Tufts Differentially Private Query Optimization

Sara Alam, Chenghong Wang, Johes Bater

UNIVERSITY

1.Introduction:

» Relational database systems use query optimizers to find
low-cost join orders

» For example, consider the relations A, B and C in figure 1
below. Say a query requires the joins (A,B) and (A,C).

B C
Required joins: (A, B), (A,C)

Figure 1: Example relations and joins

« There are two possible orders in which the joins can be
done, as shown by figures 2 and 3.

Cost = 1600

ﬂ

Figure 2: Join order 1

T

Cost =1150

Figure 3: Join order 2

» Optimizers use data-dependent information stored in the
system catalog.

» Costs are computed and the minimum cost join order is
picked

» For our example, let the cost be the sum of intermediate
cardinalities. Say, system catalog information used is the
fraction of relation C that has a match in relation A.

3. Proposed Solution:

We propose the following system:

Untrusted Server Data
Owner
1

Optimizer

Data
Owner

2
Encrypted Encrypted

. uey
Analyst Query Plan Catalog
3 Database Data <\|:|
Encrypted
Data

A

Response K Query
Execution

Engine

Figure 4: System Design

. Cost Cost
Join . .
(without system catalog) (with system catalog)
order
(records processed) (records processed)
1 100 + 500 + 500 + 500 100 + 500 + 500 + 500
=1600 =1600
0% *
100 + 500 + 500 + 500 100 + 500 + (50%
2 - 1600 100) + 500
=1150
Table 1: Example join order costs
2. Problem

¢ Problem: The system catalog leaks information to an
untrusted server

« Key observation: Cost computation is probabilistic and
inherently noisy.

e Under certain conditions, applying differential privacy,
which provides proven probabilistic privacy guarantees,
does not degrade query performance.

« Differential Privacy is widely-used privacy definition that
utilizes various mechanisms like the Laplace Mechanism.

¢ Question: When and how should we add noise to satisfy
our privacy goals while ensuring that the optimizers’s
performance is maintained?

4. Preliminary Results:

No. of Rank anete Orlg_lnal
Query e . Runtime runtime
joins Difference
(ms) (ms)
1 4 0 3581 3636
2 5 1 54081 54648
3 6 0 112 88

Table 2: Noisy rank difference

The table above shows the results for specific TPCH
queries, their number of joins, change in rank of top-
ranked plan after noise injection using a privacy budget ¢
= 0.1, execution time for top-ranked plan and the
execution time for PostgreSQL-recommended plan.

