
Even Faster Algorithm for the Chamfer Distance

Ying Feng∗ Piotr Indyk†

September 4, 2025

Abstract

For two d-dimensional point sets A,B of size up to n, the Chamfer distance from A to B is
defined as CH(A,B) =

∑
a∈A minb∈B ∥a− b∥. The Chamfer distance is a widely used measure

for quantifying dissimilarity between sets of points, used in many machine learning and computer
vision applications. A recent work of Bakshi et al, NeuriPS’23, gave the first near-linear time
(1+ ε)-approximate algorithm, with a running time of O(nd log(n)/ε2). In this paper we improve
the running time further, to O(nd(log log n+ log 1

ε)/ε
2). When ε is a constant, this reduces the

gap between the upper bound and the trivial Ω(dn) lower bound significantly, from O(log n) to
O(log log n).

∗MIT. E-mail: yingfeng@mit.edu
†MIT. E-mail: indyk@mit.edu

1

ar
X

iv
:2

50
5.

08
95

7v
2

 [c
s.C

G
]

2
Se

p
20

25

1 Introduction

For any two d-dimensional point sets A,B of sizes up to n, the Chamfer distance from A to B is
defined as

CH(A,B) =
∑
a∈A

min
b∈B

∥a− b∥

where ∥ · ∥ is the underlying norm defining the distance between the points. Chamfer distance
and its variant, the Relaxed Earth Mover Distance [KSKW15, AM19], are widely used metrics
for quantifying the distance between two sets of points. These measures are especially popular
in fields such as machine learning (e.g.,[KSKW15, WCL+19]) and computer vision (e.g.,[AS03,
SMFW04, FSG17, JSQJ18]). A closely related notion of “the sum of maximum similarities”,
where minb∈B ∥a− b∥ is replaced by maxb∈B a · b, has been recently popularized by the ColBERT
system [KZ20]. Efficient subroutines for computing Chamfer distances are provided in prominent
libraries including Pytorch [pyt23], PDAL [pda23] and Tensorflow [ten23]. In many applications (e.g.,
see [KSKW15]), Chamfer distance is favored as a faster alternative to the more computationally
intensive Earth-Mover Distance or Wasserstein Distance.

Despite the popularity of Chamfer distance, efficient algorithms for computing it haven’t attracted
as much attention as algorithms for, say, the Earth-Mover Distance. The first improvement to the
naive O(dn2)-time algorithm was obtained in [SMFW04], who utilized the fact that CH(A,B) can
be computed by performing |A| nearest neighbor queries in a data structure storing B. However,
even when the state of the art approximate nearest neighbor algorithms are used, this leads to an

(1 + ϵ)-approximate estimator with only slightly sub-quadratic running time of O
(
dn

1+ 1
2(1+ϵ)2−1

)
in high dimensions [AR15]1. The first near-linear-time algorithm for any dimension was proposed
only recently in [BIJ+23], who gave a (1 + ϵ)-approximation algorithm with a running time of
O(dn log(n)/ε2), for ℓ1 and ℓ2 norms. Since any algorithm for approximating the distance must
run in at least Ω(dn) time2, the the upper and lower running time bounds differed by a factor of
log(n)/ε2.
Our result: In this paper we make a substantial progress towards reducing the gap between the
upper and lower bounds for this problem. In particular, we show the following theorem. Assume
a Word RAM model where both the input coordinates and the memory/processor word size is
O(log n) bits.3 Then:

Theorem 1.1. There is an algorithm that, given two sets A,B of d-dimensional points with
coordinates in {1 . . . poly(n)} and a parameter ε > 0, computes a (1 + ε)-approximation to the
Chamfer distance from A to B under the ℓ1 metric, in time

O(nd(log log n+ log
1

ε
)/ε2)).

The algorithm is randomized and is correct with a constant probability.

Thus, we reduce the gap between upper and lower bounds from O(log(n)/ε2) to
O(log log n+ log 1

ε)/ε
2).

1All algorithms considered in this paper are randomized, and return (1 + ε)-approximate answers with a constant
probability

2The Chamfer Distance could be dominated by the distance from a single point a ∈ A to B.
3In the Appendix, we adopt the reduction of [BIJ+23] to extend the result to coordinates of arbitrary finite

precision.

2

1.1 Our techniques

Our result is obtained by identifying and overcoming the bottlenecks in the previous algorithm
[BIJ+23]. On a high level, that algorithm consists of two steps, described below. For the sake of
exposition, in what follows we assume that the target approximation factor 1 + ε is some constant.

Outline of the prior algorithm: In the first step, for each point a ∈ A, the algorithm computes
an estimate Da of the distance opta from a to its nearest neighbor in B. The estimate is O(log n)-
approximate, meaning that we opta ≤ Da ≤ O(log n)opta. This is achieved as follows. First,
the algorithm imposes O(log n) grids of sidelength 1, 2, 4, . . ., and maps each point in B to the
corresponding cells. Then, for each a, it identifies the finest grid cell containing both a and some
point b ∈ B. Finally, it uses the distance between a and b as an estimate Da. To ensure that this
process yields an O(log n)-approximation, each grid needs to be independently shifted at random.
We emphasize that this independence between the shifts of different grids is crucial to ensure the
O(log n)-approximation guarantee - the more natural approach of using “nested grids” does not
work. The whole process takes O(nd) time per grid, or O(nd log n) time overall.

In the second step, the algorithm estimates the Chamfer distance via importance sampling.
Specifically, the algorithm samples T points from A, such that the probability of sampling a is
proportional to the estimate Da. For each sampled point a, the distance opta from a to its nearest
neighbor in B is computed directly in O(nd) time. The final estimate of the Chamfer distance is
equal to the weighted average the T values opta . It can be shown that if the number of samples T
is equal to the distortion O(log n) of the estimates Da, this yields a constant factor approximation
to the Chamfer distance from A to B. The overall cost of the second step is O(Tnd) = O(nd log n),
i.e., asymptotically the same as the cost of the first step.

Intuitions behind the new algorithm: To improve the running time, we need to reduce the
cost of each of the two steps. In what follows we outline the obstacles to this task and how they can
be overcome.

Step 1: The main difficulty in reducing the cost of the first step is that, for each grid, the
point-to-cell assignment takes O(nd) time to compute, so computing these T assignments separately
for each grid takes O(ndT) time. And, since each grid is independently translated by a different
random vector, the grids are not nested, i.e., a (smaller) cell of side length 2i might contain points
from many (larger) cells of side length 2i+1. As a result, is unclear how to reuse the point-to-cell
assignment in one grid to speedup the assignment in another grid, while computing them separately
takes O(ndT) time.

To overcome this difficulty, we abandon independent shifts and resort to O(log n) nested grids.
Such grids can be viewed as forming a quadtree with O(log n) levels, where any cell C at level
i + 1 (i.e., of side length 2i+1) is connected to 2d cells at level i contained in C. (Note that
the root node of the quadtree has the highest level O(log n)). Although using a single quadtree
increases the approximation error, we show that using two independently shifted quadtrees retains
the O(log n) approximation factor. That is, we repeat the process of finding the finest grid cell
containing both a and some point from B twice, and return the point in B that is closer to a. This
amplifies the probability of finding a point from B that is “close” to a, which translates into a better
approximation factor compared to using a single quadtree.

We still need show that the point-to-cell assignments can be computed efficiently. To this end,

3

we observe that for each point a, its assignment to all O(log n) nested grids can be encoded as d
words of length O(log n), or a d×O(log n) bit matrix M . Each row corresponds to one of the d
coordinates, and the most significant bit of a row indicates the assignment to cells at the highest
level (i.e. cells with the largest side length) with respect to that coordinate. In other words, the
most significant bits of all coordinates are packed into the first column, etc. We observe that two
points a and b lie in the same cell of side length 2i if and only if their matrices agree in all but
the last i columns. If we transpose M and read the resulting matrix in the row-major order, then
finding a point b ∈ B in the finest grid cell containing a is equivalent to finding b that shares the
longest common prefix with a. We show that this transposition can be done using O(log n · log log n)
simple operations on words, yielding O(n log n · log log n) = O(nd · log log n) time overall.

As an aside, we note that quadtree computation is a common task in many geometric algo-
rithms [HP11]. Although an O(n) algorithm for this task was known for constant dimension d
[Cha08]4, to the best of our knowledge our algorithm is the first to achieve O(nd · log log n) time for
arbitrary dimension.

Step 2: At this point we computed estimates Da such that opta ≤ Da ≤ O(log n)opta. Given these
estimates, importance sampling still requires sampling Ω(log n) points. Therefore, we improve the
running time by approximating (up to a constant factor) the values opta, as opposed to computing
them exactly. This is achieved by computing O(log log n) random projections of the input points,
which ensures that that the distance between any fixed pair of points is well-approximated with
probability 1 − 1/poly(log n). We then employ these projections in a variant of the tournament
algorithm of [Kle97] which computes O(1)-approximate estimates of opta for O(log n) sampled
points a in O(nd log log n) time. Since the algorithm of [Kle97] works for the ℓ2 metric as opposed
to the ℓ1 metric, we replace Gaussian random projections with Cauchy random projections, and
re-analyze the algorithm.

This completes the overview of an O(nd log log n)-time algorithm for estimate the Chamfer
distance up to a constant factor. To achieve a (1 + ε)-approximation guarantee for any ε > 0, we
proceed as follows. First, instead of sampling O(log n) points as before, we sample O(log(n)/ε2)
points a. Then, we use the tournament algorithm to compute O(1)-approximations to opta, as
before. 5 Then we use a technique called rejection sampling to simulate the process of sampling
O(1/ε2) points a with probability proportional to Θ(opta). For each such point, we compute opta
exactly in O(nd) time. Finally, we use the O(1/ε2) sampled points a and the exact values of opta
in importance sampling to estimate the Chamfer distance up to a factor of 1 + ε.

This concludes the overview of our algorithm for the Chamfer distance under the ℓ1 metric. We
remark that [BIJ+23] also extends their result from the ℓ1 metric to the ℓ2 metric by first embedding
points from ℓ2 to ℓ1 using random projections. This takes O(nd · log n) time, which exceeds the
runtime of our algorithm, eliminating our improvement. However, a faster embedding method would
yield an improved runtime for the Chamfer distance under the ℓ2 metric. We leave finding a faster
embedding algorithm as an open problem.

4Assuming that each coordinate can be represented using log n bits.
5Note that we could use the tournament algorithm to report (1+ ε)-approximate answers, but then the dependence

of the running time on 1/ε would become quartic, as the 1/ε2 term in the sample size would be multiplied by another
1/ε2 term in the bound for the number of projections needed to guarantee that the tournament algorithm returns
(1 + ε)-approximate answers.

4

2 Preliminaries

In this paper, we consider the regime where the approximation factor ε ≥
√

logn
n . Note that

otherwise, an O(nd/ε2) time bound would be close to the runtime of a naive exact computation.
In the proof of Theorem 1.1, we assume a Word RAM model where both the input coordinates

and the memory/processor word size is O(log n) bits. This model is particularly important in
procedures Concatenate and Transpose, where we rely on the fact that we can shift bits and
perform bit-wise AND, ADD and OR operations in constant time.

Notation: For any integers a ≥ 1, we use [n] to denote the set of all integers from 1 to n. For any
two real numbers a, b such that a ≤ b, we use [a, b] to denote the set of all reals from a to b. Let d
be the dimension of points.

For any q ∈ Rd, define optPq := minp∈P ∥q − p∥1 for some subset P of Rd. We will omit the
superscript P when it is clear in the context.

3 Quadtree

In Figure 1, we show an algorithm QuadTree that outputs crude estimations of the nearest distances
simulatenously for a set of points. The estimation guarantee is the same as the CrudeNN algorithm
in [BIJ+23]. While [BIJ+23] achieves this using a quadtree with log n independent levels, which
naturally introduce a log n runtime overhead, we show that two compressed quadtrees with dependent
levels suffice. Our construction of compressed quadtrees is a generalization of [Cha08] to high
dimensions.

Correctness: For any x ∈ [0, α]d and any integer k such that 0 ≤ k ≤ t, let hk(x) :=
(⌈ x⃗1+z⃗1

2k
⌉, ⌈ x⃗2+z⃗2

2k
⌉, · · · , ⌈ x⃗d+z⃗d

2k
⌉), where z is the random point drawn on Line 1 in Figure 1. Observe

that hk(x) is related to the prefix of h(x)⊤.

Claim 3.1. Let q, p ∈ [0, α]d be arbitrary. For any integer k such that 0 ≤ k ≤ t, hk(q) = hk(p) if
and only if h(q)⊤ and h(p)⊤ share a common prefix of length at least d(t− k).

Proof. If h(q)⊤ and h(p)⊤ share a common prefix of length at least d(t− k), then in hashes h(q)
and h(p), the first (t− k) bits of all d coordinates are the same. hk(q) and hk(p) compute exactly
these bits, thus hk(q) = hk(p). The reverse direction holds symmetrically.

Claim 3.1 justifies using hk(·)’s as an alternative representation of the binary string h(·)⊤.
[BIJ+23] shows that hk has a locality-sensitive property, which will help us bound the distance
between points.

Claim 3.2 (Lemma A.4 of [BIJ+23]). For any fixed integer k such that 0 ≤ k ≤ t and any two
points q, p ∈ [0, α]d,

Pr
[
hk(q) ̸= hk(p)

]
≤ ∥q − p∥1

2k
,

Pr
[
hk(q) = hk(p)

]
≤ exp (−∥q − p∥1

2k
),

where the probabilities are over the random choice of z.

5

QuadTree

Input: Two size-n subsets Q := {qi}i∈[n] and P := {pi}i∈[n] of a metric space (Rd, ∥·∥1), such
that Q,P ⊂ [0, α]d for some bound α = poly(n).
Output: A set of n values {Di}i∈[n], such that every Di ∈ R satisfies Di ≥ optPqi .

1. Let t = ⌈log(α)⌉+ 1. Sample two uniformly random points z, z′ ∼ [0, 2t−1]d. For any
point x ∈ [0, α]d, define

h(x) := (⌈x⃗1 + z⃗1⌉, ⌈x⃗2 + z⃗2⌉, · · · , ⌈x⃗d + z⃗d⌉),

h′(x) := (⌈x⃗1 + z⃗′1⌉, ⌈x⃗2 + z⃗′2⌉, · · · , ⌈x⃗d + z⃗′d⌉),

where x⃗i, z⃗i, z⃗′i are the i-th coordinates of x, z, z′, respectively.

2. For each x ∈ Q ∪ P :

• Compute h(x) and write each element of h(x) as a t-bit binary string. Then h(x)
can be viewed as a d-by-t binary matrix stored in the row-major order, whose
(i, j)-th entry is the j-th significant bit of the i-th element of h(x). Transpose this
matrix and concatenate the rows of the transpose. Denote the resulting binary
string as h(x)⊤.

• Similarly, compute h′(x)⊤.

3. Use h(x)⊤ as keys to sort all x ∈ Q ∪ P . Also, use h′(x)⊤ as keys to sort all x ∈ Q ∪ P .

4. For each qi ∈ Q:

• Use the sort to find a p ∈ P that maximizes the length l of the longest common
prefix of h(qi)

⊤ and h(p)⊤. Similarly, find a p′ ∈ P that maximizes the length l′ of
the longest common prefix of h′(qi)

⊤ and h′(p′)⊤.

• If l ≥ l′ then output Di := ∥qi − p∥1; otherwise, output Di := ∥qi − p′∥1.

Figure 1: The QuadTree Algorithm.

We now show that if two points have the same hash hk, then their distance is likely not too
much greater than 2k. A straight-forward bound follows from the diameter of the d-dimensional
cube.

Lemma 3.3. For all q ∈ Q, p ∈ P , and 0 ≤ k ≤ t, the following always holds: If hk(q) = hk(p)
then ∥q − p∥1 ≤ 2k · d.

Proof. Observe that hk(q) = hk(p) only if q + z and p+ z are in the same d-dimensional cube of
side-length 2k. The diameter of such a cube under the ℓ1 norm is 2k · d. Therefore, for any q, p and
0 ≤ k ≤ t, ∥q − p∥1 ≤ 2k · d is a necessary condition for hk(q) = hk(p) to hold.

Moreover, using Claim 3.2, we can bound this ratio with respect to n.

6

Lemma 3.4. With probability at least 1−O(1/n), the following holds simultaneously for all q ∈ Q,
p ∈ P , and 0 ≤ k ≤ t: If hk(q) = hk(p) then ∥q − p∥1 ≤ 2k · 3 log n.

Proof. We show the contrapositive that with probability 1 − O(1/n), k < log(∥q − p∥1/3 log n)
implies hk(q) ̸= hk(p) simultaneously for all q ∈ Q and p ∈ P . It suffices to argue that for any fixed
pair of points q ∈ Q and p ∈ P , this holds with probability at least 1 −O(1/n3). The lemma then
follows by a union bound over n2 pairs.

Let k0 denote the largest integer k that satisfies k < log(∥q − p∥1/3 log n). Then we have

Pr
[
hk0(q) = hk0(p)

]
≤ exp (−∥q − p∥1

2k0
) ≤ exp(−3 log n).

i.e., with probability at least 1 − O(1/n3), hk0(q) ̸= hk0(p). Also, it is easy to see that if
hk0(q) ̸= hk0(p), then for all k ≤ k0, hk(q) ̸= hk(p), concluding the claim.

Symmetrically, if we define h′k(x) := (⌈ x⃗1+z⃗′1
2k

⌉, ⌈ x⃗2+z⃗′2
2k

⌉, · · · , ⌈ x⃗d+z⃗′d
2k

⌉), the claims and lemmas
above also hold for h′k. Using these, we show that the expected outputs of the QuadTree algorithm
are (crude) estimations of the nearest neighbor distances.

Theorem 3.5. With probability at least 1 − O(1/n), it holds for all qi ∈ Q that E[Di] ≤
5min(d, 3 log n) · optPqi.

Proof. We assume the success case of Lemma 3.4 for both hk and h′k. Fix an arbitrary qi ∈ Q.
Recall that the QuadTree algorithm finds p, p′ ∈ P for qi, which are associated with longest
common prefixes of lengths l, l′, respectively. For integer k : 0 ≤ k ≤ t, let Ek denote the event
d(t− k) ≤ max (l, l′) < d(t− k + 1). Observe from Claim 3.1 that when Ek happens,

• either l ≥ l′ and hk(qi) = hk(p),

• or l′ > l and h′k(qi) = h′k(p
′).

In both cases, we know from Lemma 3.3 and 3.4 that Di ≤ 2k ·min(d, 3 log n).
Let D := min(d, 3 log n), p∗ := argminp∈P ∥qi − p∥1, and k∗ := ⌈log(optqi)⌉. We have

E[Di] ≤
∑

0≤k≤t

Pr
[
Ek
]
· (2k ·D)

≤ D(
∑

0≤k≤k∗

Pr
[
Ek
]
· optqi +

∑
k∗<k≤t

Pr
[
hk−1(qi) ̸= hk−1(p

∗) ∧ h′k−1(qi) ̸= h′k−1(p
∗)
]
· 2k)

where the second inequality holds because Ek implies that neither pair {h(qi)⊤, h(p∗)⊤} nor
{h′(qi)⊤, h′(p∗)⊤} share a common prefix of length ≥ d(t − k + 1). Thus hk−1(qi) ̸= hk−1(p

∗)
and h′k−1(qi) ̸= h′k−1(p

∗) by Claim 3.1.
Moreover, events Ek for all k form a partition of a sample space, so

∑
k Pr

[
Ek
]
≤ 1. Applying

this and the locality sensitive properties of hk−1 and h′k−1, we get

E[Di] ≤ D(optqi +
∑

k∗<k≤t

(
optqi
2k−1

)2 · 2k) ≤ D(optqi + 2optqi

∑
k∗<k≤t

optqi
2k−1

) ≤ 5D · optqi

7

Figure 2: A pictorial example for 8-by-8 square matrix and w = 4. The left figure (a) shows how
the Transpose algorithm handles the rows of M̃ in lines 2a and 3a. The right figure (b) illustrates
the transpose outcome.

Runtime analysis:

Lemma 3.6 (Line 2). For any x ∈ Q ∪ P , h(x)⊤ (and h′(x)⊤) can be computed in O(d log log n)
time.

Proof. We assume without loss of generality that both d, t are powers of 2. Computing the binary
matrix representation of h(x) can be done in O(d) time since t = O(log n). Given this, we compute
h(x)⊤ as follows.

Case 1: d ≥ t: We partition the matrix into t-by-t square submatrices, denoted by

Matrix(h(x)) :=


M1

M2
...

Md/t


︸ ︷︷ ︸

t

 d

For each i ∈ [d/t], we use a recursive subroutine Transpose(Mi, t) to compute M⊤
i . See Figure 2

for a pictorial illustration of the Transpose algorithm.
The correctness of the Transpose algorithm can be shown by induction on (the base-2 logarithm

of) w. When I = J = t = O(log n), Line 2a and 3a can be done using a constant number of
operations on words. Thus we get the following runtime.

Claim 3.7. Assuming t = O(log n) the procedure Transpose(Mi, t) runs in O(t · log t) time.

We execute the Transpose algorithm for all i, which takes O((d/t) · t log t) = O(d log log n).
Then we can write down h(x)⊤ by concatenating rows of M⊤

i ’s, which takes O(t · (d/t)) time.

Case 2: t > d: We again partition the matrix into t-by-t square submatrices. In this case, we obtain
Matrix(h(x)) = M :=

[
M1 M2 . . . Mt/d

]︸ ︷︷ ︸
t

}
d.

Claim 3.8. Given t = O(log n), Transpose(M,d) runs in O(d log d) ≤ O(d log log n) time.

8

Transpose

Input: An I-by-J bit matrix M where I ≤ J are powers of 2. An integer w that is a power of
2 and 2 ≤ w ≤ I.
Output: An I-by-J matrix M ′ such that if it is partitioned into w-by-w square submatrices,
then each submatrix is the transpose of the corresponding submatrix of M at the same
coordinates.

1. Let

M̃ =

{
M if w=2

Transpose(M,w/2) otherwise

be zero-indexed and M̃ [i, j] is its (i, j)-th entry.

2. For each integer i such that 0 ≤ i < I:

(a) Compute a J-bit binary string bi such that for j : 0 ≤ j < J , its j-th bit

bi[j] =

{
M̃ [i, j] if (j mod w) < w/2

0 otherwise
.

Also, compute a string bi[j] =

{
0 if (j mod w) < w/2

M̃ [i, j] otherwise
.

3. Define an I-by-J matrix M ′, such that for each integer 0 ≤ i < I:

(a) Let the i-th row of M ′ be

{
bi + bi+(w/2) ≫ (w/2) if (i mod w) < w/2

bi + bi−(w/2) ≪ (w/2) if (i mod w) ≥ w/2
,

where ≫ (w/2) (resp. ≪) denote the operation of shifting a string to the right (resp.
left) by w/2 bits.

4. Output M ′.

We execute Transpose(M,d) and obtain M ′ =
[
M⊤

1 M⊤
2 . . . M⊤

t/d

]
. In principle, to

obtain h(x)⊤, we just concatenate d · (t/d) rows of all M⊤
i . However, when t ≫ d, this takes longer

than O(d log log n) time. We instead use another recursive subroutine Concatenate(M ′, d). An
example of the Concatenate algorithm is given in Figure 3.

The correctness of the Concatenate algorithm can again be observed by inducting on the
logarithm of w. Line 2a and 3a can be done using O((J/w) · ⌈w/ log n⌉) operations on words, and

9

Figure 3: A pictorial example that shows the behavior of Line 2a and 3a of the Concatenate

algorithm on a 4-by-4w matrix.

Concatenate

Input: An I-by-J bit matrix M where I ≤ J are powers of 2. An integer w that is a power of
2 and I ≤ w ≤ J .
Output: An IJ-bit string B such that if it is partitioned into w-bit blocks, then the u-th
block (zero-indexed from left to right) are bits on the (u mod I)-th row of M from column
w · ⌊u/I⌋ to w · ⌊u/I⌋+ w.

1. If w = I then output B = M .

2. For each integer i such that 0 ≤ i < I:

(a) Partition the i-th row of M into w-bit blocks, denoted as

J︷ ︸︸ ︷
[bi,1︸︷︷︸

w

| bi,2 | . . . | bi,J/w].

Compute a 2J-bit string bi = [bi,1 | 0w | bi,2 | 0w | . . . | bi,J/w | 0w], where 0w is a
w-bit all-zero string.

3. Define an I/2-by-2J matrix M ′, such that for each integer 0 ≤ i < I/2:

(a) Let the i-th row of M ′ be b2i + b2i+1 ≫ w, where ≫ w is the operation of shifting a
string to the right by w bits.

4. Output Concatenate(M ′, 2w).

both lines are repeated for I times in each recursive call. Therefore, the total runtime is

O(

log(d)∑
s=1

2s · 2
log(d)−st

2log(d)−sd
· ⌈2

log(d)−sd

log n
⌉) = O(

log(d)∑
s=1

2s ·max (
t

d
,
t

d
· 2

log(d)−sd

log n
))

= O(log d ·max(t,
td

log n
))

= O(d log log n)

Theorem 3.9. The QuadTree algorithm runs in O(nd log log n) time.

10

Proof. Computing h(x) for all x takes O(nd) time. Then computing h(x)⊤ takes O(nd log log n)
time. After that, sorting O(n)-many O(d log n)-bit strings can be done in O(nd) time using radix
sort. Finally, to find p ∈ P with the longest common prefix for every q ∈ Q, we go through the
sorted list and link each q ∈ Q with adjacent p ∈ P , which takes O(n) total time. The above time
bounds also hold for h′(x)’s, resulting in O(nd log log n) time in total.

4 Tournament

In this section, we compute the 2-approximation of the nearest neighbor distances for logarithmically
many queries. We do so using a depth-2 tournament: we first partition input points into random
groups, project them to a lower dimensional space, and collect the nearest neighbor in the projected
space in every group as a set S̃. Then the final output of the tournament is the nearest neighbor
among points in S̃ in the original space. Intuitively, because each random group is small, the true
nearest neighbor could only lose to another near neighbor in the first step. Then in the second step,
S̃ should contain at least one near neighbor.

Notation: We use the same notation D := min (d, 3 log n) as in the previous section. For any finite
subset T ⊂ R, let medT ∈ R denote the median of T .

When working under the ℓ1 norm, we use Cauchy random variables to project points. We first
recall a standard bound on the median of projections, which will be useful for our analysis. (The
following lemma essentially follows from Claim 2 and Lemma 2 in [Ind06]; we reprove it in the
appendix for completeness.)

Lemma 4.1. Let x, y ∈ Rd and 0 < c < 1/2. Sample r random vectors v1, v2, · · · , vr ∼
(Cauchy(0, 1))d. With probability at least 1− 2e−rc2/50, med{|vi · (x− y)| : i ∈ [r]} ∈ (1± c)∥x− y∥1.

In Figure 4, we describe how to construct a data structure to find 2-approximate nearest
neighbors. The construction borrows ideas from the second algorithm of [Kle97], but using a
tournament of depth 2 instead of O(log n).

Correctness:
We fix a query q := qi.

Lemma 4.2. With probability at least 1− 1
10t , Di ≤ 2optq.

We let S denote the set of all 2-approximate nearest neighbors to q, i.e., S := {p ∈ P : ∥q−p∥1 ≤
2optq}, and let p∗ ∈ P denote a nearest neighbor of q, i.e. ∥q − p∗∥1 = optq. To prove Lemma 4.2,
we first make the following observation:

Lemma 4.3. Let P ′ be an arbitrary subset of P \S. The probability that there exists p ∈ P ′ such that
medp ≤ medp∗ , where medp := med{|vj · (q− p)| : j ∈ [r]} and medp∗ := med{|vj · (q− p∗)| : j ∈ [r]},
is at most 2(|P ′|+1)

t2 logn
.

Proof. From P ′ ⊆ (P \ S) we know that ∥q − p∥1 > 2∥q − p∗∥1 for any p ∈ P ′. Therefore, if
medp ≤ medp∗ then either medp ̸= (1± 1

4)∥q − p∥1 or medp∗ ̸= (1± 1
4)∥q − p∗∥1. Applying Lemma

11

Tournament

Input: A set of t queries {qi}i∈[t] and a set of n points P , which are both subsets of a metric

space (Rd, ∥ · ∥1).
Output: A set of t values {Di}i∈[t], such that every Di ∈ R satisfies Di ≥ optPqi .

Building the Data Structure.

1. Let r ≥ 800(2 log t+ log log n).

2. For each j ∈ [r], draw vj ∼ (Cauchy(0, 1))d, compute vj · p for all points p ∈ P , and store
all vj and vj · p.

3. Randomly partition P into n/ log n subsets P1, P2, · · · , Pn/ logn, each of size log n.

Processing the Queries. For each query q := qi for i ∈ [t]:

1. Compute vj · q for all j ∈ [r].

2. Let S̃ be an empty set. For each k ∈ [n/ log n]:

• Compute medp := med{|vj · (q − p)| : j ∈ [r]} for every p ∈ Pk.

• Find p := argminp∈Pk
{medp} and add it into S̃.

3. Output Di := minp∈S̃∥q − p∥1 by computing and comparing all exact distances ∥q − p∥1
for p ∈ S̃.

Figure 4: The Tournament Algorithm.

4.1 with c = 1
4 and r ≥ 800(2 log t+ log log n) and a union bound, we get that

Pr
[
∃p ∈ P ′ : medp ≤ medp∗

]
≤ Pr

[
∃p ∈ P ′ : medp ̸= (1± 1

4
)∥q − p∥1

]
+

Pr
[
medp∗ ̸= (1± 1

4
)∥q − p∗∥1

]
≤ (|P ′|+ 1) · 2e−(2 log t+log log n)

=
2(|P ′|+ 1)

t2 log n
.

In Line 3 of the data structure building procedure, the point p∗ is assigned to one of the subsets
P ∗ ∈ {P1, P2, · · · , Pn/ logn}. Focusing on this subset P ∗, we can show that with high probability,

either p∗ is added into S̃, or p∗ loses to another 2-approximate nearest neighbor. In both cases, the
data structure is guaranteed to output an 2-approximation.

12

Proof (of Lemma 4.2). P ∗ \ S contains at most |P ∗| = log n points. Applying Lemma 4.3, we get
medp∗ ≥ medp simultaneously for all p ∈ P ∗ \ S with probability at least 1 − 2 logn

t2 logn
≥ 1− 1

10t (as

long as t ≥ 20). Conditioned on this, argminp∈P ∗{medp} must be either p∗ or some other element

of S. Thus on line 3 of the algorithm, S̃ contains at least one element of S, so the final output
minp∈S̃ ∥q − p∥1 ≤ 2optq.

Applying a union bound on Lemma 4.2, we get the correctness guarantee:

Theorem 4.4. Given t queries {qi}i∈[t], with probability at least 9/10, the Tournament algorithm
outputs 2-approximate nearest neighbors simulataneously for all t queries.

Finally, we state the runtime guarantee as follows:

Theorem 4.5. The Tournament algorithm runs in O(n(d + t)(log t + log log n) + dt2 log t log n)
time.

Proof. For preprocessing, the algorithm projects all points in P using r projections, which takes
O(n · d · r) time. To process a query q, we first take O(dr) time to project q. We then count the
number of comparisons we make to find the minimums of medians, which is O((n/ log n) log n · r)
using a linear-time median selection algorithm [BFP+73]. Each comparison can be done in O(1)
time given that vj · p and vj · q for all j ∈ [r] and p ∈ P are stored. Finally, we use O(d log n) time
to do a linear scan over S̃.

We plug in r = O(log t+log log n). For t queries, the total runtime is O(n(d+t)(log t+log log n)+
dt log n).

For our purpose of estimating the Chamfer distance, we will apply the Tournament algorithm with
a number of queries t = Θ(D/ε2) for D = min (d, 3 log n) and some ε > 0 satisfying ε−2 = O(n

logn).
Under this setting, the runtime is dominated by the first additive term of Theorem 4.5, which is at
most O(nd(log log n+ log 1

ε)/ε
2).

5 Rejection Sampling

Notation: All occurrences of opt in this section are with respect to the set B. Let ε > 0 be
our target approximation factor. We call the distribution P an f -Chamfer distribution for some
f = f(n, d, ε), if it is supported on A and for every a ∈ A,

f
opta

CH(A,B)
≤ P(a),where we denote P(a) := Pr

x∼P

[
x = a

]
.

We first show a general bound for estimating the Chamfer distance using samples from a Chamfer
distribution. This follows from a standard analysis of importance sampling.

Lemma 5.1. Let X := {xi}i∈[t] be a set of t samples drawn from a f -chamfer distribution P. Fix
h = h(n, d, ε) ≥ 1. Given an arbitrarily ˜optxi

for every xi that satisfies optxi
≤ ˜optxi

≤ h · optxi
,

then for any 0 < κ < 1,

Pr
[
C̃H(A,B) ≤ (1− κ)CH(A,B)

]
+Pr

[
C̃H(A,B) ≥ (1 + κ) · h · CH(A,B)

]
≤

h2

f − 1

t · κ2
,

13

where C̃H(A,B) :=
∑

i∈[t]
˜optxi/P(xi)

t .

Proof. For the purpose of analysis, assume that we additionally have arbitrary ˜opta for a ∈ (A \X)
that also satisfies opta ≤ ˜opta ≤ h · opta. By linearity,

E[C̃H(A,B)] =

∑
i∈[t]E[˜optxi

/P(xi)]

t
=

∑
a∈A

P(a) ·
˜opta

P(a)
∈ [CH(A,B), h · CH(A,B)].

We also bound the variance

Var[C̃H(A,B)] ≤
E[˜opt

2
x1
/P(x1)

2]

t
− CH(A,B)2

≤ 1

t
(
∑
a∈A

˜opt
2
a

P(a)
− CH(A,B)2)

≤ 1

t
(
h

f
CH(A,B) ·

∑
a∈A

˜opta − CH(A,B)2)

≤ 1

t
· CH(A,B)2 · (h

2

f
− 1)

where the third inequality follows from 1
P(a) ≤

CH(A,B)
f ·opta

and ˜opta ≤ h · opta. Finally, by Chebyshev’s
Inequality, we have

Pr
[∣∣∣C̃H(A,B)−E[C̃H(A,B)]

∣∣∣ ≥ κ · CH(A,B)
]
≤ 1

t
·
h2

f − 1

κ2
.

In this section, we aim to construct a set of samples S = {sj}j∈[s] for some large enough s, such
that each sj is drawn from a fixed O(1)-Chamfer distribution. Once we have S, we can compute a
weighted sum of the nearest neighbor distances for sj ∈ S, and invoke Lemma 5.1 to show that it is
likely an (1 + ε)-estimation of CH(A,B).

We will construct such S via a two-step sampling procedure: in the first step, we sample Θ(D/ε2)
points from A using a distribution defined by the estimations from the QuadTree algorithm. In the
second step, we subsample these Θ(D/ε2) points, using an acceptance probability defined by the
estimations from the Tournament algorithm. We describe our Chamfer-Estimate algorithm in
Figure 5.

The Chamfer-Estimate algorithm applies the QuadTree algorithm and the Tournament algo-
rithm as subroutines. If they are executed successfully, their outputs should satisfy the following
conditions:

Condition 5.2. We say the QuadTree algorithm succeeds if for every a ∈ A, E[Da] ≤ 5D · opta.

Condition 5.3. We say the Tournament algorithm succeeds if for every xi for i ∈ [q], D′
xi

≤ 2optxi
.

That is, as described in the introduction, we need QuadTree to provide O(log n)-approximation
(to ensure that the sample size q can be at most logarithmic in n), and that Tournament provide
O(1)-approximation (to ensure that the final estimator using s samples has variance bounded by a
constant).

We state some facts about the Chamfer-Estimate algorithm, which will be useful for our
analysis.

14

Chamfer-Estimate

Input: Two subsets A,B of a metric space (Rd, ∥ · ∥1) of size n, a parameter ε > 0, and a
parameter q ∈ N.
Output: An estimated value C̃H(A,B) ∈ R.

1. Execute the algorithm QuadTree(A,B), and let the output be a set of values {Da}a∈A
which always satisfy Da ≥ opta. Let D :=

∑
a∈ADa.

2. Construct a probability distribution P supported on A such that for every a ∈ A,
P(a) = Da

D . For i ∈ [q], sample xi ∼ P .

3. Execute the algorithm Tournament({xi}i∈[q], B), and let the output be a set of values

{D′
xi
}i∈[q] which always satisfy D′

xi
≥ optxi

. Let D′ :=
∑

i∈[q]
D′

xi
P(xi)

/q and denote

P ′(a) := D′
a

D′ (which is well-defined only if a = xi for some i ∈ [q]).

4. Define

M := max
i∈[q]

P ′(xi)

P(xi)
.

For each i ∈ [q], mark xi as accepted with probability P ′(xi)
M ·P(xi)

.

If the number of accepted xi is less than s = 10/ε2 then output Fail and exit the
algorithm. Otherwise, collect the first s accepted xi as a set S := {sj}j∈[s].

5. Compute optsj for each j. Output

C̃H(A,B) :=
∑
j∈[s]

optsj
P ′(sj)

/s.

Figure 5: The Chamfer-Estimate Algorithm.

Claim 5.4 (Line 2). Under Condition 5.2, with probability at least 9/10, P is a (1/50D)-Chamfer
Distribution.

Proof. With probability at least 9/10, D ≤ 50D · CH(A,B) by Markov’s Inequality. Upon this
condition, for any a ∈ A, opta

50D·CH(A,B) ≤
Da
D .

Claim 5.5 (Line 3). Let q ≥ 104D. Under Condition 5.2 and 5.3, with probability at least 4/5,
D′ ≥ CH(A,B)/2.

Proof. We apply the importance sampling analysis in Lemma 5.1. We assume that Claim 5.4 holds
and optxi

≤ D′
xi

≤ 2optxi
, then

Pr
[
D′ ≤ (1− 1

2
)CH(A,B)

]
≤ 22 · 50D − 1

q · (12)2
<

1

10
.

15

Analysis of S: We now show that the set S on Line 4 collects enough samples (thus the
algorithm does not fail) and is equivalent to sampling from a O(1)-Chamfer distribution Q. We
note that the algorithm, in fact, only knows a (1/50D)-Chamfer distribution P and probabilities
P ′(xi) for {xi}i∈[q], so it cannot explicitly sample from such Q. Nevertheless, by a standard analysis
of rejection sampling, we show that S “simulates” sampling from Q.

Lemma 5.6. Let q ≥ 104D/ε2. Under Condition 5.2 and 5.3, with probability at least 3/5, the
number of accepted xi is at least s, so the algorithm does not fail.

Proof. We assume that Claim 5.4 and 5.5 hold. Then for any xi,
1

P(xi)
≤ 50D·CH(A,B)

optxi
and P ′(xi) =

D′
a

D′ ≤ 2optxi
CH(A,B)/2 . Thus M ≤ 200D. The expectation is

E[|{accepted xi}|] =
∑
i∈[q]

P ′(xi)

MP(xi)
≥ 1

200D

∑
i∈[q]

D′
xi

P(xi)
· 1

D′ =
1

200D
· qD′ · 1

D′ =
q

200D

where the second to last equality is due to the definition of D′ :=
∑

i∈[q]
D′

xi
P(xi)

/q. The final bound
holds by Markov’s Inequality and our setting of q.

Lemma 5.7. Each sj is independently and identically distributed, and under Condition 5.3,
Pr

[
sj = a

]
≥ opta

2CH(A,B) for any a ∈ A.

Proof. The independence and identicality follows directly from our sampling procedure. For the
probability statement, we assume (without loss of generality) that during rejection sampling on
Line 4, a sample xi is accepted and renamed as sj . Then for any a ∈ A,

Pr
[
sj = a

]
= Pr

[
xi = a | xi accepted

]
=

P(a) ·Pr
[
xi accepted | xi = a

]
Pr

[
xi accepted

]
=

P(a) ·Pr
[
xi accepted | xi = a

]∑
a0∈A P(a0) ·Pr

[
xi accepted | xi = a0

]
=

P(a) · P ′(a)
MP(a)∑

a0∈A P(a0) · P ′(a0)
MP(a0)

In the final equality, because we conditioned on xi = a (resp. xi = a0) on the LHS, we know that

on the RHS, P ′(a) = D′(a)
D′ is well-defined and satisfy opta ≤ D′(a) ≤ 2opta (resp. opta0 ≤ D′(a0) ≤

2opta0), given Condition 5.3. Therefore, we have

Pr
[
sj = a

]
=

P ′(a)∑
a0∈A P ′(a0)

=
D′(a)∑

a0∈AD′(a0)
≥ opta

2CH(A,B)
.

Lemma 5.6 and 5.7 together say that S can be viewed as a set of s samples from a 1
2 -Chamfer

Distribution, thus we can invoke another importance sampling analysis. In the final step of the
algorithm, we compute the exact nearest neighbor distance for all sj and then compute a weighted
sum over them. With high probability, this gives an (1 ± ε)-estimation of CH(A,B).

16

Theorem 5.8. Under Condition 5.2 and 5.3, Chamfer-Estimate(A,B, ε, q ≥ 104D/ε2) outputs
C̃H(A,B) that satisfies (1− ε)CH(A,B) ≤ C̃H(A,B) ≤ (1+ ε)CH(A,B) with probability at least 1/2.

Proof. In the success case of Lemma 5.6, we can apply Lemma 5.1 with f = 1/2, h = 1, t = s, and
κ = ε. Then

Pr
[∣∣∣C̃H(A,B)− CH(A,B)

∣∣∣ ≥ ε · CH(A,B)
]
≤ 1

s · ε2
.

Theorem 5.9. Chamfer-Estimate(A,B, ε, q = 104D/ε2) runs in time O(nd(log log n+log 1
ε)/ε

2)).

Proof. This is dominated by the runtime of QuadTree, Tournament, and the time of computing
optsj on Line 5. QuadTree(A,B) runs in O(nd log log n) time and Tournament ({xi}i∈[q], B) runs

in O(nd(log log n+ log 1
ε)/ε

2) time. Finally, the brute-force search for optsj for j ∈ [10/ε2] takes

O(nd/ε2) time.

Acknowledgements

Ying Feng was supported by an MIT Akamai Presidential Fellowship. Piotr Indyk was supported
in part by the NSF TRIPODS program (award DMS-2022448).The authors would like to thank
Anders Aamand for helpful comments that helped simplify the algorithm in Section 4.

References

[AHNR95] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear
time? In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, STOC ’95, pages 427–436, New York, NY, USA, 1995. Association for
Computing Machinery.

[AM19] Kubilay Atasu and Thomas Mittelholzer. Linear-complexity data-parallel earth mover’s
distance approximations. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 364–373. PMLR, 09–15 Jun 2019.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approxi-
mate near neighbors. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 793–801, 2015.

[AS03] Vassilis Athitsos and Stan Sclaroff. Estimating 3d hand pose from a cluttered image. In
2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2003. Proceedings., volume 2, pages II–432. IEEE, 2003.

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, August 1973.

[BIJ+23] Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, and Erik Waingarten. A
near-linear time algorithm for the chamfer distance, 2023.

17

[Cha08] Timothy M. Chan. Well-separated pair decomposition in linear time? Information
Processing Letters, 107(5):138–141, 2008.

[FSG17] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d
object reconstruction from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 605–613, 2017.

[HP11] Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathe-
matical Soc., 2011.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[JSQJ18] Li Jiang, Shaoshuai Shi, Xiaojuan Qi, and Jiaya Jia. Gal: Geometric adversarial loss
for single-view 3d-object reconstruction. In Proceedings of the European conference on
computer vision (ECCV), pages 802–816, 2018.

[Kle97] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 599–608, New York, NY, USA, 1997. Association for Computing
Machinery.

[KSKW15] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings
to document distances. In International conference on machine learning, pages 957–966.
PMLR, 2015.

[KZ20] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via
contextualized late interaction over bert. In Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, pages 39–48,
2020.

[pda23] Pdal: Chamfer. https://pdal.io/en/2.4.3/apps/chamfer.html, 2023. Accessed:
2023-05-12.

[pyt23] Pytorch3d: Loss functions. https://pytorch3d.readthedocs.io/en/latest/

modules/loss.html, 2023. Accessed: 2023-05-12.

[SMFW04] Erik B Sudderth, Michael I Mandel, William T Freeman, and Alan S Willsky. Visual
hand tracking using nonparametric belief propagation. In 2004 Conference on Computer
Vision and Pattern Recognition Workshop, pages 189–189. IEEE, 2004.

[ten23] Tensorflow graphics: Chamfer distance. https://www.tensorflow.org/graphics/

api_docs/python/tfg/nn/loss/chamfer_distance/evaluate, 2023. Accessed: 2023-
05-12.

[WCL+19] Ziyu Wan, Dongdong Chen, Yan Li, Xingguang Yan, Junge Zhang, Yizhou Yu, and
Jing Liao. Transductive zero-shot learning with visual structure constraint. Advances
in neural information processing systems, 32, 2019.

18

A Reducing the Bit Precision of Inputs.

In our algorithm, we assumed that all points in input sets A,B are integers in {1, 2, · · · , poly(n)}d.
Here, we show that this is without loss of generality, as long as all coordinates of the original input
are w-bit integers for arbitrary w ≥ log n in a unit-cost RAM with a word length of w bits.

Section A.3 of [BIJ+23] gives an efficient reduction from real inputs to the case that

1 ≤ min
a∈A,b∈B

∥a− b∥1 ≤ max
a∈A,b∈B

∥a− b∥1 ≤ poly(n),

i.e., the input has a poly(n)-bounded aspect ratio. Their reduction can be adapted to our case as
follows:

Claim A.1 (Lemma A.3 of [BIJ+23]). Given an est such that CH(A,B) ≤ est ≤ poly(n) ·CH(A,B),
if there exists an algorithm that computes an (1 + ε)-approximation to CH(A,B) in O(nd(log log n+
log 1

ε)/ε
2)) time under the assumption that A,B contain points from {1 . . . poly(n)}d, then there

exists an algorithm that computes an (1 + ε)-approximation to CH(A,B) for any integer-coordinate
A,B in asymptotically same time.

It remains to show how to obtain a poly(n)-approximation.

Lemma A.2. There exists an O(nd+ n log log n)-time algorithm that computes est which satisfies
CH(A,B) ≤ est ≤ poly(n) · CH(A,B) with 1− 1

n probability.

Proof. Similar to (the proof of Lemma A.3 in) [BIJ+23], we sample a vector v ∼ Cauchy(0, 1), which
can be discretized to O(log n)-bit precision following [Ind06]. We then compute the inner products
{v ·a}a∈A and {v · b}b∈B . The distribution of v ·a−v · b follows Cauchy(0, ∥a− b∥1) by the 1-stability
property of Cauchy’s. So we have that for every a ∈ A and b ∈ B,

∥a− b∥1
poly(n)

≤ |v · a− v · b| ≤ ∥a− b∥1 · poly(n),

with probability 1−1/poly(n). Therefore, est := CH({v ·a}a∈A, {v ·b}b∈B) is a poly(n)-approximation
to CH(A,B). We may assume by scaling that {v · a}a∈A, {v · b}b∈B contain w-bit integers, which
can be sorted in O(n log log n) time [AHNR95]. Then to compute est, we find all one-dimensional
nearest neighbors by going through the sorted list and link each a′ ∈ {v · a}a∈A with adjacent
b′ ∈ {v · b}b∈B , which takes O(n) time. Thus the total runtime is O(nd+n log log n) as claimed.

B Proof of Lemma 4.1

Proof. We use the fact that for v ∼ (Cauchy(0, 1))d and any x ∈ Rd, (v · x) ∼ Cauchy(0, ∥x∥1). Also,
for any k > 0, if a random variable z ∼ Cauchy(0, 1) then kz ∼ Cauchy(0, k). Therefore, for any
vi : i ∈ [r], Pr

[
|vi · (x− y)| > (1 + c)∥x− y∥1

]
= Pr

[
U > 1 + c

]
where U ∼ HalfCauchy(0, 1). The

density of U is fU (u) =
2
π · 1

1+u2 , thus Pr
[
U > 1

]
= 1/2 and

Pr
[
U > 1 + c

]
=

1

2
−
∫ 1+c

1
fU (u)du

≤ 1

2
− c · fU (3/2) for 0 < c < 1/2

<
1

2
− c/10

19

Similarly, we can get Pr
[
|vi · (x − y)| < (1 − c)∥x − y∥1

]
< 1

2 − c/10. For i ∈ [r], let Ii be
an indicator variable that equals 1 if |vi · (x − y)| < (1 − c)∥x − y∥1 and equals 0 otherwise. By
Hoeffding’s bound,

Pr
[∑
i∈[r]

Ii ≥
r

2

]
< e−2rc2/100,

which upper bounds the failure probability that the median is too small. We symmetrically
bound the probability that the median is too large. Then

Pr
[
med{|vi · (x− y)| : i ∈ [r]} ∈ (1± c)∥x− y∥1

]
≥ 1− 2e−rc2/50.

20

	Introduction
	Our techniques

	Preliminaries
	Quadtree
	Tournament
	Rejection Sampling
	Reducing the Bit Precision of Inputs.
	Proof of Lemma 4.1

