in teaching skills through
such TPD. This study examines the learning process of 47 novice GSIs from three universities,
specifically focusing on their evolving understanding of AL before and after participating in
TPD. By analyzing the GSIs' own definitions of AL, the research highlights changes in their
knowledge and alignment with the intended TPD outcomes. The findings provide insight into the
effectiveness of TPD on AL, while also offering recommendations for structuring future
evaluations of TPD impact on GSI teaching knowledge and skills.
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Mathematics graduate students are a substantial proportion of the undergraduate teaching
workforce in the United States (Belnap & Allred, 2009; Speer et al. 2010) and their pedagogical
knowledge and methods are greatly influenced during this time as novice college mathematics
instructors (Deshler et al., 2015; Speer and Murphy, 2009). During their experiences as graduate
student instructors (GSlIs, graduate students who are instructors of record for a mathematics or
statistics course), research has indicated that teaching-focused professional development (TPD)
improves GSIs’ knowledge and skills for effective teaching (Deshler et al., 2015; Yee & Rogers
2017; Hauk & Speer, 2023). Decades of work have also demonstrated that active learning (AL)
approaches—using teaching strategies that actively engage all students in the classroom—are
among the most effective (Freemen et al., 2014; Gobstein et al., 2016). AL has received
significant discussion on its value within the classroom, with overwhelming recognition of its
success with appropriate TPD (Reinholz, 2023). For example, Reinholz et al. (2022) reported on
how and why supervision of collaborative learning is critical for AL strategies to be effective.
Indeed, without addressing a classroom culture, student collaborations may include
microaggressions that drastically limit the effectiveness of AL. Thus to prepare GSIs for
implementing AL well, they need equitable and effective TPD (National Academy of Science,
Engineering, and Medicine, 2023).

How can we know if TPD is effective? Specifically, how can we gather data and assess the
impact among GSIs of AL-focused TPD opportunities? It requires data upon which to evaluate
effectiveness, which, in turn, requires data collected around the objective or aim of the TPD (Yee
et al., 2024; Deshler et al., 2015). In recent years, research in undergraduate mathematics
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education has begun exploring ways to evaluate the effectiveness of TPD (Yee et al, 2023; Yee
et al, 2024).

Purpose and Rationale

The purpose of this study was to research how collecting and analyzing data on GSI learning
in an AL-focused TPD activity might be part of evaluation of TPD effectiveness. Prior research
has indicated that to improve practical understanding of AL, instructors need to (1) recognize
exemplars through readings about AL methods (McConnell et al., 2017), (2) visualize and
imagine themselves using varying AL methods (Yee, 2021), and (3) become aware of the
nuances inherent in the enactment of AL (Laursen & Rasmussen, 2019). Our approach was to
focus on how GSIs’ definitions of AL changed during their TPD experience.

Unpacking GSIs’ meaning making for educational definitions is important particularly for
GSIs in mathematics where deductive and axiomatic structures put significant weight on
definitions. For example, a series cannot both converge and diverge because the definition of
convergence and divergence is binary, founded in the logic that a mathematical statement is
either true or false, hence dependent upon the definition (Vinner, 2002). Thus a mathematical
definition’s utility is uniform. However, definitions in educational research rely on human
participants and evidence, as seen in the diverse use of AL across different disciplines. How a
chemistry lab uses AL is distinct from how a mathematics classroom uses AL because chemistry
labs inherently engage students through lab experiments, resulting in facilitating labs being the
focus for AL. Our rationale for this study emphasizes GSIs’ definitions of AL as dynamic and
not static. To this end, our research question for this study was: How do novice GSIs’ definitions
of AL change after participating in an AL-focused professional learning activity? For this study,
novice refers to GSIs who are within their first two years of teaching.

Relevant Literature for Framing the Professional Development

Dimensions and Pillars of Active Learning

Four pillars for AL support instructors in developing a definition of AL: (1) Students
engaging deeply with coherent and meaningful mathematical tasks, (2). Students collaboratively
processing mathematical ideas, (3) Instructors inquiring into student thinking, (4) Instructors
fostering equity in their design and facilitation choices (Gobstein et al., 2016; Laursen &
Rasmussen, 2019; Smith et al., 2021; Yee et al., 2024). Recent work in developing TPD for
operationalizing a definition of AL has come out of the SEMINAL project (and coding of over
100 mathematics instructor definitions of AL; Williams et al., 2020). In leveraging this previous
work, we sought to attend to novice GSIs with their beginning understanding of AL. This led to
another dimension of interest: interconnectedness. Together with the four pillars, the dimensions
reflected on and considered in our AL-focused TPD and research were: (1) Role of students, (2)
Role of mathematics, (3) Role of the teacher, (4) Role of equity, (5) Interconnectedness of the
other roles. The fifth dimension was added because our research team agreed that how the four
roles are connected is just as important as any single role. For example, the interconnectedness
dimension focused on if novice GSIs could recognize that the role of equity affects the role of
the teacher and students.

Critical Reflection by Assessing Definitions
The larger scope of this work strives to understand how GSI conceptions of AL for
productive use in the classroom change over time. This study focuses on definitions for multiple
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reasons. We understand how educational definitions can be perceived differently from
mathematicians' use of definitions (Tall & Vinner, 1981). Ultimately, learning to integrate
definitions for teaching is a process. This study is not trying to argue or search for a “right” or
“correct” definition of AL. Indeed, Williams et al.’s (2022) work shows the diverse ways in
which experienced mathematicians view AL. The goal of this study was for GSIs to reflect on
how their AL definition might change as they built experience as instructors. Consequently, the
AL-focused TPD activity was designed to have GSIs critically reflect (Brookfield, 2017) on AL
definitions by actively engaging in assessing their own and others’ definitions. To that end,
similar to other classroom practices used to help novice GSIs use AL (e.g. Observation
Protocols, Yee et al., 2022), this study did not use assessment of AL understanding, but rather
assessment for AL understanding.

Description of Module, Lessons, and Activities
The AL-focused TPD module included two 50-minute sessions with novice GSIs as (Lesson

1 and Lesson 2) as well as pre- and post-lessons assignment. Figure 1 describes the module.
Overarching Goal of Module*: The goal of this unit is to have novice GSIs grow their definition, understanding, and implementation of AL.
Full description of activity is at (Yee et al. 2024)

Pre-Module Assignment:
1. Read Active learning in the college classroom by Faust and Paulson, 1998.
2. In the context of Mathematics teaching and learning, please type your own definition of active learning in as much detail as possible.
Lesson 1 Objectives: Lesson 1 Activities (50 Minutes)*
o GSIs will Identify what students and o GSIs are given a list of 10 common GSI strategies
instructors can do with a selected set e GSIs are given a table with rows indicating ways students are engaging during the activity and

of active-learning strategies. columns about how the instructor is engaged during the activity. GSIs then work in small groups
o Justify their decisions on what to list each AL strategy in what cells they find most relevant.
students and instructors can do witha e GSIs negotiate with one another how they would enact the activity relative to what the
selected set of active-learning instructor is doing and what the students are doing.
strategies in their classroom. o GSIs recognize that direct instruction is just one of many teaching methods and quite limited
within the scope of what students can and can’t do.
Lesson 2 Objectives: Lesson 2 Activities (50 Minutes)
o Notice and articulate distinctions and e GSIs review the rubric (see Figure 2) and practice evaluating three pre-generated definitions
dimensions of definitions of Active according to the rubric.
Learning o GSIs then review their own definition
e Revise their initial definition of e Classroom discussion is had around any issues of confusion with the rubric and what they notice
Active Learning. and wonder about their own pre-module AL definition

Figure 1. Active learning module structure and components

GSIs began by reading a collegiate AL article (Faust & Paulson, 1998) and creating their
own initial definition of AL. Lesson 1 had them engage with 10 AL strategies by asking the GSI
to envision (1) what the student is doing and (2) what the instructor is doing for each. Lesson 2
had the GSIs see a rubric for evaluating definitions of AL along the five dimensions using a scale
from 1 to 5 (see Figure 2). GSIs then practiced and made sense of the rubric with three AL
definition examples that were pre-generated to identify how the dimensions of AL are used.
Finally, GSIs reviewed their own definition and discussed what GSIs noticed and how they
might want to change their definition.

This report focuses on the Lesson 2 objectives. The activity was designed after multiple
iterations of a smaller activity (Lesson Plan 1) so that results could be used to interpret and
justify conclusions about GSI’s change in definitions. By looking for changes in definitions
(especially relating to equity), we collected data to determine if the TPD objectives had been
met. Furthermore, through assessment and reflection, we could determine how to improve the
TPD itself. Ultimately, the rubric is not just to rate definitions, but a means to understand the
components of the definition (i.e. assessment for AL understanding).
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Methods
To answer our research questions, this study used a sequential mixed methods approach
where qualitative coding was followed by quantitative analysis. GSIs’ original definitions (pre-
module assignment) and the GSIs’ revised definition were qualitatively coded using the rubric by
the research team after the entire module TPD was completed (post-module assignment). Figure
2 offers an abridged rubric, while the full rubric can be found at https://bit.ly/RUME2025.

(1) Missing (2) Basic (3) Specific (4) Sufficient (5) Rich and Nuanced
Element (@) Definition (a) Example(s) (8) Definition (y) Definition (y)
«2 No mention Includes broad Can articulate what ~ Describes what students are ~ Describes what students are doing inside and
= of students or mentions that students the student is doing doing inside and/or outside the outside the classroom, including active
5 what students are active or actively  during a specific classroom; definition may  engagement with mathematical learning, peer-
= are doing engaged example of active include active engagement with to-peer interaction to communicate
@ learning mathematical learning, or peer- mathematical reasoning
I~ to-peer interaction
% Nomention Mention of math class Gives examples of ~ Reflect on the mathematical Defines how specialized mathematics
s = of the or doing math (in  specific mathematics content that was difficult to knowledge for teaching is directly involved
% § mathematics general) content (e.g., chain  understand, that has become with the active learning strategy, including how|
I~ § rule) clearer conceptually than it was. mathematical reasoning is embedded to build
= student understanding
., Nomention Mention of the teacher  Gives specific Describes formative Describes what the teacher is doing to
S & of the teacher in general (“the teacher examples of active assessment(s) and how student orchestrate active learning, including planning
= '§ or what  plans active learning”) learning strategies feedback will be incorporated considerations, instructor use of student
& & teachers are such as think-pair- to inform teaching thinking, and how the instructor engages
doing share students
No mention Mention equity within  Gives specific Illustrate how the specific Describes equity considerations and
-‘S of equity  the classroom around inclusive teaching strategies will provide intentionality for using inclusive teaching
g content, student, or  strategies related to equitable access to the practices, such as norm setting for engaging
= teacher access; implementing learning activity. May provide students in discussions; includes discussion of
@ reference to “all active learning examples linking ideas to how active learning is not automatically
é students” such as practice such as equity versus  equitable; may talk about other equitable or
active learning equality inclusive teaching strategies.
-qé) No Defines active At least one Definition touches on more Definition touches on roles of students,
b1 connections learning by what it is connection is than one connection across teachers, and mathematics, with attention to
E % among the  not (“not lecture”),  stated between two  more than two of the roles equity, interactions, and mathematical sense
S = four and does not connect of the roles (teacher, student, math, and making and communication;
E’ different across dimensions  (teacher, students, equity) acknowledgement that the roles are
= roles math, equity) interconnected

Figure 2. Abridged rubric used to assess active learning definitions by graduate student instructors

The data was then quantitatively analyzed to determine what changes, and frequency of those
changes, occurred among participants’ definition components and qualities. @, 8, and y are
categorical codes described further in the findings.

Participants and Data Collection

47 novice GSIs from three universities in the midwestern and southeastern United States
participated in the GSI TPD. All novice GSIs had just begun as full instructor-of-record in
introductory mathematics and statistics courses. All three providers of the TPD were researchers
in this study. Participants submitted their initial and final definitions of AL via an online form,
either during a TPD activity or as homework. Participants’ prior understanding of AL from the
providers was limited. Students had perhaps heard the language around students should be
“active,” but AL was never formalized beyond personal experiences with teaching.

Data Analysis

Three members of the research team completed the qualitative coding of all 47 GSIs’ pre-
and post-definitions using the rubric (Figure 2). They all coded 20 GSIs’ pre- and post-
definitions along all five rubric dimensions, then met to compare, discuss, and agree on initial
codes. They discussed how to align the rubric, then discussed and revised their individual codes
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until the whole research team agreed on coding for the initial set of 20 GSIs. The remaining 27
GSIs were split evenly among this same group so that each researcher coded for 9 GSIs’ pre- and
post-definitions along all five rubric dimensions on their own. Inconsistencies were discussed
until interrater reliability was 95%.

For example, one student wrote in their pre-definition, “My own description of it would
include things such as collaborative problem solving, hands-on activities, flipped classroom, peer
teaching, project based or discovery learning,” which the research team agreed was a score of 1
in all categories, except Role of Students (score 5). The post definition for the same student was:

Multiple participants are involved in AL inside a classroom: the instructor creates

learning opportunities with equitable access points and then facilitates tasks so that

everyone in the class is involved with the task, while simultaneously collecting feedback

from the students to navigate and decide on the next learning actions and goals. All

students have an opportunity to be actively involved in the learning process, while

following the established classroom norm of promoting the construction of their own

knowledge and ideas simultaneously respecting others' experiences and perspectives.

Students engage in tasks to develop understanding and become an active participant/ a

primary stakeholder in their learning and further investigate their understanding in and

outside of the classroom by taking ownership of their own learning outcomes.
Researchers scored this student’s post definition as still a 1 in Role of Mathematics and a 4 for
Interconnectedness, but a 5 for the Role of Student, Instructor, and Equity.

Findings

Pre- and Post-Definition Descriptive Discussion

Upon completion of the initial coding, the research team decided to group some rubric score
values into broader categories. The a category comprises scores of 1 (Missing Element) and 2
(Basic Definition), representing, at best, the inclusion of a rubric dimension in a GSI’s definition
with little specificity. The S category represents a score of 3 (Specific Examples(s)). And the y
category comprises scores of 4 (Sufficient Definition) and 5 (Rich and Nuanced Definition),
representing the inclusion of a rubric dimension in a GSI’s definition at a level of complexity
beyond a basic statement or concrete example. These three broader categories were introduced to
help identify trends via quantitative analysis, both in describing pre- and post-definitions
individually and in understanding changes from pre- to post-definitions overall.

Table 1 provides a summary of how GSIs’ pre- and post-definitions were coded and
organized by rubric item category (ranging from less rich in the a category to more nuanced in
the y category). This provides evidence for the initial and end states of GSIs’ definitions through
the activity.

Table 1. Number of GSIs’ pre- and post-definitions by category

Pre-Definition (N=47) Post-Definition (N=47)
a B Y a B 14
Role of Students 25 9 13 6 11 30
Role of Mathematics 44 0 3 36 2 9
Role of Teachers 28 17 2 9 32 6
Role of Equity 46 1 0 38 5 4
Interconnectedness 20 20 7 0 12 35

a = rubric score of 1 or 2; § = rubric score of 3; y = rubric score of 4 or 5
As seen in Table 1, the category with the largest number of GSIs’ pre-definitions was the «
category for every rubric dimension. Pre-definitions were especially highly concentrated in the a
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category for both Role of Mathematics and Role of Equity, meaning that the Roles of
Mathematics and Equity were either missing or included in a basic way for nearly all GSIs’ pre-
definitions. The other rubric dimensions (Role of Students, Role of Teachers, And
Interconnectedness) were distributed more widely across all categories.

Regarding post-definitions, Table 1 shows that Role of Mathematics and Role of Equity
remain relatively highly concentrated in the a category, but these are the only rubric dimensions
for which the a category had the largest number of post-definitions. Researchers expected that
GSIs’ definitions would change after having worked with the rubric in Figure 2, but it is
noteworthy that no post-definitions fell into the a category for Interconnectedness. This is likely
because many of GSIs’ pre-definitions completely lacked mention of certain rubric elements
(such as the “Role of Mathematics” or the “Role of Equity”) and therefore had fewer
opportunities to make connections between roles. The rubric prompted GSIs to think about and
include all roles (and naturally make more connections among the roles) in their definitions.

Changes in Definition

We observed a deepening in richness of GSIs’ definitions of AL by observing their change in
category from their pre-definition to their post-definition. For simplicity, a GSI’s definition
became richer by category if it was assigned rubric scores for pre- and post-definitions that
represented a shift in category from a to 8, from f to y, or from a to y. Among the 47 GSI
participants, it was most common (17 of 47 participants, 36%) for a definition to become richer
by category in three different rubric dimensions. Two GSIs saw their definitions become richer
by category across all five rubric dimensions (15%), while seven GSIs saw no increased richness
by category in any rubric dimension.

Researchers note that since GSIs’ were given the rubric prior to constructing their post-
definitions, one might expect to observe GSIs’ definitions becoming somewhat uniformly richer
by category across all rubric dimensions (after considering rubric dimensions where GSIs’ pre-
definitions were concentrated in richer categories, see Table 1). This was not the case at all. The
“Interconnectedness” rubric dimension saw the most substantial enrichment of definitions, with
35 of 47 participants’ definitions (74%) becoming richer by category, even though this rubric
dimension started with the fewest pre-definitions in the a category. Conversely, the “Role of
Mathematics” and “Role of Equity” rubric dimensions began with the most pre-definitions in the
a category and yet saw the least amount of enrichment by category.

Role of Mathematics and Role of Equity: All but three GSIs’ pre-definitions fell into the a
category for the “Role of Mathematics” rubric dimension, yet only nine definitions became
richer by category in this dimension through the activity. Looking at the “Role of Equity” rubric
dimension is even more extreme—all but one pre-definition fell into the a category, yet only
eight definitions became richer by category. To better understand the changes in richness for the
Role of Mathematics and the Role of Equity, a more granular analysis of the participants’ post-
definitions was done with participants’ whose pre-definition was an a category. Table 2 details
the exact change in rubric score (not just category) for all pre-definitions within the & category.

Table 2 illustrates 8 out of 47 post-definitions (17%) received a score of 1 to represent the
Role of Mathematics as being a “Missing Element.” However, 23 of 35 of the GSIs’ definitions
(65%) that started at a pre-definition score of 1 (“Missing Element”) grew to a post-definition
score of 2 (“Basic Definition”). These GSIs’ definitions became richer within the a category.
Ultimately, pre-definitions that began in the a category lacked concrete examples of how
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mathematics takes a role in the AL process (f category) or how mathematical content and

reasoning shapes or is shaped by the AL process more broadly (y category).
Table 2. Number of GSIs pre- to post-definition rubric score shifts in a category

Pre-Definition Rubric Score Post-Definition Rubric Score
(o category) 1 2 3 4 S
i 1 (N=35) 6 23 1 5 0
Role of Mathematics 2 (N=9) P 4 1 2 0
; 1 (N=41) 20 15 2 2 2
Role of Equity 2 (N=5) 1 2 2 0 0

Table 2 also states 21 out of 47 post-definitions (45%) received a score of 1 to represent the
Role of Equity as being a “Missing Element.” 15 of the 41 (37%) post-definitions began with a
pre-definition of score of 1 shifted richness towards a “Basic Definition” (score 2) for the Role of
Equity, yet 20 of the 41 (49%) had a pre- and post-definition score of 1 within the Role of
Equity. Even more so than for the Role of Mathematics, GSIs’ definitions infrequently
incorporated specific examples or sufficiently rich/nuanced conceptualizations of the Role of
Equity in AL.

Discussion & Implications

Despite limited research on GSI learning (e.g., Deshler et al. 2015; Yee et al., 2023) this
study represents a transferable model for assessing the impacts of GSI TPD. Like Williams et al.
(2022), we found that AL definitions rarely included any mention of equity or mathematics,
much less nuanced and rich treatments of these complex topics. In answering our research
question, this AL-focused TPD, overall, did lead to more nuanced and richer GSI AL definitions.
Although one might expect that exposure to the rubric for AL definitions would result in uniform
improvements to GSIs' definitions of AL, we did not see that. Instead, we saw that most GSIs
improved in their definition with the Role of the Teacher, Role of the Student, and
Interconnectedness. Although the considerations of mathematics and equity did not show overall
categorical growth beyond the a category, we did see more mentions of mathematics and/or
equity. The surface attention to equity was not surprising; it typically takes far more equity-
focused TPD for GSIs to develop nuanced conceptualizations of equity (Reinholz, 2023;
Reinholz et al., 2022). Thus, one implication for GSI TPD is that GSIs need longitudinal TPD
experiences focused on developing their conceptions of equitable mathematics teaching and
learning.

An additional implication for TPD providers is that the model we used for assessing the
impacts of the AL TPD on GSIs' definitions is transferrable to other pedagogical topics. Thus,
this study answers the call of many for more research on what makes for effective TPD (e.g.,
Deshler et al., 2015; Hauk & Speer, 2023; Yee & Rogers, 2017; Yee et al., 2023; Yee et al.,
2024). One limitation of our study is that we just focused on GSIs' definitions of AL; future
studies should look for connections between growth in GSIs' AL definitions and enactment
practices of AL. We recommend some longitudinal future studies to look at more lasting
impacts, and to assess if sustained TPD can further improve not only GSIs' AL definitions, but
also their AL practices.
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