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Abstract

Knowing where a particular species can or can-
not be found on Earth is crucial for ecological
research and conservation efforts. By mapping
the spatial ranges of all species, we would ob-
tain deeper insights into how global biodiversity
is affected by climate change and habitat loss.
However, accurate range estimates are only avail-
able for a relatively small proportion of all known
species. For the majority of the remaining species,
we typically only have a small number of records
denoting the spatial locations where they have
previously been observed. We outline a new ap-
proach for few-shot species range estimation to
address the challenge of accurately estimating the
range of a species from limited data. During infer-
ence, our model takes a set of spatial locations as
input, along with optional metadata such as text or
an image, and outputs a species encoding that can
be used to predict the range of a previously un-
seen species in a feedforward manner. We evalu-
ate our approach on two challenging benchmarks,
where we obtain state-of-the-art range estimation
performance, in a fraction of the compute time,
compared to recent alternative approaches.

1. Introduction

Understanding the spatial distribution of plant and ani-
mal species is essential to mitigate the ongoing decline
in global biodiversity (Jetz et al., 2019). Monitoring these
distributions over time allows us to quantify the impacts
of climate change, habitat loss, and conservation interven-
tions (Mantyka-pringle et al., 2012). Estimating a species’
spatial distribution typically starts with collecting a set of
observations that denote the locations where the species has
been confirmed to be present or absent. Traditionally, this
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Figure 1. Few-shot species range estimation with FS-SINR. Our
FS-SINR approach is trained on citizen science collected species
observation data (i.e., locations where a species has been observed),
and once trained, can estimate the spatial range of a previously
unseen species with a single forward pass through the model,
with no retraining required at inference time. It supports different
input modalities such as variable length sequences of location
observations, in addition to other metadata such as text or images.
In this illustration, we show two different range predictions: one
using only location observations (bottom left) and the other using
observations and text (bottom right).

data is used to train models that can then generate detailed
predictions over a spatial region of interest (Elith et al., 2006;
Beery et al., 2021). When sufficient data is available, these
models enable practitioners to estimate important quanti-
ties such as the spatial range (i.e., where a species can be
found) or abundance (i.e., the total number of individuals)
of a species, in addition to quantifying how these quantities
are changing over time.

Despite the availability of well-established modeling tech-
niques, our current understanding of species’ distributions
is extremely limited as little or no observational data is
available for most species. For example, iNaturalist, one
of the largest citizen science platform documenting global
biodiversity, has collected over 130 million research qual-
ity observations for approximately 373,000 species glob-
ally (iNaturalist, 2025). However, the data is severely long-
tailed, i.e., a small percentage of common species account
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for the majority of the observations, while many species
have very few observations. In fact, over half of the 373,000
species cataloged by iNaturalist have been observed fewer
than ten times to date. This data limitation is amplified by
the fact that the vast majority of the several million species
that are thought to exist have not yet even been documented
by science (Mora et al., 2011). Identifying locations where
under-observed species can be found is a time-consuming
and laborious process, often requiring long expeditions to
remote locations to search for species that are hard to find.
Consequently, there is a pressing need for computational
methods that can reliably estimate the spatial distributions
of species using only a small number of observations.

Knowing the range of one species can help predict the range
of another due to shared ecological, environmental, and geo-
graphic contexts. Recent advances in range estimation, such
as Spatial Implicit Neural Representations (SINR), have
leveraged this idea by training on millions of observations,
across tens of thousands of species, inside one model (Cole
et al., 2023). However, these models still rely on relatively
large numbers of training observations for individual species,
which limits their applicability to species with limited obser-
vations. In this work, we introduce Few-shot Spatial Implicit
Neural Representations (FS-SINR), a novel Transformer-
based model that overcomes this limitation and offers two
key advantages over previous approaches. First, we obtain
improved performance in the few-shot regime, a scenario
that represents the reality for the majority of species, yet
remains underexplored in prior work. Second, we make
accurate predictions for species not present in the training
set without any additional training, which can enable inter-
active exploration and modeling. At inference time, we only
require a set of observed locations for the unseen species to
generate reliable range estimates. Furthermore, we show we
can flexibly incorporate additional non-geographic context
information (e.g., a text summary of the species’ habitat or
range preferences or an image of the species) to further im-
prove prediction quality. Figure 1 illustrates how FS-SINR
can be used at inference time.

In summary, we make the following contributions: (i) We
introduce FS-SINR, a new approach for few-shot species
range estimation. FS-SINR has novel capabilities, including
the ability to predict the spatial range of a previously unseen
species at inference time without requiring any retraining.
(i1)) We demonstrate that FS-SINR achieves state-of-the-
art performance in the few-shot setting on the challenging
IUCN and S&T benchmark datasets. (iii) We provide de-
tailed ablation studies and visualizations to highlight the
benefits of integrating observational data with textual and
visual context, as well as to compare our approach with
alternative methods.

2. Related Work

Species Distribution Modeling. Estimating the spatial dis-
tribution of a species is a widely explored topic in both
statistical ecology and machine learning (Beery et al., 2021).
The goal is to develop models that can predict the distribu-
tion of species over space, and possibly time, given sparse
observation data. Different machine learning approaches,
initially using traditional techniques, such as decision trees
among others have been extensively explored, e.g., (Phillips
et al., 2004; Elith et al., 2006). More recently, deep learning-
based methods have been introduced (Botella et al., 2018;
Mac Aodha et al., 2019; Cole et al., 2023; Kellenberger
et al., 2024). One of the strengths of these deep methods is
that they can jointly represent thousands of different species
within the same model and have been shown to improve
as more training data is added, even when the data is from
different species (Cole et al., 2023).

There has also been work investigating different approaches
to address some of the challenges associated with training
and evaluating these models. Examples include attempts
to address imbalances across species in the training ob-
servation data (Zbinden et al., 2024b), sampling pseudo-
absence data (Zbinden et al., 2024a), biases in training
locations (Chen & Gomes, 2019), representing location
information (RuBwurm et al., 2024), discretizing continu-
ous model predictions (Dorm et al., 2024), active learning
approaches (Lange et al., 2023), using additional metadata
such as images (Teng et al., 2023; Dollinger et al., 2024;
Picek et al., 2024) or text (Sastry et al., 2023; 2025; Hamil-
ton et al., 2024), and designing new evaluation datasets
to benchmark performance (Cole et al., 2023; Picek et al.,
2024). In our work, we investigate the underexplored few-
shot setting, where only limited observations (e.g., fewer
than ten) are available for each species at training time.

Few-shot Species Range Estimation. There are several
aspects of the species range estimation task in the low-data
regime that make it different from other few-shot problems
more commonly explored in the literature (Parnami & Lee,
2022; Wang et al., 2020). For example, the input domain is
fixed (i.e., all locations on earth), each location can support
more than one species (i.e., multi-label instead of multi-
class), the label space is much larger (i.e., tens of thousands
of species as opposed to hundreds of classes in image clas-
sification), and only partial supervision is available (e.g.,
presence-only data, with no confirmed absences).

Lange et al. (2023) introduced an active learning-based
approach for species range estimation which makes pre-
dictions based on linear combinations of learned species
embeddings and showed its effectiveness in the few-shot
regime. LE-SINR (Hamilton et al., 2024) showed that inter-
net sourced free-form text descriptions of species’ ranges
can be used when training models for zero-shot range esti-



Feedforward Few-shot Species Range Estimation

(@) Oc
c 2
g
£ O¢ Oc
3 4 4 o
%
X
Longitude
‘Query Location x
I:' Transformer D Location Encoder D Text Encoder

D Image Encoder

« Pr 5 ity
G(l:’) (3.ul})11l: [ 1(?1)111)11.1F}'
2 Presence of Query x
Transformer I

=zl X

Pt

~ -
w2 S

!

LOC

[ Species Decoder  []Embedding 1.~} Embedding Type

Figure 2. FS-SINR overview. Here we depict our few-shot species range estimation model. The input consists of an arbitrary number of
context locations C"* for target species ¢ that are each independently tokenized using a location encoder fo (), and optional auxiliary context
information like text or an image. A class token (CLS) is also appended to the input. All input tokens are processed by a Transformer
ma, (). Given the set of input context locations, we estimate the probability that a species is present at a query location x by multiplying
the location encoder’s embedding of x with the projected embedding of the CLS token which is output from the species decoder.

mation. They applied their approach to the few-shot setting,
but it requires retraining a classifier for each new species
observation added. In our evaluation, we demonstrate that
our FS-SINR approach, which can incorporate additional
metadata at training time and does not require retraining
during inference, outperforms existing methods.

3. Methods

We first set up the species range estimation problem and
then describe our approach for few-shot range estimation.

3.1. Species Range Estimation

We start by describing the SINR approach from Cole et al.
(2023). Let & = (lat,lon) € X be a location of interest
sampled from a spatial domain X (e.g., a location on earth).
Our goal is to train a model g() : X — [0, 1]° to predict the
probabilities of s different species of interest occurring at .
We let § = g(z), where §; € [0,1] (i.e., the 5" entry of §)
represents the probability that species j occurs at location .

We can decompose the model as g() = he() o fo(), where
fo() : X — R is a location encoder with parameters
and hy() : RY — [0,1]° is a multi-label classifier with pa-
rameters ¢b. The location encoder fg() maps a location x to
a d-dimensional latent embedding fg(x). The multi-label
classifier h() is implemented as a per-species linear pro-
jection followed by an element-wise sigmoid non-linearity,
meaning that § = o(fe(x)W), where W € R¥** (ie.,
he() = ¢ = W) and o() is the sigmoid function. Thus,
each column vector w; of W can be viewed as a species
embedding, which we can combine with a location embed-
ding fg () via an inner product to compute the probability
that the species j is present at x. Importantly, the location
embedding is shared across all species. Once trained, it is
possible to generate a prediction for a given species for all

locations of interest by evaluating the model for all locations
(.e.,x € X).

One of the main challenges associated with training mod-
els for species range estimation is that there is a dramatic
asymmetry in the available training data. Specifically, it is
much easier to collect presence observations (i.e., confirmed
sightings of a species) compared to absence observations
(i.e., confirmation that a species is not present at a specific
location). As a result, many methods have been developed
to train models using presence-only data. In the presence-
only setting, we have access to training pairs (x, z), where
x is a geographic location, and z € {1,..., s} is an integer
indicating which species was observed there. To overcome
the lack of confirmed absence data, one common approach
is to generate pseudo-absences by sampling random loca-
tions on the surface of the earth (Phillips et al., 2009). Given
these pseudo-absences, the parameters of g() can be trained
in an end-to-end manner using variants of the cross-entropy
loss. Specifically, we use full assume negative loss from
Cole et al. (2023) to train the SINR baseline:

S

1

Lansan(Y, 2) = . Z[ﬂ[z=j])\10g(@j)+
=1

L.z log(1 — g;) +log(1 = g5)], (1)

where z is the index of the species present for a given train-
ing instance, §J; is the predicted probability of the presence
of species j, yAé is the model prediction for a randomly sam-
pled pseudo-absence location, and the hyperparameter A
balances the presence and pseudo-absence loss terms.

3.2. Few-shot Range Estimation

For the SINR model to make predictions for a new species,
it is necessary to learn a new embedding vector w; for that
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species. If additional location data is later observed for that
species, the model must be updated again. However, the
number of observations for rarer species can be limited and
thus it is necessary to have methods that can be updated
efficiently with less training data.

We address this challenge by proposing a new approach
for few-shot species range estimation called FS-SINR. Our
model can predict the probability of presence for a previ-
ously unobserved species directly at inference time given
only the set of confirmed presence locations available, with-
out any retraining or parameter updates. At inference
time, we assume we have access to a set of context lo-
cations C* = {e¢, ..., ¢, }, which represent a set of k loca-
tions where the species j has been confirmed to be present.
Each entry in this set denotes a geographic location, i.e.,
c = (lat,lon). Like SINR, our model is also conditioned
on a location x of interest (i.e., the ‘query’ location), but
uses the context locations to inform the prediction for the
query location. Note, the context locations can come from a
species not previously observed during training.

We represent our model as g(x) = mq(fo(x),C"). Un-
like in SINR, where the classifier head hg() is a simple
multi-label classifier and sigmoid non-linearity, in our case,
the ‘head’ of the model my () is a Transformer-based en-
coder (Vaswani et al., 2017). FS-SINR takes an unordered
set of context locations C? as input, where each location is
encoded into an embedding vector (i.e., a token) via a SINR-
style multi-layer perceptron location encoder — see Figure 2
for an illustration. Importantly, our model can accept a vari-
able number of context locations and is invariant to their
ordering as we do not append any positional embeddings.
This flexibility ensures that it can process a variable number
of context locations during inference. We also append an
additional register token (REG) as in Darcet et al. (2024) to
provide the model with an additional token to ‘store’ infor-
mation. Given that the input sequence is unordered and may
or may not include additional context information, we add
learned ‘embedding type’ vectors to each token such that
the Transformer knows if a given input token is a location,
register, text, image, etc.

We represent the species embedding vector (i.e., w; in
SINR) as the class token CLS of the Transformer after pass-
ing it through a small species decoder MLP s(). To make
a final prediction, we simply compute the inner product
between the location embedding of the query location = and
the species embedding vector, and pass it through a sigmoid.
Our approach is computationally efficient in that once the
species embedding is generated it can then be efficiently
multiplied by the embeddings for all locations of interest to
generate a prediction for a species’ range.

FS-SINR uses a similar training loss to Lan—_f,1. How-
ever, since it has no equivalent to hg() we cannot easily

include all species in the loss, and instead consider only
those within the same batch of training examples of size
5. We obtain a predicted species embedding vector for a
given species during the forward pass which can be used to
estimate the probabilities of presence of that species for all
locations sampled in the batch. We denote this new loss as
L AN—full—b, Which indicates that we are considering only
those elements contained within the current batch b:

1

Sb
Lan-unn (9, 2°) = 5 [Lp2o—j A log(g;)+

j=1
Loz log(1 = g;) +log(1 — 7)) (2)

3.2.1. ADDITIONAL CONTEXT INFORMATION

The design of FS-SINR is flexible in that we can also pro-
vide additional context information to the model if it is
available. For example, if there is additional text (e.g., a
range description) or visual (i.e., images) information avail-
able for a novel species, it can be added to the context,
assuming that such information was also available at train-
ing time for other species. This observation is inspired by
recent work that also uses language-derived information to
improve range predictions (Sastry et al., 2023; Hamilton
et al., 2024) and work that uses species images and obser-
vations (Sastry et al., 2025). This additional information
can provide a rich source of metadata encoding aspects of
a species’ habitat preferences, even when there might only
be a limited number of location observations available for
it. We can represent the expanded contextual input tokens
as {t;,a;, fo(c1),..., fo(cx)}, where t; denotes a fixed-
length text embedding from a large language model and
a; an image embedding obtained from a pre-trained vision
model for species j — see Figure 2. Note that we train FS-
SINR so that it can use arbitrary subsets, including none, of
these input tokens during inference.

4. Experiments

Here we evaluate FS-SINR on the task of species range
estimation and compare it to alternative methods.

4.1. Implementation Details

Architecture. Our location encoders use the same fully con-
nected neural network with residual connections as in Cole
et al. (2023). Each of the context locations is processed by
the same shared location encoder which is first pre-trained
as in SINR after which the multi-label classifier head is
discarded. Importantly, this pre-trained encoder is only
trained on species from the training set, and does not observe
any data from the evaluation species during training. The
text embedding backbone is a frozen GritLM (Muennighoff
et al., 2025) and the default image embedding backbone is
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a frozen EVA-02 ViT (Fang et al., 2024) pre-trained on the
iNaturalist species image classification dataset (Van Horn
et al., 2021). Both backbones provide a fixed length em-
bedding vector, and we train two-layer fully connected text
and image encoders to transform these embeddings into
their context tokens. FS-SINR’s Transformer contains four
encoder layers and the parameters are updated jointly with
the location, text, and image encoders and species decoder
during training. In total, FS-SINR has 8.2M learnable pa-
rameters compared to 11.9M for SINR. This reduction is
due to the fact that we do not have to learn a per-species
embedding vector as in SINR. We train with a batch size
of 2,048 instances and randomly drop-out text/image or lo-
cation tokens during training with a probability of 0.5 and
0.1 respectively to enhance robustness. See Appendix C.1
for more details. Code for FS-SINR is available at: https:
//github.com/Chris—lange/fs—sinr

Data. We train FS-SINR on the presence-only dataset
from Cole et al. (2023), which comprises 35.5 million
citizen-science records—each annotated with latitude, lon-
gitude, and species label—for 47,375 diverse species in-
cluding plants, fungi, and animals from the iNaturalist plat-
form (iNaturalist, 2025). We also leverage 127 thousand text
descriptions of these species used in Hamilton et al. (2024)
and 200 thousand images obtained from iNaturalist (iNatu-
ralist, 2025). The text provided during training is composed
of sections of Wikipedia (Wikipedia, 2025) articles of the
target species. During training, we supply FS-SINR with
20 context locations per training example, although we find
that model performance is robust to changes in the number
of context locations provided during training.

We evaluate models using the IUCN and S&T datasets also
from Cole et al. (2023), which contain expert and model-
derived range maps for 2,418 and 535 different species,
respectively. The IUCN dataset is more globally distributed
and contains a larger variation in range size and more diverse
animal species, while the S&T dataset only contains bird
species that are found primarily, but not always, in North
America and have a larger average range size. We follow
the same preprocessing steps for these datasets as in Cole
et al. (2023). While not perfect, these datasets represent the
best evaluation data currently available and contain large
variety in terms of range sizes and locations. The text used
during evaluation consists of pre-trained large language
model generated summaries of the range or habitat of the
target species as used in Hamilton et al. (2024). Importantly,
we hold out any species from the union of these two datasets
from the training set so that species from the evaluation set
are not observed during training. As a result, by default, FS-
SINR is trained on data from 44,422 species. Performance
is reported as mean average precision (MAP) for different
numbers of input (i.e., context) locations.

Baselines. Generating a species’ range from FS-SINR for
a held-out species at inference time only requires a single
forward pass through the model to obtain an embedding
vector for the species. Current methods (e.g., LE-SINR or
SINR) cannot be used in such a feedforward manner and
need to be retrained for each species that was not observed
at training time. To obtain an equivalent embedding for
the SINR and LE-SINR baselines we train a per-species
binary logistic regression classifier using any few-shot pres-
ence observations that are available, in addition to adding
10,000 uniformly random and 10,000 target (i.e., in locations
where species are) pseudo-absences as in LE-SINR. We
also compare to the species embedding combination method
from Lange et al. (2023) and a Prototypical Network-style
baseline (Snell et al., 2017), denoted Active SINR and Pro-
totype SINR, respectively. These baselines do not require
retraining. For fairness, we use the same presence obser-
vations across each method, and the larger number of pres-
ences are supersets of the smaller ones. Implementation de-
tails of the baseline methods can be found in Appendix C.2.

4.2. Few-shot Evaluation

First, we evaluate how effective different range estimation
models are at few-shot range estimation. The goal for each
model is to generate a plausible prediction for a previously
unseen species’ range given limited location observations.
Quantitative results are presented in Figure 3, and additional
results can be found in Appendix A.

The SINR baseline performs poorly in the low-data regime,
but as more data is added performance improves. As noted
earlier, here a per-species embedding vector is learned using
logistic regression using the provided presence locations and
generated pseudo-absences. The recently introduced LE-
SINR approach extends the basic SINR model to use text
information (here range text), when available, at inference
time. LE-SINR tends to outperform SINR, particularly
when text data is available. Like our FS-SINR approach,
neither the Active SINR or Prototype SINR baselines require
retraining at inference time, but perform much worse than
FS-SINR.

In all instances, when the same metadata is available, FS-
SINR outperforms existing methods. Furthermore, we also
outperform SINR in the larger data regime (i.e., when 50
observations are available). In general, we observe that im-
age information is not as informative as text and does not
help on average outside of the zero-shot case. A range text
description provides much more context than an image of
a previously unseen species. However, range estimates for
some species benefit significantly from using images, but
other species actually see no change or decreased perfor-
mance. Making use of images to improve zero-shot range
estimates is rewarded during training, but this can harm
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Figure 3. Few-shot results. Here we evaluate different models on the task of species range estimation on the IUCN (left) and S&T (right)
datasets. On the x-axis we vary the number of context locations seen at inference time for the held-out evaluation species. The y-axis
represents Mean Average Precision (MAP), where higher values are better. The error bars display the standard deviation of three different
runs. Our FS-SINR approach outperforms existing methods, especially in the very low-data setting (i.e., < five context locations). Note
that LE-SINR and SINR need to be retrained during evaluation when more observations are provided. Tables A3 and A4 report expanded

results including larger numbers of context locations.

performance for some species at inference time by biasing
the ranges produced toward the rough estimates made using
images, which can provide limited information. Importantly,
unlike SINR and LE-SINR, FS-SINR does not need to be
retrained at inference time. Instead, it can make predic-
tions in a feedforward manner irrespective of the context
data available. This is advantageous in interactive settings,
whereby the model can compute the location embeddings
for all query locations on earth once, and then a user could
experiment by adding different context information interac-
tively. Removing the retraining step also allows FS-SINR to
produce estimated ranges in a fraction of the compute time
compared to other approaches. Compared to the publicly
released implementation of LE-SINR on the same hardware,
FS-SINR generates range estimates from one context loca-
tion and text for all species in the IUCN and S&T datasets
in 2% of the time on CPU, and 6% of the time on GPU.

We present qualitative results for three different species
in Figure 7 where we visualize FS-SINR’s predictions as we
change the number of context locations. Given only a single
context location, the model does a sensible job of localizing
the species on Earth. This supports the findings from Fig-
ure 3 where we observe strong performance even when only
one context location is available. When more information
is provided, the predicted range more closely resembles the
expert-derived range shown in the first row. However, we
do note that the model can still make mistakes in our low
data setting, such as the erroneous predictions for the ‘Black
and White Warbler’ in South America. In Figure 4 we illus-
trate some examples of how text information, when paired
with one single context location, can influence the model

predictions. We observe dramatically different predicted
ranges when the text prompt encourages the model to focus
on different habitat types. We note that each of the predicted
ranges is still consistent with the location of the single con-
text location provided. Finally, in Figure 6 we compare
FS-SINR range predictions to other approaches, namely
SINR, LS-SINR, and Active SINR. We see that for this
species FS-SINR more closely resembles the expert range
when only three context locations are provided. Additional
qualitative examples are provided in Appendix E.

4.3. Zero-shot Evaluation

In addition to being able to generate range predictions in the
few-shot setting when limited location observations are pro-
vided, FS-SINR can also make predictions when no location
information is provided but only additional metadata such
as an image or text describing a previously unseen species is
given, i.e., the zero-shot setting. These zero-shot results are
presented in Table 1 for both the IUCN and S&T datasets.

We report results for several variants of FS-SINR where
different types of metadata are used. As a baseline, we also
present the performance of SINR (row 1) where the evalua-
tion species are part of its training set i.e., not zero-shot. We
can also add data from these species to the training set of
our approach which unsurprisingly boosts performance (i.e.,
row 3 vs. 9), though unlike SINR, FS-SINR does not have
weights associated with individual species and so the impact
of seeing evaluation species during training is fairly small.
As a trivial baseline, we also report performance of FS-
SINR (row 4) when no location or text metadata is provided,
i.e., this is simply the output of the class token. As expected,
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[No Text] Q “desert” Q “rainforest” Q “high altitude mountains”

Figure 4. Controlling range predictions using a single context location with different text. Given the same single context location,
denoted as ‘o’, FS-SINR can generate significantly different range predictions depending on the text provided. This example illustrates a
use case where a user may have limited observations but some additional knowledge that can be encoded via text regarding the type of
habitat a species of interest could be found in. Note, while ‘no text’ and ‘rainforest’ look similar, they are actually subtly different.

Ruaha Tanzania

Fukian Gold-striped Pond Frog

Angkor Wat

Figure 5. Range predictions with a single context image as input. We can condition FS-SINR on an arbitrary input image with no
context locations or text, e.g., a held-out species (top row and bottom left), famous landmarks (bottom middle), or landscape images

(bottom right).

this model performs poorly, but interestingly it seems to
have learned some spatial prior that results in non-trivial
predictions on S&T which contains bird species mostly con-
centrated in North America. We also compare to a version
of FS-SINR (row 5) where we use taxonomic text (TRT)
as in LD-SDM (Sastry et al., 2023) (see Appendix A.2 for
further details).

In all instances, our FS-SINR approach outperforms LE-
SINR, even when both models are provided with the same
information at inference and training time (i.e., row 6 vs. 7
or row 8 vs. 9). Confirming observations from LE-SINR, we
see that range text (RT) is more informative than habitat text
(HT) (i.e., row 7 vs. 9). Additionally, image information
provides some non-trivial signal (i.e., row 4 vs. 10), but it is
not as informative as text (i.e., row 9 vs. 10), and can nega-
tively impact performance when more informative sources
are provided (i.e., row 9 vs. 11 for the harder IUCN dataset),
as the model may overfit to incorrect spurious features in
the image. As we can see in Figure 5 (with additional ex-

amples in Figure A24), zero-shot image predictions can be
sensible, but predicting an unobserved species’ range from
a single input image is ill posed. Text descriptions of range
or habitat preferences are simply much more informative
than a single image.

4.4. Additional Results and Ablations

In Appendix A we provide additional experimental results
for FS-SINR. There we investigate uncertainty quantifica-
tion to see how well calibrated the model predictions are.
We also report results using a ‘distance-weighted MAP’
metric which penalizes errors more the further they are in
distance away from the actual range. This metric more
closely aligns human judgment of predicted range quality.

We provide a more ecologically relevant breakdown of
results in Appendix B, where we find multiple potential
sources of bias in our training data toward North America
and Europe, and report higher evaluation performance in
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FS-SINR (Ours)

LE-SINR

Active SINR

Figure 6. Qualitative comparison of range predictions for different methods. (Top) Predicted ranges from a single context location
denoted as ‘o’ and no additional metadata for the Gabar Goshawk. (Bottom) Predicted ranges from three context locations for the
Black-naped Monarch. From left to right, FS-SINR (ours) with expert range inset, SINR, LE-SINR, and Active SINR. Please zoom
in to see details.

Table 1. Zero-shot results. We report zero-shot performance
where no location information is provided to each model, only
additional metadata, comparing to SINR (Cole et al., 2023) and
LE-SINR (Hamilton et al., 2024). We denote additional metadata
used by models as RT for ‘Range Text’, HT for ‘Habitat Text’, and
‘T’ for ‘Image’. TST represents ‘Test Species in Train’, indicating
that a model uses location observations for the evaluation species
at training time (e.g., SINR which provides an upper bound on per-
formance), unlike other models where these species are excluded.
TRT models are trained using ‘Taxonomic Rank Text’ as in Sastry
et al. (2023), which are also provided with the full taxonomic
description from ‘class’ to ‘species’ during evaluation. Results are
presented as MAP, where higher is better.

ID Method Variant IUCN S&T
1 SINR TST 0.67 0.77
2 FS-SINR | HT, TST | 0.38 0.59
3  FS-SINR | RT, TST | 0.55 0.67
4  FS-SINR 0.05 0.18
5 FS-SINR | TRT 0.21 0.34
6 LE-SINR | HT 0.28 0.52
7 FS-SINR | HT 0.33 0.53
8 LE-SINR | RT 0.48 0.60
9 FS-SINR | RT 0.52 0.64
10 FS-SINR | I 0.19 0.38
11 FS-SINR | I+RT 0.46 0.64

these regions for FS-SINR and LE-SINR. Similarly, we see
that biases in the text data potentially leads to increased per-
formance for charismatic and well-studied mammals com-
pared to other taxonomic groups, though providing more
context locations reduces this gap. FS-SINR is somewhat
robust to these biases and outperforms other approaches
across almost all categories. We also find that for all ap-
proaches tested, estimating very small ranges is difficult
and performance varies strongly with range sizes, though
FS-SINR again shows comparatively good performance.

We provide additional ablation experiments for FS-SINR
in Appendix D, where we evaluate the impact of different
input features, location encoders, and the amount of training

data used, and explore architectural modifications such as
removing the final species decoder that operates on the
output of the Transformer. We observe that FS-SINR is
robust to these changes, justifying its design decisions.

5. Limitations

While FS-SINR outperforms other zero and few-shot ap-
proaches for species range estimation, there are some limita-
tions. First, given a set of input context locations FS-SINR
is deterministic in that it will always generate the same out-
put range map. In practice, in the few-shot regime, the same
set of points could actually be representative of many differ-
ent possible range maps. An obvious extension of our work
is to introduce stochasticity into the model outputs, e.g., by
treating class token output from the Transformer as a latent
embedding for an additional sampling step. In Figure A25
we observe that initializing FS-SINR with different random
seeds during training results in diverse range predictions
across the different models, and in Appendix A we show
that this can be exploited to give estimates of the uncertainty
of predictions when using an ensemble of FS-SINR models.
We leave further exploration of this for future work. Sec-
ond, at inference time, users may wish to provide example
locations indicating where a specific species has not been
found, i.e., confirmed absences. Currently, our model is
trained using presence-only data but could be adapted to use
absence information, if available, which could be denoted
via a different embedding type vector, to be learned dur-
ing training alongside our existing token type embeddings.
However, obtaining reliable large-scale absence data for
tens of thousands of species is a challenging problem.

Finally, biodiversity data and particularly global-scale citi-
zen science datasets like the one we use to train FS-SINR
can contain large biases (Geldmann et al., 2016; Hughes
et al., 2021), e.g., location, temporal, and taxonomic bi-
ases, among others. We do not explicitly account for these
biases during training, though we make some attempt to
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Common Kingfisher

European Robin

Black and White Warbler

-

Figure 7. Few-shot range estimation with increasing context locations. Here we illustrate few-shot range predictions from FS-SINR
given an increasing number of context locations {0, 1,2, 5, 10} and no other context information for the Common Kingfisher (left),
European Robin (center), and the Black and White Warbler (right). In the first row, we show the expert-derived range inset
and the prediction for the model when no context locations are provided (which is the same for all species). Then, in the remaining rows
we increase the number of context locations, denoted as ‘o’. Please zoom in to see the context locations. As we increase the number of

context locations, the predictions become closer to the expert ranges.

evaluate the impact of them in Appendix B, and thus we
would caution the use of the predictions of our model in
any applications that would use our range predictions in
the context of biodiversity assessments. However, we note
that we outperform existing and recent state-of-the-art range
estimation methods, especially in the low observation data
setting, and do not require any retraining at inference time.

6. Conclusion

The scientific community has limited knowledge on the ge-
ographical distributions of the majority of species on Earth.
This lack of understanding is further hampered by the fact
that we also have insufficient data to train models to esti-
mate their ranges. To address this problem, we introduced
FS-SINR, a new approach for few-shot species range esti-
mation. We demonstrated that FS-SINR is able to fuse data
from different modalities at inference time in a feedforward

manner to efficiently make plausible range predictions for
previously unobserved species. Our quantitative analysis,
using expert-derived range maps, shows a 5-10% perfor-
mance improvement compared to current approaches in
the few-shot setting, i.e., when the number of observations
equals ten, for previously unseen species. In addition, we
also outperform existing methods in the zero-shot setting.
While our results are promising, they also indicate that there
are many open challenges in this important task.
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SM were supported by NSF grants 2329927 and 2406687.
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Impact Statement

Given the limited observations available for most species,
there is a great need for reliable machine-learning based
solutions for estimating their ranges. Such methods would
provide us with unprecedented insight into how biodiver-
sity is distributed on our planet and how it is changing over
time. However, there are potential negative consequences
associated with inaccurate range predictions generated by
automated methods, e.g., a downstream conservation de-
cision could be made based on an erroneous range map,
resulting in wasted resources. Thus, it is important for prac-
titioners to scrutinize the outputs of models such as ours.

Another issue associated with training models on species ob-
servation data is that there is a risk that sensitive information
(e.g., the locations of protected species) could be leaked or
extracted from the models. To respect this concern, the mod-
els in this work were trained using only publicly available
information which does not include any sensitive observa-
tions. Finally, our approach integrates predictions from
pre-trained large language models. These models are known
to be biased and capable of hallucinating and fabricating
outputs. Spatially localizing the outputs of such models runs
the risk of amplifying such biases if used inappropriately.
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Appendix

In this appendix we provide additional quantitative and qualitative results, analysis, implementation details, and ablations.

In Appendix A, we provide additional results for uncertainty quantification, use of taxonomic rank text, a ‘distance weighted’
MAP metric, and show expanded results from Figure 3 for the non-low-shot setting. In Appendix B, we perform an
ecologically relevant analysis of our results, showing how performance varies with region, range size, and taxonomic group.
In Appendix C, we provide details on the implementation of FS-SINR and the baseline approaches, and of the training and
evaluation procedure. In Appendix D, we provide additional ablations of FS-SINR, investigating the impact of training
data, different input features, and modifications to the architecture. Finally, in Appendix E, we show additional qualitative
results, including visualizing zero-shot and few-shot ranges for species and non-species concepts, and comparisons to ranges
produced by LE-SINR and SINR approaches.

A. Additional Quantitative Results
A.1. Uncertainty Quantification

Here, we report results for an ensemble based on FS-SINR and quantify the uncertainty in the ensemble’s predictions using
methods adapted from Poggi et al. (2020). We create an ensemble by averaging the predictions of three FS-SINR models
trained with different random seeds. Figure A25 shows range estimates from three such models, where we can see that
each model can produce significantly different outputs. We take the average of these models as the ensemble prediction and
treat the variance between individual model predictions as an estimate of the uncertainty of the ensemble. If all models
agree that a species is either present or absent at a location, then the uncertainty will be low, while if models have different
predictions, then the uncertainty will be high. in Table A1, comparing ‘Ensemble’ MAP to ‘Model’ MAP (repeated from
FS-SINR ‘Text” MAP in Table A4 for convenience), we can see that creating an ensemble increases MAP by 0.01 to 0.02,
agreeing with typical findings that ensembling can improve performance relative to individual models (Dietterich, 2000).

In order to quantify uncertainty of our ensemble we follow an approach used in Poggi et al. (2020). We iteratively remove
locations from the evaluation dataset that have the highest estimated uncertainty and recalculate the MAP without these
locations. In our case we remove 2% of the data at each step. If the ensemble uncertainty aligns with how likely it is to
be incorrect, then the MAP at each step will increase as the data with higher estimated uncertainty is removed from the
evaluation. We can then plot the MAP against the fraction of data used for the evaluation. Taking the area under the curve
generated doing this gives us the estimated ‘Sparsification Error AUC’ (SEAUC). If, instead, we remove 2% of locations
randomly at each step then the MAP for each evaluation will remain approximately equal to the MAP when using the entire
evaluation dataset. The ‘random’ SEAUC in this case is effectively equal numerically to the MAP using all evaluation data
and can be estimated as such. Taking the difference between the estimated SEARC and the MAP then gives us the ‘Area
Under the Random Gain’ (AURG). A positive AURG shows that the ensemble’s estimate of how uncertain its predictions
are is better than random guessing. In Table A1 we see that the AURG is positive for all number of context locations and
increases as more context locations are provided, showing that FS-SINR ensembles can provide a useful estimate of how
certain they are about a prediction and that providing more context locations allows the ensemble to be more accurate in this
uncertainty estimate.

In Figure Al we visualize the ranges (means) and uncertainties (variances) for our FS-SINR ensemble for the
Yellow-footed Green Pigeon,using ‘Range’ text, ‘Habitat’ text, or a single context location. We observe that the
mean is high in the region of the expert-derived range, and lower in areas far from the range where a single model has
erroneously predicted presence. The variance is generally lower in the region of the expert-derived range where all models
agree, higher at the edges of this region where different models have different estimates of the extent of the range, and high
in areas far from the true range where single models have incorrectly predicted presence, such as South America when
‘Habitat’ text is provided, or parts of Africa when ‘Range’ text is provided.

A.2. Taxonomic Understanding

Here, we investigate the impact of providing FS-SINR with an understanding of the species taxonomy. For this we provide
‘Taxonomic Rank Text’ (TRT) instead of the Wikipedia-based free-form descriptions of a species that are used for our
standard FS-SINR approach. This text gives the taxonomy of the species in decreasing taxonomic rank, in the form

13
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Range (Mean) Uncertainty (Variance)

Range

Habitat

No Text

Figure Al. Range estimates and visualized uncertainty estimates for a FS-SINR ensemble. We display range estimates and uncertain-
ties for the Yellow—footed Green Pigeon from an ensemble of three FS-SINR models. Zero-shot estimates are based on ‘Range’
text (top) and ‘Habitat’ text (middle). A few-shot estimate using no text and a single context location (bottom) is also shown. Range
estimates for the ensemble (left) are a mean average of individual model predictions, while uncertainties (right) are estimated using the
variances of the model predictions. The uncertainty is lower in the region of the expert-derived range where all models agree, higher at the
edges of this region where different models have different estimates of the extent of the range, and high in areas far from the true range
where single models have incorrectly predicted presence.

Range Text: “The yellow-footed green pigeon is found in the Indian subcontinent and parts of Southeast Asia. It is the state bird of
Maharashtra.”

Habitat Text: “The species is a habitat generalist, preferring dense forest areas with emergent trees, especially Banyan trees, but can also
be spotted in natural remnants in urban areas. They forage in flocks and are often seen sunning on the tops of trees in the early morning.”

‘class order family genus species’, so for a dog we would give the text ‘Mammalia Carnivora Canidae Canis
Familiaris’. During training, we select a rank uniformly at random and remove all ranks beneath that. We hope that this
process will force the model to learn an understanding of the distributions of not only individual species, but also genera,
families, etc.. This may be helpful when facing unseen species as knowledge of the genus or family may provide clues about
where this species may be found. This is similar to the approach used by LD-SDM (Sastry et al., 2023).

In Table A2 we show zero-shot performance for FS-SINR models trained on TRT on the IUCN and S&T evaluation tasks.
We see that as we provide additional taxonomic information zero-shot performance improves, though it is still much worse
than using habitat or range text. This implies that the model has managed to develop some understanding of the distributions
of genera etc. and can use this to help map a novel species that shares higher order taxonomy with species in the training set.

In Figure A2 we provide some qualitative zero-shot and few-shot results showing the impact of training on taxonomic
text. We see that the model appears to narrow down on the correct range as more specific taxonomy is revealed to it,
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Class
Aves

Columbiformes

Order

Columbidae

Family

Genus
Treron

Phoenicopterus

Species

[TRT Text] [TRT Text] + 1 Context Location

Figure A2. Zero-shot and one-shot range estimation using Taxonomic Rank Text (TRT). Range predictions for the species
Yellow-footed Green Pigeon from FS-SINR model trained on taxonomic rank text as in LD-SDM (Sastry et al., 2023),
with expert-derived range inset. As seen in Figure A3 and Table A2, the text-based zero-shot predictions seem to more closely match the
expert-derived range as more of the taxonomic rank text of the species is provided. Taxonomic rank text allows the model to somewhat
localize predictions to areas where species sharing the provided taxonomy ranks are present in the training set. For example, Birds are
globally distributed and we see the model attempt to output this in the zero-shot ‘Class’ visualization. Pigeons and Doves are not
found in the extreme north and providing these ranks reduces predictions in these areas (and much of the northern hemisphere). The
model mostly manages to identify that Green Pigeons are found only in Africa and parts of Asia. A single observation significantly
contracts the predicted ranges, particularly when less taxonomic information is provided. Click on the taxonomic rank names to visit the
iNaturalist page for that taxa where the geographic distribution of observations for it can be observed.
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Table Al. Uncertainty quantification with ensembles. We show MAP on the S&T dataset for an ensemble of three FS-SINR models
using ‘Range’ text and differing numbers of context locations (Ensemble MAP), with metrics for uncertainty quantification adapted from
Poggi et al. (2020). We report ‘Sparsification Error AUC’ (SEAUC) and ‘Area Under the Random Gain’ (AURG) for the ensemble.
Positive AURG shows the ensemble is performing better than random chance at estimating its uncertainty. We also present results for the
same text and context locations for individual FS-SINR models for comparison (Model MAP). Ensembling slightly improves performance
for all numbers of context locations.

# Context | Model MAP | Ensemble MAP | SEAUC | AURG
0 0.64 0.66 0.68 0.03
1 0.66 0.68 0.71 0.03
2 0.67 0.69 0.73 0.03
3 0.68 0.70 0.74 0.04
4 0.69 0.71 0.75 0.04
5 0.70 0.71 0.75 0.04
8 0.71 0.72 0.76 0.04
10 0.72 0.73 0.77 0.04
15 0.72 0.73 0.78 0.05

20 0.72 0.74 0.79 0.05
50 0.73 0.74 0.78 0.05

from predicting across the entire globe when just the class Aves is provided, to removing northern latitudes as the family
Columbidae is added, and finally removing the new world when the genus is provided. This broadly matches the actual
distribution of these taxonomic ranks. Note that the relationship between taxonomic hierarchy and species range is likely
complex as many speciation events (i.e., when a species splits into two or more new ones) can be the result of physical
geographic barriers separating populations over time.

In Figure A3 we show few-shot results for FS-SINR models trained on TRT on the IUCN and SNT evaluation datasets.
Zero-shot performance improvement with increasing taxonomic information is evident, but after very few provided locations
this effect seems to disappear.

Table A2. Zero-shot results with taxonomy rank text. We denote additional metadata used by models as RT for ‘Range Text” and
HT for ‘Habitat Text’. ‘Species’, ‘Genus’, ‘Family’, ‘Order’, ‘Class’ refer to models trained and evaluated using taxonomic rank text.
Taxonomic information up to and including the specified rank is provided during evaluation.

Method | Variant | IUCN S&T

FS-SINR 0.05 0.18
FS-SINR | HT 0.33 0.53
FS-SINR | RT 0.52 0.64

FS-SINR | Class 0.05 0.19
FS-SINR | Order 0.06 0.20
FS-SINR | Family | 0.12 0.25
FS-SINR | Genus 0.18 0.30
FS-SINR | Species | 0.21 0.34

A.3. Alternative Evaluation Metric

Here we provide additional results for the main models from Figure 3 using a ‘distance weighted” MAP evaluation metric.
This is inspired by the evaluation conducted in LD-SDM (Sastry et al., 2023). This metric is based on mean average
precision (MAP), however we now weight predictions by distance from the true range, i.e., predicting the presence of a
species far from where it is said to be found is penalized more than predicting the presence of a species in a location that is
very close to existing observations, but is still actually outside the range. We intend that this metric more closely aligns with
a human’s judgment on how ‘correct’ a range is, compared to standard MAP. By considering both metrics we can be more
confident that the improvement in range mapping performance that FS-SINR provides is not just a consequence of how we
are quantifying it. We determine the weight for location x as:

drange (il?)

We =1+
dantipodal

h, (€)
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Figure A3. Impact of training and evaluating with Taxonomic Rank Text. Here we evaluate FS-SINR models trained using different
context information on the [UCN dataset (left), and the S&T dataset (right). ‘Class’ indicates that only the taxonomic class of the species
is provided as text during evaluation. ‘Order’ indicates that the taxonomic class followed by the order is provided as a text string during
evaluation, and so on, such that ‘Species’ indicates that a text string in the format ‘class order family genus species’ is provided during
evaluation. Providing more specific taxonomic text increases zero-shot performance. This is also presented Table A2. However we
see that even the full taxonomy does not provide as much signal as habitat and range text for zero-shot range mapping. These more
detailed texts provide more useful information for zero-shot range mapping - either actually mentioning geographic locations in the case
of range text, or allowing the model to narrow predictions down to areas with specific features such as mountains and forests in the case of
habitat text. When a single context location is provided, the choice of taxonomy text no longer seems to impact performance at all. It is
possible that training on these less informative tokens means the model learns to pay less ‘attention’ to these text tokens compared to the
Wikipedia-based text tokens usually used during training. This could explain why different rank taxonomy text tokens seemingly provide
no benefit when any context locations are provided to the model.

where d;qnge () is the distance along the earth’s surface from point « to the nearest point of the expert-derived range using
for evaluation, and dgytipoda 1S the distance along the earth’s surface between two points on opposite sides of the earth.
While this distance does vary very slightly in different locations as the earth is not a perfect sphere, for this experiment we
have set dantipodat 10 20,037.5 km. h is the ‘distance weight hyperparameter’ and determines how much this metric penalizes
incorrect predictions far from the range relative to close to the range. The metric is implemented equivalent to scikit-learn’s
average_precision_score sample_weight parameter (Pedregosa et al., 2011). We evaluate performance using
the standard ‘unweighted MAP’, i.e., where h = 0 and so we are calculating MAP as usual, and ‘distance weighted MAP’
with h = 9 and h = 99. We selected these settings so that errors on the opposite side of earth from the true range are
penalized 10 and 100 times more than errors close to the true range.

Results on the IUCN evaluation dataset can be found in Figure A4. We do not present results for the S&T dataset as we
require knowledge of the range of each species globally to fairly apply the distance-weighted MAP, while the S&T dataset
only provides range estimates for portions of the globe for each species. As the weight is increased, we observe a general
reduction in overall performance. While there is no change in the relative ordering of different models, and FS-SINR
outperforms LE-SINR and SINR across all settings of h, we do observe that FS-SINR and LE-SINR models that use habitat
text during evaluation seem to decrease in performance more with larger h compared to other approaches. They are likely
most effected by the larger weight, as habitat text can cause the model to predict presence in locations around the world
with similar habitat features such as mountains, forest, or desert, despite these locations being far from the true range. This
appears to be true of both FS-SINR and LE-SINR. For LE-SINR, using habitat text outperforms not using text for the
unweighted M AP, but using habitat text performs worse than not using text for the weighted MAP. In Figure AS, we display
zero-shot results for two species where there is a large difference in performance based on the two metrics. In both cases
FS-SINR using only text incorrectly predicts the species to be present far from the expert-derived range.

A.4. Expanded Results

In Tables A3 and A4 we present and expanded set of results from Figure 3, for the [IUCN and S&T datasets. We
also report additional results for the non-few-shot setting using 500 and 1,000 context locations. Performance for most
approaches including FS-SINR seems to plateau around 50 context locations, with some approaches gaining a minor boost
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Figure A4. Zero-shot and few-shot performance using our distance weighted MAP metric on the IUCN evaluation dataset. We find
that increasing the distance weight hyperparameter, h, reduces performance across the board without significantly changing the order of
different models i.e., FS-SINR continues to outperform LE-SINR and SINR. We do see that approaches using habitat text decrease in
performance more as h increases, relative to approaches not using text or using range text.

Gravenhorst’s Mabuya African Jacana

Habitat Text: “T. gravenhorstii prefers rocky areas, grassland, shrubland, and forest,  Habitat Text: “The African jacana prefers shallow lakes and its preferred habitat is
but is also found in coffee plantations and ylang-ylang plantations. The species  floating vegetation. It has a specific environmental condition, which is not mentioned
is adapted to a variety of environmental conditions, including different types of  in the article, but it can be inferred that it requires a certain level of water depth and
ecosystems.” vegetation cover.”

Figure A5. Examples of two species with poor distanced weighted MAP performance. Here we visualize FS-SINR’s zero-shot
predictions using habitat text for two species where there is a large difference between the evaluation scores using the standard MAP
metric compared to the distance weighted one (here using h = 9). For the Gravenhorst’s Mabuya (left), which is endemic to
Madagascar, we obtain an MAP of 0.419 but a lower distance weighted MAP of 0.175. For the African Jacana (right), found in
most of sub-Saharan Africa, we obtain an MAP of 0.457 and a distance weighted MAP of 0.226. The distance weighted metric more
heavily penalizes mistakes for these species that are very far from their true range.

in performance in the non-few-shot setting (SINR and Prototype-SINR), while others perform much worse (Active SINR).
We also report results for a model trained and evaluated using context locations and features from a visual encoder with
a DINOV2 backbone. This performs worse and has significantly more variable performance across runs compared to the
pre-trained EVA-02 ViT, which was fine-tuned using species images during its original pre-training, used in the main paper.

A.5. Comparison to Traditional Machine Learning Methods

In Figure A6 we compare FS-SINR with two traditional machine learning approaches for classifying whether a species
is present or absent at a given location. Both approaches were implemented using scikit-learn (Pedregosa et al., 2011).
We compare with a Gaussian Process approach adapted from Golding & Purse (2016). While this method is designed
for presence-absence data, we adapt it for the presence-only setting by providing a number of pseudo-negatives equal
to the provided number of context locations, which performed best out of several strategies we investigated. Using a
large number of pseudo-negatives as we do for FS-SINR both performed poorly and took excessively long to run as
Gaussian Process computations scale cubically with the amount of data. For this approach we use a logit link function and a
squared-exponential kernel. We also compare to a random forest classifier (Breiman, 2001). We investigated providing the
same number of pseudo-negatives as for FS-SINR with appropriate class weights, however we found better performance by
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Table A3. IUCN zero-shot and few-shot results. Here we present expanded IUCN evaluation results for the models shown in Figure 3 in
tabular form. We also show results using a DINOv2 based image encoder. SINR and LE-SINR without text cannot produce a range map
without at least one context location. Results are presented as MAP, where higher is better.

FS-SINR LE-SINR SINR | Prototype SINR | Active SINR

# Context | Text Image Text+Image No Text\Image DINOv2 | Text No Text | No Text No Text No Text
0 052 0.19 0.46 0.05 0.13 0.48 - - - -

1 0.57 045 0.55 0.48 0.40 0.55 0.47 0.42 0.48 0.48

2 0.60  0.54 0.59 0.56 0.49 0.57 0.52 0.47 0.53 0.55

3 0.62 0.58 0.61 0.60 0.53 0.58 0.54 0.50 0.56 0.58
4 0.63  0.60 0.62 0.62 0.55 0.59 0.56 0.52 0.57 0.59

5 0.64  0.62 0.63 0.63 0.56 0.60 0.57 0.54 0.58 0.60

8 0.65 0.64 0.64 0.65 0.59 0.61 0.59 0.56 0.60 0.62
10 0.66  0.65 0.65 0.66 0.60 0.62 0.60 0.57 0.61 0.62
15 0.67  0.66 0.66 0.67 0.61 0.63 0.62 0.59 0.61 0.62
20 0.67  0.66 0.66 0.67 0.61 0.64 0.63 0.61 0.62 0.62
50 0.68  0.67 0.67 0.67 0.61 0.66 0.66 0.64 0.62 0.60
500 0.68  0.66 0.66 0.67 0.57 0.67 0.67 0.65 0.63 0.37
1000 0.68  0.66 0.66 0.67 0.57 0.67 0.67 0.65 0.63 0.36

Table A4. S&T zero-shot and few-shot results. Here we present expanded S&T evaluation results for the models shown in Figure 3 in
tabular form. We also show results using a DINOv2 based image encoder. SINR and LE-SINR without text cannot produce a range map
without at least one context location. Results are presented as MAP, where higher is better.

FS-SINR LE-SINR SINR | Prototype SINR | Active SINR

# Context | Text Image Text+Image No Text\Image DINOv2 | Text No Text | No Text No Text No Text
0 0.64 038 0.64 0.18 0.28 0.60 - - - -

1 0.66  0.49 0.66 0.50 0.44 0.64 0.52 0.49 0.54 0.53

2 0.67 057 0.67 0.58 0.53 0.66 0.57 0.55 0.59 0.59

3 0.68 0.61 0.68 0.61 0.57 0.67 0.60 0.58 0.61 0.62
4 0.69 0.64 0.69 0.64 0.61 0.67 0.61 0.59 0.62 0.65

5 0.70  0.66 0.70 0.65 0.63 0.68 0.62 0.60 0.63 0.65

8 0.71  0.69 0.71 0.68 0.65 0.69 0.65 0.63 0.64 0.67
10 072 0.70 0.71 0.69 0.67 0.69 0.66 0.64 0.65 0.67
15 072 0.71 0.72 0.70 0.68 0.70 0.68 0.67 0.65 0.67
20 0.72  0.71 0.72 0.71 0.68 0.71 0.69 0.68 0.65 0.66
50 073  0.72 0.73 0.71 0.69 0.73 0.72 0.72 0.66 0.64
500 073 0.71 0.72 0.71 0.62 0.73 0.72 0.73 0.67 0.24
1000 072 0.71 0.72 0.71 0.62 0.73 0.72 0.73 0.67 0.24

providing the same number of pseudo-negatives as context locations. In both cases, performance for this task is significantly
worse than FS-SINR, LE-SINR and SINR.

B. Ecologically Relevant Analysis of Results

To give a more ecologically relevant analysis of our results we present them here by continent, species range size, and
taxonomic class. In these cases we display results for the IUCN evaluation dataset only, as it provides expert-derived
presence-absence information globally and includes a range of taxonomic groups. In comparison the S&T dataset only
includes Aves, i.e., bird species, and evaluates the presence or absence of each species over a portion of the globe, preventing
us from calculating global range sizes and performance by continent.

B.1. Results by Region

In Figure A7 we show performance of FS-SINR, LE-SINR, and SINR models by continent for few-shot and zero-shot
text-only predictions. FS-SINR outperforms other approaches on all continents except South America and Oceania, where
at larger numbers of context locations LE-SINR becomes comparable. Biodiversity data and particularly global-scale citizen
science datasets such as the iNaturalist-derived data we use to train FS-SINR can contain large biases (Geldmann et al.,
2016; Hughes et al., 2021), and here we can see the impact of this bias within our training data.

We have more species observation training data (taken from Cole et al. (2023), which also visualizes the data distribution)
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Figure A6. Comparison to traditional machine-learning approaches. Here we evaluate a Gaussian Process approach and a Random
Forest on the IUCN (left) and S&T (right) datasets. We find that both approaches perform far worse than FS-SINR, LE-SINR or SINR for
species range estimation using presence-only data. ‘Range’ text is used here for FS-SINR and LE-SINR, while other approaches take only
context locations as input.

from Europe and North America than from other areas, and the observations in these regions are relatively well distributed
spatially. In other continents, there are large areas with very few or no training observations for models to learn from, along
with small areas that are highly observed. On top of this, our text descriptions are taken from English language Wikipedia
and may be more descriptive for species found in areas where English is widely spoken, and our pre-trained large language
model may have more knowledge of North American and European geography and ecology due to biases in the text data
used for training. Combined, these factors lead to higher performance in North America and Europe compared to other
regions. In Figure A10 we show the average false positive error for few-shot range estimation for FS-SINR on the TUCN
evaluation dataset. This indicates greater error in regions where we have less training data.

B.2. Results by Species Range Size

Here, we display results showing the average MAP for species in our IUCN evaluation dataset, grouped by range size,
where range size is computed from the expert-derived range maps. In Figure A9 we break down performance of zero-shot
approaches by range size for FS-SINR, LE-SINR, and SINR. We find that for all models and settings, performance varies
very strongly with range size. This is most significant in the zero-shot setting. FS-SINR performs well compared to
the baselines, though all models struggle with very small ranges. As small-ranged species are especially vulnerable to
extinction (Chichorro et al., 2019), current methods performing poorly for these species when evaluated globally may be of
concern and improving the modeling of these species may be a priority from a conservation perspective. We also see that
performance worsens for the very largest ranges.

B.3. Results by Taxonomic Class

Here we break down performance on the [UCN evaluation dataset by taxonomic class. Four taxonomic classes are present
in our training data, namely Amphibia, Aves, Mammalia, and Reptilia. In Figure A8 (a) we display zero-shot
performance for FS-SINR and LE-SINR using range and habitat text. We observe that Aves and especially Mammalia
outperform the other classes, particularly when habitat text is provided. Albert et al. (2018) suggest that of the 20 most
‘charismatic’ species in the western world, all but the Great White Shark and Crocodile are mammals, and Trimble
& Van Aarde (2010) show that scientific research is heavily focused on mammals. We may be seeing the impact of this,
where mammals are more likely to have detailed Wikipedia pages which we draw our textual training and evaluation data
from. In Figure A8 (b), (¢), and (d), we investigate how these differences in performance between taxonomic classes change
as more location data is provided. We see that for both FS-SINR and LE-SINR, providing context locations significantly
reduces the differences in performance between taxonomic class, though mammals do continue to very slightly outperform
other taxonomic groups for a given model and setting.
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Figure A7. IUCN Performance by continent. Error bars show standard error of the mean.

C. Implementation Details
C.1. FS-SINR
C.1.1. MODEL ARCHITECTURE

Code for FS-SINR is available at https://github.com/Chris-lange/fs-sinr. The architecture for FS-SINR consists of four
components: the location encoder, f; the text encoder, ¢; the image encoder, a; the transformer encoder, m; and the species
decoder, s. These components comprise 8,154,368 learnable parameters in total. All non-linearities in FS-SINR are ReLUs.

The location encoder, f, is identical to the one used in Hamilton et al. (2024), which is taken from Cole et al. (2023). It is
composed of an initial linear layer and ReLU non-linearity followed by four residual layers, where each is a two-layer fully
connected network with residual connections (He et al., 2015) between the input and output of each residual layer. Each
layer contains 256 neurons, and there are 527,616 learnable parameters in total.

The text encoder, t, follows the structure of the text-based species encoder from Hamilton et al. (2024). In ¢, a pre-trained
and frozen large language model, GritLM (Muennighoff et al., 2025), is used to produce a fixed 4,096 length embedding
from input text. This is then passed through a smaller network to reduce the dimensionality to 256. This smaller network
consists of two residual layers with a hidden layer size of 512. In total, the text encoder contains 3,410,432 learnable
parameters.

The image encoder, a, has a structure similar to ¢. In a, a pre-trained and frozen vision transformer, EVA-02 (Fang et al.,
2024), pre-trained on images from 10,000 species from the iNaturalist species classification dataset (Van Horn et al., 2021),
is used to produce a fixed 1,024 length embedding from an input image, by extracting the CLS token from the final layer of
the model. This is then passed through a smaller network to reduce the dimensionality to 256. This smaller network consists
of two residual layers with a hidden layer size of 512. In total, the image encoder contains 1,837,568 learnable parameters.
Tables A3 to AS include results using a DINOv2-large image encoder (Oquab et al., 2024) instead of the EVA-02 ViT where
all other architecture choices remain the same.

The transformer encoder, m, takes in an arbitrary length set of unordered 256 dimensional tokens produced by f, ¢, and a,
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Figure A8. IUCN Performance by taxonomic group. Error bars show standard error of the mean.

as well as two learned tokens that are added to each set of inputs. The CLS, class, token produces the species range, and
a ‘Register’ token, inspired by Darcet et al. (2024), which acts as an additional repository of global information during
encoding. Element-wise addition between each token and one of five learned 256 dimensional ‘token type embeddings’ is
performed to allow the model to differentiate between tokens from different sources. The transformer itself is composed
of four transformer encoder layers, implemented using PyTorch’s nn. TransformerEncoderLayer (Paszke et al.,
2019), based on Vaswani et al. (2017). Key-query-value multi-head attention is used with two ‘heads.” The feed forward
components contain 512 neurons per layer, while the token dimensionality is 256. Layer norm is used in each layer, using a
default epsilon value of le-5 for enhanced numerical stability. In total, m contains 2,176,256 learnable parameters. Finally
the species decoder, s, is a simple fully connected network with two hidden layers. Each layer contains 256 neurons, and in
total the decoder contains 197,376 learnable parameters.

C.1.2. TRAINING

For all training we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0005, and an exponential learning
rate scheduler with a learning rate decay of 0.98 per epoch, and we use a batch size of 2048. Our training data comes from
Cole et al. (2023), comprising 35.5 million species observations with locations, covering 47,375 species observed prior to
2022 on the iNaturalist platform. However, we remove all species found in our evaluation datasets, leaving us with 44,181
species in our training set.

Training comprises of two steps. First, the location encoder, f, is trained. This follows the training procedure of Cole et al.
(2023) using the Lan-run loss function with positive weighting, A, set to 2,048, training for 20 epochs with a dropout of
0.5. To reduce training time without significantly impacting performance we only train on a maximum of 1,000 examples
per-species, as done in Cole et al. (2023). Thus, our training dataset for this step contains 13.8 million location observations.
Secondly, we train all components of FS-SINR, except the pre-trained large language model and the pretrained vision
transformer, using our £an.fuib loss with A set to 2,048. We train the location encoder, f, again as this improves performance
compared to freezing it,as seen in Figure A15. For this part of training, we use a dropout of 0.2. We further reduce the
training data used to a maximum of 100 examples per-species, leaving 4.0 million training examples, which again increases
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Figure A9. IUCN Performance by range size. Error bars show standard error of the mean.

training speed without a significant impact on performance, as seen in Figure A16. For this step we additionally train with
images and text descriptions of the training species. Each instance in the training set is used once per epoch as a training
example to compute the loss. The training example is not passed through the transformer encoder, m, and so does not
contribute to the species embedding vector produced by this part of the model. Instead, additional context information is
provided to produce the species embedding. By default, this context information consists of 20 context locations, a section
of text describing the target species, and an image of the species. With 0.2 probability the context locations are dropped
from the context information, and with 0.5 probability each the text or image is dropped. These context locations are taken
from the training data for the target species. As such, a single instance from the training set can be used multiple times per
epoch, once as a training example, and potentially many times as a context location. The impact of different distributions of
locations and text provided during training is shown in Figure A13.

For the text inputs required during this stage of training, we use the text dataset from Hamilton et al. (2024) consisting of
multiple sections of Wikipedia (Wikipedia, 2025) articles for each species in the train set where these are available. This
dataset contains 127,484 sections from 37,889 species’ articles. The evaluation text either describes the habitat or range a
species, where habitat text tends to describe the local environment and range text is typically more informative as it often
lists specific countries or geographic regions where the species can be found. Note that not all 44,181 train species have
text data available. The images used are taken from iNaturalist (2025), and this dataset comprises 204,064 images of our
train species. When an image or piece of text is not available for a species during training, and we are trying to provide
these modalities and context locations to the model, we simply ignore the additional modality and only provide the context
locations. When we are attempting to provide just an image or text as context, we instead skip that training instance.

In practice, during training, we pass all text sections through the frozen large language model once and then store the
embeddings produced to use in the current training run and all future runs, and similarly extract and store all image
embeddings after passing the images through the frozen vision transformer. This prevents us having to repeatedly query
these frozen, but resource-intensive, models during training. Training takes approximately ten hours on a single NVIDIA
A6000 GPU, requiring approximately six gigabytes of RAM.
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Figure A10. Average false positive error by location for few-shot approaches. Here we see average false positive error of FS-SINR on
the IUCN dataset. Providing any text leads to an increase in the false positive error, although Figure 3 suggests that this text still helps
with range estimation performance. As the number of provided context locations increases, the impact of the text is reduced and the
distribution of errors appear similar.

C.2. Baselines
C.2.1. LE-SINR

We compare our approach to the recently introduced species range model LE-SINR (Hamilton et al., 2024) that can
incorporate text information. We follow the original architecture and training procedure for LE-SINR and SINR, with the
exception that we enforce that SINR, like LE-SINR and our approach, is trained on our reduced set of 44,181 species which
do not include any of the evaluation species.

We also follow the original evaluation procedure for LE-SINR. For few-shot evaluation without text, logistic regression
with L2 regularization is performed with location features as input using the few positive examples provided alongside a
set of pseudo-negatives drawn half from a uniform random distribution and half from the training data distribution. The
regularization weight is set to 20. For text-based zero-shot evaluation, we directly make use of the output of the text
encoder with the dot product between this and location features giving us a probability of species presence. For few-shot
evaluation, when text is provided, we again perform logistic regression, but the output of the text encoder is used as the
‘target’ that the weights are drawn towards in a modified L2 regularization term,see Hamilton et al. (2024) for more details.
The regularization weight is again set to 20. In total, this model comprises 25,715,202 learnable parameters.

C.2.2. SINR

We also compare to SINR (Cole et al., 2023). The original SINR implementation requires all evaluation species to be part of
the training set. We match the adaptations from Hamilton et al. (2024) to allow evaluation on unseen species. After training
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we remove the learned species heads and keep only the location encoder. During evaluation, we perform logistic regression
with L2 regularization using location features as input. The regularization weight is again set to 20, and the same method of
selecting pseudo-negatives as above is used. In total, this model comprises 11,941,120 learnable parameters.

C.2.3. PROTOTYPE SINR

Here we describe our few-shot baseline based on Prototypical Networks (Snell et al., 2017), which we refer to as Prototype
SINR. Our approach is very similar to Snell et al. (2017) although we use the SINR location encoder of our models as
the ‘embedding function’, allowing us to generate few-shot results for a novel species without any retraining. This SINR
location encoder is trained only on species found in the training set and not those used for evaluation. Using this method,
SINR and LE-SINR models can be used to estimate the range of a novel species without requiring training to learn a new
species embedding vector.

In order to do this, we first encode our known ‘presence’ locations using the location encoder of our chosen model and then
take an average of these points to generate a ‘prototype’ for the presence class. We select pseudo-negatives in the same
manner as in Hamilton et al. (2024) and similarly encode and average these in order to generate a prototype for the ‘absent’
class. We represent these prototypes as:

= S folw), @

|Sk| x; €Sk

where k € {present, absent} indicates the class of the prototype, and .S is the ‘support set’, i.e., the set of locations x that
we use to create our prototypes. In our case, Spresent 1S the small set of available context locations for our target species,
i.e., Ct, while Sypsens is the set of pseudo-negative locations that we have selected according to Hamilton et al. (2024). fe()
denotes the location encoder of our model.

To generate a probability of presence or absence for any location &, we encode « using our location encoder and calculate
the cosine distance in ‘location encoder space’ between x and each prototype. We then use these values as the ‘logits’ in a
softmax function to generate our probabilities. The parameters of the location encoder are not changed. Putting this together,
we can calculate the probability of presence as:

ed(fe (w)a"'prcscm)

= ed(fe(w)ﬂ’present) + ed(fe(w)/”absem) ’

&)

Ppresent (37)

where d(a, b) represents a distance metric between a and b, in this case, cosine distance.

While the original implementation in Snell et al. (2017) uses the squared Euclidean distance instead of cosine distance
we find that this performs significantly worse and actually results in decreased MAP as the number of context locations
increases. We suggest the SINR location encoder is more suited to using cosine distance, as during training presence
predictions are generated by taking the dot product of the location and species embeddings. However, when the location
encoder is trained from scratch for Prototype SINR as in Snell et al. (2017) we find that using the squared Euclidean distance
performs better than cosine distance, although performance is still lower than cosine distance with a SINR location encoder.

In Figure 3 we see that the performance of Prototype SINR is worse than FS-SINR and the SINR and LE-SINR baselines.
In Table AS we provide zero-shot results where the positive prototype is a species embedding produced from text, in the
same manner as LE-SINR zero-shot predictions. In both cases, Prototype SINR underperforms compared to our approach.
In Figure A11 we present qualitative results visualizing the few-shot estimated range for the Kalahari Scrub-Robin
produced by FS-SINR and by the Prototype SINR baseline.

C.2.4. AcTivE SINR

We also compare to the model introduced for active learning in Lange et al. (2023), which we call Active SINR, although in
our setting there is no active learning component. This approach begins with a SINR model trained on our reduced 44,181
species which do not include the evaluation species. The weights W of the multi-label classifier of this model can be viewed
as a set of species embeddings where each column vector w; of W represents an individual species j. We can combine
these species embeddings with a location embedding fg () via an inner product to compute the probability that the species
7 is present at x. At inference time, we compute the presence probabilities for all species in the training set, for all locations
c in the set of available context locations C* for our target species t. We then produce a new species embedding w; by taking
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1 Context Location 2 Context Locations

FS-SINR
(No Eval text)

Prototype-SINR

Figure Al11. Qualitative comparison of the Prototype SINR baseline. Here we compare the predictions of our FS-SINR approach
(without any text) and our Prototype SINR baseline on the Kalahari Scrub-Robin species that is found in Southern Africa. The
Prototype SINR approach obtains an MAP of 0.54 and 0.79, for one and two context locations respectively, while FS-SINR obtains 0.79
and 0.85. As MAP is tied to the ranking of predicted probabilities rather than their absolute values, it can remain high even if the model is
somewhat overconfident across the board. As long as the highest probabilities consistently align with areas where the species is truly
present, the model will achieve a strong MAP, which we can see with the predictions from Prototype SINR.

a weighted average of the existing w;’s where the weight for each is the product of the probabilities of presence for that
species:

wy =Y P(w;|Chw;. ©)
j=1

We can then use this new species embedding for our target species to produce a probability of presence for any location x as
in SINR (Cole et al., 2023). We present few-shot results using this method in Figure 3. We see that the performance of
the Active SINR approach is competitive with FS-SINR when provided with no text, though worse than FS-SINR when
provided with this additional context. However, increasing the number of provided context locations beyond a small number
actually hurts performance, as it is unable to accurately represent the range of a previously unseen species via the weighted
combination of those from the training set.

C.3. Evaluation

We perform three runs for each experiment using different initial random seeds and report the mean. We display the standard
deviation as error bars in our figures. For all evaluations across SINR, LE-SINR, Prototype SINR, Active SINR, and
FS-SINR, the same set of context locations are used for a given species, and these context locations are accessed in the same
order, so all evaluations using five context locations are performed with the same five points, and four of those points are
those used for evaluations using four context locations, etc. In our few-shot setting, we use at most 50 context locations
during both training and evaluation.

D. Additional Ablations

Here we present additional results to investigate the impact of a variety of design choices and training procedures for
FS-SINR. We present plots on a “Symlog” scale, where a linear scale is used between 0 and 10, in order to allow us to show
zero-shot results alongside few-shot results. We display the mean of three runs with standard deviations shown as error bars
and also show just the mean values alongside for easier interpretation.
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D.1. Ablating Training Context Locations

In Figure A12 we show ‘Range Text’ evaluation performance on the IUCN dataset for FS-SINR models trained using
different amounts of context information at training time. We see that generally increasing the context used during training
improves performance, and that having a fixed number of context locations is also beneficial.
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Figure A12. Impact of number of training context locations. Here we evaluate FS-SINR models trained using different numbers
of context locations. Results are shown with standard deviations from three runs (left), and without (right) for clarity. Evaluation is
performed with ‘Range Text’ on the IUCN dataset. ‘Fixed’ indicates the same number of context locations were provided for every
training example. ‘Variable’ indicates that a uniform random distribution of context locations up to the specified number were provided
with each training example. We see that ‘Variable’ generally under-performs compared to ‘Fixed’ and that increasing the train context
length tends to increase evaluation performance.

D.2. Ablating Context Information

In Figure A13 we display ‘Range Text’ evaluation performance on the [IUCN dataset for FS-SINR models trained using
different combinations of text and context locations during training. We observe that good text-only zero-shot performance
requires sometimes providing just text as context information during training. This forces the model to learn to produce
ranges from only text information. Models that are sometimes provided with both text and locations for the same training
examples perform best as the number of provided context locations increases. We also see that models trained without text
can perform on par with those that see text during training when enough context locations are provided (5 - 10). As we
might expect, models that are provided with token types they have not seen during training perform poorly.

D.3. Ablating Input Features

In Table AS we provide additional zero-shot results expanding on those in Table 1 from the main paper. Specifically, we add
comparisons to using a different location encoder (i.e., SATCLIP (Klemmer et al., 2025) instead of SINR), comparisons to
using a DINOV2 pre-trained image encoder (DINOv2-large) (Oquab et al., 2024), comparisons to using the environmental
covariates as in SINR (Cole et al., 2023) that contain information about a locations’ climate in addition to the spatial
coordinates.

D.4. Ablating Location Encoder

In Figure A14, we vary the number of datapoints used to pre-train the SINR encoder used in FS-SINR. For both FS-SINR
and the SINR baseline, we generally observe that more data is better, and for SINR approaches we see that pretraining the
encoder is much better than randomly initializing it. We also show results for a SINR model trained on evaluation species in
addition to train species. As we saw in Table 1 for FS-SINR, the impact of training the location encoder with evaluation
species is small.

In Figure A15, we also investigate the impact of changing the location encoder entirely. We see that replacing our SINR
location encoder with a pre-trained and frozen ‘SATCLIP’ location encoder (Klemmer et al., 2025) significantly harms
performance. This may be due to this model being frozen and trained on tasks that do not completely match ours. In
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Figure A13. Impact of train context information. Here we evaluate FS-SINR models trained using different context information on the
TUCN dataset. Results are shown with standard deviations from three runs (left), and without (right) for clarity. Evaluation is performed
with ‘Range Text’ unless ‘No Eval Text’ is specified, in which case just locations are provided during eval. 70% of training examples for
‘Default FS-SINR’ provide both location and text context, 20% provide just locations 10% and provide just text. ‘Always Obs. Only’ has
only seen locations during training. ‘Always Text Only’ has only seen Text during training. ‘Always Text and Obs’ is always provided
with both locations and text during training. ‘Always Text or Obs.” is provided with just locations for 90% of training examples, and just
text for the remaining 10%.

comparison, a randomly initialized and untrained SINR backbone performs almost identically well as one that has seen a
small amount of training data (10 examples per-species in the train set). We also investigate replacing the learned location
encoder f() with a simple form of Fourier feature encoding (Tancik et al., 2020) to encode location inputs to the transformer
M (). In this setting, a pre-trained and fine-tuned SINR type location encoder f() is still used to encode evaluation locations
2 to determine the probability of presence of species j via the inner product between the species embedding vector w; and
/(). However, f() is not used to encode the context locations C* before they are passed to m.; (). Using these two different
encoders performs increasingly poorly as the amount of context information increases.
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Figure A14. Impact of Location Encoder Training. Here we evaluate the performance of SINR and FS-SINR models when the size of
the training dataset for the SINR backbone is varied. Results for FS-SINR models are shown with standard deviations from three runs
(left), and without (right) for clarity. Evaluation on FS-SINR is performed with ‘Range Text’, while SINR can only make use of location
data. ‘1000, ‘100’, and ‘10’ represent the maximum number of examples per class the SINR backbone was trained on. ‘SINR (rand_init)’
is initialized with random weights and is not trained. ‘(trained on eval species)’ indicates training on all training and evaluation species.

D.5. Ablating Training Data

In Figure A16 we vary the number of examples per-species that are provided during training. The impact of this is fairly
small, with models trained on an intermediate amount of data performing best. It is worth noting, that not all species in the
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Table A5. Additional zero-shot results. We report zero-shot performance where no location information is provided to each model,
comparing SINR (Cole et al., 2023), LE-SINR (Hamilton et al., 2024), and variants. We denote additional metadata as: EN for additional
environmental covariates (Fick & Hijmans, 2017) used in Cole et al. (2023), HT for ‘Habitat Text’, RT for ‘Range Text’, I for ‘Image’
using our default EVA-02 image encoder, I (DINOV2) for Image using a DINOV2 based image encoder (Oquab et al., 2024), TST for
“Test Species in Train’, TRT for using full taxonomic rank text, SATCLIP for where the SINR encoders are replaced with the image
derived location encoders from Klemmer et al. (2025), and P-LE-SINR for ‘Prototype LE-SINR’. Results are reported as MAP, where
higher is better.

(a) Methods without additional environmental covariates (b) Methods with additional environmental covariates

Method | Variant | IUCN  S&T Method | Variant | IUCN  S&T

TST (test species in train) TST (test species in train)

ISZINRINR ESTTT . 067 077 SINR EN, TST 076 081

Fg'glNR RT’TSST 8~§§ 8'22 FS-SINR | HT,EN, TST | 038 0.6l
) ’ : : FS-SINR | RT,EN, TST | 0.57 0.67

With SATCLIP encoder LE-SINR

112 S‘Siﬁg E; SﬁTTCLLIIIf 020 043 LE-SINR | HT, EN 031 052
S-S » SATC 033 055 LE-SINR | RT, EN 051 061

Prototype SINR FS-SINR

E‘ig'gﬁﬁ ETT 8.4218 8'22 FS-SINR | EN 007 064
- : : FS-SINR | HT, EN 032 053

LE-SINR FS-SINR | RT, EN 0.51  0.65

LE-SINR HT 028 052

LE-SINR RT 048  0.60

FS-SINR

FS-SINR 0.05 0.18

FS-SINR TRT 021 034

FS-SINR HT 033  0.53

FS-SINR RT 0.52  0.64

FS-SINR I 0.19 038

FS-SINR I (DINOV2) 0.13 028

FS-SINR [+RT 046  0.64

FS-SINR I(DINOV2) +RT | 046  0.62

training dataset have as many as 1000 observations. We find that a model trained on only 10 examples per-species performs
significantly worse.

D.6. Ablating FS-SINR Architecture

In Figure A17 we vary the underlying FS-SINR architecture. Removing different components has a small effect on model
performance, with the removal of the species decoder actually improving results when range text is provided. However, as
several ablations perform very similarly, it is difficult to tease out the how much of this effect is due to variance. It is clear
however that removing the learnable token type embeddings causes the model to completely fail to learn during training. In
Figure A18 we show further ablations based around removing the learned location encoder for inputs to the transformer and
replacing it with the simple Fourier feature encoding also seen in Figure A15. When this is removed, other ablations seem to
further harm performance, although results for these ablations vary significantly between runs.
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Figure A15. Impact of location encoder. Here we evaluate the performance of FS-SINR style models with different location encoders.
Results are shown with standard deviations from three runs (left), and without (right) for clarity. Evaluation is performed with ‘Range
Text’ on the IUCN dataset. ‘1000’, ‘100’, ‘10’ represent the maximum number of examples per class the SINR backbone was trained on.
‘(Frozen)’ indicates that the location encoder parameters were not updated during FS-SINR training. ‘FS-SATCLIP’ replaces the SINR
location encoder with a pretrained, frozen location encoder from Klemmer et al. (2025). ‘FS-SINR (Fourier Location Encoder)’ uses the
simple Fourier feature encoding (Tancik et al., 2020) used in Mildenhall et al. (2021) to match the 256 dimensional outputs of the SINR
location encoders. These outputs are used directly as inputs to the transformer encoder. After a species token is produced in this way, it is
attached to a pre-trained and fine-tuned SINR backbone to produce a range.

E. Additional Qualitative Results

E.1. Visualizing Non-Species Concepts

By jointly training on text and locations, FS-SINR is able to spatially ground abstract non-species concepts in a zero-shot
manner, as is done with LE-SINR in Hamilton et al. (2024). In Figure A19 we provide another example similar to Figure 4
in the main paper. Here, we again fix the context location and show the impact of changing the text. We can see that different
text prompts can result in quite different predicted ranges. In Figure A20 we see examples where different text concepts,
which are very different from the species-based text provided during training, are grounded in sensible locations on the map.
In Figure A21 we compare predictions made with increasing numbers of context locations in desert regions, with or without
the accompanying text prompt “Desert”. As we increase the number of context locations, the two different models converge
to more similar range predictions.

E.2. Visualizing Estimated Species Ranges

Here, we provide additional examples of the ranges produced by FS-SINR using context locations, text, and images.
In Figures A22 and A23 we visualize FS-SINR range estimates for two different species when habitat or range text is
provided. We observe that the combination of text and context locations seem to result in better estimates of the range. In
Figure A24 we show additional zero-shot image-only examples, where FS-SINR is provided a single image from a held-out
test species at inference time. Again, we observe some plausible range predictions even with such limited input data.

In Figure A26 we show range estimates for the Brown-banded Watersnake, using ‘range’ text for FS-SINR and
LE-SINR approaches. In Figure A27 we show range estimates for the Brown-headed Honeyeater, using ‘habitat’
text for FS-SINR and LE-SINR approaches. Finally in Figure A28 we show range estimates for the Crevice Swift,
without providing text. Overall, SINR produces more diffuse ranges and requires more locations to narrow down the range.
LE-SINR and FS-SINR appear to have very different zero-shot behaviors, with LE-SINR frequently seeming to predict
presence in almost no locations at all, while FS-SINR tends to produce a zero-shot range that is too large.

In Figure A25 we visualize FS-SINR range predictions for the Yellow-footed Green Pigeon for models that have
had different random initializations (i.e., different random seeds). We observe that there is a relatively large amount of
variance in the outputs produced given the same input data. The same set of input context locations could represent many
different possible output ranges, and thus being able to represent this variety is advantageous. We also utilize these different
predictions from different seeds for ensembling and uncertainty quantification in Appendix A.
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Figure A16. Impact of training data. Here we evaluate FS-SINR models trained with different amounts of data. Results are shown with
standard deviations from three runs (left), and without (right) for clarity. Evaluation is performed with ‘Range Text’ on the [UCN dataset.
The labels show the maximum number of examples per-species that FS-SINR is trained on. We see that training on an intermediate
amount of training data leads to best performance.
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Figure A17. Ablating model architecture components. Here we evaluate the performance of FS-SINR style models as we ablate various
design choices. Results are shown with standard deviations from three runs (left), and without (right) for clarity. Evaluation is performed
with ‘Range Text’ on the [UCN dataset. We see small changes in performance when removing the register token and the species decoder.
However removing the learned token type embeddings has a large impact.
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Figure A18. Further ablating model components. Here we evaluate the performance of FS-SINR style models as we ablate more
components. Results are shown with standard deviations from three runs (left), and without (right) for clarity. Evaluation is performed
with ‘Range Text’ on the IUCN dataset. ‘FF’ indicates that the model does not use a SINR backbone to encode location inputs to the
transformer encoder. Instead, a simple Fourier feature encoding (Tancik et al., 2020) used in Mildenhall et al. (2021) is used to increase
the dimensionality of location data to match the token dimension of the transformer encoder. These are used directly as inputs to the
transformer encoder. After a species token is produced in this way, it is attached to a standard SINR backbone to produce a range.
Removing the SINR backbone for encoding inputs to the transformer has a large impact on performance, especially when more context
locations are supplied, and makes the model more sensitive to the impact of other ablations.

Figure A19. Controlling range predictions using a single context location and text. Here we show another example similar to Figure 4
in the main paper. Given the same context location, denoted as ‘o’, FS-SINR can produce significantly different range predictions
depending on the text provided. This example illustrates a use case where a user may have limited observations but some additional
knowledge regarding what type of habitat a species of interest could be found in.
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Figure A20. Zero-shot non-species concepts. We can evaluate FS-SINR in a zero-shot manner using only text information, i.e., without
any locations. Here, we observe that FS-SINR, like LE-SINR (Hamilton et al., 2024), can localize abstract (i.e., non-species) concepts
in geographic space, despite never being trained to explicitly do so. The model achieves this as it learns to make connections between
species text and information already contained in the pretrained language encoder we use. However, we do note failure/ambiguous cases
such as the “Pirate” example in the bottom row.
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Figure A21. Varying the context information provided. Here we change the context information provided to FS-SINR. The model on
the left column receives no text input, but the one on the right gets the text “Desert”. Additionally, in each row we increase the number of
context locations provided, from zero to three, denoted as ‘o’. We observe that the model on the right that uses text already has a strong
prior about the species being present at desert-like locations, e.g., see first row where no context locations are provided. As soon as one
context location is added in North Africa (second row), the model generates a new prediction with an increased probability that the species

is present there.

34

Q “Desert”




Feedforward Few-shot Species Range Estimation

European Robin - Range Text

Range Text: The European robin is found across Europe, east to Western Siberia and
south to North Africa; it is sedentary in most of its range except the far north. It also
occurs in the Atlantic islands as far west as the Central Group of the Azores and
Madeira. It is a vagrant in Iceland and has been introduced to other regions, including
North America and Australia, but these introductions were unsuccessful.

European Robin - Habitat Tex

T~

Habitat Text: The European robin inhabits a variety of habitats, including gardens,
parks, woodlands, and forests. It prefers areas with dense vegetation and is often
found near human settlements. It is also found in mountainous regions and can be
seen in urban areas, such as cities and towns.

Figure A22. Using text descriptions. Here we illustrate the zero-shot (top row) and one-shot (bottom row) FS-SINR range estimations
based on text descriptions for the European Robin, using ‘Range’ (left), and ‘Habitat’ (right) text, shown below the range estimates.

Expert-derived range maps are shown inset in the top row.

American Pika - Range Text

Range Text: The American pika (Ochotona princeps) is found in the mountains of
western North America, usually in boulder fields at or above the tree line, from central
British Columbia and Alberta in Canada to the US states of Oregon, Washington,
Idaho, Montana, Wyoming, Colorado, Utah, Nevada, California, and New Mexico.

American Pika - Habitat Text

— -~

Habitat Text: Pikas inhabit talus fields that are fringed by suitable vegetation in alpine
areas. They also live in piles of broken rock. Sometimes, they live in man-made
substrate such as mine tailings and piles of scrap lumber. Pikas usually have their
den and nest sites below rock, around 20-100 cm (8-39 in) in diameter, but often sit
on larger and more prominent rocks.

Figure A23. Using text descriptions. Here we illustrate the zero-shot (top row) and one-shot (bottom row) FS-SINR range estimations
based on text descriptions for the American Pika, using ‘Range’ (left), and ‘Habitat’ (right) text, shown below the range estimates.
Expert-derived range maps are shown inset.
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Barred Monkey Frog

Figure A24. Image zero-shot range estimation. Here we see zero-shot range estimates for six species in the IUCN evaluation dataset,
with expert-derived range and image inset. The blue duck image taken from iNaturalist (2025) only shows evidence of the species
from footprints in wet sand. We see that this image generates predictions in coastal areas in various locations around the globe. The coastal
background for the Black Turnstone could have helped the model to generate a relatively accurate prediction on the northwest coast

of North America.

Range

Habitat

No Text

Figure A25. Impact of random initialization on FS-SINR. Here we display range estimates for the Yellow-footed Green
Pigeon from three different FS-SINR models where different random seeds were used to initialize each model during training. We show
zero-shot results using ‘range text’ (top) and ‘habitat text’ (middle), and also few-shot results using one context location with no text
(bottom). The IUCN expert-derived range is shown inset. We see that even when provided with the same inputs, different models can
perform very differently when this input is very sparse (e.g., just text or one context location). While most of the Indian part of the actual
range is included for all input types and runs, there is significant variability across the runs in other geographic areas.

Range Text: “The yellow-footed green pigeon is found in the Indian subcontinent and parts of Southeast Asia. It is the state bird of
Mabharashtra.”

Habitat Text: “The species is a habitat generalist, preferring dense forest areas with emergent trees, especially Banyan trees, but can also
be spotted in natural remnants in urban areas. They forage in flocks and are often seen sunning on the tops of trees in the early morning.”
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Figure A26. Comparing estimated ranges across models with context Icoations and range text. Here we see zero-shot and few-shot
range estimates produced by FS-SINR, LE-SINR, and SINR for the Brown-banded Watersnake, with expert-derived range inset.
We provide range text to FS-SINR and LE-SINR as well as context locations, but SINR is not capable of accepting text and so we show a
blank map for the zero-shot range estimate. We see that LE-SINR underestimates the range using only text, while FS-SINR overestimates
it. SINR requires more location data than the other approaches to localize the range to South America.

Range Text: “The Brown-banded water snake (Helicops angulatus) is found in tropical South America and Trinidad and Tobago.”
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Figure A27. Comparing estimated ranges across models with context locations and habitat text. Here we see zero-shot and few-shot
range estimates produced by FS-SINR, LE-SINR, and SINR for the Brown-headed Honeyeater, with expert-derived range inset.
We provide habitat text to FS-SINR and LE-SINR as well as context locations, but SINR is not capable of accepting text and so we show a
blank map for the zero-shot range estimate. We again see LE-SINR underestimate the range using only text, while FS-SINR has very
good zero-shot performance for this species. We see that SINR again requires more location data to narrow down the range and even after
20 locations the range is still significantly larger than the other models, extending into South Africa.

Habitat Text: “The brown-headed honeyeater inhabits temperate forests and Mediterranean-type shrubby vegetation. It is typically found
in tall trees, where it forages by probing in the bark of trunks and branches.”
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Figure A28. Comparing estimated ranges across models. Here we see few-shot range estimates produced by FS-SINR, LE-SINR, and
SINR for the Crevice Swift lizard, with expert-derived range in Mexico inset. No text is provided and so no sensible zero-shot
prediction can be made for any model. However while LE-SINR and SINR cannot produce an output for this and so we show a blank
map, FS-SINR can generate a predicted range just from feeding the learned CLS and register tokens with no other information into the
transformer encoder. The range that is produced is contained within the model or the learned tokens itself rather than from any further
inputs. Absent additional information, the model seems to guide predictions towards areas where it as seen many species during training
e.g., Europe and North America. This may be an unhelpful bias when attempting to model novel species. SINR again produces more
diffuse ranges than the other methods, though all approaches struggle to model these small ranges, as seen in Appendix B.2.
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