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Abstract

For two d-dimensional point sets A, B of size up to n, the Chamfer distance from A to B is
defined as CH(A, B) = ), ., minyep |la — b|. The Chamfer distance is a widely used measure
for quantifying dissimilarity between sets of points, used in many machine learning and computer
vision applications. A recent work of Bakshi et al, NeuriPS’23, gave the first near-linear time
(1+ ¢)-approximate algorithm, with a running time of O(ndlog(n)/e?). In this paper we improve
the running time further, to O(nd(loglogn + log 1)/e?). When ¢ is a constant, this reduces the
gap between the upper bound and the trivial (dn) lower bound significantly, from O(logn) to
O(loglogn).
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1 Introduction

For any two d-dimensional point sets A, B of sizes up to n, the Chamfer distance from A to B is
defined as
CH(AB) = 3 piglla

where || - || is the underlying norm defining the distance between the points. Chamfer distance
and its variant, the Relaxed Earth Mover Distance [KSKW15, AM19], are widely used metrics
for quantifying the distance between two sets of points. These measures are especially popular
in fields such as machine learning (e.g.,[KSKW15, WCL"19]) and computer vision (e.g.,[AS03,
SMFWO04, FSG17, JSQJ18]). A closely related notion of “the sum of maximum similarities”,
where minyep ||a — b|| is replaced by maxpep a - b, has been recently popularized by the ColBERT
system [KZ20]. Efficient subroutines for computing Chamfer distances are provided in prominent
libraries including Pytorch [pyt23], PDAL [pda23] and Tensorflow [ten23]. In many applications (e.g.,
see [KSKW15]), Chamfer distance is favored as a faster alternative to the more computationally
intensive Earth-Mover Distance or Wasserstein Distance.

Despite the popularity of Chamfer distance, efficient algorithms for computing it haven’t attracted
as much attention as algorithms for, say, the Earth-Mover Distance. The first improvement to the
naive O(dn?)-time algorithm was obtained in [SMEFWO04], who utilized the fact that CH(A, B) can
be computed by performing |A| nearest neighbor queries in a data structure storing B. However,
even when the state of the art approximate nearest neighbor algorithms are used, this leads to an

1
(1 + €)-approximate estimator with only slightly sub-quadratic running time of O (dn1+2<1+6)21>

in high dimensions [AR15]'. The first near-linear-time algorithm for any dimension was proposed
only recently in [BIJ"23], who gave a (1 + €)-approximation algorithm with a running time of
O(dnlog(n)/e?), for £; and f» norms. Since any algorithm for approximating the distance must
run in at least Q(dn) time”, the the upper and lower running time bounds differed by a factor of
log(n) /2.

Our result: In this paper we make a substantial progress towards reducing the gap between the
upper and lower bounds for this problem. In particular, we show the following theorem. Assume
a Word RAM model where both the input coordinates and the memory/processor word size is
O(logn) bits.® Then:

Theorem 1.1. There is an algorithm that, given two sets A, B of d-dimensional points with
coordinates in {1...poly(n)} and a parameter € > 0, computes a (1 + €)-approzimation to the
Chamfer distance from A to B under the {1 metric, in time

O(nd(loglogn + log é)/eQ))

The algorithm is randomized and is correct with a constant probability.

Thus, we reduce the gap between upper and lower bounds from O(log(n)/?) to
O(loglogn + log 1) /<?).

LAll algorithms considered in this paper are randomized, and return (1 + ¢)-approximate answers with a constant
probability

2The Chamfer Distance could be dominated by the distance from a single point a € A to B.

3In the Appendix, we adopt the reduction of [BIJT23] to extend the result to coordinates of arbitrary finite
precision.



1.1 Our techniques

Our result is obtained by identifying and overcoming the bottlenecks in the previous algorithm
[BIJ"23]. On a high level, that algorithm consists of two steps, described below. For the sake of
exposition, in what follows we assume that the target approximation factor 1 + ¢ is some constant.

Outline of the prior algorithm: In the first step, for each point a € A, the algorithm computes
an estimate D, of the distance opt, from a to its nearest neighbor in B. The estimate is O(logn)-
approximate, meaning that we opt, < D, < O(logn)opt,. This is achieved as follows. First,
the algorithm imposes O(logn) grids of sidelength 1,2,4,..., and maps each point in B to the
corresponding cells. Then, for each a, it identifies the finest grid cell containing both a and some
point b € B. Finally, it uses the distance between a and b as an estimate D,. To ensure that this
process yields an O(logn)-approximation, each grid needs to be independently shifted at random.
We emphasize that this independence between the shifts of different grids is crucial to ensure the
O(log n)-approximation guarantee - the more natural approach of using “nested grids” does not
work. The whole process takes O(nd) time per grid, or O(ndlogn) time overall.

In the second step, the algorithm estimates the Chamfer distance via importance sampling.
Specifically, the algorithm samples T points from A, such that the probability of sampling a is
proportional to the estimate D,. For each sampled point a, the distance opt, from a to its nearest
neighbor in B is computed directly in O(nd) time. The final estimate of the Chamfer distance is
equal to the weighted average the 1" values opt, . It can be shown that if the number of samples T’
is equal to the distortion O(logn) of the estimates D,, this yields a constant factor approximation
to the Chamfer distance from A to B. The overall cost of the second step is O(T'nd) = O(ndlogn),
i.e., asymptotically the same as the cost of the first step.

Intuitions behind the new algorithm: To improve the running time, we need to reduce the
cost of each of the two steps. In what follows we outline the obstacles to this task and how they can
be overcome.

Step 1: The main difficulty in reducing the cost of the first step is that, for each grid, the
point-to-cell assignment takes O(nd) time to compute, so computing these 7" assignments separately
for each grid takes O(ndT") time. And, since each grid is independently translated by a different
random vector, the grids are not nested, i.e., a (smaller) cell of side length 2¢ might contain points
from many (larger) cells of side length 2¢*1. As a result, is unclear how to reuse the point-to-cell
assignment in one grid to speedup the assignment in another grid, while computing them separately
takes O(ndT’) time.

To overcome this difficulty, we abandon independent shifts and resort to O(logn) nested grids.
Such grids can be viewed as forming a quadtree with O(logn) levels, where any cell C' at level
i+ 1 (i.e., of side length 27*1) is connected to 2 cells at level i contained in C. (Note that
the root node of the quadtree has the highest level O(logn)). Although using a single quadtree
increases the approximation error, we show that using two independently shifted quadtrees retains
the O(logn) approximation factor. That is, we repeat the process of finding the finest grid cell
containing both a and some point from B twice, and return the point in B that is closer to a. This
amplifies the probability of finding a point from B that is “close” to a, which translates into a better
approximation factor compared to using a single quadtree.

We still need show that the point-to-cell assignments can be computed efficiently. To this end,



we observe that for each point a, its assignment to all O(logn) nested grids can be encoded as d
words of length O(logn), or a d x O(logn) bit matrix M. Each row corresponds to one of the d
coordinates, and the most significant bit of a row indicates the assignment to cells at the highest
level (i.e. cells with the largest side length) with respect to that coordinate. In other words, the
most significant bits of all coordinates are packed into the first column, etc. We observe that two
points a and b lie in the same cell of side length 27 if and only if their matrices agree in all but
the last ¢ columns. If we transpose M and read the resulting matrix in the row-major order, then
finding a point b € B in the finest grid cell containing a is equivalent to finding b that shares the
longest common prefix with a. We show that this transposition can be done using O(logn - loglogn)
simple operations on words, yielding O(nlogn - loglogn) = O(nd - loglogn) time overall.

As an aside, we note that quadtree computation is a common task in many geometric algo-
rithms [HP11]. Although an O(n) algorithm for this task was known for constant dimension d
[Cha08]*, to the best of our knowledge our algorithm is the first to achieve O(nd - loglogn) time for
arbitrary dimension.

Step 2: At this point we computed estimates D, such that opt, < D, < O(logn)opt,. Given these
estimates, importance sampling still requires sampling Q(logn) points. Therefore, we improve the
running time by approzimating (up to a constant factor) the values opt,, as opposed to computing
them exactly. This is achieved by computing O(loglogn) random projections of the input points,
which ensures that that the distance between any fixed pair of points is well-approximated with
probability 1 — 1/poly(logn). We then employ these projections in a variant of the tournament
algorithm of [Kle97] which computes O(1)-approximate estimates of opt, for O(logn) sampled
points a in O(ndloglogn) time. Since the algorithm of [Kle97] works for the 3 metric as opposed
to the ¢ metric, we replace Gaussian random projections with Cauchy random projections, and
re-analyze the algorithm.

This completes the overview of an O(ndloglogn)-time algorithm for estimate the Chamfer
distance up to a constant factor. To achieve a (1 + ¢)-approximation guarantee for any € > 0, we
proceed as follows. First, instead of sampling O(logn) points as before, we sample O(log(n)/c?)
points a. Then, we use the tournament algorithm to compute O(1)-approximations to opt,, as
before. > Then we use a technique called rejection sampling to simulate the process of sampling
O(1/¢?%) points a with probability proportional to ©(opt,). For each such point, we compute opt,
exactly in O(nd) time. Finally, we use the O(1/e%) sampled points a and the exact values of opt,
in importance sampling to estimate the Chamfer distance up to a factor of 1 + €.

This concludes the overview of our algorithm for the Chamfer distance under the ¢; metric. We
remark that [BIJ"23] also extends their result from the ¢; metric to the ¢5 metric by first embedding
points from ¢35 to ¢; using random projections. This takes O(nd - logn) time, which exceeds the
runtime of our algorithm, eliminating our improvement. However, a faster embedding method would
yield an improved runtime for the Chamfer distance under the /5 metric. We leave finding a faster
embedding algorithm as an open problem.

4 Assuming that each coordinate can be represented using logn bits.

®Note that we could use the tournament algorithm to report (1 + ¢)-approximate answers, but then the dependence
of the running time on 1/e would become quartic, as the 1/52 term in the sample size would be multiplied by another
1/€% term in the bound for the number of projections needed to guarantee that the tournament algorithm returns
(1 + €)-approximate answers.



2 Preliminaries

In this paper, we consider the regime where the approximation factor € > lof’; " Note that

otherwise, an O(nd/e?) time bound would be close to the runtime of a naive exact computation.

In the proof of Theorem 1.1, we assume a Word RAM model where both the input coordinates
and the memory/processor word size is O(logn) bits. This model is particularly important in
procedures Concatenate and Transpose, where we rely on the fact that we can shift bits and
perform bit-wise AND, ADD and OR operations in constant time.

Notation: For any integers a > 1, we use [n] to denote the set of all integers from 1 to n. For any
two real numbers a, b such that a < b, we use [a, b] to denote the set of all reals from a to b. Let d
be the dimension of points.

For any ¢ € R?, define optéD := minpepl||lqg — plj1 for some subset P of R?. We will omit the
superscript P when it is clear in the context.

3 Quadtree

In Figure 1, we show an algorithm QuadTree that outputs crude estimations of the nearest distances
simulatenously for a set of points. The estimation guarantee is the same as the CrudeNN algorithm
in [BIJ723]. While [BIJ"23] achieves this using a quadtree with logn independent levels, which
naturally introduce a log n runtime overhead, we show that two compressed quadtrees with dependent
levels suffice. Our construction of compressed quadtrees is a generalization of [Cha08] to high
dimensions.

Correctness: For any = € [0,a]% and any integer k such that 0 < k < t, let hp(z) =

([EF2], [222, --- (xd;fﬂ), where z is the random point drawn on Line 1 in Figure 1. Observe

that hy(x) is related to the prefix of h(z)T.

Claim 3.1. Let ¢,p € [0,0]? be arbitrary. For any integer k such that 0 < k < t, hy(q) = hi(p) if
and only if h(q)" and h(p)" share a common prefix of length at least d(t — k).

Proof. If h(q)" and h(p)" share a common prefix of length at least d(t — k), then in hashes h(q)
and h(p), the first (t — k) bits of all d coordinates are the same. hi(q) and hx(p) compute exactly
these bits, thus hi(q) = hx(p). The reverse direction holds symmetrically. O

Claim 3.1 justifies using hy(-)’s as an alternative representation of the binary string h(:)"
[BIJT23] shows that hy has a locality-sensitive property, which will help us bound the distance
between points.

Claim 3.2 (Lemma A.4 of [BIJ"23]). For any fized integer k such that 0 < k <t and any two
points q,p € [0, ],

Pr[hi(q) # hi(p)] < Hq;ka17

Pr[hi(q) = hi(p)] < exp (—Hq;kal)7

where the probabilities are over the random choice of z.



QuadTree

Input: Two size-n subsets @ := {q; }ic|n] and P := {p;};c[y) of a metric space (R, ||]l1), such
that Q, P C [0,a]? for some bound a = poly(n).
Output: A set of n values {D;};c[,], such that every D; € R satisfies D; > optl.

1. Let ¢t = [log(a)] + 1. Sample two uniformly random points z, 2’ ~ [0,2¢71]¢. For any
point x € [0, a]?, define

h(z) == ([21 + 21, [Z2 + 221, -+, [Za + Z4]),
W(x) = ([T + 2], [Z2 + 22, -, [Za+ Zal),
where 7}, Z;, z7, are the i-th coordinates of x, z, 2/, respectively.

2. For each x € QU P:

e Compute h(x) and write each element of h(x) as a t-bit binary string. Then h(x)
can be viewed as a d-by-t binary matrix stored in the row-major order, whose
(i,7)-th entry is the j-th significant bit of the i-th element of h(x). Transpose this
matrix and concatenate the rows of the transpose. Denote the resulting binary
string as h(z)".

e Similarly, compute A'(z)".
3. Use h(z)" as keys to sort all z € QU P. Also, use h'(z)" as keys to sort all 2 € QU P.

4. For each ¢; € Q:

e Use the sort to find a p € P that maximizes the length [ of the longest common
prefix of h(g;)" and h(p)". Similarly, find a p’ € P that maximizes the length I’ of
the longest common prefix of h'(¢g;)" and A/ (p')T.

e If [ > I’ then output D; := ||q; — p||1; otherwise, output D; := ||¢; — p'||1-

Figure 1: The QuadTree Algorithm.

We now show that if two points have the same hash hg, then their distance is likely not too

much greater than 2%. A straight-forward bound follows from the diameter of the d-dimensional

cube.

Lemma 3.3. Forallq € Q, p € P, and 0 < k < t, the following always holds: If hi(q) = hi(p)

then ||g — pll1 < 2% - d.

Proof. Observe that hi(q) = hx(p) only if ¢ + z and p + z are in the same d-dimensional cube of

side-length 2¥. The diameter of such a cube under the ¢; norm is 2% - d. Therefore, for any ¢, p and
0<k<t |qg—p|i <2¥-dis a necessary condition for hj(q) = hi(p) to hold.

Moreover, using Claim 3.2, we can bound this ratio with respect to n.



Lemma 3.4. With probability at least 1 — O(1/n), the following holds simultaneously for all q € @,
pEP, and 0 <k < t: If hi(q) = hi(p) then ||q — p||1 < 2% - 3logn.

Proof. We show the contrapositive that with probability 1 — O(1/n), k < log(|l¢ — pl/1/3logn)
implies hy(q) # hi(p) simultaneously for all ¢ € @ and p € P. It suffices to argue that for any fixed
pair of points ¢ € Q and p € P, this holds with probability at least 1 — O(1/n3). The lemma then
follows by a union bound over n? pairs.

Let ko denote the largest integer k that satisfies k < log(|l¢g — p|/1/3logn). Then we have

P, (a) = iy (1)) < exp (~ 112 Pty < xep(—3105m).

i.e., with probability at least 1 — O(1/n3), hg,(q) # hi,(p). Also, it is easy to see that if
hio(q) # hi,(p), then for all k < ko, hi(q) # hi(p), concluding the claim.
O

Symmetrically, if we define h) (z) := ((%L [52%5’2 e [fd;rkz'd]), the claims and lemmas
above also hold for hj. Using these, we show that the expected outputs of the QuadTree algorithm

are (crude) estimations of the nearest neighbor distances.

Theorem 3.5. With probability at least 1 — O(1/n), it holds for all ¢i € Q that E[D;] <
5min(d, 3logn) - optf;.

Proof. We assume the success case of Lemma 3.4 for both hj and hj. Fix an arbitrary ¢; € Q.
Recall that the QuadTree algorithm finds p,p’ € P for ¢;, which are associated with longest
common prefixes of lengths [, 1, respectively. For integer k : 0 < k < t, let £ denote the event
d(t — k) <max (l,l') <d(t — k+1). Observe from Claim 3.1 that when & happens,

e cither [ > 1" and hi(q;) = hi(p),
e or !’ > 1 and b} (g;) = hj.(p').

In both cases, we know from Lemma 3.3 and 3.4 that D; < 2F - min(d, 3logn).
Let D := min(d,3logn), p* := argmin,¢p|lg; — pl/1, and &* := [log(opt,,)]. We have

Dij< > Pr[&] (2" D)

0<k<t
<D( Y Pr[&]-opty, + > Prlhi(g) # he1(p") Ahi_y(a) # hi_a(07)] - 2°)
0<k<k* ko <k<t

where the second inequality holds because & implies that neither pair {h(g)",h(p*)"} nor
{h(g:)", W (p*)"} share a common prefix of length > d(t — k + 1). Thus hp_1(q;) # hr_1(p*)
and hj,_,(g;) # hj,_,(p*) by Claim 3.1.

Moreover, events &, for all k form a partition of a sample space, so ), Pr [Sk} < 1. Applying
this and the locality sensitive properties of hj_1 and hj_,, we get

opt . opt,,
E[D;] < D(opt,, + Y ( 2ot )2 . 2F) < D(opt,, + 20pt,, » Si1) < 5D -opt,,
k*<k<t k* <k<t
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Figure 2: A pictorial example for 8-by-8 square matrix and w = 4. The left figure (a) shows how
the Transpose algorithm handles the rows of M in lines 2a and 3a. The right figure (b) illustrates
the transpose outcome.

Runtime analysis:

Lemma 3.6 (Line 2). For anyx € QU P, h(z)" (and W' (x)T) can be computed in O(dloglogn)
time.

Proof. We assume without loss of generality that both d,¢ are powers of 2. Computing the binary
matrix representation of h(z) can be done in O(d) time since t = O(logn). Given this, we compute
h(z)" as follows.

Case 1: d > t: We partition the matrix into t-by-t square submatrices, denoted by

My

Matrix(h(z)) := ; d

Mgy
t

For each i € [d/t], we use a recursive subroutine Transpose(M;,t) to compute M,". See Figure 2
for a pictorial illustration of the Transpose algorithm.

The correctness of the Transpose algorithm can be shown by induction on (the base-2 logarithm
of) w. When I = J =t = O(logn), Line 2a and 3a can be done using a constant number of
operations on words. Thus we get the following runtime.

Claim 3.7. Assuming t = O(logn) the procedure Transpose(M;,t) runs in O(t -logt) time.

We execute the Transpose algorithm for all ¢, which takes O((d/t) - tlogt) = O(dloglogn).
Then we can write down h(z)' by concatenating rows of M, ’s, which takes O(t - (d/t)) time.

Case 2: t > d: We again partition the matrix into ¢-by-t square submatrices. In this case, we obtain
Matrix(h(z)) = M := [ My | My | ... | My, | }d.

t
Claim 3.8. Given t = O(logn), Transpose(M,d) runs in O(dlogd) < O(dloglogn) time.




Transpose

Input: An I-by-J bit matrix M where I < J are powers of 2. An integer w that is a power of
2and 2 <w <.

Output: An I-by-J matrix M’ such that if it is partitioned into w-by-w square submatrices,
then each submatrix is the transpose of the corresponding submatrix of M at the same
coordinates.

1. Let

M:

~ M if w=2
Transpose(M,w/2) otherwise

be zero-indexed and M][i, j] is its (i, j)-th entry.
2. For each integer ¢ such that 0 <1 < I:

(a) Compute a J-bit binary string b; such that for j: 0 < j < J, its j-th bit
, Mli,j] if (j mod w) < w/2
bilj] = . :
0 otherwise

- 0 if (y d 2
Also, compute a string b;[j] = ¢ -~ if (j IH.O w) < w/ .
M]i,j] otherwise

3. Define an I-by-J matrix M’, such that for each integer 0 < ¢ < I:
bi + big(wy2) > (w/2) if (i mod w) < w/2
bi + bi—(wy2) < (w/2) if (i mod w) > w/2’

where > (w/2) (resp. <) denote the operation of shifting a string to the right (resp.
left) by w/2 bits.

(a) Let the i-th row of M’ be {

4. Output M’.

We execute Transpose(M,d) and obtain M’ = { M ‘ My ‘ ‘ Mt—;d } In principle, to

obtain h(z)", we just concatenate d - (t/d) rows of all M,". However, when ¢ > d, this takes longer
than O(dloglogn) time. We instead use another recursive subroutine Concatenate(M’ d). An
example of the Concatenate algorithm is given in Figure 3.

The correctness of the Concatenate algorithm can again be observed by inducting on the
logarithm of w. Line 2a and 3a can be done using O((J/w) - [w/logn]) operations on words, and
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Figure 3: A pictorial example that shows the behavior of Line 2a and 3a of the Concatenate
algorithm on a 4-by-4w matrix.

Concatenate

Input: An I-by-J bit matrix M where I < J are powers of 2. An integer w that is a power of
2and I <w < J.

Output: An IJ-bit string B such that if it is partitioned into w-bit blocks, then the u-th
block (zero-indexed from left to right) are bits on the (v mod I)-th row of M from column
w- |u/I| tow-|u/I]+w.

1. If w = I then output B = M.

2. For each integer ¢ such that 0 <7 < I:

J
(a) Partition the i-th row of M into w-bit blocks, denoted as [b;1 | bi2 | ... | b; j/w]-
~—
w
Compute a 2.J-bit string b; = [b;1 | Oy | bi2 | Ow | - - . | bi 1 /w | 0], where 0, is a

w-bit all-zero string.
3. Define an I/2-by-2J matrix M’, such that for each integer 0 < i < I/2:

(a) Let the i-th row of M’ be bg; + ba;+1 > w, where > w is the operation of shifting a
string to the right by w bits.

4. Output Concatenate(M’, 2w).

both lines are repeated for I times in each recursive call. Therefore, the total runtime is

log(d) log(d)—s log(d)—s log(d) log(d)—s
. 2log@-sy  glog(d)-sg . t ¢ 2osd-sg
O Z 2 log(d)—sq ' logn =0 Zl 2 -max(g, d

s=1

logn

i))

= O(log d - max(t,
logn

= O(dloglogn)

Theorem 3.9. The QuadTree algorithm runs in O(ndloglogn) time.

10




Proof. Computing h(z) for all x takes O(nd) time. Then computing h(z)' takes O(ndloglogn)
time. After that, sorting O(n)-many O(dlogn)-bit strings can be done in O(nd) time using radix
sort. Finally, to find p € P with the longest common prefix for every ¢ € @, we go through the
sorted list and link each ¢ € @ with adjacent p € P, which takes O(n) total time. The above time
bounds also hold for h/(z)’s, resulting in O(ndloglogn) time in total.

O

4 Tournament

In this section, we compute the 2-approximation of the nearest neighbor distances for logarithmically
many queries. We do so using a depth-2 tournament: we first partition input points into random
groups, project them to a lower dimensional space, and collect the nearest neighbor in the projected
space in every group as a set S. Then the final output of the tournament is the nearest neighbor
among points in S in the original space. Intuitively, because each random group is small, the true
nearest neighbor could only lose to another near neighbor in the first step. Then in the second step,
S should contain at least one near neighbor.

Notation: We use the same notation D := min (d, 3logn) as in the previous section. For any finite
subset T' C R, let medT" € R denote the median of T

When working under the ¢; norm, we use Cauchy random variables to project points. We first
recall a standard bound on the median of projections, which will be useful for our analysis. (The
following lemma essentially follows from Claim 2 and Lemma 2 in [Ind06]; we reprove it in the
appendix for completeness.)

Lemma 4.1. Let z,y € R? and 0 < ¢ < 1/2. Sample r random wvectors vy, vy, vy ~
(Cauchy(0,1))4. With probability at least 1 — 2¢7"¢"/5% med{|v; - (x —y)| :i € [r]} € (1 )|z — y]|:.

In Figure 4, we describe how to construct a data structure to find 2-approximate nearest
neighbors. The construction borrows ideas from the second algorithm of [Kle97], but using a
tournament of depth 2 instead of O(logn).

Correctness:
We fix a query q := g;.

Lemma 4.2. With probability at least 1 — %Ot, D; < 2opt,,.

We let S denote the set of all 2-approximate nearest neighbors to ¢, i.e., S:={p € P : |[¢g—pl|l1 <
2opt, }, and let p* € P denote a nearest neighbor of ¢, i.e. ||¢ — p*|l1 = opt,. To prove Lemma 4.2,
we first make the following observation:

Lemma 4.3. Let P’ be an arbitrary subset of P\S. The probability that there exists p € P’ such that
med,, < med,-, where med,, := med{|v; - (¢ —p)| : j € [r]} and med,+ := med{|v; - (¢ —p*)| : j € [r]},
2(|P'|+1)
t2logn °

1s at most

Proof. From P’ C (P \ S) we know that ||¢ — p|l1 > 2|j¢ — p*|1 for any p € P’. Therefore, if
med, < med,~ then either med, # (1 & 1)||¢ — p|l1 or med,~ # (1 + 1)|l¢ — p*|l1. Applying Lemma
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Tournament

Input: A set of t queries {¢;};cq and a set of n points P, which are both subsets of a metric
space (RY, || - [|1).
Output: A set of ¢ values {D;};c[y, such that every D; € R satisfies D; > optf;_.
Building the Data Structure.
1. Let » > 800(2logt + loglogn).

2. For each j € [r], draw v; ~ (Cauchy(0, 1))?, compute v; - p for all points p € P, and store
all v; and v; - p.

3. Randomly partition P into n/logn subsets P, Py, -+, Py /1051, €ach of size logn.
Processing the Queries. For each query ¢ := g; for i € [t]:

1. Compute v; - ¢ for all j € [r].

2. Let S be an empty set. For each k € [n/logn]:

e Compute med, := med{|v; - (¢ — p)| : j € [r]} for every p € Py.

e Find p := argmin,cp, {med,} and add it into S.

3. Output ~DZ :=min,cs|[¢ — pll1 by computing and comparing all ezact distances [|q — p||1
forpe S.

Figure 4: The Tournament Algorithm.

4.1 with ¢ = % and 7 > 800(2logt + loglogn) and a union bound, we get that
1
Pr[dp € P': med, < med,-] <Pr[dp € P : med, # (1 £ Z)Hq —pllh]+

1 *
Pr[med,. # (14 )l - p[l1]
< (‘P/| + 1) . 26—(210gt+10g10gn)
_ 2P+
 t2logn
O
In Line 3 of the data structure building procedure, the point p* is assigned to one of the subsets
P*e{P, P, -+ ,P,/i10gn}- Focusing on this subset P*, we can show that with high probability,

either p* is added into S, or p* loses to another 2-approximate nearest neighbor. In both cases, the
data structure is guaranteed to output an 2-approximation.

12



Proof (of Lemma 4.2). P*\ S contains at most |P*| = logn points. Applying Lemma 4.3, we get
med,« > med, simultaneously for all p € P*\ S with probability at least 1 — tzzlﬁjgg - >1 - 1%)16 (as
long as t > 20). Conditioned on this, arg min,¢ p«{med,} must be either p* or some other element

of S. Thus on line 3 of the algorithm, S contains at least one element of S, so the final output
min, g [|¢ — pl[1 < 20pt,.
O

Applying a union bound on Lemma 4.2, we get the correctness guarantee:

Theorem 4.4. Given t queries {q;};cy, with probability at least 9/10, the Tournament algorithm
outputs 2-approrimate nearest neighbors simulataneously for all t queries.

Finally, we state the runtime guarantee as follows:

Theorem 4.5. The Tournament algorithm runs in O(n(d + t)(logt + loglogn) + dt?logtlogn)
time.

Proof. For preprocessing, the algorithm projects all points in P using r projections, which takes
O(n-d-r) time. To process a query ¢, we first take O(dr) time to project q. We then count the
number of comparisons we make to find the minimums of medians, which is O((n/logn)logn - r)
using a linear-time median selection algorithm [BFP*73]. Each comparison can be done in O(1)
time given that v; - p and v; - ¢ for all j € [r] and p € P are stored. Finally, we use O(dlogn) time
to do a linear scan over S.

We plug in 7 = O(log t+1loglogn). For t queries, the total runtime is O(n(d+t)(logt+loglogn)+
dtlogn). O

For our purpose of estimating the Chamfer distance, we will apply the Tournament algorithm with

. o 2 _ . . . _2 _
a number of queries ¢ = ©(D/e?) for D = min (d, 3logn) and some & > 0 satisfying e = O(p5;7,)-
Under this setting, the runtime is dominated by the first additive term of Theorem 4.5, which is at

most O(nd(loglogn + log 1)/?).

5 Rejection Sampling

Notation: All occurrences of opt in this section are with respect to the set B. Let ¢ > 0 be
our target approximation factor. We call the distribution P an f-Chamfer distribution for some
f=f(n,d,e), if it is supported on A and for every a € A,

t
P < P(a), where we denote P(a) := Pr [z = a].

fCH(A, B) z~P

We first show a general bound for estimating the Chamfer distance using samples from a Chamfer
distribution. This follows from a standard analysis of importance sampling.

Lemma 5.1. Let X := {:Bi}ie[t] be a set of t samples drawn from a f-chamfer distribution P. Fix
h = h(n,d,e) > 1. Given an arbitrarily of)twi Jor every x; that satisfies opt,, < obtxi < h-opt,,,
then for any 0 < Kk < 1,

n2
7 1
9

Pr [CNH(A, B) < (1 - #)CH(A, B)} n Pr[c”H(A, B)> (14 #)-h-CH(A, B)} <

13



Yic[y OPts, /P(xi)

where CH(A, B) := .

Proof. For the purpose of analysis, assume that we additionally have arbitrary opt, for a € (4 \ X)
that also satisfies opt, < opt, < h - opt,. By linearity,

~ Elopt,, /P(x;)]
E[CH(A, B)] = 2icly Elopts,/ =" Pa)- °'°t € [CH(A, B),h - CH(A, B)].
t acA
We also bound the variance
~ t
Var[CH(4, B)] < Efopt / P(x1)7] _ CH(A, B)?

1 opta 9

<= — CH(A,B
1 h

< 2(ZCH(A, B) - ) opt, — CH(A, B)?)
t f a€A
1 5 h?

< Z. (= —

< - CH(4,B) (f 1)

CH(A,B)

where the third inequality follows from =i~ <

P and opt, < h - opt,. Finally, by Chebyshev’s
Inequality, we have

f'opta,

Pr[|CH(4, B) ~ BICH(A, B)]| s CH(4, B)| < % ]
0

In this section, we aim to construct a set of samples S = {s; }je[s] for some large enough s, such
that each s; is drawn from a fixed O(1)-Chamfer distribution. Once we have S, we can compute a
weighted sum of the nearest neighbor distances for s; € S, and invoke Lemma 5.1 to show that it is
likely an (1 + ¢)-estimation of CH(A, B).

We will construct such S via a two-step sampling procedure: in the first step, we sample ©(D /<?)
points from A using a distribution defined by the estimations from the QuadTree algorithm. In the
second step, we subsample these ©(D/c?) points, using an acceptance probability defined by the
estimations from the Tournament algorithm. We describe our Chamfer-Estimate algorithm in
Figure 5.

The Chamfer-Estimate algorithm applies the QuadTree algorithm and the Tournament algo-
rithm as subroutines. If they are executed successfully, their outputs should satisfy the following
conditions:

Condition 5.2. We say the QuadTree algorithm succeeds if for every a € A, E[D,] < 5D - opt,.
Condition 5.3. We say the Tournament algorithm succeeds if for every x; for i € [q], D), < 2opt,,..

T4
That is, as described in the introduction, we need QuadTree to provide O(logn)-approximation
(to ensure that the sample size g can be at most logarithmic in n), and that Tournament provide
O(1)-approximation (to ensure that the final estimator using s samples has variance bounded by a
constant).
We state some facts about the Chamfer-Estimate algorithm, which will be useful for our
analysis.

14



Chamfer-Estimate

Input: Two subsets A, B of a metric space (R?, || - ||1) of size n, a parameter ¢ > 0, and a
parameter ¢ € N. .
Output: An estimated value CH(A, B) € R.

1. Execute the algorithm QuadTree(A, B), and let the output be a set of values {Dg}aca
which always satisfy D, > opt,. Let D := 3, D,.

2. Construct a probability distribution P supported on A such that for every a € A,
P(a) = Z2. For i € [¢], sample z; ~ P.

3. Execute the algorithm Tournament({w;};c[q, B), and let the output be a set of values
{D;, ticg Which always satisfy D; > opt, . Let D" := 3", ., %/q and denote

P'(a) := %é} (which is well-defined only if a = z; for some i € [q]).

4. Define

P’ ()

For each i € [¢], mark z; as ACCEPTED with probability TP

If the number of ACCEPTED z; is less than s = 10/¢? then output Fail and exit the
algorithm. Otherwise, collect the first s ACCEPTED z; as a set .S := {5} e[y

5. Compute opt,, for each j. Output

opt,
%_/s.

CH(A,B) := ) (s,

JEls]

Figure 5: The Chamfer-Estimate Algorithm.

Claim 5.4 (Line 2). Under Condition 5.2, with probability at least 9/10, P is a (1/50D)-Chamfer
Distribution.

Proof. With probability at least 9/10, D < 50D - CH(A, B) by Markov’s Inequality. Upon this

condition, for any a € A, ﬁm < %_ 0

Claim 5.5 (Line 3). Let ¢ > 10*D. Under Condition 5.2 and 5.3, with probability at least 4/5,
D' > CH(A, B)/2.

Proof. We apply the importance sampling analysis in Lemma 5.1. We assume that Claim 5.4 holds
and opt,, <D, < 2opt, , then

1 22.50D — 1 1
Pr([D<(1->)CHA.B)| <=—"" ~ <« —,
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Analysis of S: We now show that the set S on Line 4 collects enough samples (thus the
algorithm does not fail) and is equivalent to sampling from a O(1)-Chamfer distribution Q. We
note that the algorithm, in fact, only knows a (1/50D)-Chamfer distribution P and probabilities
P'(x;) for {zi}ic|q, 50 it cannot explicitly sample from such Q. Nevertheless, by a standard analysis
of rejection sampling, we show that S “simulates” sampling from Q.

Lemma 5.6. Let ¢ > 10*D/c%. Under Condition 5.2 and 5.3, with probability at least 3/5, the
number of ACCEPTED x; is at least s, so the algorithm does not fail.

Proof. We assume that Claim 5.4 and 5.5 hold. Then for any w;, L < 0DCHAB) ong P(z;) =

(z;) = opt,,
g, < % Thus M < 200D. The expectation is
P’ (z;) 1 D, 1 1 , 1 q
E||{ACCEPTED z;}|] = > i .= gD = =_1
[ il ZMP(mi) = QOODZP(:EZ-) D~ 200D 17 D' T 200D

i€[q]

i€[q]

where the second to last equality is due to the definition of D' := Zze [q] p(m / g. The final bound
holds by Markov’s Inequality and our setting of ¢. O

Lemma 5.7. Each s; is independently and identically distributed, and under Condition 5.3,
Pr[sj = a] > % for any a € A.

Proof. The independence and identicality follows directly from our sampling procedure. For the
probability statement, we assume (without loss of generality) that during rejection sampling on
Line 4, a sample z; is accepted and renamed as sj. Then for any a € A,

Pr[sj = a] = Pr[azi =alz accepted]
_ P(a)-Pr [#; accepted | z; = a]
Pr[:vi accepted]
B P(a) - Pr|z; accepted | z; = a
> apea Plao) - Pr[z; accepted | z; = ag]

P(@)- 3

’Pl
O
In the final equality, because we conditioned on z; = a (resp. x; = ag) on the LHS, we know that

on the RHS, P'(a) = D/D(,a) is well-defined and satisfy opt, < D’(a) < 20pt, (resp. opt, < D’'(ag) <
20pt,, ), given Condition 5.3. Therefore, we have

P D opt,
ZaoeAPI(GO) ZaOEA D'(ap) ~ 2CH(A, B)’

O]

Lemma 5.6 and 5.7 together say that S can be viewed as a set of s samples from a 3 L_Chamfer
Distribution, thus we can invoke another importance sampling analysis. In the final step of the
algorithm, we compute the exact nearest neighbor distance for all s; and then compute a weighted
sum over them. With high probability, this gives an (1 + ¢)-estimation of CH(A, B).
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Theorem 5.8. Under Condition 5.2 and 5.3, Chamfer-Estimate(4, B,¢,q > 10*D/e?) outputs
CH(A, B) that satisfies (1 —e)CH(A, B) < CH(A, B) < (14 ¢)CH(A, B) with probability at least 1/2.

Proof. In the success case of Lemma 5.6, we can apply Lemma 5.1 with f =1/2, h =1, t=s, and

k =¢e. Then
1

5.2’

PrHCH(A, B) — CH(A, B)| > - CH(4, B)| <
O
Theorem 5.9. Chamfer-Estimate(A, B, ¢,q = 10D /e?) runs in time O(nd(loglog n+log 1)/£?)).

Proof. This is dominated by the runtime of QuadTree, Tournament, and the time of computing
opt,, on Line 5. QuadTree(A, B) runs in O(ndloglogn) time and Tournament ({z;};c|g, B) runs
in O(nd(loglogn + log1)/e?) time. Finally, the brute-force search for opt,, for j € [10/€?] takes
O(nd/e?) time. O
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A Reducing the Bit Precision of Inputs.

In our algorithm, we assumed that all points in input sets A, B are integers in {1,2,--- , poly(n)}?.
Here, we show that this is without loss of generality, as long as all coordinates of the original input
are w-bit integers for arbitrary w > logn in a unit-cost RAM with a word length of w bits.
Section A.3 of [BIJT23] gives an efficient reduction from real inputs to the case that
1< min |la—5|1 £ max |la—b|1 < poly(n
- aeA,beBH I = aEA,b)e(BH I < poly(n),

i.e., the input has a poly(n)-bounded aspect ratio. Their reduction can be adapted to our case as
follows:

Claim A.1 (Lemma A.3 of [BIJ"23]). Given an est such that CH(A, B) < est < poly(n)-CH(A, B),
if there exists an algorithm that computes an (1 + €)-approzimation to CH(A, B) in O(nd(loglogn +
log 1)/e?)) time under the assumption that A, B contain points from {1...poly(n)}¢, then there
exists an algorithm that computes an (1 + €)-approzimation to CH(A, B) for any integer-coordinate
A, B in asymptotically same time.

It remains to show how to obtain a poly(n)-approximation.

Lemma A.2. There exists an O(nd + nloglogn)-time algorithm that computes est which satisfies
CH(4, B) < est < poly(n) - CH(A, B) with 1 — 1 probability.

Proof. Similar to (the proof of Lemma A.3 in) [BIJ 23], we sample a vector v ~ Cauchy(0, 1), which
can be discretized to O(logn)-bit precision following [Ind06]. We then compute the inner products
{v-a}eea and {v-b}pep. The distribution of v-a —wv-b follows Cauchy(0, ||a —b||1) by the 1-stability
property of Cauchy’s. So we have that for every a € A and b € B,

la — bllx
poly(n)
with probability 1 —1/poly(n). Therefore, est := CH({v-a}qsea, {v-b}rep) is a poly(n)-approximation
to CH(A, B). We may assume by scaling that {v-a}sca, {v - b}lpep contain w-bit integers, which
can be sorted in O(nloglogn) time [AHNR95]. Then to compute est, we find all one-dimensional

nearest neighbors by going through the sorted list and link each a’ € {v - a}sca with adjacent
b € {v-b}pep, which takes O(n) time. Thus the total runtime is O(nd + nloglogn) as claimed. [

<|v-a—wv-b] <lla—=bli-poly(n),

B Proof of Lemma 4.1

Proof. We use the fact that for v ~ (Cauchy(0,1))? and any = € R%, (v-2) ~ Cauchy(0, ||lz||1). Also,
for any k£ > 0, if a random variable z ~ Cauchy(0,1) then kz ~ Cauchy(0, k). Therefore, for any
v; 11 € [r], Prllv; - (x —y)| > (1 + o)z — y|l1] =Pr[U > 1+ ¢| where U ~ HalfCauchy(0,1). The
density of U is fy(u) = 2+ =L+, thus Pr[U > 1] =1/2 and

T 14+u??
1 1+¢
Pr[U>1+¢| = 5~ fu(u)du
1

1

Si—c-fU(3/2) for 0 <c<1/2
1

< 5—0/10
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Similarly, we can get Pr[|v; - (z — y)| < (1 — ¢)|lz — y[li] < § — ¢/10. For i € [r], let Z; be
an indicator variable that equals 1 if |v; - (x — y)| < (1 — ¢)||x — y||1 and equals 0 otherwise. By
Hoeffding’s bound,

Pr[z IZ > %} < 6721“02/1007

i€[r]

which upper bounds the failure probability that the median is too small. We symmetrically
bound the probability that the median is too large. Then

Pr{med{|v; - (v~ y)| i € [} € (1 £l — yll] = 1 - 267/,
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