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Abstract

Nearest neighbor search is a fundamental data structure problem with many applications
in machine learning, computer vision, recommendation systems and other fields. Although the
main objective of the data structure is to quickly report data points that are closest to a given
query, it has long been noted [CG98] that without additional constraints the reported answers
can be redundant and/or duplicative. This issue is typically addressed in two stages: in the
first stage, the algorithm retrieves a (large) number r of points closest to the query, while in
the second stage, the r points are post-processed and a small subset is selected to maximize the
desired diversity objective. Although popular, this method suffers from a fundamental efficiency
bottleneck, as the set of points retrieved in the first stage often needs to be much larger than the
final output.

In this paper we present provably efficient algorithms for approximate nearest neighbor
search with diversity constraints that bypass this two stage process. Our algorithms are based
on popular graph-based methods, which allows us to “piggy-back” on the existing efficient
implementations. These are the first graph-based algorithms for nearest neighbor search with
diversity constraints. For data sets with low intrinsic dimension, our data structures report a
diverse set of k points approximately closest to the query, in time that only depends on k and
log∆, where ∆ is the ratio of the diameter to the closest pair distance in the data set. This
bound is qualitatively similar to the best known bounds for standard (non-diverse) graph-based
algorithms. Our experiments show that the search time of our algorithms is substantially lower
than that using the standard two-stage approach.

1 Introduction

Nearest neighbor search is a classic data structure problem with many applications in machine
learning, computer vision, recommendation systems and other areas [SDI06]. It is defined as follows:
given a set P of n points from some space X equipped with a distance function D(·, ·), build a data
structure that, given any query point q ∈ X, returns a point p ∈ P that minimizes D(q, p). In a
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more general version of the problem we are given a parameter k, and the goal is to report k points
in P that are closest to q. In a typical scenario, the metric space (X,D) is the d-dimensional space,
and D(p, q) is the Euclidean distance between points p and q.

Since for high-dimensional point sets the known exact nearest neighbor search data structures
are not efficient, several approximate versions of this problem have been formulated. A popular
theoretical formulation relaxes the requirement that the query algorithm must return the exact
closest point p, and instead allows it to output any point p′ ∈ P that is a c-approximate nearest
neighbor of q in P , i.e., D(q, p′) ≤ cD(q, p). In empirical studies, the quality of the set of points
reported by an approximate data structure is measured by its recall, i.e., the average fraction of the
true k nearest neighbors returned by the data structure.

Although minimizing the distance of the reported points to the query is often the main objective,
it has long been noted [CG98] that, without additional constraints, the reported answers are often
redundant and/or duplicative. This is particularly important in applications such as recommendation
systems or information retrieval, where many similar variants of the same product, product seller,
or document exist. For example, an update to the search results listing algorithm implemented by
Google in 2019 ensures that “no more than two pages from the same site” are listed [Lia19]. Such
constraints can be formulated by assuming that each point is assigned a “color” (e.g., site id or
product seller) and requiring the data structure to output a set S of k points containing at most k′

points of each color, whose distances to q are (approximately) optimal. A more general formulation
allows an arbitrary diversity metric ρ (typically different from D), and requires the data structure
to report a set S of k points such that for any distinct p, p′ ∈ S, ρ(p, p′) ≥ C, for some required
diversity parameter C > 0.

The aforementioned paper of [CG98] stimulated the development of the rich area of diversity-
based reranking, which became the dominant approach to this problem. The approach proceeds in
two stages. In the first stage, the data structure retrieves r points closest to the query, where r can
be much larger than the desired output k. In the second stage, the r points are post-processed to
maximize the diversity objective of the reported k points.

Though popular, the reranking approach to diversifying nearest neighbor search suffers from a
fundamental efficiency bottleneck, as the algorithm needs to retrieve a large enough set to ensure
that it contains the k diverse points. In many scenarios, the number r of points that need to be
retrieved can be much larger than k (see e.g., Figure 1 and the discussion in the experimental
section). In the worst case, it might be necessary to set r = Ω(n) to ensure that the optimal set is
found. This leads to the following algorithmic question:

Is it possible to bypass the standard reranking pipeline by directly reporting the k diverse
points, in time that depends on k and not r?

In this paper, we aim to solve this problem both in theory and in practice. Because of these
dual goals, we focus on designing efficient graph-based algorithms for diverse similarity search. In
graph-based algorithms, the data structure consists of a graph between the points in P , and the query
procedure performs greedy search over this graph to find points close to the query. Graph-based
algorithms such as HNSW [MY18], NGT [IM18], and DiskANN [JSDS+19] have become popular
tools in practice, often topping Approximate Nearest Neighbor benchmarks [ABF24]. In addition,
they are highly versatile, as they do not put any restrictions on the distance function D. Although
most of the work in this area is purely empirical, a recent paper [IX23] gives approximation and
running time guarantees for some of those algorithms.
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1.1 Our Results

We give a positive answer to the aforementioned question, by designing a variant of the DiskANN
algorithm that reports approximate nearest neighbors of a given query satisfying diversity constraints.
Our theoretical analysis assumes the same setup as in [IX23]. Specifically, we assume that the input
point set P has bounded doubling dimension1 d, and that its aspect ratio (the ratio of the diameter
to the closest pair distance) is at most ∆. Under this assumption, we show that the query time of
our data structures is polynomial in k, log n and log∆.

Formally, our result is as follows. (Here we state the result in the simplest setting, where the
diversity is induced by point colors and k′ = 1. (See Theorem A.5 for the general result statement.)

Theorem 1.1. Consider the data structure constructed by Algorithm 1. Given a query q, let R be
the radius of the smallest ball around q (w.r.t. the metric D) which contains k points of different
colors. Then the search Algorithm 2 returns a set S of k points of different colors such that, for all
p ∈ S,

D(q, p) ≤
(
α+ 1

α− 1
+ ϵ

)
R.

The search algorithms takes O
(
k logα

∆
ϵ

)
steps, where each step takes Õ

(
k(8α)d log∆

)
time. The

data structure uses space O(nk(8α)d log∆).

We note that the approximation factor with respect to D, as well as the running time bounds,
are essentially the same as the bounds obtained in [IX23] for the non-diverse approximate nearest
neighbor problem. The main difference is that the bound in [IX23] does not depend on k, as they
consider only the case of k = 1.

As mentioned earlier, Theorem 1.1 generalizes to arbitrary k′ and general diversity metric ρ, as
discussed later.

Experimental results. We adapt our theoretical algorithms to devise fast heuristics based on
them, and show the efficiency of our algorithms on several realistic scenarios. In one of them, we
consider the task of showing ads to a user based on their search queries. Given a number k, say 100,
of available slots, the goal is to choose ads from a large corpus, such that the sellers (i.e., colors)
of those ads are all different. A more relaxed constraint requires that the number of ads shown
from a single seller be bounded by at most k′, say 10. To achieve 95% recall@100 on this real-world
scenario, the prevailing baseline approach of retrieving a much larger number of candidates using a
regular ANNS index and then choosing the best diversity-preserving k-sized subset of them has
latency upwards of 8ms; our algorithm, on the other hand achieves a similar recall at a latency of
around 1.5ms, resulting in an improvement upwards of 5X! A production-quality implementation of
our algorithm is currently under development for serving large-scale workloads at one of the major
technology companies.

Generalizations. On the theoretical side, we extend our results in several directions listed below.
These are shown and proved in Section A.

• Relaxing the diversity requirement. First, in some applications, the requirement that
all reported results have different colors is too strong. (For example, the aforementioned
application to search [Lia19] allows for two points having the same color.) Therefore, we

1Doubling dimension is a measure of the intrinsic dimensionality of the pointset - see Preliminaries for the formal
definition.
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consider a more general constraint, requiring that no color should appear more than k′ times.
We show how our results can be generalized to any 1 ≤ k′ ≤ k.

• Generic metric ρ.2 Second, we generalize our results to the case where diversity is defined
according to a given metric ρ (also defined over X but potentially different from D). Here,
given a required diversity parameter C, the goal is to report a set S of k closest points to the
query such that minp1,p2∈Sρ(p1, p2) ≥ C. We say that such a set S is C-diverse. Note that
the color version is the special case where ρ(p1, p2) is defined to be 0 if p1 and p2 are of the
same color, and 1 otherwise.

• Unifying the two generalizations. In order to unify the above two results, and incorporate
the notion of k′ into the generic metric ρ, we allow for each point in the reported set S to
be “similar” to at most k′ > 1 other points in S. More formally, for any p ∈ S there should
be at most k′ − 1 other points p′ ∈ S such that ρ(p, p′) < C. We say that such a set S is
(k′, C)-diverse3. We show how our algorithms can be modified to this most general formulation
of the problem.

• Primal vs Dual formulations. Finally, instead of asking for the closest k points to the
query satisfying a diversity requirement parameterized by C, which we refer to as the primal
variant of the problem, one can ask the dual question: Given a radius R, find a set of k points
within radius R of the query, while maximizing the diversity. We show algorithms for both
the primal and dual variants of the most general formulation of the problem.

1.2 Related Work

Nearest Neighbor Search with diversity requirement has been previously studied in the work
of [AAYIM13, AAYI+13], where they presented a “diversified version” of the Locality-Sensitive
Hashing (LSH) approach due to [IM98]. However, their diversification approach does not carry
over to the graph-based methods. Moreover, they provide a bi-criteria approximation only for the
dual formulation of the problem, and do not consider the primal formulation. Finally, the distance
functions D that they consider are limited to Hamming distance or its variants like the Jaccard
similarity [AAYIM13]. Although it is plausible that the result could be extended to other distances
that are supported by LSH functions, not all distance functions satisfy this constraint.

2 Preliminaries

Problem definition. Let (X,D) be the underlying metric space, with distance function D. Let
P be our colored point set. For p ∈ P , we use col[p] to denote its color.

Definition 2.1 (colorful). A set S is colorful if no two points in S have the same color.

Definition 2.2 (k′-colorful). A set S is k′-colorful, if within the multi-set {col[p1], ..., col[pk]}, no
color appears more than k′ times.

Note that for k′-colorful for k′ = 1 is equivalent to the colorful notion.

2In fact our algorithms work for ρ being any pseudo-metric allowing ρ(p1, p2) = 0 for two different points p1, p2 ∈ P ,
but for simplicity we refer to it as metric, throughout the paper.

3We note that the notion of (k′, C)-diverse set is a new notion of diversity that strictly generalizes the widely used
minimum-pairwise-distance notion for diversity.
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Definition 2.3. Given a subset S ⊂ P of size k, and a query q, for each i ≤ k, we use Si(q) to
denote the distance of the ith closest point in S to q. When q is clear from the context, we drop q
and simply use Si.

Definition 2.4 (Colorful NN). Given a colored point set P , the goal of colorful NN is to preprocess
P and create a data structure such that given a query point q, one can quickly return a colorful
subset S ⊂ P of size k such that Sk is minimized.

Note that, when k = 1, our Colorful NN degenerates to the standard nearest neighbor search
problem.

Definition 2.5 (k′-Colorful NN). Given a colored point set P , the goal of k′-colorful NN is to
preprocess P and create a data structure such that given a query point q, one can quickly return a
k′-colorful subset S ⊂ P of size k such that Sk is minimized.

Balls, doubling dimension, and aspect ratio. We use BD(p, r) to denote a ball centered at p
with radius r, i.e., BD(p, r) = {u ∈ X : D(u, p) < r}. We will drop the subscript D if the metric is
clear from the context.

We say a point set P has doubling dimension d if for any point p and radius r, the set B(p, 2r)∩P
can be covered by at most 2d balls of radius r.

Lemma 2.6. Consider any point set P ⊂ X with doubling dimension d.
For any ball B(p, r) centered at some point p ∈ P with radius r and a constant α, we can

cover B(p, r) ∩ P using at most m ≤ O(αd) balls with radius smaller than r/α, i.e. B(p, r) ∩ P ⊂⋃m
i=1B(pi, r/α) for some p1 . . . pm ∈ X.

We define ∆ = Dmax
Dmin

to be the aspect ratio of the point set P where Dmax(Dmin, resp.) represents
the maximal (minimal, resp.) distance between any two points in the point set P .

3 Algorithm for Colorful NN

In this section, for the sake of simplicity of presentation, we focus on the simplest setting where
k′ = 1, and ρ is the binary metric. The binary setting corresponds to our main application of seller
diversity, and the case of k′ = 1 focuses on retrieving k closest points from the data set such that
all of them have different colors/sellers. The algorithm that handles the general setting is presented
in Section A.

Intuition behind the algorithm. At a high level, the “slow pre-processing” algorithm of [IX23]
uses the following intuition when pruning the graph: If u and v are “much closer” to each other than
to another point p, then it is not necessary to connect p to both u and v. This makes it possible
to track the progress of the search procedure as it identifies points closer to the query point and
use the doubling dimension to bound the degree of the graph and the total space. Our algorithm
retains these insights, but also requires several new ones, as now we need to show that the search
algorithms can progress while maintaining a colorful solution. On a high-level, this is established
using the following two intuitions. First, if the colors of u and v are the same, then again there is
no need to connect p to both of them, and we can use the same pruning as before. Second, if p is
already connected to k points v1, · · · , vk, all of which are much closer to u compared to p, and that
they all have different colors, then again there is no need to connect p to u. This is roughly because
no solution would need more than k points of different colors in a relatively small neighborhood.
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The main challenge in converting these intutions into a formal argument is in showing that such a
graph keeps enough edges for a greedy search algorithm to converge to an approximately optimal
solution for the coloful NN problem.

3.1 The Preprocessing Algorithm

The indexing algorithm is shown in Algorithm 1.

Algorithm 1 Indexing algorithm for colorful NN

1: Input: A set of n points P = {p1, ..., pn}; k is the size of the output; α is the parameter used
for pruning.

2: Output: A directed graph G = (V,E) where V = {1, ..., n} are associated with the point set P .
3: for each point p ∈ P do
4: Sort all points u ∈ P based on their distance from p and put them in a list L in that order.
5: while L is not empty do
6: u← argmin

u∈L
D(u, p)

7: Initialize rep[u]← {u}
8: for each point v ∈ L in order do
9: if D(u, v) ≤ D(p, u)/(2α) then

10: if col[v] not shown in rep[u] and |rep[u]| < k then
11: rep[u]← rep[u] ∪ v
12: end if
13: remove v from L
14: end if
15: end for
16: add edges from p to rep[u]
17: Remove u from L
18: end while
19: end for

Lemma 3.1. The graph constructed by Algorithm 1 has degree limit O(k(8α)d log∆).

Proof. Let’s first bound the number of points not removed by others, then according to Line 10 in
Algorithm 1, the degree bound will be that times k.

We use Ring(p, r1, r2) to denote the points whose distance from p is larger than r1 but smaller
than r2. For each i ∈ [log2∆], we consider the Ring(p,Dmax/2

i, Dmax/2
i−1) separately. According

to Lemma 2.6, we can cover Ring(p,Dmax/2
i, Dmax/2

i−1) ∩ P using at most m ≤ O((8α)d) small
balls of radius D(p, u)/(4α) ≥ Dmax

2i+2α
. According to the pruning criteria in Line 9, within each

small ball, there will be at most one such point u remaining. This establishes the degree bound of
O(k(8α)d log∆).

3.2 The Search Algorithm

Algorithm 2 shows the search algorithm for the colorful nearest neighbor search problem. Next, we
analyze the search algorithm and finally prove Theorem 1.1.

Proposition 3.2. Let OPT = {p∗1, ..., p∗k} be a colorful solution with minimized OPTk, and ALG =
{p1, ..., pk} be the current solution (both ordered by distance from q). If pk /∈ OPT, there exists a
point p∗ ∈ OPT \ ALG such that ALG \ pk

⋃
p∗ is colorful.
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Algorithm 2 Search algorithm for colorful NN

1: Input: A graph G = (V,E) with Nout(p) being the out edges of p; query q; number of
optimization steps T .

2: Output: A set of k points ALG.
3: Initialize ALG = {p1, ..., pk} to be any set of k points with different colors.
4: for i = 1 to T do
5: pk ← the furthest point in ALG from q.
6: U ← Nout(pk) and sort U based on their distance from q
7: for each point u ∈ U do
8: if ALG \ pk

⋃
u is colorful then

9: ALG← ALG \ pk
⋃
u

10: Break
11: end if
12: end for
13: end for
14: Return ALG

Proof. Observe that throughout the search algorithm, we maintain the property that ALG is colorful.
Note that ALG \ pk has k − 1 different colors, and OPT has k different colors. Thus there should be
a point p∗ ∈ OPT whose color is different from all points in ALG \ pk. Note that such p∗ cannot
belong to ALG and thus belongs to OPT \ ALG.

Lemma 3.3. There always exists a point p′ ∈ Nout(pk) (for pk as defined in Line 5) such that
1. ALG \ pk

⋃
p′ is colorful

2. D(p′, q) ≤ D(pk, q)/α+ OPTk(1 + 1/α)

Proof. According to Proposition 3.2, for any current solution ALG with pk /∈ OPT, there exists a
point p∗ ∈ OPT \ ALG such that ALG \ pk ∪ p∗ is colorful. If there exists an edge from pk to p∗,
replacing pk with p∗ is a potential update. We set p′ = p∗ and D(p′, q) ≤ OPTk satisfies the distance
upper bound above.

Otherwise, we let u be the point where p∗ was removed when processing u on line 9 in Algorithm 1.
Because p∗ was not connected from pk, either there exists a point in rep[u] with the same color, or
rep[u] has already got k points with different colors. In the first case, we can set p′ to be the point in
rep[u] with the same color. In the latter case, by pigeon hole principle, there always exists a color in
rep[u] not shown in ALG \ pk. Therefore, we can find a desired p′ ∈ rep[u] and it is connected to pk.

We have proved that the p′ we found satisfies the colorful criteria. Now we will bound its distance
upper bound.

D(p′, q) ≤ D(p∗, q) +D(p′, p∗)

≤ D(p∗, q) +D(p′, u) +D(p∗, u)

≤ D(p∗, q) +D(pk, u)/(2α) +D(pk, u)/(2α) (Line 9 in Algorithm 1)

≤ D(p∗, q) +D(pk, u)/α

≤ D(p∗, q) +D(pk, p
∗)/α (Because u is ordered earlier than p∗ in Algorithm 1)

≤ D(p∗, q) +D(pk, q)/α+D(p∗, q)/α

≤ D(pk, q)/α+ OPTk(1 + 1/α)
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Proof of Theorem 1.1. Regarding the running time, the total number of edges connected from any
point in ALG is bounded by |U | ≤ O(k(8α)d log∆). In each step, the algorithm first sorts all these
edges connected from pk ∈ ALG and then checks whether each of them can be added to the new
ALG set. The total time spent per step is bounded by O(|U | log |U |). The overall time complexity is
Õ
(
k(8α)d log∆

)
per step.

To analyze the approximation ratio, at time step t, we use ALGt = {pt1, ..., ptk} to denote the
current unordered solution. We denote ALGt

k = max
i∈[k]

D(pti, q). According to Algorithm 2 and

Lemma 3.3, if pi is updated at time step t, we have D(pti, q) ≤ D(pt−1
i , q)/α+ OPTk(1 + 1/α). By

an induction argument, if a point pi is updated by t times at the end of time step T , we have

D(pTi , q) ≤
D(p0i ,q)

αt + α+1
α−1OPTk.

We now prove that ALGT
k ≤ max

i

D(p0i ,q)

αT/k + α+1
α−1OPTk. Let i ∈ [k] be the index achieving the

maximal distance upper bound. For the sake of contradiction, if ALGT
k >

D(p0i ,q)

αT/k + α+1
α−1OPTk, this

means that pTi was updated for at most T/k−1 times. By a counting argument, there exists another
index j which was updated for at least T/k + 1 times. However, at the time t when ptj was already

updated for T/k times, D(ptj , q) ≤
D(p0j ,q)

αT/k + α+1
α−1OPTk < ALGT

k ≤ ALGt
k, so the algorithm wouldn’t

have chosen ptj to optimize because it couldn’t have had the maximal distance at that time, leading

to a contradiction. Therefore, we prove that ALGT
k ≤ max

i

D(p0i ,q)

αT/k + α+1
α−1OPTk.

Now we consider the following three cases depending on the value of the maximal D(p0i , q). This
case analysis is similar to the proof in Theorem 3.4 from [IX23].

Case 1: D(p0i , q) > 2Dmax.

Let p∗k be the point having the maximal distance from q in an optimal solution OPT. We know
that for any p0i , we have D(p∗k, q) ≥ D(p0i , q) − D(p0i , p

∗
k) ≥ D(p0i , q) − Dmax ≥ D(p0i , q)/2.

Therefore, the approximation ratio after T optimization steps is upper bounded by
ALGT

k
D(p∗k,q)

≤
D(p0i ,q)

D(p∗k,q)α
T/k + α+1

α−1 ≤
2

αT/k + α+1
α−1 . A simple calculation shows that we can get a (α+1

α−1 + ϵ)

approximate solution in O(k logα
2
ϵ ) steps.

Case 2: D(p0i , q) ≤ 2Dmax and OPTk >
α−1

4(α+1)Dmin.

To satisfy
D(p0i ,q)

αT/k + α+1
α−1OPTk ≤ (α+1

α−1 + ϵ)OPTk, we need
D(p0i ,q)

αT/k ≤ ϵOPTk. Applying the lower

bound OPTk ≥ α−1
4(α+1)Dmin, we can get that T ≥ k logα

2(α+1)∆
(α−1)ϵ suffices.

Case 3: D(p0i , q) ≤ 2Dmax and OPTk ≤ α−1
4(α+1)Dmin.

In this case, we must have k = 1, because otherwise D(p∗k, p
∗
1) ≤ 2D(p∗k, q) < Dmin, violating

the definition of Dmin. Suppose k = 1 and the problem degenerates to the standard nearest
neighbor search problem. After T optimization steps, if pT1 is still not the exact nearest
neighbor, we have D(pT1 , q) ≥ D(pT1 , p

∗
1) − OPT1 ≥ Dmin

2 . Applying the upper bound of

D(pT1 , q) and OPT1, we have Dmin
2 ≤ D(pT1 , q) ≤

D(p01,q)

αT + α+1
α−1OPT1 ≤

D(p01,q)

αT + Dmin
4 . This

can happen only if T ≤ logα
∆
8 .

In conclusion, O(k logα
∆
ϵ ) steps suffice to achieve the desired approximation ratio in Theo-

rem A.5.
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3.3 High-level Intuition about the Generalizations

Given our results on colorful NN, it is relatively simple to extend them to the k′-colorful NN version
with the same bounds. One key contribution is to demonstrate that, in the graph degree bound, the
overhead factor k can be reduced to k/k′ while preserving the approximation quality. This reduces
both the query time bound and the overall space used by the algorithm. This improvement is tight,
in the following sense: When k′ = 1, we recover the bound for colorful NN problem, and when
k′ = k, we recover the standard k-NN bound, where no additional factor is needed.

For our algorithm to work with a generic diversity metric ρ, we use an intuition similar to that in
colorful case. However, instead of pruning an edge from the point p to the point u when p is already
connected to representative vectors v1, · · · , vk of different colors, we now choose the representatives
based on the diversity metric ρ. We find a diverse subset of points in the neighborhood of u (e.g.,
using the greedy Gonzales algorithm for the k-center problem) and connect p only to those selected
points v1, · · · , vk. Again, the main challenge is to demonstrate that a greedy search algorithm can
converge to an approximately optimal solution, given the set of edges we retain. The difficulty
lies in the fact that we can only maintain an approximately diverse subset ALG, in contrast to the
colorful version, where we only needed ALG to contain k different colors. As the algorithm proceeds
with further iterations, the technical difficulty lies in ensuring that the approximation factor does
not grow depending on the number of iterations.

4 Experimental Evaluation

In this section we provide an empirical evaluation of our methods. To this end, we first devise a heuris-
tic adaptation based on our provable algorithms for the k′-colorful NN problem as in Definition 2.5.
As we note below, this problem itself captures several real-world notions of diversity.

At a high level, the difference between our heuristics and our theoretical algorithms is similar to
the difference between the fast- and slow-preprocessing algorithms in DiskANN [JSDS+19, IX23]).
Indeed, we deploy the same construction as in the fast-preprocessing variant of DiskANN, but
modify the pruning procedure to insist that any node u has sufficiently many colorful out-neighbors
before an edge (u, v) can get pruned, in addition to the geometric condition for pruning as in the
original algorithm [JSDS+23]. The number of colorful edges that are needed before pruning can
occur is given by a tunable parameter m in our algorithm, and indeed this is the direct heuristic
analog of step 10 in Algorithm 1. This is a very high-level description, and we refer the interested
reader to Appendix B for the complete pseudo-code of our heuristic algorithms.

Second, we run experiments using our heuristics on several different datasets, both real-world
as well as synthetically generated. We show how our heuristic consistently delivers superior recall
for a fixed latency budget, across datasets when compared to a natural baseline of using a vanilla
DiskANN algorithm and enforcing diversity only via a final post-processing. We stress that both
our real-world datasets are motivated from important shopping scenarios: the data points represent
products and a color of a vector corresponds to either the seller or the brand of the product. It is
then desirable to output results from a diverse set of sellers/brands [Lia19]. Intuitively, displaying
diverse results would lead to increased competition between the sellers, and also simultaneously
higher click probabilities, thereby leading to an increase in revenue of the exchange.

4.1 Experiment Setup

All experiments were run on a Linux Machine with AMD Ryzen Threadripper 3960X 24-Core
Processor CPU’s @ 2.3GHz with 48 vCPUs and 250 GB RAM. All query throughput and latency
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Figure 1: Seller distribution in a real-
world dataset with 20 million base vec-
tors, where the top 7 sellers constitute
more than 90% of the data.

Figure 2: Brand cumulative distribution for Ama-
zon dataset, showing the coverage of the vectors
by the brands in sorted order. The top 10% of
brands cover 86% of the vectors.

measurements are reported for runs with 48 threads.

Datasets. We consider two real-world and three semi-synthetic datasets for evaluation.

• Real-world Seller Dataset: Our first real-world seller dataset comprises of 64-dimensional vector
embeddings of different products from a large advertisement corpus. Each product/vector is
additionally associated with a seller, which becomes its color in our setting. There are 20 million
base vectors, around 2500 sellers, and 5000 query vectors. This distribution is highly skewed,
with an extremely small number (around 7) of sellers constituting more than 90% of the data,
hence naturally motivating the need for enforcing diversity in the search results. The fraction of
products corresponding to the top 20 sellers is shown in Figure 1.

• Amazon Automotive Dataset: Our second real-world dataset is derived from the recently released
Amazon dataset [SAI+24]. It comprises of 384-dimensional vector embeddings of product de-
scriptions listed on Amazon under the Automotive category. Each product/vector is additionally
associated with a brand, which becomes the color. There are around 2 million base vectors
and around 85000 brands. The distribution, while skewed, is far more balanced than the above
seller dataset, with around 10% of the brands accounting for 80% of the vectors as summarized
in Figure 2.

• “Skewed” Semi-synthetic Datasets: We also consider the publicly available real-world Arxiv
dataset [Emb24] which contains OpenAI embeddings of around 2 million paper abstracts into
1536 dimensional vectors and the classical SIFT dataset of 1M vectors in 128 dimensions. These
datasets do not contain any color information, so we synthetically add this information into the
data set. Specifically, for the Arxiv dataset, we generate the color information as follows: for each
vector, with probability 0.9, we assign a color selected from the set {1, 2, 3} uniformly at random,
and with 0.1 probability we assign a color selected uniformly at random from the set {4, . . . , 1000}.
Therefore the number of distinct colors is at most 1000 in this data set. For the SIFT dataset, we
sampled one dominant colors with probability 0.8 and had a uniform distribution over 999 other
colors with probability 0.2.

• “Balanced” Semi-synthetic Dataset: Finally, we also consider another distribution which is globally
uniform, but locally skewed. Indeed, we use the same SIFT dataset for the vector data. For

10



Figure 3: Recall vs Latency for k′ = 1. Figure 4: Recall vs Latency for k′ = 10.
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colors, we randomly partition the space into one thousand buckets, using a random hyperplane
scheme. We then assign a unique primary color for each bucket. Now, each vector within any
specific bucket is assigned its primary color with a high probability of 0.8, and a uniformly random
non-primary color with the remaining probability. It is then easy to see that the distribution is
roughly balanced across colors from a global perspective, but quite skewed in any small local
neighborhood.

Tasks. For all of the above datasets, we seek to retrieve k = 100 nearest neighbors. In one extreme
scenario, we set k′ = 1, i.e., all hundred of the returned results need to be of distinct colors. This
type of setting would be relevant in a retrieval augmented generation setting where documents
are typically chunked into several parts and each part is vectorized; when the user utters a query,
we might want to retrieve the most relevant set of documents (as opposed to the most relevant
chunks, which might all be from the same document) to a given query, before passing on these
contents to a large-language model which then answers the user query. A natural way to enforce
this document-level diversity during retrieval is to treat the document-id of any vector as its color,
and using our diverse search routine.

In another scenario which might have more appeal in shopping or advertisement display, we
seek to retrieve k = 100 nearest neighbors, while having k′ = 10, i.e., no more than ten of the k
results may belong to any single color. This will promote the retrieval to display a diverse set of
sellers/ brands in such scenarios, thereby hopefully increasing user satisfaction and engagement.
This can also capture intent diversity in regular web-search (when we can use a simple classifier to
represent the intent behind the data point as additional meta-data, which becomes the color in our
setting – e.g., car or animal for different images of jaguar, ML or EE concept for transformer, etc.).

Algorithms. Since our algorithms are enhancements of the DiskANN algorithm, we use that as a
natural baseline to compare against.

• Standard DiskANN Build + Post-Processing (Baseline): In this baseline, we build a regular
DiskANN graph without any diversity constraints. To answer a query, we first invoke the regular
DiskANN search algorithm to retrieve r ≫ k candidates, again without any diversity constraints.
Then we iterate over the retrieved elements in sorted order of distances to the query, and greedily
include the ones which do not violate the k′ diversity constraint, until we have k total elements.
The parameter r is tunable at search time, and higher r yields more candidates, meaning more
diverse candidates can be obtained using the post-processing step. However, higher r also
consumes more search complexity.

• Standard DiskANN Build + Diverse Search: In this improvement, we use our diversity-preserving
search Algorithm 7 discussed in the Appendix B, but the index construction remains the standard
DiskANN algorithm.

• Diverse DiskANN Build + Diverse Search: For our complete algorithm, we additionally use our
diversity-aware index construction Algorithm 9 (Appendix B) which ensures sufficient edges are
present to nodes of different colors in any neighborhood.

Parameter setup. For all of the above algorithms, we use fairly standard parameters of list-size
L = 200 and graph-degree 64 when building the graphs. During search, we vary the list-size L at
search time to get varying quality search results and plot the recall@1004 vs average query latency.

4Recall@100 is the size of the intersection of the algorithm’s 100 returned results with the true 100 closest diverse
candidates, averaged over all queries. The ground-truth set of top 100 diverse NNs for any query can be computed by
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m Parameter Build Time (s)

1 50
2 53
10 55

Table 1: Build Times w.r.t m Parameter

4.2 Results

Our results are shown in plots of Figures 3, 4. As one can see, both of our algorithmic innovations
play a crucial role in the overall search quality on the real-world dataset. For example, to achieve
95% recall@100 in the real-world seller dataset, the baseline approach has latencies upwards of 8ms,
while the improved search algorithm brings it down to ≈ 4.5ms. Making both build and search
diverse further brings it down to around ≈ 1.5ms, resulting in an improvement of 5X.

The plot in Figure 4 reveals an interesting phenomenon: for high recalls (say 90%) on the
semi-synthetic arXiv dataset, the post-processing approach has a latency of around 90ms, while the
diverse search algorithm when run on the standard graph has a latency of around 135ms. This is
perhaps because the standard graph construction might not have sufficiently many edges between
nodes of different colors to ensure that the diverse search algorithm converges to a good local
optimum. On the other hand, running the diverse search on the graph constructed keeping diversity
in mind during index construction fares the best, with a latency of only around 25ms. A similar
phenomenon occurs in the SIFT semi-synthetic dataset as well.

4.3 Build Diversity Parameter Ablation

In our heuristic graph construction algorithm (see Algorithms 8 and 9), the graph edges are added by
considering both the geometry of the vectors and the corresponding colors. Loosely, the α-pruning rule
of DiskANN dictates that an edge (u, v) is blocked by an existing edge (u,w) if d(w, v) ≤ d(u, v)/α.
In the original DiskANN algorithm, any edge (u, v) which is blocked is not added. In our setting,
we additionally enforce that an edge needs to be blocked by edges of m different colors to not be
added to the graph, where m is a tuneable parameter. We now perform an ablation capturing the
role of m in the graph quality using the skewed SIFT dataset. Table 1 shows a table with build
times for various indices by varying only the m parameter, and Figure 5 shows the search quality of
these different indices.

Figure 5: Recall vs Latency for SIFT-Skewed dataset with k′ = 10 (left) and k′ = 1 (right) by
varying the diversity parameter m during index construction. Higher m implies more diversity.

iterating over all the vectors in sorted order of distances to the query, and greedily including the ones which do not
violate the k′ diversity constraint, until we have accumulated k total elements.
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A Algorithms for the General Case

In this section we describe our algorithms for the most general case where k′ can take any value
between 1 and k, and the diversity metric ρ is an arbitrary diversity metric. First we start with
definitions, additional preliminaries, and our main theorem statements A.5 and A.6.

A.1 Additional Preliminaries, Problem Formulation, and the Main Theorems

As before, we let (X,D) be the underlying metric space, where D measures the distance between the
points. In this section, we assume that we are given a second metric space (X, ρ) which measures the
diversity between the points. As before P is a subset of n points in X. So for two points p1, p2 ∈ P ,
ρ(p1, p2) measures their pairwise diversity.

Again, we use BD(p, r) (or just B(p, r) for simplicity of exposition) to denote a ball centered
at p with radius r, i.e., BD(p, r) = {u ∈ X : D(u, p) < r}. Similarly, we define the ball Bρ(p, r) =
{u ∈ X : ρ(u, p) < r}.

The following definitions recap the discussion in the introduction.

Definition A.1 (C-diverse). Let S be a set of points in X. We say S is C-diverse if for any two
points p1, p2 ∈ S, we have ρ(p1, p2) ≥ C.

Note that the colorful setting, corresponds to the diversity metric ρ being uniform. That is, we
can set ρ(pi, pj) = 0 when col[pi] = col[pj ], and set ρ(pi, pj) = 1 otherwise. Then, we retrieve the
colorful notion of diversity: a set S of size k is colorful iff it is 1-diverse. We further generalize this
notion to allow the set to contain at most k′ > 1 points that are similar to each other.

Definition A.2 ((k′, C)-diverse). Let S be a set of points in X. We say S is (k′, C)-diverse if for
any point p ∈ S, we have |Bρ(p, C) ∩ S| ≤ k′. Note that being (1, C)-diverse is equivalent to the
notion of C-diverse.

We consider two dual variants of the diverse nearest neighbor search problem, both of which use
two approximation factors: c > 1 is the “dissimilarity” approximation factor with respect to D, and
a > 1 is the “diversity” approximation factor with respect to ρ.

Definition A.3 (Primal Diverse NN). Given a point set P , diversity value C, and the value k′ ≤ k,
the goal of Primal Diverse NN is to preprocess P and create a data structure such that given a
query point q, one can quickly return the closest set S ⊂ P of size k that is (k′, C)-diverse. Here
closeness of a set S is measured by Sk (See Definition 2.3).

In the approximate variant, for any q ∈ X, if OPT is a (k′, C)-diverse set of k points which
minimizes OPTk, then the data structure outputs ALG that is (k′, C/a)-diverse such that ALGk ≤
c · OPTk.
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Definition A.4 (Dual Diverse NN). Given a point set P , a radius R, and the value k′ ≤ k, the
goal of Dual Diverse NN is to preprocess P and create a data structure such that given a query
point q, one can quickly return a set S ⊂ P of size k that lie within the radius R, while maximizing
the diversity.

Formally, for any q ∈ X, let BP (q,R) be the set of points in P within distance R from q, and
let OPT be a (k′, C)-diverse set of k∗ = min(k, |BP (q,R)|) points from BP (q,R) that maximizes C.
Then the data structure outputs ALG of size k∗ that is (k′, C/a)-diverse such that ALGk∗ ≤ cR.

As described in the introduction, the problem addressed in the prior work [AAYI+13] is the
dual diverse NN problem, where the only consider k′ = 1.

Results. Our main theoretical result is captured by the following theorems, which specifies the
approximation and running time guarantees for our algorithms solving the primal and dual versions
of the diverse nearest neighbor problem.

Theorem A.5 (Primal Diverse ANN). Let OPT = {p∗1, ..., p∗k} be a (k′, C)-diverse solution that
minimizes OPTk. Given the graph constructed by Algorithm 3, the search Algorithm 4 finds a

(k′, C/12)-diverse solution ALG with ALGk ≤
(
α+1
α−1 + ϵ

)
OPTk in O

(
k logα

∆
ϵ

)
steps, where each

step takes O
(
(k3/k′)(8α)d log∆

)
time. The data structure uses space O(n(k/k′)(8α)d log∆).

Theorem A.6 (Dual Diverse ANN). Given the graph constructed by Algorithm 3, the search

Algorithm 5 finds a (k′, C/24)-diverse NN solution ALG satisfying ALGk ≤
(
α+1
α−1 + ϵ

)
· R in

Õ
(
(k4/k′)(8α)d log2 ∆

ϵ

)
time, if there exists a (k′, C)-diverse solution OPT with OPTk ≤ R.

A.2 Algorithm

The preprocessing algorithm. The indexing algorithm, which is the same for both the primal
and dual versions of the problem, is shown in Algorithm 3. Line 12 of the algorithm uses the greedy
algorithm of [Gon85], defined below.
Gonzales’ greedy algorithm. Given a set of n points and a parameter m, the algorithm picks
m points as follows. The first point is chosen arbitrarily. Then, in each of the next m − 1 steps,
the algorithm picks the point whose minimum distance w.r.t. ρ to the currently chosen points is
maximized. It is known [Gon85] that this algorithm provides a 2-approximation for the problem
of picking a subset of size m which maximizes the minimum pairwise diversity distance between
the picked points. Moreover, the picked set has an anti-cover property which we will discuss in
Proposition A.10.
Primal Search Algorithm. Algorithm 4 shows the search algorithm for the primal version of
diverse nearest neighbor. The algorithm is analyzed in Section A.3. The initialization step of line 3,
can be done using the following algorithm.
The initialization step. Given a set P of n points equipped with metric distance ρ, and parameters
k′ and k, and lower bound diversity C, the goal is to pick a subset S ⊆ P of size k which is (k′, C/4)
diverse or otherwise output that no (k′, C)-diverse subset S exists. We use the following algorithm

• Initialize SOL = ∅

• While there exists a point p ∈ P such that the ball B = Bρ(p, C/4) has k′ points in it, (i.e.,
|B ∩ P | > k′),

– Add an arbitrary subset of B ∩ P of size k′ to SOL.
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Algorithm 3 Indexing algorithm for diverse NN

1: Input: A set of n points P = {p1, ..., pn}; k is the size of the output; k′ is the parameter in the
diversity definition; α is the parameter used for pruning.

2: Output: A directed graph G = (V,E) where V = {1, ..., n} are associated with the point set P .
3: for each point p ∈ P do
4: Sort all points u ∈ P based on their distance from p and put them in a list L in that order
5: while L is not empty do
6: u← argmin

u∈L
D(u, p)

7: Initialize bag[u]← {u}
8: for each point v ∈ L in order do
9: if D(u, v) ≤ D(p, u)/(2α) then

10: bag[u]← bag[u] ∪ v
11: remove v from L
12: end if
13: end for
14: rep[u]← use the greedy algorithm of Gonzales to choose k/k′ points in bag[u] to approxi-

mately maximize the minimum pairwise diversity.
15: add edges from p to rep[u]
16: Remove u from L
17: end while
18: end for

Algorithm 4 Search algorithm for primal diverse NN

1: Input: A graph G = (V,E) with Nout(p) denoting the out edges of p; query q, number of
optimization steps T ; diversity lower bound C.

2: Output: A set of k points ALG.
3: Initialize ALG = {p1, ..., pk} to be a set of k points that are (k′, C/12)-diverse using the

initialization step proved in Lemma A.7.
4: for i = 1 to T do
5: U ←

⋃
p∈ALG

(Nout(p) ∪ p), and sort U based on their distance from q

6: ALG← the closest k − 1 points in ALG
7: for each point u ∈ U in order do
8: if ALG

⋃
u is (k′, C/12)-diverse then

9: ALG← ALG ∪ u
10: end if
11: if |ALG| = k then
12: Break
13: end if
14: end for
15: end for
16: Return ALG
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– Remove all points in 2B = Bρ(p, C/2) from P .

• Add all remaining points in P to SOL.

• If |SOL| ≥ k, return an arbitrary subset of it of size k, otherwise return ‘no solution’.

Lemma A.7 (Initialization). If P has a subset OPT of size k that is (k′, C)-diverse, our initialization
algorithm finds a (k′, C/4)-diverse subset of size k.

Proof. Note that it is straightforward to see why the set SOL that we get at the end is (k′, C/4)-
diverse. This is because first of all, each time we pick k′ points in a ball B and add them to SOL,
we make sure that no additional point will ever be picked in 2B and thus within distance C/4 of
the points we pick there will be at most k′ points in the end. Second, at the end, every remaining
ball of radius C/4 has less than or equal to k′ points in it. Therefore, we can pick all such points in
the solution and everything we picked will be (k′, C/4) diverse.

Next we argue that we are in fact able to pick at least k points in total which completes the
argument. We do it by following the procedure of our algorithm and comparing it with OPT. At
each iteration of the while loop that we remove P ∩ 2B, we add exactly k′ points from P ∩ 2B to
our solution SOL. Now note that the optimal solution OPT cannot have more than k′ points in 2B
because by triangle inequality any pair of points in 2B have distance at most C, and picking more
than k′ points in this ball contradicts the fact that OPT is (k′, C) diverse. Thus we can have an
one-to-one mapping from each point in OPT ∩ 2B to the k′ points in P ∩ 2B added to SOL. At the
end of the while iteration, we know any unmapped point in OPT still exists in P , so we just map it
to itself. By doing this, we can have an one-to-one mapping from OPT to SOL, which means that
|SOL| ≥ |OPT| = k.

Dual Search Algorithm. Algorithm 5 shows the search algorithm for the dual version of the
diverse nearest neighbor problem. We provide the analysis in Section A.4.

A.3 Analysis of the Primal Diverse NN Algorithm

In this section, we prove Theorem A.5 that gives the approximation and running time guarantees
for Algorithm 3 and Algorithm 4.

Lemma A.8. The graph constructed by Algorithm 3 has degree limit O((k/k′)(8α)d log∆).

Proof. Let’s first bound the number of points not removed by others, then according to Line 14-15
in Algorithm 3, the degree bound will be that times k/k′.

We use Ring(p, r1, r2) to denote the points whose distance from p is larger than r1 but smaller
than r2. For each i ∈ [log2∆], we consider the Ring(p,Dmax/2

i, Dmax/2
i−1) separately. According

to Lemma 2.6, we can cover Ring(p,Dmax/2
i, Dmax/2

i−1) ∩ P using at most m ≤ O((8α)d) small
balls with radius Dmax

2i+2α
. According to the pruning criteria in Line 9, within each small ball, there

will be at most one point remaining. This establishes the degree bound of O((k/k′)(8α)d log∆).

Lemma A.9. Suppose OPT = {p∗1, ..., p∗k} is a (k′, C)-diverse solution with minimized OPTk, and
let ALG = {p1, ..., pk} be the current solution (ordered by distance from q). If pk /∈ OPT, there
exists a point p∗ ∈ OPT \ ALG such that |Bρ(p

∗, C/2) ∩ (ALG \ pk)| < k′ and ALG \ pk
⋃

p∗ is
(k′, C/4)-diverse.

Proof. Recall that we use Bρ(p, r) to denote the ball in the (X, ρ) metric space. Because pk /∈ OPT,
we have OPT = OPT \ ALG ̸= ∅. We repeatedly perform the following operation until OPT gets
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empty: select a point p from OPT, and let z = Bρ(p, C) ∩OPT, and remove z from OPT. By doing
this, we can get a list of points {p∗1, ..., p∗m} and a partition of OPT \ ALG = z1 ∪ z2... ∪ zm. By
definition, we have the following properties:

• {p∗1, ..., p∗m} ∩ ALG = ∅

• zi ∩ zj = ∅ for i ̸= j

•
∑

i |zi| = |OPT \ ALG| = |ALG \ OPT|

Now let wi = Bρ(p
∗
i , C/2) ∩ (ALG \ pk \ OPT). Because all the Bρ(p

∗
i , C/2) balls are disjoint,∑

i |wi| ≤ |ALG \ pk \OPT| < |OPT \ALG| =
∑

i |zi|, there must exist an i such that |wi| < |zi|. For
that i, we have that |Bρ(p

∗
i , C/2) ∩ (ALG \ pk)| is equal to

=|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |Bρ(p

∗
i , C/2) ∩ (ALG \ pk \ OPT)| (Because pk /∈ OPT)

=|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |wi|

<|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |zi|

≤|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |Bρ(p

∗
i , C) ∩ (OPT \ ALG)|

≤|Bρ(p
∗
i , C) ∩ (ALG ∩ OPT)|+ |Bρ(p

∗
i , C) ∩ (OPT \ ALG)|

=|Bρ(p
∗
i , C) ∩ OPT|

≤k′

Therefore, we get Bρ(p
∗
i , C/2)∩(ALG\pk) < k′. Now, for any point p ∈ Bρ(p

∗
i , C/4), |Bρ(p, C/4)∩

(ALG \ pk)| ≤ |Bρ(p
∗
i , C/2) ∩ (ALG \ pk)| < k′, so we know that ALG \ pk ∪ p∗i is (k′, C/4)-diverse.

The following is the well-known anti-cover property of the greedy algorithm of Gonzales whose
proof we include for the sake of completeness.

Proposition A.10. In Line 14 of Algorithm 3, let rep[u] be the output of greedily choosing k/k′

points in bag[u] maximizing minimum pairwise diversity. If a point p ∈ bag[u] \ rep[u], we have
min

v∈rep[u]
ρ(p, v) ≤ min

v1,v2∈rep[u]
ρ(v1, v2).

Proof. For the sake of contradiction, suppose min
v∈rep[u]

ρ(p, v) > min
v1,v2∈rep[u]

ρ(v1, v2), and the pairwise

diversity minimizer is achieved by min
v1,v2∈rep[u]

ρ(v1, v2) = ρ(x, y). Without loss of generality, we assume

x is added to rep[u] before y. At the time step t when y was added to rept[u], min
v∈rept[u]

ρ(y, v) = ρ(x, y)

and min
v∈rept[u]

ρ(p, v) ≥ min
v∈rep[u]

ρ(p, v) > ρ(x, y), so y wouldn’t have been chosen by the greedy algorithm.

Therefore, we have derived a contradiction.

Lemma A.11. There always exists a point p′ connected from some point w ∈ ALG such that

1. ALG \ pk
⋃
p′ is (k′, C/12)-diverse

2. D(p′, q) ≤ D(pk, q)/α+ OPTk(1 + 1/α)

Proof. According to Lemma A.9, for any current solution ALG with pk /∈ OPT, there exists a point
p∗ ∈ OPT \ ALG such that ALG \ pk ∪ p∗ is (k′, C/4)-diverse. Let w ∈ ALG be the closest point to
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p∗. If there exists an edge from w to p∗, replacing pk with p∗ is a potential update. We set p′ = p∗

and D(p′, q) ≤ OPTk satisfies the distance upper bound above.
Otherwise, we let u be the point where p∗ ∈ bag[u] but not selected into rep[u]. For any point

p′ ∈ bag[u], D(p′, u) < D(w, u)/(2α), so D(p′, p∗) < D(w, u)/α < D(w, p∗). This means that all
points in bag[u] are closer to p∗ than w, so they can’t belong to ALG. In the following, we consider
two cases depending on whether min

v∈rep[u]
ρ(p∗, v) ≥ C/3. In each case, we will find a desired p′ ∈ rep[u]

and it is connected to w.

1. min
v∈rep[u]

ρ(p∗, v) < C/3: In this case, there exists another point p′ ∈ rep[u] with D(p∗, p′) ≤

D(p∗, u)+D(u, p′) ≤ D(w, u)/α and ρ(p∗, p′) < C/3. Because |Bρ(p
∗, C/2)

⋂
(ALG \ pk)| < k′,

we have |Bρ(p
′, C/6)

⋂
(ALG \ pk)| ⊆ |Bρ(p

∗, C/2)
⋂
(ALG \ pk)| < k′, so the addition of such

p′ satisfies that ALG \ pk ∪ p′ is (k′, C/12)-diverse.

2. min
v∈rep[u]

ρ(p∗, v) ≥ C/3: In this case, according to Proposition A.10, we have rep[u] =

{z1, ..., zk/k′} ⊆ B(u,D(u,w)/(2α)) all with diversity distance at least C/3 from each other.
Therefore, for any pi ∈ ALG \ pk, there can’t exist two zj and zj′ s.t. ρ(pi, zj) < C/6 and
ρ(pi, zj′) < C/6. By a counting argument, we can find at least one zi s.t. |Bρ(zi, C/6)∩ (ALG\
pk)| < k′. Finally, we let p′ = zi where ALG \ pk ∪ p′ is (k′, C/12)-diverse.

We have proved that the p′ we found satisfies the (k′, C/12)-diverse criteria. Now we will bound
its distance upper bound.

D(p′, q) ≤ D(p∗, q) +D(p′, p∗) ≤ D(p∗, q) +D(p′, u) +D(p∗, u)

≤ D(p∗, q) +D(w, u)/(2α) +D(w, u)/(2α) (Line 9 in Algorithm 3)

≤ D(p∗, q) +D(w, u)/α

≤ D(p∗, q) +D(w, p∗)/α (Because u is ordered earlier than p∗)

≤ D(p∗, q) +D(w, q)/α+D(p∗, q)/α ≤ D(pk, q)/α+ OPTk(1 + 1/α)

Proof of Theorem A.5. Regarding the running time, the total number of edges connected from any
point in ALG is bounded by |U | ≤ O((k2/k′)(8α)d log∆). In each step, the algorithm first sorts all
these edges and then checks whether each of them can be added to the new ALG set. The total
time spent per step is O(k|U |+ |U | log |U |). Usually, we assume k ≫ log |U |, and we can have the
overall time complexity to be O

(
(k3/k′)(8α)d log∆

)
per step.

To analyze the approximation ratio, at time step t, we use ALGt = {pt1, ..., ptk} to denote the
current unordered solution. We denote ALGt

k = max
i∈[k]

D(pti, q). According to Algorithm 4 and

Lemma A.11, if pi is updated at time step t, we have D(pti, q) ≤ D(pt−1
i , q)/α + OPTk(1 + 1/α).

By an induction argument, if a point pi is updated by t times at the end of time step T , we have

D(pTi , q) ≤
D(p0i ,q)

αt + α+1
α−1OPTk.

We now prove that ALGT
k ≤ max

i

D(p0i ,q)

αT/k + α+1
α−1OPTk. Let i ∈ [k] be the index achieving the

maximal distance upper bound. For the sake of contradiction, if ALGT
k >

D(p0i ,q)

αT/k + α+1
α−1OPTk, this

means that pTi was updated for at most T/k−1 times. By a counting argument, there exists another
index j which was updated for at least T/k + 1 times. However, at the time t when ptj was already

updated for T/k times, D(ptj , q) ≤
D(p0j ,q)

αT/k + α+1
α−1OPTk < ALGT

k ≤ ALGt
k, so the algorithm wouldn’t
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have chosen ptj to optimize cause it couldn’t have had the maximal distance at that time, leading to

a contradiction. Therefore, we prove that ALGT
k ≤ max

i

D(p0i ,q)

αT/k + α+1
α−1OPTk.

Now we consider the following three cases depending on the value of the maximal D(p0i , q). The
case analysis here is similar to the proof in Theorem 3.4 from [IX23].

Case 1: D(p0i , q) > 2Dmax. Let p∗k be the point having the maximal distance from q in an optimal
solution OPT. We know that for any p0i , we have D(p∗k, q) ≥ D(p0i , q)−D(p0i , p

∗
k) ≥ D(p0i , q)−

Dmax ≥ D(p0i , q)/2. Therefore, the approximation ratio after T optimization steps is upper

bounded by
ALGT

k
D(p∗k,q)

≤ D(p0i ,q)

D(p∗k,q)α
T/k + α+1

α−1 ≤
2

αT/k + α+1
α−1 . A simple calculation shows that we

can get a (α+1
α−1 + ϵ) approximate solution in O(k logα

2
ϵ ) steps.

Case 2: D(p0i , q) ≤ 2Dmax and OPTk >
α−1

4(α+1)Dmin. To satisfy
D(p0i ,q)

αT/k + α+1
α−1OPTk ≤ (α+1

α−1 + ϵ)OPTk,

we need
D(p0i ,q)

αT/k ≤ ϵOPTk. Applying the lower bound OPTk ≥ α−1
4(α+1)Dmin, we can get that

T ≥ k logα
2(α+1)∆
(α−1)ϵ suffices.

Case 3: D(p0i , q) ≤ 2Dmax and OPTk ≤ α−1
4(α+1)Dmin. In this case, we must have k = 1, because

otherwise D(p∗k, p
∗
1) ≤ 2D(p∗k, q) < Dmin,violating the definition of Dmin. Suppose k = 1 and

the problem degenerates to the standard nearest neighbor search problem. After T optimization
steps, if pT1 is still not the exact nearest neighbor, we have D(pT1 , q) ≥ D(pT1 , p

∗
1)−OPT1 ≥ Dmin

2 .

Applying the upper bound of D(pT1 , q) and OPT1, we have Dmin
2 ≤ D(pT1 , q) ≤

D(p01,q)

αT +
α+1
α−1OPT1 ≤

D(p01,q)

αT + Dmin
4 . This can happen only if T ≤ logα

∆
8 .

A.4 Analysis for the Dual Diverse NN Algorithm

In this section we analyze Algorithm 5.

Proof of Theorem A.6. After applying the binary search to the initialization algorithm in Lemma A.7,
we get an initial (k′, C)-diverse solution and we know there doesn’t exist a (k′, 4C)-diverse solution.
Therefore, we set C = 4C to be the upper bound on the maximal diversity we can achieve.

Then our Algorithm 5 is basically adding a binary search to Algorithm 4. Invoking the analysis
from Theorem A.5, if there exists a (k′, C)-diverse solution OPT = {p∗1, ..., p∗k} with OPTk ≤ R, we

can find a (k′, C/12)-diverse solution ALG = {p1, ..., pk} with ALGk ≤
(
α+1
α−1 + ϵ

)
·R in O(k logα

∆
ϵ )

steps where each step takes Õ((k3/k′)(8α)d log∆) time. As a result, each time when the algorithm
enters the while loop on Line 5 in Algorithm 5, we know that there doesn’t exist a (k′, C)-diverse
solution with maximal distance smaller than R. When we exit the while loop, the current C
value is at least 1/2 of the optimal C value, and the current ALG solution we get is at least
(k′, C/24)-diverse.

B Algorithm Implementation

To conduct our experiments, we provide the heuristic algorithm that we designed for the k′-colorful
nearest neighbor problem, based on the provable algorithms provided in the main paper. The
provable indexing algorithm (3) has a runtime which is quadratic in the size of the data set and
is slow in practice. This situation mimics the original DiskANN algorithm [JSDS+19], where the
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Algorithm 5 Search algorithm for dual diverse NN

1: Input: A graph G = (V,E) with Nout(p) denoting the out edges of p; query q; distance bound
R; distance approximation error ϵ.

2: Output: A set of k points ALG.
3: Use binary search to find a maximal C such that the initialization step proved in Lemma A.7

outputs a (k′, C)-diverse set ALG = {p1, ..., pk}
4: C ← 4C
5: while max

p∈ALG
D(p, q) > (α+1

α−1 + ϵ) ·R do

6: C ← C/2
7: for i = 1 to c · k logα ∆

ϵ do
8: U ←

⋃
p∈ALG

(Nout(p) ∪ p) and sort U based on their distance from q

9: ALG← the closest k − 1 points in ALG
10: for each point u ∈ U in order do
11: if ALG

⋃
u is (k′, C/12)-diverse then

12: ALG← ALG ∪ u
13: Break
14: end if
15: end for
16: end for
17: end while
18: Return ALG

“slow preprocessing” algorithm has provable guarantees [IX23] but quadratic running time, and was
replaced by a heuristic “fast preprocessing” algorithm used in the actual implementation [JSDS+23].
Here, Algorithm 9 offers a fast method tailored for the k′-colorful case, using several heuristics to
improve the runtime. In the following section, we present the pseudocode for the procedures: search,
index build, and the pruning procedure required for the index build.

Diverse Search. Our diverse search procedure, is a greedy graph-based local search method. In
our search method, in each step, we maintain a list of best and diverse nodes, ensuring that at most
k′ points are selected in the list per color. In each iteration of our search algorithm, we choose
the best unexplored node and examine its out neighbors. From the union of our current list and
the out neighbors, we select the best diverse set of nodes while satisfying the k′-colorful diversity
constraint—meaning no color can have more than k′ points in the updated list. To identify the
optimal diverse set from the union, we use a priority queue designed to accommodate the diversity
constraint. Below, we present the pseudocode for this diverse priority queue.

Building on the previous explanation of the diverse priority queue, we outline the description of
our diverse search procedure as follows.

Diverse Prune. A key subroutine in our index-building algorithm is the prune procedure. Given
a node p and a set of potential outgoing edges V , the standard prune procedure removes an edge to a
vertex w if there exists a vertex u such that an edge p→ u exists and the condition D(u,w) ≤ D(p,w)

α
is satisfied. Intuitively, this means that to reach w, we would first reach u, thus making multiplicative
progress and eliminating the need for the edge p → w, which contributes to the sparsity of the
graph.
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Algorithm 6 Insert (p, d, c) into DiversePriorityQueue (Q, L, k′)

1: Input: Current queue Q, tuple (p, d, c) of (point, distance, color) for new insertion, maximum
size L of the queue, maximum size k′ per color.

2: Output: Updated queue Q after inserting (p, d, c) which maintains the best set of at most L
points and at most k′ points of each color.

3: Let count(c)← number of elements in Q with the color c.
4: Let maxDist(c)← maximum distance of an element in Q with color c.
5: if count(c) < k′ or d < maxDist(c) then
6: Insert (p, d, c) into Q
7: if count(c) > k′ then
8: Remove the element with the maximum distance in Q having color c.
9: end if

10: end if
11: if |Q| > L then
12: Remove the element with the maximum distance in Q.
13: end if

Algorithm 7 DiverseSearch(G, s, q, k′, k, L)

1: Input: A directed graph G, start node s, query q, max per color parameter k′, search list size
L.

2: Output: A set of k points such that there are at most k′ points from any color.
3: Initialize DiversePriorityQueue L ← {(s,D(s, q), col[s])} with color parameter k′ and size

parameter L.
4: Initialize a set of expanded nodes V ← ∅
5: while L \ V ̸= ∅ do
6: Let p∗ ← argmin

p∈L\V
D(p, q)

7: V ← V ∪ {p∗}
8: Insert {(p,D(p, q), col[p]) : p ∈ Nout(p

∗)} to L
9: end while

10: Return [top k NNs from L;V]

23



However, to account for diversity, the outgoing edges from the node must also be diverse and
enable access to multiple colors. To address this requirement, we modify the standard prune
procedure to incorporate the diversity constraint. The details of our revised algorithm are provided
next.

Algorithm 8 DiversePrune(p,V, α,R,m)

1: Input: A point p, set V, prune parameter α, degree parameter R, and diversity parameter m.
2: Output: A subset V ′ ⊆ V of cardinality at most R to which edges are added.
3: Sort all points u ∈ V based on their distances from p and add them to list L in that order.
4: Initialize sets blockers[u]← ∅ for each u ∈ V .
5: while L is not empty do
6: u← argmin

u∈L
D(u, p)

7: V ′ ← V ′ ∪ {u} and L ← L \ {u}
8: if |V ′| = R then
9: break

10: end if
11: for each point w ∈ L do
12: if D(u,w) ≤ D(p, w)/α then
13: blockers[w]← blockers[w] ∪ {col(u)}
14: if |blockers[w]| = m or col(u) = col(w) then
15: L ← L \ {w}
16: end if
17: end if
18: end for
19: end while
20: Return V ′

Diverse Index. Our indexing algorithm follows the same approach as the DiskANN “fast
preprocessing” heuristic implementation [JSDS+23], but we replace the search and prune procedures
in their implementation with our diverse search and diverse prune procedures. The details of our
index-building procedure are provided below.

Algorithm 9 DiverseIndex(P, α, L,R,m)

1: Input: A set of n points P = {p1, . . . , pn}, prune parameter α, search list size L, degree parameter R,
and diversity parameter m.

2: Output: A directed graph G over P with out-degree at most R.
3: Let s denote the estimated medoid of P .
4: Initialize G with start node s.
5: for each pi ∈ P do
6: Let [L;V]← DiverseSearch (G, s, pi, k

′ = L/m,L,L)
7: Let V ′ = DiversePrune (pi,V, α,R,m).
8: Add node pi to G and set Nout(pi) = V ′ (out-going edges from pi to V ′).
9: for p ∈ Nout(pi) do

10: Update Nout(p)← Nout(p) ∪ {pi}.
11: if |Nout(p)| > R then
12: Run DiversePrune(p,Nout(p), α,R,m) to update out-neighbors of p.
13: end if
14: end for
15: end for
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