
LOW DEGREE HARDNESS FOR BROADCASTING ON TREES

HAN HUANG ELCHANAN MOSSEL

Abstract. We study the low-degree hardness of broadcasting on trees. Broadcasting on trees has
been extensively studied in statistical physics, in computational biology in relation to phylogenetic
reconstruction and in statistics and computer science in the context of block model inference, and
as a simple data model for algorithms that may require depth for inference.

The inference of the root can be carried by celebrated Belief Propagation (BP) algorithm which
achieves Bayes-optimal performance. Despite the fact that this algorithm runs in linear time (using
real operations), recent works indicated that this algorithm in fact requires high level of complexity.
Moitra, Mossel and Sandon constructed a chain for which estimating the root better than random
(for a typical input) is NC1 complete. Kohler and Mossel constructed chains such that for trees

with N leaves, recovering the root better than random requires a polynomial of degree N
Ω(1). Both

works above asked if such complexity bounds hold in general below the celebrated Kesten-Stigum

bound.
In this work, we prove that this is indeed the case for low degree polynomials. We show that for

the broadcast problem using any Markov chain on trees with n leaves, below the Kesten Stigum
bound, any O(log n) degree polynomial has vanishing correlation with the root.

Our result is one of the first low-degree lower bound that is proved in a setting that is not based
or easily reduced to a product measure.

1. Introduction

Understanding the computational complexity inference problems of random instances has been
extensively studies in different research areas such including statistics, cryptography, computational
complexity, computational learning theory and statistical physics. The emerging field of research
is mainly devoted to the study of computational-to-statistical gaps.

Recently, low-degree polynomials have emerged as a popular tool for predicting computational-
to-statistical gaps. Our work follows [14] in studying the polynomial hardness of broadcasting on
trees.

As explained in [14]: “ Computational-to-statistical gaps are situations where it is impossible
for polynomial time algorithms to estimate a desired quantity of interest from the data, even
though computationally inefficient (“information-theoretic”) algorithms can succeed at the same
task. Heuristics based on low-degree polynomials have been used in the context of Bayesian esti-
mation and testing problems and partially motivated by connections with (lower bounds for) the
powerful Sum-of-Squares proof system. More specifically, a recent line of work (e.g. [12, 11, 15, 2, 8,
16, 10, 4, 25]) showed that a suitable “low-degree heuristic” can be used to predict computational-
statistical gaps for a variety of problems such as recovery in the multicommunity stochastic block
model, sparse PCA, tensor PCA, the planted clique problem, certification in the zero-temperature
Sherrington-Kirkpatrick model, the planted sparse vector problem, and for finding solutions in
random k-SAT problems.

Furthermore, it was observed that the predictions from this method generally agree with those
conjectured using other techniques (for example, statistical physics heuristics based on studying
BP/AMP fixed points, see e.g. [6, 7, 17]). Some of the merits of the low-degree polynomial
framework include that it is relatively easy to use (e.g. compared to proving SOS lower bounds),
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and that low degree polynomials capture the power of the “local algorithms” framework used in
e.g. [9, 5] as well as algorithms which incorporate global information, such as spectral methods or
a constant number of iterations of Approximate Message Passing [25].”

In this work, we continue to study the power of low-degree polynomials for the (average case)
broadcast on trees problem. In broadcast on trees the goal is to estimate the value of the Markov
process at the root given its value at the leaves and the goal is to do so for arbitrarily deep trees.
Two key parameters of the model are the arity of the tree d and the magnitude of the second
eigenvalue ¼ of the broadcast chain.

A fundamental result in this area [13] is that when d|¼|2 > 1 nontrivial reconstruction of the root
is possible just from knowing the counts of the leaves of different types, whereas when d|¼|2 < 1
such count statistics have no mutual information with the root (but more complex statistics of
the leaves may) [18, 24]. This threshold d|¼|2 = 1 is known as the Kesten-Stigum threshold. The
Kesten-Stigum threshold plays a fundamental role in problems, such as algorithmic recovery in the
stochastic block model [21, 3, 23, 1] and phylogenetic reconstruction [19]. Count statistics can be
viewed as degree 1 polynomials of the leaves, which begs the question of what information more
general polynomials can extract from the leaves. See [20, 22] for surveys on the topic.

In [14] it was shown that ¼ = 0 even polynomials of degree N c, where N = dℓ is the number of
leaves of for a d-ary tree of depth ℓ, for a small c > 0 are not able to correlate with the root label
(as ℓ tends to ∞) whereas computationally efficient reconstruction is generally possible as long as
d is a sufficiently large constant [18].

The main motivation of [14] was to prove that low degree polynomials fail below the Kesten
Stigum bound: “It is natural to wonder if the Kesten-Stigum threshold d|¼|2 = 1 is sharp for low-
degree polynomial reconstruction, analogous to how it is sharp for robust reconstruction.” However
the main result of [14] only established this in the very special case of ¼ = 0. This problem is also
stated in the ICM 2022 paper and talk on the broadcast process [22]: “ The authors of [14] ask if a
similar phenomenon holds through the non-linear regime. For example, is it true that polynomials
of bounded degree have vanishing correlation with X0 in the regime where d¼2 < 1? ” The main
results of this paper prove that this is indeed the case. We proceed with formal definitions and
statement of the main result.

1.1. Definitions and Main Result. Let us begin with define the type of trees we will be inves-
tigating in this paper, which is a slight generalization of d-ary tree.

Definition 1.1. A rooted tree T with root Ä of depth ℓ with degree dominated by d g 1 with
parameter R g 1 is a tree with a root Ä such that for each node u in T ,

∀k ∈ N, |Lk(u)| f Rdk,

where Lk(u) is the set of kth descendants of u. Further, let L denote the set of vertices on the ℓth
layer.

With the above definition, a d-ary rooted tree is a tree T with degree dominated by d g 1 with
parameter R = 1. For a typical realization of Galton-Watson Tree of Poisson type with average
degree d and depth ℓ, is a tree with degree dominated by d g 1 with parameter R ≃ log(ℓ).

Consider a q × q ergodic transition matrix M , where q g 2. Let ¼ represent the second largest
absolute value among the eigenvalues of M . Additionally, we define the stationary distribution of
M as Ã.

The broadcasting process X = (Xv)v∈T , with state space [q] and transition matrix M , can be
formally described as follows: As we reveal the values layer by layer, when the value Xu is revealed,
the value of Xv for any child node v of u is independently distributed according to M :

P{Xv = t |Xu = s} = Mst.
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In other words, the values of the nodes in the tree T are updated according to the transition
matrix M , where each node’s value depends only on its parent node’s value. A formal definition of
the process is given below:

Definition 1.2 (Broadcasting Process on Tree). Let q g 2 be a positive integer. For any rooted
tree T with root Ä and a q × q ergodic transition matrix M , the broadcasting process X = (Xv)v∈T

with state space [q], according to transition matrix M with an initial distribution ¿, is a random
process with joint distribution given by:

∀x = (xv)v∈T ∈ [q]T , P{X = x} = ¿(xÄ)
∏

(v,u)

Mxu,xv ,

where the product is taken over all pairs (v, u) such that v is a child node of u. Further, we use xL

to denote

xL = (xv)v∈L ∈ [q]L.

With the assumption ¿ = Ã, Xv ∼ Ã for every v ∈ T , as (Xv)v∈P for every downward path of T
forms a Markov Chain with transition matrix M . Further, let us make a remark about the Markov
property of the process.

Remark 1.3 (Markov Property). The probability measure defines a Markov Random Field on
tree T . This implies that for any three subsets A,B, and C of T , if every path from a node in A to
a node in C passes through a node in B, then the random variables XA and XC are conditionally
independent given XB.

Definition 1.4. Let x ∈ [q]T . For u ∈ T , let xfu = (xv)vfu. For each subset U ¦ T and x ∈ [q]T ,
let xU = (xu)u∈U .

Let f : [q]T 7→ R, and suppose f depends only on xU . This we will often abbreviate by writing

f(x) = f(xU ).

The next definition is about the notion of degrees for functions xL = (xv)v∈L. This is the
generalization of degree of a polynomial.

Definition 1.5 (Efron-Stein Degree). A polynomial f with variables xL has Efron-Stein degree
at most d if it can be expressed as a sum of functions fS, where S ¦ L and fS is a function of
xS = (xv)v∈S, such that each S has size bounded by d.

Our main result in the paper is:

Theorem 1.6. Let T be a rooted tree of depth ℓ and degree dominated by d g 1 with parameter
R. Consider the boardcast process on T with a q × q transition matrix M and XÄ ∼ Ã. If M is
irreducible and aperiodic and d¼2 < 1, then there exists a constant c > 0 which depends on M and
1 − d¼2 such that the following holds: For any function f(xL) of Efron-Stein degree f c ℓ

1+log(R) ,

we have

Var(E
[
f(XL)

∣∣XÄ
]
) f (max{d¼2, ¼})ℓ/4Var(f(XL)).

Follows from the theorem, we have the following corollary.

Corollary 1.7. With the same setting as in Theorem 1.6, for any function f(xL) of Efron-Stein
degree f c ℓ

1+log(R) , and any function g(xÄ) of the root value, we have

Cor(f(XL), g(XÄ)) f (max{d¼2, ¼})ℓ/4.
3



The corollary follows from the fact that

E [(f(XL) − E[f(XL)]) · (g(XÄ) − E[g(XÄ)])]

=E [(E[f(XL) |XÄ] − E[f(XL)]) · (g(XÄ) − E[g(XÄ)])]

f
√

Var(E
[
f(XL)

∣∣XÄ
]
) ·
√

Var(g(XÄ))

f(max{d¼2, ¼})ℓ/4
√

Var(f(XL)) ·
√

Var(g(XÄ)).

Indeed, the main result is optimal in the fractal sense (Theorem 1.15). The proof of the theorem
is based on recursion on fractal capacity of functions. Let us introduce the necessary definitions
and notations to introduce both the fractal capacity and the proof overview.

1.2. Fractal Capacity and Proof Overview. For convenience we will refer to the set of vertices
of the tree as T . Following the standard poset convention, we define

v < u

for v, u ∈ T when v is a descendants of u. For any subset S ¦ L, we define a notion of branch
decomposition for S.

To provide a clearer illustration, we establish a correspondence between the vertices of T and
words of varying lengths from 0 to ℓ, with vertices at the kth layer represented as words of length
k. We denote the root Ä as the empty word (). For each vertex u, represented by the word
(b1, b2, . . . , bk), we define du as the number of descendants of u, and we identify the descendants of
u as (b1, b2, . . . , bk, i) with i ∈ [du]. Notice that v is a descendant of u is equivalent to u is a prefix
of v. For brevity, for each u = (b1, . . . , bk) ∈ T , for each i ∈ [du], let

ui := (u, i) = (b1, . . . , bk, i).

For I ¦ [du], let

uI = {ui}i∈I .

Furthermore, we define the parent function p(u) = (b1, . . . , bk−1) and the children function c(u) =
u[du].

Definition 1.8. For a non-empty subset S ¦ L, we introduce the notation Ä(S) to represent the
nearest common ancestor of the elements in S. When |S| > 1, we define the branch decomposi-

tion of S as follows: Let I(S) = {i ∈ [Ä(S)] : Si ̸= ∅} then the brach decomposition is:

S = ⊔i∈I(S)Si,

where Si = S ∩ TÄ(S)i
for i ∈ [dÄ(S)]. We also called each Si as a branch part of S.

The branching decomposition is a key concept in the proof, and we define the fractal capacity
according to the number of iterations to decompose S into singletons.

Definition 1.9. Let
A1 :=

{
{u} : u ∈ L

}
¦ 2L\∅,

be the collection of singletons of L. We say a subcollection A ¦ 2L\∅ is closed under decompo-

sition with base A1 if for every S ∈ A\A1, we have Si ∈ A for i ∈ I(S) where I(S) is the set of
components of the branched decomposition in Definition 1.8.

Definition 1.10. For any A1 ¦ A ¦ 2L\∅ which is closed under decomposition with base A1, let

B(A) ¦ 2L\∅
be a new subcollection defined according to the following rules:

For any S ∈ 2L\∅, S ∈ B if and only if one of the following two conditions holds
4



(1) S ∈ A1.
(2) S /∈ A1 and Si ∈ A for those i with Si = S ∩ TÄ(S)i

̸= ∅.

Lemma 1.11. The collection B = B(A) described above contains A. Also, it is closed under

decomposition with base A1.

Proof. To show A ¦ B, it is sufficient to show A\A1 ¦ B. For any S ∈ A\A1, because A is closed
under decomposition, Si ∈ A for i ∈ I(S). Hence, S ∈ B follows from the definition of B. Now, for
S ∈ B\A1, each Si with i ∈ I(S) is contained in A ¦ B, which in turn implies B is closed under
decomposition.

□

Now, we define recursively that

Ak = B(Ak−1),(1)

for positive integer k g 2.
Clearly, from the definition of Ak, if S ∈ Ak, then for any i ∈ I(S), Si ∈ Ak−1. In particular, for

each branch part S′ of S, Ä(S′) < Ä(S). Given that there are only ℓ layers of the tree, we conclude
that every non-emptyset of S ¦ L is in Aℓ+1. Therefore, together with Lemma 1.11, we have the
following chain of subcollections:

{{u} : u ∈ L} = A1 ¦ A2 ¦ · · · ¦ Aℓ+1 = 2L\∅.
Definition 1.12 (Fractal Capacity). For any non-empty subset S ¦ L, we define the fractal

capacity of S as the smallest k such that S ∈ Ak.

Next, we compare the notion of fractal capacity and the size of the set:

Lemma 1.13. Ak contains all subsets S ¦ L with |S| = k. Further, in a d-ary tree of depth ℓ g k,
there exists S ∈ Ak with |S| = dk−1.

Proof. Indeed, we will show that Ak contains all non-empty subsets of L of size f k. This can be
proved by induction on k. The base case with k = 1 follows from the definition A1 :=

{{v} : v ∈ L
}
.

Suppose the claim holds up to some positive integer k. Let S ¦ L\∅ of size |S| f k+ 1. If |S| f k,
then S ¦ Ak ¦ B(Ak) = Ak+1. In the case |S| = k + 1 g 2, notice that Ä(S) is not a leave.
Consider the branch decomposition of S (See Definition 1.8):

S = ⊔i∈I(S)Si.

Because |I(S)| > 1, for each i ∈ I(S) we have |Si| < |S| = k + 1. Therefore, Si ∈ Ak for i ∈ I(S),
which in turn implies S ∈ B(Ak) = Ak+1. Therefore, the claim follows.

Now, to show the second statement. For every node w, let Sw = {v ∈ L : v f w}. Observe that
if w is k−1 layers above L, then Sw are the (k−1)th descendants of w, which has size |Sw| = dk−1.

We claim that for w which are k layers above L, then Sw ∈ Ak. Let us prove the claim by
induction. First, it is clear that for w ∈ L, Sw = {w} ∈ A1. Suppose the statement holds up to
k. Take any w which is k layer above L. Then, the branch decomposition of Sw = ⊔i∈[d]Swi

. With
each wi is k − 1 layer above L, we have Swi

∈ Ak. Hence, Sw ∈ Ak+1 due to Ak+1 = B(Ak).
□

Definition 1.14. Given a collection A ¦ 2L\∅. A function f : [q]T → R is called a A-polynomial

if we can express

f(x) =
∑

S∈A
fS(xS)

where each fS is a function of xS = (xv)v∈S. Correspondingly, a function f : [q]T → R has fractal

capacity f k if it is a Ak-polynomial.
5



Figure 1. S ¦ L with fractal-capacity 4 and |S| = 5.

The main result of the paper in terms of the fractal capacity is the following:

Theorem 1.15. With the same setting as in Theorem 1.6, there exists a constant c > 0 which
depends on M and 1 − d¼2 such that the following holds: For any function f(xL) with fractal

capacity f c ℓ
1+log(R) , we have

Var(E
[
f(XL)

∣∣XÄ
]
) f (max{d¼2, ¼})ℓ/4Var(f(XL)).

Indeed, Theorem 1.6 is a direct consequence of Theorem 1.15, as Ak-polynomials contains all
polynomial of Efron-Stein degree f k.

Sketch Proof Idea: For illustration, let us consider the case where T is a 2-ary tree with

M =

[
1+¼

2
1−¼

2
1−¼

2
1+¼

2

]
, such matrix eigenvalue ¼ and 1. If f is a degree-1 polynomial, we can express

it in the form

f(xL) =
∑

u∈L

fu(xu),

where each fu is a function of xu. Given our focus on the variance, without lose of generality, we

assume Efu(Xu) = 0 for each u ∈ L. Then, our goal is to prove E
[(
E[f(XL) |XÄ]

)2]
is negligible

comparing to E
[
(f(XL))2

]
. Following from Cauchy-Schwarz inequality that

(
∑

i∈[k]

ai)
2 = (

∑

i∈[k]

1 · ai)
2 f k

∑

i∈[k]

a2
i ,

we have

E
[(
E[f(XL) |XÄ]

)2] f|L|
∑

u∈L

E
[(
E[fu(Xu) |XÄ]

)2]

≲ 2ℓ
∑

u∈L

¼2ℓ
E
[
(fu(Xu))2] ≲ (2¼2)ℓ

∑

u∈L

E
[
(fu(Xu))2],

where the second inequality is derived from the variance decay property of in a Markov Chain.
Then, if we can establish

∑
u∈L E

[
(fu(Xu))2

]
is at the same order as E

[
(f(XL))2

]
, the proof is

complete.
This scenario is achievable if, for most pairs of u and v within L, the correlation between fu(Xu)

and fv(Xv) is sufficiently small, which is the case for degree-1 polynomials.
6



Now, let us take a closer look. Fix any two vertices u and v in L, with w as their nearest common
ancestor. Suppose w is k layer above L, and u f w1 and v f w2. Let X̃ = (Xv′)v′ ̸fw2 . We have

E[fu(Xu)fv(Xv)] =E[fu(Xu)E[fv(Xv) | X̃]]

fE[(fu(Xu))2] · E[(E[fv(Xv) | X̃])2]

fE[(fu(Xu))2] · E[(fv(Xv))2] ≲ E[(fu(Xu))2] · ¼2k
E[(fv(Xv))2],

where the last inequality again follows from the variance decay of a Markov Chain. The above
inequality implies that the correlation between fu(Xu) and fv(Xv) is at most ¼2k.

Our proof of the main theorem tries to generalize the argument above to low degree polynomials
using the following ideas:

I. Bounding Covariance: Suppose f³ and f´ are two functions such that

(1) f³(xS) with that S ¦ L satisfying S ∩ {v′ : v′ f w2} ≠ ∅.
(2) f´(xS′) is any function such that we know

E[(E[f´(XS′) | X̃])2] j (E(f´(XS′))2,

where we use a j b to indicate a is much smaller than b, keeping it not precise to avoid
distraction from technicality.

Then, we have Ef³(X³)f´(X´) j E[(f³(X³))2]E[(f´(X´))2].

II. Choosing a good decomposition of the function: In essence, our proof strategy for
any given function f(xL) revolves around decomposing f(xL) into a sum of functions f³(x) for ³
in some index set I, such that

(1) |I| ≲ dℓ,
(2) For each ³, E[(E[f³(x) |XÄ)2] j E[(f³(x))2],
(3) Whenever ³ ̸= ´, we can find w ∈ T so that f³(x³) and f´(x´) satisfies the covariance

bound in I. (Possibly with a switch of the roles of ³ and ´).

If this is the case, then we can follow the argument in the degree 1 case to show that desired result.
The proof of the main theorem builds on this strategy, advancing through a recursion on the fractal
capacity of the function. This recursive approach relies on the following property:

III. From functions to their products: Suppose we have two functions f³ and f´ such
that f³ is a function with variable (xv)v∈L : vfw1 and f´ is a function with variable (xv)v∈L : vfw2 .
Further, if

E[(E[f³(X) | X̃])2] j E[(f³(X))2]

and
E[(E[f´(X) | X̃])2] j E[(f´(X))2],

where X̃ = (Xv)v ̸fw. Then, g(x) = f³(x)f´(x) also satisfies

E[(E[g(X) | X̃])2] j E[(g(X))2].

Although proving III. requires some effort, its essence mirrors that of Property I, employing the
Markov property and leveraging the variance decay characteristic of the functions involved. Effec-
tively, Property III enables the derivation of additional functions exhibiting variance decay, which
allows us to derive the main result in an iterative formulation.

The main theorem essentially are carried out following the three key ideas I-III. The technical
difficulty comes from finding the suitable decomposition which has the right variance decay property
that is presented in the Kesten-Stigum Bound.

• In Section 2, we give additional notations and basic tools.
• In Section 3, we formulate the main theorem we want to prove as an induction statement.

7



• In Section 4, we discuss the case for degree 1 polynomial, which prove the base case of
the induction in the theorem, and the results for degree 1 polynomial will be used in the
inductive step.

• In Section 5, we give a procedure to decompose B-polynomial f for a given collection B.
• In Section 6 and 7, we derive the proof of Theorem 3.6, the inductive step for proving

Theorem 3.1.
• In Section 8 and 9, we derive the main result in the general case.
• In Appendix A, we provide a proof of Proposition 4.3, which is one technical obstacle

for getting our main result from Theorem 3.1 to the general setting (Theorem 1.6). It is
postponed to this section due to the proof is essentially a result about Markov Chain.

• In Appendix B, we provided some standard result for decay of Markov Chain.

2. Additional Notations and Tools

For any positive integer n, let [n] denote the set of positive integers from 1 to n, inclusive:
[n] = 1, 2, . . . , n. For integers a and b where a < b, let [a, b] = {a, a+ 1, . . . , b}.

We introduce the notation for the height of a node u and we define:

Tu := T ∩ {v ∈ T : v f u} and Lu = Tu ∩ L.

It is worth noting that Tu can be seen as a rooted tree with h(u) layers, having u as its root and
Lu as its set of leaves.

For any u ∈ T and k ∈ [h(u)], let Lk(u) be the set of kth descendants of u, i.e., those descendants
that are k levels down. For brevity, let Lk := Lk(Ä) and L = Lℓ(Ä), where ℓ is the depth of the
tree.

Further, for any 0 f k f h(u),

Dk(u) = {v ∈ T : v f u and h(v) = k}.(2)

denote the set of vertices which are k-th descendants of u. Note that Dk(u) = Lh(u)−k(u).

For a given collection of of subsets A ¦ 2L\∅, we define the following subcollections: For each
u ∈ T , let Au := {S ∈ A : Ä(S) = u}, Afu := {S ∈ A : Ä(S) f u}, and A<u := {S ∈ A : Ä(S) <
u}.

Definition 2.1. [Conditional Expectation] For each U ¦ T and let f : [q]T → R let

(EUf)(x) := E

[
f(X)

∣∣∣Xv = xv : v ̸∈
⋃

u∈U

{w ∈ T : w < u}
]
.

To rephrase it, the function (EUf)(x) represents the expected value of f(X) condition on Xv = xv

for all vertices v that are not descendents of any u ∈ U . Clearly,

(EUf)(X) = E

[
f(X)

∣∣∣Xv : v ̸∈
⋃

u∈U

{w ∈ T : w < u}
]
.

Furthermore, we will abuse the notation and denote Eu as E{u} for u ∈ T , as it will be used
repeatedly. Finally, for any k ∈ [0, ℓ], we set

(Ekf)(x) := E

[
f(X)

∣∣∣ ∀v ∈ T with h(v) g k, Xv = xv

]
.

If f is a function of xL, then by the Markov Property we have (Ekf)(x) is a function of (xv : v ∈
Dk(Ä)).

The following lemma is a well-known statement from Markov-Chain. Let us formulate it using
the Broadcast Process.

8



Lemma 2.2. Suppose M is irreducible and aperiodic, then there exists C = C(M) > 1 so that the
following hold: For any u ∈ T and k ∈ N so that pk(u) exists. For every function a with input xu,

Var
[
(Epk(u)a)(Xpk(u))

]
f Ck2q¼2kVar

[
a(Xu)

]
(3)

and

C−1

(
max
¹∈[q]

∣∣a(¹) − Ea(Xu)
∣∣
)2

f VarY ∼Ãa(Y ) f C

(
max
¹∈[q]

∣∣a(¹) − Ea(Xu)
∣∣
)2

.(4)

And from the above two inequalities, adjusting the constant C if necessary, we also have

max
¹∈[q]

∣∣(Epk(u)a)(¹) − Ea(Xu)
∣∣ f Ckq¼k max

¹∈[q]

∣∣a(¹) − Ea(Xu)
∣∣.(5)

We include a proof of this lemma in Section B.

2.1. Basis of functions on [q]L. In this section, we will fix a basis for the space of functions from
[q] to R for a Markov chain M .

Definition 2.3. For a given q × q ergodic and irreducible transition matrix M , we fix a basis
{ϕi}i∈[0,q−1] for the space of functions from [q] to R such that ϕ0 is the constant function 1 and ϕi

for i ∈ [q − 1] are functions such that

EY ∼Ãϕi(Y ) = 0 and EY ∼Ãϕ
2
i (Y ) = 1.

Definition 2.4. For a given ℓ layer rooted tree T and q × q transition matrix described in Lemma
2.2, for Ã ∈ [0, q − 1]L, let

ϕÃ(x) =
∏

v∈L

ϕÃ(v)(xv).

We write S(Ã) = {v : Ã(v) ̸= 0} and |Ã| = |S(Ã)|.
Remark 2.5. We remark that ϕÃ(x) is a function with variables in (xv : S(Ã)).

The fact that ϕ0, ϕ1, . . . , ϕq−1 forms a basis implies that:

Lemma 2.6. Every function f : [q]U 7→ R can be expressed uniquely in the form

f(x) =
∑

Ã : S(Ã)¦U

cÃϕÃ(x).(6)

Remark 2.7. With the above representation, if f is not a constant function, the Efron-Stein

degree of f equals to the largest magnitude of |Ã| among those Ã such that cÃ ̸= 0.

Definition 2.8. Given a tree T and a q × q ergodic transition matrix M , let {ϕi}i∈[q−1] be the

functions described in Lemma 2.2. For a collection of subsets A ¦ 2L\∅, let

F(A) := {Ã ∈ [0, q − 1]L : S(Ã) ∈ A}.(7)

For any u ∈ T\L, and Ã ∈ F(Au), let S = S(Ã) and

ÈÃ(x) :=
∏

i∈I(S)

ϕ̃PiÃ(x),(8)

where PiÃ(x)j = Ã(x)j1(j ∈ Si) and

ϕ̃Ã′(x) := ϕÃ′(x) − EϕÃ′(X)(9)

for any Ã′ ∈ F(2L\∅). For simplicity, let us also denote

I(Ã) := I(S(Ã)), and Ä(Ã) := Ä(S(Ã)).
9



3. The overall inductive argument

Here we present the version of the theorem with additional assumption on the transition matrix
M that

cM := min
i,j∈[q]

Mij > 0.(10)

Theorem 3.1. Given the rooted tree T and the transition matrix M described in Theorem 1.6, and
under the additional assumption that cM = mini,j∈[q]Mij > 0, there exists c > 0 dependent on M
and d (and implicitly on cM as well) so that the following holds: For any function f of the leaves
with fractal capacity f c ℓ

log(dR) ,

Var(E
[
f(X)

∣∣XÄ
]
) f (d¼2)ℓ/4Var(f(X)).

We will first derive the version mentioned above, as it substantially reduces the technical com-
plexity without compromising the structural integrity of the proof in the general setting where cM

might be 0.

The proof of Theorem 1.6 will be carried out by induction on Ak-polynomials. Let us introduce
the necessary notations to outline this induction process.

Definition 3.2. Let ε > 0 be the constant such that

max{d¼2, ¼} = exp(−1.1ε).

The constant ε is introduced to improve the readability of the paper. Intuitively, we aim to
define d¼2 = exp(−ε), but we relax this definition slightly so that inequalities like the following
hold when ℓ is sufficiently large:

poly(ℓ)(d¼2)ℓ f exp(−εℓ).
Assumption 3.3. We say that A satisfies assumption 3.3 with parameters (h∗, c∗) where h∗ > 0
and 0 < c∗ < 1, if

A1 ¦ A ¦ 2T \∅
is closed under decomposition, and morever,

(1) For any v ∈ T with h(v) g h∗ and a Afv-polynomial f ,

Var
[
(Evf)(X)

] f exp
(− ε(h(v) − h∗))Var

[
f(X)

]
.(11)

(2) For any v ∈ T with h(v) g h∗ and a Afv-polynomial f with Ef(X) = 0,

c∗
E

[
(Evf)2(Xv)

]
f E[(Evf)2(Xv) |Xp(v) = ¹] f 1

c∗E
[
(Evf)2(Xv)

]
,(12)

for all ¹ ∈ [q].

The inequality (11) bears a resemblance to the inequality we aim to prove in Theorem 3.1. The
second inequality, (12), will later be seen as a crucial step proving the inductive phase of our
proof. Indeed, in the case where cM > 0, the condition (12) can be easily satisfied by appropriately
choosing c∗ :

Lemma 3.4. For any given A1 ¦ A ¦ 2T \∅ which is closed under decomposition. If it satisfies
(11) with a given parameter h∗ and cM > 0, then A satisfies Assumption 3.3 with parameter h∗

and

c∗ := min
{
cM ,

1

minj Ã(j)

}
> 0.

In other words, we can choose c∗ with no dependence on either h∗ or A.
10



Proof. Consider an arbitrary function f with variables (xu : u f v) for some v ∈ T\{Ä}.
Let g(x) := (Evf)2(x). By the Markov Property, (Evf)(x) is a function of xv, which in turn

implies g(x) = g(xv). Now, for any ¹ ∈ [q], fix an index j0 ∈ [q] such that g(j0) g Eg(Xv). Relying
on g is a non-negative function,

E[g(Xv) |Xp(v) = ¹] =
∑

j∈[q]

M¹jg(j) g M¹j0g(j0) g cMEg(Xj).

By unraveling the definition of g, we can satisfy the first inequality of (12) as long as c∗ < cM .
The proof for the second inequality follows a similar logic, using the condition c∗ f 1

minj Ã(j) and

the trival inequality maxi,j Mij f 1. □

Given this notation, the proof of Theorem 3.1 proceeds by induction, with the base case and
inductive articulated in the subsequent two statements.

Proposition 3.5. Given the rooted tree T and the transition matrix M described in Theorem 1.6,
and under the additional assumption that cM = mini,j∈[q]Mij > 0. There exists C = C(M, ε) g 1
so that the following holds:

Fix Ä′ ∈ T and 0 f m f h(Ä′), if f(x) is a degree 1 polynomials of variables (xv : v ∈ Dm(Ä′)),
then

Var
[
(EÄ′f)(X)

] f exp
(

− ε
(
h(Ä′) −m− C(log(R) + 1)

))
Var

[
f(X)

]
.(13)

Theorem 3.6. Given the rooted tree T and the transition matrix M described in Theorem 1.6, and
under the additional assumption that cM = mini,j∈[q]Mij > 0. Suppose A is a collection of subsets
satisfying Assumption 3.3 with parameters (h∗, c∗). Then, there exists C = C(M,d, c∗) g 1 such
that B = B(A) satisfies Assumption 3.3 with parameters

(
h∗ + C(log(R) + 1), c∗).

Let us derive the proof of Theorem 3.1 based on the above two statements.

Proof of Theorem 3.1. First, we claim that Ak contains all non-empty subsets of L of size f k.
This can be proved by induction on k. The base case with k = 1 follows from the definition
A1 :=

{{v} : v ∈ L
}
. Suppose the claim holds for some positive integer k. Let S ¦ L\∅ with

|S| f k + 1. If |S| f k, then S ¦ Ak ¦ B(Ak) = Ak+1. In the case where |S| = k + 1 g 2, notice
that Ä(S) is not a leave. Consider the branch decomposition of S (See Definition 1.8):

S = ⊔i∈I(S)Si.

Because |I(S)| > 1, for each i ∈ I(S) we have |Si| < |S| = k + 1. Therefore, Si ∈ Ak for i ∈ I(S),
which in turn implies S ∈ B(Ak) = Ak+1. Therefore, the claim follows.

Second, we apply Proposition 3.5 and Lemma 3.4 to get A1 satisfies Assumption 3.3 with pa-
rameter h∗ = C3.5(log(R) + 1), where C3.5 = C(M,d) is the constant introduced in the Proposition
and

c∗ = min
{
cM ,

1

minj Ã(j)

}
> 0.

Then, by applying Theorem 3.6 inductively on the chain Ak, we can conclude that Ak satisfies
Assumption 3.3 with parameter h∗ = C(log(R) + 1)k and the same c∗ described above, provided
that C = C(M,d, c∗) is the maximum of the constants C described in Proposition 3.5 and Theorem
3.6. In other words, for any Ak-polynomial f ,

Var
[
(EÄf)(X)

] f exp
(− ε(ℓ− C(log(R) + 1)k)

)
Var

[
f(X)

]
.

The theorem follows by choosing k = 1
2C(log(R)+1)ℓ.

□
11



4. Variance Decomposition and Variance Estimate for degree 1 polynomials

To describe the goal of this section, let us begin with the variance decomposition of degree 1
polynomials in a slight generalized form. Essentially, the following statement is a direct consequence
of the conditional variance formula. However, for the sake of completeness, a detailed proof is
provided below.

Lemma 4.1. Fix Ä′ ∈ T and 0 f k f h(Ä′), consider a function g : [q]T → R of the form

g(x) =
∑

v∈Dk(Ä′)

gv(x) where gv(x) = gv(xfv).

Then,

Var[g(X)] =Var
[
(EÄ′g)(XÄ′)

]
+

∑

w∈TÄ′ \{Ä′}:h(w)gk

EVar
[
(Ewgw)(Xw)

∣∣Xp(w)

]

+
∑

v∈Dk(Ä′)

EVar
[
gv(X)

∣∣Xv
]
,

where for w ∈ TÄ′\{Ä′} with h(w) g k + 1, gw(x) :=
∑

v∈Dk(w) gv(x).

Our goal is to show that when d¼2 < 1, Var[g(X)] is of the same order as
∑

v∈Dk(Ä′) Var[gv(X)].

Lemma 4.2. Suppose the transition matrix M satisfies d¼2 < 1 and the tree T has growth factor R.
Then, there exists a constant C = C(M, ε) g 1 so that the following holds. Let Ä′ ∈ T , l′ := h(Ä′),
and k ∈ [0, l′]. Consider a function of the form g(x) =

∑
v∈Dk(Ä′) gv(xv). Then,

Var[g(X)] f CR
∑

v∈Dk(Ä′)

Var[gv(Xv)].(14)

The opposite bound does not depend on d¼2 f 1. However, the proof in the general case where
cM = 0 is not straight-forward. We state it in full generality but will defer the general proof and
prove it here in the simpler case where cM > 0.

Proposition 4.3. There exists a constant C = C(M,d) g 1 so that the following holds. Let Ä′ ∈ T ,
l′ := h(Ä′), and k ∈ [0, l′]. For any degree-1 funcion g with variables (xv : v ∈ Dk(Ä′)). There
exists functions gv(x) = gv(xv) for v ∈ Dk(Ä′) so that the following holds:

(1) g(X) =
∑

v∈Dk(Ä′) gv(Xu) almost surely. (They may not agree as functions from [q]T to R.)

(2) For any u ∈ TÄ′ with h(u) g k,
∑

v∈Dk(u)

Var[gv(Xv)] f CR3Var
[ ∑

v∈Dk(u)

gv(Xv)
]
.(15)

In particular, taking u = Ä′ we have
∑

v∈Dk(Ä′)

Var[gv(Xv)] f CR3Var[g(X)].(16)

We postpone the proof of Proposition in full generality in Appendix A, due to the technical
complexity of the proof and the fact that the proof is about properties of a Markov Chain. Instead,
a statement of the proposition and its proof in the case where cM > 0 is provided in this section.

Now, the purpose of this section is twofold.

• First, it is the derivation of the variance related estimates: Lemma 4.1, Lemma 4.2, and
Proposition 4.3 with the additional assumption that cM > 0. Additionally, we summarise
the estimates into a single statements, as stated in Lemma 4.7.

• Second, it is the derivation of the base case of the induction, Proposition 3.5.
12



4.1. Variance Decomposition and Estimates. Before we proceed to the proof of Lemma 4.1,
let us remark on the following consequence of the lemma.

Remark 4.4. For any g described in Lemma 4.1, if we define h(x) := (Ekg)(x) and hv(x) :=
(Evgv)(xv), then by applying the lemma to g and to h, we conclude that

Var[g(X)] = Var[(Ekg)(X)] +
∑

v∈Dk(Ä′)

EVar
[
gv(X)

∣∣Xv
]
.

Proof of Lemma 4.1 . First, for u ∈ TÄ′\{Ä′} with h(u) g k,

g̃v(x) := gv(x) − Egv(X).

Notice the following holds:

g̃u(x) =
∑

v∈Dk(u)

g̃v(x).

Let us start decomposing the variance of g.

Var[g(X)] =
∑

v,v′∈Dk(Ä′)

E
[
g̃v(X)g̃v′(X)

]

=
∑

w∈TÄ′ :h(w)>k

∑

v,v′∈Dk(Ä′) : Ä(v,v′)=w

E
[
g̃v(X)g̃v′(X)

]
+

∑

v∈Dk(Ä′)

E
[
g̃2

v(X)
]

=
∑

w∈TÄ′ :h(w)>k

∑

v,v′∈Dk(Ä′) : Ä(v,v′)=w

E
[
(Ewg̃v g̃v′)(Xw)

]
+

∑

v∈Dk(Ä′)

E
[
g̃2

v(X)
]

=
∑

w∈TÄ′ :h(w)>k

( ∑

v,v′∈Dk(w)

E
[
(Ewg̃v g̃v′)(Xw)

]−
∑

v,v′∈Dk(w) : Ä(v,v′)<w

E
[
(Ewg̃v g̃v′)(Xw)

])

+
∑

v∈Dk(Ä′)

E
[
g̃2

v(X)
]
.

Notice that for w ∈ TÄ′ with h(w) > k,

∑

v,v′∈Dk(w)

E(Ewg̃v g̃v′)(Xw) = E
[
(Ewg̃w)2(X)

]

and

∑

v,v′∈Dk(w) : Ä(v,v′)<w

E(Ewg̃v g̃v′)(Xw) =
∑

w′∈c(w)

∑

v,v′∈Dk(w′)

E(Ewg̃v g̃v′)(Xw)

=
∑

w′∈c(w)

E
[
(Ewg̃w′)2(X)

]
.

13



Hence,

Var[g(X)]

=
∑

w∈TÄ′ :h(w)>k

(
E
[
(Ewg̃w)2(X)

]−
∑

w′∈c(w)

E
[
(Ewg̃w′)2(X)

])
+

∑

v∈Dk(Ä′)

E
[
g̃2

v(X)
]

=
∑

w∈TÄ′ :h(w)>k

E
[
(Ewg̃w)2(X)

]−
∑

w′∈TÄ′ \{Ä′}:h(w′)gk

E
[
(Ep(w)g̃w)2(X)

]
+

∑

v∈Dk(Ä′)

E
[
g̃2

v(X)
]

=E
[
(EÄ′ g̃Ä′)2(X)

]
+

∑

w∈TÄ′ \{Ä′}:h(w)>k

E
[
(Ewg̃w)2(X) − (Ep(w)g̃w)2(X)

]

+
∑

v∈Dk(Ä′)

(
E
[
g̃2

v(X)
]−E

[
(Ev g̃v)2(X)

]
+ E

[
(Ev g̃v)2(X)

]
︸ ︷︷ ︸

=0

−E(Ep(v)g̃v)2(X)
)

=E
[
(EÄ′ g̃Ä′)2(X)

]
+

∑

w∈TÄ′ \{Ä′}:h(w)gk

EVar
[
(Ewgw)(Xw)

∣∣Xp(w)

]
+

∑

v∈Dk(Ä′)

EVar
[
gv(X)

∣∣Xv
]
.

□

Next, let us show the proof of Lemma 4.2. This follows the standard second moment calculation
for the tree model where it is shown that covariance terms decay exponentially in the distance
between the corresponding function on the tree.

Proof of Lemma 4.2. Let C0 = C0(M,d) denote the constant introduced in the statement of the
Lemma. Its precise value will be determined along the proof. Without lose of generality, we may
assume both Eg(X) = 0 and Egv(Xv) = 0 for v ∈ Dk(Ä′), and the variance of each function is
simply its the second moment.

For brevity, let Ã := (E(gu(X))2)1/2 for u ∈ Dk(Ä′). By (3) from Lemma 2.2, for s ∈ [l′ − k],

E
[
(Eps(u)gu)2(Xps(u))

] f C2.2s
2q¼2sÃ2

u,(17)

where C2.2 g 1 is the constant introduced in the Lemma.
In particular, if Ä(u, u′) = ps(u) for u, u′ ∈ Dk(Ä′), then

|Egu(X)gu′(X)| =
∣∣E
[
(Eps(u)gugu′)(Xps(u))

]∣∣

f(E[(Eps(u)gu)2(Xps(u))
])1/2 · (E[(Eps(u)gu′)2(Xps(u))

])1/2

fC2.2s
2q¼2sÃuÃu′ .

For each s ∈ [l′ − k] and v ∈ Dk+s(Ä′), let Ãv :=
∑

u∈Ls(v) Ãu. Then,

E(g(X))2 f
∑

u,u′∈Dk(Ä′)

|Egu(X)gu′(X)|

=
∑

s∈[l′−k]

∑

v∈Dk+s(Ä′)

∑

u,u′

C2.2s
2q¼2sÃuÃu′ ,

14



where the sum
∑

u,u′ is taken over all ordered pairs (u, u′) with u, u′ ∈ Ll′−k+s(v) and the nearest

common ancestor of u and u′ is v. By relaxing the constraint of the summation we have

E(g(X))2 f
∑

s∈[l′−k]

∑

v∈Ll′−k+s(Ä′)

∑

u,u′∈Ll′−k+s(v)

Cs2q¼2sÃuÃu′

=
∑

s∈[l′−k]

∑

v∈Ll′−k+s(Ä′)

C2.2s
2q¼2s

( ∑

u∈Ll′−k+s(v)

Ãu

)2

f
∑

s∈[l′−k]

∑

v∈Ll′−k+s(Ä′)

C2.2s
2q¼2sRds

∑

u∈Ll′−k+s(v)

Ã2
u

=
( ∑

s∈[l′−k]

C2.2s
2q¼2sRds

) ∑

u∈Dk(Ä′)

Ã2
u.

Next,

∞∑

s=1

C2.2s
2q¼2sRds f

∞∑

s=1

RC2.2s
2q exp(−1.1εs) := C0R.

Hence, C0 depends on ε, q, and C2.2. It is a constant which is determined by M and ε.
□

Let us formulate Proposition 4.3 under the additional assumption that cM = mini,j∈[q]Mij > 0.
Indeed, in this case, the bound does not depend on R.

Proposition 4.5. Suppose the transition matrix M satisfies cM > 0. There exists a constant
C = C(M, ε) g 1 so that the following holds: Let Ä′ ∈ T , l′ := h(Ä′), and k ∈ [0, l′]. For any
function g = [q]T → R of the form

g(x) =
∑

v∈Dk(Ä′)

gv(xv).

The following holds: For any u ∈ TÄ′ with h(u) g k,
∑

v∈Dk(u)

Var[gv(Xv)] f CVar
[ ∑

v∈Dk(u)

gv(Xv)
]
.(18)

In particular, taking u = Ä′ we have
∑

v∈Dk(Ä′)

Var[gv(Xv)] f CVar[g(X)].(19)

The proof of the Proposition relies on the following immediate consequence of cM > 0:

Lemma 4.6. Suppose M is a q × q ergodic transition matrix with cM = mini,j∈[q]Mij > 0. There
exists C = C(M) g 1 so that the following holds. For any u ∈ T\{Ä} and a function h(x) = h(xu),

EVar[h(Xu) |Xp(u)] g 1

C(M)
Var[h(Xu)].

For completeness, we provide the proof in the Appendix.

Proof of Proposition 4.5. We adapt the notation from Lemma 4.1. For w f Ä′ with h(w) > k, let

gw(x) :=
∑

u∈Dk(w)

gu(x).

15



Now, we apply Lemma 4.1 and Lemma 4.6 to get

Var[g(X)] =Var
[
(EÄ′gÄ′)(XÄ′)

]
+

∑

w∈TÄ′ \{Ä′}:h(w)gk

EVar
[
(Ewgw)(Xw)

∣∣Xp(w)

]

+
∑

v∈Dk(Ä′)

EVar
[
gv(X)

∣∣Xv
]

g
∑

u∈Dk(Ä′)

EVar
[
(Eugu)(Xu)

∣∣Xp(u)

]

g 1

C4.6

∑

u∈Dk(Ä′)

Var[gu(Xu)],

where we used the fact that all the terms are non-negative, the first inequality is obtained by
looking at the second terms for the summands with h(w) = k and C4.6 is the M -dependent constant
introduced in Lemma 4.6.

□

Lemma 4.7. Suppose d¼2 < 1 and the growth factor is at most R. There exists a constant
C = C(M,d) g 1 so that the following holds. Fix Ä′ ∈ T and 0 f m f h(Ä′), if fm(x) is a function
in the form

fm(x) =
∑

v∈Dm(Ä′)

fv(xfv).

with

Efm(X) = 0.

Then, there exists f̄v(xfv) for v ∈ Dm(Ä′) such that their sum f̄m(x) =
∑

v∈Dm(Ä′) f̄v(xfv) satisfies

f̄m(X) = fm(X) almost surely,

and for u f Ä′ with h(u) g m,

1

CR3

∑

v∈Dm(u)

Ef̄2
v (X) f E

( ∑

v∈Dm(u)

f̄v(X)
)2

f CR
∑

v∈Dm(u)

Ef̄2
v (X).(20)

The statement of the lemma using f̄m and f̄b covers also the case cM = 0. We will prove the
Lemma by using either Proposition 4.3 or Proposition 4.5 with the assumption cM > 0. In the
later case, it suffice to simply take fv(xfv) = f̄v(xfv).

Remark 4.8. Note that the lemma implies the following: For any u f Ä′ with h(u) g m, let

f̄m,u(x) :=
∑

v∈Dm(u)

f̄v(x).(21)

Then, for any given m f k < k′ f h(Ä′) and u ∈ Dk′(Ä′), we have

Ef̄2
m,u(X) f CR

∑

v∈Dm(u)

Ef̄2
v (X) = CR

∑

w∈Dk(u)

∑

v∈Dm(w)

Ef̄2
v (X) f C2R4

∑

w∈Dk(u)

f̄2
m,w(X),

where the first inequality follows from the second inequality of (20) and the second inequality
follows from the first inequality of (20).

Proof of Lemma 4.7. Let

h(x) := (Emfm)(x) =
∑

v∈Dm(Ä′)

(Evfv)(xv).
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Note that h is a degree one function of the variables (xv : v ∈ Dm(Ä′)). Thus, we could apply
Proposition 4.3 to show the existence of 1-variable functions hv(xv) for v ∈ Dm(Ä′) such that

h(X) =
∑

v∈Dm(Ä′)

hv(Xv) almost surely(22)

and for any u ∈ T (Ä′) with h(u) g m,
∑

v∈Dm(u)

Var[hv(Xv)] f C4.3R
3Var

[ ∑

v∈Dm(u)

hv(Xv)
]
,(23)

where C4.3 g 1 is the constant introduced in Proposition 4.3.
Since Eh(X) = E(Emfm)(X) = 0, we may also assume that

Ehv(X) = 0

for v ∈ Dm(Ä′), as a constant shift of the functions will not affect (22) and (23). Now, consider the
following functions: For v ∈ Dm(Ä′), let

f̄v(xfv) = fv(xfv) − Efv(Xfv) + hv(xv)

and

f̄m(x) =
∑

v∈Dm(Ä′)

f̄v(x).

First, since f̄v(xfv) is defined as the sum of three terms with mean 0, we have Ef̄v(Xfv) = 0.
Second,

f̄m(X) =
∑

v∈Dm(Ä′)

(
fv(Xfv) − (Evfv)(Xv) + hv(Xv)

)

=fm(X) − h(X) +
∑

v∈Dm(Ä′)

hv(Xv)

=
a.s.

fm(X).

By Remark 4.4,

Var
[ ∑

v∈Dm(u)

f̄v(X)
]

=Var
[(
Em

∑

v∈Dm(u)

f̄v
)
(X)

]
+

∑

v∈Dm(u)

EVar[f̄v(X) |Xv]

=Var
[ ∑

v∈Dm(u)

(Evf̄v)(X)
]

+
∑

v∈Dm(u)

EVar[fv(X) − (Evfv)(Xv) + hv(Xv) |Xv]

=Var
[ ∑

v∈Dm(u)

hv(X)
]

+
∑

v∈Dm(u)

EVar[fv(X) |Xv](24)

To estimate the lower bound, we rely on own choice of hv. By (23) we have

(24) g 1

C4.3R3

∑

v∈Dm(u)

Var
[
hv(X)

]
+

∑

v∈Dm(u)

EVar[fv(X) |Xv]

g 1

C4.3R3

∑

v∈Dm(u)

(
Var

[
hv(X)

]
+ EVar[fv(X) |Xv]

)

=
1

C4.3R3

∑

v∈Dm(u)

(
Var

[
(Evf̄v)(Xv)

]
+ EVar[f̄v(X) |Xv]

)

=
1

C4.3R3

∑

v∈Dm(u)

Var[f̄v(X)].
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As for the upper bound, we can apply Lemma 4.2 and repeat the same derivation as above to get

(24) fC4.2R
∑

v∈Dm(u)

Var
[
hv(X)

]
+

∑

v∈Dm(u)

EVar[fv(X) |Xv]

fC4.2R
∑

v∈Dm(u)

Var[f̄v(X)].

Therefore, by taking the constant C stated in the lemma to be the maximum of C4.3 and C4.2,
the proof follows.

□

4.2. Proof of the base Case of Proposition 3.5. We now prove the base case of Proposition
3.5:

Lemma 4.9. There exists a constant C = C(M,d) g 1 so that the following holds. For any degree
1 function f with variables (xu : u ∈ Dk(Ä′)) for some Ä′ ∈ T with k f h(Ä′),

Var
[
E
[
f(X)

∣∣XÄ′

]] f CR4(h′)2q(d¼2)h′

Var[f(X)].(25)

where h′ = h(Ä′) − k.

Proof. Let fu for u ∈ Dk(Ä′) be the functions from Proposition 4.3 so that

f(X) =
∑

u∈Dk(Ä′)

fu(Xu) almost surely.(26)

We can assume Ef(X) = 0 and Efu(X) = 0 for every u ∈ Dk(Ä′) without affecting (26). From
Proposition 4.3, we have ∑

u∈Dk(Ä′)

E[f2
u(X)] f C4.3R

3
E[f2(X)],

where C4.3 denotes the constant C introduced in the Proposition.
We could apply Lemma 2.2 to get

E
[
(EÄ′f)2(XÄ′)

] f|Dk(Ä′)|
∑

v∈Dk(Ä′)

[
(EÄ′fv)2(XÄ′)

]

f|Dk(Ä′)|C2.2h′2q¼2h′ ∑

u∈Dk(Ä′)

E[f2
u(X)] f C4.3C2.2R

4(h′)2q(d¼2)h′

E[f2(X)]

where C2.2 denotes the constant C stated in the Lemma. □

Proof of the Base Case Proposition 3.5. Given Ä′ ∈ T and 0 f m f h(Ä′) described in the Propo-
sition. Let h′ = h(Ä′) −m. By Lemma 4.9, any function f(x) =

∑
v∈Dm(Ä′) fv(xv) satisfies

Var
[
(EÄ′f)(X)

] f C4.9R
4(h′)q(d¼2)h′

Var[f(X)],

where C4.9 denotes the M -dependent constant introduced in the Lemma. With

C4.9R
4(h′)q(d¼2)h′ f C4.9R

4(h′)q exp(−1.1εh′) f exp
(− ε(h′ − C1(log(R) + 1))

)
,

for some C1 g 1 which depends on M,d. □
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5. Decomposition of Polynomials

In this section we study the representation of functions in terms of ϕÃ and ÈÃ. Roughly speak-
ing ÈÃ are “more orthogonal” than the ϕÃ. More formally we will show that under appropriate
conditioning expections of ÈÃ factorize. Thus some of the effort in the proof and particularly in
this section is devoted to relating the ϕ and È representations and bounding moments of such
representations.

Lemma 5.1. Assuming d¼2 < 1 and growth factor of R, there exists C = C(M,d) g 1 so that the
following holds. Let A1 ¦ B ¦ 2L\∅ be a collection of subsets which is closed under decomposition.
Fix a positive integer k1 and Ä′ ∈ T with l′ := h(Ä′) > k1. For every function f of the form

f(x) =
∑

Ã:Ã ̸=0∈F(BfÄ′ )

cÃϕÃ(x)

with

Ef(X) = 0,

here exists a decomposition of f

f(X) =
∑

ufÄ′ : h(u)gk

f̃u(X) almost surely,

where, for each u f Ä′ with h(u) g k1, we have a function fu(x) = fu(xfu) and

(1) For u ∈ TÄ′ with h(u) > k1, fu(x) is a linear combination of ÈÃ(x) with Ã ∈ F(Bu) and

f̃u(x) = fu(x) − Efu(X).
(2) For w f Ä′ with h(w) g k1, we have

1

CR3
E

[ ∑

u∈Dk1
(w)

f2
u(X)

]
f E(

∑

u∈Dk1
(w)

fu(X))2 f CRE
[ ∑

v∈Dk1
(w)

f2
u(X)

]
.(27)

We may group the fu according to h(u) and define for k1 f k f h(Ä′),

fk(x) :=
∑

u∈Dk(Ä′)

f̃u(x).

In other words,

f(X) =
∑

k∈[k1,h(Ä′)]

fk(X) almost surely.

To prove the main lemma, let us begin by comparing ϕÃ(x) and ÈÃ(x) (See Definition 2.8).

Lemma 5.2. For Ã ∈ F(Bu), ϕÃ(x) can be expressed in the form

ϕÃ(x) =
∏

i∈I(Ã)

ÈPiÃ(x) − a¢,Ã(x) − a<,Ã(x) − ac,Ã,(28)

where:

• a¢,Ã(x) is a linear combination of ϕÃ′(x) for Ã′ ∈ F(Bu) such that I(Ã′) is a proper subset
of I(Ã).

• a<,Ã(x) is a linear combination of ϕÃ′(x) for Ã′ ∈ F(B<u) (recall that B<u = {S ∈ B :
Ä(S) < u}), and

• ac,Ã is a constant.
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Proof. Fix Ã ∈ F(B) and let u = Ä(S) and S = S(Ã). Recall that I(Ã) := {i ∈ [du] : S(Ã)∩Tui
̸= ∅}

and PiÃ ∈ [0, q− 1]T is the projection of Ã to Si. We can also decompose the function ϕÃ according
to {PiÃ}i∈I(Ã):

ϕÃ(x) =
∏

i∈I(S)

ϕPiÃ(x).(29)

Before we proceed, let us note that by Lemma 1.11 and the definition of B, we have PiÃ ∈ F(Bfui
).

Now, let us expand the function ÈÃ according to its definition:
∏

i∈I(S)

ÈPiÃ(x) =
∏

i∈I(S)

(
ϕPiÃ(x) − EϕPiÃ(X)

)
=
∑

I1,I2

( ∏

i∈I1

ϕPiÃ(x)
)( ∏

i∈I2

(−EϕPiÃ(X))
)
,

where the summation is taken over all possible partition I1 ⊔ I2 = I(Ã). Next, we can group the
summands into four types based on |I1| and |I2|:

Type 1 |I1| = |I(Ã)|. The summand is simply ϕÃ(x).
Type 2 2 f |I1| f |I(Ã)| − 1.

Each summand is a constant multiple of ϕÃ′(x) where Ã′ is the projection of Ã to the
indices ⊔i∈I1Si. Clearly, S(Ã′) = ⊔i∈I1Si. With |I1| g 2, we have Ä(Ã′) = u. Further, each
Si ∈ Afui

for i ∈ I(Ã), it follows that S(Ã′) ∈ Bu, which in turn implies Ã′ ∈ F(Bu).
We denote the sum of summands of this type by a¢,Ã(x).

Type 3 |I1| = 1. Each summand is a constant multiple of ϕPiÃ(x), where i is the element in I1.
Notice that PiÃ ∈ F(A<u) ¢ F(B<u) where the inclusion follows from Lemma 1.11. We
denote the sum of summands of this type as a<,Ã(x).

Type 4 |I1| = 0 There is only one summand, which is a constant. We denote this constant by ac,PiÃ.

With this decomposition, (28) follows. □

Given the expressions for ÈÃ(x) in terms ϕÃ(x) and vice-versa, for any given u ∈ T\L, we can
convert a linear combination of ϕÃ(x) with Ã ∈ F(Bu) to that of ÈÃ(x) with Ã ∈ F(Bu).

Lemma 5.3. For u ∈ T\L, consider any function of the form

pu(x) =
∑

Ã∈F(Bu)

cÃϕÃ(x).

Then there exists a decomposition

pu(x) =f̃u(x) + p<,u(x) + cu,

where:

• f̃u(x) = fu(x) − Efu(X) and fu(x) is a linear combination of ÈÃ(x) for Ã ∈ F(Bu),
• p<,u(x) is a linear combination of ϕÃ(x) with Ã ∈ F(B<u), and
• cu is a constant.

Proof. The decomposition is constructed through recursion on the following expression:

r(pu) := argmax
{|I(Ã)| : Ã ∈ F(Bu), cÃ ̸= 0

}
.

Suppose r(pu) = 2. Then the statement of simply follows from Lemma 5.2.
Suppose the statement of the lemma holds whenever r(pu) f r for 2 f r < Rd. Consider any

function pu with r(pu) = r + 1:

pu(x) =
∑

Ã∈F(Bu) :|I(Ã)|fr+1

cÃϕÃ(x) =
∑

Ã∈F(Bu) :|I(Ã)|=r+1

cÃϕÃ(x)

︸ ︷︷ ︸
:=pu,r+1(x)

+
∑

Ã∈F(Bu) :|I(Ã)|fr

cÃϕÃ(x)

︸ ︷︷ ︸
:=pu,fr(x)

.
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According to the decomposition of ϕÃ(x) in Lemma 5.2, let

fu,r+1(x) :=
∑

Ã∈F(Bu) : |I(Ã)|=r+1

cÃÈÃ(x)

p∗,u,r+1(x) :=
∑

Ã∈F(Bu) : |I(Ã)|=r+1

cÃa∗,Ã(x)

where ∗ can be ¢, <, or c. Then,

pu,r+1(x) = fu,r+1(x) + p¢,u,r+1(x) + p<,u,r+1(x) + pc,u,r+1(x).(30)

Observe that pu,fr(x)+p¢,u,r+1(x) is a linear combination of ϕÃ(x) with Ã ∈ F(Bu) and |I(Ã)| f r.
Thus, by the inductive assumption, the summation can be expressed in the form

pu,fr(x) + p¢,u,r+1(x) = f̃ ′
u(x) + p′

<,u(x) + c′
u.

Finally, let

fu(x) =f ′
u(x) + fu,r+1(x),

p<,u(x) =p′
<,u(x) + p<,u,r+1(x),

cu =c′
u + p′

c,u + E
[
fu,r+1(X)

]
,

and we have

pu(x) =fu,r+1(x) + p<,u,r+1(x) + pc,u,r+1(x) + f̃ ′
u(x) + p′

<,u(x) + c′
u

=f̃u(x) + p<,u(x) + cu.

□

Proof of Lemma 5.1. We will construct fu(x) for u starting from top layer (u = Ä′) to bottom layer.
For k ∈ [k1, l

′ − 1], when fu(x) is constructed for u ∈ TÄ′ with h(u) > k, we define

ffk(x) = f(x) −
∑

u : h(u)>k+1

f̃u(x),(31)

where f̃u(x) = fu(x) − Efu(X). Without lose of generality, let ffl′(x) = f(x).
Fix k ∈ [k1 +1, l′]. For the induction step, suppose {fu(x)}u∈TÄ′ : h(u)>k {ffs(x)}s∈[k,l′] have been

constructed such that ffk(x) can be expressed in the form

ffk(x) = c′ +
∑

Ã∈F(B) : k1<h(Ä(Ã))fk

c′
ÃϕÃ(x) +

∑

Ã∈F(2L) : h(Ä(Ã))fk1

c′
ÃϕÃ(x).(32)

Clearly, this holds when k = l′.
For each u with h(u) = k, let pu(x) =

∑
Ã∈F(Bu) c

′
ÃϕÃ(x), and define f̃u(x), p<,u(x), and cu

according to Lemma 5.3. Then,

ffk−1(x) =ffk(x) −
∑

u : h(u)=k1

f̃u(x)

=c′ +
∑

Ã∈F(B) : k1<h(Ä(Ã))fk−1

c′
ÃϕÃ(x) +

∑

Ã∈F(2L) : h(Ä(Ã))fk1

c′
ÃϕÃ(x)

+
∑

u : h(u)=k

(p<,u(x) + cu).
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Recall from Lemma 5.3 that p<,u(x) is a linear combination of ϕÃ(x) with Ã ∈ F(B<u), the function
ffk−1(x) satisfies (32) as well (with k been replaced by k − 1).

Once the induction terminated at layer k1, we obtain

fk1(x) = c+
∑

u∈Dk1
(Ä′)

∑

Ã∈F(2Lu \∅)

cÃϕÃ(x).

Now, observe that for k1 < k f h(Ä′), we have fk(x) is defined as the sum of f̃u for u ∈ Dk(Ä′),
which are functions of mean 0. Together with the assumption that Ef(X) = 0, we have

Efk1(X) = Ef(X) −
h(Ä′)∑

k=k1+1

Efk(X) = 0.

Notice that fk1 satisfies the assumption of the function stated in Lemma 4.7 with m = k1. By
replacing fk1 by f̄k1 and fu by f̄u for each u ∈ Dk1(Ä′), the second statement follows while the third
statement of the Lemma remains true. Hence, the proof is completed. □

6. Induction Step 1: Decay of fu

The goal this section and next section is to prove Theorem 3.6. Let us restate the theorem here.

Theorem. Given the rooted tree T and the transition matrix M described in Theorem 1.6, and
under the additional assumption that cM = mini,j∈[q]Mij > 0. Suppose A is a collection of subsets
satisfying Assumption 3.3 with parameters h∗ and c∗. Then, there exists C = C(M,d, c∗) g 1 such
that B = B(A) satisfies Assumption 3.3 with parameters h∗ + C(log(R) + 1) and c∗.

In this and the following section, we will fix a collection A that meets Assumption 3.3 with
some parameters l∗ and c∗. Additionally, we abbreviate

B = B(A).

Further, we will fix Ä′ ∈ T and a function f described in the Assumption 3.3, and assume

Ef(X) = 0.

The proof is grounded in the decomposition of f as described in Lemma 5.1, which splits f into
summation of fk and subsequently into summations of f̃u. Accordingly, this section is devoted to
derive the variance decay properties of fu stated as Proposition 6.1 below. The proposition will be
used to derive variance decay properties of fk, and toward the proof of Theorem 3.6 in next section.

Proposition 6.1. There exists C = C(M, c∗) g 1 so that the following holds. For any u ∈ T ,
consider a function fu of the form

fu(x) =
∑

0 ̸=Ã∈F(Bu)

cÃÈÃ(x).

Then, for ¹ ∈ [q], we have the following bounds on (Eufu)(x) (recall that that by the Markov
Property, (Eufu)(x) is a function of xu):

(Eufu)2(¹) f exp(−2ε(h(u) − C(log(R) + 1) − h∗))(Euf
2
u)(¹)(33)

and

E
[
(Euf̃u)2(Xu)

] f exp(−2ε(h(u) − C(log(R) + 1) − h∗))Ef̃2
u(X).(34)

Additionally, for any function a(x) having inputs involving only (xv : v ∈ Tui
) for some i ∈ [du]:

E
[|f̃u(X)a(X)|] f exp

(
− ε

2
(h(u) − C(log(R) + 1) − h∗)

)
(Ef̃2

u(X))1/2(Ea2(X))1/2.(35)

22



Remark 6.2. The statement of the Proposition 6.1 is exactly the statement of Theorem 3.6
restricted to functions all of whose non-zero cÃ have Ä(Ã) = Ä′. Thus in some sense in this section
we prove the Theorem for the most complex terms. And in the next section we will control the
correlations between different terms.

This is an analogue in our setting to the classical fact in Fourier analysis that high amplitude
functions have sharp decay under noise.

Remark 6.3. We remark that the proposition holds immediately whenever |du| f 1, since Bu = ∅.

Before we proceed further, we need to decompose fu(x).

Definition 6.4. For u ∈ T\L and fu(x) =
∑

Ã∈F(Bu) cÃÈÃ(x), let

fu,I(x) :=
∑

Ã∈F(Bu) : I(Ã)=I

cÃÈÃ(x), and(36)

f̃u,I(x) :=fu,I(x) − Efu,I(X)(37)

for each I ¦ [du] with |I| g 2.

Given the above definition, we have

fu(x) =
∑

I¦[du] :|I|g2

fu,I(x).

Proposition 6.5. There exists C = C(M, c∗) g 1 so that the following holds. For any u ∈ T \ L
and I ¦ [du] with |I| g 2. Consider a function of the form

a(x) =
∑

Ã∈F(Bu) :I(Ã)=I

cÃÈÃ(x).

Then, for I ′ ¦ I, let

U = T \ (
⋃

i∈I′

Tui

)
,

and we have
(
(EUa)(x)

)2 f exp
(− ε|I ′|(h(u) − Ch∗)

)
(EUa

2)(x).(38)

Roughly speaking the proposition states that under the decay of correlation in Assumption 3.3,
for functions all of whose coefficient cÃ have S(Ã) = I for some large set I we get a variance decay of
the form exp(−ϵ|I|h(u)). For later applications the statement is more general allowing to condition
on some of the subtrees. This is an analogue in our setting to the classical fact in Fourier analysis
that high amplitude functions have sharp decay under noise.

Proof. We fix u ∈ T\L and I ¦ [du]. Without lose of generality, we assume I ′ = [s].
Let C0 = C0(M, c∗) denote the constant described in the statement of the Proposition. The

precise value of C0 will be determined during the proof.
For brevity, we introduce some notations that are only used in this proof.

(1) Decomposition of x ∈ [q]T : Consider the representation of x as

x = (xu, x0, x1, . . . , xs),

where, ∀k ∈ [s], xk := (xv : v f uk), and x0 = (xv : v ∈ U \ {u}).

Further, let

xfk = (x0, x1, . . . , xk).
23



For k ∈ [0, s],

afk(xfk) := E

[
a(X)

∣∣∣Xu = xu and Xfk = xfk

]
.

Before we proceed to the proof, observe that applying Jenson’s inequality on conditional expec-
tation, we can form a chain of inequalities

(EUa)2(x) = (EUa
2
0)(x) f (EUa

2
1)(x) f (EUa

2
2)(x) f . . . f (EUa

2
s)(x) = (EUa

2)(x).

If h(u) f C0 + h∗, then the statement of the Proposition is weaker than the inequality (EUa)2(x) f
(EUa

2)(x) stated above. So the lemma follows immediately in that case. From now on we assume

h(u) > C0 + h∗.(39)

We will improve each inequality in the above chain by leveraging the assumption (11).
Given the definition of a(x),

a(x) =
∑

Ã

cÃ

∏

i∈I\[s]

ϕ̃PiÃ(x0)
∏

i∈[s]

ϕ̃PiÃ(xi)

By the Markov Property, the random variables (Xi|Xu = xu)i∈[0,s] are independent. This gives rise
to:

afk(x) =E

[∑

Ã

cÃ

∏

i∈I\[s]

ϕ̃PiÃ(X0)
∏

i∈[s]

ϕ̃PiÃ(Xi)
∣∣∣Xu = xu and Xfk = xfk

]

=
∑

Ã

cÃ

∏

i∈I\[s]

ϕ̃PiÃ(x0)
∏

i∈[k]

ϕ̃PiÃ(xk)

︸ ︷︷ ︸
This part is freezed.

∏

i∈[k+1,s]

(Euϕ̃PiÃ)(xu).

︸ ︷︷ ︸
This part is a function of xu

Now, fix k ∈ [s] and express afk(x) = afk(xu, xfk−1, xk). An essence of this proof is that the
mapping:

yk 7→ afk(xu, xfk−1, yk)

is a linear combination of ϕ̃Ã(yk) with Ã ∈ F(Auk
) and the coefficients are functions of (xu, xfk−1),

which gives us room to apply the inductive assumption, or (11) from Assumption 3.3.
To aid our analysis, we introduce Yk, an independent copy of Xk. By (11), we have

E

[(
E[afk(xu, xfk−1, Yk)|Yu]

)2] f exp(−ε(h(u) − h∗))EYk

[
a2

fk(xu, xfk−1, Yk)
]
.(40)

The reason we introduce Yk is that the L.H.S. and R.H.S. of the above inequality are not related
to (any moments of) conditional expectation of a(X). However, it can still be used with some
adjustment, relying on (12) from Assumption 3.3.

Given the assumption on C0 being greater than or equal to 1, we have

h(uk) = h(u) − 1
(39)

g h∗ + C0 − 1 g h∗.

Applying (12) to our function yk 7→ afk(xu, xfk−1, yk) we get

EYk

[
a2

fk(xu, xfk−1, Yk)
] f 1

c∗ min
¹∈[q]

EYk

[
a2

fk(xu, xfk−1, Yk)
∣∣Yu = ¹

]

f 1

c∗EYk

[
a2

fk(xu, xfk−1, Yk)
∣∣Yu = xu

]
.(41)
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On the other hand,

Ã(xu)
(
EYk

[afk(xu, xfk−1, Yk)|Yu = xu]
)2 f E

[(
EYk

[afk(xu, xfk−1, Yk)|Yu]
)2]
.

Combining the above expression, (40), and (41), we conclude that

(
E
[
afk(xu, xfk−1, Yk)

∣∣Yu = xu
])2 f 1

c∗Ã(xu)
exp(−ε(h(u) − h∗))EYk

[
a2

fk(xu, xfk−1, Yk)
∣∣Yu = xu

]
.

(42)

Notice that the expression inside the square in L.H.S. is

E
[
afk(xu, xfk−1, Yk)

∣∣Yu = xu
]

=E
[
afk(xu, xfk−1, Xk)

∣∣Xu = xu
]

=E
[
afk(Xu, Xfk−1, Xk)

∣∣Xu = xu, Xfk−1 = xfk−1

]

=afk−1(x).

Similarly,

EYk

[
a2

fk(xu, xfk−1, Yk)
∣∣Yu = xu

]
=E
[
a2

fk(xu, xfk−1, Xk)
∣∣Xu = xu

]

=E
[
a2

fk(Xu, Xfk−1, Xk)
∣∣Xu = xu, Xfk−1 = xfk−1

]

=a2
fk−1(x).

By imposing the first assumption on C0 that

C0 g 1

ε
log

( 1

c∗ minj∈[q] Ã(j)

)
,

it follows from (42) that

a2
fk−1(x) f exp(−ε(h(u) − C0 − h∗))E

[
a2

fk(X)
∣∣Xu = xu and Xfk−1 = xfk−1

]

By taking Conditional Expectation on both sides,

(EUa
2
fk−1)(x) f exp(−ε(h(u) − C0 − h∗))

(
EUa

2
fk

)
(x).

Finally, we apply this inequality consecutively for k ∈ [s] we obtain

(EUa)2(x) f exp(−ε|I ′|(h(u) − C0 − h∗))(EUa
2)(x).

□

Corollary 6.6. Fix u ∈ T\L and a function fu(x) following the form described in Definition 6.4.
If I, J ¦ [du] are subsets of [du] of size at least 2, then for every ¹ ∈ [q],

|(Eufu,I)(¹)| f exp
(

− ε|I|
2

(h(u) − C − h∗
)√

(Euf2
u,I)(¹)(43)

|(Eufu,I · fu,J)(¹)| f exp
(

− ε|I∆J |
2

(h(u) − C − h∗)
)√

(Euf2
u,I)(¹) ·

√
(Euf2

u,J)(¹),(44)

where C = C(M, c∗) is the constant introduced in Proposition 6.5, and I∆J := (I \ J) ∪ (J \ I).

Proof. For the first statement, it follows from Proposition 6.5 with a(x) = fu,I(x) and I = I ′.
To prove the second statement, we begin by noting that the inputs of fu,I(x) and fu,J(x) do

not include
(
xv : v ∈ ⋃i∈J\I Tui

)
and

(
xv : v ∈ ⋃i∈I\J Tui

)
, respectively. Thus, we can apply the

Markov Property and that fact that if Y, Z,W are ind pendent then:

E[g(Y,Z)h(Z,W )] = E[E[g(Y,Z)h(Z,W )|Z]] = E[E[g(Y,Z)|Z]h(Z,W )]
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and this in turn becomes:

E[E[g(Y, Z)|Z]h(Z,W )|W ] = E[E[g(Y,Z)|Z]E[h(Z,W )|W ]],

to obtain
(
Eufu,Ifu,J

)
(x)

=E

[
E

[
fu,I(X)

∣∣∣Xv : v /∈
⋃

i∈I\J

Tui

]
· E
[
fu,J(X)

∣∣∣Xv : v /∈
⋃

i∈J\I

Tui

] ∣∣∣∣Xv = xv : v ̸< u

]
.

In terms of absolute value, by Proposition 6.5 we have
∣∣(Eufu,Ifu,J)(x)

∣∣

fE

[∣∣∣E
[
fu,I(X)fu,J(X)

∣∣∣Xv : v /∈
⋃

i∈I∆J

Tui

]∣∣∣
∣∣∣∣Xv = xv : v ̸< u

]

=E

[∣∣∣E
[
fu,I(X)

∣∣∣Xv : v /∈
⋃

i∈I\J

Tui

]∣∣∣ ·
∣∣∣E
[
fu,J(X)

∣∣∣Xv : v /∈
⋃

i∈J\I

Tui

]∣∣∣
∣∣∣∣Xv = xv : v ̸< u

]

fE

[√√√√exp(−ε|I\J |(h(u) − C − h∗)) · E
[
f2

u,I(X)
∣∣∣Xv : v /∈

⋃

i∈I\J

Tui

]

·
√√√√exp(−ε|J\I|(h(u) − C − h∗)) · E

[
f2

u,J(X)
∣∣∣Xv : v /∈

⋃

i∈J\I

Tui

] ∣∣∣∣Xv = xv : v ̸< u

]

f exp
(

− ε

2
|I∆J |(h(u) − C − h∗)

)√√√√E

[
E

[
f2

u,I(X)
∣∣∣Xv : v /∈

⋃

i∈I\J

Tui

] ∣∣∣∣Xv = xv : v ̸< u

]

·
√√√√E

[
E

[
f2

u,J(X)
∣∣∣Xv : v /∈

⋃

i∈J\I

Tui

] ∣∣∣∣Xv = xv : v ̸< u

]

= exp
(

− ε

2
|I∆J |(h(u) − C − h∗)

)√
(Euf2

u,I)(x) · (Euf2
u,J)(x),

where the second to last inequality follows from Hölder’s inequality. □

Corollary 6.7. There exists C = C(M,d, c∗) g 1 so that the following holds. If u ∈ T\L with
h(u) g h∗ + C(1 + log(R)), then for any fu(x) in the form as described in Definition 6.4,

∀¹ ∈ [q],
1

2
·

∑

I¢[du] : |I|g2

(Euf
2
u,I)(¹) f (Euf

2
u)(¹).(45)

Proof. Let C0 = C0(M,d, c∗) denote the constant introduced in the statement of the Lemma. Its
value will be determined along the proof.

The statement of the Corollary is trivial when du < 2 since in that case Bu = ∅, implying fu = 0.
From now on, we assume du g 2.

First,

(Euf
2
u)(x) −

∑

I∈[du] : |I|g2

(Euf
2
u,I)(x) =

∑

{I,J}
2(Eufu,I · fu,J)(x)

where
∑

{I,J} refers to the sum over all unordered pairs {I, J} with I and J being distinct subsets

of [du] of size at least 2.
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We can apply (44) to estimate the absolute value of the difference.

∣∣∣
∑

{I,J}
2(Eufu,I · fu,J)(x)

∣∣∣

f
∑

{I,J}
2 exp

(
− ε|I∆J |

2
(h(u) − C6.5 − h∗)

)√
(Euf2

u,I)(x) ·
√

(Euf2
u,J)(x),(46)

where the constant C6.5 is the constant C6.5 introduced in Proposition 6.5. By 2|ab| f a2 + b2 for
a, b ∈ R,

2
√

(Euf2
u,I)(x) ·

√
(Euf2

u,J)(x) f (Euf
2
u,I)(x) + (Euf

2
u,J)(x).

Hence,

(46) f
∑

I¢[du] : |I|g2

(Euf
2
u,I)(x)

( ∑

J¢[du] : I ̸=J

exp
(

− ε|I∆J |
2

(h(u) − C6.5 − h∗)
))
.

With |{J ¦ [du] : |I∆J | = i}| =
(du

i

) f di
u,

∑

J¢[du] : I ̸=J

exp
(

− ε|I∆J |
2

(h(u) − C6.5 − h∗)
)

f
∞∑

i=1

di
u exp

(
− εi

2
(h(u) − C6.5 − h∗)

)
f 1/4,(47)

provided that h(u) − C6.5 − log(du)
ε − h∗ g 16

ε .
Now, we impose the first assumption on C0 that

C0 g C6.5 +
log(d)

ε
+

1

ε
+

16

ε
,

then

h(u) g h∗ + C0(log(R) + 1) g C6.5 +
log(du)

ε
+

16

ε
+ h∗.

Hence,

∣∣∣(Euf
2
u)(x) −

∑

I∈[d] : |I|g2

(Euf
2
u,I)(x)

∣∣∣ f1

4

∑

I∈[d] : |I|g2

(Euf
2
u,I)(x)(48)

and the proof follows. □

Proof of Proposition 6.1. Let C0 = C0(M,d, c∗) denote the constant introduced in the statement
of the Proposition. Its precise value will be determined along the proof. From Remark 6.3, it is
sufficient to consider the case when |du| g 2. Further, it suffices to prove in the case when

h(u) g h∗ + C0(log(R) + 1),(49)

since otherwise the statements follow from either Cauchy-Schwarz or Jenson’s inequality.

Part I: Derivation of (33) and (34).
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First, by (43),

(Eufu)2(¹)) =
( ∑

I¦[du] : |I|g2

(Eufu,I)(¹)
)2

(50)

f
( ∑

I¦[du] : |I|g2

exp
(

− ε|I|
2

(h(u) − C6.5 − h∗)
)

·
√

(Euf2
u,I)(¹)

)2

f
( ∑

I¦[du]:|I|g2

exp
(

− ε|I|(h(u) − C6.5 − h∗)
))

·
( ∑

I¦[du]:|I|g2

(Euf
2
u,I)(¹)

)
,

where we applied Cauchy-Schwarz inequality in the last inequality; the constant C6.5 is the constant
C introduced in Proposition 6.5.

With the coarse estimate

∣∣{I ¦ [du] : |I| = t
}∣∣ =

(
du

i

)
f dt

u f (Rd)t,

we have
( ∑

I¦[du]:|I|g2

exp
(

− ε|I|(h(u) − C6.5 − h∗)
))

f
∞∑

t=2

exp

(
− εt

(
h(u) − C6.5 − log(R) + log(d)

ε
− h∗

))
.(51)

The geometric series above is finite if h(u) is large enough, and this can be achieved by imposing
assumption of C0 and relying on (49). Now, let us impose the first assumption on C0:

C0 g C6.5 + (2 + 2 log(d) + 100)/ε.(52)

Then, by (49) we have

h(u) g h∗ + C0(log(R) + 1) g h∗ + C6.5 + 2
log(R) + log(d)

ε
+

100

ε
,

which in term implies the R.H.S. of (51) is

exp

(
− 2ε

(
h(u) − C6.5 − log(R)+log(d)

ε − h∗
))

1 − exp

(
− ε

(
h(u) − C6.5 − log(R)+log(d)

ε − h∗
))

f
exp

(
− 2ε

(
h(u) − C6.5 − log(R)+log(d)

ε − h∗
))

1 − e−100

f2 exp

(
− 2ε

(
h(u) − C6.5 − log(R) + log(d)

ε
− h∗

))

=
1

4
exp

(
− 2ε

(
h(u) − C6.5 − log(R) + log(d)

ε
− h∗ − log(8)

2ε

))

f1

4
exp

(
− 2ε

(
h(u) − C0(log(R) + 1) − h∗))
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Substituting the above estimate into (50), together with (45) we have

(Eufu)2(¹) f1

4
exp

(
− 2ε

(
h(u) − C0(log(R) + 1) − h∗)) ·

( ∑

I¦[du]:|I|g2

(Euf
2
u,I)(¹)

)

f1

2
exp

(
− 2ε

(
h(u) − C0(log(R) + 1) − h∗))(Euf

2
u)(¹).(53)

Therefore, we have derived an inequality which is slightly stronger than (33).

To derive (34), let us first show Efu(X) is relatively small using (53) and Jesnon’s inequality:

(
E[fu(X)]

)2 f E
[
(Eufu)2(X)

] f 1

2
exp

(
− 2ε

(
h(u) − C0(log(R) + 1) − h∗))

E
[
f2

u(X)
]

f1

2
E
[
f2

u(X)
]
.

Thus, the variance and the second moment of fu(X) are the same up to a factor of 2:

E
[
f̃2

u(X)
]

= E
[
f2

u(X)
]− (

E[fu(X)]
)2 g 1

2
E
[
f2

u(X)
]
.(54)

We conclude that

E
[
(Euf̃u)2(X)

] fE
[
(Eufu)2(X)

]

f1

2
exp

(
− 2ε

(
h(u) − C0(log(R) + 1) − h∗))

E
[
f2

u(X)
]

f exp(−2ε(h(u) − C0(1 + log(R)) − h∗))E
[
f̃2

u(X)
]
.

Therefore, we complete the proof of (34).

Part II: Derivation of (35).
It remains to show (35) and the proof is similar. Fix I ¢ [du] with |I| g 2, let I ′ = I\{i} and

we represent x ∈ [q]T as (x0, x1), where

x0 :=
(
xv : v /∈

⋃

j∈I′

Tuj

)
and x1 :=

(
xv : v ∈

⋃

j∈I′

Tuj

)
.

With this notation, we have a(x) = a(x0). Thus,

E
[|f̃u,I(X)a(X)|] =E

[∣∣E
[
f̃u,I(X)

∣∣X0
] · a(X0)

∣∣
]

f
√
E

[(
E
[
f̃u,I(X)

∣∣X0
])2] ·

√
E
[
a2(X0)

]

f
√
E

[(
E
[
fu,I(X)

∣∣X0
])2] ·

√
E
[
a2(X0)

]

f exp
(

− ε

2
|I \ {i}|(h(u) − C6.5 − h∗)

)√
E
[
f2

u,I(X)
] ·
√
E
[
a2(X)

]
,

where the last inequality follows from Proposition 6.5. Hence,

E
[|f̃u(X)a(X)|]

f
∑

I¦[du] : |I|g2

exp
(

− ε

2
|I \ {i}|(h(u) − C6.5 − h∗)

)√
E
[
f2

u,I(X)
] ·
√
E
[
a2(X)

]

f
( ∑

I¦[du] : |I|g2

exp
(− ε|I \ {i}|(h(u) − C6.5 − h∗)

))1/2

·
√ ∑

I¦[du] : |I|g2

E
[
f2

u,I(X)
] ·
√
E
[
a2(X)

]
.

(55)
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Next, we impose the second assumption on C0 that

C0 g C6.7,

where C6.7 is the constant introduced in Corollary 6.7. Together our assumption h(u) g h∗ +
C0(log(R) + 1) at the beginning of the proof, we can apply the Corollary and (54) to get

∑

I¦[du] : |I|g2

Ef2
u,I(X) f 2E(fu(X))2 f 4E(f̃u(X))2.(56)

Repeating the same argument as in the proof of (34) and relying on the assumption (52) of C0,

∑

I¦[du] : |I|g2

exp(−ε|I\{i}|(h(u) − C6.5 − h∗)) f
∞∑

t=1

exp

(
− εt

(
h(u) − C6.5 − h∗ − 2

log(Rd)

ε

))

f1

4
exp

(
− ε

(
h(u) − C0(log(R) + 1) − h∗

))
.(57)

Therefore, combining (56), (57), and (55) we get

E
[|f̃u(X)a(X)|] f exp

(
− ε

2

(
h(u) − C0(log(R) + 1) − h∗)) ·

√
E
[
f̃2

u(X)
] ·
√
E
[
a2(X)

]
.

□

7. Induction Step 2: Decay of fk and the proof of Theorem 3.6

As a continuation of the inductive step, we adapt the notation introduced in the previous section.
Building on the properties of an single component fu from Proposition 6.1, our objective is to deduce
variance and covariance decay of fk, which is stated in Proposition 7.1 below. Once it is established,
we will be ready to prove Theorem 3.6.

7.1. Properties of fk. The main goal of this subsection is to derive the following Proposition.

Proposition 7.1. There exists C = C(M,d, c∗) g 1 so that the following holds. For any Ä′ ∈ T
satisfying

h(Ä′) g h∗ + C(1 + log(R)).

Fix a positive integer k1 such that

h(Ä′) g k1 g h∗ + C(1 + log(R)).

Consider a function

f(x) =c+
∑

Ã∈F(BfÄ′ )

cÃϕÃ(x)

with Ef(X) = 0. We decompose f according to Lemma 5.1 with the given k1. Then, the following
holds:

• for k ∈ [k1 + 1,h(Ä′)],

E
[
(EÄ′fk)2(XÄ′)

] f exp
(

− ε
(
h(Ä′) + k − C(log(R) + 1) − 2h∗))

Ef2
k (X),(58)

• for k = k1,

E
[
(EÄ′fk1)2(XÄ′)

] f exp
(

− ε
(
h(Ä′) − k − C(log(R) + 1)

))
Ef2

k1
(X), and(59)
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• for k1 f m < k f h(Ä′),
∣∣E
[
fk(X)fm(X)

]∣∣ f exp
(

− ε

2

(
k − C(log(R) + 1) − h∗))

√
E
[
f2

k (X)
]
E
[
f2

m(X)
]
,(60)

Before we prove the Proposition, let us prove the following second moment bounds for the partial
sums of f̃u.

Lemma 7.2. There exists a constant C = C(M,d, c∗) g 1 so that the following holds. Consider
the same description as stated in Proposition 7.1 and k1 g h∗ +C(log(R) + 1). Let (h, k) be a pair
of integers satisfying k1 < h f k f l′. For u ∈ Dk(Ä′), let

fh,u(x) =
∑

v∈Dh(u)

f̃v(x).

In other words,

fh(x) =
∑

u∈Dk(Ä′)

fh,u(x).

The following holds: First, for u ∈ Dk(Ä′),

1

2

∑

v∈Dh(u)

Ef̃2
v (X) f Ef2

h,u(X) f 2
∑

v∈Dh(u)

Ef̃2
v (X).

Second,

1

4

∑

u∈Lk(Ä′)

Ef2
h,u(X) f Ef2

h(X) f 4
∑

u∈Lk(Ä′)

Ef2
h,u(X).

Proof. Let C0 = C0(M,d, ε′) denote the constant introduced in the statement of the Lemma. Its
precise value will be determined along the proof.

Let us fix u ∈ Dk(Ä′). Consider the following conditional expectation of fh,u(x).

(Ehfh,u)(x) = E
[
fh,u(X)

∣∣Xv = xv : h(v) g h
]

=
∑

v∈Dh(Ä′)

(Evf̃v)(xv).

Comparing the second moments of fh,u(x) =
∑

v∈Dh(u) f̃v(x) and
∑

v∈Dh(u)(Evf̃v)(xv) we get

E

[( ∑

v∈Dh(u)

f̃v(X)
)2]

=
∑

v∈Dh(u)

E
[
f̃2

v (X)
]

+
∑

v,v′∈Dh(u) : v ̸=v′

E
[
f̃v(X)f̃v′(X)

]

=
∑

v∈Dh(u)

E
[
f̃2

v (X)
]

+
∑

(v,v′)∈(Dh(u))2 : v ̸=v′

E

[
E

[
(Evf̃v)(X)(Ev′ f̃v′)(X)

∣∣∣Xp(v,v′)

]]

=E

[( ∑

v∈Dh(u)

(Evf̃v)(X)
)2]

+
∑

v∈Dh(u)

(
E
[
f̃2

v (X)
]− E

[
(Evf̃v)2(X)

])

g
∑

v∈Dh(u)

(
1 − exp

(
− ε

(
h− C6.1(1 + log(R)) − h∗)))

E
[
f̃2

v (X)
]
,(61)

where the last inequality follow from Proposition 6.1 and C6.1 is the constant C introduced in
Proposition 6.1.

Here we impose the first assumption on C0:

C0 > 10 max{ε−1, C6.1}.
Then, due to k1 g h∗ + C0(log(R) + 1), we have

exp(−ε(h−C6.1(1+log(R))−h∗))) f exp(−ε(k1 −C6.1(1+log(R))−h∗))) f exp(−ε ·0.9C0) f 1/2,
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and thus (61) can be simplified to

E
[
f2

h,u(X)
] g1

2

∑

v∈Dh(u)

E
[
f̃2

v (X)
]
.(62)

With the lower bound been established, the upper bound can also be derived in the same fashion.
Let us first recycle the first three lines of (61):

E

[( ∑

v∈Dh(u)

f̃v(X)
)2]

=E

( ∑

v∈Dh(u)

(Evf̃v)(X)
)2

+
∑

v∈Dh(u)

E(f̃v(X))2 − E(Evf̃v)2(X)

fE

( ∑

v∈Dh(u)

(Evf̃v)(X)
)2

+
∑

v∈Dh(u)

E(f̃v(X))2.

Notice that we can apply Lemma 4.2 for the first summand in the above expression.

E

( ∑

v∈Dh(u)

(Evf̃v)(X)
)2

= E

( ∑

v∈Dh(u)

(Evf̃v)(Xv)
)2

fC4.2R
∑

v∈Dh(u)

(Evf̃v)2(Xv)

where C4.2 is the constant introduced in Lemma 4.2. Again, applying the estimate from Proposition
6.1 we have

C4.2R
∑

v∈Dh(u)

(Evf̃v)2(Xv) f C4.2R exp
(

− 2ε
(
h− C6.1(1 + log(R)) − h∗)) ∑

v∈Dh(u)

Ef̃2
v (X).

Here we impose the second assumption on C0 that

C0 g C6.1 +
1 + log(C4.2)

2ε
.(63)

Then, relying on h > k1 g h∗ + C0(log(R) + 1),

C4.2R exp
(

− 2ε
(
h− C6.1(1 + log(R)) − h∗))

f exp
(

− 2ε
(
h− C6.1(1 + log(R)) − h∗ − log(C4.2) + log(R)

2ε

))

f1,

which in turn implies

E(fh,u(X))2 f 2
∑

v∈Dh(u)

E(f̃v(X))2.

Now it remains to show the second statement. Notice that fh = fh,Ä′ , we immediately have

1

2

∑

v∈Dh(Ä′)

Ef̃2
v (X) f Ef2

h(X) f 2
∑

v∈Dh(Ä′)

Ef̃2
v (X)

Together with

1

2

∑

u∈Dk(Ä′)

Ef2
k,u(X) f

∑

v∈Dh(Ä′)

Ef̃2
v (X) f 2

∑

u∈Dk(Ä′)

Ef2
k,u(X),

the second statement of the lemma follows.
□
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Proof of Proposition 7.1. Let C0 = C0(M,d, c∗) denote the constant introduced in the statement of
the Lemma. Its precise value will be determined along the proof. Let us make the first assumption

on C0 that
C0 g C7.2,

where C7.2 is the constant introduced in Lemma 7.2. Now, we could apply the statements of the
Lemma.

Part 1: Derivation of (58).
Fix k ∈ [k1 + 1, l′]. Applying Lemma 7.2 with the parameters h and k in the Lemma setting to

be k,

E(fk(X))2 g1

2

∑

u∈Dk(Ä′)

E(f̃u(X))2.(64)

The next step is to compare the sum of Ef̃2
u(X) with E

[
(EÄ′fk)2(XÄ′)

]
. By Jenson’s inequality,

E
[
(EÄ′fk)2(XÄ′)

]
=E

[( ∑

u∈Dk(Ä′)

(EÄ′ f̃u)(XÄ′)
)2]

fE

[
|Dk(Ä′)|

∑

u∈Dk(Ä′)

(EÄ′ f̃u)2(XÄ′)
]

=|Dk(Ä′)|
∑

u∈Dk(Ä′)

E
[
(EÄ′ f̃u)2(XÄ′)

]
.

For each summand, we can apply (3) from Lemma 2.2 to get the following estimate.

E
[
(EÄ′ f̃u)2(XÄ′)

] fC2.2(l′ − k)2q¼2(l′−k)
E
[
(Euf̃u)2(Xu)

]

where C2.2 is the constant introduced in the Lemma. Together with |Dk(Ä′)| f Rdl′−k from the
assumption on T and d¼2 f exp(−1.1ε) from the definiton of ε,

E
[
(EÄ′fk)2(XÄ′)

] fC2.2(l′ − k)2qR exp(−1.1ε(l′ − k))
∑

u∈Dk(Ä′)

E
[
(Euf̃u)2(Xu)

]

f1

2
exp

(
− ε

(
l′ − C ′(1 + log(R)) − k

)) ∑

u∈Dk(Ä′)

E
[
(Euf̃u)2(Xu)

]
(65)

where we set
C ′ = 1 + log

(
1 + 2C2.2 max

n∈N

n2q exp(−0.1εn)
)
< +∞.

By Proposition 6.1 we have

E
[
(Euf̃u)2(X)

] f exp(−2ε(k − C6.1(1 + log(R)) − h∗))E(f̃u(X))2,(66)

where C6.1 is the constant C introduced in the Proposition. Substituting this inequality into (65),
together with (64) from first step,

E
[
(EÄ′fk)2(XÄ′)

] f1

2
exp

(
− ε

(
l′ + k − (C ′ + C6.1)(log(R) + 1) − 2h∗

)) ∑

u∈Dk(Ä′)

E(f̃u(X))2

f exp(−ε(l′ + k − (C ′ + C6.1)(log(R) + 1) − 2h∗))E(fk(X))2.

Now, we impose the second assumption on C0 that

C0 g (C ′ + C6.1),

we finished the proof of (58).
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Part 2: Derivation of (59).
Let us consider

hk1(x) := (Ek1fk1)(x) = E
[
fk1(X)

∣∣Xu = xu : u ∈ Dk1(Ä′)
]
.

In other words, we may view hk1(x) as a linear function with variables xu for u ∈ Dk1(Ä′) with
Ehk1(X) = Efk1(X) = 0. Then,

E
[
(EÄ′fk1)2(XÄ′)

]
= E

[
(EÄ′hk1)2(XÄ′)

] f exp
(− ε(h(Ä′) − k1 − C3.5)

)
Eh2

k1
(X)

f exp
(− ε(h(Ä′) − k1 − C3.5)

)
Ef2

k1
(X)

The first inequality follows from Proposition 3.5. The second inequality follows from Jensen’s
inequality. Here we impose the third assumption on C0 that

C0 g C3.5,

the derivation of (59) follows.

Part 3: Derivation of (60)
For w f Ä′ with m f h(w) f k, let

fm,w(x) =
∑

v∈Dk(w)

f̃v(x).

Let us make a remark that either by second property of f from Lemma 5.1 when m = k1 or by
Lemma 7.2 in the case when m > k1, we have the following: For w f Ä′ and m f k′ f h(w),

( ∑

u∈Dk′ (w)

Ef2
m,u(X)

)1/2
f C5.1R

2(
Ef2

m,w(X)
)1/2

.(67)

With this notation,

Efk(X)fm(X)

=
∑

u∈Dk(Ä′)

Ef̃u(X)fm,u(X) +
∑

u,u′∈Dk(Ä′) : u ̸=u′

Ef̃u(X)fm,u′(X)

=
∑

u∈Dk(Ä′)

Ef̃u(X)fm,u(X) +
∑

u,u′∈Dk(Ä′) : u ̸=u′

E

[
E

[
(Euf̃u)(X)(Eu′fm,u′)(X)

∣∣∣Xp(u,u′)

]]

=E

[( ∑

u∈Dk(Ä′)

(Euf̃u)(X)
)( ∑

u∈Dk(Ä′)

(Eufm,u)(X)
)]

+
∑

u∈Dk(Ä′)

Ef̃u(X)fm,u(X)(68)

−
∑

u∈Dk(Ä′)

E

[
(Euf̃u)(X)(Eufm,u)(X)

]
.

We will estimate the three summands individually.

Part 3.1: Estimating first summand of (68) First, we apply Cauchy-Schwarz inequality,
∣∣∣∣E
[
(
∑

u∈Dk(Ä′)

(Euf̃u)(X))(
∑

u∈Dk(Ä′)

(Eufm,u)(X))
]∣∣∣∣ =

∣∣∣E
[
(Ekfk)(X)(Ekfm)(X)

]∣∣∣

f
√
E
[
(Ekfk)2(X)

]√
E
[
(Ekfm)2(X)

]
.(69)

Now, combining (66) and (64), we have
√
E
[
(Ekfk)2(X)

] f
√

2 exp
(− ε

(
k − C6.1(1 + log(R)) − h∗))(Ef2

k (X))1/2.(70)
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By setting

C1 = C6.1 +
1

ε

(1

2
log(2) + log(2C5.1) + 2

)
,

we can conclude that
∣∣∣∣E
[
(
∑

u∈Dk(Ä′)

(Euf̃u)(X))(
∑

u∈Dk(Ä′)

(Eufm,u)(X))
]∣∣∣∣

f exp(−ε(k − C1(log(R) + 1) − h∗))
√
Ef2

k (X)Ef2
m(X),(71)

Part 3.2: Estimating second summand of (68) For the second summand of (68), we begin
with the estimate for each u ∈ Dk(Ä′):

E|f̃u(X)fm,u(X)| f
∑

i∈[du]

E|f̃u(X)fm,ui
(X)|.

Since for each i ∈ [du] we have fm,ui
(x) = fm,ui

(xfui
), we apply (35) from Proposition 6.1 to f̃u

and a(x) = fm,ui
(x) to get

∑

i∈[du]

E|f̃u(X)fm,ui
(X)| f

∑

i∈[du]

exp
(

− ε

2

(
k − C6.1(log(R) + 1) − h∗))(Ef̃2

u(X))1/2(Ef2
m,ui

(X))1/2,

where C6.1 is the constant introduced in the Proposition. Applying Jensen’s inequality and (67)
with w = u and k′ = k − 1,

∑

i∈[du]

(Ef2
m,ui

(X))1/2 f d1/2
u

( ∑

i∈[du]

Ef2
m,ui

(X)
)1/2

f (Rd)1/2C5.1R
2(
Ef2

m,u(X)
)1/2

.

Hence,

E|f̃u(X)fm,u(X)| f(Rd)1/2C5.1R
2 exp

(
− ε

2

(
k − C6.1(log(R) + 1) − h∗))(Ef̃2

u(X))1/2(
Ef2

m,u(X)
)1/2

f exp
(

− ε

2

(
k − C2(log(R) + 1) − h∗))(Ef̃2

u(X))1/2(Ef2
m,u(X))1/2,(72)

where

C2 =
2

ε

(3

2
+

1

2
log(d) + log(C5.1)

)
+ C6.1.

Now, returning to the summation, we apply (72) and Cauchy-Schwarz inequality to get
∣∣∣

∑

u∈Dk(Ä′)

Ef̃u(X)fm,u(X)
∣∣∣

f
∑

u∈Dk(Ä′)

exp
(

− ε

2
(k − C2(log(R) + 1) − h∗)

)
(Ef̃2

u(X))1/2(Ef2
m,u(X))1/2

f exp
(

− ε

2
(k − C2(log(R) + 1) − h∗)

)( ∑

u∈Dk(Ä′)

Ef̃2
u(X)

)1/2( ∑

u∈Dk(Ä′)

Ef2
m,u(X)

)1/2

f2C5.1R
2 exp

(
− ε

2
(k − C2(log(R) + 1) − h∗)

)(
Ef2

k (X)
)1/2(

Ef2
m(X)

)1/2

f exp
(

− ε

2
(k − C3(log(R) + 1) − h∗)

)√
Ef2

k (X)Ef2
m(X).(73)

In the derivation above, we applied Lemma 7.2 for the term
(∑

u∈Dk(Ä′) Ef̃
2
u(X)

)1/2
and (67) for

the term
(∑

u∈Dk(Ä′) Ef
2
m,u(X)

)1/2
in the secont to last inequality. The constant C2 in the last
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inequality is defined as

C3 =
2

ε
(log(2C5.1) + 2) + C2.

Part 3.3: Estimating third summand of (68) It remains to bound the third summand, it
can be reduced to the upper bound for first summand. Applying the Cauchy-Schwarz inequality
and Hölder’s inequality we have

∣∣∣
∑

u∈Dk(Ä′)

E

[
(Euf̃u)(X)(Eufm,u)(X)

]∣∣∣

fE

[∣∣∣
∑

u∈Dk(Ä′)

(Euf̃u)(X)(Eufm,u)(X)
∣∣∣
]

fE

[( ∑

u∈Dk(Ä′)

(Euf̃u)2(X)
)1/2( ∑

u∈Dk(Ä′)

(Eufm,u)2(X)
)1/2]

f
(
E

∑

u∈Dk(Ä′)

(Euf̃u)2(X)
)1/2(

E

∑

u∈Dk(Ä′)

(Eufm,u)2(X)
)1/2

f
√

2 exp
(− ε

(
k − C6.1(1 + log(R)) − h∗)) · C5.1R

2
√
Ef2

k (X)Ef2
m(X).

where in the last inequality we applied (70) and (67).
By setting

C4 =
1

ε

(1

2
log(2) + log(C5.1) + 2

)
,

we conclude that

∣∣∣
∑

u∈Dk(Ä′)

E

[
(Euf̃u)(X)(Eufm,u)(X)

]∣∣∣ f exp
(− ε

(
k − C4(1 + log(R)) − h∗))

√
Ef2

k (X)Ef2
m(X).

(74)

Now, combining the three estimates of the summands (71), (73), and (74) for (68) we conclude
that

|Efk(X)fm(X)| f exp
(

− ε

2

(
k − C5(log(R) + 1) − h∗))

√
Ef2

k (X)Ef2
m(X),

where

C5 :=
2

ε
log(3) + max{C1, C3, C4}.

Now we impose the forth assumption on C0 that

C0 g C5,

and (60) follows.
□

7.2. Proof of Theorem 3.6. Let C0 = C0(M,d, c∗) denote the constant introduced in the state-
ment of the Lemma. Its precise value will be determined along the proof.

Let k1 be a positive integer with the precise value to be determined later. Here we impose our
first assumption on k1 that

k1 g C7.1(log(R) + 1) + h∗

where C7.1 is a constant that appears in Proposition 7.1.
Now, let us consider a function f described in the Theorem. Without lose of generality, we may

assume Ef(X) = 0. Then, it is equivalent to estimate the second moments.
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Further, let us assume h(Ä′) g k1 and the decomposition of f according to Lemma 5.1:

f(x) =
∑

k∈[k1,h(Ä′)]

fk(X).(75)

Our first goal is to show

Ef(X)2 ≃
∑

k∈[k1,h(Ä′)]

f2
k (X),

by showing Efk(X)fm(X) is insignificant whenever k ̸= m.
For k1 f m < k, by Propostion 7.1,

2|Efk(X)fm(X)| f2 exp
(

− ε

2

(
k − C7.1(log(R) + 1) − h∗))(Ef2

k (X))1/2(Ef2
m(X))1/2

f exp
(

− ε

2

(
k − C7.1(log(R) + 1) − h∗))

Ef2
k (X)

+ exp
(

− ε

2

(
k − C7.1(log(R) + 1) − h∗))

Ef2
m(X).

Applying the above inequality to bound the second moment of f(X) we get

Ef2(X) =E

∑

k,m∈[k1,h(Ä′)]

Efk(X)fm(X)

g
∑

k∈[k1,h(Ä′)]

Ef2
k (X) ·

(
1 −

∑

s∈[k1,h(Ä′)]

exp
(

− ε

2

(
s− C7.1(log(R) + 1) − h∗))).

Notice that there exists t0 which depends on ε so that

∞∑

t=t0

exp
(

− ε

2
t
)

f 1

2
.

By setting

k1 := +h∗ + C7.1(log(R) + 1) + t0,,
we get

Ef2(X) g 1

2

∑

k∈[k1,h(Ä′)]

Ef2
k (X).(76)

Our second goal is comparing E
[
(EÄ′fk)2(XÄ′)

]
and

∑
k∈[k1,∞] Ef

2
k (X). Starting with the variance

and ℓ∞ norm comparison from Lemma 2.2,

E
[
(EÄ′f)2(XÄ′)] fE

[( ∑

k∈[k1,h(Ä′)]

max
¹k∈[q]

∣∣(EÄ′fk)(¹k)
∣∣
)2]

=
( ∑

k∈[k1,h(Ä′)]

max
¹k∈[q]

∣∣(EÄ′fk)(¹k)
∣∣
)2

fC2.2

( ∑

k∈[k1,h(Ä′)]

√
E(EÄ′fk)2(XÄ)

)2
,

where C2.2 is the constant introduced in the Lemma.
By (58), from Proposition 7.1, for k ∈ [k1 + 1,h(Ä′)],

E
[
(EÄ′fk)2(XÄ′)

] f exp
(− ε(k − h∗)

) · exp
(

− ε(h(Ä′) − C7.1(log(R) + 1) − h∗)
)
Ef2

k (X)
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And for k = k1 = +h∗ + C7.1(log(R) + 1) + t0,, we apply (59) to get

E
[
(EÄ′fk1)2(XÄ′)

] f exp
(− ε(h(Ä′) − k1 − C7.1(log(R) + 1))

)
Ef2

k1
(X)

f exp
(− ε(−t0 − 1)

)

· exp
(

− ε(h(Ä′) − 2C7.1(log(R) + 1) − h∗)
)
Ef2

k1
(X).

Substituting these estimate and by Cauchy-Schwarz inequality we have

E
[
(EÄ′f)2(XÄ′)] fC2.2 exp

(
− ε(h(Ä′) − 2C7.1(log(R) + 1) − h∗)

)

·
(

exp(ε(t0 + 1)) +
∞∑

t=0

exp(−εt)
)

︸ ︷︷ ︸
:=C1

·
∑

k∈[k1,h(Ä′)]

Ef2
k (X)

fC2.2C12 exp
(

− ε(h(Ä′) − 2C7.1(log(R) + 1) − h∗)
)
Ef2(X).

Now, by taking

C0 g max
{

2C7.1 +
1

ε
log(C2.2C12) , C7.1 + t0 + 1

}
,

we conclude that

E
[
(EÄ′f)2(XÄ′)] f exp

(
− ε(h(Ä′) − C0(log(R) + 1) − h∗)

)
Ef2(X).

It remains to show the case when h(Ä′) f k1. From the assumption that C0 g C7.1 + t0 + 1 and
k1 f h∗ + C7.1(log(R) + 1) + t0 + 1, we have

exp
(

− ε(h(Ä′) − C0(log(R) + 1) − h∗
)

g 1.

Hence, the statement follows directly from Jensen’s inequality.

8. General Case: Base Case

Now, we want to establish Theorem 1.6, which does not rely on the assumption cM > 0. Let us
first establish analogues of Assumption 3.3 (the inductive assumption), Proposition 3.5 (the base
case), and Theorem 3.1 (the inductive step) in the general case.

Assumption 8.1. By stating that A satisfies this assumption with given parameter h◦, we mean
A1 ¦ A ¦ 2L\∅ is closed under decomposition, and the following holds:

For every u ∈ T and any Afu-polynomials functions f and g, we have

Var
[
(Euf)(X)

] f exp(−ε(h(u) − h◦))Var
[
f(X)

]
.(77)

Further, suppose Ef = Eg = 0 and h(u) g h◦. Notice that by the Markov Property, (Eufg)(x),
(Euf

2)(x), and (Eug
2)(x) are functions of xu. Then,

max
¹∈[q]

|(Eufg)(¹) − Efg| f exp
(

− ε

2
(h(u) − h◦)

)√
min

¹
(Euf2)(¹) min

¹′
(Eug2)(¹).(78)

The main difference of this assumption and Assumption 3.3 is the difference of (78) and (12).

Proposition 8.2. Consider the rooted tree T and transition matrix M described in Theorem 1.6.
There exists C = C(M,d) g 1 such that A1 satisfies Assumption 8.1 with some parameter h◦

satisfying

h◦ f C(log(R) + 1).(79)
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Theorem 8.3. Consider the rooted tree T and transition matrix M described in Theorem 1.6.
There exists C = C(M,d) > 1 so that the following holds. Suppose A satisfies Assumption 8.1 with
some parameter h◦. Let B = B(A) (see Definition 1.10). Then, B satisfies Assumption 8.1 with
parameter

h◦ + C(log(R) + 1).

Proof of Theorem 1.6. The proof of Theorem 1.6 is analogous to that of Theorem 3.1, employing a
similar strategy by leveraging Proposition 8.2 and Theorem 8.3 in the former, and Proposition 3.5
and Theorem 3.6 in the latter.

□

In this section we will prove the Base Case Proposition 8.2.

Lemma 8.4. There exists a constant C = C(M, ε) g 1 so such that for any Ä′ ∈ T and 0 f m f
h(Ä′):

Consider two degree 1 polynomials f and g with variables (xu : u ∈ Dm(Ä′)). Suppose

f(X) =
∑

u∈Dm(Ä′)

fu(X) almost surely,

where fu(x) = fu(xu) and E[fu(X)] = 0, and we assume the same conditions for the polynomial g
and gu. Then,

max
¹∈[q]

∣∣(EÄ′fg)(¹) − Efg
∣∣ f CR exp(−ε(h(Ä′) −m))

√ ∑

u∈Dm(Ä′)

Ef2
u(X)

√ ∑

u∈Dm(Ä′)

Eg2
u(X).

Proof. Let C0 = C0(M,d) denote the constant introduced in the statement of the Lemma. Its value
will be determined along the proof.

First of all,

max
¹∈[q]

∣∣(EÄ′fg)(¹) − Efg
∣∣ = max

¹∈[q]

∣∣∣
∑

u,v∈Dm(Ä′)

(
(EÄ′fugv)(¹) − Efugv

∣∣∣
)

f
∑

u,v∈Dm(Ä′)

max
¹∈[q]

∣∣(EÄ′fugv)(¹) − Efugv

∣∣.

Our proof will be carried out by estimating each summand. Fix any pair u, v ∈ Dm(Ä′) and consider

∥(EÄ′fugv) − Efugv∥∞ = max
¹

∣∣EÄ′

[
fu(X)gv(X) − Efugv

∣∣XÄ′ = ¹
]∣∣.

Let w = Ä(u, v). Since fu and gu are functions of xfw, relying on the Markov Property we know
the function (Ewfu · gv)(x) is a function of xw with expected value Efu(X)gv(X). With

(EÄ′fugv)(xÄ′) = E
[
(Ewfugv)(Xw)

∣∣XÄ′ = xÄ′ ],

applying (5) from Lemma 2.2,

∥(EÄ′fugv) − Efugv∥∞ fC2.2(h(Ä′) − h(w))q¼h(Ä′)−h(w)
∥∥(Ewfugv)(¹) − Efugv

∥∥
∞,

where C2.2 is the M -dependent constant introduced in the Lemma.

Next, we will estimate
∥∥(Ewfugv)(¹) − Efugv

∥∥
∞. In the case u ̸= v, there exists i ̸= j such that

u f wi and v f wj , which in turn implies that (Xfu |Xw = xw) and (Xfv |Xw = xw) are jointly
independent by the Markov Property. Thus,

(Ewfugv)(¹) = (Ewfu)(¹)(Ewgv)(¹),
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which implies

max
¹∈[q]

|(Ewfugv)(¹)| f max
¹∈[q]

|(Ewfu)(¹)| · max
¹∈[q]

|(Ewgv)(¹)|

fC2
2.2(h(w) −m)2q¼2(h(w)−m)

√
Ef2

u(X)Eg2
v(X),

where we applied (5) and (4) from Lemma 2.2 in the last inequality. If u = v, then the same
estimate follows immediately without relying on (5).

Now, we convert the above estimate to that of ∥(Ewfugv)(¹) − Efugv∥∞, which relies on the
simple bound that |Efu(X)gv(X)| f max¹∈[q] |(Ewfugv)(¹)|. Thus,

∥∥(Ewfugv)(¹) − Efugv

∥∥
∞ f2 max

¹∈[q]
|(Ewfugv)(¹)|

f2C2
2.2(h(w) −m)2q¼2(h(w)−m)

√
Ef2

u(X)Eg2
v(X).

Together we conclude that for a pair u, v ∈ Dm(Ä′) with w = Ä(u, v),

∥(EÄ′fugv) − Efugv∥∞ f2C3
2.2(h(w) −m)2q(h(Ä′) − h(w))q¼h(Ä′)+h(w)−2m

√
Ef2

u(X)g2
v(X)

f2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+h(w)−2m

√
Ef2

u(X)g2
v(X).

Relying on this estimate, we are ready to bound the l∞-norm of (EÄ′fg)(xÄ′) − Efg.

max
¹∈[q]

∣∣(EÄ′fg)(¹) − Efg
∣∣ f

∑

u,v∈Dm(Ä′)

max
¹∈[q]

∣∣(EÄ′fugv)(¹) − Efugv

∣∣

=
∑

k∈[m,h(Ä′)]

∑

w∈Dk(Ä′)

∑

u,v : Ä(u,v)=w

max
¹∈[q]

∣∣(EÄfugv)(¹) − Efugv

∣∣

f
∑

k∈[m,h(Ä′)]

∑

w∈Dk(Ä′)

∑

u,v : Ä(u,v)=w

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2m

√
Ef2

u(X)g2
v(X).(80)

Next, relaxing the condition Ä(u, v) = w in the summation,

(80) f
∑

k∈[m,h(Ä′)]

∑

w∈Dk(Ä′)

∑

u,v∈Dm(w)

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2m

√
Ef2

u(X)g2
v(X)

=
∑

k∈[m,h(Ä′)]

∑

w∈Dk(Ä′)

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2m( ∑

u∈Dm(w)

√
Ef2

u(X)
)( ∑

u∈Dm(w)

√
Eg2

u(X)
)
.(81)

Notice the inequality
∑

i∈[n]
|ti|
n f

√∑
i∈[n]

|ti|2
n follows from Jenson’s inequality applying to the

function t 7→ t2 and the uniform measure on [n]. Now apply this inequality to the collection

{
√
Ef2

u(X)} and {
√
Eg2

u(X)} respectively, together with |Dm(w)| f Rdh(w)−m, from our tree ass-
cumption, we have

(81) f
∑

k∈[m,h(Ä′)]

∑

wfÄ′ : w∈Dk(Ä′)

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2mRdk−m

√ ∑

u∈Dm(w)

Ef2
u(X)

√ ∑

u∈Dm(w)

Eg2
u(X)

f
∑

k∈[m,h(Ä′)]

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2mRdk−m

·
√ ∑

wfÄ′ : h(w)=k

∑

u∈Dm(w)

Ef2
u(X) ·

√ ∑

wfÄ′ : h(w)=k

∑

u∈Dm(w)

Eg2
u(X)

=
∑

k∈[m,h(Ä′)]

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2mRdk−m

√ ∑

u∈Dm(Ä′)

Ef2
u(X)

√ ∑

u∈Dm(Ä′)

Eg2
u(X),

(82)
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where the last inequality follows from Cauchy-Schwarz inequality. Finally,
∑

k∈[m,h(Ä′)]

2C3
2.2(h(Ä′) −m)3q¼h(Ä′)+k−2mRdk−m

f2C3
2.2R(h(Ä′) −m)3q · (h(Ä′) −m)¼h(Ä′)−m max

k∈[m,h(Ä′)]
¼k−mdk−m

=2C3
2.2R(h(Ä′) −m)3q · (h(Ä′) −m)

(
max{d¼2, ¼})h(Ä′)−m

=2C3
2.2R(h(Ä′) −m)3q+1 exp(−1.1ε(h(Ä′) −m))

fC0R exp(−ε(h(Ä′) −m)),

where
C0 = 2C3

2.2 max
n∈N

n3q+1 exp(−0.1εn) < +∞
is a constant depending on M and ε. Combining the above estimate with (82) we conclude that

max
¹∈[q]

∣∣(EÄ′fg)(¹) − Efg
∣∣ f C0R exp

(− ε(h(Ä′) −m)
)√ ∑

u∈Dm(Ä′)

Ef2
u(X)

√ ∑

u∈Dm(Ä′)

Eg2
u(X),

and the lemma follows. □

The statement of Lemma 8.4 together with Proposition 4.3 implies the following:

Corollary 8.5. There exists a constant C = C(M, ε) g 1 so that the following holds. For Ä′ ∈ T
and 0 f m f h(Ä′), consider two degree 1 polynomials f and g with variables (xu : u ∈ Dm(Ä′))
with Ef(X) = Eg(X) = 0. Notice that by the Markov Property, (EÄ′fg)(x) is a function of xÄ′.
Then,

max
¹∈[q]

∣∣(EÄ′fg)(¹) − Efg
∣∣ f CR4 exp(−ε(h(Ä′) −m))

√
Ef2(X)

√
Eg2(X).

Remark 8.6. By taking the degree 1 polynomial f = g with the assumption that Ef(X) = 0, we
get

E
[
(EÄ′f2)(X) − Ef2(X)

]2 f
(

max
¹∈[q]

∣∣(EÄ′fg)(¹) − Efg
∣∣
)2

f C2R6 exp(−2εh(Ä′))(Ef2(X))2.(83)

In other words, if h(Ä′) is sufficiently large, (EÄ′f2)(XÄ′) is almost the same as Ef2(X) with a
small fluctuation. Let us state this as a seperate lemma.

Lemma 8.7. There exists C = C(M,d) so that the following holds. For Ä′ ∈ T with

h(Ä′) g C(log(R) + 1)

ε
,

any degree 1 polynomial f of variables (xu : u ∈ LÄ′) with Ef(X) = 0 satisfies

max
¹∈[q]

(EÄ′f2)(¹) f 2 min
¹∈[q]

(EÄ′f2)(¹).

Proof. By Corollary 8.5, for every ¹ ∈ [q],
∣∣(EÄ′f2)(¹) − Ef2(X)

∣∣ f C8.5R
4 exp(−εh(Ä′))Ef2(X).

where C8.5 is the constant introduced in Lemma 8.5. Now, we set the constant described in the
lemma as

C =
1

ε

(
log(4C8.5) + 4

)
,

which implies

C8.4R exp(−εh(Ä′)) f 1

4
exp

(− ε(h(Ä′) − C(log(R) + 1))
)
.
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Then, with h(Ä′) g C(log(R) + 1)

|(EÄ′f2)(¹) − Ef2(X)| f 1

4
Ef2(X),

which in term implies
max¹∈[q](EÄ′f2)(¹)

min¹∈[q](EÄ′f2)(¹)
f

5
4Ef

2(X)
3
4Ef

2(X)
< 2.

□

Proof of Proposition 8.2. Let C0 denote the constant introduced in the statement of the Proposi-
tion. Its precise value will be determined along the proof.

Let Ä′ ∈ T with h′ := h(Ä′). By Lemma 4.9, any degree-1 polynomial f(x) with variables
(xu : u ∈ LÄ′) satisfies

Var
[
(EÄ′f)(X)

] f C4.9R
4(h′)2q(d¼2)h′

Var[f(X)],

where C4.9 denotes the M -dependent constant introduced in the Lemma. For the term in front of
Var[f(X)],

C4.9R
4(h′)2q(d¼2)h′ f C4.9R

4(h′)2q exp(−1.1εh′) f exp
(− ε

(
h′ − C1(log(R) + 1)

))
,

where

C1 :=
1

ε

(
log(C4.9) + 4 + max

n∈N

n2q exp(−0.1εq)
)
.

Thus, if we impose the first assumption on C0 that

C0 g C1,

then the first condition (77) in Assumption 8.1 holds for A1 if we take h◦ g C0(1 + log(R)).

It remains to establish (78). Let f, g be two degree-1 polynomials in the variables (xu : u ∈ LÄ′)
satisfying Ef(X) = Eg(X) = 0. First, by Corollary 8.5,

max
¹∈[q]

|(EÄ′fg)(¹) − Efg| f C8.5R
4 exp(−εh(Ä′))

√
Ef2(X)

√
Eg2(X),

where C8.5 is the constant introduced in Corollary 8.5. Next, we would like to apply Lemma 8.7.
Assuming

h(u) g C8.7(log(R) + 1)

ε
where C8.7 is the constant introduced in the Lemma, we can apply the lemma to get

Ef2(X) f 2 min
¹

(EÄ′f2)(¹)

and the same holds for g. Together we may conclude that

max
¹∈[q]

|(EÄ′fg)(¹) − Efg| f2C8.5R
4 exp(−εh(Ä′))

√
min

¹
(EÄ′f2)(¹) min

¹
(EÄ′g2)(¹)

Now, we impose the second assumption on C0 that

C0 g max
{1

ε

(
log(2C8.5) + 4

)
,
C8.7

ε

}
.

Then, we conclude that

max
¹∈[q]

|(Eufg)(¹) − Efg| f exp
(

− ε
(
h(Ä′) − C0(log(R) + 1)

))√
min

¹
(Euf2)(¹) min

¹
(Eug2)(¹)
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provided that
h(Ä′) g C0(log(R) + 1).

Therefore, we can conclude that A1 satisfies Assumption 8.1 with

h◦ = C0(log(R) + 1).

□

9. Inductive Step in General Case

The goal in this section is to prove Theorem 8.3. Let us restate the theorem here:

Theorem. Consider the rooted tree T and transition matrix M described in Theorem 1.6. There
exists C = C(M,d) > 1 so that the following holds. Suppose A satisfies Assumption 8.1 with
some parameter h◦. Let B = B(A) (see Definition 1.10). Then, B satisfies Assumption 8.1 with
parameter

h◦ + C(log(R) + 1).

In this section, we fix a subcollection A satisfying Assumption 8.1 with a given

parameter h◦ and let B = B(A).
We begin with the following lemma, which allows us to recycle some of the results from the case

cM > 0.

Lemma 9.1. Suppose A satisfies Assumption 8.1 with parameter h◦. Then, then A satisfies As-
sumption 3.3 with h∗ = h◦ + 2

ε log(2) and c∗ = 1
2 .

Proof. Let f be a Afv-polynomial. If we set h∗ g h◦, then (11) follows immediately from (77).
Now, we assume that Ef(X) = 0 and h(v) g h◦. We could apply (78) with g = f to get

max
¹∈[q]

∣∣(Evf
2)(¹) − Ef2(X)

∣∣ f exp
(

− ε

2
(h(v) − h◦)

)
Ef2(X).

If exp
(

− ε
2(h(v) − h◦)

)
f 1

2 , or equivalently,

h(v) g h◦ +
2

ε
log(2),

then, for every ¹ ∈ [q],

1

2
Eh2(X) f (Evh

2)(¹) f 3

2
Eh2(X).

Therefore, if we set h∗ g h◦ + 2
ε log(2) and c∗ = 1

2 , both (11) and (12) hold. □

In the remainning of this section, we set

h∗ = h◦ +
2

ε
log(2) and c∗ =

1

2
,(84)

and we will rely on the fact that A satisfies Assumption 3.3 with these two parameters. In particular,
we could apply Theorem 3.6 to show the existence of C3.6 = C(M, ε, 1/2) such that for any Bfv-
polynomial f ,

Var
[
(Evf)(X)

] f exp
(

− ε
(
h(v) − h◦ + C3.6(log(R) + 1)

))
Var

[
f(X)

]
.

Therefore, to establish Theorem 8.3, it remains to show the existence of C = C(M,d) so that
any Bfv-polynomials f and g with h(v) g h◦ + C(log(R) + 1) and Ef(X) = Eg(X) = 0 satisfy

max
¹∈[q]

|(Evfg)(¹) − Efg| f exp
(

− ε

2
(h(v) − h◦ − C(log(R) + 1))

)√
min

¹
(Evf2)(¹) min

¹′
(Evg2)(¹).
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To establish the above inequality, the higher level structure is essentially the same as that for
deriving Theorem 3.6. We again decompose f and g according to Lemma 5.1. To the proof of the
theorem, similarly it contains three steps:

(1) Establish properties of f̃u and g̃u, see Proposition 9.2.
(2) Estalbish properties of fk and gk, see Proposition 9.6.
(3) Establish Theorem 8.3.

9.1. Properties of fu. The main goal we want to prove in this subsection is the following Propo-
sition.

Proposition 9.2. There exsits C = C(M,d) g 1 so that the following holds. For a given u ∈ T\L
with

h(u) g h◦ + C(log(R) + 1),

suppose fu and gu are two functions which are linear combination of ÈÃ(x) with Ã ∈ F(Bu). Then,
for any ¹, ¹′ ∈ [q],

∣∣(Eufugu)(¹) − (Eufugu)(¹′)
∣∣

f exp
(

− ε

2
(h(u) − C(log(R) + 1) − h◦)

)√
min

¹
(Euf2

u)(¹) min
¹

(Eug2
u)(¹).

With a minor modification to our approach, we are able to obtain an analogous result wherein
fu and gu are substituted by f̃u and g̃u, respectively:

Corollary 9.3. There exsits C = C(M,d) g 1 so that the following holds. For a given u ∈ T\L
with

h(u) g h◦ + C(log(R) + 1),

suppose fu and gu are two functions which are linear combination of ÈS(x) with S ∈ F(Bu). Then,
for any ¹, ¹′ ∈ [q],

∣∣(Euf̃ug̃u)(¹) − (Euf̃ug̃u)(¹′)
∣∣

f exp
(

− ε

2
(h(u) − C(log(R) + 1) − h◦)

)√
min

¹
(Euf̃2

u)(¹) min
¹

(Eug̃2
u)(¹).

Let us prove Corollary first.

Proof. Let C0 denote the constant introduced in the Corollary. Its value will be dervied during the
proof.

From the identity

f̃u(x)g̃u(x) = fu(x)gu(x) − fu(x)Egu(X) − Efu(X)gu(x) + Efu(X)Egu(X),

it follows that
∣∣(Euf̃ug̃u)(¹) − (Euf̃ug̃u)(¹′)

∣∣ f
∣∣(Eufugu)(¹) − (Eufugu)(¹′)

∣∣+ |Egu(X)|
∣∣(Eufu)(¹) − (Eufu)(¹′)

∣∣

+ |Efu(X)|
∣∣(Eugu)(¹) − (Eugu)(¹′)

∣∣

f
∣∣(Eufugu)(¹) − (Eufugu)(¹′)

∣∣+ 4 max
¹′

|Eufu(¹)| max
¹′

|Eugu(¹)|.

First, we apply Propostion 6.1 with the fact that A satisfies Assumption 8.1 with parameter
h∗ = h◦ + 2

ε log(2) and c∗ = 1
2 ,

max
¹′

(Eufu)2(¹) f exp(−2ε(h(u) − C6.1(log(R) + 1) − h∗)) max
¹′

(Euf
2
u)(¹′)

where C6.1 = C(M,d, 1
2) is the constant introduced in the Proposition.
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Second, applying Proposition 9.2 with fu = gu we have
∣∣max

¹
(Euf

2
u)(¹) − min

¹′
(Euf

2
u)(¹′)

∣∣

f exp
(

− ε

2
(h(u) − C9.2(log(R) + 1) − h◦)

)
min

¹
(Euf

2
u)(¹)

where C9.2 is the constant introduced in Proposition 9.2.
Let us impose the first assumption that C0 g C9.2. Then, with h(u) g h◦ + C0(log(R) + 1),

we can conclude that

max
¹′

(Euf
2
u)(¹′) f 2 min

¹′
(Euf

2
u)(¹′).

Clearly, the same derivation also holds for gu.
Therefore, we conclude that

∣∣(Euf̃ug̃u)(¹) − (Euf̃ug̃u)(¹′)
∣∣

f
∣∣(Eufugu)(¹) − (Eufugu)(¹′)

∣∣

+ 8 exp(−2ε(h(u) − C1(log(R) + 1) − h∗))
√

min
¹

(Euf2
u)(¹) min

¹
(Eug2

u)(¹)

f exp
(

− ε

2
(h(u) − C9.2(log(R) + 1) − h◦)

)√
min

¹
(Euf2

u)(¹) min
¹

(Eug2
u)(¹)

+ 8 exp
(

− 2ε
(
h(u) − C6.1(log(R) + 1) − h◦ − 2

ε
log(2)

))√
min

¹
(Euf2

u)(¹) min
¹

(Eug2
u)(¹)

f exp
(

− ε

2
(h(u) − C0(log(R) + 1) − h◦)

)√
min

¹
(Euf2

u)(¹) min
¹

(Eug2
u)(¹),

where the last inequality follows by imposing the second assumption on C0 that

C0 g 2

ε
log(2) + max

{
C9.2, C6.1 +

2

ε
log(2) +

1

2ε
log(8)

}
.

This completes the proof of the Corollary. □

The main technical part for proving Proposition 9.2 is the following:

Lemma 9.4. For any u ∈ T with exp
( − ε

2(h(u) − h◦)
) f 1

4Rd , the following holds: Let I ¢ [du]
be a subset of size at least 2. For any a(x) and b(x) which are linear combinations of ÈÃ(x) with
Ã ∈ Bu satisfying I(Ã) = I, we have

max
¹,¹′∈[q]

∣∣(Euab)(¹) − (Euab)(¹
′)
∣∣ f4dR exp

(
− ε

2
(h(u) − h◦)

)√
min

¹
(Eua2)(¹) · min

¹
(Eub2)(¹).

Remark 9.5. From the assumption that h(u) satisfies

4dR exp
(

− ε

2
(h(u) − h◦)

)
f 1 ô h(u) g h◦ +

2

ε
log(4dR).

By taking a(x) = b(x) we have

max
¹

(Eua
2)(¹) f 2 min

¹
(Eua

2)(¹).(85)

Proof. Let u, a(x), and b(x) be the vertex and functions described in the Lemma. Let us introduce
some notations for the ease of expressing the calculation later. For brevity, let

¶ = exp
(

− ε

2
(h(u) − h◦)

)
.

For x ∈ [q]T , let

xu,I = (xui
)i∈I .
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For any given function h(x) with variables in (xv : v ∈ ⋃i∈I Tui
), we define

(Eu,Ih)(x) := E

[
h(X)

∣∣∣ ∀v /∈
⋃

i∈I

{w < ui}, Xv = xv

]
.

Observe that

(Eu,Ia)(x), (Eu,Ib)(x), and (Eu,Iab)(x)

are functions with input xu,I . This is due to the fact that a and b –and consequently ab– are
functions of variables (xv : xv ∈ ⋃i∈I Lui

) and Markov Property.

Claim: The function xu,I 7→ (Eu,Iab)(xu,I) is Lipschitz continuous with respect to the Hamming
Distance with Lipschitz constant

2¶
√

max
xu,I

(Eu,Ia2)(xu,I)
√

max
xu,I

(Eu,Ib2)(xu,I).(86)

We begin with the proof of the claim. Fix an index i0 ∈ I. Without lose of generality, we assume
I = [k] and i0 = 1. For x ∈ [q]T , let

xi = xfui

for i f [du], and set

x0 = (x2, . . . , xk).

With this notation above, we can express

a(x) =a(x0, x1) and b(x) =b(x0, x1).

Fix any value of x0, the function

x1 7→ a(x0, x1)

is a linear combination of ϕ̃Ã1(x1) with Ã1 ∈ F(Afu). Notably, this implies that Ea(x0, X1) = 0.
The same properties hold for the function x1 7→ b(x0, x1).

Now, given the assumption exp
( − ε

2(h(u) − h◦)
) f 1

4Rd implies h(u) g h◦, we can apply (78)
from Assumption 8.1 to get that

max
¹,¹′∈[q]

∣∣∣E
[
a(x0, X1)b(x0, X1)

∣∣Xu1 = ¹1
]− E

[
a(x0, X1)b(x0, X1)

∣∣Xu1 = ¹2
]∣∣∣

f2 max
¹∈[q]

∣∣∣E
[
a(x0, X1)b(x0, X1)

∣∣Xu1 = ¹1
]− Ea(x0, X1)b(x0, X1)

∣∣∣

f2¶
√

min
¹

E
[
a2(x0, X1)

∣∣Xu1 = ¹
]
min

¹
E
[
b2(x0, X1)

∣∣Xu1 = ¹
]
.

For any x ∈ [q]T , let xu0 = (xu2 , xu3 , . . . , xudu
). By the Markov Property, for any ¹ ∈ [q],

(X0 |Xu0 = xu0 , Xu1 = ¹) =(X0 |Xu0 = xu0) and

(X1 |Xu0 = xu0 , Xu1 = ¹) =(Xu1 |Xu1 = ¹)

are jointly independent. Hence,

E
[
a(X0, X1)b(X0, X1)

∣∣Xu0 = xu0 , Xu1 = ¹
]

=E
[
a(Y0, X1)b(Y0, X1)

∣∣Xu1 = ¹
]
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where Y0 is an independent copy of (X0 |Xu0 = xu0). We have
∣∣E
[
a(X0, X1)b(X0, X1)

∣∣Xu0 = xu0 , Xu1 = ¹
]− E

[
a(X0, X1)b(X0, X1)

∣∣Xu0 = xu0 , Xu1 = ¹′]∣∣

=
∣∣∣EY0

[
EX1 [a(Y0, X1)b(Y0, X1) |Xu1 = ¹] − EX1 [a(Y0, X1)b(Y0, X1) |Xu1 = ¹′]

]∣∣∣

fEY0

[∣∣EX1 [a(Y0, X1)b(Y0, X1) |Xu1 = ¹] − EX1 [a(Y0, X1)b(Y0, X1) |Xu1 = ¹′]
∣∣
]

f2¶EY0

[(
min

¹
EX1 [a2(Y0, X1) |Xu1 = ¹]

)1/2 · (min
¹′

EX1 [b2(Y0, X1) |Xu1 = ¹′]
)1/2

]

f2¶
(
EY0

[
min

¹
EX1 [a2(Y0, X1) |Xu1 = ¹]

])1/2 · (EY0

[
min

¹′
EX1 [b2(Y0, X1) |Xu1 = ¹′]

])1/2
,

where the last inequality follows from Hölder’s inequality. Further,

EY0

[
min

¹
EX1 [a2(Y0, X1) |Xu1 = ¹]

] f min
¹

EY0

[
EX1 [a2(Y0, X1) |Xu1 = ¹]

]

= min
¹

E
[
a2(X)

∣∣Xu0 = xu0 , Xu1 = ¹
]

f max
xu,I

(Eu,Ia
2)(xu,I).

Applying the same derivation to b we get

EY0

[
min

¹
EX1 [b2(Y0, X1) |Xu1 = ¹]

] f max
xu,I

(Eu,Ib
2)(xu,I).

Therefore, our claim (86) follows: For any ¹, ¹′ ∈ [q],
∣∣E
[
a(X)b(X)

∣∣Xu0 = xu0 , xu1 = ¹
]− E

[
a(X)b(X)

∣∣Xu0 = xu0 , xu1 = ¹′]∣∣

f2¶
√

max
xu,I

(Ea2)(xu,I) max
xu,I

(Eb2)(xu,I).

With the Lipschitz continuity been established, essentially the lemma follows when ¶ is sufficiently
small. Let us proceed with the remaining argument. Let

x′
u,I =argminxu,I

(Eu,Ia
2)(xu,I) and x′′

u,I =argmaxxu,I
(Eu,Ia

2)(xu,I).

Applying (86) with the assumption a(x) = b(x) and the fact |I| f du,

(Eu,Ia
2)(x′′

u,I) − (Eu,Ia
2)(x′

u,I) f2du¶(Eu,Ia
2)(a′′

u,I),

and hence

max
xu,I

(Eu,Ia
2)(xu,I) f 1

1 − 2du¶
min
xu,I

(Eu,Ia
2)(xu,I) f 1

1 − 2du¶
min

s
(Eua

2)(s),(87)

provided that 2du¶ < 1.
Again, the same derivation also holds for b. Combining (86) and (87) we conclude that for any

¹, ¹′ ∈ [q],

|(Euab)(¹) − (Euab)(¹
′)| f| max

xu,I

(Euab)(xu,I) − min
x′

u,I

(Euab)(x
′
u,I)|

f 2du¶

1 − 2du¶

√
min

¹
(Eua2)(¹) min

¹′
(Eub2)(¹′).

With our assumption on the tree T that du f Rd, our assumption

¶ = exp

(
−ε

2
(h(u) − h◦)

)
f 1

4Rd
,

implies that
2du¶

1 − 2du¶
f 4Rd¶.
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We conclude that

|(Euab)(¹) − (Euab)(¹
′)| f4Rd exp

(ε
2

(h(u) − h◦)
)√

min
¹

(Eua2)(¹) min
¹′

(Eub2)(¹′).

□

Proof of Proposition 9.2. Let C0 = C0(M,d) denote the constant introduced in the statement of
the Proposition. Recall the decomposition of fu into fu,I from Definition 6.4, consider the decom-
position

fu(x) =
∑

I¦[du] : |I|g2

fu,I(x) and gu(x) =
∑

I¦[du] : |I|g2

gu,I(x).

The proof of the Proposition will proceed by bounding summands in the formula below:
∣∣(Eufugu)(¹) − (Eufugu)(¹′)

∣∣ f
∑

I,J¦[du] : |I|,|J |g2

∣∣(Eufu,Igu,J)(¹) − (Eufu,Igu,J)(¹′)
∣∣.(88)

Estimate of summands in (88): For any I, J ¦ [du] with |I|, |J | g 2, we have two cases to con-
sider: First, we consider the case I ̸= J . Notice that, by Lemma 9.1, A satisfies Assumption 3.3
with parameters (h◦ + 2

ε log(2), 1
2). This allows us to invoke Corollary 6.6, yielding

∣∣(Eufu,Igu,J)(¹) − (Eufu,Igu,J)(¹′)
∣∣

f2 max
¹∈[q]

|(Eufu,Igu,J)(¹)|

f2 exp
(

− ε|I∆J |
2

(h(u) − C6.6 − h◦ − 2

ε
log(2))

)(
max
¹∈[q]

(Euf
2
u,I)(¹)

)1/2 · (max
¹∈[q]

(Eug
2
u,J)(¹)

)1/2
,

where C6.6 = C6.6(M,d, 1
2) is the constant introduced in the Corollary.

Let us impose the first assumption on C0 that

C0 g 2

ε
(1 + log(4d)),

which implies that h(u) g h◦ +C0(log(R) + 1) g h◦ + 2
ε log(4dR). With this assumption, we could

apply the remark (85) of Lemma 9.4 to get

(
max
¹∈[q]

(Euf
2
u,I)(¹)

)1/2 f 2
(

min
¹

(Euf
2
u,I)(¹)

)1/2

and the same holds for gu,J . Hence, for I ̸= J we have
∣∣(Eufu,Igu,J)(¹) − (Eufu,Igu,J)(¹′)

∣∣

f4 exp
(

− ε|I∆J |
2

(h(u) − C6.6 − h◦ +
2

ε
log(2))

)(
min
¹∈[q]

(Euf
2
u,I)(¹)

)1/2 · (min
¹∈[q]

(Eug
2
u,J)(¹)

)1/2
.

Second, we consider the case I = J . Here we simply apply Lemma 9.4, yielding
∣∣(Eufu,Igu,I)(¹) − (Eufu,Igu,I)(¹′)

∣∣

f4Rd exp
(

− ε

2
(h(u) − h◦)

)(
min
¹∈[q]

(Euf
2
u,I)(¹)

)1/2 · (min
¹∈[q]

(Eug
2
u,J)(¹)

)1/2
.

Let us unify the above two estimates by introducing

C1 = max
{
C6.6 +

2

ε
log(2) +

2

ε
log(8),

2

ε
(1 + log(24d))

}
.
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Then,

∣∣(Eufu,Igu,J)(¹) − (Eufu,Igu,J)(¹′)
∣∣

(89)

f 1

6
exp

(
− ε

2
max{|I∆J |, 1}(h(u) − C1(log(R) + 1) − h◦)

)

︸ ︷︷ ︸
:=aI,J

(
min
¹∈[q]

(Euf
2
u,I)(¹)

)1/2

︸ ︷︷ ︸
:=³I

· (min
¹∈[q]

(Eug
2
u,J)(¹)

)1/2

︸ ︷︷ ︸
:=´J

,

(90)

for every pair I, J ¦ [du] with |I| g 2 and |J | g 2.
Using this inequality, (88) becomes

∣∣(Eufugu)(¹) − (Eufugu)(¹′)
∣∣ f

∑

I,J¦[du] :|I|,|J |g2

aI,J³I´J = ³⃗¦A⃗́ f ∥³⃗∥ · ∥A∥ · ∥⃗́∥(91)

where ³⃗ = (³I)I¦[du] : |I|g2, ⃗́ = (´)I¦[du] : |I|g2, and A = (aI,J)I,J¦[du] :|I|,|J |g2. Further, ∥³⃗∥ and

∥⃗́∥ are the ℓ2 norms of ³⃗ and ⃗́, respectively, and ∥A∥ is the operator norm of A.

Estimate of operator norm of A: Notice that A is a symmetric matrix. Thus, we can fix a unit

vector µ⃗ satisfying ∥A∥ = µ⃗¦Aµ⃗. For each pair I, J ¦ [du] with |I| g 2 and |J | g 2, since aI,J g 0,

µIaI,JµJ f aI,J

2
µ2

I +
aI,J

2
µ2

J ,

and thus,

∥A∥ =
∑

I,J¦[du] :|I|,|J |g2

aI,JµIµJ f
∑

I¦[du] :|I|g2

µ2
I

( ∑

J¦[du] :|J |g2

aI,J

)
.(92)

For each I ¦ [du] with |I| g 2, the number of J ¦ [du] with |I∆J | = k is bounded above by
dk−1

u f (Rd)k. Then, with the given estimate of aI,J in (89),

∑

J¦[du] :|J |g2

aI,J f1

6
exp

(
− ε

2
(h(u) − C1(log(R) + 1) − h◦)

)

+
∑

tg1

1

6
(Rd)t exp

(
− ε

2
t(h(u) − C1(log(R) + 1) − h◦)

)
.(93)

Now, we impose the second assumption on C0 that

C0 g C1 +
2

ε

(
1 + log(2d)

)
.

With the assumption that h(u) g h◦ +C0(log(R) + 1), the geometric sum in (93) has a decay rate
smaller than 1/2. Therefore,

∑

J¦[du] :|J |g2

aI,J f1

2
exp

(
− ε

2
(h(u) − C2(log(R) + 1) − h◦)

)
,

where

C2 = C1 +
2

ε

(
1 + log(d)

)
.

Now applying the above estimate, together with
∑

I¦[du] :|I|g2 µ
2
I = 1, to (92), we obtain the

following bound:

∥A∥ f 1

2
exp

(
− ε

2
(h(u) − C1(log(R) + 1) − h◦)

)
.
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Comparison of
∑

I min¹∈[q](Euf
2
u,I)(¹) and min¹∈[q](Euf

2
u)(¹) (and the same for g): Here is the last

step toward the proof of the Proposition. Returning to (91), we have
∣∣(Eufugu)(¹) − (Eufugu)(¹′)

∣∣

f1

2
exp

(
− ε

2
(h(u) − C1(log(R) + 1) − h◦)

)
·
√∑

I

min
¹∈[q]

(Euf2
u,I)(¹) ·

√∑

I

min
¹∈[q]

(Eug2
u,I)(¹).

Let us impose the third assumption on C0 that

C0 g C6.7 +
2

ε
log(2)

where C6.7 introduced in Corollary 6.7. Recall that we have h∗ = h◦ + 2
ε log(2) from (84). We can

invoke this Corollary to yield:

∀¹ ∈ [q],

√∑

I

(Euf2
u,I)(¹) f

√
2Ef2

u(¹).

Let ¹0 ∈ [q] be the value minimizing ¹ 7→
√
Ef2

u(¹). Then,

min
¹∈[q]

√
2Ef2

u(¹) =
√

2Ef2
u(¹0) g

√∑

I

(Euf2
u,I)(¹0) g

√∑

I

min
¹∈[q]

(Euf2
u,I)(¹).

Clearly, the same derivation also holds for gu. Together we conclude that
∣∣(Eufugu)(¹) − (Eufugu)(¹′)

∣∣

f exp
(

− ε

2
(h(u) − C2(log(R) + 1) − h◦)

)(
min
¹∈[q]

(Euf
2
u)(¹)

)1/2(
min
¹∈[q]

(Eug
2
u)(¹)

)1/2
.

Finally, if we impose the forth assumption on C0 that

C0 g C2,

then the Proposition follows.
□

9.2. Properties of fk: Products. The goal of this subsection is to establish the following.

Proposition 9.6. There exists C = C(M,d) g 1 so that the following holds. For any Ä′ ∈ T
satisfying

h(Ä′) g h◦ + C(log(R) + 1)

and a positive integer h◦ + C(log(R) + 1) f k1 f h(Ä′). Consider a function f and g are BfÄ′

polynomials with Ef(X) = Eg(X) = 0. We decompose f and g according to Lemma 5.1 with the
given k1. Then, the following holds: For k1 f m, k f h(Ä′),

• If max{m, k} > k1,

max
¹,¹′∈[q]

∣∣(EÄ′fkgm)(¹) − (EÄ′fkgm)(¹′)
∣∣

f exp
(

− ε

2
(2h(Ä′) − max{k,m} − C(log(R) + 1) − h◦)

)
(Ef2

k (X))1/2(Eg2
m(X))1/2.
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• If k = m = k1,

max
¹,¹′∈[q]

∣∣(EÄ′fkgm)(¹) − (EÄ′fkgm)(¹′)
∣∣

f exp
(

− ε

2
(2h(Ä′) − 2k1 − C(log(R) + 1))

)
(Ef2

k (X))1/2(Eg2
m(X))1/2.

The proof mirrors the structure used in Proposition 7.1. In this case, we rely on both Proposition
6.1 and Proposition 9.2. Through this subsection, let

C◦ = C◦(M,d)

be the constant described in the Proposition. The functions f , g, and k1 are as introduced in the
Proposition.

Assuming without lose of generality that m f k, we apply the reasoning from (68) in Proposition
7.1, yielding

(EÄ′fkgm)(¹)

=E

[( ∑

u∈Dk(Ä′)

(Euf̃u)(X)
)( ∑

u∈Dk(Ä′)

(Eugm,u)(X)
) ∣∣∣XÄ′ = ¹

]
+

∑

u∈Dk(Ä′)

(EÄ′ f̃ugm,u)(¹)

−
∑

u∈Dk(Ä′)

E

[
(Euf̃u)(Xu)(Eugm,u)(Xu)

∣∣∣XÄ′ = ¹
]
,

and hence,

(EÄ′fkgm)(¹) − (EÄ′fkgm)(¹′)

=
(
EÄ′(Ekfk)(Ekgm)

)
(¹) − (

EÄ′(Ekfk)(Ekgm)
)
(¹′)

+
∑

u∈Dk(Ä′)

(
(EÄ′ f̃ugm,u)(¹) − (EÄ′ f̃ugm,u)(¹′)

)

−
( ∑

u∈Dk(Ä′)

(
(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹) − (

(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹′)

)
.(94)

Similar to the derivation of (60) from Proposition 7.1. The proof is dedicated into estimating
the above three summands.

We begin with the following estimate:

Lemma 9.7. There exists a constant C = C(M,d) so that the following holds. Suppose C◦ g C9.2,
where C9.2 is the constant introduced in Proposition 9.2. Then, the following holds: For u ∈ Dk(Ä′),

(1) if k > k1, then

max
¹,¹′∈[q]

∣∣(EÄ′ f̃ugm,u)(¹) − EÄ′ f̃ugm,u)(¹′)
∣∣

f exp
(

− ε

2
(2h(Ä′) − k − C(log(R) + 1) − h◦)

)
(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2;

(2) if k = m = k1, then

max
¹,¹′∈[q]

∣∣(EÄ′ f̃ugm,u)(¹) − EÄ′ f̃ugm,u)(¹′)
∣∣

f exp
(

− ε

2
(2h(Ä′) − 2k − C)

)
(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2.

51



Proof. Step 1. Bound E|f̃u(X)gm,u(X) − Ef̃ugm,u| from above: By Hölder’s inequality,

Var
[
(Euf̃ugm,u)(Xu)

]
︸ ︷︷ ︸

ℓ2-norm

f max
¹∈[q]

∣∣(Euf̃ugm,u)(¹) − Ef̃ugm,u

∣∣
︸ ︷︷ ︸

ℓ∞-norm

·E
∣∣(Euf̃ugm,u)(Xu) − Ef̃ugm,u

∣∣
︸ ︷︷ ︸

ℓ1-norm

f
√
C2.2Var

[
(Euf̃ugm,u)(Xu)

] · E|f̃u(X)gm,u(X) − Ef̃ugm,u|

ô
√

Var
[
(Euf̃ugm,u)(Xu)

] f
√
C2.2E|f̃u(X)gm,u(X) − Ef̃ugm,u|,

(95)

where we applied (4) from Lemma 2.2 with C2.2 is the constant introduced in the Lemma. Further,
relying on (95), together with (4) and (3) from the Lemma 2.2, we have

max
¹,¹′∈[q]

∣∣(EÄ′ f̃ugm,u)(¹) − EÄ′ f̃ugm,u)(¹′)
∣∣ f2 max

¹∈[q]

∣∣(EÄ′ f̃ugm,u)(¹) − Ef̃ugm,u

∣∣

f2C2.2(h(Ä′) − k)q¼h(Ä′)−k max
¹∈[q]

|(Euf̃ugm,u)(¹) − Ef̃ugm,u|

f2C2
2.2(h(Ä′) − k)q¼h(Ä′)−k

√
C2.2E|f̃u(X)gm,u(X) − Ef̃ugm,u|

=C1 exp(−ε(h(Ä′) − k))E|f̃u(X)gm,u(X) − Ef̃ugm,u|,(96)

where

C1 = 2C
5/2
2.2 · max

n∈N

nq exp(−0.1εn).

Case 1: m < k. Here we can simply recycle the estimate from (72):

E|f̃u(X)gm,u(X) − Ef̃ugm,u| f2E|f̃u(X)gm,u(X)|

f exp
(

− ε

2

(
k − C2(log(R) + 1) − h◦))(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2,(97)

where

C2 =
2

ε

(3

2
+

1

2
log(d) + log(C5.1)

)
+ C6.1 + 2 · 2

ε
log(2),

where C5.1 is the constant introduced in Lemma 5.1 and C6.1 is the constant introduced in Propo-
sition 6.1.

Case 2: k1 < m = k.
This is the case where we need Proposition 9.2. With the assumption that C◦ g C9.2, where

C9.2 g 1 is the constant introduced in the Proposition, we have

m = k > k1 g h◦ + C◦(log(R) + 1) g h◦ + C9.2(log(R) + 1),

so that we could apply the Proposition to get

E|f̃u(X)gm,u(X) − Ef̃ugm,u|
f max

¹,¹′

∣∣(Eufugu)(¹) − (Eufugu)(¹′)
∣∣

f exp
(

− ε

2
(k − C9.2(log(R) + 1) − h◦)

)
(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2.

Case 3: k1 = m = k The last case is straightforward:

E|f̃u(X)gm,u(X) − Ef̃ugm,u| f2E|f̃u(X)gm,u(X)| f 2
√
Ef̃2

u(X)
√
Eg2

m,u(X).

By taking C3 = max{C2, C9.2}+ 2
ε log(C1), the statement of the Lemma follows with C = C3. □

As an analogue of the above Lemma, we also have
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Lemma 9.8. There exists a constant C = C(M,d) so that the following holds. Suppose C◦ g C9.2

is the constant introduced in Proposition 9.2. Then, the following holds: For u ∈ Dk(Ä′),

(1) if k > k1, then

max
¹,¹′∈[q]

∣∣(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹) − (

(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹′)

∣∣

f exp
(

− ε

2
(2h(Ä′) − k − C(log(R) + 1) − h◦)

)
(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2.

(2) if k = m = k1, then
∣∣(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹) − (

(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹′)

∣∣

f exp
(

− ε

2
(2h(Ä′) − 2k − C)

)
(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2.

Since the proof is simpler and the structure is the same as that for Lemma 9.7, we will outline
a sketch proof in this case.

Proof. Let au(xu) = (Euf̃u)(xu) and bu = (Eugm,u)(xu). Repeating the first step of the proof of
Lemma 9.7, we have

max
¹,¹′∈[q]

∣∣(EÄ′aubu)(¹) − EÄ′aubu)(¹′)
∣∣ fC1 exp(−ε(h(Ä′) − k))E|au(X)bu(X) − Eaubu|,

with

C1 := 2C
5/2
2.2 · max

n∈N

nq exp(−0.1εn),

which is exactly the same constant stated in Lemma 9.7. Next,

E|au(X)bu(X) − Eaubu| f 2E|au(X)bu(X)| f 2
√
Ea2

u(X)
√
Eb2

u(X) f 2
√
Ea2

u(X)
√
Eg2

m,u(X).

If k > k1, we could apply (34) from Proposition 6.1 to f̃u, and get
√
Ea2

u(X) f exp
(

− 2ε(k − C6.1(log(R) + 1) −h◦ − 2

ε
log(2)

︸ ︷︷ ︸
−h∗

)
)√

Ef̃2
u(X).

Indeed, this tail bound is stronger than what we got from Lemma 9.7. The remainning part involves
combining these estimates with a suitable constant C so that the lemma holds. Given the argument
was already presented in the proof of Lemma 9.7, we will omit these details. □

Before bounding the summands in (94), let us bound
∑

u∈Dk(Ä′) Ef̃
2
u(X) and

∑
u∈Dk(Ä′) Eg

2
m,u(X)

from above by Ef2
k (X) and Eg2

m(X), respectively.

Lemma 9.9. Suppose

C◦ g C7.2 +
2

ε
log(2),

where C7.2 is the constant introduced in Lemma 7.2. Then,
∑

u∈Dk(Ä′)

Eg2
m,u(X) f max

{
4, C2

5.1R
4} · Eg2

m(X),

and ∑

u∈Dk(Ä′)

Ef̃2
u(X) f max

{
4, C2

5.1R
4} · Ef2

k (X).
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Proof. Given that C◦ g C7.2 + 2
ε log(2), we have

k1 g h◦ + C◦(log(R) + 1) > h◦ +
2

ε
log(2) + C7.2(log(R) + 1) = h∗ + C7.2(log(R) + 1),

and thus we could apply Lemma 7.2. When m > k1, the lemma yields
∑

u∈Dk(Ä′)

Eg2
m,u(X) =

∑

u∈Dk(Ä′)

E

[( ∑

v∈Dm(u)

g̃v(X)
)2]

f
∑

u∈Dk(Ä′)

∑

v∈Dm(u)

2Eg̃2
v(X) f 4Eg2

m(X).

And in the case when m = k1, we use the same derivation with Lemma 7.2 been replaced by (27)
in Lemma 5.1 to get

∑

u∈Dk(Ä′)

Eg2
m,u(X) f C5.1R

3 · C5.1REg
2
m(X).

Clearly, the same derivation also holds for the comparison of
∑

u∈Dk(Ä′) Ef̃
2
u(X) and Ef2

k (X). □

Now, relying on the above two lemmas, we will estimate the second and third summand of (94):

Corollary 9.10. There exists a constant C = C(M,d) g 1 so that the following holds. Suppose

C◦ g max
{
C9.2, C7.2 +

2

ε
log(2)

}
,

where the constants are introduced in Proposition 9.2 and Lemma 7.2, respectively. Then,

(1) if k > k1, then
∣∣∣∣

∑

u∈Dk(Ä′)

(
(EÄ′ f̃ugm,u)(¹) − (EÄ′ f̃ugm,u)(¹′)

)

−
( ∑

u∈Dk(Ä′)

(
(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹) − (

(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹′)

)∣∣∣∣

f exp
(

− ε

2
(2h(Ä′) − k − C(log(R) + 1) − h◦)

)
(Ef2

k (X))1/2(Eg2
m(X))1/2.

(2) if k = m = k1, then the above term above can be bounded by

exp
(

− ε

2
(2h(Ä′) − 2k − C)

)
(Ef2

k (X))1/2(Eg2
m(X))1/2.

Proof. Let C1 be the maximum of the two constants introduced in Lemma 9.7 and Lemma 9.8. For
convenience, let

U :=

∣∣∣∣
∑

u∈Dk(Ä′)

(
(EÄ′ f̃ugm,u)(¹) − (EÄ′ f̃ugm,u)(¹′)

)

−
( ∑

u∈Dk(Ä′)

(
(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹) − (

(EÄ′

(
Euf̃u)(Eugm,u)

)
(¹′)

)∣∣∣∣.

By the two lemmas together with the triangle inequality, in the case when k > k1, we have

U f
∑

u∈Dk(Ä′)

2 exp
(

− ε

2
(2h(Ä′) − k − C1(log(R) + 1) − h◦)

)
(Ef̃2

u(X))1/2(Eg2
m,u(X))1/2

f2 exp
(

− ε

2
(2h(Ä′) − k − C1(log(R) + 1) − h◦)

)√ ∑

u∈Dk(Ä′)

Ef̃2
u(X)

√ ∑

u∈Dk(Ä′)

Eg2
m,u(X)

f2 max
{

4, C2
5.1R

4
}√

Ef2
k (X)

√
Eg2

m(X),(98)
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where the last inequality follows from Lemma 9.9. Similarly, when k = m = k1, we have

U f2 exp
(

− ε

2
(2h(Ä′) − 2k − C1)

)√ ∑

u∈Dk(Ä′)

Ef̃2
u(X)

√ ∑

u∈Dk(Ä′)

Eg2
m,u(X).(99)

By setting

C =
2

ε

(
C1 + log(4) + log(C2

5.1)
)
,

the corollary follows. □

It remains to estimate the first summand of (94):

Lemma 9.11. There exists a constant C = C(M,d) g 1 so that the following holds. Suppose

C◦ g C7.2 +
2

ε
log(2)

where C7.2 is the constant introduced in Lemma 7.2. Then,

(1) if k > k1, then

max
¹,¹′∈[q]

∣∣∣
(
EÄ′(Ekfk)(Ekgm)

)
(¹) − (

EÄ′(Ekfk)(Ekgm)
)
(¹′)

∣∣∣

f exp
(

− ε(h(Ä′) − C(log(R) + 1) − h◦)
)√

Ef2
k (X)

√
Eg2

m(X).

(2) if k = m = k1, then the above term is bounded by

exp(−ε(h(Ä′) − k1 − C(log(R) + 1)))
√
Ef2

k (X)
√
Eg2

m(X).

Proof. Observe that both (Ekfk)(x) =
∑

u∈Dk(Ä′)(Euf̃u)(xu) and (Ekgm)(x) =
∑

u∈Dk(Ä′)(Ekgm,u)(xu)

are both degree-1 polynomials with variables (xu : u ∈ Dk(Ä′)) satisfying

E(Ekgm)(X) = E(Ekfk) = 0.

This allows us to apply Lemma 8.4, yielding

max
¹,¹′∈[q]

∣∣∣
(
EÄ′(Ekfk)(Ekgm)

)
(¹) − (

EÄ′(Ekfk)(Ekgm)
)
(¹′)

∣∣∣

f2 max
¹

∣∣∣
(
EÄ′(Ekfk)(Ekgm)

)
(¹) − E

(
Ekfk)(Ekgm)

)∣∣∣

f2C8.4R exp(−ε(h(Ä′) − k))
√ ∑

u∈Dk(Ä′)

E
[
(Euf̃u)2(X)

]√ ∑

u∈Dk(Ä′)

E
[
(Eugm,u)2(X)

]
,

where C8.4 g 1 is the constant introduced in Lemma 8.4. Next, we apply Lemma 9.9 (which is why
we need the assumption on C◦) to get

√ ∑

u∈Dk(Ä′)

E
[
(Eugm,u)2(X)

] f
√ ∑

u∈Dk(Ä′)

Eg2
m,u(X) f

√
max

{
4, C2

5.1R
4
} · Eg2

m(X).

As for
√∑

u∈Dk(Ä′) E
[
(Euf̃u)2(X)

]
, if k = m = k1, then we can apply the same derivation to get

√ ∑

u∈Dk(Ä′)

E
[
(Euf̃u)2(X)

] f
√

max
{
4, C2

5.1R
4
} · Ef2

k (X).

This leads to

max
¹,¹′∈[q]

∣∣∣
(
EÄ′(Ekfk)(Ekgm)

)
(¹) − (

EÄ′(Ekfk)(Ekgm)
)
(¹′)

∣∣∣

f2C8.4 max
{
4, C2

5.1R
4} exp(−ε(h(Ä′) − k))

√
Ef2

k (X)
√
Eg2

m(X).
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If k > k1, then we can apply Proposition 6.1 and Lemma 9.9 to get
√ ∑

u∈Dk(Ä′)

E
[
(Euf̃u)2(X)

] f exp
(

− ε(k − C6.1(log(R) + 1) − h◦ − 2

ε
log(2))

)√ ∑

u∈Dk(Ä′)

Ef̃2
u(X)

f
√

max
{
4, C2

5.1R
4
}

exp
(

− ε(k − C6.1(log(R) + 1) − h◦ − 2

ε
log(2))

)√
Ef2

k (X).

In this case, we have

max
¹,¹′∈[q]

∣∣∣
(
EÄ′(Ekfk)(Ekgm)

)
(¹) − (

EÄ′(Ekfk)(Ekgm)
)
(¹′)

∣∣∣

f2C8.4 max
{
4, C2

5.1R
4} exp

(
− ε(h(Ä′) − C6.1(log(R) + 1) − h◦ − 2

ε
log(2))

)√
Ef2

k (X)
√
Eg2

m(X).

By taking

C = C6.1 +
2

ε
log(2) +

1

ε

(
log(2C8.4) + log(C2

5.1) + 4
)
,

both statements of the lemma follows. □

Proof of Proposition 9.6. Without lose of generality, it is sufficient to prove the case when m f k.
First, we impose the first assumption that

C◦ g max

{
C9.2, C7.2 +

2

ε
log(2)

}
,

where the constants are introduced in Proposition 9.2 and Lemma 7.2, respectively. This allows us
to apply Corollary 9.10 and Lemma 9.11. For simplicity, let

C1 := max{C9.10, C9.11}.
Then, combining the Corollary and the Lemma to the estimate (94) we can conclude that: For
k1 f m f k with k > k1,

max
¹,¹′∈[q]

∣∣(EÄ′fkgm)(¹) − (EÄ′fkgm)(¹′)
∣∣

f2 exp
(

− ε

2
(2h(Ä′) − k − C1(log(R) + 1) − h◦)

)
(Ef2

k (X))1/2(Eg2
m(X))1/2,

and in the case where k = m = k1, the above term is bounded by

2 exp
(

− ε

2
(2h(Ä′) − 2k − C1(log(R) + 1))

)
(Ef2

k (X))1/2(Eg2
m(X))1/2.

Then, the proof of the proposition follows by making the second assumption on C◦ that

C◦ g C1 +
2

ε
log(2).

□

9.3. Proof of Theorem 8.3.

Proof. Now we are ready to establish the main theorem. As usual, let C0 = C0(M,d) denote the
constant introduced in the statement of the Theorem. The value of C0 will be determined as the
proof proceeds.

Applying Theorem 3.6 with A and h∗ = h◦ + 2
ε log(2) and c∗ = 1/2, we conclude that

Var
[
(EÄ′f)(X)

] f exp
(− ε(h(Ä′) − C3.6(log(R) + 1) − h∗)Var

[
f(X)

]
.

for any BfÄ′-polynomial f , where C3.6 = C(M,d, 1/2) is the constant introduced by the theorem.
We impose the first assumption on C0 that

C0 g C3.6 +
2

ε
log(2),
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and conclude that

Var
[
(EÄ′f)(X)

] f exp
(− ε(h(Ä′) − C0(log(R) + 1) − h◦)Var

[
f(X)

]
.

Now, it remains to show that with the suitable choice of C0, for any Ä′ with h(Ä′) g h◦ +
C0(log(R) + 1) and any two BfÄ′-polynomials f and g, we have

max
¹∈[q]

|(EÄ′fg)(¹) − Efg| f exp
(

− ε

2
(h(Ä′) − h◦ − C0(log(R) + 1))

)√
min

¹
(EÄ′f2)(¹) min

¹′
(EÄ′g2)(¹).

Let

C1 := max
{
C9.6,

2

ε
log(2) + C7.1 + t0

}
,

where

• t0 is the constant such that
∑∞

t=t0
exp

(
− ε

2 t
)

f 1
2 ,

• C9.6 is the constant introduced in Proposition 9.6, and
• C7.1 = C(M,d, 1/2) is the constant introduced in Proposition 7.1.

Next, let

k1 = +h◦ + C1(log(R) + 1), .
The chocie of C1 and k1 allow us to apply Proposition 9.6 and Proposition 7.1 toward both f and
g.

Next, we impose the second assumption on C0 that

C0 g 2C1 + 2.

This assumption implies that there is a gap between h(Ä′) and k1, which is necessary for the proof.

Now, we fix such Ä′ and consider two BfÄ′-polynomial f and g with Ef(X) = Eg(X) = 0.
Further, consider the decomposition of f and g according to Lemma 5.1 with the above chosen k1.

First, by our choice of C1, we have

k1 g +h◦ +
2

ε
log(2)

︸ ︷︷ ︸
=h∗

+C7.1(log(R) + 1) + t0,.

This assumption allow us to recycle the partial step in the proof of Theorem 3.6 to obtain (76):
∑

k∈[k1,h(Ä′)]

Ef2
k (X) f 2Ef2(X) and

∑

k∈[k1,h(Ä′)]

Eg2
k(X) f 2Eg2(X).(100)

Second, with our assumption that k1 g +h◦ +C9.6(log(R) + 1),, we can apply Proposition 9.6 to
get

max
¹,¹′∈[q]

∣∣(EÄ′fg)(¹) − (EÄ′fg)(¹′)
∣∣ f

∑

m,k∈[k1,h(Ä′)]

max
¹,¹′∈[q]

∣∣(EÄ′fkgm)(¹) − (EÄ′fkgm)(¹′)
∣∣

f
∑

m,k∈[k1,h(Ä′)]

akm³k´m = ³⃗¦A⃗́ f ∥³⃗∥∥A∥∥⃗́∥,

where ³⃗ = (³k1 , ³k2 , . . . , ³h(Ä′)) with ³k =
√
Ef2

k (X), ⃗́ = (´k1 , ´k2 , . . . , ´h(Ä′)) with ´m =
√
Eg2

m(X),

and A = (akm)k,m∈[k1,h(Ä′)] with

akm :=





exp
(

− ε
2(h(Ä′) + h(Ä′) − max{k,m} − C9.6(log(R) + 1) − h◦)

)
max{k,m} > k1

exp
(

− ε
2(h(Ä′) + h(Ä′) − 2k1 − C9.6(log(R) + 1))

)
k = m = k1.
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Together with (100), we have

∥³⃗∥∥A∥∥⃗́∥ f 2∥A∥
√
Ef2(X)

√
Eg2(X).

The next goal is to bound ∥A∥ from above. Notice the fact that the matrix A is symmetric
implies there exists a unit vector µ⃗ such that ∥A∥ = µ⃗¦Aµ⃗. Now we fix such vector µ⃗. Relying on
the fact that akm g 0,

∥A∥ =
∑

k,m∈[k1,h(Ä′)]

akmµkµm f
∑

k,m∈[k1,h(Ä′)]

akm

2
(µ2

k + µ2
m) =

∑

m∈[k1,h(Ä′)]

µ2
m

( ∑

k∈[k1,h(Ä′)]

akm

)
.

Clearly, from the definition of akm, the term
∑

k∈[k1,h(Ä′)] akm is maximized when m = k1.
∑

k∈[k1,h(Ä′)]

akk1 = exp
(

− ε

2
(h(Ä′) + h(Ä′) − 2k1 − C9.6(log(R) + 1))

)

+
∑

k∈[k1,h(Ä′)]

exp
(

− ε

2
(h(Ä′) + h(Ä′) − k − C9.6(log(R) + 1) − h◦)

)

= exp
(

− ε

2
(h(Ä′) − C9.6(log(R) + 1) − h◦)

)
·

·
(

exp
(

− ε

2
(h(Ä′) − 2k1 + h◦)

)
+

∑

k∈[k1,h(Ä′)]

exp
(

− ε

2
(h(Ä′) − k)

))
.

First,
∑

k∈[k1,h(Ä′)]

exp
(

− ε

2
(h(Ä′) − k)

)
f 1

1 − exp(−ε/2)
f 4

ε
.

Second,

exp
(

− ε

2
(h(Ä′) − 2k1 + h◦)

)
f exp

(
− ε

2

(
C0(log(R) + 1) + h◦ − 2(h◦ + C1(log(R) + 1) + 1) + h◦

))

f exp
(

− ε

2
(C0 − 2C1 − 2)(log(R) + 1)

)
f 1,

which in turn implies that
(

exp
(

− ε

2
(h(Ä′) − 2k1 + h◦)

)
+

∑

k∈[k1,h(Ä′)]

exp
(

− ε

2
(h(Ä′) − k)

))
f 5

ε
.

Hence, we conclude that

∥A∥ f 5

ε
exp

(
− ε

2
(h(Ä′) − C9.6(log(R) + 1) − h◦)

)
.

Together we conclude that when h(Ä) g h◦ +C1(log(R) + 1), any two BfÄ′-polynomials f and g
with Ef(X) = Eg(X) = 0 satisfies

max
¹,¹′∈[q]

∣∣(EÄ′fg)(¹) − (EÄ′fg)(¹′)
∣∣ f10

ε
exp

(
− ε

2
(h(Ä′) − C9.6(log(R) + 1) − h◦)

)√
Ef2(X)

√
Eg2(X).

(101)

Now, we impose the third assumption on C0 that

C0 g C9.6 +
2

ε
log(20/ε),

then
10

ε
exp

(
− ε

2
(h(Ä′) − C9.6(log(R) + 1) − h◦)

)
f 10

ε
exp

(
− ε

2
(C0 − C9.6)(log(R) + 1)

)
f 1/2.
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Next, we apply (101) to the special case that f = g:

Ef2(X) − min
¹∈[q]

(EÄ′f2)(¹) f max
¹,¹′∈[q]

∣∣(EÄ′fg)(¹) − (EÄ′fg)(¹′)
∣∣ f1

2
Ef2(X)

⇒ Ef2(X) f 2 min
¹∈[q]

(EÄ′f2)(¹).

Clearly, the same statemnet holds for g as well. Substituting these estimates back to (101), we
can conclude that when h(Ä) g h◦ + C0(log(R) + 1), any two BfÄ′-polynomials f and g with
Ef(X) = Eg(X) = 0 satisfies

max
¹,¹′∈[q]

∣∣(EÄ′fg)(¹) − (EÄ′fg)(¹′)
∣∣

f20

ε
exp

(
− ε

2
(h(Ä′) − C9.6(log(R) + 1) − h◦)

)√
min
¹∈[q]

(EÄ′f2)(¹)
√

min
¹∈[q]

(EÄ′g2)(¹)

f exp
(

− ε

2
(h(Ä′) − C0(log(R) + 1) − h◦)

)√
min
¹∈[q]

(EÄ′f2)(¹)
√

min
¹∈[q]

(EÄ′g2)(¹).

Therefore, the theorem follows.
□
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Appendix A. Variance Estimate for degree 1 polynomial

This section is dedicated to prove Proposition 4.3. Let us restate it here:

Proposition A.1. There exists a constant C = C(M,d) g 1 so that the following holds: Fix
Ä′ ∈ T , and 0 f k f h(Ä′), then for any degree 1 function f with variables (xu : u ∈ Dk(Ä′)).
There exists functions fu(x) = fu(xu) for u ∈ Dk(Ä′) so that the following holds:

(1) f(X) =
∑

u∈Dk(Ä′) fu(Xu) almost surely. (They may not agree as functions from [q]T to R.)

(2) For any v ∈ TÄ′ with h(u) g k,
∑

u∈Dk(v)

Var[fu(Xu)] f CR3Var
[ ∑

u∈Dk(v)

fu(Xu)
]
.

Example A.2. Suppose u, v ∈ c(Ä′) for u, v, Ä′ ∈ T and consider

M =
1

2




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 .

Let us consider the function f(x) = fu(x) + fv(x) where

fu(x) = 11,3(xu) =

{
1 if xu ∈ {1, 3},
0 otherwise.

and fv(x) = −11,3(xv).
Condition on XÄ′ ∈ {1, 3}, f(Xu) + f(Xv) = 1 − 1 = 0 condition on XÄ′ ∈ {1, 3} and condition

on XÄ′ ∈ {2, 4}, f(Xu)+f(Xv) = 0−0 = 0. Put it differntly, Var[f(X)] = 0 since f(X) = 0 almost
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surely. However, observe that Ã is the uniform measure on [4], which implies

Var[fu(Xu)] = Var[fv(Xv)] =
1

4
> 0.

Therefore, it is not true that (19) holds for the standard (Efron-Stein) decomposition of f(x) =∑
v∈Dk(Ä′) fv(xv).

Let us make a simple observation to give the insight for the construction. If f(Xu) is a function
of Xp(u), then for each i ∈ [q], the function f must take the same value for all possible outcomes of
Xu conditioned on Xp(u) = i. In other words, the values of f are constant on the set

Si = supp(rowi(M))(102)

for every i ∈ [q]. Now, let us consider the case where f(Xu) is a function of Xpr(u). This can be

reformulated as follows: for k ∈ [0, r− 1], E
[
f(Xu)

∣∣Xpk(u)

]
is a function of Xpk+1(u). Equivalently,

the values of Mkf are constant on the set Si for every i ∈ [q].
Therefore, it is evident that the construction of the basis should primarily revolve around the

sets {Si}i∈[q] and their interaction with M .
Following from this discussion, the proof of the Proposition A.1 is divided into the following

steps:
Step 1 (Section A.1): We try to give a precise description of when f(Xu) is a function of Xpk(u)

for some k ∈ N. To this end, we introduce the following notation.

Definition A.3. We define the following partial order relation f on the collection of all partitions
of [q]: Specifically, for two partitions P and P′, we say that P f P′ if P′ is finer than or equal to
P.

Further, there exists r ∈ N such that Pt,0 for t g r is the trivial partition.

Lemma A.4. There exists a chain of paritions

P0,0 g P1,0 g P2,0 · · · g Pr,0 g . . .

A function f : [q] 7→ R satisfies that f(Xu) is a function of Xpr(u) for some r ∈ N if and only if f

is a linear combination of 1P for P ∈ Pr,0.

(The double index for the partitions is due to a technical reason, which will be clear in the
construction of the partitions.)

Step 2 (Section A.2): Next, we try to extract a basis of functions according to the partitions fro
the previous step, along with suitable quantitative estimates:

Proposition A.5. Let M be an ergodic and irreducible transition matrix defined on the state space
[q]. We can construct

• a basis of functions from [q] to R, denoted as

{Àw}w∈W,

where W is a set of size q,
• a function

r : W → N ∪ {0},
• and a constant C > 1 (which depends on M)

so that the following holds:

(1) Let

r0 := max
w∈W

r(w).

There exists unique w0 ∈ W such that r(w0) = r0. Moreover, Àw0 ≡ 1.
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(2) For each w ̸= w0, Àw(Xu) is a function of Xv where v = pr(w)(u) and EÀw(Xu) = 0.
(3)

Var
[∑

w

cwÀw(Xu)
] f C( max

w : r(w) ̸=r0

|cw|)2.

(4) For any 0 f r′ < r0 such that {w ∈ W : r(w) = r′} is not empty,

EVar
[
E
[ ∑

w : r(w)=r′

cwÀw(Xu) |Xv
] ∣∣∣Xp(v)

]
g 1

C
( max
w : r(w)=r′

|cw|)2.

(5) For any 0 f r′ < r0 such that {w ∈ W : r(w) < r′} is not empty,

EVar
[
E
[ ∑

w : r(w)<r′

cwÀw(Xu) |Xv
] ∣∣∣Xp(v)

]
f C( max

w : r(w)<r′
|cw|)2.

Remark A.6. For w ∈ W and l ∈ [r(w)], let

À(l)
w := M lÀw,(103)

where we treated À as an vector in R
[q]. Equivalently,

À(l)(¹) = E
[
À(Xu) |Xv = ¹]

where u, v ∈ T are vertices such that v = pl(u).

Step 3 (Section A.3): Finally, we will use the basis from the previous step to decompose degree-1
polynomials to prove Proposition A.1.

A.1. Partitions of [q]. Let us begin with the following observation.

Lemma A.7. Suppose {O³}³∈I is a collection of non-empty subsets of [q]. Then, there exists a
unique partition P of [q] that satisfies the following 2 conditions:

(1) For each ³ ∈ I and P ∈ P, either O³ ∈ P or O³ ∩ P = ∅.
(2) For any other partition P′ that also satisfies the above property, P′ f P.

Proof. The proof can be carried out by constructing the partition P.
Without lose of generality, we may assume the collection {O³}³∈I contains

{{¹}}
¹∈[q]

, since for

a singleton {¹} and a set P , it is always true that either {¹} ¦ P or {¹} ∩ P = ∅. Consequently,
we may assume

⋃

³∈I

O³ = [q].(104)

First, we define an equivalence relation ≃ on {O³}³∈I as follows: For any ³, ³′ ∈ I, we denote
O³ ≃ O³′ if there exists a chain (³1, ³2, . . . , ³l) such that O³i−1 ∩ O³i

̸= ∅ for i ∈ [l]. Let
I1, . . . , Ik0 ¦ I be the partition of I such that {O³}³∈Ik

for k ∈ [k0] form the equivalence classes of
the relation. Now, let P := {P1, . . . , Pk0}, where

Pk := ∪³∈Ik
Ok.

Claim 1: For every ³ ∈ I and k ∈ [k0], either O³ ¦ Pk or O³ ∩ Pk = ∅.
To prove this claim, consider any ³ and k described above. Suppose O³∩Pk ̸= ∅. Let ¹ ∈ O³∩Pk

and pick an index ³′ ∈ Ik such that ¹ ∈ O³′ . Such an index exists because Pk =
⋃

³′′∈Ik
O³′′ . Then,

we have O³ ∩O³′ ̸= ∅, implying ³ ∈ Ik. Consequently, O³ ¦ Pk. Therefore, the claim is proven.

Claim 2: P is a partition of [q].
We need to verify three properties:

(1)
⋃

k∈[k0] Pk = [q],
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(2) ∀k ∈ [k0], Pk ̸= ∅, and
(3) Pk ∩ Pk′ = ∅ whenever k ̸= k′.

First, for each ¹ ∈ [q], by (104), there exists ³ ∈ I such that ¹ ∈ O³. Then, ¹ ∈ O³ ∈ Pk where
k is the index such that ³ ∈ Ik. Hence, we conclude that

⋃
k∈[k0] Pk = [q].

Second, for each k ∈ [k0], let ³ ∈ Ik. We have ∅ ≠ O³ ¦ Pk. Thus, Pk is not an empty set.
Finally, for any distinct k, k′ ∈ [k0], suppose ¹ ∈ Pk ∩ Pk′ . By (104), let ³ ∈ I be the index so

that ¹ ∈ O³. Hence, both O³ ∩ Pk and O³ ∩ Pk′ . In particular, it is necessary that ³ ∈ Ik and
³ ∈ Ik′ , which forces k = k′, leading to a contradiction. Therefore, Pk ∩ Pk′ = ∅ whenever k ̸= k′.
Hence, the claim follows.

Claim 3: P′ f P for any P′ described in the statement.
To prove the claim, it suffices to show that for any P ′ ∈ P′ and Pk ∈ P with k ∈ [k0], if

P ′ ∩ Pk ̸= ∅, then Pk ¦ P ′.
Let us consider an arbitrary pair of P ′ ∈ P′ and Pk ∈ P and assume that P ′ ∩ Pk ̸= ∅. There

exists an index ³ such that O³ ∩ P ′ ∩ Pk ̸= ∅. Based on the assumptions regarding P and P′, we
have ³ ∈ Ik and O³ ¦ P ′.

For every other ³′ ∈ Ik, there exists a chain (³ = ³0, ³1, . . . , ³l0 = ³′) such that O³l−1
∩O³l

̸= ∅
for l ∈ [l0]. Observe that if O³l−1

¦ P ′, then O³l
¦ P ′, due to O³l

∩ P ′ § O³l
∩ O³l−1

̸= ∅. With
O0 ¦ P ′ as our starting point, we can apply this observation repeatedly to conclude that O³′ ¢ P ′.
Since the argument works for every ³′ ∈ Ik, we conclude that Pk =

⋃
³′′∈Ik

O³′′ ¦ P ′.
□

Definition A.8. For any given collection of subsets {O³}³∈I of [q], let P({O³}³∈I) denote the
partition P defined in Lemma A.7.

For any given partition Q of [q], let

PSC(Q) := P
({Q}Q∈Q ∪ {Si}i∈[q]

)
.

Remark A.9. Clearly, PSC(Q) f Q.

Definition A.10. Let
P0,0 =

{{1}, {2}, . . . , {q}}

and
P1,0 = PSC(P0,0).

Let us remark that P1,0 is the finest partition of [q] so that each part P ∈ P1,0 either contains
Si or disjoint from Si for i ∈ [q].

We use double indices for indexing the partitions because constructing such a chain of partitions
requires the creation of multiple partitions along the way, as we will illustrate shortly.

To proceed, let us begin with a simple observation.

Lemma A.11. If P ∈ P1,0, then
M1P = 1Q

where
Q = {i ∈ [q] : Si ¦ P}.

Suppose P1,0 = {P1, P2, . . . , Pk0}. Then, the collection Q := {Q1, Q2, . . . , Qk0} where

M1Pi
= 1Qi

is also a partition provided that M is irreducible.

Proof. For i with Si ∩ P = ∅, it is immediate that (M1P )i = 0. Conversely, when Si ∩ P ̸= ∅, it is
necessary that Si ¦ P . Consequently, (M1P )i =

∑
j∈[q]Mij = 1.

To establish that Q is a partition, we need to demonstrate the following three conditions:
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(1) Qk ∩Qk′ = ∅ for all distinct k, k′ ∈ [k0].
(2)

⋃
k∈[k]Qk = [q].

(3) Qk ̸= ∅ for all k ∈ [k0].

For the first condition, suppose there exists i ∈ Qk ∩Qk′ for some distinct k and k′. By definition,
Si ¦ Pk and Si ¦ Pk′ , which is a contradiction. Hence, Qk ∩Qk′ = ∅.

For the second condition, for every i ∈ [q], we know that Si ¦ Pk for some k. Consequently,
i ∈ Qk, ensuring

⋃
³∈[k]Qk = [q].

For the third condition, if we assume Qk = ∅, implying that no i ∈ [q] satisfies Si ¦ Pk, then M
is not irreducible, since the states in Pk cannot be reached. □

Definition A.12. Let P1,1 = Q where Q is the partition described in Lemma A.11.

Lemma A.13. If P is a finite union of parts in P1,0, then

M1P = 1Q(105)

where Q is a finite union of parts in P1,1. The above map induces a bijection between subsets of
[q] that are finite union of parts of P1,0 and subsets of [q] that are finite union of parts of P1,1, in
which preserve the inclusion relation is preserved.

Proof. Let us express P1,0 = {P1, P2, . . . , P[k0]} and P1,1 = {Q1, Q2, . . . , Qk0} where 1Qk
= M1Pk

.
For each I ¦ [k0], let PI =

⋃
k∈I Pk and QI =

⋃
k∈I Qk. Since 1PI

=
∑

k∈I 1Pk
and 1QI

=∑
k∈I 1Qk

, clearly we have
1QI

= M1PI
.

Since naturally both finite union of parts of P and of Q are identified with a subset I ¢ [k0] in
the above way, the statement of the lemma follows. □

An immediate consequence is the following.

Corollary A.14. The transition matrix M induces a bijection between partitions that are f P1,0

and partitions that are f P1,1. For convenience, we adopt the following definitions:

(1) For any partition P such that P f P1,0, define

MP := {Q : ∃P ∈ P such that 1Q = M1P } f P1,1.

(2) Given any P f P1,0 and for each P ∈ P, let MP represent a part in MP where

1MP = M1P .

Next, we will build a collection of partitions Pr,s for r g 0 and 0 f s f r starting with
P0,0 =

{{1}, {2}, . . . , {q}} and establishing the relationship illustrated by the diagram below.

P0,0 g
SC

P1,0 g P2,0 g P3,0 g P4,0 . . .

³ ³ ³ ³
P1,1 g

SC
P2,1 g P3,1 g P4,1 . . .

³ ³ ³
P2,2 g

SC
P3,2 g P4,2 . . .

³ ³
P3,3 g

SC
P4,3 . . .

³
P4,4 . . .

. . .
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( In the above diagram, P → Q indicates that Q = MP; Q g
SC

P indicates P = PSC(Q).)

Indeed, the initial definition of P0,0 and the relation diagram determine the collection of partitions
completely. Let us summarise it as a statement:

Lemma A.15. There exists a unique collection of partitions {Pr,s}rgsg0 that satisfies the following
properties: For 0 f s < r,

(1) P0,0 =
{{1}, {2}, . . . , {q}}.

(2) Pr,s f P1,0.
(3) Pr,s+1 = MPr,s.
(4) Pr+1,s f Pr,s.
(5) Pr+1,r = PSC(Pr,r).

Proof of Lemma A.15. The proof is proceeded by induction. We assume that Pr,s is constructed
and uniquely determined for 0 f r < r0 and 0 f s f r for some r0 g 0 so that it satisfies the
properties described in the lemma.

We will define the partitions in the next column {Pr0,s}s∈[0,r0] by starting with Pr0,r0−1 =

PSC(Pr0−1,r0−1).
Besides constructing the rest of partitions, we also need to show that these partitions satisfy the

following list of conditions ( let us denote it as List A): For s ∈ [0, r0,−1],

(1) Pr0,s f P1,0.
(2) Pr0,s f Pr0−1,s for s ∈ [0, r0 − 1].
(3) Pr0,s+1 = MPr0,s.

By definition of the map PSC, the first and second condition in the list are satisfied for s = r0 −1.
Relying on Pr0,r0−1 f P1,0, we can define Pr0,r0 = MPr0,r0−1. Hence, the third condition in the
list is also satisfied for s = r0 − 1.

It remains to construct Pr0,s for s ∈ [0, r0 − 2] and they satisfy those 3 conditions in the list.
This can be proceeded inductively starting from s = r0 − 2.

Claim: For s ∈ [0, r0 − 2], if Pr0,s+1 f Pr0−1,s+1, then there exists a unique partition Pr0,s

which satisfies the conditions in List A for s.
Suppose the Claim holds. With Pr0,r0−1 f Pr0−1,r0−1, we could apply the claim repeatedly and

the lemma follows. The rest of the proof is to show the claim holds.

Let us assume Pr0,s+1 f Pr0−1,s+1 for some s ∈ [0, r0 − 2]. First, from our assumption on
{Pr,s} for 0 f s f r0 − 1, Pr0−1,s+1 = MPr0−1,s. By Corollary A.14, Pr0−1,s+1 f P1,1. Since
Pr0,s+1 f Pr0−1,s+1, we conclude that Pr0,s+1 f P1,1.

Applying Corollary A.14 again, we know there exists an unique partition P f P1,0 so that
Pr0,s+1 = MP. We set Pr0,s := P. In particular, the choice of Pr0,s is unique in order to satisfy
the first and third condition from the list.

It remains to show that Pr0,s also satisfies the second condition in List A. Notice that from
Corollary A.14, the induced map of M on partitions preserves f relation. Hence, Pr0,s+1 f
Pr0−1,s+1 implies Pr0−1,s f Pr0−1,s. Therefore, the claim holds.

□

Proof of Lemma A.4. We start with the proof on the ⇒ implication. Suppose f is a function
satisfied the first condition described in the lemma.

Since f(Xu) is a function of Xpr(u), this is equivalent to

0 =E

[
Var

[
f(Xu)

∣∣∣Xpr(u)

]]
.
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Relying on the identity Var[Y ] = EVar[Y |Z] + Var
[
E[Y |Z]

]
and (Xpr(u), Xpr−1(u), . . . , Xu) is a

Markov Chain,

E

[
Var

[
f(Xu)

∣∣∣Xpr(u)

]]
=

r∑

s=1

E

[
Var

[
f(Xu)

∣∣Xps(u)

]]
.

Hence, E
[
Var

[
f(Xu)

∣∣Xps(u)

]]
= 0 for s ∈ [r], which in turn implies E

[
f(Xu)

∣∣Xps−1(u)

]
conditioned

on Xps(u) is a constant function for each s ∈ [r]. Equivalently, M s−1f takes the same value for all
elements in each Si for i ∈ [q].

Claim: For s ∈ [r], if f can expressed in the form f =
∑

P ∈Ps−1,0 cs−1,P 1P , then it can be
expressed in the form f =

∑
P ∈Ps,0 cs,P 1P .

Clearly, if the claim holds, then we can apply it repeatedly to draw the conclusion that f is a
linear combination of 1P for P ∈ Pr,0.

Now, we fix s ∈ [r] and assume f =
∑

P ∈Ps−1,0 cs−1,P 1P . Then,

E
[
f(Xu)

∣∣Xps−1(u) = a
]

= (M s−1f)(a) =
∑

P ∈Ps−1,0

cs−1,PM
s−11P =

∑

P ∈Ps−1,0

cs−1,P 1P s−1 ,

where for each P ∈ Ps−1,0, P s−1 ∈ Ps−1,s−1 is the corresponding part such that M s−11P = 1P s−1 .
In other words, M s−1f is a linear combination of 1P for P ∈ Ps−1,s−1.

Because M s−1f takes the same value not only for all elements in each Si for i ∈ [q], but also for
all elements in each P for P ∈ Ps−1,s−1, it implies M s−1f takes the same value for all elements in
each P ′ ∈ PSC(Ps−1,s−1) = Ps,s−1.

Together with the fact that the induced map of M on partitions preserves f relation, we conclude
that cs−1,P1 = cs−1,P2 for P1, P2 ∈ P s−1,0 whenever P1 and P2 are both contained in some P ∈ Ps,0.
Equivalently, within each P ∈ Ps,0, f is a constant function. Hence, we can express f as a linear
combination of 1P for P ∈ Ps,0.

For the ⇐ implication, suppose f is a linear combination of 1P with P ∈ Pr,0.
What we need to show is for s ∈ [0, r − 1], M sf takes the same values for all elements in each

Si for i ∈ [q]. From the chain Pr,0 → Pr,1 → · · · → Pr,r and by (105), for s ∈ [0, r − 1], M sf is a
linear combination of 1P with P ∈ Pr,s.

Since Ps+1,s = PSC(bP s,s) f P1,0 and Ps+1,s g · · · g Pr,s, we have Pr,s f P1,0, which implies
M sf takes the same values for all elements in each Si for i ∈ [q]. Therefore, the proof is completed.

Now, it remains to prove the second statement of the lemma.
First, if there exists r ∈ N such that Pr,0 is trivial. Then Pt,0 is also trivial for t > r since

Pt,0 f Pr,0. Hence, it is enough to show the existence of r such that Pr,0 is trivial.Pr,0 is trivial.
From the assumption onM , we knew that the stationary distribution Ã ofM satisfies mini∈[q] Ã(i) >

0 and M r converges entry-wise to the matrix whose row is identically Ã. Therefore, for sufficiently
large r, mini,j∈[q](M

r)ij > 0.

Now, let us fix such r and assume Pr,0 is not trivial. Let us express Pr,s = {P r,s
1 , . . . , P r,s

kr
} with

for s ∈ [0, r] and kr g 2 where the index is assigned so that P r,s
k = MP r,s−1

k for s ∈ [r] and k ∈ [kr].
First,

1P r,r
1

= M r1
P r,0

1
.

With 1
P r,0

1
is non-negative and not zero, every component of M r1

P r,0
1

is non-zero. This forces

P r,r
1 = [q], which contradicts to the assumption that Pr,r is non-trivial.

□
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A.2. A basis of functions from [q] 7→ R according to the partition. From now on, let r0 be
the smallest non-negative integer such that Pr,0 is trivial. Consider the collection

{
(P, s) : s ∈ [0, r0], P ∈ Ps,0}

We will establish an identification between elements of the set described above and words whose
alphabet consists of non-negative integers. This identification is constructed through induction,
following these steps:

• First, we identify ([q], r0) with the word (1).
• Assuming that elements in {(P, s + 1) : P ∈ Ps+1,0} have already been identified with

unique words, we proceed as follows: For each (P, s+1), suppose there are k pairs of (P ′, s)
such that P ′ ¦ P . We identify these k pairs with the words (w, i) for i ∈ [0, k − 1], in any
order of preference. For each (P ′, s), due to Ps,0 is a finer than or equal to Ps+1,0, there
exists an unique pair (P, s+1) so that P ′ ¦ P . This guarantees the above procedure assigns
each (P ′, s) a unique word.

We denote the set of words described above as W̃, and we adopt the notation w ∼ (P, s) to indicate

that (P, s) is associated with the word w. For a given w ∈ W̃, we represent the corresponding pair
as (Pw, r(w)), where r(w) = r0 + 1 − len(w).

Now, let us make the following observations

(1) If w ∈ W̃ is a word with len(w) < r0 + 1, then (w, 0) ∈ W̃.
(2) Each (P, s) corresponds to a word of length r0 + 1 − s.

(3) Suppose w,w′ ∈ W̃ such that w is a prefix of w
′. Then, Pw′ ¦ Pw.

Let T
W̃

be the tree defined on W̃ using the prefix relation. In this tree, edges are drawn from

w′ to w if r(w′) = r(w) + 1 and Pw ¦ Pw′ . Now, we will select q parts from these elements (P, s)
based on their corresponding words.

Lemma A.16. Let W ¦ W̃ be the subcollection of words which end with a positive integer. Then,
|W| = q.

Proof. First of all, there are exactly q words in W̃ with length r + 1, since P0,0 =
{{i}}

i∈[q]
has q

parts. For each i ∈ [q], let w
′
i be the word corresponding to ({i}, 0) and let wi be the longest word

ending with a positive integer so that is either a prefix of equals to w
′
i. This is well-defined since

every word in W̃ is a word starting with 1.
The proof of the lemma follows if we can show the following claim: w1,w2, . . . ,wq are distinct

and are all words which ends with a positive integer.
To prove the claim, we begin by showing wi ̸= wj whenever i ̸= j. Suppose wi = wj for some

distinct pair of i, j ∈ [q]. Let w̃ be the longest prefix of w
′
1,w

′
2, necessarily we have wi = wj is either

a prefix of w̃ or w̃ itself. Further, the length of w̃ is less equal than r, since otherwise it implies
w

′
i = w

′
j , which is a contradiction.

Now, let (w̃, ei) and (w̃, ej) be the two words which are prefix of w
′
i and w

′
j , respectively. From

the definition that w̃ is the longest common prefix, ei and ej are distinct non-negative integers.
Since wi is a prefix of (w, ei), it is necessary that ei = 0, otherwise it violates the definition of wi.
For the same reason, ej = 0. Therefore, we reach a contradiction.

The remaining part to prove the claim is to show that {wi}i∈[q] are all the words in W̃ ending
with a positive integer. Suppose w is a word in which ends with a positive integer. If len(w) < r+1,

we can keep fill 0 until its length is r+1 and denote the resulting word by w
′. Observe that w

′ ∈ W̃.
Together with the length of w

′ is r + 1, necessarily w
′ = w

′
i for some i. Recall the definition of wi,

we conclude w = wi. Therefore, the claim follows.
□
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Lemma A.17. For any given 0 f r′ < r, suppose Wr′ := {w ∈ W : r(w) = r′} is non-empty.
Consider a linear combination

∑
w∈Wr′

cw1Pw
. If it can be expressed as a linear combination of 1P

for P ∈ Pr′+1,0, then cw are identically 0.

Proof. Let w1, . . . ,wk0 be the words with r(wk) = r′ + 1 and corresponding to each part of Pr′+1,0.

Then, the words that corresponds to pairs of the form (P, r′) with P ∈ Pr′,0 are
{
(wk, t)

}
k∈[k0],t∈[0,tk]

where tk are non-negative integers. Now, we express
∑

w∈Wr′

cw1Pw
=
∑

k∈[k0]

∑

t∈[tk]

c(wk,t)1P(wk,t)
.

For each k ∈ [k0] and any ¹ ∈ Pwk
, we have

∑

k′∈[k0]

∑

t∈[tk′ ]

c(wk′ ,t)1P(w
k′ ,t)

(¹) =
∑

t∈[tk]

c(wk,t)1P(wk,t)
(¹).

Therefore,
∑

w∈Wr′
cw1Pw

can be expressed as
∑

k∈[k0] cwk
1Pwk

if and only if
∑

t∈[tk] c(w,t)1P(w,t)
is a

constant on Pwk
.

For each k ∈ [k0], let ¹ ∈ P(wk,0), then we have
∑

k′∈[k0]

∑

t∈[tk′ ]

c(wk′ ,t)1P(w
k′ ,t)

(¹) =
∑

t∈[tk]

c(wk,t)1P(wk,t)
(¹) = 0,

which forces c(wk,t) = 0 for every t > 0 (if it exists). Therefore, the proof is complete. □

Definition A.18. Let B := {Àw}w∈W be a collection of q functions from [q] to R, defined as follows:

(1) If w = (1), Àw = 1Pw
= 1.

(2) If w ̸= (1),

Àw(¹) := 1Pw
(¹) − EY ∼Ã1Pw

(Y ).

Remark A.19. The remaining goal in this subsection is to show that B is the desired basis
described in Proposition A.5. We also remark that the first two properties stated in Proposition
A.5 are already satisfied with this construction: argmaxw∈Wr(w) = (1) with À(1) = 1[q] = 1; Àw(Xu)

is a function of Xv where v = pr(w)(u).

Lemma A.20. The collection B forms a linear basis for functions from [q] to R.

Proof. Since there are exactly q functions, our goal is to show

R
[q] = span({Àw}w∈W),

and the R.H.S. is the same as span({1Pw
}w∈W). It suffices to show for each i ∈ [q], 1{i} can be

expressed as a linear combination of 1Pw
with w ∈ W.

To prove this statement, we will use induction, showing that for s from r0 to 0, each 1P with P ∈
Ps,0 can be expressed as a linear combination of of 1Pw

with w ∈ W. Since P0,0 =
{{1}, . . . , {q}},

the proof follows once we establish this inductive statement.
First, when s = r, since 1[q] is the only part in Pr0,0 and [q] = P(1), the statement holds for

s = r0.
Now, suppose the inductive hypothesis holds for s + 1 with s < r0. Pick any P ∈ Ps,0, let

w = (w′, t) be the word associate with (P, s). If t = 0, then

1P = 1P
w′ −

∑

P ′′

1P ′′
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where the sum is taken over all parts P ′′ ∈ Ps,0\{P} contained in Pw′ . Each P ′′ in the summation
(if it exists) must corresponds to a word of the form (w′, t′′) with t

′′ > 0, or equivalently (w′, t′′) ∈ W.
From the induction hypothesis, 1P

w′ is a linear combination of 1Pw
with w ∈ W. Therefore, we

conclude that 1P is also a linear combination of 1Pw
with w ∈ W. If t > 0, then w ∈ W, and

the same conclusion follows immediately. With no restriction on the choice of P , the induction
hypothesis holds for s as well.

Therefore, the lemma follows from induction. □

Lemma A.21. For any given 0 f r′ < r, suppose Wr′ := {w ∈ W : r(w) = r′} is non-empty.
Then, there exists a constant C g 1 (which could depends on M) such that the following holds: Let

u, v ∈ T be two vertices such that v = pr′

(u). We have

EVar
[
E
[ ∑

w∈Wr′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
g 1

C
( max
w∈Wr′

|cw|)2.(106)

Proof. First, both sides of (106) scale by a factor h2 if every term cw is multiplied by h ∈ R. Hence,
it suffices to establish the inequality in the case

max
w∈Wr′

|cw| = 1.

Given this, consider the set
{
(cw)w∈Wr′ : maxw∈Wr′ |cw| = 1

} ¦ R
Wr′ . It is compact set and

EVar
[
E
[ ∑

w∈Wr′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
(107)

is continuous in (cw)w∈Wr′ (it is a polynomial of cw). By a compact argument one can estalbish the
existence of C g 1 described in the lemma if for every (cw)w∈Wr′ with maxw∈Wr′ |cw| = 1,

EVar
[
E
[ ∑

w∈Wr′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
> 0.

We can simplify this by observing that
∑

w∈Wr′

cwÀw =
∑

w∈Wr′

cw1Pw
+ constant,

and hence,

EVar
[
E
[ ∑

w∈Wr′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
=EVar

[
E
[ ∑

w∈Wr′

cw1Pw
(Xu)

∣∣Xv
] ∣∣∣Xp(v)

]
(108)

=EVar
[ ∑

w∈Wr′

cw1Pw
(Xu)

∣∣∣Xp(v)

]
,

where the second equality follows from that
∑

w∈Wr′
cw1Pw

(Xu) is a function of Xv by Lemma A.4.

Moreover, to show EVar
[∑

w∈Wr′
cw1Pw

(Xu)
∣∣∣Xp(v)

]
> 0, this is the same as showing

∑

w∈Wr′

cw1Pw
(Xu)

is not a function of Xp(v). By Lemma A.4, this is equivalent to show
∑

w∈Wr′
cw1Pw

is not a linear

combination of 1P for P ∈ Pr′+1, which was proven in Lemma A.17. Therefore, the proof is
complete.

□
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Lemma A.22. For any given 0 f r′ < r, suppose W<r′ := {w ∈ W : r(w) < r′} is non-empty.

Then, there exists C g 1 so that the following holds: Let u, v ∈ T be two nodes such that v = pr′

(u).
We have

EVar
[
E
[ ∑

w∈W<r′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
f C( max

w∈W<r′

|cw|)2.(109)

Proof. The proof is more straightforward compared to the arguments presented in the proof of
Lemma A.21. First, both sides of (109) scale by a factor h2 if we scaled each cw by h ∈ R.
Therefore, it suffices to establish the inequality when

EVar
[
E
[ ∑

w∈W<r′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
= 1.

If there is no (cw)w∈W<r′ satisfying the above condition, then the proof is completed. Now we

assume this set is not empty. Notice that EVar
[
E
[∑

w∈W<r′
cwÀw(Xu)

∣∣Xv
] ∣∣∣Xp(v)

]
is a continuous

function of (cw)w∈W<r′ which takes value 0 when (cw)w∈W<r′ = 0⃗. Thus, there is an open ball

B ¦ R
W<r′ centered at 0⃗ such that for (cw)w∈Wr′ ∈ B,

EVar
[
E
[ ∑

w∈W<r′

cwÀw(Xu)
∣∣Xv

] ∣∣∣Xp(v)

]
< 1.

On the other hand, by choosing C sufficiently large, the set
{

(cw)w∈Wr′ : ( max
w∈W<r′

|cw|)2 f 1/C
}
,

which is the cube of side length 2/C1/2 centered at 0⃗, is contained in B. Therefore, the lemma
follows. □

Proof of Proposition A.5. From Remark A.19 and Lemma A.20, it remains to show B satisfies the
last 3 properties stated in the Proposition.

As for the third property, notice that the variance of
∑

w∈W cwÀw(Xu) is not zero as long as cw

are not identically 0 for w ̸= w0. Following the same arguments in the proof of Lemma A.21, the
property follows if C g 1 is sufficiently large.

The last two follows by applying Lemma A.21 and Lemma A.22 to every 0 f r′ < r and choosing
the constant C can be chosen to be the maximum of those constants C from the two lemmas.

□

A.3. Proof of Proposition A.1. In this subsection, we consider soley degree 1 polynomial of the
leave values.

Definition A.23. For any given Ä′ ∈ T and a degree-1 polynomial f of {xu}u∈LÄ′ , the function

can be expressed uniquely in the form

f(x) =
∑

w∈W, u∈LÄ′

cw,uÀw(xu)(110)

where {Àw}w∈W is the basis introduced in Proposition A.5.
For u ∈ TÄ′, let fu(x) :=

∑
w∈W , v∈Lu

cw,vÀw(xv). Observe that from this definition, for each
0 f l f r,

f(x) =
∑

u∈TÄ′ : h(u)=l

fu(x).
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Further, for u ∈ TÄ′\LÄ′, let

cw,u :=
∑

v∈Lu

cw,v.

Remark A.24. From the definition above, for each Ä′ ∈ T and degree-1 polynomial f of variables
{xu}u∈LÄ′ , we have

∀u ∈ TÄ′ , ∀x ∈ R
q, (Eufu)(x) =

∑

w

cw,uÀ
(l)
w (xu),

where À
(l)
w (¹) is introduced in Remark A.6.

Proposition A.25. There exists a constant C = C(M,d) g 1 so that the following holds: Suppose

f(x) =
∑

u∈LÄ′ , w∈W

cw,uÀ(xu)

where Ä′ ∈ T is a node satisfying h(Ä′) f r0 and

cw,u = cw,v

for u, v ∈ LÄ′ satisfying h(Ä(u, v)) f r(w), where Ä(u, v) is the lowest common ancestor of u and v.
Then,

∑

u∈LÄ′

Var[fu(X)] f CR3
EVar

[
f(X) |XÄ′

]

If Proposition A.25 is proven, then Proposition A.1 follows as a corollary:

Proof of Proposition A.1. Reduction to h(Ä′) f r0: Without loss of generality, it is sufficient to

consider degree 1 functions of L, rather than degree 1 functions of variables in Dk(u) for some u in
the tree and 0 f k f h(u).

Recall that

Dr0(Ä) = {w ∈ T : h(w) = r0}.
We know that we can express f(x) =

∑
w∈Dr0 (Ä) fw(x) so that each of them is a degree-1 polynomial

with variables {xu}u∈Lw .
Together with the variance decomposition for degree-1 polynomials (See Lemma 4.1)

Var[f(X)] g
∑

w∈Dr0 (Ä)

EVar[fw(Xw) |Xw],

it suffices to prove the same statement for degree-1 polynomials of xu with u ∈ LÄ′ for Ä′ satisfying
h(Ä′) f r0.

Now, we fix such Ä′ and consider

f(x) =
∑

w,u∈LÄ′

cw,uÀw(xu).

Averaging the Coefficients: For each w ∈ W and for each u ∈ Dr(w)(Ä
′), we know that for any

v1, v2 ∈ Lu,

Àw(Xv1) = Àw(Xv2)

almost surely. As a consequcne, we have

∑

v∈Lu

cw,vÀw(Xv) =
∑

v∈Lu

∑
v∈Lu

cw,v

|Lu| Àw(Xv)
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almost surely. Now, we repeat this averaging process for each w ∈ W and for each u ∈ Dr(w)(Ä
′).

We denote the resulting function by f̃ . While f̃ and f may not be the same function, f̃(X) = f(X)
almost surely. On the other hand, f̃ is a function which satisfies the condition in Proposition A.25.
Following from the proposition, we have

∑

u∈L

EVar[f̃u(X)] f CR3
EVar[f̃(X) |XÄ′ ] = CR3Var[f(X) |XÄ′ ].

The proof is complete. □

Let us begin with an intermediate step toward the proof of the Proposition A.25.

Lemma A.26. Suppose f is a function described in Definition A.23. For any given 1 f l < r such
that Wl := {w ∈ W : r(w) = l} is non-empty. Let u ∈ TÄ′ with h(u) = r(w), suppose

t = max
w∈Wl

|cw,u| > 0.

Then one of the following statement holds:

• Either EVar
[
(Eufu)(Xu) |Xp(u)

] g Ãmin
2C0

t2, or

• maxw∈W<l
|cw,u| g

√
Ãmin

2C0
t.

Here, C0 g 1 is the constant C described in Proposition A.5 and Ãmin := min¹∈[q] Ã(¹).

Further, in the case when l = 0, then we simply have EVar
[
(Eufu)(Xu) |Xp(u)

] g 1
C0
t2.

Proof. We decompose (Eufu)(x) into three components:

(Eufu)(x) =
∑

w :r(w)<l

cw,uÀ
(l)
w (xu) +

∑

w :r(w)=l

cw,uÀ
(l)
w (xu) +

∑

w :r(w)>l

cw,uÀ
(l)
w (xu),

where À
(l)
w is introduced in Remark A.6.

For each w with r(w) > l, À
(l)
w (Xu) is a function of Xv with v = pr(w)−l(u). Hence, the last com-

ponent
∑

w :r(w)>l cw,uÀ
(l)
w (xu) is a constant function whenever we condition on Xp(u). Consequently,

EVar
[
(Eufu)(Xu) |Xp(u)

]
= EVar

[ ∑

w :r(w)<l

cw,uÀ
(l)
w (Xu) +

∑

w :r(w)=l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u)

]
.(111)

From Proposition A.5, we know that

EVar
[ ∑

w :r(w)=l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u)

]
g t2

C0
,(112)

where the constant C0 is the constant C stated in the Proposition. Intuitively, from (112) it should

be clear that if the R.H.S. of (111) is small, then EVar
[∑

w :r(w)<l cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u)

]
cannot be

small. Let us derive this with a coarse estimate.
By (112), we know there exists ¹ ∈ [q] such that

Var
[ ∑

w :r(w)=l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]

g t2

C0
.
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Now, suppose Var
[∑

w :r(w)<l cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]
< t2

4C0
. We could apply triangle inequality

to get
√√√√Var

[ ∑

w :r(w)<l

cw,uÀ
(l)
w (Xu) +

∑

w :r(w)=l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]

g
√√√√Var

[ ∑

w :r(w)=l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]

−
√√√√Var

[ ∑

w :r(w)<l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]

g t

2C
1/2
0

,

and together with (111),

EVar
[
(Eufu)(Xu) |Xp(u)

] gÃ(¹)Var
[ ∑

w :r(w)<l

cw,uÀ
(l)
w (Xu) +

∑

w :r(w)=l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u)

]

gÃmin

2C0
t2.

Consider the opposite case where Var
[∑

w :r(w)<l cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]

g t2

4C0
. First,

EVar
[ ∑

w :r(w)<l

cw,uÀ
(l)
w (Xu)

∣∣∣Xp(u) = ¹
]

g Ãmin

4C0
t2.

By applying the 4th property stated in Proposition A.5, we conclude that

max
w :r(w)<l

|cw,u| g
√
Ãmin

2C0
t.

In the case when l = 0. The argument is simpler, which follows directly from (111) and the
Proposition A.5.

□

Proof of Proposition A.25. Let t0 = maxw,u∈LÄ′ |cw,u| and let w
′ ∈ W and u′ ∈ LÄ′ be the pair such

that t0 = |cw′,u′ |. Further, let l0 = r(w′) and u0 = pl(u′).
If l0 > 0, then we have

|cw′,u0 | =
∑

v∈Lu

|cw′,v| g |cw′,u′ | = t0,

where the first equality follows from the assumptions of the coefficients. We will try to construct a
sequence of triples (lk, tk, uk) indexed by k such that (lk)kg0 is strictly decreasing such that Wlk ̸= ∅,
h(uk) = lk, and tk = maxw∈Wlk

|cw,uk
|.

Suppose we have a triple (lk, tk, uk) such that lk g 0, h(uk) = lk, Wlk ̸= ∅, and tk = maxw∈Wlk
|cw,uk

|
for some index k g 0.

We apply Lemma A.26 to get

(1) Either EVar
[
(Euk

fuk
)(Xuk

)
∣∣Xp(uk)

] g Ãmin
2C0

t2k, or

(2) maxw∈W<ℓk
|cw,uk

| g
√

Ãmin

2C0
tk. (This case cannot happen if ℓk = 0.)

If the first case is true, then we terminate the process of finding next triple (ℓk+1, tk+1, uk+1).
If the second case is true, let w

′′ ∈ W be the vertex such that |cw′′,uk
| = maxw∈W<ℓk

|cw,uk
| and

set ℓk+1 = r(w′′). Since

cw,uk
=

∑

u∈Dℓk+1
(uk)

cw,u,
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we have

tk+1 := max
u∈Tuk

: h(u)=ℓk+1

|cw,u| g 1

Rdℓk−ℓk+1
|cw,uk

| =
1

Rdℓk−ℓk+1
tk.(113)

Further, let uk+1 = argmaxu∈Tuk
: h(u)=ℓk+1

|cw,u|.
In this way, we produce a new triple satisfying the same assumption as (lk, tk, uk) described

above.
Since l0 > l1 > l2 . . . is a monotone decreasing chain of non-negative number, it means this

argument must terminated in r0 steps. Now, suppose it terminates at the k-th step, resulting a
triple (lk, tk, uk), and

EVar
[
(Euk

fuk
)(Xuk

)
∣∣Xp(uk)

] g Ãmin

2C0
t2k

(113)

g Ãmin

2C0

(√Ãmin

2C0
Rd
)−2r0t20.

On the other hand, from Proposition A.5,
∑

u∈LÄ′

Var[fu(Xu)] f CRdr0t20.

Therefore, we conclude that

∑

u∈LÄ′

Var[fu(Xu)] f C(M,d)R2r0+1
EVar

[
f(X) |XÄ′

]
.

□

Appendix B. Properties of Markov Chains and Galton-Watson Tree

B.1. Markov Chains.

Proof of Lemma 4.6. Let ¹1 = argmin¹∈[q]h(¹) and ¹2 = argmax¹∈[q]h(¹). (In the case of a tie, we

may choose any of the minimizers or maximizers.) First, we have

Var[h(Xu)] f (h(¹2) − h(¹1))2.

Next, for any ´ ∈ [q], we have

max
{

|E[h(Xu) |Xp(u) = ´] − h(¹1)|, |E[h(Xu) |Xp(u) = ´] − h(¹2)|
}

g 1

2
|h(¹2) − h(¹1)|.

Let i ∈ {1, 2} be the index such that |E[h(Xu) |Xp(u) = ´] − h(¹i)| g 1
2 |h(¹2) − h(¹1)|, and we will

use this together with cM > 0 to give a lower bound on the conditional variance:

Var[h(Xu) |Xp(u) = ´] g(E[h(Xu) |Xp(u) = ´] − h(¹i)
)2
P{Xu = ¹i |Xp(u) = ´}

g1

4
(h(¹2) − h(¹1))2cM .

Since it holds for every ´ ∈ [q], we conclude that

EVar[h(Xu) |Xp(u)] g 1

4
(h(¹2) − h(¹1))2cM g cM

4
Var[h(Xu)].

□
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B.1.1. Proof of Lemma 2.2. Recall that real Jordon Canonical form of M is a q× q diagonal block
matrix J = diag(J0,J1, . . . ,Js1) for some s1 f q.

Since M is ergodic, the eigenspace corresponds to eigenvalue 1 is 1-dimensional. Thus, We may
assume J0 = [1] is the unique Jordan block corresponds to eigenvalue 1.

For each s ∈ [1, s1], Js is either a ms ×ms matrix of the form Js =




¼s 1

¼s
. . .
. . . 1

¼s




for some

¼s ∈ R satisfying |¼s| f ¼; or a Js is a 2ms×2ms matrix of the form Js =




¼sRs I2

¼sRs
. . .
. . . I2

¼sRs




,

where |¼s| f ¼, and Rs =

[
cos(¹s) sin(¹s)

− cos(¹s) sin(¹s)

]
is a rotation matrix in R

2 with parameter ¹s ∈
(0, 2Ã). In the later case, it corresponds to the conjugate pair of eigenvalues ¼s(cos(¹s) ± i sin(¹s))

According to Jordon Decomposition, there exists an invertible matrix P such that M = PJP−1.
For i ∈ [1, q − 1], let ϕi be the i + 1th column of P . Because P is invertible, {ϕi}i∈[q] form a

linear basis of functions from [q] to R.
Since Ã is a left-eigenvector of M with eigenvalue 1, we have

EY ∼Ãϕi(Y ) = Ã¦ϕi = 0,

because ϕi is a sum of up to two generalized eigenvectors with eigenvalues not equal to 1.
(A generalized eigenvector v with eigenvalue ¼′ of M is a vector which satisfies (M − ¼′)kv = 0⃗

for some positive integer k. Whenever ¼′ ̸= 1,

Ã¦v = (
1

(1 − ¼′)k
Ã¦(M − ¼′)k)v =

1

(1 − ¼′)k
Ã¦ · 0⃗ = 0.

If index i corresponds to Js which associated with a real eigenvalue, then ϕi is a generalized
eigenvector with eigenvalue ¼s; And if Js associates with a complex conjugate pair or eigenval-
ues, then ϕi is a sum of two generalized eigenvectors with eigenvalues ¼s(cos(¹s) + i sin(¹s)) and
¼s(cos(¹s) − i sin(¹s)), respectively. ) As a consequence, every function f : [q] 7→ R can be uniquely
decomposed in the form

f = Ef +
∑

i∈[q−1]

¶iϕi.(114)

With this unique decomposition, let us define a semi-norm

∥f∥M = max
i∈[q−1]

|¶i|.

Lemma B.1. There exists C > 0 so that for every f : [q] → R,

C−1∥f∥2
M f VarY ∼Ã(f(Y )) f C∥f∥2

M .(115)

Proof. Without lose of generality, let f =
∑

i∈[2,q] ¶iϕi, since both ∥f∥M and VarY ∼Ã(f(Y )) are
invariant under a constant shift.

Let DÃ = diag(Ã1, . . . , Ãq). Also, let ¶⃗ = (0, ¶2, . . . , ¶q). Then,

∥f∥M =∥¶⃗∥∞ and VarY ∼Ã(f(Y )) =¶⃗¦P¦DÃP ¶⃗.
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Let smax and smin be the maximum and minimum singular value of P¦DÃP , respectively. Together

with q−1/2∥¶⃗∥2 f ∥¶⃗∥∞ f ∥¶⃗∥2, we have

s2
minq

−1∥f∥2
M f s2

minq
−1∥¶⃗∥2

2 f VarY ∼Ã(f(Y )) f s2
max∥¶⃗∥2

2 f s2
max∥f∥2

M .(116)

If smin > 0, then we can complete the proof by taking C = max{s2
max, q/s

2
min}. It remains to

show that smin > 0, or equvialently P¦DÃP is invertible. Because M is ergodic, each entry of Ã
is positive, and thus DÃ is invertible. Hence, P¦DÃP is invertible because it is a product of three
invertible matrices.

□

Lemma B.2. There exists C > 0 so that for every f : [q] → R,

C−1∥f∥M f ∥f − EY ∼Ãf(Y )∥∞ f C∥f∥M .(117)

Proof. This simply follows from both ∥f∥M and ∥f−Ef∥∞ are both norms on the finite dimensional
space {f : [q] → R : EY ∼Ãf(Y ) = 0}. □

Lemma B.3. There exists C g 1 depending on M such that For any function f : [q] 7→ R and
k ∈ N,

∥Mkf∥M f Ckq¼k∥f∥M .(118)

Remark B.4. Notice that Mkf can be interpreted as

E
[
f(Xu)

∣∣Xpk(u) = i
]

= (Mkf)(i),

for every u ∈ T where pk(u) is well-defined.

Proof.

∥Mkf∥M =∥PJk(
∑

i∈[q]

¶iei)∥M = ∥Jk(
∑

i∈[2,q]

¶iei)∥∞. f q max
i∈[2,q]

∥¶i∥ max
i,j∈[2,q]

|Jk
ij |.(119)

Notice that Jk is the diagonal block matrix whose blocks Jk
s for s ∈ [s1]. The block Jk

s can be
computed directly: In the case when Js corresponds to a complex conjugate pair of eigenvalues,

Jk
s =




¼k
sR

k
s

(k
1

)
¼k−1

s Rk−1
s . . .

( k
ms−1

)
¼k−ms+1

s Rk−ms+1
s

¼k
sR

k
s

. . .
...

. . .
(k

1

)
¼k−1

s Rk−1
s

¼k
sR

k
s ,




(120)

where we treat
(k

r

)
= 0 if r > k. It can be verified directly by induction, relying on the identity( k

r−1

)
+
(k

r

)
=
(k+1

r

)
. Further, removing the Rs terms in the above equation we obtain the formula

for Jk
s when Js corresponds to a real eigenvalue.

Therefore, with
(k

q

) f kq, |¼r
s| f ¼r, and maxi,j R

r
sij < 1 for r g 1, we obtain the bound

max
s∈[2,q]

max
i,j∈[q]

|(Js
k)ij | f C ′kq¼k,(121)

where C ′ is a constant which depends on q and ¼.
Now we substitute the above bound into (119) to get

∥Mkf∥M f qC ′kq¼k∥f∥M .

The proof is completed by taking C = qC ′.
□
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Proof of Lemma 2.2. The proof of Lemma 2.2 follows from the ∥ · ∥M decay from Lemma B.3 and
that both Var[f ] and ∥f − Ef∥∞ are comparable to ∥f∥M within a constant multiplicative factor
(Lemma B.1 and Lemma B.2). □
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