
SPARSECL: Sparse Contrastive Learning for
Contradiction Retrieval

Haike Xu1∗ Zongyu Lin2∗ Yizhou Sun2 Kai-Wei Chang2 Piotr Indyk1

1MIT 2University of California Los Angeles
https://sparsecl.github.io/

Abstract

Contradiction retrieval refers to identifying and extracting documents that explicitly
disagree with or refute the content of a query, which is important to many down-
stream applications like fact checking and data cleaning. To retrieve contradiction
argument to the query from large document corpora, existing methods such as
similarity search and crossencoder models exhibit significant limitations. The
former struggles to capture the essence of contradiction due to its inherent nature
of favoring similarity, while the latter suffers from computational inefficiency,
especially when the size of corpora is large. To address these challenges, we
introduce a novel approach: SPARSECL that leverages specially trained sentence
embeddings designed to preserve subtle, contradictory nuances between sentences.
Our method utilizes a combined metric of cosine similarity and a sparsity function
to efficiently identify and retrieve documents that contradict a given query. This
approach dramatically enhances the speed of contradiction detection by reducing
the need for exhaustive document comparisons to simple vector calculations. We
validate our model using the Arguana dataset, a benchmark dataset specifically
geared towards contradiction retrieval, as well as synthetic contradictions generated
from the MSMARCO and HotpotQA datasets using GPT-4. Our experiments
demonstrate the efficacy of our approach not only in contradiction retrieval with
more than 30% accuracy improvements on MSMARCO and HotpotQA across
different model architectures but also in applications such as cleaning corrupted
corpora to restore high-quality QA retrieval. This paper outlines a promising
direction for improving the accuracy and efficiency of contradiction retrieval in
large-scale text corpora.

1 Introduction

Figure 1: Performance gains in
NDCG@10 score across different
sentence embedding models and
datasets, showcasing the effective-
ness and robustness of our SPAR-
SECL compared with standard con-
trastive learning (CL)

MSMARCO HotpotQA
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
D

CG
@

10
 S

co
re +32%

+40%

+43%

+40%
+30% +38%

Methods
BGE CL
BGE SparseCL
UAE CL
UAE SparseCL
GTE CL
GTE SparseCL

We study the problem of contradiction retrieval. Given a large document corpus and a query passage,
the goal is to retrieve document(s) in the corpus that contradict the query, assuming they exist. This

∗Equal Contribution

Preprint. Under review.

ar
X

iv
:2

40
6.

10
74

6v
1

 [c
s.C

L]
 1

5
Ju

n
20

24

Figure 2: Comparison of our SPARSECL with Cross-Encoder and Contrastive-Learning based Bi-
Encoder for contradiction retrieval.

problem has a large number of applications, including counter-argument detection [23] and fact
verification [21]. The standard approaches to retrieving contradictions are two-fold. One is to use a bi-
encoder [26, 8, 9] that maps each document to a feature space such that two contradicting documents
are mapped close to each other (e.g., according to the cosine metric) and use nearest neighbor search
algorithms. The second approach is to train a cross-encoder model [26] that determines whether two
documents contradict each other, and apply it to each document or passage in the corpus.

Unfortunately, both methods suffer from limitations. The first approach is inherently incapable of
representing the “contradiction relation” between the documents, due to the fact that the cosine metric
is transitive: if A is similar to B, and B is similar to C, then A is also similar to C. As an example,
consider an original sentence and its paraphrase in Table 5. Both of them contradict the sentence
in the third column but they are not contradicting each other. The second approach, which uses a
cross-encoder model, can capture the contradiction between sentences to some extent, but it is much
more computationally expensive. Our experiment in Appendix F shows that compared with standard
vector computation, running a cross-encoder is at least 200 times slower.

In this paper, we propose to overcome these limitations by introducing SPARSECL for efficient
contradiction retrieval using sparse-aware sentence embeddings. The key idea behind our approach
is to train a sentence embedding model to preserve sparsity of differences between the contradicted
sentence embeddings. When answering a query, we calculate a score between the query and each
document in the corpus, based on both the cosine similarity and the sparsity of the difference between
their embeddings, and retrieve the ones with the highest scores. Our specific measure of sparsity
is defined by the Hoyer measure of sparsity [5], which uses the scaled ratio of the ℓ1 norm and the
ℓ2 norm of a vector as a proxy of the number of non-zero entries in the vector. Unlike the cosine
metric, the Hoyer measure is not transitive (please see Appendix C for an example), which avoids the
limitations of the former. At the same time this method is much more efficient than a cross-encoder,
as both the cosine metric and the Hoyer measure are easy to compute given the embeddings. The
Hoyer sparsity histogram of our trained embeddings. is displayed in Figure 3

We first evaluate our method on the counter-argument detection dataset Arguana [23], which to the
best of our knowledge, is the only publicly available dataset suitable for testing contradiction retrieval.
In addition, we generate two synthetic data sets, where contradictions for documents in MSMARCO
[13] and HotpotQA [29] datasets are synthetically generated using GPT-4 [1]. Our experiments
demonstrate the efficacy of our approach in contradiction retrieval, as seen in Table 1. We also
apply our method to corrupted corpus cleaning problem, where the goal is to filter out contradictory
sentences in a corrupted corpus and preserve good QA retrieval accuracy.

To summarize. our contributions can be divided into three folds:

• We introduce a novel contradiction retrieval method that employs specially trained sentence
embeddings combined with a metric that includes both cosine similarity and the Hoyer

2

measure of sparsity. This approach effectively captures the essence of contradiction while
being computationally efficient.

• Our method demonstrates superior performance on both real and synthetic datasets, achiev-
ing significant improvements in contradiction retrieval metrics compared to existing methods.
This underscores the effectiveness of our embedding and scoring approach.

• We apply our contradiction retrieval method to the problem of corpus cleaning, showcasing
its utility in removing contradictions from corrupted datasets to maintain high-quality QA
retrieval. This application highlights the practical benefits of our approach in real-world
scenarios.

0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25
Hoyer sparsity

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Standard sentence embedding
Random pairs
Paraphrases
Contradictions

0.2 0.3 0.4 0.5 0.6 0.7
Hoyer sparsity

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

Our sentence embedding
Random pairs
Paraphrases
Contradictions

Figure 3: Histograms for the Hoyer sparsity of different pairs of sentence embedding differences on
HotpotQA test set. The left figure is the histogram produced by a standard sentence embedding model
(“bge-base-en-v1.5”), where the median Hoyer sparsity values for random pairs, paraphrases, and
contradictions are 0.212, 0.211, 0.211. The right figure is the histogram produced by our sentence
embedding model fine-tuned from “bge-base-en-v1.5” using our SPARSECL method, where the me-
dian Hoyer sparsity values for random pairs, paraphrases, and contradictions are 0.212, 0.281, 0.632.

2 Related Work

Counter Argument Retrieval A direct application of our contradiction retrieval task in “counter-
argument retrieval”. Since the curation of Arguana dataset by [23], there has been a few previous work
on retrieving the best counter-argument for a given argument [14, 18]. In terms of methods, [23] uses
a weighted sum of different word and embedding similarities and [18] designs a "Bipolar-encoder"
and a classification head. We believe that our method relying only on cosine similarity and sparsity is
simpler than theirs and produces better results in the experiment. In addition, some analyses in the
counter-argument retrieval papers are specific to the “debate” setting, e.g. they rely on topic, stance,
premise/conclusion, and some other inherent structures in debates for help, which may prevent their
methods from being generalized to broader scenarios.

Fact verification and LLM hallucination Addressing the hallucination problem in Large Language
Models has been a subject of many research efforts in recent years. According to the three types of
different hallucinations in [31], here we only focus on those so called “Fact-Conflicting Hallucination”
where the outputs of LLM contradict real world knowledge. The most straightforward way to mitigate
this hallucination issue is to assume an external groundtruth knowledge source and augment LLM’s
outputs with an information retrieval system. There have been a few works on this line showing the
success of this method [15, 11]. This practice is very similar to "Fact-Verification" [21, 16] where the
task is to judge whether a claim is true or false based on a given knowledge base.

However, as pointed out by [31], in the era of LLM, the external knowledge base can encompass the
whole internet. It is impossible to assume that all the information there are perfectly correct and there
may exist conflicting information within the database. In the context of our paper, instead of using
a groundtruth database to check an external claim, our goal is to check the internal contradictions
between different documents in an unknown corpus.

Learning augmented LLM and retrieval corpus attack Augmenting large language models
with retrieval has been shown to be useful for many purposes. Recently, there have been a few

3

works [32, 34] studying the vulnerability of retrieval system from adversarial attack. In specific, they
show that adding a few corrupted data to the corpus will significantly drop the retrieval accuracy.
This phenomenon bring our attention to the necessity of checking the factuality of the knowledge
database. Note that the type of corrupted documents considered by their papers are different from ours.
While they consider the injection of adversarially generated documents, we consider the existence of
contradicted documents as a natural part of the corpus. Also their purpose is to show the effect of
adversarial attack, while we provide a defense method for a certain kind of corrupted database.

3 Method

Problem Formulation We consider the contradiction retrieval problem: given a passage corpus
C = {p1, p2, ...pn} and a query passage q, retrieve the “best” passage p∗ that contradicts q. We
assume that several similar passages supporting q might exist in the corpus C.

Embedding based method Judging whether two passages contradict each other is a standard
Natural Language Inference task and can be easily tackled by many off-the-shelf language models
[22, 28], . However, to retrieve the best candidate from the corpus, we have to iterate the whole corpus,
or at least send the candidates retrieved by similarity search to the language model to determine if
they constitute contradiction. This is time consuming, given that there are potentially many similar
passages in the corpus. Therefore, in our paper, we mainly focus on those methods that only rely on
their passage embeddings. Specifically, we want to design a simple scoring function F that given the
embeddings of two passages, outputs a score between [0, 1], indicating the likelihood that they are
contradicting each other.

Sparsity Enhanced Embeddings Following the idea from counter-argument retrieval papers [23],
such a score function should be a combination of similarity and dissimilarity functions. Observe
that a dissimilarity function is basically a negation of a similarity function, so the authors of [23]
design several different similarity functions and set the scoring function to maximize one of them and
minimize another. Here, instead of enumerating different similarity functions, we consider another
notion: the “sparsity” of their embedding differences. The basic intuition is as follows. Suppose that
all sentences are represented as vectors in a “semantic” basis, where each coordinate represents one
clearly identifiable semantic meaning. Then a contradiction between two passages should manifest
itself as a difference in a few coordinates, while other coordinates should be quite close to each other.
The issue, however, is that we do not know how to construct the appropriate basis, and the sparsity is
defined with respect to a fixed coordinate system. Nevertheless, following this intuition, we fine-tune
sentence embedding models using contrastive learning, by rewarding the sparsity of the difference
vectors between embeddings of contradicting passages. Please see Figure 3 for the Hoyer sparsity
histogram of our trained embeddings.

SPARSECL We use contrastive learning to fine-tune any pretrained sentence embedding model to
generate the desired sparsity-enhanced embeddings. The choice of positive and negative examples
are exactly the reverse of the choice we make when the training sets are Natural Language Inference
datasets. The positive example for a passage is its contradiction passage in the training set. The hard
negative example for a passage is its similar passage in the training set. There are also other random
in-batch passages as soft negative examples. The sparsity function we choose here is Hoyer sparsity
function from [5]. Let h1 and h2 be two sentence embeddings and their embeddings have dimension
d. We define

Hoyer(h1, h2) =

(√
d− ∥h1 − h2∥1

∥h1 − h2∥2

)
/
(√

d− 1
)
.

This is a transformed version of the ratio of the l1 to the l2 norm, with output normalized to [0, 1].

Finally, for each training tuple (xi, x
+
i , x

−
i) with their embeddings (hi, h

+
i , h

−
i), batch size N , and

temperature τ , its loss function is defined as

li = − log
eHoyer(hi,h

+
i)/τ∑N

j=1

(
eHoyer(hi,h

+
j)/τ + eHoyer(hi,h

−
j)/τ

) .
4

Scoring function for contradiction retrieval For the score function for contradiction retrieval,
we use a weighted sum of the standard cosine similarity and our sparsity function. Note that the
cosine similarity is provided separately by any off-the-shelf sentence embedding model in a zeroshot
manner. It can can also be fine-tuned. Let E() be the standard sentence embedding model and Es()
be our sparsity-enhanced sentence embedding model trained by SPARSECL. Then the final score
function for contradiction retrieval is

F (p1, p2) = cos (E(p1), E(p2)) + α · Hoyer(Es(p1), Es(p2))).

where α is a scalar tuned using the validation set. Note that the criterion for contradiction is usually
case-dependent, so it is necessary that we reserve a parameter to adapt to different notions of
contradiction. To get the answer passages, we calculate the score function for all passages and report
the top 10 of them2.

4 Experiments

We test our contradiction retrieval method on a counterargument retrieval task Arguana [23] and
two synthetic datasets adapted from HotpotQA[29] and MSMARCO[13]. Then, we apply our
contradiction retrieval task to a new experimental setting: retrieval corpus cleaning. Finally, we
perform ablation studies to explain the functionality of each component of our method.

4.1 Counter-argument Retrieval

Dataset Arguana is a dataset curated in [23], where the author provide a corpus of 6753 argument-
counterargument pairs, taken from 1069 debates with 15 themes on idebate.org. For each debate, the
arguments are further divided into two opposing stances (pro and con). For each stance, there are
paired arguments and counter-arguments. The dataset is split into the training set (60% of the data),
the validation set (20%), and the test set (20%). This ensures that data from each individual debate is
included in only one set and that debates from every theme are represented in every set. The task
goal is: given an argument, retrieve its best counter-argument.

Training We use Arguana’s training set to fine-tune our sparsity-enhanced sentence embedding
model via SPARSECL. To construct our training data, for each argument and counter-argument pair
(xi, x

c
i) in the Arguana’s training set, we set xc

i to be the positive example of xi. We select all the
other arguments and counter-arguments from the same debate and stance as xi’s hard negatives. We
fine-tune three pretrained sentence embedding models of different sizes (“UAE-Large-V1” [8], “GTE-
large-en-v1.5” [9], and “bge-base-en-v1.5” [26]) selected from the top 10 models on HuggingFace’s
MTEB Retrieval Arguana leaderboard. Please refer to Table 7 for our training parameters.

Baselines We mainly compare our method to the similarity-based method. Since Arguana is one
of the datasets in the MTEB Retrieval benchmark, directly searching for the similar passages in the
corpus can already produce quite good test results. We report the performance of the state-of-the-art
pretrained sentence embedding models including “GTE-large-en-v1.5”, “UAE-Large-V1”, “bge-base-
en-v1.5”, “SFR-Embedding-Mistral” [10], “voyage-lite-02-instruct” when used to directly retrieve
the most similar argument to each query (Zeroshot). For a fair comparison, we also report the results
of fine-tuning these models using standard contrastive learning (CL) on the same dataset used for
SPARSECL.

Test The Arguana test set consists of 1401 query arguments and counter-argument pairs. Following
the standard test setting, we search for an answer of a query within the whole corpus (training set
+ validation set + test set) and report NDCG@10 scores. The α parameter we used in the score
function varies across different datasets and models. We select α based on the best NDCG@10 score
on the validation set. Please refer to Table 8 in Appendix E for our specific α choices and parameter
searching details. When we directly use a model to provide cosine similarity scores in a zeroshot

2In the actual implementation, for time efficiency, we first use FAISS [4] to retrieve the top K candidates
with cosine similarity and then rerank them using our cosine + sparsity score function. We set a very large K
(e.g. K = 1000) so that empirically this is almost equivalent to searching for the maximal cosine + sparsity
score in the whole corpus

5

Model Method Arguana MSMARCO HotpotQA
SFR-Mistral Zeroshot (Cosine) 0.672 0.605 0.595

VOYAGE Zeroshot (Cosine) 0.703 N/A N/A

BGE Zeroshot (Cosine) 0.658 0.600 0.595
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.704 0.909 0.967

BGE CL (Cosine) 0.687 0.564 0.562
CL (Cosine) + SPARSECL(Hoyer) 0.722 0.883 0.965

UAE Zeroshot (Cosine) 0.683 0.597 0.587
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.732 0.902 0.955

UAE CL (Cosine) 0.712 0.442 0.541
CL (Cosine) + SPARSECL(Hoyer) 0.750 0.869 0.943

GTE Zeroshot (Cosine) 0.725 0.603 0.597
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.797 0.953 0.977

GTE CL (Cosine) 0.778 0.651 0.597
CL (Cosine) + SPARSECL(Hoyer) 0.813 0.952 0.979

Table 1: Results for different models and methods on the contradiction retrieval task. Experiments
are run on the Arguana dataset [23] and modified MSMARCO[13] and HotpotQA[29] datasets. We
report NDCG@10 score here, the higher the better. “UAE” stands for “UAE-Large-V1”, “BGE”
stands for “bge-base-en-v1.5”, “GTE” stands for “gte-large-en-v1.5”, “SFR-Mistral” stands for
“SFR-Embedding-Mistral”, “VOYAGE” stands for “voyage-lite-02-instruct”. The “Method” column
denotes the score function used to retrieve contradictions. We consider two score functions: cosine
similarity and cosine similarity plus Hoyer sparsity. “Zeroshot” denotes the direct testing of the model
without any fine-tuning. “CL” denotes fine-tuning using standard contrastive learning. “SPARSECL”
denotes fine-tuning using Hoyer sparsity contrastive learning (our method).

manner, we use its default pooler (“cls”) for that model. When we use a fine-tuned model (via either
CL or SPARSECL) to provide either cosine similarity scores or sparsity scores, we use the “avg”
pooler.

Results The detailed results are presented in Table 1. Across all models—“GTE-large-en-v1.5”,
“UAE-Large-V1”, and “bge-base-en-v1.5”—an average improvement of 4.5% in counter-argument
retrieval were observed when incorporating our SPARSECL to either Zeroshot or CL. Furthermore,
our combination of GTE with CL (Cosine) + SPARSECL (Hoyer) method achieving NDCG@10
score 0.813 is also the highest score on Arguana as far as we know (we also report the Zeroshot
results of the other top 3 sentence embedding models “SFR-Mistral” and “VOYAGE” on MTEB for
reference.)

This pattern of enhancement was consistently observed regardless of whether the embedding models
were fine-tuned or not. Notably, standard cosine similarity fine-tuning alone also contributed to
performance gains. For instance, fine-tuned GTE models showed an increase from 0.725 to 0.778 on
the Arguana dataset using standard cosine similarity alone. This suggests that the Arguana dataset
inherently favors scenarios where the counterargument is the most similar passage to the query, which
may amplify the benefits of fine-tuning.

These findings highlight the robustness of our approach, particularly when traditional similarity
metrics are augmented with sparsity measures to capture subtle nuances in contradiction. Further
insights can be gleaned from our ablation study detailed in Section 4.4, where we analyze the impact
of similar non-contradictory passages within the corpus.

4.2 Contradiction retrieval on synthetic datasets

The task of “contradiction retrieval" generalizes beyond the argument and counter-argument relation-
ship in the debate area, e.g. passages with conflicting factual information should also be considered
as “contradictions". To test our method’s validity for these more general forms of contradictions, we
construct two synthetic datasets to test our method’s performance.

6

Data set construction Given a QA retrieval dataset, e.g. MSMARCO [13], for each answer passage
xi of a query qi, we use Large Language Models (specifically, GPT-4 [1]) to generate 3 synthetic
answers paraphrasing xi or contradicting xi. Let the generated paraphrases be {x+

i1, x
+
i2, x

+
i3} and

the generated contradictions be {x−
i1, x

−
i2, x

−
i3, }. We then delete xi from the corpus and add the set

of generated passages {x+
i1, x

+
i2, x

+
i3, x

−
i1, x

−
i2, x

−
i3} to the corpus. In the test phrase, the queries are

{x+
i1, x

+
i2, x

+
i3}, each of which has the same answers {x−

i1, x
−
i2, x

−
i3, }. We generate the paraphrases

and contradictions for the validation set, test set, and a randomly sampled 10000 documents from the
training set.

The reason why we only keep the generated text but not the original one is that all the GPT-4 generated
passages are easily distinguishable from the human written ones, which makes language models
vulnerable to shortcuts. We performed a random inspection to check that all the paraphrases and
contradictions are generated as intended. Please refer to Table 5 to see two examples of the generated
paraphrases and contradictions. We report the prompts and the temperature parameter we use to
generate these data in Appendix A.

Training To prepare the training data for contrastive learning, for each paraphrase and contradiction
set {x+

i1, x
+
i2, x

+
i3, x

−
i1, x

−
i2, x

−
i3} generated from the same original passage, we form 9 pieces of training

data (x+
ia, x

−
ib, x

+
ic) for 9 different combinations of paraphrases, contradictions, and a randomly

selected hard negative from the remaining two paraphrases. We then perform SPARSECL to fine-tune
a sparsity-enhanced embedding.

Baseline We are not aware of any accurate methods for retrieving contradictions that only rely on
sentence embeddings. Therefore, the only baseline we provide is a standard contrastive learning
with cosine similarity (CL), using the same training data (contradictions as positive examples and
paraphrases as negative examples) that we use for our SPARSECL.

Test Similar to the testing strategy for Arguana, we define our corpus to consist of all generated
text (training set + validation set + test set). We query the paraphrases {x+

i1, x
+
i2, x

+
i3} of the original

passage xi and set the groundtruth answers to be the generated contradictions {x−
i1, x

−
i2, x

−
i3}. We

select the α parameter with the maximal NDCG@10 score on the validation set and report the
NDCG@10 score obtained by applying that α to the test set.

The results are reported in Table 1. For both MSMARCO and HotpotQA data sets, incorporating
our SPARSECL method achieves over 30 percentage points gain compared with the pure cosine-
similarity-based method. The large improvement is due to the existence of paraphrases in the corpus,
that are strong confounders for the pure similarity-based methods. We also observe that fine-tuning
using standard contrastive learning with cosine similarity (CL) yields performance gains for Arguana
but not for MSMARCO and HotpotQA. Our explanation is that, for MSMARCO and HotpotQA, the
generated paraphrases are more similar to the query than the contradictions. Therefore fine-tuning
with the standard cosine similarity is unlikely to work.

4.3 Retrieval Corpus Cleaning

As an application of contradiction retrieval, we test how well our method can be used to find
inconsistencies within a corpus and clean the corpus for future training or QA retrieval. We first
inject corrupted data contradicting existing documents into the corpus, and measure the retrieval
accuracy degradation for retrieved answers. Then, we use our contradiction retrieval method to filter
out corrupted data and measure the retrieval accuracy again.

Data Similarly to the data generation in Section 4.2, we construct a new corpus containing LLM-
generated paraphrases and contradictions based on MSMARCO and HotpotQA data sets. We start
with an original corpus C and its subset S. We then generate paraphrases and contradictions for S as
in Section 4.2.

For HotpotQA, S contains all answer documents for the test set, 10000 answer documents sampled
from the training set, and 1000 answer documents sampled from the development set. For MS-
MARCO, S contains all answer documents for the dev set, and 11000 answer documents sampled
from the training set.

7

We then curate 3 different versions of the corpus based on the original corpus C and the subset S.

• The initial corpus C+: For each original answer document x in S, we remove x from C and
instead add 3 LLM-generated paraphrases {x+

1 , x
+
2 , x

+
3 } to C. The result forms the initial

corpus C+.
• The corrupted corpus C−: For each original answer document x in S, we generate 3

contradictions {x−
1 , x

−
2 , x

−
3 } and add them to C+ to get the corrupted corpus C−.

• The cleaned corpus C♮: We apply our data cleaning procedure to the corrupted corpus C−,
obtaining the cleaned dataset C♮.

Test We test the retrieval accuracy (NDCG@10) and the corruption ratio (Recall@10) for answering
the original queries in the test set. The goal of our experiment is to show how retrieval algorithms
behave on these three constructed corpora C+, C−, and C♮.

Data Cleaning Our sparsity-based method can only identify contradictions within the data set,
but we do not know which element in a contradiction pair is correct. To perform data cleaning, we
make the assumption that for each original passage x ∈ S, we are given one of its paraphrases as the
groundtruth. Then, our task is reduced to searching for passages contradicting a given ground truth
document and filtering them out.

Method We use the GTE-large-en-v1.5 model without fine-tuning to provide the cosine similarity
score for this data cleaning experiment. We use the model from our contradiction retrieval experiment
in section 4.2 trained on MSMARCO and HotpotQA to provide the sparsity score. The α parameter
is also identical to the one used in section 4.2. For each ground truth document, we filter out the top 3
scored documents from the corpus.

Note that the optimal choice of α for contradiction retrieval may not be the optimal choice for data
cleaning because of different test objectives. We apply the same α only for simplicity, as our goal is
to demonstrate the validity of applying our method to the data cleaning problem.

Datasets Original Corrupted Cleaned
Acc Acc Corrupt Acc Corrupt

HotpotQA 0.676 0.567 0.443 0.652 0.020

MSMARCO 0.435 0.381 0.413 0.414 0.040
Table 2: Experimental results for the impact of corrupted data on QA retrieval and contradiction
retrieval for filtration. “Acc” represents the retrieval accuracy measured by the NDCG@10 score and
“Corrupt” represents the fraction of returned passages that are corrupted, as measured by Recall@10.

Table 2 shows the results. We observe that the retrieval accuracy on the corrupted corpus drops
significantly, as the generated contradictions cause the embedding model to retrieve them as query
answers. The corruption ratio measures the average fraction of the top-10 retrieved documents that
correspond to the generated contradicting passages. This performance is above 40% for both datasets.
After performing our corpus cleaning procedure, which searches for the passages contradicting the
given ground truth documents and removes the top-3 for each of them, we can recover more than
60% of the performance loss due to corruption and at the same time reduce the corruption ratio to
less than 5%.

4.4 Ablation Studies

We perform the following two ablation studies to further understand sparsity-based retrieval method.

Arguana retrieval results analysis In the standard Arguana dataset, even though the task is
to retrieve the counter-argument for the query, the retrieval based solely on similarity still gives
reasonable results. This means that counter-arguments are also the most similar arguments to the
query, which makes the data set an imperfect test bed for testing contradiction retrieval.

To further compare our sparsity-based method and the pure similarity-based method , we augment
Arguana by adding arguments’ paraphrases to the corpus. Specifically, for any argument x and

8

its counter-argument x− in the original corpus C, we use GPT-4 to generate three paraphrases
{x1, x2, x3} of x. We then form three new corpora with an increasing number of paraphrases added
to the corpus: C1 contains all x1 and x−, C2 contains all x1, x2, and x−, and C3 contains all x1, x2,
x3, and x−.

In the testing phase, we query the counter-arguments for one of x’s paraphrases, the answer of which
should still be x−. We observe how the performance varies when the corpora we retrieve from are
C1, C2, C3.

Models Methods C1 C2 C3

BGE Zeroshot (Cosine) 0.561 0.355 0.267
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.682 0.679 0.675

BGE CL (Cosine) 0.471 0.303 0.228
CL (Cosine) + SPARSECL(Hoyer) 0.619 0.618 0.615

Table 3: Counter-argument retrieval results on the augmented Arguana dataset with different numbers
of similar arguments in the corpus. Cx denotes testing counter-argument retrieval on the corpus with
x existing paraphrases (including itself) of the query argument.

We present our experimental results in Table 3. As the number of paraphrases in corpus increases
from 1 to 3, the performance of the similarity-based method drops significantly. Thus it is reasonable
to deduce that, as the number of similar arguments in the corpus increases further, the NDCG@10
scores for similarity-based methods will converge to 0. On the other hand, the performance of our
sparsity-based method is stable with respect to the number of paraphrases in the corpus.

Different sparsity functions Our intuition in Section 3 does not give clear guidelines on which
sparsity function to use in our SPARSECL. Thus, we also experiment with different choices of sparsity
functions, selected from [5]. Specifically, we consider two other sparsity functions (l2/l1 and κ4),
which are scale invariant and differentiable (see Table III in [5]). Note that both of these two sparsity
functions have ranges [0, 1], and higher values of those functions correspond to sparser vectors.

l2
l1

=
∥h1 − h2∥2
∥h1 − h2∥1

κ4 =
∥h1 − h2∥44
∥h1 − h2∥22

.

Model Method l2/l1 κ4 Hoyer Cosine (baseline)

BGE Zeroshot (Cosine) + SPARSECL 0.675 0.684 0.704 0.657

BGE CL (Cosine) + SPARSECL 0.702 0.707 0.722 0.687
Table 4: NDCG@10 scores for Arguana using SPARSECL with different sparsity functions. We also
report two baselines that use only the cosine similarity (zeroshot and contrastive learning).

As per Table 4, compared to the cosine similarity method, the combination of the cosine similarity
score with the sparsity score trained by SPARSECL, yields higher NDCG@10 scores for each sparsity
function. However, Hoyer sparsity yields the highest accuracy. We believe that simple sparsity
functions have a more benign optimization landscape and thus are easier for language models to
optimize.

5 Conclusion

In this work, we introduced a novel approach to contradiction retrieval that leverages sparsity-
enhanced sentence embeddings combined with cosine similarity to efficiently identify contradictions
in large document corpora. This method addresses the limitations of the traditional similarity search
as well as computational inefficiencies of the cross-encoder models, proving its effectiveness on
benchmark datasets like Arguana and on synthetic contradictions retrieval from MSMARCO and
HotpotQA. An interesting question that we do not study here but deserves further study is whether it
is possible to perform nearest neighbor search w.r.t.the Hoyer sparsity measure in sublinear time, as
opposed to performing linear scan that we use in this work.

9

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Han-
naneh Hajishirzi, and Wen-tau Yih. Task-aware retrieval with instructions. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 3650–3675, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[3] Limeng Cui and Dongwon Lee. Coaid: Covid-19 healthcare misinformation dataset, 2020.

[4] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

[5] Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on
Information Theory, 55(10):4723–4741, 2009.

[6] Rohan Jha, Charles Lovering, and Ellie Pavlick. Does data augmentation improve generalization
in nlp? arXiv preprint arXiv:2004.15012, 2020.

[7] Philippe Laban, Tobias Schnabel, Paul N. Bennett, and Marti A. Hearst. SummaC: Re-visiting
NLI-based models for inconsistency detection in summarization. Transactions of the Association
for Computational Linguistics, 10:163–177, 2022.

[8] Xianming Li and Jing Li. Angle-optimized text embeddings. arXiv preprint arXiv:2309.12871,
2023.

[9] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards general text embeddings with multi-stage contrastive learning. arXiv preprint
arXiv:2308.03281, 2023.

[10] Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfr-embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research
Blog, 2024.

[11] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru,
Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard
Grave, Yann LeCun, and Thomas Scialom. Augmented language models: a survey, 2023.

[12] Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text
embedding benchmark. In Andreas Vlachos and Isabelle Augenstein, editors, Proceedings of
the 17th Conference of the European Chapter of the Association for Computational Linguistics,
pages 2014–2037, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics.

[13] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. MS MARCO: A human generated machine reading comprehension dataset. CoRR,
abs/1611.09268, 2016.

[14] Matan Orbach, Yonatan Bilu, Assaf Toledo, Dan Lahav, Michal Jacovi, Ranit Aharonov, and
Noam Slonim. Out of the echo chamber: Detecting countering debate speeches. arXiv preprint
arXiv:2005.01157, 2020.

[15] Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong
Wen, and Haifeng Wang. Investigating the factual knowledge boundary of large language
models with retrieval augmentation, 2023.

[16] Tal Schuster, Adam Fisch, and Regina Barzilay. Get your vitamin C! robust fact verification
with contrastive evidence. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou, editors, Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 624–643,
Online, June 2021. Association for Computational Linguistics.

10

[17] Gautam Kishore Shahi and Durgesh Nandini. FakeCovid- A Multilingual Cross-domain Fact
Check News Dataset for COVID-19. ICWSM, Jun 2020.

[18] Hongguang Shi, Shuirong Cao, and Cam-Tu Nguyen. Revisiting the role of similarity and
dissimilarity inbest counter argument retrieval. arXiv preprint arXiv:2304.08807, 2023.

[19] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng. Bull.,
24(4):35–43, 2001.

[20] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych.
BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[21] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER:
a large-scale dataset for fact extraction and VERification. In Marilyn Walker, Heng Ji, and
Amanda Stent, editors, Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[22] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[23] Henning Wachsmuth, Shahbaz Syed, and Benno Stein. Retrieval of the best counterargument
without prior topic knowledge. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 241–251, 2018.

[24] Xiaoyue Wang, Jianyou Wang, Weili Cao, Kaicheng Wang, Ramamohan Paturi, and Leon
Bergen. Birco: A benchmark of information retrieval tasks with complex objectives, 2024.

[25] Zhihao Wang, Zongyu Lin, Peiqi Liu, Guidong ZHeng, Junjie Wen, Xianxin Chen, Yujun Chen,
and Zhilin Yang. Learning to detect noisy labels using model-based features. arXiv preprint
arXiv:2212.13767, 2022.

[26] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources
to advance general chinese embedding, 2023.

[27] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10687–10698, 2020.

[28] Haike Xu, Zongyu Lin, Jing Zhou, Yanan Zheng, and Zhilin Yang. A universal discriminator
for zero-shot generalization. arXiv preprint arXiv:2211.08099, 2022.

[29] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics.

[30] Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo,
Xiaoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. MIRACL: A Multilingual
Retrieval Dataset Covering 18 Diverse Languages. Transactions of the Association for Compu-
tational Linguistics, 11:1114–1131, 09 2023.

[31] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo
Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming
Shi. Siren’s song in the ai ocean: A survey on hallucination in large language models, 2023.

[32] Zexuan Zhong, Ziqing Huang, Alexander Wettig, and Danqi Chen. Poisoning retrieval corpora
by injecting adversarial passages. arXiv preprint arXiv:2310.19156, 2023.

11

[33] Jing Zhou, Zongyu Lin, Yanan Zheng, Jian Li, and Zhilin Yang. Not all tasks are born equal:
Understanding zero-shot generalization. In The Eleventh International Conference on Learning
Representations, 2022.

[34] Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. Poisonedrag: Knowledge poisoning
attacks to retrieval-augmented generation of large language models, 2024.

12

A Data generation details for MSMARCO and HotpotQA experiments in
Section 4.2

We use “gpt-4-turbo” to generate paraphrases and contradictions for our experiment in Section 4.2.
The prompts we use are in Table 6. We set temperature = 1 and n = 3 (to generate 3 outputs).
Please see Table 5 for some examples of generated paraphrases and contradictions.

Datasets Orginal Paraphrase Contradiction

MSMARCO In addition to the high
financial value of higher
education, higher
education also makes
individuals much more
intelligent than what
they would be with just a
high school education...

Beyond its significant
monetary worth, higher
education substantially
enhances a person’s
intelligence compared to
merely completing high
school...

Besides the low
financial significance of
higher education, higher
education often renders
individuals no more
intelligent than they
would be with just a high
school education...

HotpotQA Ice hockey is a contact
team sport played on ice,
usually in a rink, in
which two teams of
skaters use their sticks to
shoot a vulcanized
rubber puck into their
opponent’s net to score
points...

Ice hockey is a contact
sport where two teams
compete on an ice
surface, typically in a
rink, using sticks to hit a
vulcanized rubber puck
into the opposing team’s
net to earn points...

Ice hockey is a
non-contact team sport
played on grass, often in
an open field, where two
teams of players use
their feet to kick a soft
leather ball into their
opponent’s goal to score
points...

Table 5: Examples of passages from MSMARCO and HotpotQA datasets, with their generated
paraphrases, and generated contradictions. Highlighted key-words represent exact matchings or
contradictions

Task Prompt

Generating
paraphrases

Paraphrase the given paragraph keeping its original meaning. Do not add
information that is not present in the original paragraph. Your response should
be as indistinguishable to the original paragraph as possible in terms of length,
language style, and format. Begin your answer directly without any introductory
words.

Generating
contradictions

Rewrite the given paragraph to contradict the original content. Ensure the
revised paragraph changes the factuality of the original. Your response should be
as indistinguishable to the original paragraph as possible in terms of length,
language style, and format. Begin your answer directly without any introductory
words.

Table 6: Prompts used to generate paraphrases and contradictions for MSMARCO and HotpotQA
documents.

B Additional related work

Complex retrieval tasks Information retrieval is a well-studied area [19] and there have been
many benchmarks for testing retrieval performance such as BEIR [20], MTEB [12], and MIRACL
[30]. However, most of the datasets, through varying in some degrees, focus only on "retrieving
the most similar document". People have noted that there exist some more complex retrieval tasks
(e.g. Arguana [23] retrieves counter-arguments that refute a query argument), and build retrieval
benchmark focusing on complex retrival goals, e.g. BIRCO [24] and BERRI [2].

To retrieve according to different instructions, [2] trains TART, a multi-task retrieval system with task
instructions attached as prompts in front of the query content. However, when answering queries,

13

they are still searching for the most similar sentence embedding, though the prompt is different for
different tasks. As far as we know, our paper studies the first non-similarity-based search problem.

Data inconsistency and misinformation detection Data inconsistency, refers to the factually
incorrectness in the content, might come from different sources, including their natural existence
in the corpus [17, 3], data augmentations [6, 33], and pseudo labeling [27, 25], which might lead
to negative influence if serving as training dataset. There have been a few datasets on detecting the
factually wrong information. For example, [7] detects whether a given summary is consistent with
the input document, [17, 3] detects whether a given COVID-19 related news is true or false. Most
of these datasets lie in a specific domain and require external knowledge to judge the correctness of
each piece of data. On the contrary, the “data inconsistency” notion we consider in our paper doesn’t
depend on any external knowledge, but is a relationship between different pieces of data in the same
corpus. The goal of our method is to find such “contradiction pairs” in corpus efficiently, but not to
judge which one is consistent with the real world knowledge.

C An example demonstrating the non-transitivity of Hoyer sparsity

Here, we provide a simple example to demonstrate that using Hoyer sparsity to measure “contradiction”
can bypass the challenging scenario for similarity metrics where “A contradicts C, B contradicts C,
but A doesn’t contradict B”.

Specifically, we will construct three embeddings with dimension d for sentences A, B, and C, such
that Hoyer(A,C) > 1 − O

(
1√
d

)
, Hoyer(B,C) > 1 − O

(
1√
d

)
, and Hoyer(A,B) < O(1√

d
),

exactly matching their contradiction relationship.

We construct the following d dimensional embeddings where ϵ < 1
d can be any parameter.

A = (1, 0, 0, . . . , 0)
B = (1, 0, ϵ, . . . , ϵ)
C = (0, 1, 0, . . . , 0)

Then, we calculate their l1 over l2 ratios:

∥A−B∥1
∥A−B∥2

=
√
d− 2

∥A− C∥1
∥A− C∥2

=
√
2

∥B − C∥1
∥B − C∥2

=
2 + (d− 2)ϵ√
2 + (d− 2)ϵ2

<
3√
2

Applying their l1 over l2 ratio bounds to the Hoyer sparsity formula will give us the desired relation-
ship.

D Compute Resources

Most of our experiments are not so computationally extensive, which can be run by one single A6000
GPU. We run our major experiments on A6000 and A100 GPUs.

E Hyper-parameters for Training and Inference

Here we present the training details (Table 7) for our experiments on Arguana and synthetic HotpotQA
and MSMARCO. We report the α parameters tuned on the validation set in Table 8. We search
the α parameters from the range [0, 10] by first dividing the range into 10 intervals, calculating the
NDCG@10 score on the validation set for each interval’s midpoint, and then diving into that interval
for a finer search. We stop when the interval range is smaller than 0.01

14

Models Model Size Backbone CL SPARSECL temp bzep lr ep lr

GTE-large-en-v1.5 434M BERT + RoPE + GLU 1 1e-5 3 2e-5 0.01 64
UAE-Large-V1 335M BERT 1 2e-5 3 2e-5 0.05 64

bge-base-en-v1.5 109M BERT 1 2e-5 3 2e-5 0.02 64
Table 7: Training parameters for Arguana. We set max sequence length to be 512 for Arguana dataset
and 256 for HotpotQA and MSMARCO datasets.

Models Methods Arguana MSMARCO HotpotQA

GTE Zeroshot (Cosine) + SPARSECL(Hoyer) 0.88 2.65 2.36
CL (Cosine) + SPARSECL(Hoyer) 0.20 0.35 5.44

UAE Zeroshot (Cosine) + SPARSECL(Hoyer) 0.15 1.00 1.06
CL (Cosine) + SPARSECL(Hoyer) 0.12 1.01 1.22

BGE Zeroshot (Cosine) + SPARSECL(Hoyer) 0.18 2.19 4.82
CL (Cosine) + SPARSECL(Hoyer) 0.12 2.53 3.72

Table 8: α choices for different methods and datasets

F Efficiency test of cross-encoder and vector calculation

To further compare the efficiency of cross-encoders and Hoyer sparsity calculations, we perform the
following experiments:

• We choose “bge-reranker-base” and “bge-reranker-large” to be our cross-encoders. We
use them to calculate the similarity between one query from Arguana’s test set and 100
documents from Arguana’s corpus. We report the average running time of this method for
100 queries.

• We choose “bge-base-en-v1.5” and “bge-large-en-v1.5” to be our bi-encoders. Suppose we
have preprocessed all the sentence embeddings. We use it to calculate the Hoyer sparsity
between one query embedding from Arguana’s test set and 100 document embeddings from
Arguana’s corpus. We report the average running time of this method for 100 queries.

Please see Table 9 for the running time of different methods. We can see that the calculation of Hoyer
sparsity is at least 200 times faster than running a cross-encoder.

Cross-encoder Model size Time

bge-reranker-base 278M 0.8832s
bge-reranker-large 560M 1.6022s

Bi-encoder Embedding dimension Time

bge-base-en-v1.5 768 0.0029s
bge-large-en-v1.5 1024 0.0036s

Table 9: Average running time for calculating the score functions between one Arguana query and
100 Arguana documents

15

	Introduction
	Related Work
	Method
	Experiments
	Counter-argument Retrieval
	Contradiction retrieval on synthetic datasets
	Retrieval Corpus Cleaning
	Ablation Studies

	Conclusion
	Data generation details for MSMARCO and HotpotQA experiments in Section 4.2
	Additional related work
	An example demonstrating the non-transitivity of Hoyer sparsity
	Compute Resources
	Hyper-parameters for Training and Inference
	Efficiency test of cross-encoder and vector calculation

