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Abstract—Federated learning is a distributed learning
paradigm that allows clients to perform collaborative model
training without sharing their local data. Despite its benefit,
federated learning is vulnerable to backdoor attacks where
malicious clients inject backdoors into the global model aggre-
gation process so that the resulting model will misclassify the
samples with backdoor triggers while performing normally on
the benign samples. Existing defenses against backdoor attacks
either are effective only under very specific attack models or
severely deteriorate the model performance on benign samples.
To address these deficiencies, this paper proposes pFedSAM, a
new federated learning method based on partial model personal-
ization and sharpness-aware training. Theoretically, we analyze
the convergence properties of pFedSAM for the general non-
convex and heterogeneous data setting. Empirically, we conduct
extensive experiments on a suite of federated datasets and show
the superiority of pFedSAM over state-of-the-art robust baselines
in terms of both robustness and accuracy.

Index Terms—federated learning, backdoor attack, personal-
ization, sharpness-aware minimization

I. INTRODUCTION

Federated learning (FL) has emerged as a transformative
paradigm in machine learning, enabling collaborative model
training among distributed clients while keeping their data
locally. Although FL has achieved success in many appli-
cations, such as medical image analysis and the Internet
of things, FL systems confront significant security threats
due to their distributed nature, particularly from backdoor
attacks [1]-[4]. Specifically, by stealthily injecting backdoor
triggers into the trained model, attackers aim to mislead
any input with the backdoor trigger to a target label while
ensuring that the backdoored model’s performance on benign
samples remains unaffected. Such stealthy manipulation makes
backdoor attacks one of the most serious threats to the real-
world deployment of FL systems.

Existing defenses against backdoor attacks in FL can be
roughly divided into two categories [5]: anomaly update
detection and robust federated training. The first category
consists of anomaly detection approaches that can identify
whether the submitted updates are malicious and then remove
the malicious ones, such as Krum [6], Trimmed Mean [7],
and Bulyan [8]. However, these methods are effective only
under very specific attack models (i.e., attack strategies of
the adversary and data distribution of the benign clients). The

second category comprises robust federated training methods
that can directly mitigate backdoor attacks during the training
process, such as norm clipping [4] and adding noise [9]. These
solutions require modification of the individual weights of be-
nign model updates and therefore result in severe degradation
of model performance on benign samples. Moreover, most of
the aforementioned works only work in the single-shot attack
setting where a small number of malicious clients participate
in a few rounds but fail under the stronger continuous attack
setting where malicious clients continuously participate in the
entire FL training period [10].

A few recent works [11]-[13] have demonstrated that per-
sonalized federated learning (pFL) methods that were orig-
inally designed to improve accuracy under heterogeneous
data distribution could also provide some robustness benefits.
Specifically, Li et al. [12] and Lin et al. [13] utilize model
personalization to defend against untargeted poisoning attacks
that aim to corrupt FL models’ prediction performance or
make FL training diverge, but do not address the more
challenging problem of backdoor attacks. Lin et al. [11] further
demonstrate that pFL with partial model-sharing can notably
enhance robustness against backdoor attacks in comparison
to pFL with full model-sharing under the continuous attack
setting, but it solely focuses on the black-box setting where
malicious adversaries can only manipulate training data and
have no control of the training process. Considering the
white-box setting where malicious clients can control the
local training process, [14] demonstrates that pFL methods
with partial model-sharing remain vulnerable to backdoor
attacks. Therefore, a straightforward implementation of pFL
is susceptible to new attacks tailored for pFL and does not
ensure robustness against real-world backdoor attacks.

In this paper, we propose pFedSAM, a novel personalized
FL method that can inherently defend against both black-
box and white-box state-of-the-art backdoor attacks while
maintaining the benign performance of the models. This is
achieved by two key modules: partial model personalization
and sharpness-aware training. The partial model personaliza-
tion lets each client own its locally preserved linear classifier
to block the propagation of backdoor features from mali-
cious clients to benign clients. The sharpness-aware training
generates local flat model updates with better stability and
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Fig. 1: An overview of pFedSAM under backdoor attacks.
Partial model personalization allows each client to retain a
personal classifier locally and only share the feature extractor
with the server for aggregation. The malicious client performs
the backdoor attack and sends the malicious updates, while the
benign client engages in sharpness-aware training and sends
the benign updates to the server. The server aggregates the
shared feature extractor and sends it back to all clients.

perturbation resilience, resulting in a globally flat model that
is robust to the injection of backdoor features from malicious
clients. The overview of pFedSAM is shown in Fig. 1. We
summarize our main contributions as follows.

« We propose pFedSAM, a novel pFL method that offers
better robustness against both black-box and white-box
backdoor attacks while retaining similar or superior ac-
curacy on the benign model performance relative to other
common robust FL. methods.

e We provide convergence guarantees for our proposed
pFedSAM method under the general nonconvex and non-
IID data distribution setting.

e We conduct an extensive evaluation of the proposed
method on several FL benchmark datasets by comparing
it with state-of-the-art baselines under the stronger and
stealthier continuous black-box and white-box backdoor
attacks. The empirical results show that the proposed
method can largely outperform the baselines in terms of
both attack success rate and main task accuracy.

II. BACKGROUND AND RELATED WORKS
A. Personalized Federated Learning

We consider a typical FL system involving N clients and
one server. Each client ¢ € [N] holds a local training dataset
D; ={¢&; }]’.3:1'1 where &; ; is a training example and D; is the
size of the local training dataset. The total number of training
examples across N devices is D = Zivzl D;. Let w € R4
denote the parameters of a model and f;(w,¢; ;) be the loss
of the model on the sample &; ;. Then the loss function of
client 7 is Fi(w) = (1/D;) 32 ;ep, fi(wi, &,;). The objective
of standard FL is to find model parameters that minimize the
weighted average loss over all clients:

minzzj-vzl OéiFi(w), (1)

where o; > 0 is the weight assigned to client ¢, and
ZZN:1 a; = 1. However, standard FL can be ineffective and
undesirable under data heterogeneity [12]. Instead, pFL aims
to train local personalized models instead of a single global
model across all clients, which is more adaptive to each client’s
local dataset and has been shown to improve model accuracy
under practical non-IID scenarios. Based on the form of model
sharing with the server, existing pFL methods can be divided
into two categories: full model-sharing and partial model-
sharing. 1) Full model-sharing [12]: The objective can be
summarized as
f{ninN Zi\; a; (Fy(w;) + NiR(wo, w;)) 2)
WO, Wi fj=1
where wy is a reference model shared among all clients, w;
means the local personalized model owned by client 7, and \;
is the weight of the regularization term R(wg,w;) for client
i. 2) Partial model-sharing [15], [16]: The objective can be
summarized as

. N

915,{12711]2\]:1 Zizl asz(d); hz)v 3)
where the full model parameters w; of each client ¢ are divided
into two parts: shared parameters ¢ € R% and personal
parameters h; € R%, ie. w; = (¢, h;).

As shown in [16], partial model-sharing personalization can
obtain most of the benefit of full model-sharing personalization
with only a small fraction of personalized parameters. Our
work builds on FedRep [15], a pFL algorithm with partial
model-sharing that focuses on learning shared representations
and personal classifier heads between clients but does not
consider robustness. In contrast, our work provides a novel
robust FL framework. Moreover, a major different ingredient
of our algorithm is the sharpness-aware training for shared
representation learning, which finds backdoor-resilient global
shared parameters in each FL round.

B. Backdoor Attacks in Federated Learning

In FL backdoor attacks, the adversary controls a group
of malicious clients to manipulate their local models, which
are then aggregated into the global model and affect its
properties. In particular, the adversary wants the backdoored
global model to mislead the prediction on inputs with the
backdoor trigger to a target label while behaving normally on
all benign samples. There are generally two categories for FL
backdoor attacks: 1) black-box setting, where malicious clients
tamper with a fraction of their training data, also known as
data poisoning, to inject a backdoor into their local models
during the training [3]; and 2) white-box setting, where the
adversary poisons the training data of the malicious clients
and manipulates their training processes by modifying the
resulting uploaded models, also known as model poisoning,
to maximize attack impact while avoiding being detected.
Examples of white-box backdoor attacks include constrain-
and-scale attack [1], projected gradient descent attack with
model replacement [2], DBA [3], and BapFL [14].



C. SAM training

SAM [17] and its variant [18] are initially developed to
enhance model generalization by simultaneously minimizing
the loss and its sharpness. This technique, which seeks flat
minima, has recently been extended to provide robustness
against backdoor attacks in works [19]. However, they focus
on the fine-tuning stage in centralized learning. The aspects
of defense during the training phase and in FL remain unex-
plored. We utilize the SAM training technique as part of the
genre of backdoor defense. To the best of our knowledge, this
is the first initiative to implement SAM training for backdoor
defense during the training phase in an FL setting.

III. PFEDSAM: FEDERATED LEARNING WITH
PERSONALIZED SHARPNESS-AWARE MINIMIZATION

A. pFedSAM Algorithm

We present the pFedSAM algorithm to solve Problem (3)
and describe its detailed procedures in Algorithm 1. The
overall training process of pFedSAM consists of updating
two parts of a client’s model in an alternating manner: local
personal parameters h; and global shared parameters ¢.

At the beginning of each t¢-th round, the server randomly
samples a subset of the clients S? to join the learning process
(line 2) and broadcasts the current global version of the shared
parameters ¢! to clients in S* (line 3). Then, each selected
client i € &' performs local training in two stages. First,
it fixes the local version of the shared parameters ¢; to be
the received global one ¢! and then performs 7, iterations
of SGD to update the personal parameters h; (lines 5-9).
Second, it fixes the personal parameters h; to be the newly
updated one hz’”‘ obtained from the first stage (line 10) and
then updates the shared parameters ¢;. Here, instead of seeking
out shared parameters that simply have low training loss by
minimizing F;(¢, h;), we propose to find shared parameters
whose entire neighborhoods have uniformly low training loss.
This can be formulated as solving the following Sharpness-
Aware Minimization (SAM) problem that jointly minimizes
the loss function and smooths the loss landscape:

ming max ¢, <, Fi(¢ + € hi ™), 4)

where p is a predefined constant controlling the radius of the
perturbation. Intuitively, through optimizing the objective (4),
the resulting local version of the shared parameters ¢; has a
smoother local loss landscape and exhibits inherent robustness
to perturbations. Then by aggregating all the local models with
a smoother local loss landscape at the server, the flatness of the
aggregated global model is boosted as well, making it more
resilient to the injection of backdoor features from malicious
clients.

To solve the min-max problem (4), we adopt the effi-
cient and effective approximation technique proposed in [17].

Algorithm 1: pFedSAM

Input: Initial states ¢°, {h9}Y ,, client sampling ratio 7,
number of local iterations 7y, 74, number of communication
rounds 7', learning rates 7, 14, and neighborhood size p

Output: Personalized models (¢7, hT1),Vi € [N].

1: fort=0,1,..., 7 —1 do
2 Server randomly samples a set of 7NV clients S*.
3: Server broadcasts the current global version of the

shared parameters ¢¢ to all clients in S?.
4 for each client i € S* in parallel do
5 Initialize h/"° = h!

6: for s=0,...,7, —1do _
7 Compute stochastic gradient Vj, (¢t h!®)
8

9

?

RSt = pbe N Fi(¢t, hy®)

2

end for
10: Update h!™! = hl'™ and initialize ¢!° = ¢t
11: for s =0,...,74 —1do
12: Update shared parameters using SAM accord-
ing to (6) and (7)
13: end for
14: Update ¢! = ¢§’T¢
15: Client sends gbz“ back to server
16: end for
17 for each client i ¢ S* do
18: Ritt = pt
19: end for
20: Server updates ¢!t = -3 o, it
21: end for

Specifically, via the use of the first-order Taylor expansion of
F;, the solution of the inner maximization problem is

€* (¢) ~ arg max {FZ(¢7 hEJrl) + 6TV¢F7J(¢7 hiJrl)}
llell2<p

_ Vg Fi(g,hiTH

=PIV F(ehi ®)
Substituting (5) back into (4) and taking the differentiation
w.rt. ¢, we can obtain the approximate SAM gradient as
Vo Fi(o, h§+1)|¢+6*(¢). Therefore, at the s-th local iteration
of round ¢, SAM first computes partial stochastic gradient
VFi(oh®, hi™) and calculates the perturbation e(¢)®) as
follows: S F o A
tsy _ o VeFi(dp"hy
€(¢Z ) _p|‘V¢Fi(¢:'S,h§+1)H2. (6)
Then the perturbation is used to update the shared parameters
as follows:

e 22 A O N N ©)

where 7)4 is the learning rate. The same procedure repeats for
Te local iterations (lines 10-13).

After local training, each selected client ¢ only sends the
updated local version of the shared parameters ¢§+1 to the
server, which aggregates them from all selected clients to
compute the global version of the shared parameters ¢'** for
the next round (line 20). The updated personal parameters hﬁ“



are kept locally at the client to serve as the initialization when
the client is selected for another round.

B. Convergence Properties of pFedSAM

In this section, we give the convergence results of
pFedSAM. To simplify presentation, we denote H =
(hi,...,hy) € RO+ +dv We consider a general setting
with «; = 1/N without loss of generality. Then our objective
becomes ming i F(¢, H) = & S~ | Fy(¢, h;). Before stat-
ing our theoretical results, we make the following assumptions
for the convergence analysis.

Assumption 1 (Smoothness). For each i € [N], the function
F; is continuously differentiable. There exist constants Ly, Ly,
Lyn, Lpg such that for each i € [N]: 1) V4F;(¢,h;) is Ly-
Lipschitz with respect to ¢ and Lgp,-Lipschitz with respect to
hi, and N, F;(¢, h;) is Ly-Lipschitz with respect to h; and
Ly¢-Lipschitz with respect to ¢. The relative cross-sensitivity
of V4 F; with respect to h; and V1, F; with respect to ¢ is de-
fined by the following scalar: x == max{Lgn, Lny}/\/LeLn.

Assumption 2 (Bounded Variance). The stochastic gradients
in Algorithm 1 are unbiased and have bouned variance.
That is, for all ¢ and h;, E[V4F;(¢,h;)] = VeFi(¢,h;),
E[%hFi(qb,hi)] = VwF;(¢,h;). Furthermore, there exist
constants oy and oy, such that EllwidetildeV s F;(¢p, h;) —
VoFi(¢,h)|I” < 03, E[IVaFi(d, hi) — ViFi(¢, h)|* < 0.

Assumptions 1 and 2 are standard in the analysis of SGD
[20]-[24]. Here, we can view V¢FZ—(¢, h;), when i is randomly
sampled from [N], as a stochastic partial gradient of F'(¢, H).
The following assumption imposes a constant variance bound.

Assumption 3 (Partial Gradient Diversi}t\;’). There exist a
constant § such that for all ¢ and H, 5= >_;_; |V F;(¢, h;)—
Vo Fi(g, H)|* < 62

We denote AFy = F(¢° H®) — F* with F* being
the minimal value of F(-). Further, we use the shorthands
o' = (hﬁv ’h§V)7 AZ} = ||V¢F(¢tht)H2’ and A)}fz =
1/n 32 IVAF(6', B

Next, we propose our main theoretical results of the pro-
posed pFedSAM algorithm in the following theorem.

Theorem 1 (Convergence of Algorithm 1). Under Assump-
tions 1-3, if the learning rates satisfy ny = of(LgTe)
and n, = af(LpTh), where o depends on the parameters
Ld),Lh,XQ,a?b,a,QL,r, and the number of total rounds T, we
have

T £4t=0 VT

20211/3
+BELTT L ok), )

_ 2y1/2
LTS (LEAY] + ZEAL]) < GBI )

where the effective variance terms are defined as follows:

2 o2 52
02 = L—’;L'(T—FXQ(I —r)+ sz + ﬁ(l —r),

ai+62
L¢ :

2 _2 2
2 _ X % P
Q5 = Lh+7¢+

The details of the proof can be found in [25]. The left-
hand side of (8) represents the time-averaged value of a
weighted combination of E[A}] and E[A}]. The convergence
rate, dictating how rapidly this value diminishes to zero, is tied
to the effective noise variances 2 and Q2. These variances
result from the SAM gradient perturbation parameter p? and
three stochastic variances 0%, o, and o7.

IV. EXPERIMENTS

In this section, we empirically evaluate pFedSAM’s ro-
bustness against the state-of-the-art black-box and white-
box backdoor attacks. For black-box, we use the BadNet
attack [26], a common centralized training attack. For white-
box, we implement the DBA [3] and BapFL [14] attacks. DBA
significantly enhances the persistence and stealthiness against
FL on diverse data by breaking down the BadNet trigger
pattern into distinct local patterns and injecting them in a
distributed way. BapFL [14] is the most recent backdoor attack
specifically tailored for pFL with partial model-sharing. We
compare our proposed pFedSAM method with seven widely
used defense strategies in FL: Krum [6], Multi-Krum [6],
Adding Noise (AD) [4], Norm Clipping (NC) [2], Ditto [12],
FedRep [15], and Simple-Tuning (ST) [11]. Krum and Multi-
Krum aim to filter out malicious clients by selecting one or
multiple model updates based on similarity for aggregation.
NC and AD mitigate backdoor attacks by limiting the norm
of model updates or adding Gaussian noise before aggregation.
We set the threshold ¢ € {0.5,1.0} in NC and noise scales
o € {107%,5 x 10~} in AD. Ditto is a full model-sharing
pFL method that has been demonstrated to provide robustness
benefits. FedRep is a partial model-sharing pFL method, which
has been validated in [11] to offer superior robustness against
black-box attacks compared to other pFL methods. ST is a
newly proposed defense method in [11] that re-initializes and
retrains the local linear classifier on a benign local dataset
while freezing the remaining parameters of its model.

A. Experimental Settings

We run each experiment 5 times with distinct random seeds
and provide the average accuracy in the same last round for
fair comparison.

Datasets and Models. Following the prior works in robust
FL [2], [9], [14], we use two common datasets: MNIST and
CIFAR-10. The heterogeneity of these datasets across clients
is controlled by following the Dirichlet distribution [27] with
concentration parameter 5 (default 5 = 0.5), where a smaller
[ indicates greater heterogeneity. For CIFAR-10, we use a
CNN with two convolutional layers and three fully connected
layers, and for MNIST, an MLP with two hidden layers.

Attack Setup. We perform FL training over 100 and 300
rounds for MNIST and CIFAR-10, respectively, with a default
of 100 clients. We consider the stronger and stealthier back-
door attack setting in which malicious clients continuously
participate in each round. Following prior studies [3], [11],
[14], we randomly sample 10 clients, including 4 malicious
ones for DBA and BapFL, or 1 for BadNet; the remaining



TABLE I: Black-box BadNet attack evaluation

Defenses MNIST CIFAR-10
ACC ASR ACC ASR
FedAvg (no defense)  96.09 97.03 7094 31.88
FedRep 90.44 3586 7285 7.5
Ditto 87.66 5841 7228 30.61
NC (¢ = 0.5) 9582 98.62 56.06 19.64
NC (¢ = 1.0) 9596 98.57 69.54 2296
AD (0 =1075) 9526  96.90 70.97  20.59
AD (c =5x10"%) 9512 9643 4215 10.86
Krum 93.58 31.96 62.88 15.10
Multi-Krum 9586 19.58 69.68 1555
ST 66.58 33.92 7521 1557
pFedSAM 91.42 1451 7506 5.76

clients are benign. For pFedSAM, we set 2 local epochs for
personal parameters and 2 for shared parameters in each FL
round, with p = 0.05. All methods follow the same local
epochs as pFedSAM. Malicious clients poison 20 out of 64
samples per batch for CIFAR-10 and MNIST.

Evaluation Metrics. We use two metrics, attack success
rate (ASR) and main task accuracy (ACC), to assess pFed-
SAM’s effectiveness. ASR is the proportion of successfully
attacked poisoned samples among all poisoned samples, while
ACC measures the model’s accuracy on benign samples.
An effective backdoor attack should achieve high ASR and
ACC, indicating it can manipulate outputs without degrading
primary task performance. To ensure unbiased results, ASR is
computed only on samples where the true label differs from
the target label [3].

B. Experimental Results

BadNet Attack. Table I shows that the BadNet attack
reaches over 97% and 31% ASRs on MNIST and CIFAR-
10. Partial model-sharing pFL methods like FedRep and
pFedSAM effectively lower the ASR while maintaining high
ACC in the black-box setting. Fedrep effectively reduces
the ASR below 36% on MNIST and 8% on CIFAR-10.
Conversely, the full model-sharing pFL method Ditto shows
limited robustness, reducing ASR by only 1% on CIFAR-10
and remaining over 58% on MNIST. This matches the prior
results observed in [11].

NC with ¢ = 1.0 offers minor robustness gains over
FedAvg, reducing ASR by only 1% on MNIST. Lowering ¢
to 0.5 can mitigate attacker influence, but significantly drops
ACC, especially on CIFAR-10 (below 57%). AD with high
noise scale (¢ = 5 x 107%) similarly impacts accuracy,
bringing ACC below 43%. Krum and Multi-Krum enhance
robustness by filtering malicious clients, yet struggle to fully
identify attackers, keeping ASR at least 19% on MNIST and
15% on CIFAR-10, with some benign clients inadvertently
filtered, impacting ACC. Though NC, AD, Krum, and Multi-
Krum show robustness gains, they face significant robustness-
accuracy trade-offs. ST achieves ASRs similar to Krum but
lacks stable ACC, failing to fully counteract backdoor risks.

Among all methods, pFedSAM delivers the best robust-
ness, achieving the lowest ASR while maintaining high ACC.
Specifically, pFedSAM reduces ASR to 5.76% on CIFAR-

TABLE II: White-box DBA attack evaluation

Defenses MNIST CIFAR-10
ACC ASR ACC ASR
FedAvg (no defense) 94.54 100.00 6632 74.82
FedRep 87.47 21.69 67.73 6.19
Ditto 56.57 85.23 60.53  15.01
NC (¢ = 0.5) 92.68 97.25 65.68 37.04
NC (¢ =1.0) 92.89 99.96 66.33  44.99
AD (0 =1075) 93.97 99.99 57.24 3491
AD (0 =5x10~%) 93.07 99.88 36.88 15.24
Krum 88.62 92.50 62.01 8.33
Multi-Krum 94.01 97.36 69.68 20.92
ST 77.95 51.76 67.88 8.77
pFedSAM 89.10 12.13 69.61 5.06

10 and 14.51% on MNIST, achieving ACC comparable to
the highest across methods. Compared to FedRep, pFedSAM
improves both ACC and ASR, highlighting the benefits of
sharpness-aware training for enhanced robustness.

DBA Attack. Table II highlights pFedSAM’s effectiveness
against DBA. The ASR is 3%-42% higher than the BadNet
attack on FedAvg shows that DBA is a more aggressive attack
than BadNet. Partial model-sharing methods like FedRep and
pFedSAM exhibit notable robustness, whereas full model-
sharing (e.g., Ditto) lacks effectiveness, with Ditto reducing
ASR to 15.01% on CIFAR-10 but exceeding 85% on MNIST
and having low ACC across both datasets.

NC fails to mitigate DBA effectively on either dataset.
Even at a low threshold (¢ = 0.5), ASR remains above
97% on MNIST and 37% on CIFAR-10. AD also faces a
robustness-ACC trade-off; although a higher noise level (¢ =
5 x 10~%) reduces ASR to 15.24% on CIFAR-10, it impacts
ACC, dropping it below 37%. Krum and Multi-Krum partially
mitigate backdoor effects, especially on CIFAR-10, with Krum
reducing ASR to as low as 8.33%, though they are ineffective
against DBA on MNIST, which is more challenging. ST shows
comparable ASR to Krum on CIFAR-10 but lacks stable ACC
on MNIST, failing to fully counter backdoor risks.

We observe that partial model-sharing methods like FedRep
and pFedSAM, can largely defend against DBA on both
datasets, achieving significantly lower ASR. pFedSAM pro-
vides the best robustness, maintaining high ACC and achieving
a 1%-2% increase in ACC and a 1%-9% ASR reduction
over FedRep, highlighting the advantages of sharpness-aware
training in improving robustness against backdoor attacks and
enhancing performance on benign samples.

BapFL Attack. As the BapFL attack is custom-designed for
partial model-sharing pFL, we evaluate this attack only on two
methods for comparison: FedRep and pFedSAM. Moreover,
we show the flexibility of pFedSAM in incorporating other
defense strategies to achieve even better robustness. The results
are shown in Table IIL. Due to its ASR being 15%-42% higher
than DBA attack on FedRep, and DBA being stronger than
BadNET, it clearly shows that BapFL is more aggressive than
DBA and BadNet under the pFL setting.

From Table III, we can observe that the straightforward
implementation of pFL with partial model-sharing, FedRep,
remains susceptible to BapFL attack with relatively high



TABLE III: White-box BapFL attack evaluation

Defonses MNIST CIFAR-10

ACC ASR  ACC  ASR
FedRep 7677 3750 7750 53.13
pFedSAM 80.36  29.17 78.87 4091
pFedSAM + NC (¢ = 0.5) 7845 1667 8L79 21.53
pFedSAM + NC (¢ = 1.0) 75.54 1893 8170  29.12
pFedSAM + AD (o = 10~5) 7905 19.50 8091  26.85
pFedSAM + AD (0 = 5 x 10~%)  80.17 29.36 3383  6.70
pFedSAM + Krum 5715 581 7666  3.55
pFedSAM + Multi-Krum 7546  3.66 8097 282
pFedSAM + ST 4476  7.04 7038 19.67

ASRs, such as 53% on CIFAR-10 and 37.50%. Compared
with FedRep, pFedSAM can enhance robustness and accuracy
simultaneously under BapFL due to the use of sharpness-
aware training in updating the shared parameters, but it still
cannot provide an effective defense by itself. Therefore, we
combine pFedSAM with the existing defense strategies (NC,
AD, Krum, Multi-Krum, and ST) by applying them to the
global aggregation step of the shared parameters in pFedSAM
to see the effectiveness. We also observe that pFedSAM
in conjunction with AD, NC, or ST does not effectively
mitigate the BapFL attack. However, BapFL can be effectively
mitigated when integrating the Krum or Multi-Krum into our
proposed pFedSAM. Specifically, by integrating pFedSAM
with Multi-Krum, it can reduce the ASR to below 4% on both
datasets and keep the ACC degradation within 1%.

V. CONCLUSION

In this paper, we propose pFedSAM, a pFL method resilient
to both black-box and white-box backdoor attacks. We also
prove its convergence in non-convex, non-IID data settings.
Future work will explore other SAM optimizers and broader
experiments.
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