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ABSTRACT. We study the low-degree hardness of broadcasting on trees. Broadcasting on trees has
been extensively studied in statistical physics, in computational biology in relation to phylogenetic
reconstruction and in statistics and computer science in the context of block model inference, and
as a simple data model for algorithms that may require depth for inference.

The inference of the root can be carried by celebrated Belief Propagation (BP) algorithm which
achieves Bayes-optimal performance. Despite the fact that this algorithm runs in linear time (using
real operations), recent works indicated that this algorithm in fact requires high level of complexity.
Moitra, Mossel and Sandon constructed a chain for which estimating the root better than random
(for a typical input) is NC1 complete. Kohler and Mossel constructed chains such that for trees
with NN leaves, recovering the root better than random requires a polynomial of degree N, Both
works above asked if such complexity bounds hold in general below the celebrated Kesten-Stigum
bound.

In this work, we prove that this is indeed the case for low degree polynomials. We show that for
the broadcast problem using any Markov chain on trees with n leaves, below the Kesten Stigum
bound, any O(logn) degree polynomial has vanishing correlation with the root.

Our result is one of the first low-degree lower bound that is proved in a setting that is not based
or easily reduced to a product measure.

1. INTRODUCTION

Understanding the computational complexity inference problems of random instances has been
extensively studies in different research areas such including statistics, cryptography, computational
complexity, computational learning theory and statistical physics. The emerging field of research
is mainly devoted to the study of computational-to-statistical gaps.

Recently, low-degree polynomials have emerged as a popular tool for predicting computational-
to-statistical gaps. Our work follows [14] in studying the polynomial hardness of broadcasting on
trees.

As explained in [14]: “ Computational-to-statistical gaps are situations where it is impossible
for polynomial time algorithms to estimate a desired quantity of interest from the data, even
though computationally inefficient (“information-theoretic”) algorithms can succeed at the same
task. Heuristics based on low-degree polynomials have been used in the context of Bayesian esti-
mation and testing problems and partially motivated by connections with (lower bounds for) the
powerful Sum-of-Squares proof system. More specifically, a recent line of work (e.g. [12, 11, 15, 2, 8,
16, 10, 4, 25]) showed that a suitable “low-degree heuristic” can be used to predict computational-
statistical gaps for a variety of problems such as recovery in the multicommunity stochastic block
model, sparse PCA, tensor PCA, the planted clique problem, certification in the zero-temperature
Sherrington-Kirkpatrick model, the planted sparse vector problem, and for finding solutions in
random k-SAT problems.

Furthermore, it was observed that the predictions from this method generally agree with those
conjectured using other techniques (for example, statistical physics heuristics based on studying
BP/AMP fixed points, see e.g. [6, 7, 17]). Some of the merits of the low-degree polynomial
framework include that it is relatively easy to use (e.g. compared to proving SOS lower bounds),
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and that low degree polynomials capture the power of the “local algorithms” framework used in
e.g. [9, 5] as well as algorithms which incorporate global information, such as spectral methods or
a constant number of iterations of Approximate Message Passing [25].”

In this work, we continue to study the power of low-degree polynomials for the (average case)
broadcast on trees problem. In broadcast on trees the goal is to estimate the value of the Markov
process at the root given its value at the leaves and the goal is to do so for arbitrarily deep trees.
Two key parameters of the model are the arity of the tree d and the magnitude of the second
eigenvalue A\ of the broadcast chain.

A fundamental result in this area [13] is that when d|A|* > 1 nontrivial reconstruction of the root
is possible just from knowing the counts of the leaves of different types, whereas when d|A|? < 1
such count statistics have no mutual information with the root (but more complex statistics of
the leaves may) [18, 24]. This threshold d|\|? = 1 is known as the Kesten-Stigum threshold. The
Kesten-Stigum threshold plays a fundamental role in problems, such as algorithmic recovery in the
stochastic block model [21, 3, 23, 1] and phylogenetic reconstruction [19]. Count statistics can be
viewed as degree 1 polynomials of the leaves, which begs the question of what information more
general polynomials can extract from the leaves. See [20, 22] for surveys on the topic.

In [14] it was shown that A\ = 0 even polynomials of degree N¢, where N = d’ is the number of
leaves of for a d-ary tree of depth /¢, for a small ¢ > 0 are not able to correlate with the root label
(as ¢ tends to co) whereas computationally efficient reconstruction is generally possible as long as
d is a sufficiently large constant [18].

The main motivation of [14] was to prove that low degree polynomials fail below the Kesten
Stigum bound: “It is natural to wonder if the Kesten-Stigum threshold d|\|? = 1 is sharp for low-
degree polynomial reconstruction, analogous to how it is sharp for robust reconstruction.” However
the main result of [14] only established this in the very special case of A = 0. This problem is also
stated in the ICM 2022 paper and talk on the broadcast process [22]: “ The authors of [14] ask if a
similar phenomenon holds through the non-linear regime. For example, is it true that polynomials
of bounded degree have vanishing correlation with Xy in the regime where dA\?> < 1? ” The main
results of this paper prove that this is indeed the case. We proceed with formal definitions and
statement of the main result.

1.1. Definitions and Main Result. Let us begin with define the type of trees we will be inves-
tigating in this paper, which is a slight generalization of d-ary tree.

Definition 1.1. A rooted tree T with root p of depth ¢ with degree dominated by d > 1 with
parameter R > 1 is a tree with a root p such that for each node uw in T,

Vk € N, |Ly(u)| < Rd,

where L (u) is the set of kth descendants of u. Further, let L denote the set of vertices on the (th
layer.

With the above definition, a d-ary rooted tree is a tree 1" with degree dominated by d > 1 with
parameter R = 1. For a typical realization of Galton-Watson Tree of Poisson type with average
degree d and depth ¢, is a tree with degree dominated by d > 1 with parameter R ~ log(¢).

Consider a ¢ x g ergodic transition matrix M, where ¢ > 2. Let A represent the second largest
absolute value among the eigenvalues of M. Additionally, we define the stationary distribution of
M as .

The broadcasting process X = (X,)yer, with state space [¢] and transition matrix M, can be
formally described as follows: As we reveal the values layer by layer, when the value X, is revealed,
the value of X, for any child node v of u is independently distributed according to M:

P{X, =t| X, = s} = M.
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In other words, the values of the nodes in the tree 1" are updated according to the transition
matrix M, where each node’s value depends only on its parent node’s value. A formal definition of
the process is given below:

Definition 1.2 (Broadcasting Process on Tree). Let ¢ > 2 be a positive integer. For any rooted
tree T with root p and a q X q ergodic transition matriz M, the broadcasting process X = (Xy)ver
with state space [q], according to transition matriz M with an initial distribution v, is a random
process with joint distribution given by:

Vo = (2y)ver € [Q]Ta P{X =z} = V(xp) H Mz, .,
(v,u)
where the product is taken over all pairs (v,u) such that v is a child node of w. Further, we use xp,
to denote
T = (xv)vEL € [Q]L’

With the assumption v = m, X, ~ 7 for every v € T, as (X,),ep for every downward path of T
forms a Markov Chain with transition matrix M. Further, let us make a remark about the Markov
property of the process.

Remark 1.3 (Markov Property). The probability measure defines a Markov Random Field on
tree T. This implies that for any three subsets A, B, and C of T, if every path from a node in A to
a node in C passes through a node in B, then the random variables X4 and X¢ are conditionally
independent given Xp.

Definition 1.4. Let x € [q]T. Foru € T, let <, = (¥y)y<u. For each subset U C T and z € [q]T,
let xy = (Iu)ueU-

Let f : [q)7 — R, and suppose f depends only on zy;. This we will often abbreviate by writing
f(@) = f(zv).

The next definition is about the notion of degrees for functions z;, = (2y)yer. This is the
generalization of degree of a polynomial.

Definition 1.5 (Efron-Stein Degree). A polynomial f with variables xy has Efron-Stein degree
at most d if it can be expressed as a sum of functions fg, where S C L and fs is a function of
xg = (xy)ves, such that each S has size bounded by d.

Our main result in the paper is:

Theorem 1.6. Let T be a rooted tree of depth £ and degree dominated by d > 1 with parameter
R. Consider the boardcast process on T' with a q X q transition matriz M and X, ~ w. If M is
irreducible and aperiodic and d\?> < 1, then there exists a constant ¢ > 0 which depends on M and
1 — d)\? such that the following holds: For any function f(xr) of Efron-Stein degree < C#%(R)’
we have

Var(E[f(X1) | X,]) < (max{d\*, A\})"/*Var(f(X1)).
Follows from the theorem, we have the following corollary.

Corollary 1.7. With the same setting as in Theorem 1.6, for any function f(xr) of Efron-Stein

degree < CH%%(R)’ and any function g(x,) of the root value, we have

Cor(f(X1),9(X,)) < (max{d\*, A})"/*.
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The corollary follows from the fact that
E[(f(Xr) —E[f(XL)]) - (9(X,) — Elg(X,)])]

=E[(E[f(X1) | X,] - E[f(X0)]) - (9(X,) — Elg(X,)])]
<\Var(B[f(X1)| X,]) -/ Var(g(X,))
<(max{d\2, A\ [Var(f(X1)) -/ Var(g(X,)).

Indeed, the main result is optimal in the fractal sense (Theorem 1.15). The proof of the theorem
is based on recursion on fractal capacity of functions. Let us introduce the necessary definitions
and notations to introduce both the fractal capacity and the proof overview.

1.2. Fractal Capacity and Proof Overview. For convenience we will refer to the set of vertices
of the tree as T'. Following the standard poset convention, we define

v<u

for v,u € T when v is a descendants of u. For any subset S C L, we define a notion of branch
decomposition for S.

To provide a clearer illustration, we establish a correspondence between the vertices of T" and
words of varying lengths from 0 to ¢, with vertices at the kth layer represented as words of length
k. We denote the root p as the empty word (). For each vertex u, represented by the word
(b1,ba,...,bg), we define d,, as the number of descendants of u, and we identify the descendants of
u as (b1, ba,...,bg, 1) with i € [d,]. Notice that v is a descendant of u is equivalent to u is a prefix
of v. For brevity, for each u = (by,...,b;) € T, for each i € [d,], let

u; = (u,1) = (b1, ..., b, 1).
For I C [d,], let
ur = {uitier.
Furthermore, we define the parent function p(u) = (b1,...,bx_1) and the children function ¢(u) =
Ufq,]-

Definition 1.8. For a non-empty subset S C L, we introduce the notation p(S) to represent the
nearest common ancestor of the elements in S. When |S| > 1, we define the branch decomposi-
tion of S as follows: Let I(S) = {i € [p(S)] : S; # 0} then the brach decomposition is:

S = Uier(s)Sis
where S; = SN Tyg), fori € [dp(s)]. We also called each S; as a branch part of S.

The branching decomposition is a key concept in the proof, and we define the fractal capacity
according to the number of iterations to decompose S into singletons.

Definition 1.9. Let
Ap = {{u} fu € L} c 2\,

be the collection of singletons of L. We say a subcollection A C 2\ is closed under decompo-
sition with base Ay if for every S € A\ Ay, we have S; € A for i € I(S) where I(S) is the set of

components of the branched decomposition in Definition 1.8.
Definition 1.10. For any A; C A C 2L\(Z) which is closed under decomposition with base A, let
B(A) C 2M\0

be a new subcollection defined according to the following rules:

For any S € 2M\0, S € B if and only if one of the following two conditions holds
4



(1) Se A;.
(2) S ¢ Ay and S; € A for those i with S; = SN Ty, # 0.

Lemma 1.11. The collection B = B(.A) described above contains A. Also, it is closed under
decomposition with base A;.

Proof. To show A C B, it is sufficient to show A\A; C B. For any S € A\ Ay, because A is closed
under decomposition, S; € A for i € I(S). Hence, S € B follows from the definition of B. Now, for
S € B\Aj, each S; with i € I(S) is contained in A C B, which in turn implies B is closed under

decomposition.
O

Now, we define recursively that
(1) Ay = B(Ag-1),

for positive integer k > 2.

Clearly, from the definition of Ay, if S € Ay, then for any i € I(S), S; € Ag_1. In particular, for
each branch part S’ of S, p(S’) < p(S). Given that there are only ¢ layers of the tree, we conclude
that every non-emptyset of S C L is in Ayy1. Therefore, together with Lemma 1.11, we have the
following chain of subcollections:

{{u} ru €L}y =A1 C A C--- C Ay = 25\0.

Definition 1.12 (Fractal Capacity). For any non-empty subset S C L, we define the fractal
capacity of S as the smallest k such that S € Ay.

Next, we compare the notion of fractal capacity and the size of the set:

Lemma 1.13. Aj contains all subsets S C L with |S| = k. Further, in a d-ary tree of depth £ > k,
there exists S € Ay with |S| = d*1.

Proof. Indeed, we will show that Ay contains all non-empty subsets of L of size < k. This can be
proved by induction on k. The base case with k = 1 follows from the definition A; := {{v} : v € L}.
Suppose the claim holds up to some positive integer k. Let S C L\() of size |S| < k+ 1. If |S| <k,
then S C A C B(Ag) = Agt1. In the case |S| = k+ 1 > 2, notice that p(S) is not a leave.
Consider the branch decomposition of S (See Definition 1.8):

S = Uie[(S)Si-

Because |I(S)| > 1, for each i € I(S) we have |S;| < |S| = k + 1. Therefore, S; € Ay, for i € I(S),
which in turn implies S € B(Ag) = Ag41. Therefore, the claim follows.
Now, to show the second statement. For every node w, let Sy, = {v € L : v < w}. Observe that
if w is k — 1 layers above L, then S,, are the (k —1)th descendants of w, which has size |S,| = d*~!.
We claim that for w which are k layers above L, then S, € Aj. Let us prove the claim by
induction. First, it is clear that for w € L, S,, = {w} € A;. Suppose the statement holds up to
k. Take any w which is k layer above L. Then, the branch decomposition of Sy = Ujc(q)Sw,. With
each w; is k — 1 layer above L, we have S, € Ai. Hence, Sy, € Ap41 due to A1 = B(Ag).
O

Definition 1.14. Given a collection A C 2P\0. A function f : [q]" — R is called a A-polynomial
if we can express
flx) =" fs(xs)
SeA
where each fs is a function of x5 = (x,)yes. Correspondingly, a function f : [q]7 — R has fractal
capacity < k if it is a Ag-polynomial.
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FIGURE 1. S C L with fractal-capacity 4 and |S| = 5.

The main result of the paper in terms of the fractal capacity is the following:

Theorem 1.15. With the same setting as in Theorem 1.6, there exists a constant ¢ > 0 which
depends on M and 1 — d\? such that the following holds: For any function f(xr) with fractal

capacity <c we have

THog(7)”
Var(E[f(X1)| X,]) < (max{d\2, \})"/*Var(f(X1)).

Indeed, Theorem 1.6 is a direct consequence of Theorem 1.15, as Ag-polynomials contains all
polynomial of Efron-Stein degree < k.

Sketch Proof Idea: For illustration, let us consider the case where T is a 2-ary tree with

1+ 1-A

M = llg A 1_%/\1, such matrix eigenvalue A and 1. If f is a degree-1 polynomial, we can express
2 2

it in the form

ueL

where each f, is a function of z,. Given our focus on the variance, without lose of generality, we
assume Ef,(X,) = 0 for each u € L. Then, our goal is to prove E[(E[f(X) ]Xp])Q] is negligible
comparing to E[(f(X1))?]. Following from Cauchy-Schwarz inequality that

Z Zl a;) <kZa

ic[k] ic[k] i€[k]
we have
E[(E[f(X1)|X,])"] <IL| Y E[(E )1 X))
uel
S 20 NE[(fu(X))?] S 23 Y] E[(fu(X))’],
ueL uel

where the second inequality is derived from the variance decay property of in a Markov Chain.
Then, if we can establish 3 ,c; E[(fu(Xy))?] is at the same order as E[(f(XL))?], the proof is
complete.
This scenario is achievable if, for most pairs of u and v within L, the correlation between f,(X,)
and f,(X,) is sufficiently small, which is the case for degree-1 polynomials.
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Now, let us take a closer look. Fix any two vertices u and v in L, with w as their nearest common
ancestor. Suppose w is k layer above L, and u < wy and v < ws. Let X = (Xv/)vlng We have

<E[(fu(Xu))?] - El(fo(X0))?] S E[(fu(Xu))?] - AFE[(fo(X0))?],

where the last inequality again follows from the variance decay of a Markov Chain. The above
inequality implies that the correlation between f,(X,) and f,(X,) is at most A2

Our proof of the main theorem tries to generalize the argument above to low degree polynomials
using the following ideas:
I. Bounding Covariance: Suppose f, and fg are two functions such that
(1) fo(zg) with that S C L satisfying SN {v" : v/ <ws} # 0.
(2) fa(zg) is any function such that we know

E[(E[fs(Xs) | X])°] < (E(f3(Xs))%,
where we use a < b to indicate a is much smaller than b, keeping it not precise to avoid
distraction from technicality.

Then, we have Efo(Xa)fs(X3) < E[(fa(Xa))’JE[(f5(X5))?]-

I1. Choosing a good decomposition of the function: In essence, our proof strategy for
any given function f(zr) revolves around decomposing f(zy) into a sum of functions f,(z) for a
in some index set I, such that

(1) 1l S d,

(2) For each o, E[(E[fa(2) | X,)?] < E[(fa(2))?],

(3) Whenever a # /3, we can find w € T so that fo(zo) and fg(xg) satisfies the covariance
bound in I. (Possibly with a switch of the roles of o and f3).

If this is the case, then we can follow the argument in the degree 1 case to show that desired result.
The proof of the main theorem builds on this strategy, advancing through a recursion on the fractal
capacity of the function. This recursive approach relies on the following property:

III. From functions to their products: Suppose we have two functions f, and fg such
that f, is a function with variable (2y)yer:v<w, and fz is a function with variable (24)ver :v<ws-
Further, if

E[(E[f2(X)| X])?] < E[(fa(X))?]
and

] E[(E[fs(X) | X])*] < E[(f5(X))?],
where X = (X)yzw. Then, g(z) = fo(x)fs(x) also satisfies

E[(E[g(X)| X])*] < El(9(X))?]-

Although proving III. requires some effort, its essence mirrors that of Property I, employing the
Markov property and leveraging the variance decay characteristic of the functions involved. Effec-
tively, Property III enables the derivation of additional functions exhibiting variance decay, which
allows us to derive the main result in an iterative formulation.

The main theorem essentially are carried out following the three key ideas I-III. The technical
difficulty comes from finding the suitable decomposition which has the right variance decay property
that is presented in the Kesten-Stigum Bound.

e In Section 2, we give additional notations and basic tools.
e In Section 3, we formulate the main theorem we want to prove as an induction statement.
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e In Section 4, we discuss the case for degree 1 polynomial, which prove the base case of
the induction in the theorem, and the results for degree 1 polynomial will be used in the
inductive step.

e In Section 5, we give a procedure to decompose B-polynomial f for a given collection B.

e In Section 6 and 7, we derive the proof of Theorem 3.6, the inductive step for proving
Theorem 3.1.

e In Section 8 and 9, we derive the main result in the general case.

e In Appendix A, we provide a proof of Proposition 4.3, which is one technical obstacle
for getting our main result from Theorem 3.1 to the general setting (Theorem 1.6). It is
postponed to this section due to the proof is essentially a result about Markov Chain.

e In Appendix B, we provided some standard result for decay of Markov Chain.

2. ADDITIONAL NOTATIONS AND TOOLS

For any positive integer n, let [n] denote the set of positive integers from 1 to n, inclusive:
[n] =1,2,...,n. For integers a and b where a < b, let [a,b] = {a,a+1,...,b}.
We introduce the notation for the height of a node u and we define:

T,=TN{veT :v<wu}and L, =T,N L.

It is worth noting that 7, can be seen as a rooted tree with h(u) layers, having u as its root and
L, as its set of leaves.

For any u € T and k € [h(u)], let L (u) be the set of kth descendants of u, i.e., those descendants
that are k levels down. For brevity, let Ly := Li(p) and L = Ly(p), where ¢ is the depth of the
tree.

Further, for any 0 < k < h(u),

(2) Dy(u)={veT :v<u and h(v) = k}.

denote the set of vertices which are k-th descendants of u. Note that Dy(u) = Ly (y)—x(u)-
For a given collection of of subsets A C 27\(), we define the following subcollections: For each

ueT,let A, :={SeA: plS)=u}, A<, :={S € A : p(S) <u},and A, :={S €A : p(S) <

Definition 2.1. [Conditional Exzpectation] For each U C T and let f : [q]T — R let

(Ev f)(x) ::E{f(X)‘XU:xU v g U{wET : w<u}}.

uelU

To rephrase it, the function (Ey f)(z) represents the expected value of f(X) condition on X, = x,
for all vertices v that are not descendents of any v € U. Clearly,

(EUf)(X):IE[f(X)‘XU cog J{weT : w<u}].

uelU

Furthermore, we will abuse the notation and denote E, as E,y for u € T, as it will be used
repeatedly. Finally, for any k € [0, ¢], we set

(Bxf)(x) == E[f(X) ‘vy €T with h(v) > k, X, = 2,.

If f is a function of xy, then by the Markov Property we have (Exf)(z) is a function of (z, : v €
Di(p)).
The following lemma is a well-known statement from Markov-Chain. Let us formulate it using
the Broadcast Process.
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Lemma 2.2. Suppose M is irreducible and aperiodic, then there exists C' = C(M) > 1 so that the
following hold: For any u € T and k € N so that p*(u) exists. For every function a with input x,,,

(3) Var | (By () @) (Xpr ()| < CE*APVar[a(X,)]
and
2 2
(4) O~ | max|a(d) — Ea(X,)| | < Varyra(Y) < C [ max|a(f) — Ea(X,)| | .
o€lq) 0€(q]
And from the above two inequalities, adjusting the constant C if necessary, we also have
(5) max |(Eyr(,a)(0) — Ea(X,)| < CkIN* max |a(0) — Ea(X,)).
0€(q] 0€(q]

We include a proof of this lemma in Section B.

2.1. Basis of functions on [¢]”. In this section, we will fix a basis for the space of functions from
[q] to R for a Markov chain M.

Definition 2.3. For a given q X q ergodic and irreducible transition matriz M, we fix a basis
{@i}icpo,q—1) for the space of functions from [q] to R such that ¢o is the constant function 1 and ¢;
fori € [q — 1] are functions such that

Eyr¢i(Y) =0 and By ¢?(Y)=1.

Definition 2.4. For a given ¢ layer rooted tree T and q X q transition matrixz described in Lemma
2.2, for o € [0,q — 1]%, let

Qbo(l') = H d)a(v)(xv)'

vEL
We write S(o) = {v : o(v) # 0} and |o| = |S(0)].
Remark 2.5. We remark that ¢, () is a function with variables in (x, : S(0)).
The fact that ¢, ¢1,...,¢e—1 forms a basis implies that:

Lemma 2.6. Every function f :[q]V + R can be expressed uniquely in the form
(6) f(l’) = Z CJ¢U($)’
o:S(0)CU

Remark 2.7. With the above representation, if f is not a constant function, the Efron-Stein
degree of f equals to the largest magnitude of |o| among those o such that ¢, # 0.

Definition 2.8. Given a tree T and a q X q ergodic transition matriz M, let {¢i}ie[q—1} be the
functions described in Lemma 2.2. For a collection of subsets A C 2F\0), let

(7) F(A) :={oe0,q—1)F : S(o) € A}.
For any w € T\L, and o0 € F(A,), let S = S(o) and
(8) Yo(x) == ][ orol(x),

1€I(S)
where Pio(x); = o(x);1(j € S;) and
(9) ot (2) := g () = Epor (X)
for any o' € F(2E\D). For simplicity, let us also denote

I(0) :==1(5(0)), and p(o):= p(5(0)).
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3. THE OVERALL INDUCTIVE ARGUMENT

Here we present the version of the theorem with additional assumption on the transition matrix
M that

(10) ¢y = min M;; > 0.

i,5€lq]
Theorem 3.1. Given the rooted tree T and the transition matrixz M described in Theorem 1.6, and
under the additional assumption that cyr = min; jepq Mi; > 0, there exists ¢ > 0 dependent on M
and d (and implicitly on cpr as well) so that the following holds: For any function f of the leaves
with fractal capacity < c

log(dR)’
Var(B[f(X) | X,]) < (dX*)*Var(f(X)).

We will first derive the version mentioned above, as it substantially reduces the technical com-
plexity without compromising the structural integrity of the proof in the general setting where cps
might be 0.

The proof of Theorem 1.6 will be carried out by induction on Ag-polynomials. Let us introduce
the necessary notations to outline this induction process.

Definition 3.2. Let € > 0 be the constant such that
max{d\* \} = exp(—1.1¢).

The constant ¢ is introduced to improve the readability of the paper. Intuitively, we aim to
define d\?> = exp(—¢), but we relax this definition slightly so that inequalities like the following
hold when / is sufficiently large:

poly(£)(dX*)" < exp(—ef).
Assumption 3.3. We say that A satisfies assumption 3.3 with parameters (h*, ¢*) where h* > 0
and 0 < ¢* < 1, if
A c Ac2h\p
is closed under decomposition, and morever,
(1) For any v € T with h(v) > h* and a A<,-polynomial f,

(11) Var[(E, f)(X)] < exp (—e(h(v) —h"))Var[f(X)].
(2) For any v € T with h(v) > h* and a A<,-polynomial f with Ef(X) =0,

(12) B [(Bof)?(X,)] < BIENHX) | Xy = 0] < S E[E.F(X)].
for all 6 € [q].

The inequality (11) bears a resemblance to the inequality we aim to prove in Theorem 3.1. The
second inequality, (12), will later be seen as a crucial step proving the inductive phase of our
proof. Indeed, in the case where cj; > 0, the condition (12) can be easily satisfied by appropriately
choosing c* :

Lemma 3.4. For any given A1 C A C 2T\ which is closed under decomposition. If it satisfies
(11) with a given parameter h* and cpr > 0, then A satisfies Assumption 3.3 with parameter h*

and
1

—F— > 0.

min; 7(j) }

In other words, we can choose ¢* with no dependence on either h* or A.
10
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Proof. Consider an arbitrary function f with variables (z, : u < v) for some v € T\{p}.

Let g(x) := (E,f)?(z). By the Markov Property, (E,f)(x) is a function of z,, which in turn
implies g(z) = g(x,). Now, for any 6 € [¢], fix an index jo € [¢] such that g(jo) > Eg(X,). Relying
on ¢ is a non-negative function,

Elg(Xo) | Xp) = 0] = > Mpjg(j) = Majo9(jo) = cnEg(X;).
Jj€ld]
By unraveling the definition of g, we can satisfy the first inequality of (12) as long as ¢* < cjpy.

The proof for the second inequality follows a similar logic, using the condition ¢* < — 1ﬂ(4 and
Jj J)

the trival inequality max; ; M;; < 1.

Given this notation, the proof of Theorem 3.1 proceeds by induction, with the base case and
inductive articulated in the subsequent two statements.

Proposition 3.5. Given the rooted tree T' and the transition matrix M described in Theorem 1.6,
and under the additional assumption that cpr = min, jeq Mij > 0. There exists C = C(M,e) > 1
so that the following holds:

Fiz p' € T and 0 < m < h(p), if f(x) is a degree 1 polynomials of variables (x, : v € Dy (p')),
then

(13) Var|[(E, f)(X)] < exp ( — e(h(p)) —m — C(log(R) + 1)))Var [£(X)].

Theorem 3.6. Given the rooted tree T and the transition matrix M described in Theorem 1.6, and
under the additional assumption that cpy = ming je(q Mij > 0. Suppose A is a collection of subsets
satisfying Assumption 3.3 with parameters (h*, ¢*). Then, there exists C = C(M,d,c*) > 1 such
that B = B(A) satisfies Assumption 3.3 with parameters (b* + C(log(R) + 1), ¢*).

Let us derive the proof of Theorem 3.1 based on the above two statements.

Proof of Theorem 3.1. First, we claim that Aj contains all non-empty subsets of L of size < k.
This can be proved by induction on k. The base case with k = 1 follows from the definition
Ay := {{v} : v € L}. Suppose the claim holds for some positive integer k. Let S C L\Q with
|S| < k+1. If |S| <k, then S C Ay, C B(Ay) = Agy1. In the case where |S| = k£ + 1 > 2, notice
that p(S) is not a leave. Consider the branch decomposition of S (See Definition 1.8):

S == Uiej(s)si.
Because |I(S)| > 1, for each i € I(S) we have |S;| < |S| = k + 1. Therefore, S; € Ay, for i € I(5),
which in turn implies S € B(Ag) = Ag41. Therefore, the claim follows.
Second, we apply Proposition 3.5 and Lemma 3.4 to get A; satisfies Assumption 3.3 with pa-

rameter h* = C5 5(log(R) + 1), where C3 5 = C(M, d) is the constant introduced in the Proposition

and
1

min; W(])} >0

Then, by applying Theorem 3.6 inductively on the chain A, we can conclude that Ay satisfies
Assumption 3.3 with parameter h* = C(log(R) + 1)k and the same ¢* described above, provided
that C = C(M, d, ¢*) is the maximum of the constants C' described in Proposition 3.5 and Theorem
3.6. In other words, for any Aj-polynomial f,

Var[(E, f)(X)] < exp (—e(f — C(log(R) + 1)k)) Var[f(X)].

The theorem follows by choosing k = mf.

¢* = min {CM,

11



4. VARIANCE DECOMPOSITION AND VARIANCE ESTIMATE FOR DEGREE 1 POLYNOMIALS

To describe the goal of this section, let us begin with the variance decomposition of degree 1
polynomials in a slight generalized form. Essentially, the following statement is a direct consequence
of the conditional variance formula. However, for the sake of completeness, a detailed proof is
provided below.

Lemma 4.1. Fiz p' € T and 0 < k < h(p'), consider a function g : [q]" — R of the form
g@) = Y gu(x) where go(x) = gu(r<0)-
vED(p')
Then,

Var[g(X)] =Var[(E,g)(X,)] + > EVar [(Ewgw)(Xuw) | Xpw)]
weT,\{p'th(w)>k

+ > EVar[gy(X) | X,],
vED(p')

where for w € Ty\{p'} with h(w) >k + 1, gu(7) := X e py(w) 90 (@)-
Our goal is to show that when d\? < 1, Var[g(X)] is of the same order as >veDy(p) Var[ge(X)].

Lemma 4.2. Suppose the transition matriz M satisfies d\*> < 1 and the tree T has growth factor R.
Then, there exists a constant C = C(M,e) > 1 so that the following holds. Let p' € T, ' :== h(p'),
and k € [0,1']. Consider a function of the form g(z) =3 ,cp, () 9v(¥v). Then,

(14) Var[g(X)] < CR Z Var[g,(Xy)]-
vED(p')

The opposite bound does not depend on dA\? < 1. However, the proof in the general case where
cy = 0 is not straight-forward. We state it in full generality but will defer the general proof and
prove it here in the simpler case where cp; > 0.

Proposition 4.3. There exists a constant C = C(M,d) > 1 so that the following holds. Let p' € T,
' :=h(p), and k € [0,I']. For any degree-1 funcion g with variables (x, : v € Dg(p")). There
exists functions gy(x) = gy,(zy) for v € Di(p') so that the following holds:
(1) 9(X) =X ven, () 9v(Xu) almost surely. (They may not agree as functions from [q]T toR.)
(2) For any v € Ty with h(u) > k,

(15) > Var[gy(Xy)] < CR*Var[ Y g.(Xy)].

vEDy (u) vED (u)

In particular, taking u = p' we have

(16) S Varlou(X,)] < CRVarlg(X)]
vED(p')

We postpone the proof of Proposition in full generality in Appendix A, due to the technical
complexity of the proof and the fact that the proof is about properties of a Markov Chain. Instead,
a statement of the proposition and its proof in the case where cp; > 0 is provided in this section.

Now, the purpose of this section is twofold.

e First, it is the derivation of the variance related estimates: Lemma 4.1, Lemma 4.2, and
Proposition 4.3 with the additional assumption that c;; > 0. Additionally, we summarise
the estimates into a single statements, as stated in Lemma 4.7.

e Second, it is the derivation of the base case of the induction, Proposition 3.5.

12



4.1. Variance Decomposition and Estimates. Before we proceed to the proof of Lemma 4.1,
let us remark on the following consequence of the lemma.

Remark 4.4. For any g described in Lemma 4.1, if we define h(z) := (Erg)(z) and hy(x) :=
(Eygy)(zy), then by applying the lemma to g and to h, we conclude that

Var[g(X)] = Var[(Exg)(X)] + Y EVar[g,(X) | X,].
vED(p")

Proof of Lemma 4.1 . First, for u € Ty\{p'} with h(u) > k,

Notice the following holds:

Let us start decomposing the variance of g.

Var[g(X)] = Z E [y (X)gv (X)]

v, €Dy (p')
> Elg(X)gw (X)) + 3. E[g(X)]
weT,:h(w)>k v,v' €Dk (') : p(v,v)=w vED(p)
= Z E[(Ewgvgv’)(Xw)]—’_ Z E[gg(X
wET,:h(w)>k v,0' €Dy (p') : p(v,v")=w vED(p')
= > (X EE.sd0)00) - > E[(Eudvdv)(Xu)])
weT,:h(w)>k  v,v' €Dk (w) v,v' €Dy (w) : p(vw")<w
+ > El@X
vED(p')

Notice that for w € T}y with h(w) > k,

> E(Euwdudy)(Xw) = E[(Ewjw)*(X))]

v,v' €Dy (w)
and
Z E(Ewgvdu)( Z Z E(Ewgvgu ) (Xuw)
0,0 €D () ple!) < W Ec(w) 0,0/ EDr (')
Z E wgw X)]
w’'ec(w)

13



Hence,

Var[g(X)]

= Y (BlE)X] - Y E[E.5)XX))+ Y E[GAX)]
weT,:h(w)>k w’ec(w) vED(p')

= > E[Eu)’X)] - > E[(Epw)du)’(X)] + > E[g(X)]
weT,,:h(w)>k w' €T \{p'}h(w)>k vED(p)
=E[(Eygy)*(X)] + > E[(Buwfuw)*(X) = (Epguw)guw)*(X)]

weTy\{p'}:h(w)>k

+ Y (E@(0] —E[E5.)*(X)] + E[(E.§.)*(X)] ~E(Eyq)3,)*(X))
vED(p)

=0

=E[(Eyg,)*(X)] + > EVar[(Ewgw)(Xw) | Xpw)] + Y EVar[g,(X)| X,].
weT,\{p'}:h(w) >k vED(p')

0

Next, let us show the proof of Lemma 4.2. This follows the standard second moment calculation
for the tree model where it is shown that covariance terms decay exponentially in the distance
between the corresponding function on the tree.

Proof of Lemma 4.2. Let Cy = Cy(M,d) denote the constant introduced in the statement of the
Lemma. Its precise value will be determined along the proof. Without lose of generality, we may
assume both Eg(X) = 0 and Eg,(X,) = 0 for v € Dg(p'), and the variance of each function is
simply its the second moment.

For brevity, let o := (E(g,(X))?)'/2 for u € Di(¢'). By (3) from Lemma 2.2, for s € [I' — k],

(17) E[(Eps uy9u)” (Xps(u))] < Coas™ A\ 07,

where (55 > 1 is the constant introduced in the Lemma.
In particular, if p(u,u’) = p*(u) for u,u’ € Dg(p'), then
IEgu(X)gu (X)) :|E [(EpS(u)gugu’)(XpS(u))] !

1/2
<(E[(Epo(u9)>(Kpo)]) " - (E[(Epo ) 9u)> (Ko u))])
SCQ‘QSZI)\QSO'UO'U/.

1/2

For each s € [I' — k] and v € D1 4(p'), let o, := >uel,(v) Ou- Then,

E(Q(X))2 < Z |Egu(X)gu’(X)|
w,u’ €Dy (p')

2qy2s
= 2. 2 D CuasNouu,
s€[l!—k] v€Dy45(p') u,u’
14



where the sum >, ,/ is taken over all ordered pairs (u,u’) with u,u’ € Ly_gy4(v) and the nearest
common ancestor of u and v’ is v. By relaxing the constraint of the summation we have

E(g(X))? < Z Z Z Cs* I\ 0,0,

sE[l'—klveLy 4 (p") uw/ €Ly oy o (v)

— Z Z Cy 98%I\?* ( Z Uu> ’

se[l!—k]veLy ;. ,(p') u€Ly_pys(v)

<Y Y GusRe Y o

se[l!—k]veLy_;. (o)) u€Ly_pqs(v)
:( 3 CQ,QSQqAZSRdS) Yy ol
s€[l!—k] u€Dy(p')

Next,

Z Co28%IN>*Rd® < Z RC595% exp(—1.1es) := CyR.

s=1 s=1

Hence, Cy depends on ¢, ¢, and Cy5. It is a constant which is determined by M and e.
O

Let us formulate Proposition 4.3 under the additional assumption that ¢y = min; je(q Mi; > 0.
Indeed, in this case, the bound does not depend on R.

Proposition 4.5. Suppose the transition matrix M satisfies cpr > 0. There exists a constant
C = C(M,e) > 1 so that the following holds: Let p' € T, I' := h(p'), and k € [0,I']. For any
function g = [q]T — R of the form

g9(z) = Z go(@v).

vED(p')
The following holds: For any u € T,y with h(u) > k,
(18) > Var[gy(Xy)] < CVar[ Y gu(X,)].
vEDy (u) vED (u)
In particular, taking u = p' we have
(19) > Varlgy(X,)] < CVar[g(X))].

vE€D(p)

The proof of the Proposition relies on the following immediate consequence of cp; > 0:

Lemma 4.6. Suppose M is a q X q ergodic transition matriz with cpy = min, jeiq Mi; > 0. There
exists C = C(M) > 1 so that the following holds. For any u € T\{p} and a function h(zx) = h(z,),

EVar(h(X,) | Xpw)] > C(lj\/j)Var[h(Xu)].

For completeness, we provide the proof in the Appendix.

Proof of Proposition 4.5. We adapt the notation from Lemma 4.1. For w < p’ with h(w) > k, let

guw(z) = Z gu ().
u€ Dy (w)
15



Now, we apply Lemma 4.1 and Lemma 4.6 to get

Var[g(X)] zvar[(Ep’gp’)(Xp’)} + Z Evar[(Ewgw)(Xw) ‘ Xp(w)]
weT A\ (o} h(w) >k

+ Y EVarfg(X) | X.]
vED(p')

> Y EVar[(Eugu)(Xu) | Xpw)]
u€Dy(p')

1
>—— > Var[gu(X.)],
Cag u€Dy(p’)

where we used the fact that all the terms are non-negative, the first inequality is obtained by
looking at the second terms for the summands with h(w) = k and C} ¢ is the M-dependent constant
introduced in Lemma 4.6.

O

Lemma 4.7. Suppose d\?> < 1 and the growth factor is at most R. There exists a constant
C =C(M,d) > 1 so that the following holds. Fiz p' € T and 0 < m < h(p'), if fm(x) is a function
in the form

fm(z) = Z fo(T<o).

vEDm(p)
with
Efm(X)=0.
Then, there exists fu(v<y) for v € Dy (p') such that their sum fy,(x) = 2 veDum (') fo(z<y) satisfies
fm(X) = f(X) almost surely,
and for u < p’ with h(u) > m,
1 _ 2
am Y ERX<E( Y f(X0)) <CR Y ERWM).

VEDm (u) VEDm (u) VE D (u)

(20)

The statement of the lemma using f,, and f; covers also the case ¢y = 0. We will prove the
Lemma by using either Proposition 4.3 or Proposition 4.5 with the assumption cpy > 0. In the
later case, it suffice to simply take f,(x<y) = fo(T<v).

Remark 4.8. Note that the lemma implies the following: For any u < p/ with h(u) > m, let
(21) f_m,u(x) = Z fv(x)
VEDp, (u)
Then, for any given m < k < k’ < h(p’) and u € Dy/(p'), we have
Efnu(X)<CR ) Efj(X)=CR Y > EfX)<CR Y f.,X),
VEDm (u) wEDg (u) VEDm (w) wEDy (u)

where the first inequality follows from the second inequality of (20) and the second inequality
follows from the first inequality of (20).

Proof of Lemma 4.7. Let
h(@) = Enfa)@) = > (Eufo)(zo).

vEDm (p')
16



Note that h is a degree one function of the variables (z, : v € Dy,(p’)). Thus, we could apply
Proposition 4.3 to show the existence of 1-variable functions hy () for v € D, (p’) such that

(22) h(X) = Z hy(X,) almost surely
vEDm(p')
and for any u € T'(p') with h(u) > m,
(23) > Varhy(Xy)] < CusR*Var[ Y ho(X,)],
V€D (u) VEDm (u)

where Cy 3 > 1 is the constant introduced in Proposition 4.3.
Since Eh(X) = E(E,, fn)(X) = 0, we may also assume that

Ehy(X) =0

for v € Dy, (p'), as a constant shift of the functions will not affect (22) and (23). Now, consider the
following functions: For v € D,,(p'), let

fv(xgv) = fv(fUSv) - Efv(XSv) + hy ()

and

vEDm(p')

First, since f,(7<,) is defined as the sum of three terms with mean 0, we have Ef,(X<,) = 0.
Second,

fm(X) = Z (fv<XSv) - (Eva)(Xv) + hv(Xv))

vE€EDm(p')
:fm(X) - h(X) + Z hv(Xv)
vEDm (p')
a.s Fm(X)

By Remark 4.4,

Var[ Y (X)) =Var|(En Y R)XO|+ Y EVarlfu(X)] X,
VE D (u) _ VEDm (u) VEDm (u)
:Var_ Z (Eva)(X)}‘l- Z Evar[fv(X)_(Eva)(Xv)+hv(Xv)|Xv]
VEDp, (u) vEDm (u)
(24) =Var[ 3 h(X)]+ > EVar[fy(X)|X,]
VEDp, (u) VE D (u)

To estimate the lower bound, we rely on own choice of h,. By (23) we have

(24) > a; = Uegw) Var[hy(X)] + UE%@ EVar[f,(X)| X,]
> 04;%3 veg(u) (Var [ (X)] + EVar(f,(X) | X,])
Rz X (vl + BVl (0 )
e 3 vedA)



As for the upper bound, we can apply Lemma 4.2 and repeat the same derivation as above to get

(24) <Cy2R > Var[ho(X)]+ > EVar[f,(X)]X,]
VEDm (u) VEDm (u)

<Cy2R ) Var[fy(X)].

VEDm (u)

Therefore, by taking the constant C' stated in the lemma to be the maximum of Cj 3 and Cyo,
the proof follows.
O

4.2. Proof of the base Case of Proposition 3.5. We now prove the base case of Proposition
3.5:

Lemma 4.9. There exists a constant C = C(M,d) > 1 so that the following holds. For any degree
1 function f with variables (x,, : u € Dg(p")) for some p' € T with k <h(p'),

(25) Var[E[f(X) | X,]] < CR*(W)21(d\?)Y Var[f(X)).
where W' =h(p') — k.
Proof. Let f,, for u € Di(p') be the functions from Proposition 4.3 so that

(26) f(X)= Z fu(Xy) almost surely.
u€Dyg(p")

We can assume Ef(X) = 0 and Ef,(X) = 0 for every u € Dg(p") without affecting (26). From
Proposition 4.3, we have

> E[fi(X)] < Cu3RPE[fA(X)),

u€Dy(p)

where Cy 3 denotes the constant C introduced in the Proposition.
We could apply Lemma 2.2 to get

E[(Ep’f)2<Xp’)] §‘Dk(p/)‘ Z [(Ep’fv)2<Xp’)}

vED(p')

<|Di(p)|Coah®IN N E[f2(X)] < Cu3Ca2R (W) (dA)E[f2 (X))
u€Dy(p)

where Cy 5 denotes the constant C' stated in the Lemma. O

Proof of the Base Case Proposition 3.5. Given p' € T and 0 < m < h(p’) described in the Propo-
sition. Let h' = h(p’) —m. By Lemma 4.9, any function f(z) = X cp,, () fo(zv) satisfies

Var[(E, f)(X)] < CuoR*()?(dA*)" Var[f(X)],
where Cy 9 denotes the M-dependent constant introduced in the Lemma. With
CroRY(W)(dX*)Y < CugR (W) exp(—1.1eh’) < exp (— (b’ — C1(log(R) + 1)),
for some C7 > 1 which depends on M, d. O
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5. DECOMPOSITION OF POLYNOMIALS

In this section we study the representation of functions in terms of ¢, and v,. Roughly speak-
ing 1, are “more orthogonal” than the ¢,. More formally we will show that under appropriate
conditioning expections of 1, factorize. Thus some of the effort in the proof and particularly in
this section is devoted to relating the ¢ and i representations and bounding moments of such
representations.

Lemma 5.1. Assuming d\?> < 1 and growth factor of R, there exists C = C(M,d) > 1 so that the
following holds. Let Ay C B C 2E\( be a collection of subsets which is closed under decomposition.
Fiz a positive integer kv and p' € T with I := h(p') > k1. For every function f of the form

f(z) = Z oo ()

o:0A0EF (B )

with
Ef(X) =0,
here exists a decomposition of f
f(X)= Z fu(X) almost surely,
u<p’ :h(u)>k

where, for each u < p’ with h(u
(1) Foru € Tp/ with h(u)
(2) Forw <y wzth h(w) > ki, we have

(27) =D o] <E( > aoof <oms| o)

u€Dy, (w u€Dy, (w) v€Dy, (w)

) > k1, we have a function fy(x) = fu(r<y) and
> k1, fu(x) is a linear combination of V,(x) with o € F(B,) and
)-

We may group the f, according to h(u) and define for ki < k < h(p'),

fk(x) = Z fu

uEDk )

In other words,

f(X)= Z fx(X) almost surely.

k€[k1,h(p)]
To prove the main lemma, let us begin by comparing ¢, (z) and 1, (x) (See Definition 2.8).

Lemma 5.2. For o € F(By), ¢o(x) can be expressed in the form

(28> H wPJ —ac 0’( ) a<,a(33) — Qc,o,

i€l(o)
where:

e ac ,(x) is a linear combination of ¢ (x) for o’ € F(By) such that I(c”) is a proper subset
of I(0).
e a.,(x) is a linear combination of ¢, (x) for o' € F(B<y) (recall that B<, = {S € B :
p(S) <wu}), and
® a., 15 a constant.
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Proof. Fix 0 € F(B) and let u = p(S) and S = S(0). Recall that I(o) := {i € [d,] : S(o)NT,, # 0}
and Pjo € [0,q—1]T is the projection of ¢ to S;. We can also decompose the function ¢, according
to {P;o}icr(o):

(29) H ¢P o

i€I(S)

Before we proceed, let us note that by Lemma 1.11 and the definition of B, we have Pjo € F(B<y, ).
Now, let us expand the function 1, according to its definition:

H vro(@) = [I (¢ro(®) —Eopo(X)) =3 (I ére(@)( [ (-Eorq (X)),

i€I(S i€I(S) I, I2 i€l i€l
where the summation is taken over all possible partition I; LI Iy = I(0). Next, we can group the
summands into four types based on |I;| and |I3]:
Type 1 |I1| = |I(0)|. The summand is simply ¢, (z).
Type 2 2 < || < |I(0)| — 1.
Each summand is a constant multiple of ¢,/(z) where ¢’ is the projection of o to the
indices Uy, S;. Clearly, S(0') = Uier, Si. With |I1] > 2, we have p(o’) = u. Further, each
S; € A<y, for i € I(0), it follows that S(¢’) € By, which in turn implies o’ € F(B,).
We denote the sum of summands of this type by ac (z).
Type 3 |I;] = 1. Each summand is a constant multiple of ¢p,,(x), where i is the element in I;.
Notice that Pijo € F(A<,) C F(B<y) where the inclusion follows from Lemma 1.11. We
denote the sum of summands of this type as a< o(x).
Type 4 |I;| = 0 There is only one summand, which is a constant. We denote this constant by a. p,o-

With this decomposition, (28) follows. O

Given the expressions for 1), (z) in terms ¢,(x) and vice-versa, for any given v € T\ L, we can
convert a linear combination of ¢, (x) with o € F(B,,) to that of i, (x) with o € F(B,).

Lemma 5.3. For u € T\L, consider any function of the form
pu(z) = Z CoPo ().
c€F(By)

Then there exists a decomposition

pu(ﬂj) :fu(x) +p<,u($) + Cu,
where:

o fu(z) = fu(x) —Efu(X) and f.(z) is a linear combination of 1 (x) for o € F(By),
o pou(x) is a linear combination of ¢po(x) with o € F(B<y), and
® ¢, 1S a constant.

Proof. The decomposition is constructed through recursion on the following expression:
r(py) == argmax{|I(o)| : o € F(By), cs # 0}.

Suppose r(p,) = 2. Then the statement of simply follows from Lemma 5.2.
Suppose the statement of the lemma holds whenever r(p,) < r for 2 < r < Rd. Consider any
function p, with r(p,) =r + 1:

pu(z) = Z CoPo(T) = Z Codo(T) + Z CoPo(T)

c€F(Buy):|I(o)|<r+1 c€F(By):|I(o)|=r+1 c€F(By):|I(o)|<r

=pu,r+1(z) =puy,<r(T)
20



According to the decomposition of ¢,(z) in Lemma 5.2, let
fursr(z) = Z oo ()

c€F(By):|I(o)|=r+1

p*,u,r—l—l(m') = Z Caa*,a(x)

c€F(Buy):|I(o)|=r+1
where x can be C, <, or ¢. Then,
(30) Pur+1(T) = fur+1(2) + Pcur+1(2) + P<ur+1(2T) + Peur+1(2).
Observe that py < () +pc ur+1(2) is a linear combination of ¢, (z) with o € F(B,,) and |I(o)| < r.
Thus, by the inductive assumption, the summation can be expressed in the form
Pu<r() + peuria (@) = fi(x) + Pl (2) + €,

Finally, let

ful@) =fi(2) + fursa (@),

p<7u(fL‘) :p,<,u($) +p<,u,7‘+1($)7
Cy, :C;L + p/c,u + E[fu,r-l—l(X)] )

and we have

/

:fu,r—i—l(x) + p<,u,r+1(x) + Peur+1(z) + f;(x) + p/<,u(x) T ¢y
:fu($) +p<,u($) + cy-

~—

Pulx

Proof of Lemma 5.1. We will construct f,(x) for u starting from top layer (u = p’) to bottom layer.
For k € [k1,l' — 1], when f,(z) is constructed for u € Ty with h(u) > k, we define

(31) far(m)=f@)— Y ful@),
w:h(u)>k+1
where f,(z) = fu(z) — Ef,(X). Without lose of generality, let f<y(z) = f(x).
Fix k € [k1+1,1']. For the induction step, suppose {fu(ac)}ue;pp, h(w)>k 1f<s(T)}sefk,) have been
constructed such that f<j(z) can be expressed in the form
(32) fer(z) =¢ + > o) + > o ().
c€F(B):ki1<h(p(o))<k ceF(2L) :h(p(o))<k1

Clearly, this holds when k =1. .
For each u with h(u) = k, let pu(2) = X,crg,) P (), and define f,(r), p<u(r), and c,
according to Lemma 5.3. Then,

fara1(@) =f<r(@)— D ful@)

w:h(u)=k1
=c + Z coo(z) + Z oo (x)
c€F(B):ki<h(p(o))<k-1 ceF(2L) :h(p(o))<k1
+ Z (p<,u(x) + Cu)'
w:h(u)=k
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Recall from Lemma 5.3 that p< () is a linear combination of ¢, (x) with o € F(B<,), the function
f<k—1(x) satisfies (32) as well (with k been replaced by k —1).
Once the induction terminated at layer ki, we obtain

Jr, (@) =c+ Z Z Co o ().

u€Dy, (p') o€ F(2Lu\D)

Now, observe that for ki < k < h(p'), we have f(x) is defined as the sum of f, for u € Dy(p),
which are functions of mean 0. Together with the assumption that Ef(X) = 0, we have
h(p")
Efe, (X) =Ef(X)— > Efi(X)=0.

k=k1+1
Notice that fy, satisfies the assumption of the function stated in Lemma 4.7 with m = k;. By

replacing fi, by fkl and f, by f, for each u € Dy, (p'), the second statement follows while the third
statement of the Lemma remains true. Hence, the proof is completed. ]

6. INDUCTION STEP 1: DECAY OF f,
The goal this section and next section is to prove Theorem 3.6. Let us restate the theorem here.

Theorem. Given the rooted tree T' and the transition matriz M described in Theorem 1.6, and
under the additional assumption that cpy = min; je(q Mij > 0. Suppose A is a collection of subsets
satisfying Assumption 3.3 with parameters h* and ¢*. Then, there exists C = C(M,d,c*) > 1 such
that B = B(A) satisfies Assumption 3.3 with parameters h* + C(log(R) + 1) and c*.

In this and the following section, we will fix a collection A that meets Assumption 3.3 with
some parameters [* and ¢*. Additionally, we abbreviate

B=DB(A).
Further, we will fix p’ € T and a function f described in the Assumption 3.3, and assume
Ef(X)=0.

The proof is grounded in the decomposition of f as described in Lemma 5.1, which splits f into
summation of fr and subsequently into summations of f,. Accordingly, this section is devoted to
derive the variance decay properties of f, stated as Proposition 6.1 below. The proposition will be
used to derive variance decay properties of fj, and toward the proof of Theorem 3.6 in next section.

Proposition 6.1. There exists C = C(M,c*) > 1 so that the following holds. For any u € T,
consider a function f, of the form

fulz) = Z Coo ().
0£0€F(By)

Then, for 6 € [q], we have the following bounds on (E,f,)(x) (recall that that by the Markov
Property, (E,fu)(x) is a function of x,,):

(33) (Eufu)?(0) < exp(—2e(h(u) — Clog(R) + 1) — h*)) (B, f7) ()
and
(34) E[(Eyfu)*(Xu)] < exp(—2e(h(u) — C(log(R) + 1) — h*))Ef7 (X).

Additionally, for any function a(z) having inputs involving only (x, : v € Ty,) for some i € [dy):

(85)  E[fu(X)a(X)[] < exp (= 5(h(u) = Clog(R) +1) — ")) (EF(X))*(Ea®(X))"/2.
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Remark 6.2. The statement of the Proposition 6.1 is exactly the statement of Theorem 3.6
restricted to functions all of whose non-zero ¢, have p(c) = p’. Thus in some sense in this section
we prove the Theorem for the most complex terms. And in the next section we will control the
correlations between different terms.

This is an analogue in our setting to the classical fact in Fourier analysis that high amplitude
functions have sharp decay under noise.

Remark 6.3. We remark that the proposition holds immediately whenever |d,| < 1, since B, = 0.
Before we proceed further, we need to decompose f,(x).

Definition 6.4. For u € T\L and fu(z) = Y ,cr(B,) Co¥o (), let

(36) fur(z) = > coVo(x), and
c€F(By): I(o)=I
(37) Fug(@) =Ffur(@) = Efu1(X)

for each I C [d,] with |I]| > 2.
Given the above definition, we have

IC[dy) :|T|>2

Proposition 6.5. There exists C = C(M,c*) > 1 so that the following holds. For any v € T \ L
and I C [d,] with |I| > 2. Consider a function of the form

a(z) = Z Coo ().
oc€F(Buy):I(o)=I
Then, for I' C I, let
U=T\ (| Tu)

iel’
and we have

(38) (Eva)(x))* <exp (= || (B(u) — Ch)) (Eva?)(x).

Roughly speaking the proposition states that under the decay of correlation in Assumption 3.3,
for functions all of whose coefficient ¢, have S(o) = I for some large set I we get a variance decay of
the form exp(—e|I|h(u)). For later applications the statement is more general allowing to condition
on some of the subtrees. This is an analogue in our setting to the classical fact in Fourier analysis
that high amplitude functions have sharp decay under noise.

Proof. We fix u € T\L and I C [d,]. Without lose of generality, we assume I’ = [s].

Let Cp = Co(M,c*) denote the constant described in the statement of the Proposition. The
precise value of Cy will be determined during the proof.

For brevity, we introduce some notations that are only used in this proof.

(1) Decomposition of = € [g]T: Consider the representation of = as
T = (Ty, Ty T1y ..., Ts),
where, Vk € [s], z := (2 : v <wuy), and 29 = (z, v € U \ {u}).
Further, let

$§k = (xo,xl, . ,xk).
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For k € |0, s],
a<p(xz<p) == E{a(X) ‘ Xy =x, and X< = xgk}.

Before we proceed to the proof, observe that applying Jenson’s inequality on conditional expec-
tation, we can form a chain of inequalities

(Eva)*(z) = (Eyag)(z) < (Epai)(z) < (Eva3)(z) < ... < (Eval)(z) = (Eya®)(z).

If h(u) < Cp+h*, then the statement of the Proposition is weaker than the inequality (Eya)?(z) <
(Eya?)(x) stated above. So the lemma follows immediately in that case. From now on we assume

(39) h(u) > Co +h*.

We will improve each inequality in the above chain by leveraging the assumption (11).

Given the definition of a(x),
- an H ép,0(10) H Opo ()

o i€I\[s] i€]s]

By the Markov Property, the random variables (X;| X, = xu)ie[oﬁ] are independent. This gives rise

to:
a<i(z E{ZCU I ¢r0(X0) [[ dpo(X

Xy =z, and X<p = Q?Sk}

o 1€I\[s] 1€]s]
=> co [[ ¢rol@o) [[ dpiolar) I[I Budpo)(z).
o i€1\[s] i€[k] i€[k+1,s]

This part is freezed.  This part is a function of

Now, fix k € [s] and express a<y(z) = a<p(zy, T<k—1,2x). An essence of this proof is that the
mapping:

Yk > a<i(Tu, T<p—1,Yr)

is a linear combination of ¢, (yx) with o € F(A,,) and the coefficients are functions of (., z<g_1),
which gives us room to apply the inductive assumption, or (11) from Assumption 3.3.
To aid our analysis, we introduce Y%, an independent copy of Xj;. By (11), we have

(40)  E[(Elach(ru, wci-1, Yi)|Ya)’| <exp(—e(h(u) — b7))Ey, [a2g(@u, 7<p-1, Vi)

The reason we introduce Y, is that the L.H.S. and R.H.S. of the above inequality are not related
to (any moments of) conditional expectation of a(X). However, it can still be used with some
adjustment, relying on (12) from Assumption 3.3.

Given the assumption on Cjy being greater than or equal to 1, we have

(39)
h(ug) =h(u) =1 > h*+Cp—1>h*.

Applying (12) to our function yy — a<p(y, T<k—1,Yr) We get

1
Ey, [024 (2w, 2<i—1, V)] < min Ey, [024(2u, 2<p—1, Yi)|Yu = 0]
q

1

(41) EEEY}C [a%k(‘ru’ T<k-1, Yk)|YU = xu]
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On the other hand,
(@) By [ask(@u, <k 1, Y)Yy = 2.))" < B[ (By, lock(@a, 7251, Vo) [Ya)) ]
Combining the above expression, (40), and (41), we conclude that
(42)

1
(Elacp(zu, z<po1, Ye) | Yo = 24))° <

c*(xy)

exp(—¢e(h(u) — h*))Ey, [a2; (zu, v<k-1, Yi) | Yo = 24].
Notice that the expression inside the square in L.H.S. is
Ela<p(Tu, x<p—1,Y%) | Yu = 2]
=Ela<y(tu, v<p-1, Xp) | Xu = 20
=E[a<p(Xu, X<t—1, Xk) | Xu = Tu, X<po1 = T<pp—1]
=a<p—1(x).
Similarly,
Ey, [a2) (2, t<—1, Vi) | Yo = 2] =E[a2; (20, 2<-1, Xi) | Xu = 2]
=E[aZ,(Xu, X<p—1, Xp) | Xu = T, X1 = 2<1]
:Cl?gk—1(90)-

By imposing the first assumption on Cy that

1 1
> log (—
Co = B (c* mine (g 71'(]'))7

it follows from (42) that
aék—l(fﬁ) < exp(—e(h(u) — Co — h*))IE[aQSk(X) ‘ Xy =y and X<y = ﬂﬁgk—ﬂ
By taking Conditional Expectation on both sides,
(EvaZi—1)(x) < exp(—e(h(u) — Co — 1*)) (BvaZy) (x).
Finally, we apply this inequality consecutively for k € [s] we obtain
(Eva)®(x) < exp(—e[I'|(h(u) = Co — 1)) (Eva®)(z).
([l
Corollary 6.6. Fiz u € T\L and a function f,(z) following the form described in Definition 6.4.
If I,J C [dy] are subsets of [dy] of size at least 2, then for every 6 € [q],
(43) [(Eufur)(0)] <exp (= ZF (h(w) — C = 1*) (B, f2 ,)(6)

W) (Eufur Fu)O) <exp (~ L2 w(w) - 0 1) [EF)6) L0,

where C'= C(M, c*) is the constant introduced in Proposition 6.5, and IAJ == (I'\ J)U(J\I).

el
2

Proof. For the first statement, it follows from Proposition 6.5 with a(z) = fy r(z) and I = I'.

To prove the second statement, we begin by noting that the inputs of f, ;(x) and f, j(z) do
not include (z, : v € Uje s Tu;) and (2o, @ v € Usep g Tu,), respectively. Thus, we can apply the
Markov Property and that fact that if Y, Z, W are ind pendent then:

Elg(Y, Z2)h(Z,W)] = E[E[g(Y, Z)h(Z,W)|Z]] = E[E[g(Y, Z)|Z]n(Z, W)
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and this in turn becomes:
E[E[g(Y, 2)|Z|h(Z, W)|W] = E[E[g(Y, Z)|Z]E[h(Z, W)|W]],
to obtain

(Eufu,lfu,J)(x)
—E[E[fuJ(X)\Xv:vgé U T E[fus(X) | X0 ¢ | T

iel\J ieJ\I

Xy =xy:v £ ul.

In terms of absolute value, by Proposition 6.5 we have

|(EufU,Ifu,J)(x)|
<E ‘E[ful ) fug (X ‘X cv ¢ U Tuz ’XU_$UIU<U:|
- 1€IAT
:IE‘ {fu[ ‘X tv ¢ U Tuz} ’E[fuJ 'X N U Tul ’Xv—xv v;{u]
iel\J i€J\I

icI\J

gE_\l exp(—e|I\J|(h(u) = C = b*)) - E[f2 ,(X) ’Xv tvg |J T

.\lexp(—5|J\I|(h(u)—C—h*)).E[ 37J(X)‘XU cvé U Tuz} szxvzvﬁu]

ieJ\I

gexp(—;]IAJ\(h(u)—C—h*))\IE[E[ 20X vg U Tl | Xo =20 v{u]

ieI\J

.$]E|:E|:37J(X)‘XUZ’U¢ U Tul} Xv:;m,:v{u}

ieJ\I

=exp (= SIAT|(h() = € = 1)) [(Euf (@) - (Buf? ) (),

where the second to last inequality follows from Hoélder’s inequality. O

Corollary 6.7. There exists C = C(M,d,c*) > 1 so that the following holds. If uw € T\L with
h(u) > h* + C(1 + log(R)), then for any f,(x) in the form as described in Definition 6.4,

1
(45) Vo €ld, 5+ Yo (EBufe)0) < (Euf2)(0).

IC[dy]:|I|>2

Proof. Let Cy = Co(M,d, c*) denote the constant introduced in the statement of the Lemma. Its
value will be determined along the proof.

The statement of the Corollary is trivial when d,, < 2 since in that case B,, = ), implying f, = 0.
From now on, we assume d, > 2.

First,

I€[dy]: |I|>2 {I J}
where >"; 7y refers to the sum over all unordered pairs {I, J} with I and J being distinct subsets

of [dy] of size at least 2.
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We can apply (44) to estimate the absolute value of the difference.
|3 2(Bufur fus)@)|
7}

(46) <> 2exp
{17}

(- ﬂszJ‘(h(u) — o5 = 1)/ (Buf2 (@) - /(B f2 ) (@),

where the constant Cg 5 is the constant Cg 5 introduced in Proposition 6.5. By 2|ab| < a® + b® for
a,beR,

2/ (Buf2 )(@) -\ (Buf? ) (@) < (Buf2)(@) + (Buf25)(3).

Hence,
(46) < )@ Y ew (- 2w - s - 1)),
IC|du] : |1]>2 JCldu]: £
With [{J C [d,] : [TAJ] = i}l = (%) < di,
an Y e (- 2w -0 1) < Zd’exp( () - Cas — 1)) < 1/4,
JC[du]: £

provided that h(u) — Cg5 — bg(%“) —h* > 18
Now, we impose the first assumption on Cy that

log(d) 1 16

Co > Ce5 + +-+—,
e €
then
log(dy, 16 .
h(u) > h* + Co(log(R) + 1) > Cs.5 + ogi) t—+ h*.
Hence,
1
(48) ESD@ - Y EBfiD@|<; Y Eufi)@)
I€ld): |[1|>2 Ie[d): |11>2
and the proof follows. O

Proof of Proposition 6.1. Let Cy = Co(M,d, c*) denote the constant introduced in the statement
of the Proposition. Its precise value will be determined along the proof. From Remark 6.3, it is
sufficient to consider the case when |d,| > 2. Further, it suffices to prove in the case when

(49) h(u) > h* + Cy(log(R) + 1),
since otherwise the statements follow from either Cauchy-Schwarz or Jenson’s inequality.

Part I: Derivation of (33) and (34).
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First, by (43),

60 ESSO) = Y Eufur)®)

ICdu]: 1122
2
(X (- Dlow- 1) E2)0)
Iz
<( Y ep(—elllbw-Cos-1)) (X ®f2)0),
ISl IClI2

where we applied Cauchy-Schwarz inequality in the last inequality; the constant Cg 5 is the constant
C introduced in Proposition 6.5.
With the coarse estimate

weiadsm=nl- (%) <d < may

we have
>.  exp(—elll(hu) - Cos —17)))
IC[du]: 1122
> oo [ — et (hfu) —  log(R) +log(d) . .
(51) < exp (—et(bw) - Cus y b))

The geometric series above is finite if h(u) is large enough, and this can be achieved by imposing
assumption of Cy and relying on (49). Now, let us impose the first assumption on Cy:

(52) Co > Cs.5 + (2 + 2log(d) + 100) /e.
Then, by (49) we have

log(R) + log(d) 100
h(w) > b* + Co(log(R) + 1) > h* + g5 + 2-28¢ );L og( )+€’

which in term implies the R.H.S. of (51) is
exp ( = 2¢(h(w) — Gy — PEDHAD ) )
1 —exp ( - €(h(u) — Ce5 — 7log(R):log(d) - h*))

exp ( - 25<h(u) — Cg5 — sB)tlog(d) _ h*))

£

= 1 _ 100

<2exp ( — 2e(h(u) — Cys — log(R) ;i—log(d) B h*))

:% €xp ( — 2 (h(u) —Ce5 — log(R) :—log(d) —h* - 10328))>
1

< exp ( — 2¢(h(u) — Co(log(R) + 1) — h*))
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Substituting the above estimate into (50), together with (45) we have

(E.fu)*(6) Siexp(—%(h(u)—Co(log(R)+1)—h*))'( S (ES2D0)

IC[du]:|1]>2
(53) < exp (= 22(h(u) ~ Collog(R) +1) — 1°) ) (B f2)(6).

Therefore, we have derived an inequality which is slightly stronger than (33).
To derive (34), let us first show Ef,,(X) is relatively small using (53) and Jesnon’s inequality:

(B (X)))? < B[(Bufu)(X)] < 3 exp (— 22(h(u) — Collog(R) + 1) — b*) JE[£2(X)]

<IE[2(X)].
Thus, the variance and the second moment of f,(X) are the same up to a factor of 2:
N 1
(54) E[f2(X)] = E[f2(X)] — (E[fu(X))* = > SE[fa(X)].

We conclude that
E[(Eufu)*(X)] <E[(Eufu)*(X)]
g% exp - 2¢(h(u) — Co(log(R) + 1) — h*) )E[f2(X)]
< exp(—2¢(h(u) — Co(1 + log(R)) — W) E[F2(X)].
Therefore, we complete the proof of (34).

Part II: Derivation of (35).
It remains to show (35) and the proof is similar. Fix I C [d,] with |[I| > 2, let I’ = I\{i} and
we represent = € [q]T as (zo, 1), where

zo :=(zy : v ¢ | J Ty)) and zy=(zy 1 vE (JTy).
jer Jer

With this notation, we have a(x) = a(xg). Thus,
E[| fu1 (X)a(X)]] =E|[[E[f.1(X)| Xo] - a(Xo)]]

< E[EL () %)) - EL2(Xo)]
\/{( [fu,1(X) | Xo]) } v E[a?(Xo)]

<exp (= SIT\ (i} (h(w) — Cos — 1)) B[12,(0)] - /E[a2(X)],
where the last inequality follows from Proposition 6.5. Hence,
E[| fu(X)a(X)]]
< Y e (= S\ {0 — Cos — 1) E[f2,(X)] - \[Ela2(xX)

IC[du]: 122
(55)

1/2
(X (- (b - Cus - 1)) V > E[f2(0]E(X)

IC[du]: |12 IC[du]: 122
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Next, we impose the second assumption on Cj that
Co = Cé.7,

where Cg.7 is the constant introduced in Corollary 6.7. Together our assumption h(u) > h* +
Co(log(R) 4+ 1) at the beginning of the proof, we can apply the Corollary and (54) to get

(56) > B2 (X) <2E(fu(X))? < 4E(fu(X)).
IC[dy) | 1]1>2

Repeating the same argument as in the proof of (34) and relying on the assumption (52) of Cy,

S exp(—elT\{i}|((u) — Cos — 1) <3 exp (t(nw) - Cos — 1 - zl‘)g(Rd)))
t=1

IC[du]: |1]>2 ¢
(57) §% exp < — a(h(u) — Co(log(R) +1) — h*))
Therefore, combining (56), (57), and (55) we get

~ e =
E[|£,(X)a(X)[] < exp ( — 5 (b(u) ~ Colog(R) +1) %)) - /B[] - E[2(X].

7. INDUCTION STEP 2: DECAY OF f; AND THE PROOF OF THEOREM 3.6

As a continuation of the inductive step, we adapt the notation introduced in the previous section.
Building on the properties of an single component f,, from Proposition 6.1, our objective is to deduce
variance and covariance decay of fi, which is stated in Proposition 7.1 below. Once it is established,
we will be ready to prove Theorem 3.6.

7.1. Properties of fi. The main goal of this subsection is to derive the following Proposition.

Proposition 7.1. There exists C = C(M,d,c*) > 1 so that the following holds. For any p' € T
satisfying
h(p’) > h* + C(1 + log(R)).
Fiz a positive integer ki such that
h(p") > k1 > h* + C(1 +log(R)).

Consider a function

with Ef(X) = 0. We decompose f according to Lemma 5.1 with the given ki. Then, the following
holds:

o fork € [ki+ 1,h(p)],

(58) E[(E, f0)?(X,)] < exp ( — £(h(p)) + k — Cllog(R) + 1) — 20%) )EFA(X),
o fork =k,
(59 E[E,fu)*(X,)] < exp (= (b(o) — k — Cllog(R) + 1)) )EfZ (X), and
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o for k1 <m <k <h(p),
(60)  [BLAC) fn(X)]| <exp (5 (k - Cloa(R) + 1) ~ 1)) E[ZXOJE[A (],

Before we prove the Proposition, let us prove the following second moment bounds for the partial
sums of f,.

Lemma 7.2. There exists a constant C = C(M,d,c*) > 1 so that the following holds. Consider
the same description as stated in Proposition 7.1 and ki > h* 4+ C(log(R) +1). Let (h,k) be a pair
of integers satisfying k1 < h <k <1'. For u € Di(p'), let

fhu Z fv
v€D (u)

In other words,

fh(‘r): Z fhu

uGDk )
The following holds: First, for u € Di(p'),

S Y ERMN<ER(N)<2 Y ERX

vEDh(u) vEDp (u)
Second,

Z thu <th <4 Z thu )
UGLk( ) u€Lg(p")

Proof. Let Cy = Cy(M,d, ") denote the constant introduced in the statement of the Lemma. Its
precise value will be determined along the proof.

Let us fix u € Dy(p’). Consider the following conditional expectation of f, ().

(Ehfh,u)(x) = E[fh,u(X) | Xy =ay : h(?./) > h] = Z (Eva)($v)'

vED(p')

Comparing the second moments of fj, (%) = Y vep, (u) fu(z) and > veDn(w) (B fo) () we get

(X A0)]= X BRMI+ Y B

vEDy, (u) vEDy, (u) v,v'€Dp (u) : vF£V!
- ¥ BRI+ ¥ E{E[(EJJ(X)(EUJU’)(X)]X,,@,v/)]]
veDy () (v0") €D ()2 070!
£ ¥ @)+ Y (BIEX)] - EEL? X))
vEDp (u) vEDp (u)
(61) > 3 (1-exp(—e(h— Cor(1+log(R) - b)) JE[f2(X)],
vED (u)

where the last inequality follow from Proposition 6.1 and Cg1 is the constant C introduced in
Proposition 6.1.

Here we impose the first assumption on Cy:
Co > 10max{e™ !, Cs1}.
Then, due to k; > h* + Cp(log(R) + 1), we have

exp(—e(h—Cs1(1+1og(R)) —h"))) < exp(—e(k1 —Cs.1(1+1og(R))—h*))) < exp(—e-0.9C)) < 1/2,
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and thus (61) can be simplified to

(62) E[f (X Z E[f5(X

’UGDh( )

With the lower bound been established, the upper bound can also be derived in the same fashion.
Let us first recycle the first three lines of (61):

[ 3 )] =E( Y @A)+ Y E(GX)? - EELAX)

vEDR (u vEDp, (u) vED (u)
<E( Y (Ef)(X )+ S E(fu(X
vED}, () v€Dp (u)

Notice that we can apply Lemma 4.2 for the first summand in the above expression.
~ 2 -
B Y @) =E( Y EL)X) <CaR Y (EL)AX)
vEDh(u) vEDh(u) ’UGDh( )

where Cy o is the constant introduced in Lemma 4.2. Again, applying the estimate from Proposition
6.1 we have

CyoR Z E fv <C42R€Xp(—2€(h 061(1+10g ) Z Ef2
vEDy (u) vED (u)

Here we impose the second assumption on Cj that

1+ log(C4_2)

>
(63) Co > Cs1 + 5

Then, relying on h > k; > h* + Cy(log(R) + 1),

CioRexp ( —2e(h — Cs1(1+log(R)) — h*))

log(Cy. log(R
g( 42)2; g( )))

< exp ( - 25(h — Cs.1(1+1og(R)) —h* —
<1,

which in turn implies

E(fh,u(X))2§2 Z E(fv(X))2

UGDh(U)
Now it remains to show the second statement. Notice that f;, = f3, , we immediately have
1 .
5 > ERX)<Efi(X)<2 > EfKX
vED () vED(p')
Together with
uGDk( ") vED(p') u€Dg(p')

the second statement of the lemma follows.
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Proof of Proposition 7.1. Let Cy = Cy(M, d, c*) denote the constant introduced in the statement of
the Lemma. Its precise value will be determined along the proof. Let us make the first assumption
on Cp that

Co > Cra,

where C75 is the constant introduced in Lemma 7.2. Now, we could apply the statements of the
Lemma.

Part 1: Derivation of (58).
Fix k € [k1 + 1,I']. Applying Lemma 7.2 with the parameters h and k in the Lemma setting to
be k,

(64 EG(X) 25 Y B(ulX)?

u€Dg(p')

The next step is to compare the sum of Ef2(X) with E[(E, fx)?(X,/)]. By Jenson’s inequality,

B[(Ey fu)*(X)] =E[( 3 (Epffu)(pr))Q}

u€Dy(p')

SE[|DI<:(P/)| > (Ep’fuy(Xp’)}

u€Dy(p)
=[Di(p) D E[Eyfu)*(Xp)]-
u€D(p)

For each summand, we can apply (3) from Lemma 2.2 to get the following estimate.
E[(E, f.)2(X,)] <Caall' — kN PE[(E, f,)(X.)]

where Cy is the constant introduced in the Lemma. Together with |Dy(p')| < Rd"~* from the
assumption on T' and d\? < exp(—1.1¢) from the definiton of ¢,

E[(Ey fo)?(Xy)] <Cos(l' — k)*"Rexp(—1.1e(l' = k)) > E[(Eufu)*(Xu)]
u€Dy(p)

(65) g% exp (= (= C'(1L+1log(R) — k) Y. E[(Bufu)*(X.)]
u€Dy(p')
where we set
C'=1+1log(142C5 max n%4 exp(—0.1en)) < +o0.
By Proposition 6.1 we have
(66) E[(Eufu)*(X)] < exp(=2¢(k — Co1(1 +log(R)) — h*))E(fu(X))?,

where Cp 1 is the constant C' introduced in the Proposition. Substituting this inequality into (65),
together with (64) from first step,

E[(Ey fi)*(X,)] g% exp (= (I +k = (C"+ Coa)(log(R) +1) = 20*)) 3" E(fu(X))?
u€Dy(p)

<exp(—e(l' + k — (C"+ Co.) (log(R) + 1) — 20*))E(fi(X))2.
Now, we impose the second assumption on Cj that
Co > (C' + Ce.1),

we finished the proof of (58).
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Part 2: Derivation of (59).
Let us consider

hk1($) = (]Ek'lfkl)(m) = E[fkl(X) | Xu=1oy 1 u€ Dkl(pl)]

In other words, we may view hg, (z) as a linear function with variables z, for u € Dy, (p’) with
Ehg, (X) = Efi, (X) = 0. Then,

E[(By fi)*(Xp)] = E[(Bphi,)* (X)) < exp( = e(h(p) — k1 — Cs.5))ERZ, (X)
<exp (—e(h(p)) — k1 — C35)Ef7 (X)

The first inequality follows from Proposition 3.5. The second inequality follows from Jensen’s
inequality. Here we impose the third assumption on Cj that

Co > Cs5,
the derivation of (59) follows.
Part 3: Derivation of (60)
For w < p’ with m < h(w) <k, let
fmw(T) = Z fv(x)
vEDg (w)

Let us make a remark that either by second property of f from Lemma 5.1 when m = k; or by
Lemma 7.2 in the case when m > ki, we have the following: For w < p/ and m < k¥’ < h(w),

(67 (T E2,m)" <onrEn,x)"
u€D,s (w)

With this notation,

u€Dy(p) u,w €Dy (p') 1 utu
u€Dy(p) u,w €Dy (p') r utu
68) =E[( X (EJ@(X))( > Eufu) X))+ Y EFu(X) fru(X)
u€Dg(p') u€Dg(p") u€Dy(p')
= > B[Euf)(X) Eufmu)(X)].
u€D(p’)

We will estimate the three summands individually.

Part 3.1: Estimating first summand of (68) First, we apply Cauchy-Schwarz inequality,

E( Y EAO( Y ) =]E[<Ekfk><x><Ekfm><X>H

u€Dy(p) u€Dy(p)
(69) <\/E [(E fr)? \/IE (B frm)2(X)].
Now, combining (66) and (64), we have
(70) E[(B f3)2(X)] < v2exp (—e(k — Co1(1+log(R)) — h*)) (EfR(X))"/2.
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By setting
1/1
Cr = Cou + (5 los(2) +log(2Cs.1) +2)),

we can conclude that

u€Dy(p') u€Dy(p')

(71) < exp(—e(k — Ci(log(R) + 1) — b*)\[Ef2(X)Ef2 (X),

Part 3.2: Estimating second summand of (68) For the second summand of (68), we begin
with the estimate for each u € Dk( ’):

le[du]
Since for each i € [d,] we have fou,(2) = fimu (T<y,), we apply (35) from Proposition 6.1 to f,
and a(x) = fmu, () to get
€ . -
S EIlX) (X)€Y exp (= 5k~ O (log(B) + 1) — 1)) (BF2(X)) V(B2 (X))2
1€ [duy] i€[du]

where Cg 1 is the constant introduced in the Proposition. Applying Jensen’s inequality and (67)
with w =wv and ¥ =k — 1,

> (Ef2, (O <df? (Y Ef2L, (X))

i€[duy] i€[du]

1/2
/ < (Rd)1/205.132(Efi,u(X))lm'

Hence,

E|ful(X) fmaa(X)| <(Rd)/2C51R% exp = 5 (k = Coa(log(R) +1) — h*) ) (BF2(X)) 2 (Ef2, (X)) "/?

€ . -
(72) <exp (= 5 (k = Colog(R) + 1) = b*) ) (B2 (X)) (B, (X)) /2,
where 5.3 1
Cy = g(§ +t3 log(d) + 10g(05,1)) + Ce.1.
Now, returning to the summation, we apply (72) and Cauchy-Schwarz inequality to get
> EA(X) fn(X)
u€Dg(p’)
€ . .
< Y o (- k= Callog(R) +1) = b)) (BFIXO)) A (ES, (X))
u€Dg(p')
€ 2(x 9 1/2
Sexp(—§(k—02(log(R) ) (Y EFAX ) ( > EfL(X))

’LLGDk ) UGDk(p

<2051 B exp (= 5 (k — Ca(log(R) + 1) — ") ) B (X)) (B, (X))

(73)  <exp (= 5k — Cyllog(R) +1) — ")) EFE(OES (X).

. 1/2
In the derivation above, we applied Lemma 7.2 for the term (ZuEDk(p’) Efg(X)) and (67) for

1/2
the term (Zue Do) B S (X )) in the secont to last inequality. The constant C in the last
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inequality is defined as
2
Cg = g(log(2C’5_1) + 2) + Cs.
Part 3.3: Estimating third summand of (68) It remains to bound the third summand, it

can be reduced to the upper bound for first summand. Applying the Cauchy-Schwarz inequality
and Holder’s inequality we have

‘ 3 E[(Eufu)(X)(Eufm,u)(X)H

u€Dy(p')
<E[| Y @) Eufa) (X)]]
u€Dy(p')
<E[( Y @EIE)( T Eufun0)”]
u€Dy(p) u€Dy(p)
B Y EX)E Y Ebntx)”
u€Dy(p) u€Dy(p")

<VZexp (- e(k — Coi(1+log(R)) — 1)) - G54 B2\ JEFE(X)E2 (X).
where in the last inequality we applied (70) and (67).
By setting

1/1
C4 = g (5 10g(2> + IOg(Cal) + 2),

we conclude that
(74)

| Y E[Ef)(X) Eufma)(X)]| Sexp (= 2(k = Ca(1 +log(R)) — b)) | EF(X)ES3(X).

u€Dy(p')

Now, combining the three estimates of the summands (71), (73), and (74) for (68) we conclude
that

[E£i(X) fm(X)] exp (= = (k — Cs(log(R) + 1) = 1*) )/ EfZ (X)EfZ(X),

_£
2
where 9
Cs:=— log(?)) + max{Cl, Cs, 04}
€
Now we impose the forth assumption on Cj that
Co > Cs,

and (60) follows.
(|

7.2. Proof of Theorem 3.6. Let Cy = Cy(M, d, c*) denote the constant introduced in the state-
ment of the Lemma. Its precise value will be determined along the proof.
Let k1 be a positive integer with the precise value to be determined later. Here we impose our
first assumption on k; that
k1 > Cra(log(R) +1) +h”

where C71 is a constant that appears in Proposition 7.1.
Now, let us consider a function f described in the Theorem. Without lose of generality, we may
assume Ef(X) = 0. Then, it is equivalent to estimate the second moments.
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Further, let us assume h(p’) > k1 and the decomposition of f according to Lemma 5.1:
(75) fl@y="3%  fulX).
k€lk1,h(p’)]

Our first goal is to show

Ef(X)*~ > fi(X),

kelki,h(p")]

by showing E fi(X) fin(X) is insignificant whenever k # m.
For k1 < m < k, by Propostion 7.1,

20 (X) fn ()] <2exp (= = (k = Cra(log(R) + 1) — b*) ) EF(X0) 2B, (X))'/?
<exp (= 5 (k= Crallog(R) +1) — 1) JEfF(X)
+exp (- %(k — Cra(log(R) +1) — 1*) )Ef2(X).
Applying the above inequality to bound the second moment of f(X) we get
Eff(X)=E >  Efi(X)fm(X)

kvme[klvh(p’)]
9 *
> > Ef,?(X)-(l— > exp(—5(3—07,1(10g(R)+1)—h )))
kelki,h(p)] s€[k1,h(p")]

Notice that there exists g which depends on € so that

o
Zexp(—%t)ﬁ%.

t=to
By setting
k1= fh* + C7,1(10g(R) + 1) + t0~|,
we get
1
(76) EP(X)>5 Y ER(X).

kelki,h(p)]

Our second goal is comparing E[(E, fi)*(X,/)] and D kelkr,00] Ef?(X). Starting with the variance
and {o, norm comparison from Lemma 2.2,

E[E, X)) <E[( Y max By 5)00)]) ]

kelky ()] %€l

:( > max |(Ep’fk)(6k)|)2

kelknh(p) €l

2

<Coo( Y VEES X))
kelkoh(o)

where C5 5 is the constant introduced in the Lemma.
By (58), from Proposition 7.1, for k € [k1 + 1,h(p’)],

E[(Ey fi)2(X,)] < exp (= (k= 1)) -exp (= e(h(p) = Cra(log(R) +1) —h*) JEFA(X)
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And for k = k; = [h* + C7.1(log(R) 4+ 1) + to|, we apply (59) to get
E[(Ey fr)*(Xp)] <exp (= e(h(p)) — k1 — Cra(log(R) + 1)))EfE, (X)
<exp(—e(=to—1))
cexp (= e(h(p) — 2071 (log(R) + 1) — b*) )EfZ (X).
Substituting these estimate and by Cauchy-Schwarz inequality we have

E[(Ey /)*(X,)] <Coexp (— e(h(p) — 2051 (log(R) + 1) — b"))

(elelto+ 1)+ Y ep(—et) - X ERX)

=0 kelkon(o)
=C

<CyCi2exp (= e(h(p) = 2C7.1(log(R) + 1) — h*) ) EF*(X).

Now, by taking
Cp > max {207.1 + élog(Cz‘zCﬂ) , Cr1+1to+ 1},
we conclude that
E[(E, )*(X,)] < exp (= e(h(e) = Collog(R) + 1) — b)) EFX(X).

It remains to show the case when h(p’) < k;. From the assumption that Cyp > C71 +tg+ 1 and
k1 <h*+4 C7i(log(R) + 1) 4+ tg + 1, we have

exp (— e(h(p) = Co(log(R) + 1) —h*) > 1.

Hence, the statement follows directly from Jensen’s inequality.

8. GENERAL CASE: BASE CASE

Now, we want to establish Theorem 1.6, which does not rely on the assumption c;; > 0. Let us
first establish analogues of Assumption 3.3 (the inductive assumption), Proposition 3.5 (the base
case), and Theorem 3.1 (the inductive step) in the general case.

Assumption 8.1. By stating that A satisfies this assumption with given parameter h®, we mean
Ay € A C 25\ is closed under decomposition, and the following holds:
For every v € T and any A<,-polynomials functions f and g, we have

(77) Var [(Eyf)(X)] < exp(—e(h(u) —h®))Var[f(X)].
Further, suppose Ef = Eg = 0 and h(u) > h°. Notice that by the Markov Property, (E,fg)(x),
(Euf?)(x), and (E,g?)(x) are functions of x,. Then,

(19 max|(Bafo)) ~ Bfgl < e (= S(h(w) 1)), min(E. 2)(6) min(Eug?) 6).

The main difference of this assumption and Assumption 3.3 is the difference of (78) and (12).

Proposition 8.2. Consider the rooted tree T and transition matriz M described in Theorem 1.6.
There exists C = C(M,d) > 1 such that Ay satisfies Assumption 8.1 with some parameter h®
satisfying
(79) h® < C(log(R) +1).
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Theorem 8.3. Consider the rooted tree T and transition matriz M described in Theorem 1.6.
There exists C = C(M,d) > 1 so that the following holds. Suppose A satisfies Assumption 8.1 with
some parameter h°. Let B = B(A) (see Definition 1.10). Then, B satisfies Assumption 8.1 with
parameter

h® 4+ C(log(R) + 1).

Proof of Theorem 1.6. The proof of Theorem 1.6 is analogous to that of Theorem 3.1, employing a
similar strategy by leveraging Proposition 8.2 and Theorem 8.3 in the former, and Proposition 3.5
and Theorem 3.6 in the latter.

O

In this section we will prove the Base Case Proposition 8.2.

Lemma 8.4. There exists a constant C = C(M,e) > 1 so such that for any p' € T and 0 < m <

h(p'):
Consider two degree 1 polynomials [ and g with variables (x, : w € Dy, (p')). Suppose

f(X)= > fu(X) almost surely,

u€Dy, (p’)

where fy(z) = fu(xy) and E[fu,(X)] =0, and we assume the same conditions for the polynomial g
and gy. Then,

reré?;!(Epffg)(H)—Efg\SCRexp(—e(h(p’)—m))\/ > Efi(X)\/ > Eg(X).

€Dm(p") €Dm(p’)

Proof. Let Cy = Cy(M, d) denote the constant introduced in the statement of the Lemma. Its value
will be determined along the proof.
First of all,

max (B, f9)(0) —Efg| =max| > ((Byfug.)(6) —Efug.

)

0€(q] 0€(q] w0E D ()
< Z maX| E fugv)( ) Efugv|-
0€(q]
w,v€EDpm (p')

Our proof will be carried out by estimating each summand. Fix any pair u,v € D,,(p") and consider
H(Ep’fugv) - EfugvHoo = méiX |Ep’ [fu(X)gv(X) —Efugv ‘ Xp’ = 0] |

Let w = p(u,v). Since f,, and g, are functions of z<,,, relying on the Markov Property we know
the function (E, fy - go)(2) is a function of x,, with expected value Ef,(X)g,(X). With

(Ep’fugv>(xp’) = E[(waugv)(Xw> ‘ Xy = xp’]7
applying (5) from Lemma 2.2,

”(Ep’fugv) - EfugUHoo §022(h(,0/) - h( )\h(p H wfugv Efugv||007

where Cs o is the M-dependent constant introduced in the Lemma.

Next, we will estimate ||(Ey fugy)(0) — Efugy| - In the case u # v, there exists i # j such that
u < w; and v < wj, which in turn implies that (X<, | Xw = #y) and (X<, | Xy = @) are jointly
independent by the Markov Property. Thus,

(waugv) (0) = (wau) (0) (Ewgv) (9)7
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which implies

(B, £00) (0)| < i (B fu) 6)] - x| (E10) (6)

<C3,(h(w) — m)2N2 @)=, B f2(X)Eg2(X),

where we applied (5) and (4) from Lemma 2.2 in the last inequality. If u = v, then the same
estimate follows immediately without relying on (5).

Now, we convert the above estimate to that of ||(Ey fugy)(0) — Efugs||co, which relies on the
simple bound that [Ef,(X)g,(X)| < maxgerg) [(Ew fugn)(0)]. Thus,

H(waugv)(e) - EfugvHoo SanaX |(Ew fugv)(0)]
€lq]

<203, (h(w) — m) 220 =m) | [ £2(X)Eg?(X).
Together we conclude that for a pair u,v € Dy, (p") with w = p(u,v),

By fugo) = Efugollos <203 5(h(w) — m)*!(h(p') — h(w)) TN TREI=2m [B£2(X)g2(X)

<203 5 (h(p) — m)3aNRE)Fh()=2m, JE £2(X) g2( X))

Relying on this estimate, we are ready to bound the /,-norm of (E, fg)(z,) — Efg.
max |(Ep’fg)(9) - Efg‘ < Z max |(Ep’fugv)(9) - Efugv|

06[11] u,veDm(Pl) 96[(1]

= Z Z Z ggﬁ{ ’ pfugv)(e) - Efugv|

ke[m,h(p)] weDk(p’) u,v: p(u,v)=w

(80) < Y > o 208, (h(p)) — m)PIARITREm R £2(X) g2(X).
ke[m,h(p)] weDk(p') u,v: p(u,v)=w

Next, relaxing the condition p(u,v) = w in the summation,

o)< ST Y ST 203,(h(p) — m)PAr)E=2m, [ 20X ) g2(X)

ke[m,h(p’)] wEDy (p') u,wE Dy (w)

(8) = > > 2035(h(p) —m)PareDTRRm( Z Ef3(X))( Z Eg(X)).

ke[m;h(p")] we Dy (p) u€EDm (w UEDm (w

Notice the inequality Zie[n} |tn—l‘ < Zze[ L follows from Jenson’s inequality applying to the

< n
function ¢ + 2 and the uniform measure on [n]. Now apply this inequality to the collection
{VEf2(X)} and {/Eg2(X)} respectively, together with |D,,(w)| < Rd™®)=™ from our tree ass-

cumption, we have

B< > 203.2<h<p’>—m>3qxh<p’>+’f-2de’“-m¢ > Ef&(X)\/ S Eg2(X)

ke[m,h(p")] w<p' :w€Dy(p) u€Dm (w) u€ D (w)

< Y 203, (h(p) — m)BA Rz gk
ke[m,h(p")]

> > EfAX)- > > Eg(X

w<p' :h(w)=k u€ Dy, (w) w<p' : h(w)=k u€ Dy, (w)
(82)
= > 20h,m(p) -mMNITER R [ R Ef3<X> > Egi(X),

ke[m,h(p’)] u€Dm (p UEDm (p')
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where the last inequality follows from Cauchy-Schwarz inequality. Finally,

>0 208,(h(p) —m)P NI Rk
ke[m,h(p")]

<2085 R(0(p) =) (h(pl) = )N e AR

—2C3,R(h(p') — m)* - (h(p) — m)(max{d?, A})"")~
) — m)3H exp(—1.1¢(h(p) — m))

where
Co =203, max n3 exp(—0.1en) < +oo
ne

is a constant depending on M and . Combining the above estimate with (82) we conclude that

max [(Eyf9)(0) —Efg| < CoRexp (—e(h(p) > EfA(X) [ > EgiX),
€lq] u€Dm (p') u€Dm (p')
and the lemma follows. OJ

The statement of Lemma 8.4 together with Proposition 4.3 implies the following:

Corollary 8.5. There exists a constant C' = C(M,e) > 1 so that the following holds. For p' € T
and 0 < m < h(p'), consider two degree 1 polynomials f and g with variables (x, : u € Dp(p))
with Ef(X) = Eg(X) = 0. Notice that by the Markov Property, (Ey fg)(x) is a function of x,.
Then,

mas |(Ey £9)(6) ~ Efg| < O exp(—e(h(pf) — m))\/Ef2(X)/Eg?(X

Remark 8.6. By taking the degree 1 polynomial f = g with the assumption that Ef(X) = 0, we
get

(83) E[(E,f2)(X) —EfA(X))* < (max (B, £9)(6) — Efgl) < C?RC exp(—2¢h()) (Ef2(X))2.

o€lq]

In other words, if h(p') is sufficiently large, (E, f?)(X,) is almost the same as Ef?(X) with a
small fluctuation. Let us state this as a seperate lemma.
Lemma 8.7. There exists C = C(M,d) so that the following holds. For p' € T with
) o Cloa(R) +1)
any degree 1 polynomial f of variables (x, : u € L j with Ef(X) = 0 satisfies

max(E, f?)(0 ) < 2min(E o £2)(0).

0€(q]
Proof. By Corollary 8.5, for every 6 € [q],
(B f2)(0) — Ef*(X)] < Cs 5 R exp(—eh(p)) Ef*(X).

where Cy 5 is the constant introduced in Lemma 8.5. Now, we set the constant described in the
lemma as

1
C =~ (log(4Cs5) + 4),
which implies

CsaRexp(—eh(p))) <  exp ( — =(h(sf) —~ Clog(R) +1))).
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Then, with h(p’) > C(log(R) 4+ 1)

1
By £2)(6) - Ef*(X)| < JEf*(X),
which in term implies

< 2.

maxge(q (Ey ) (6) - SEf(X)
minge (g (Ey f2)(0) ~ 3Ef2(X)
O

Proof of Proposition 8.2. Let Cj denote the constant introduced in the statement of the Proposi-
tion. Its precise value will be determined along the proof.

Let p/ € T with b/ := h(p’). By Lemma 4.9, any degree-1 polynomial f(z) with variables
(4 :u € L,y) satisfies

Var[(E, f)(X)] < CooR*(W)*(dX*)" Var[f(X)],

where Cj 9 denotes the M-dependent constant introduced in the Lemma. For the term in front of

Var[f(X)],
CuoRY ()2 (AN < CyoR (W) exp(—1.1eh’) < exp ( —e(b’ — Cy(log(R) + 1))),
where )
C = g(log(C'4.9) +4+ max n2 exp(—O.lsq)).
Thus, if we impose the first assumption on Cj that
Co > Ch,
then the first condition (77) in Assumption 8.1 holds for A; if we take h® > Cy(1 + log(R)).

It remains to establish (78). Let f, g be two degree-1 polynomials in the variables (x, :u € Ly)
satisfying Ef(X) = Eg(X) = 0. First, by Corollary 8.5,

ma |(E, f9)(6) ~ Efg] < Css 7' expl(~ PVESHX)\Eg?(X

where Cy 5 is the constant introduced in Corollary 8.5. Next, we would like to apply Lemma 8.7.
Assuming
1 1
h(u) > Ce.7(log(R) +1)
€
where Cg 7 is the constant introduced in the Lemma, we can apply the lemma to get

Ef*(X ) < 2min(E o f)(0)

and the same holds for g. Together we may conclude that

s (£, £9)(0) — Efg| <2055t exp(—<b(s), fmin(Ey 12)(6) min (B, ¢2) 0

Now, we impose the second assumption on Cj that

Co > max {2 (log(2Cxs) + 4). 7).

Then, we conclude that

| (£.6)(0) ~ Efgl <exp (—<(h(p") = Collos(R) +1)) ). fmin(12)(0) i () 0)
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provided that
h(p') > Co(log(R) +1).
Therefore, we can conclude that A; satisfies Assumption 8.1 with

h® = Cy(log(R) + 1).

9. INDUCTIVE STEP IN GENERAL CASE
The goal in this section is to prove Theorem 8.3. Let us restate the theorem here:

Theorem. Consider the rooted tree T and transition matrix M described in Theorem 1.6. There
exists C = C(M,d) > 1 so that the following holds. Suppose A satisfies Assumption 8.1 with
some parameter h®. Let B = B(A) (see Definition 1.10). Then, B satisfies Assumption 8.1 with
parameter

h® 4+ C(log(R) + 1).

In this section, we fix a subcollection A satisfying Assumption 8.1 with a given
parameter h° and let B = B(A).

We begin with the following lemma, which allows us to recycle some of the results from the case
cy > 0.

Lemma 9.1. Suppose A satisfies Assumption 8.1 with parameter h®. Then, then A satisfies As-
sumption 3.5 with h* = h° 4+ 2log(2) and c* = 3.

Proof. Let f be a A<,-polynomial. If we set h* > h°, then (11) follows immediately from (77).
Now, we assume that Ef(X) = 0 and h(v) > h°. We could apply (78) with g = f to get

max | (E./)(0) — Ef*(X)] < exp (= 5(h(v) ~ b)) ES(X).

If exp ( — 5(h(v) - ho)) < 3, or equivalently,

2
h(v) > h° + z log(2),
then, for every 6 € [q],

< ZER%(X).

SER(X) < (E%)(6) < 5

Therefore, if we set h* > h® + 2log(2) and ¢* = 1, both (11) and (12) hold. O

In the remainning of this section, we set

1
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and we will rely on the fact that A satisfies Assumption 3.3 with these two parameters. In particular,
we could apply Theorem 3.6 to show the existence of C34 = C(M,¢e,1/2) such that for any B<,-
polynomial f,

Var[(Eo f)(X)] < exp ( — (h(v) — 1° + Ch(log(R) + 1)) Var[f(X)].

Therefore, to establish Theorem 8.3, it remains to show the existence of C' = C'(M,d) so that
any B<,-polynomials f and g with h(v) > h° 4+ C(log(R) 4+ 1) and Ef(X) = Eg(X) = 0 satisfy

s |(£,£9)(0) ~ Efg| < exp (— 5(0(v) ~ 1° — Cllog(R) +1))), fiin(Ew ) ¢) min(Eug?) 6).

2
(84) h* =h° + —log(2) and ¢* =
€
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To establish the above inequality, the higher level structure is essentially the same as that for
deriving Theorem 3.6. We again decompose f and g according to Lemma 5.1. To the proof of the
theorem, similarly it contains three steps:

(1) Establish properties of f, and gy, see Proposition 9.2.
(2) Estalbish properties of fi and g, see Proposition 9.6.
(3) Establish Theorem 8.3.

9.1. Properties of f,. The main goal we want to prove in this subsection is the following Propo-
sition.
Proposition 9.2. There exsits C' = C(M,d) > 1 so that the following holds. For a given u € T\L
with

h(u) > h® + C(log(R) + 1),

suppose fy, and g, are two functions which are linear combination of V¥, (x) with o € F(B,). Then,
for any 6,9' € [q],

|(EuquU)(9) - (Eufugu)(el)’
<exp (= 5w — Clog(R) + 1) = %)), (B f2)(60) min(Eug) (0)

€
2
With a minor modification to our approach, we are able to obtain an analogous result wherein

fu and g, are substituted by f, and gy, respectively:

Corollary 9.3. There exsits C = C(M,d) > 1 so that the following holds. For a given u € T\L
with
h(u) > h° 4+ C(log(R) + 1),

suppose f,, and g, are two functions which are linear combination of ¥g(x) with S € F(By). Then,
for any 6,0 € [q],

(B0 o) (0) — (Eufoin) @)
<exp (= g (h(u) — Cllog(R) + 1) 1) ). fmin(.72)(6) min(E,2) (0).

Let us prove Corollary first.

Proof. Let Cy denote the constant introduced in the Corollary. Its value will be dervied during the
proof.
From the identity

fu(x)gU<x) = fu(®)gu(®) — fu(2)Egu(X) — Efu(X)gu(®) + Efu(X)Egu(X),
it follows that
§|(]Eufugu)( ) - ( ufugu )]+ 4H193}X B fu(0)| max [Eugu(8)].

First, we apply Propostion 6.1 with the fact that A satisfies Assumption 8.1 with parameter
h* =h° + 2log(2) and ¢* = 3

px
max(Ey fu)*(0) < exp(—2e(h(u) — Cs1(log(R) + 1) — h*)) max(E., f)(¢)

where Cg1 = C(M, d, 5) is the constant introduced in the Proposition.
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Second, applying Proposition 9.2 with f, = g, we have
| max(Ey ) (6) — min(Ey f1)(0")]

<exp (= 5 (h(u) = Coz(log(R) +1) = h°)) min(E, f2)(9)

where Cyg .o is the constant introduced in Proposition 9.2.
Let us impose the first assumption that Cy > C95. Then, with h(u) > h°® + Cy(log(R) + 1),
we can conclude that

max(E ufa)(8 ) < 2min(E uf)(0).

Clearly, the same derivation also holds for g,.
Therefore, we conclude that

S’(]Eufugu)(e) - (Eufugu)(e/ﬂ

+8exp(—2e(h(u)  Cu(log(R) + 1) = b*), i (B, S2)(0) min(E,92) 0

<exp (= (h(u) — Cya(log(R) +1) — b)) %mn E.f? ><>mgn<Eug5><e>

S
2

+ 8exp ( ( (u) — Cg.1(log(R) +1) — h* —*10g \/mln E, f2)(0) min(E.g3)(6)
3

<exp (= 5 (h(u) — Colog(R) +1) — b)) \/mln E.f2)(6) min(E.g2)(0),

where the last inequality follows by imposing the second assumption on Cy that
2 1
Co > z log(2) + max {Cg 2,C6.1 + — log( )+ % log(8)}.
This completes the proof of the Corollary. O

The main technical part for proving Proposition 9.2 is the following:

Lemma 9.4. For any u € T with exp ( — §(h(u) — h°)) < 5, the following holds: Let I C [d,,]
be a subset of size at least 2. For any a(x) and b(x) which are linear combinations of ¥y (x) with
o € B, satisfying I(c) = I, we have

o |(B4ab)(6) — (Eyab)(®')] <4dRexp (-5 ‘m \/mm (E,a2)(0) - min(E,b2)(0).
‘e

Remark 9.5. From the assumption that h(u) satisfies
2
4dRexp (- %(h(u) —h%)) <1 h(u) >h°+ = log(4dR).
By taking a(x) = b(x) we have
(85) mgx(IEan)(G) < ngn(Ean)(H).

Proof. Let u, a(z), and b(z) be the vertex and functions described in the Lemma. Let us introduce
some notations for the ease of expressing the calculation later. For brevity, let

5 =exp (- %(h(u) ~1%)).

For z € [q]T, let

Ty, 1 = (Tu,)icr-
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For any given function h(z) with variables in (z, : v € U;c; Tw,;), we define
(Byh)(@) = E[h(X) [0 ¢ [J{w < ui}, Xy = 2],
icl

Observe that
(Ey,ra)(z), (Ey 1b)(z), and (E, rab)(x)

are functions with input x, ;. This is due to the fact that a and b —and consequently ab— are
functions of variables (x, : z, € U;ecr Ly;) and Markov Property.

Claim: The function z,, ; — (E, rab)(z,,r) is Lipschitz continuous with respect to the Hamming
Distance with Lipschitz constant

(86) 20, /max(E, ra?)(xy 1), /max(E, 1b?)(xy1).
Loy, T Loy, T

We begin with the proof of the claim. Fix an index ig € I. Without lose of generality, we assume
I = [k] and i = 1. For z € [¢g]T, let

Ti = Ty,
for i < [d,], and set
xo = (x2,...,2k).
With this notation above, we can express
a(z) =a(zo, 1) and b(x) =b(zg, z1).

Fix any value of zg, the function
x1 — a(zg, 1)
is a linear combination of ¢, (1) with o1 € F(A<,). Notably, this implies that Ea(zo, X1) = 0.
The same properties hold for the function x; — b(zg, z1).
g

Now, given the assumption exp ( — §(h(u) — h°)) < 5 implies h(u) > h°, we can apply (78)
from Assumption 8.1 to get that

9%1'2}[2} ’E[a(:conl)b(xg,Xl) | Xy, = 01] — E[a(zo, X1)b(zo, X1) | Xu, = 92]’

<2 r@%?;}{ ’E[a(iﬂo,Xl)b(fL‘o,Xl) |Xu1 = 01] — Ea(fbo,Xl)b(l‘o,Xl)‘

§26\/meinE[a2(xo,X1) | Xy, = 0] mginE[bQ(xg,Xl) | X, = 0].

For any x € [q]7, let Zuy = (Tuys Tugs - - - > Tuy, )- By the Markov Property, for any 6 € [g],
(Xo | Xuy = @y, Xuy = 0) =(Xo | Xuy = Ty,) and
(Xl |XUO = Tugs Xuy = 0) :(Xm ‘Xm = 0)
are jointly independent. Hence,
E[a(XO, Xl)b(Xo, Xl) ’Xuo = xuonul = 0]
=E[a(Yy, X1)b(Yo, X1) | Xu, = 0]
46



where Y) is an independent copy of (X¢ | Xy, = @u,). We have
|E[a(X0,X1)b(X0,X1) |Xu0 == {L‘uO,Xul == 0] - E[G(Xo,Xl)b(Xo, Xl) | Xuo = Tug, Xu1 == 9/”
=[Evo [Bx, a(¥o, X0)b(Yo, X1) | Xy = 0] = B, (Yo, X1)b(Yo, X1) | Xu, = 0]

<By, [[Ex, a(Yo, X1)b(Yo, X1) | Xuy = 0] = Ex; [a(Yo, X1)b(Yo, X1) | Xuy = ]]]
<20By, [ (min Ex, [02(¥, X1) | Xo, = 0)/* - (minEx, [ (Y0, X1)| Xy = 0')"?]

1/2 1/2

S2(5(1[4:3/0 [mginEXl [a2(vaX1) |XU1 = 9]]) ) (EYO [r%i,nEXl [bz(Yb7X1) ’XUI - 9,]]) )

where the last inequality follows from Hélder’s inequality. Further,

Ey, [min Ex, [a* (Yo, X1) | Xu, = 0]] <minEy, [Ex, [a* (Yo, X1) | Xu, = 0]
= mainE[aQ(X) | Xup = Tugy Xy = 0]
< IE?;((E%IG%(%,I)'
Applying the same derivation to b we get
Ey, [meinIEX1 [0*(Yo, X1) | Xuy = 0]] < rgf;((Equ)(qu).
Therefore, our claim (86) follows: For any 6,6’ € [q],
[E[a(X)D(X) [ Xug = Tugs 2uy = 0] = E[a(X)0(X) | Xug = Tug, Zuy = ¢']]|
gzaﬁlg;caaa?)(xu,f) max(Eb?) (2, 1).

With the Lipschitz continuity been established, essentially the lemma follows when ¢ is sufficiently
small. Let us proceed with the remaining argument. Let

x;J :argmin%yl(Eu’[aQ)(:L‘uJ) and :L'ZJ :argmaxxuyl(Eu,1a2)(1‘u71).
Applying (86) with the assumption a(z) = b(z) and the fact |I| < d,,
(By,10%) (@ 1) = (By,10?) (2, 1) <2dy6(By,ra®)(ay p),
and hence

(87) maX(Eu,1a2)(qu) min(EuJaz)(:Uu,[)
Loy, I

1 . 9
S5 <
=1 = 2d,0 wur <1240 min(E,a”)(s),

provided that 2d,6 < 1.

Again, the same derivation also holds for b. Combining (86) and (87) we conclude that for any
6,6 € [q],

|(Euab)(0) — (Euab)(0)] <| max (Byab) (zu,r) - min(Eyab)(z), )|

xu,]
2d,,6
uw ; 2 ; 2\(pH!
ST min(Eya?)(6) min(E,5%)(0").
With our assumption on the tree T' that d, < Rd, our assumption
€ 1
= — —_ h° < —
5= exp (50w - 1)) <
implies that
2d,,6
1245 = 4Rdd
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We conclude that
(E,a0)(6) = (Buab)(6)] <4Rdexp (5 ((u) — 1)) fmin(E,02)(6) min(E,7) ().

Proof of Proposition 9.2. Let Cy = Cy(M,d) denote the constant introduced in the statement of
the Proposition. Recall the decomposition of f, into f, ; from Definition 6.4, consider the decom-
position

ful@)= Y fur(@)and gu(x) = Y gur(z).

IC[du]: |1]>2 IC[du] : |1]>2
The proof of the Proposition will proceed by bounding summands in the formula below:
(88) |(Eufugu)(‘9) - (Eufugu)(9,)| < Z |(]Eufu,lgu,J)(0) - (Eufu,lgu,J)(el)"
1,JCldu] : |1],] ][22

Estimate of summands in (88): For any I, J C [d,] with |I|,|J| > 2, we have two cases to con-
sider: First, we consider the case I # J. Notice that, by Lemma 9.1, A satisfies Assumption 3.3
with parameters (h° + 2log(2), 3). This allows us to invoke Corollary 6.6, yielding

| (Eufu,lgu,J) (9) - (]Eufu,lgu,J) (0,) |

<2max |(Ey fu,19u,7)(0)|
0€q]

(h(a) = Cis b = Z10g(2)) (max(E,£2.)(0) 2 - (max(Eusl )(0))'"

(_ e|lIAJ]

<2exp 5

where Cg6 = Cg.6(M, d, %) is the constant introduced in the Corollary.
Let us impose the first assumption on Cj that

2
Co > g(l + log(4d)),

which implies that h(u) > h® + Co(log(R) 4+ 1) > h° + 2 log(4dR). With this assumption, we could
apply the remark (85) of Lemma 9.4 to get

(lgg[tq)f(lﬁlufi,z)(@))

1/2 1/2

< 2(min(E,f2,)(0)
and the same holds for g, ;. Hence, for I # J we have
|(Eufu,lgu,J)(0) - (Eufu,fgu,JXe,)’

p (= T 0w - s — 1 + 2og(2)) (min(=,72.)0) - (.52 5)0)

Second, we consider the case I = J. Here we simply apply Lemma 9.4, yielding
|(Eufu7lgu,l)(0) - (Eufngu,I)(el)’

<ARdexp (= 5 ((w) ~ 1)) (min(B,f2)(0) 7 - (min(Ea2,)(0))

<4ex 1/2.

1/2

Let us unify the above two estimates by introducing

2 2 2
C1 = max {C@_G + Z log(2) + - log(8), g(l + log(24d))}.
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Then,

(89)
‘(Eufu,fgu,ng) - (Eufu,lgu,J)(el)‘

(90)

< g oxp (= 5 max{|TAT], 1H(h(u) ~ Callog(R) + 1) — 1)) (min(Euf2)(6)" - (in(Eugf )(60)'",

=ag.g =ar ::BJ
for every pair I, J C [d,] with |I| > 2 and |J| > 2.
Using this inequality, (88) becomes

(91) ‘(Eufugu)(e) - (Eufugu)(gl)’ S Z aI,JOdlﬁJ = &TAES ”62” ' HAH ' ”gH
1,JCldu] :|1],]J[>2

where @ = (a1)rc(a,):11>2> B = (B)1c(du]:|1>2> and A = (ar,7)1,.5C[du):|1],l7)>2- Further, ||&] and
|3 are the ¢3 norms of & and 3, respectively, and || A|| is the operator norm of A.

Estimate of operator norm of A: Notice that A is a symmetric matrix. Thus, we can fix a unit
vector 7 satisfying ||A|| = 7 A¥. For each pair I,J C [d,] with |I| > 2 and |J| > 2, since a; ; > 0,

ar,j_o  A1,J_2

< v
VALY S Y+ 5 VI

and thus,
(92) A= > agwws Y (X )
I,JC[dy] :|I],| J|>2 IC[dy]:|I|>2 JC[du]:|J|>2

For each I C [d,] with |I| > 2, the number of J C [d,] with |[IAJ| = k is bounded above by
d%=1 < (Rd)*. Then, with the given estimate of a; ; in (89),

S ary <gep(— (i)~ Callog(R) + 1) ~ 1))
I 1122

(93) Y é(Rd)t exp (— St(w) ~ Cr(log(R) +1) %)),
t>1

Now, we impose the second assumption on Cj that
2
Co > Cy + g(l +log(2d) ).

With the assumption that h(u) > h® 4+ Cp(log(R) + 1), the geometric sum in (93) has a decay rate
smaller than 1/2. Therefore,

1 3 o
> arg <gesp (5 (b(u) - Coflog(R) +1) ~ 1)),
JC[du]:|J]|>2
where

2
Cy=Cy + g(l +log(d)).
Now applying the above estimate, together with Zlgdu}:|1|22 72 =1, to (92), we obtain the
following bound:

4] < g exp (5 (h(u) — Ci(log(R) +1) — %)),
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Comparison of 7 minge(q (Ey 5 1)(0) and minge g (E, f2)(0) (and the same for g): Here is the last
step toward the proof of the Proposition. Returning to (91), we have

‘(E’ufugux )_( ufugu)(gl)’
<5 exp (— 5 (b(u) — C1(log(R) +1) 1)) VEInnn [ min(Eug2 )0).

1

Let us impose the third assumption on Cj that
2
Co > Ce.7 + z log(2)

where Cj 7 introduced in Corollary 6.7. Recall that we have h* = h® + %log(Q) from (84). We can
invoke this Corollary to yield:

0 € lal, D (Euf7 )(0) < \/2EF3(0).
1

Let 6y € [q] be the value minimizing 6 — /Ef2(0). Then,

mln\/ZEf2 \/ZEf2 6o) > \/Z qu )(00) > \/Z ufﬁ[ (0).

I

Clearly, the same derivation also holds for g,. Together we conclude that
|(Ewfugu) (@) — (Bufugu)(8)]

<exp (= 5(h(u) = Callog(R) + 1) — 1)) (min(E, f7)(6) " (min(Eug2)(6)) .

Finally, if we impose the forth assumption on Cj that
Co > Cs,

then the Proposition follows.

9.2. Properties of f;: Products. The goal of this subsection is to establish the following.
Proposition 9.6. There erists C = C(M,d) > 1 so that the following holds. For any p' € T
satisfying

h(p') > h® + C(log(R) + 1)
and a positive integer h° + C(log(R) + 1) < ki < h(p'). Consider a function f and g are B<,y

polynomials with Ef(X) = Eg(X) = 0. We decompose f and g according to Lemma 5.1 with the
given k1. Then, the following holds: For k1 < m,k < h(p'),

o If max{m, k} > ki,

erg,?m (Ep figm)(0) — (B frgm)(6")]

<exp (= 5(2h(p') — max{k,m} — C(log(R) + 1) — h°) ) (EfE(X)) (B2, (X)) /2.
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o Ifk=m=Fki,
max |(Ey figm) (0) — (Ey fig) (©)]

0,0'€lq]

<exp (= 5 (2h(p) — 2k1 — Cllog(R) + 1)) (B (X))/*(Egy, (X))

The proof mirrors the structure used in Proposition 7.1. In this case, we rely on both Proposition
6.1 and Proposition 9.2. Through this subsection, let

C° = C°(M, d)

be the constant described in the Proposition. The functions f, g, and ki are as introduced in the
Proposition.

Assuming without lose of generality that m < k, we apply the reasoning from (68) in Proposition
7.1, yielding

(Ey frgm)(0)
=E[( Y EfIX))( Y Eugna) X)) | Xy =0+ Y By fagma) )
u€Dy(p') u€Dy(p') u€Dy(p')
o Z E[ ufu u)( ugm,u)(Xu> Xp/zé},
u€Dy(p')
and hence,

(Ep’ kgm)(0) —( 'fkgm)(9/)

)(
+ ((E fugmu 9) - ( p’fugm,u)(el))
u€Dy(p')
(94) - ( Z ((EP' (Eufu)(Eugm,u))(e) - ((Ep/ (Eufu)(]Eugm,U))(el)>
u€Dy(p’)

Similar to the derivation of (60) from Proposition 7.1. The proof is dedicated into estimating
the above three summands.
We begin with the following estimate:

Lemma 9.7. There exists a constant C = C(M,d) so that the following holds. Suppose C° > Cqy 2,
where Cq o is the constant introduced in Proposition 9.2. Then, the following holds: For u € Dy (p'),

(1) if k > ky, then

0%1%:{(]‘ (E, fugm w)(0) —Ey fugmu) (6 )’

<exp (— S(2h(p') — b~ Cllog(R) + 1) — 1)) (BF(X))2(Eg? (X))
(2) if k =m = k1, then

5 (B o))~ By ) )

<exp ( — S (20(p') = 2k — C) ) (EF2(X))/2(Eg2, ., (X))"/2.
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Proof. Step 1. Bound E|f,(X)gm.u(X) — Efugm.u| from above: By Hélder’s inequality,

Var[(Eufugm,u)(Xu)] < rer}:_a[;j( ’(Eufugm,uXe) - Equm,u‘ : E‘ (Eufugm,u)(Xu) - Efugm,u’

f>-norm ¢1-norm
loo-NNOTIN

S\/CZ.QVEH[(Euqum,U)(XU)] : E|fU(X)gm,U(X) - Efugm,u,
(95)
< \/Var [(Eufugm,u)(Xu)] < V CQQE‘fIL(X)gm,u(X) - Equm,uL

where we applied (4) from Lemma 2.2 with Cs 9 is the constant introduced in the Lemma. Further,
relying on (95), together with (4) and (3) from the Lemma 2.2, we have

max ’ E, fugm u)(ﬁ) — Ep/fugm’u)(ﬁl)’ <2 Ieféaﬁ ’(Ep’fugm,U)(e) - Efugm,u‘

0,6'cq]
<205 5(h(p') — k)INRPI—F gée[x;cl( wfugm) (0) — Efugm.ul
<202, (h(p") — k)INIF /o o o (X) g (X) = Efurgim.ul
(96> :Cl eXp(—E(h(,O)— )E‘fu< )gm,u( )_Efugm,u’7

where
C) = 2(3’5/22 - max n? exp(—0.1en).
’ neN

Case 1: m < k. Here we can simply recycle the estimate from (72):

E‘fu(X)gm,u(X) - f (X)gm,u(X)‘
(97) <exp (= 5 (k = Collog(R) +1) — 1°) ) (EF2(X)) /2(Eg, , (X))/2,
where

2/3 1 2
Cy = g(i + 3 log(d) + log(C'5.1)) 4+ Ce1+2- z log(2),

where (51 is the constant introduced in Lemma 5.1 and Cg 1 is the constant introduced in Propo-
sition 6.1.

Case 2: ki <m=k.

This is the case where we need Proposition 9.2. With the assumption that C° > Cy o, where
Cy.9 > 1 is the constant introduced in the Proposition, we have

m =k >ky >h°+C°log(R)+1) >h°+ Cya(log(R) + 1),
so that we could apply the Proposition to get
E|fU(X)gm,u(X) - Efugm,u,

<exp (= 5 (k — Coa(log(R) +1) b)) (EF(X)) (g2, (X))

Case 3: k1 = m = k The last case is straightforward:

E| fu(X)gmu(X) = Efugmul <2E|fu(X)gm,u(X \<2WW

By taking C3 = max{C2, Cy 2} —i—% log(CY), the statement of the Lemma follows with C' = C3. O

As an analogue of the above Lemma, we also have
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Lemma 9.8. There exists a constant C = C(M,d) so that the following holds. Suppose C° > Cqg o
is the constant introduced in Proposition 9.2. Then, the following holds: For u € Dy(p'),

(1) if k > ky, then

% (B (B o) (B 1) 0) = (B (B ) Buin)) 0]

3
<exp ( )
(2) if k =m = ky, then
’(EP' (Eufu)(Eugm,u))(e) - ((Ep/ (EufU)(]Eugm,u))(el)}
<exp (= 5(20(p)) — 2k — C)) (BF2(X)) /X (BgZ, ,(X))"/>.

(2h(p) — k — C(log(R) +1) — h°)) (Ef3 (X)) (Egp, (X)),

€
2
Since the proof is simpler and the structure is the same as that for Lemma 9.7, we will outline

a sketch proof in this case.

Proof. Let ay(2y) = (Bufu)(zy) and b, = (Eugm.u)(xy.). Repeating the first step of the proof of
Lemma 9.7, we have

Grga@[c} |(Ep/aubu)(0) — Ep/aubu)(G’)| <Oy exp(—e(h(p’) — k))E|ay(X)by(X) — Eayby|,
,0'€lq

with
C = 205/22 -max n? exp(—0.1en),
’ neN

which is exactly the same constant stated in Lemma 9.7. Next,

Elay (X)bu(X) — Eaybu| < 2E|ay(X)bu(X)| < 2¢/Ea2(X)y/EB(X) < 2,/Ea2(X)\/EgZ, , (X).

If k£ > k1, we could apply (34) from Proposition 6.1 to fu, and get

Rl (X) < exp ( — 260k — G (log(R) + 1) b — 2 log(2)))EF2(X).
_h*

Indeed, this tail bound is stronger than what we got from Lemma 9.7. The remainning part involves
combining these estimates with a suitable constant C' so that the lemma holds. Given the argument
was already presented in the proof of Lemma 9.7, we will omit these details. ]

Before bounding the summands in (94), let us bound >, p, () Ef2(X) and D oueDy(p') Egz..(X)
from above by Ef2(X) and Eg2,(X), respectively.

Lemma 9.9. Suppose
C°>Cra+ glog(Q),
where C79 1s the constant introduced in Lemma 7.2. Then,
Y. Egyu(X) < max {4,C3, R} - Egp, (X),
u€Dy(p')

and
Y Efi(X) <max{4,C3,R'} -Eff(X).

u€Dy(p')
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Proof. Given that C° > C74 + %log(Q), we have

2
F1 > h° 4 C°(log(R) + 1) > h° + ~log(2) + Cro(log(R) +1) = h* 4+ C72(log(R) + 1),
and thus we could apply Lemma 7.2. When m > ki, the lemma yields
2
> OEZ.X)= Y E[( Y aX)]< X > 2EFA(X) < 4EgL(X).
u€Dy(p') u€Dy(p") V€D (u) u€Dy(p') vEDm (u)

And in the case when m = k;, we use the same derivation with Lemma 7.2 been replaced by (27)
in Lemma 5.1 to get

> Eg}.(X) < C51R*- C51REg;, (X).
u€Dy(p)

Clearly, the same derivation also holds for the comparison of > ,cp, () E f2(X) and E fA(Xx). O

Now, relying on the above two lemmas, we will estimate the second and third summand of (94):

Corollary 9.10. There exists a constant C = C(M,d) > 1 so that the following holds. Suppose
2
C° > max {09.2, Cra+ B log(2)},

where the constants are introduced in Proposition 9.2 and Lemma 7.2, respectively. Then,
(1) if k > ky, then

Z ((Ep’fugm,u)(g) - (Ep’fugm,U)(el))

u€D(p)
B ( Z ((EP' (Eufu)(Eugmyu)) (0) - ((]EP' (Eufu)(Eugmau)) (9,)) ‘
u€Dg(p’)
<exp (= S (2h(f) — k = Cllog(R) + 1) — b)) (BfZ(X)) /2 (EgZ, (X)) /2

(2) if k =m = k1, then the above term above can be bounded by

— S(28() — 2k — O)) (BFA(X))/* (Eg?, (X)) /2
Proof. Let C be the maximum of the two constants introduced in Lemma 9.7 and Lemma 9.8. For
convenience, let

U= > (Byfagmu)®) = By Fugmu)(©))

u€Dy(p’)

(X (O Euh) Eagma))(O) — (Ep (Eafo) Eugn) )|

u€Dy(p')

exp (

By the two lemmas together with the triangle inequality, in the case when k > ki, we have

U< Y 2exp(—5(2h(p) — k = Cillog(R) +1) —b°)) (BF2(X))*(Eg?, (X))
u€Dg(p")

szexp(—;<2h<p'>—k—cl<1og<R>+1>—h°>)¢ > Ef3<X>\/ > Egiu(X)

u€Dg(p") €Dy (p")

(98)  <2max {4,C2, R }\/EFF(X)\/Eg, (X),
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where the last inequality follows from Lemma 9.9. Similarly, when k = m = ki, we have

€ lon(o) — 2k >
(99) U<2exp(—5h(p)—2k—C0) | 3 ERX) [ Y Eg (X
u€Dy(p") u€D(p)
By setting
2 2
C = (€1 +log(4) +log(C21))

the corollary follows. O
It remains to estimate the first summand of (94):
Lemma 9.11. There exists a constant C = C(M,d) > 1 so that the following holds. Suppose
C° > Cra 4 2 log(2)

where C75 1s the constant introduced in Lemma 7.2. Then,

(1) if k > ky, then

Jmax (B (B fi) (Exgm)) (0) = (B (B f) (Brgim)) (8')

<exp (- e(h(p) — Cllog(R) + 1) — b°) )\ /EfZ(X)\/Eg2, (X
(2) if k =m = ki, then the above term is bounded by
exp(—e(h(p) — ki — Cllog(R) + 1)\/Ef2(X)y/Eg2, (X

PTOOf. Observe that both (Ekfk)(w) = ZuEDk(p’)(Eufu)(xu) and (Ekgm)(‘r) = ZueDk(p’)(Ekgm,u)(xu)
are both degree-1 polynomials with variables (z,, : u € Dg(p')) satisfying

E(Exgm)(X) = E(Exfi) = 0.
This allows us to apply Lemma 8.4, yielding

max | (Ey (Ex fr) (Brgm)) (0) = (B (Exfi) (Exgm)) (0)]

0,0'¢lq]
<2 max| (B, (Exfi) (Brgm))(0) — E(Ekfmkgm))\
§2C8.4R exp(—e(h(p') — k‘)) Z ufu Z ugm u (X)]7
u€Dk (o) u€D(p')

where Cg 4 > 1 is the constant introduced in Lemma 8.4. Next, we apply Lemma 9.9 (which is why
we need the assumption on C°) to get

S E[Bugm)?X)] < | Y Eg2 (X) < \/max{4,C2,R1} - Eg2,(X).
u€Dy(p') u€Dy(p')

As for \/ZueDk(p’) E[(E,f.)2(X)], if k = m = ki, then we can apply the same derivation to get

S E[(B.fu)*(X)] < /max{4,C2,R1} -EfA(X).

u€Dy(p')

This leads to

x| (Byr (B i) (Egm)) (6) = (B (B fi) Brgm) (0)

<2054 max {4,C2, R*} exp(—(h(p') — k) /Ef2(X)\/Eg2 (X
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If k > kq, then we can apply Proposition 6.1 and Lemma 9.9 to get
> ElE (X)) <exp (k- Coalloa(R) + 1)~ 1~ “log(2)) [ > EFA(X

ueDy(p') u€D(p)

</max (4,02, R4y exp ( — (k — C1(log(R) + 1) — h° - glog(2))> Ef2(X).

In this case, we have

x| (B (B fi) Brgin)) (0) = (B (B fi) (Bagm)) (0')|

<2Ck 4 max {4, 03, R4 exp (— (h(p!) — Coalog(R) + 1) — h° — 2 lo(2))) y/EFZ(X)/Eg2, (X)
By taking

2 1
C = Co. + - log(2) + _ (log(2Cs.4) +log(C31) +4),
both statements of the lemma follows. OJ

Proof of Proposition 9.6. Without lose of generality, it is sufficient to prove the case when m < k.
First, we impose the first assumption that

C° > max{C’g 2, Cro+ — log( )}

where the constants are introduced in Proposition 9.2 and Lemma 7.2, respectively. This allows us
to apply Corollary 9.10 and Lemma 9.11. For simplicity, let

C1 = max{Cy 19, Cy.11}.

Then, combining the Corollary and the Lemma to the estimate (94) we can conclude that: For
ki1 <m < k with k > kq,

erg%)[( | E ' frgm)(0) — (Ep/fkgm)(9,)|

<2exp (= 5 (2h(p) — k — Ca(log(R) +1) — b)) (EFE (X)) (Eg?, (X))
and in the case where k = m = kp, the above term is bounded by
€
2exp (— 5(2h() — 2k — Ci(log(R) + 1)) ) (EfE(X) /2 (Egp, (X)) /2.
Then, the proof of the proposition follows by making the second assumption on C° that

C°>C1+ - log( )

9.3. Proof of Theorem 8.3.

Proof. Now we are ready to establish the main theorem. As usual, let Cy = Cy(M,d) denote the
constant introduced in the statement of the Theorem. The value of Cy will be determined as the
proof proceeds.

Applying Theorem 3.6 with A and h* = h° + 2log(2) and ¢* = 1/2, we conclude that

Var[(E, f)(X)] <exp (—e(h(p’) — C36(log(R) + 1) — h*)Var[f(X)].
for any B<,-polynomial f, where C3¢ = C(M,d,1/2) is the constant introduced by the theorem.
We impose the first assumption on Cy that

2
Co > Cs6+ R log(2),
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and conclude that

Var[(Ey f)(X)] < exp (= e(h(p') — Co(log(R) + 1) — h°) Var [f(X)].

Now, it remains to show that with the suitable choice of Cy, for any p’ with h(p’) > h° +
Co(log(R) + 1) and any two B<-polynomials f and g, we have

ma (B f9)(6) ~ Efg) < exp (= 5(0(e!) — 0" Collon(R) + 1)), fuin By £7)(6) min (B 02) ().

Let

2
C} := max {09_6, R log(2) + C7.1 + to},

where
e tg is the constant such that 3772, exp ( — %t) <1

e (g is the constant introduced in Proposition 9.6, and
e (71 =C(M,d,1/2) is the constant introduced in Proposition 7.1.

Next, let
k1= [ho + C’l(log(R) + 1)—| .
The chocie of C'1 and k; allow us to apply Proposition 9.6 and Proposition 7.1 toward both f and

g.
Next, we impose the second assumption on Cj that

Co > 2C + 2.
This assumption implies that there is a gap between h(p’) and k1, which is necessary for the proof.

Now, we fix such p’ and consider two B<,-polynomial f and g with Ef(X) = Eg(X) = 0.
Further, consider the decomposition of f and g according to Lemma 5.1 with the above chosen k.
First, by our choice of C}, we have

2
ki > [h°+ Z log(2) +C7.1(log(R) + 1) + to].

| —
=h*

This assumption allow us to recycle the partial step in the proof of Theorem 3.6 to obtain (76):
(100) > Ef(X) <2EfA(X)  and Y Eg(X) <2Eg(X).
ke[k1,h(p")] kelk1,h(p")]

Second, with our assumption that k1 > [h® + Cg ¢(log(R) 4+ 1)], we can apply Proposition 9.6 to
get

E, 0) — (E, | < max |(Ey fugm)(0) — (E frugm) (6’
Jmax | (B, f9)(0) = (Ey fo)( )|_m,k€[%1:,h(p’)}9’ele[q]’( o T ) (0) = (B frgm) (6]

Yo armonBm = aTAG < |[|d|[| A5,

m,ke[kl,h(p’)]

where @ = (g, Qky, - - -, Oy(pry) With ag = /Ef2(X), B = (Brys Brgs - - Bign) with fm = v/ Bgr, (X),
and A = (agm)kmelk h(p)] With
exp ( — 5(h(p") +h(p") — max{k,m} — Cos(log(R) + 1) — ho)) maxik,m} >k
Agm ‘=
exp (= 5(b(p) + h(p') — 2k — Cos(log(R) + 1)) ek
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Together with (100), we have
I@IANA] < 20lAll/Ef2(X)/Eg2(X).

The next goal is to bound ||A| from above. Notice the fact that the matrix A is symmetric
implies there exists a unit vector 4 such that ||A|| = 7" Ay. Now we fix such vector 4. Relying on
the fact that ag,, > 0,

HAH - Z e Yk Vm < Z akTm(%% + ")/72n) = Z ’an( Z akm).

kvme[klﬂh(p,)] k7m€[k17h(pl)} me[klvh(p/)] ke[kl’h(p/)]

Clearly, from the definition of ag,,, the term Zké[kl,h(p’)] Qkm 1S maximized when m = kq.

> =exp (= S(0(e) + h(p') — 261 — Co(log(R) + 1))

kelki,h(p’)] 2
+ Y e (=50 +h(p) — k= Cogllog(R) + 1)~ b))
kel h(o)]
—exp (= S(h(p)) — Coslog(R) + 1) 1))
. (exp (- St 2k +1)) + Y e~ S(a(s) - k)))
kelkrh(e)]
First,
> ew (- S -k) <<t
kelk,h(p)] 2 1—exp(—¢/2) ~ ¢
Second,
exp ( — %(h(p’) —2k1 + ho)) <exp ( — (Co(log(R) +1)+h°—=2h°+Ci(log(R)+1)+1) + h°>>

which in turn implies that

(e (— 5 — 2k +1)) + ¥ ew (=50 - b)) <

2 kelka,h(p")]

oM | Ot

Hence, we conclude that

4] < 2exp (= 5 (1(s") ~ Coglloa(R) +1) 1)),

Together we conclude that when h(p) > h°® 4 C;(log(R) + 1), any two B<-polynomials f and g
with Ef(X) = Eg(X) = 0 satisfies

(101)

Jmax |y f9)(6) — (B fo)(#) s? exp (= 5 (0() — Cos(log(R) + 1) = b))\ [EL(X)[Eg2(X).

Now, we impose the third assumption on Cj that

™

2
Co > Cy + Z log(20/¢),

—exp (— - (b(p') — Coss(log(R) + 1) ~ b)) 538 Zexp (— S(Co - Cog)(log(R) + 1)) <1/2.



Next, we apply (101) to the special case that f = g:

, 1
Ef2(X) - min(E, £2)(0) < maxe |(Ey f9)(6) ~ (Ey fa)(¢')] <5EF(X)

= Ef*(X) < 2min(E, f*)(0).
€lq]

Clearly, the same statemnet holds for g as well. Substituting these estimates back to (101), we
can conclude that when h(p) > h° + Cy(log(R) + 1), any two B<-polynomials f and g with

Ef(X) =Eg(X) = 0 satisfies
E, 0) — (E, o'
ef?/?[‘;ﬂ( 0 [9)(0) — (Ey f9)(0)]
<2 exp (= S(h(p) — Cog(log(R) +1) — b°))  fmin(E,, £2)(6)  /min (B, 4)(9)
€ 2 0€lq] o€l
— S — e (F, 2 (F a2
<exp (= 5 (1(e) ~ Collog(R) + 1) ~1°) ), fmin(Ey )(6), [min(Eyo%)(0)
Therefore, the theorem follows.
]
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APPENDIX A. VARIANCE ESTIMATE FOR DEGREE 1 POLYNOMIAL

This section is dedicated to prove Proposition 4.3. Let us restate it here:

Proposition A.1. There exists a constant C = C(M,d) > 1 so that the following holds: Fix
pleT, and 0 < k < h(p'), then for any degree 1 function f with variables (z,, : u € Dy(p')).
There exists functions fy(x) = fu(xy) for u € Di(p') so that the following holds:

(1) f(X) = Xuenp(y) fu(Xu) almost surely. (They may not agree as functions from [q]" toR.)
(2) For any v € T,y with h(u) > k,

> Var[fu(Xu)] < CR*Var[ Y fu(Xu)].

w€ Dy (v) u€ Dy (v)

Example A.2. Suppose u,v € ¢(p’) for u,v,p’ € T and consider

—_ O = O

1
0
1
0

—_— O = O

Let us consider the function f(z) = f,(z) + fu(x) where
{1 if z,, € {1,3},

u =1 u) —
ful®) 1,3(33 ) 0 otherwise.

and f,(z) = —113(zy).
Condition on X, € {1,3}, f(Xy,) + f(Xy) =1 —1 =0 condition on X,; € {1,3} and condition
on X,y € {2,4}, f(Xu)+ f(Xy) =0—0=0. Put it differntly, Var[f(X)] = 0 since f(X) = 0 almost
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surely. However, observe that 7 is the uniform measure on [4], which implies

Var[fu(X)] = Var[fo(Xo)] = i > 0.

Therefore, it is not true that (19) holds for the standard (Efron-Stein) decomposition of f(z) =
ZUGDk(p') fv(xv)’

Let us make a simple observation to give the insight for the construction. If f(X,) is a function
of Xy (), then for each i € [q], the function f must take the same value for all possible outcomes of
X, conditioned on X (,) = 7. In other words, the values of f are constant on the set

(102) S; = supp(row;(M))

for every i € [q]. Now, let us consider the case where f(X,) is a function of X,r(,). This can be
reformulated as follows: for k € [0,7 — 1], E[f(Xy) | Xyk (] is a function of Xjk+1(,. Equivalently,
the values of M* f are constant on the set S; for every i € [q].

Therefore, it is evident that the construction of the basis should primarily revolve around the
sets {Si}ie[q and their interaction with M.

Following from this discussion, the proof of the Proposition A.l1 is divided into the following
steps:

Step 1 (Section A.1): We try to give a precise description of when f(Xy) is a function of Xk,
for some k£ € N. To this end, we introduce the following notation.

Definition A.3. We define the following partial order relation < on the collection of all partitions
of |q): Specifically, for two partitions P and P, we say that P < P’ if P’ is finer than or equal to
P.

Further, there exists r € N such that P40 for ¢ > r is the trivial partition.
Lemma A.4. There exists a chain of paritions
P0,0 > Pl,o >P2,0 >P’f‘,0 >
A function f : [q] = R satisfies that f(Xu) is a function of Xyr(,) for some r € N if and only if f
is a linear combination of 1p for P € PO,

(The double index for the partitions is due to a technical reason, which will be clear in the
construction of the partitions.)

Step 2 (Section A.2): Next, we try to extract a basis of functions according to the partitions fro
the previous step, along with suitable quantitative estimates:

Proposition A.5. Let M be an ergodic and irreducible transition matriz defined on the state space
[q]. We can construct

e a basis of functions from [q] to R, denoted as

{£W}W€W>

where W is a set of size q,
e a function
r: W — NU{0},
e and a constant C' > 1 (which depends on M)
so that the following holds:
(1) Let

ro 1= max r(w).

There exists unique wo € W such that r(wg) = 9. Moreover, &y, = 1.
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(2) For each w # wq, &w(Xy) is a function of X, where v = p™ ™ (u) and E&y(X,) = 0.
(3)
Var[chfw(Xu)] <C( max |ew])

w:r(wW)#rg

(4) For any 0 <1’ < rg such that {w € W : r(w) = '} is not empty,

IEVar[IE[ D cwbu(Xw) [ X0)]

w:r(w)=r

1
Xp('u)} = a(w:IT’I(lvé\ilJi(:r’ |CWD2‘

(5) For any 0 <1’ < rg such that {w € W : r(w) < '} is not empty,

EVar[E[ 3" cwbw(Xu)|X.]

w:r(w)<r’!
Remark A.6. For w € W and [ € [r(w)], let
(103) W= M,

Xp(wy] < C(, masc lewl)”

where we treated ¢ as an vector in R4, Equivalently,
¢V(0) = E[¢(Xu) | Xy = 0]
where u,v € T are vertices such that v = p!(u).

Step 3 (Section A.3): Finally, we will use the basis from the previous step to decompose degree-1
polynomials to prove Proposition A.1.

A.1. Partitions of [¢]. Let us begin with the following observation.

Lemma A.7. Suppose {O4}acr is a collection of non-empty subsets of [q]. Then, there exists a
unique partition P of [q] that satisfies the following 2 conditions:

(1) For each a € I and P € P, either O, € P or O, N P = {).

(2) For any other partition P’ that also satisfies the above property, P’ < P.

Proof. The proof can be carried out by constructing the partition P.
Without lose of generality, we may assume the collection {Oq}aer contains {{6}}, el since for

a singleton {6} and a set P, it is always true that either {#} C P or {#} N P = (). Consequently,
we may assume

(104) U Oa =1d]

ael

First, we define an equivalence relation ~ on {Og }acs as follows: For any a,a’ € I, we denote
On =~ Oy if there exists a chain (aq,aq,...,q;) such that Oy, , N Oy, # 0 for i € [I]. Let
I, ..., Iy, € I be the partition of I such that {Oq}acr, for k € [ko] form the equivalence classes of
the relation. Now, let P := {Pi,..., P, }, where

P, = UaelkOk'

Claim 1: For every a € I and k € [ko|, either O, C Py or O, N Py, = ().

To prove this claim, consider any o and k described above. Suppose O,NP;, # (0. Let 0 € O,N P,
and pick an index o/ € I, such that § € O,/. Such an index exists because Py, = U, c 1, Oar. Then,
we have O, N Oy # 0, implying o € Ij,. Consequently, O, C P,. Therefore, the claim is proven.

Claim 2: P is a partition of [q].
We need to verify three properties:

(1) Ukeko) P = ldl,
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(2) Vk € [ko], Px # 0, and
(3) PN Py = () whenever k # k.
First, for each 0 € [g], by (104), there exists « € I such that § € O,. Then, 6 € O, € P, where
k is the index such that a € Iy. Hence, we conclude that Uyepr,) P = [q]-
Second, for each k € [ko], let a € I,. We have () # O, C Pj. Thus, Py is not an empty set.
Finally, for any distinct k, k" € [ko|, suppose 8 € P, N Pyr. By (104), let a € T be the index so
that 8 € O,. Hence, both O, N P, and O, N Pir. In particular, it is necessary that o € I and
a € I, which forces k = K/, leading to a contradiction. Therefore, P, N Py = () whenever k # k.
Hence, the claim follows.

Claim 3: P’ < P for any P’ described in the statement.

To prove the claim, it suffices to show that for any P’ € P’ and P, € P with k € [kg], if
P' NP, #0, then P, C P'.

Let us consider an arbitrary pair of P’ € P’ and P, € P and assume that P’ N P, # (. There
exists an index « such that O, N P’ N Py, # (). Based on the assumptions regarding P and P/, we
have a € I}, and O, C P'.

For every other o’ € I, there exists a chain (o = ag, a1, ..., 0q, = @’) such that O,, , N Oy, # 0
for I € [lp]. Observe that if O,, , € P’, then Oy, C P’, due to On, N P’ D Oy, N Oy,_, # 0. With
Oy C P’ as our starting point, we can apply this observation repeatedly to conclude that O, C P’.
Since the argument works for every o/ € I, we conclude that P = |J,¢ 1, Oar C P

]

Definition A.8. For any given collection of subsets {Oa}acr of [q], let P({Oa}acr) denote the
partition P defined in Lemma A.7.
For any given partition Q of [q], let

Psc(Q) :==P({Q}eq U {Siticlq)-
Remark A.9. Clearly, Psc(Q) < Q.
Definition A.10. Let
PO = {{1},{2},... . {a}}

P10 =Py (P9).

and

Let us remark that P10 is the finest partition of [¢] so that each part P € PV either contains
S; or disjoint from S; for i € [q].

We use double indices for indexing the partitions because constructing such a chain of partitions
requires the creation of multiple partitions along the way, as we will illustrate shortly.

To proceed, let us begin with a simple observation.

Lemma A.11. If P € P, then

Milp =1
where

Q={icld : Si c P}

Suppose P10 = {Py, Py, ..., Py, }. Then, the collection Q := {Q1,Q2,...,Qx,} where

M1p, = 1q,
s also a partition provided that M is irreducible.
Proof. For i with S; N P = (), it is immediate that (M1p); = 0. Conversely, when S; N P # (), it is
necessary that S; C P. Consequently, (M1p); = > jelq Mij = 1.

To establish that Q is a partition, we need to demonstrate the following three conditions:
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(1) QrNQy =0 for all distinct k, k' € [ko].
(2) Ukep Qr = ldl-
(3) Qi # 0 for all k € [ko].
For the first condition, suppose there exists ¢ € Q. NQy for some distinct k£ and k’. By definition,
S; € Py and S; C Py, which is a contradiction. Hence, Qi N Qp = 0.
For the second condition, for every i € [q], we know that S; C P} for some k. Consequently,
i € Q, ensuring Uqepp Qk = [a]-
For the third condition, if we assume Q) = 0, implying that no i € [¢] satisfies S; C Py, then M
is not irreducible, since the states in P, cannot be reached. [l

Definition A.12. Let P! = Q where Q is the partition described in Lemma A.11.

Lemma A.13. If P is a finite union of parts in P10, then
(105) M1p =1g

where Q is a finite union of parts in P, The above map induces a bijection between subsets of
[q] that are finite union of parts of P10 and subsets of [q] that are finite union of parts of P11, in
which preserve the inclusion relation is preserved.

Proof. Let us express PY0 = {P P, ... , Prio } and P ={Q1,Qo,...,Qk} where 1o, = M1p,.
For each I C [ko], let Pr = Uper Pr and Qr = Uper Qk- Since 1p, = > o7 1p, and 1g, =
> ker 1g,, clearly we have

1g, = M1p,.
Since naturally both finite union of parts of P and of @ are identified with a subset I C [ko] in
the above way, the statement of the lemma follows. O

An immediate consequence is the following.

Corollary A.14. The transition matriz M induces a bijection between partitions that are < P10
and partitions that are < PY1. For convenience, we adopt the following definitions:

(1) For any partition P such that P < PV define
MP :={Q : 3P € P such that 1o = M1p} < PLL.
(2) Given any P <P and for each P € P, let M P represent a part in MP where
1yp = Mlp.

Next, we will build a collection of partitions P™* for » > 0 and 0 < s < r starting with
P%0 = 1{1},{2},...,{q}} and establishing the relationship illustrated by the diagram below.

P0,0 > Pl,O > P2,0 > P3,0 > P4’0

sC
1 ! 3 3
Pl’l > P2,1 > P3,1 > P4,1
o = =
! \J \
P2,2 > P3’2 > P4’2
e =
\J 3
P3’3 > P4,3
sC
1
P4’4
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( In the above diagram, P — Q indicates that Q = MP; Q > P indicates P = Pgc(Q).)
SC

Indeed, the initial definition of P%Y and the relation diagram determine the collection of partitions
completely. Let us summarise it as a statement:

Lemma A.15. There exists a unique collection of partitions {P"*},>s>0 that satisfies the following
properties: For 0 < s <,

(1) PO = {{1}7{2}77{Q}}
(2) Prs < Pl,O'

(3) Pt = MPTs,

(4) Pr—i—l,s < Pms.

(5) Pr—i—l,r — PSC(PT,T’).

Proof of Lemma A.15. The proof is proceeded by induction. We assume that P™* is constructed
and uniquely determined for 0 < r < rg and 0 < s < r for some g > 0 so that it satisfies the
properties described in the lemma.

ro—1 _

We will define the partitions in the next column {P"°} (o, by starting with P
PSC(PTo—l,’I‘o—l).
Besides constructing the rest of partitions, we also need to show that these partitions satisfy the
following list of conditions ( let us denote it as List A): For s € [0,rp, —1],
(1) Pros < PLO,
(2) P75 < Pro~Ls for s € [0, — 1].
(3) Prostl = MPpros,

By definition of the map Pgc, the first and second condition in the list are satisfied for s = rg—1.
Relying on Proro—1 < PLO we can define P7070 = MPTo70~1 Hence, the third condition in the
list is also satisfied for s = r¢g — 1.

It remains to construct P"* for s € [0,79 — 2] and they satisfy those 3 conditions in the list.
This can be proceeded inductively starting from s = ry — 2.

Claim: For s € [0,79 — 2], if PTosT! < Pro=1s*1 then there exists a unique partition P70
which satisfies the conditions in List A for s.

Suppose the Claim holds. With Pro-mo—1 < Pro—Lro=1 we could apply the claim repeatedly and
the lemma follows. The rest of the proof is to show the claim holds.

Let us assume P705t1 < Pro—Ls+l for some s € [0,79 — 2]. First, from our assumption on
{P™s} for 0 < s < rg — 1, Pro~Lstl — pypro—Ls. By Corollary A.14, Pro—Lstl < pLL - Gince
Prostl < pro=Lstl we conclude that Pmostl < pLl,

Applying Corollary A.14 again, we know there exists an unique partition P < PV so that
Prostl = MP. We set P™* := P. In particular, the choice of P"* is unique in order to satisfy
the first and third condition from the list.

It remains to show that P"0% also satisfies the second condition in List A. Notice that from
Corollary A.14, the induced map of M on partitions preserves < relation. Hence, P75+l <
Pro—Lst1 implies P70~1¢ < P7o~15_ Therefore, the claim holds.

O

Proof of Lemma A.J. We start with the proof on the = implication. Suppose f is a function
satisfied the first condition described in the lemma.
Since f(Xy) is a function of X,r(,, this is equivalent to
0 =E|Var[f(Xu) | Xprw)]]-
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Relying on the identity Var[Y] = EVar[Y | Z] + Var[E[Y'| Z]] and (Xpr(u), Xpr-1()s -+ -» Xu) is 2
Markov Chain,

E|Var[f(X.)

Xprw)]| = ; E|Var[f(Xu) | Xpo () -

Hence, E[Var [f(Xu) ’Xps(u)]:| = 0 for s € [r], which in turn implies E[f(X) | Xps-1(,)] conditioned

on Xps(y) is a constant function for each s € [r]. Equivalently, M*~!f takes the same value for all
elements in each S; for i € [q].

Claim: For s € [r], if f can expressed in the form f = )} pcps-1,0cs—1,p1lp, then it can be
expressed in the form f =} pcpsocs plp.

Clearly, if the claim holds, then we can apply it repeatedly to draw the conclusion that f is a
linear combination of 1p for P € P9,

Now, we fix s € [r] and assume f =Y pcps-1,0 ¢s—1,p1p. Then,

E[f(Xu) | Xps—l(u) = a} = (Ms_lf)(a) = Z CS,LpMs_llp = Z Cs—1,plps—1,
PePs—1,0 PepPs—1,0

where for each P € Ps~19 Ps—1 ¢ Ps=1:5=1 i the corresponding part such that M 11p = 1p._1.
In other words, M*~!f is a linear combination of 1p for P € P5~1s~1,

Because M5! f takes the same value not only for all elements in each S; for i € [q], but also for
all elements in each P for P € P5~1s~1 it implies M*~! f takes the same value for all elements in
each P’ € Pgo(P*~1571) = P51,

Together with the fact that the induced map of M on partitions preserves < relation, we conclude
that cs_1,p, = cs—1,p, for P1, P» € P10 whenever P; and P; are both contained in some P € P59,
Equivalently, within each P € P*9, f is a constant function. Hence, we can express f as a linear
combination of 1p for P € P*0.

For the < implication, suppose f is a linear combination of 1p with P € P"0.

What we need to show is for s € [0, — 1], M*f takes the same values for all elements in each
S; for i € [g]. From the chain P"? — P"! — ... — P"" and by (105), for s € [0,7 — 1], M*f is a
linear combination of 1p with P € P™5.

Since P5T1¢ = Py (bP%%) < PL0 and Pt1s > ... > P™¥ we have P* < P10 which implies
M? f takes the same values for all elements in each S; for i € [¢]. Therefore, the proof is completed.

Now, it remains to prove the second statement of the lemma.

First, if there exists r € N such that P"C is trivial. Then P is also trivial for ¢ > r since
P40 < P"0. Hence, it is enough to show the existence of r such that P™0 is trivial. P™? is trivial.

From the assumption on M, we knew that the stationary distribution 7 of M satisfies min;e(q 7 (7) >
0 and M" converges entry-wise to the matrix whose row is identically w. Therefore, for sufficiently
large r, mini7je[q](M”)ij > 0.

Now, let us fix such r and assume P"C is not trivial. Let us express P™* = {P** ..., P°} with
for s € [0,r] and k, > 2 where the index is assigned so that P, = M Py~ for s € [r] and k € [k,].
First,

1prr = M"1

7,0 «
Pl

With 1,0 is non-negative and not zero, every component of M”10 is non-zero. This forces
1 1

P["" = [q], which contradicts to the assumption that P™" is non-trivial.
U
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A.2. A basis of functions from [¢] — R according to the partition. From now on, let ¢ be
the smallest non-negative integer such that P™ is trivial. Consider the collection

{(P,s) : s €[0,r0], P € P*Y}

We will establish an identification between elements of the set described above and words whose
alphabet consists of non-negative integers. This identification is constructed through induction,
following these steps:

o First, we identify ([g],70) with the word (1).

e Assuming that elements in {(P,s + 1) : P € P**1.0} have already been identified with
unique words, we proceed as follows: For each (P, s+ 1), suppose there are k pairs of (P, s)
such that P C P. We identify these k pairs with the words (w,i) for i € [0,k — 1], in any
order of preference. For each (P’,s), due to P*C is a finer than or equal to P**10 there
exists an unique pair (P, s+1) so that P’ C P. This guarantees the above procedure assigns
each (P’ s) a unique word.

We denote the set of words described above as W, and we adopt the notation w ~ (P, s) to indicate
that (P, s) is associated with the word w. For a given w € W, we represent the corresponding pair
as (P, r(w)), where r(w) =g+ 1 — len(w).

Now, let us make the following observations

(1) If w € W is a word with len(w) < 7o + 1, then (w,0) € W.
(2) Each (P, s) corresponds to a word of length 79 +1 — s.
(3) Suppose w,w’ € W such that w is a prefix of w. Then, P, C P,.

Let T, be the tree defined on w using the prefix relation. In this tree, edges are drawn from
w' to w if r(w') = r(w) + 1 and P, C Py. Now, we will select ¢ parts from these elements (P, s)
based on their corresponding words.

Lemma A.16. Let W C W be the subcollection of words which end with a positive integer. Then,
W[ =q.

Proof. First of all, there are exactly ¢ words in W with length r + 1, since P%0 = {{i}}ie[q} has ¢

parts. For each i € [g], let W be the word corresponding to ({},0) and let w; be the longest word
ending with a positive integer so that is either a prefix of equals to w}. This is well-defined since
every word in W is a word starting with 1.

The proof of the lemma follows if we can show the following claim: wq,ws, ..., w, are distinct
and are all words which ends with a positive integer.

To prove the claim, we begin by showing w; # w; whenever i # j. Suppose w; = w; for some
distinct pair of 7, j € [g]. Let w be the longest prefix of w}, w), necessarily we have w; = w; is either
a prefix of w or w itself. Further, the length of W is less equal than r, since otherwise it implies
w; = w/;, which is a contradiction.

Now, let (W,e;) and (W,e;) be the two words which are prefix of w} and W;, respectively. From
the definition that w is the longest common prefix, e; and e; are distinct non-negative integers.
Since w; is a prefix of (w,e;), it is necessary that e; = 0, otherwise it violates the definition of w;.
For the same reason, e; = 0. Therefore, we reach a contradiction.

The remaining part to prove the claim is to show that {w;}c, are all the words in W ending
with a positive integer. Suppose w is a word in which ends with a positive integer. If len(w) < r+1,
we can keep fill 0 until its length is r 4+ 1 and denote the resulting word by w’. Observe that w’ € W.
Together with the length of w’ is r + 1, necessarily w' = w) for some i. Recall the definition of w;,
we conclude w = w;. Therefore, the claim follows.

t
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Lemma A.17. For any given 0 < 1/ < r, suppose W,» := {w € W : r(w) = 7'} is non-empty.
Consider a linear combination } ew , cwlp,. If it can be expressed as a linear combination of 1p

for P e P10 then ¢, are identically 0.

Proof. Let wi, ..., wy, be the words with 7(wg) = 7/ + 1 and corresponding to each part of pr'+10,
Then, the words that corresponds to pairs of the form (P,r’) with P € PO are

{(Wk7t)}k€[k0]7t€[07tk]
where t; are non-negative integers. Now, we express
Z cwlp, = Z Z C(Wkat)lp(wk,t)'
weWw, ke€lko] t€[tr]
For each k € [ko] and any 6 € P,,, we have
Z Z C(Wk/»t)lp(wkht) (0) = Z C(Wk7t)1P(kat) (9)
k' €[ko) te[t,/] te(ty]

Therefore, >, cw , cwlp, can be expressed as Zke[ko] cwi 1P, if and only if Zte[tk] Cwi)lp,, isa
constant on P,, .
For each k € [ko], let 0 € Py, o), then we have

Z Z C(Wklzt)lp(wk,,t) (9) = Z C(kat)lp(wk,t) (0) = 0’

k' €[ko) te[t;/] te(ty)
which forces ¢(y, +) = 0 for every t > 0 (if it exists). Therefore, the proof is complete. O

Definition A.18. Let B := {& fwew be a collection of q functions from [q] to R, defined as follows:

(1) Ifw=(1), &w=1p, = 1.
(2) If w# (1),

{W((g) = 1PW(9) - EYNTF]-PW(Y)'

Remark A.19. The remaining goal in this subsection is to show that 8 is the desired basis
described in Proposition A.5. We also remark that the first two properties stated in Proposition
A5 are already satisfied with this construction: argmax,,cwr(w) = (1) with {1y = 15 = 15 {w(Xu)

is a function of X, where v = p"™)(u).
Lemma A.20. The collection B forms a linear basis for functions from [q] to R.

Proof. Since there are exactly g functions, our goal is to show

Rld — span({&w fwew)s

and the R.H.S. is the same as span({1p, }wew). It suffices to show for each i € [q], 1; can be
expressed as a linear combination of 1p, with w € W.

To prove this statement, we will use induction, showing that for s from rg to 0, each 1p with P €
P59 can be expressed as a linear combination of of 15, with w € W. Since P*% = {{1},...,{q}},
the proof follows once we establish this inductive statement.

First, when s = r, since 11, is the only part in P79 and [q] = P(1), the statement holds for
S =Ty0.

Now, suppose the inductive hypothesis holds for s + 1 with s < 7. Pick any P € P9, let
w = (W', t) be the word associate with (P,s). If t = 0, then

1p=1p, — > 1pn
P//
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where the sum is taken over all parts P € P$%\{P} contained in P,,. Each P” in the summation
(if it exists) must corresponds to a word of the form (w/,t”) with t” > 0, or equivalently (w’,t"”) € W.
From the induction hypothesis, 1p , is a linear combination of 1p, with w € W. Therefore, we
conclude that 1p is also a linear combination of 1p, with w € W. If t > 0, then w € W, and
the same conclusion follows immediately. With no restriction on the choice of P, the induction
hypothesis holds for s as well.

Therefore, the lemma follows from induction. ([l

Lemma A.21. For any given 0 < v’ < r, suppose W,» := {w € W : r(w) = r'} is non-empty.
Then, there exists a constant C' > 1 (which could depends on M ) such that the following holds: Let
u,v € T be two vertices such that v = pT/(u). We have

o] = = (max [u])?.

(106) EVar [E[ Z ngw |X ] C weW,

weW,

Proof. First, both sides of (106) scale by a factor h? if every term c,, is multiplied by h € R. Hence,
it suffices to establish the inequality in the case

=1
e el =

Given this, consider the set {(cw)wew,, : maxwew,, |cw| =1} € RWr. It is compact set and

(107) EVar[E[ Y cwéu(Xu) | X0] | Xp0)]

WEWT/
is continuous in (cw)wew,, (it is a polynomial of ¢, ). By a compact argument one can estalbish the
existence of C' > 1 described in the lemma if for every (cw)wewr, with maxyew , lew| = 1,

EVar[E[ Y cwéu(Xu) | Xo] | Xpw)] > 0.
weW

We can simplify this by observing that

Z cwéw = Z cwlp, + constant,

weW, weWw
and hence,
(108) EVar[E[ Y cwbu(Xu) | Xo] | Xpw| =EVar[E[ 37 culp,(Xu) | Xo] | Xp)]
weW weW,,
=EVar| 3" cwlr,(Xu) | Xpw)),
weWw

where the second equality follows from that 3-,cw , cwlpr,(Xu) is a function of X, by Lemma A.4.
Moreover, to show EVar| >-ew , cwlr,(Xu)

Xp(v)} > 0, this is the same as showing

Z cwlp, (Xu)
WGWT/
is not a function of Xj,). By Lemma A.4, this is equivalent to show > e\ , cwlp, is not a linear

combination of 1p for P € P! which was proven in Lemma A.17. Therefore, the proof is
complete.
O
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Lemma A.22. For any given 0 < 1’ < r, suppose Wo,» :={w € W : r(w) < r'} is non-empty.
Then, there exists C' > 1 so that the following holds: Let u,v € T be two nodes such that v = p’”/ (u).
We have

(109) EVar[E[ > ewéu(X)| X | X,
weW_, s

oo )] < C(ngvz&x lew])?.

Proof. The proof is more straightforward compared to the arguments presented in the proof of
Lemma A.21. First, both sides of (109) scale by a factor h? if we scaled each ¢, by h € R.
Therefore, it suffices to establish the inequality when

EVar[E[ > cwéu(Xu)| X0
weW v

p(v)} =1

If there is no (Cw)wewa satisfying the above condition, then the proof is completed. Now we

assume this set is not empty. Notice that EVar [E[Zwew s cwéw(Xu) | Xo] | X

(U)} is a continuous

function of (cw)wew_,, which takes value 0 when (cw)wew_,, = 0. Thus, there is an open ball
B C RW< centered at 0 such that for (cw)wew,, € B,

EVar[E[ > cuéu(Xu)| Xo]

weW

Xp(v)] <1

On the other hand, by choosing C sufficiently large, the set

{Cvew, + (max leul)* <1/C},
which is the cube of side length 2/ C'/2 centered at 0, is contained in B. Therefore, the lemma
follows. O

Proof of Proposition A.5. From Remark A.19 and Lemma A.20, it remains to show B satisfies the
last 3 properties stated in the Proposition.

As for the third property, notice that the variance of >, cw cw&w(Xu) is not zero as long as ¢y
are not identically 0 for w # wg. Following the same arguments in the proof of Lemma A.21, the
property follows if C' > 1 is sufficiently large.

The last two follows by applying Lemma A.21 and Lemma A.22 to every 0 < r’ < r and choosing
the constant C' can be chosen to be the maximum of those constants C' from the two lemmas.

O

A.3. Proof of Proposition A.1. In this subsection, we consider soley degree 1 polynomial of the
leave values.

Definition A.23. For any given p' € T and a degree-1 polynomial [ of {ﬂfu}ueLp,, the function
can be expressed uniquely in the form

(110) f(z) = Z wubw(Tu)

weWw, uELﬂ/

where {&w wew @s the basis introduced in Proposition A.5.
For uw € Ty, let fu(z) := X wew veL, Cwobw(Tv). Observe that from this definition, for each
0<I<r,



Further, for w € Ty\Ly, let

Cwy o= E Cw,v-

UELu

Remark A.24. From the definition above, for each p’ € T and degree-1 polynomial f of variables
{xU}UGLPI’ we ha’ve

Vu € Ty, Vo € RY, (Eufu)(@) = cwuld (z4),

where §\(Nl) (#) is introduced in Remark A.6.

Proposition A.25. There exists a constant C = C(M,d) > 1 so that the following holds: Suppose

f(.??) = Z Cw,uf(xu)

uELp/,WEW
where p' € T is a node satisfying h(p') < rg and
Cwu = Cwv

foru,v € Ly satisfying h(p(u,v)) < r(w), where p(u,v) is the lowest common ancestor of u and v.
Then,

> Var[fy(X)] < CRPEVar[f(X) | X,/]
’u,ELp/
If Proposition A.25 is proven, then Proposition A.1 follows as a corollary:
Proof of Proposition A.1. Reduction to h(p') < rg: Without loss of generality, it is sufficient to
consider degree 1 functions of L, rather than degree 1 functions of variables in Dy (u) for some u in

the tree and 0 < k < h(u).
Recall that

D, (p) ={w €T : h(w) =1rp}.
We know that we can express f(z) = ,¢ Dry(p) Ju (z) so that each of them is a degree-1 polynomial
with variables {zy }uerL, -
Together with the variance decomposition for degree-1 polynomials (See Lemma 4.1)

Var[f(X)] > > EVar[f,(Xu)|Xu),
w€Drq (p)

it suffices to prove the same statement for degree-1 polynomials of z,, with u € L, for p’ satisfying
h(p’) < ro.
Now, we fix such p’ and consider

f(x): Z Cw,ugw(xu)'

W,UGLp/

Averaging the Coefficients: For each w € W and for each u € D, (p'), we know that for any
v1,v2 € Ly,

gw(le) = §W(Xv2)
almost surely. As a consequcne, we have

Z Cw,v&w(X'u) = Z Mg\,\,(}(@)

VELy vELy, L]
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almost surely. Now, we repeat this averaging process for each w € W and for each u € D, ().

We denote the resulting function by f. While f and f may not be the same function, f(X) = f(X)
almost surely. On the other hand, f is a function which satisfies the condition in Proposition A.25.
Following from the proposition, we have

> EVar[f,(X)] < CR*EVar[f(X) | X,/] = CR*Var[f(X) | X,].
uel

The proof is complete. O

Let us begin with an intermediate step toward the proof of the Proposition A.25.

Lemma A.26. Suppose f is a function described in Definition A.23. For any given 1 <1 <1 such
that Wy :={w € W : r(w) =} is non-empty. Let u € T,y with h(u) = r(w), suppose

t= 0.
\AI/%% |Cwyul >

Then one of the following statement holds:

e BEither EVar|[(Eqy fu)(Xu) | Xpw)] > g"c]'th
\/mt
2Cy 7°

L4 maXW€W<l |CW7U‘ Z
Here, Cy > 1 is the constant C described in Proposition A.5 and mmin := minge(q) 7(0).
Further, in the case when | =0, then we simply have EVar[(E, f,)(Xy) ]Xp(u)] > CiotQ.

Proof. We decompose (E, f,,)(z) into three components:

(]Eufu)(x) = Z Cw,ug + Z Cw ug + Z Cw ug

w i (w) <l w i (w)=l (w)>1

where f\svl) is introduced in Remark A.6.
For each w with r(w) > [, &(j) (X,) is a function of X, with v = p" ™ ~!(u). Hence, the last com-
ponent >, .. q)>i cw,u&(j) (z.) is a constant function whenever we condition on X, (,). Consequently,

(1) EVar[(E.f)(X) | X)) =EVar| Y @ (X)+ Y cuntP(X) | X0

wer(w) <l wor(w)=l
From Proposition A.5, we know that
(112) EVar| 3 cunfd) (X)) | Xpw)] > i
W=l N TG

where the constant Cj is the constant C' stated in the Proposition. Intuitively, from (112) it should
be clear that if the R.H.S. of (111) is small, then EVar{ZW r(w)<l cw,u&(j)(Xu) ‘ Xp(u)} cannot be

small. Let us derive this with a coarse estimate.
By (112), we know there exists 6 € [g] such that

l t2
Var[ Z Cw,ugq(u)( ) p(u) o 9] CO

w i (w)=l
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Now, suppose Var{zw:r(w) <l cw,u&(Ul)(Xu) ‘ Xp) = 9} < %. We could apply triangle inequality
to get

Var[ Z Cw u§ + Z Cw ufw U) ‘ XP(“) = 0}

w i (w) <l w i (w)=l
> (Var[ Y cuutl () [ X = 0] = [Var[ D cwutl (Xu) | Xy = 0]
wr(w)=l w i (w) <l
t
201/2’

and together with (111),
EVar[(Ey fu) (Xu) | Xpa) 27(0)Var] > cwutD(X0) + Z €D ( u)‘Xp(u)}

w o (w) <l w i (w)=l
Tmin ,2

[
—2C)
Consider the opposite case where Var{zw:r(w)d cw,u&(lf)(Xu) ‘ Xp(u) = 0} > %. First,

EVar| > cuutld(X0)

wr(w) <l

Tmin ,2
Xy = 0] > e

By applying the 4th property stated in Proposition A.5, we conclude that

In the case when [ = 0. The argument is simpler, which follows directly from (111) and the

Proposition A.5.
O

Proof of Proposition A.25. Let tg = maXw,ueL,, |cw,u| and let w' € W and v’ € L be the pair such
that to = |cw | Further, let [y = r(w') and ug = p! ().

If Iy > 0, then we have

‘CW/,’U,()| = Z |cw’,v‘ > ’CW/,’U/| = th
VE Ly,

where the first equality follows from the assumptions of the coefficients. We will try to construct a
sequence of triples (I, tx, ux) indexed by k such that (Ij)x>0 is strictly decreasing such that W;, # 0,
h(ug) = l, and t = maXwew,, | Cw,uy, |-

Suppose we have a triple (I, tj, ui) such that i, > 0, h(ug) = I, W, # 0, and t, = maXywew,, | Cw,uy |
for some index k£ > 0.

We apply Lemma A.26 to get

(1) Either EVar[(Ey, fu,)(Xu,) | Xpuy)] > Sant;, or

(2) mMaXweW ., |Cw,ug | > VQ%*(‘;“ tr. (This case cannot happen if ¢, = 0.)

If the first case is true, then we terminate the process of finding next triple ({xy1,tx11, Ugt1)-
If the second case is true, let w” € W be the vertex such that |cyr ,, | = maXwew_,, |Cw,u, | and

Cwouy, = E Cw,us

u€Dy, , (ur)
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we have

1

(113) 1= g, gy vl 2 R 1w = Rt

Further, let w1 = argmax,cr, nw)=t,,, |Cw,ul-

In this way, we produce a new triple satisfying the same assumption as (I, ¢, ur) described
above.

Since lyp > Iy > ly... is a monotone decreasing chain of non-negative number, it means this
argument must terminated in rg steps. Now, suppose it terminates at the k-th step, resulting a
triple (I, tg, ug), and

Tmin ,2 (113) Tmin 4/ Tmin —270,9
EVar [(Bu, fu,) (Xu) | Xpy)] = 30,k 2 276’0( 5C, Rd) ""t;.

On the other hand, from Proposition A.5,
> Var[fu(Xy,)] < CRA™t5.

uELp/
Therefore, we conclude that

> Var[fu(Xy,)] < C(M,d)R** M EVar[f(X) | X,/].

UELP/

APPENDIX B. PROPERTIES OF MARKOV CHAINS AND GALTON-WATSON TREE

B.1. Markov Chains.

Proof of Lemma 4.6. Let 01 = argminge(gh(0) and 0, = argmaxye(h(6). (In the case of a tie, we
may choose any of the minimizers or maximizers.) First, we have

Var(h(X,)] < (h(82) = h(61))*.
Next, for any (3 € [¢], we have
mas {[EIH(X,) | Xy = 6] — (O], [EI(X) | Xy = 5]~ (8]} > 51h(62) — h(61)]

Let i € {1,2} be the index such that [E[h(Xy) | Xy = B] — h(6:)] > 2|h(62) — h(61)], and we will
use this together with cp; > 0 to give a lower bound on the conditional variance:

2
Var[h(Xu) ’Xp(u) = 6] Z(E[h(Xu) |Xp(u) = ﬁ] - h(ai)) P{Xu =0; | Xp(u) = /3}
1
> ((02) = h(01)enr.
Since it holds for every § € [g], we conclude that

EVar[h(X,) | Xp(] > i(h(eg) — h(61))2c > CTMVar[h(Xu)].
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B.1.1. Proof of Lemma 2.2. Recall that real Jordon Canonical form of M is a g x ¢ diagonal block
matrix J = diag(Jo,J1,...,Js, ) for some s; < g.

Since M is ergodic, the eigenspace corresponds to eigenvalue 1 is 1-dimensional. Thus, We may
assume Jo = [1] is the unique Jordan block corresponds to eigenvalue 1.

As 1
For each s € [1,s1], Js is either a mg X m, matrix of the form J, = As for some
1
As
MsRs 1o
e . . AsRs
As € Rsatisfying |Ag| < A; ora Js is a 2mg X 2m, matrix of the form J5 = ,
. I
As Ry

cos(fs)  sin(fs)
—cos(fs) sin(6s)
(0,27). In the later case, it corresponds to the conjugate pair of eigenvalues As(cos(6s) £ isin(fs))
According to Jordon Decomposition, there exists an invertible matrix P such that M = PJP~1.
For i € [1,q — 1], let ¢; be the i + 1th column of P. Because P is invertible, {¢;};c[q form a
linear basis of functions from [¢] to R.
Since 7 is a left-eigenvector of M with eigenvalue 1, we have

Eyrti(Y) =7 ¢ =0,

because ¢; is a sum of up to two generalized eigenvectors with eigenvalues not equal to 1.
(A generalized eigenvector v with eigenvalue ) of M is a vector which satisfies (M — X )¥v =0
for some positive integer k. Whenever X # 1,

where [As| < A, and Rs; =

is a rotation matrix in R? with parameter 0, €

1 1 -
7TT’U = (mWT(M — )\/)k)v = mﬂ'—r . 0 = 0

If index ¢ corresponds to Js; which associated with a real eigenvalue, then ¢; is a generalized
eigenvector with eigenvalue \s; And if J; associates with a complex conjugate pair or eigenval-
ues, then ¢; is a sum of two generalized eigenvectors with eigenvalues As(cos(fs) + isin(fs)) and
As(cos(8s) —isin(fs)), respectively. ) As a consequence, every function f : [¢] — R can be uniquely
decomposed in the form

(114) f=Ef+ Y &

i€[g—1]

With this unique decomposition, let us define a semi-norm
[fllar = max |3;].
i€[g—1]
Lemma B.1. There exists C > 0 so that for every f : [q] — R,
(115) CHIFIR, < Varywr(f(Y)) < CIfII3s-
Proof. Without lose of generality, let f = 3Z;cjp 4 dichi, since both || f[[ar and Vary..-(f(Y)) are

invariant under a constant shift. .
Let D, = diag(mi,...,m,). Also, let § = (0,0d2,...,d,). Then,
£l =16l and Vary wr(f(Y)) =0 PT D, P5.
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Let Smax and spmin be the maximum and minimum singular value of PTDWP, respectively. Together
with q_1/2||5\|2 < [[d]loo < |0]|2, We have

(116) SmindIFI3r < stuimd ™ 10113 < Varyr (F(Y)) < spaxll6llf < st FlI3s-

If Smin > 0, then we can complete the proof by taking C = max{s2,.,q/s2;,}. It remains to
show that smin > 0, or equvialently PT D, P is invertible. Because M is ergodic, each entry of 7
is positive, and thus D, is invertible. Hence, P' D, P is invertible because it is a product of three
invertible matrices.

O
Lemma B.2. There exists C > 0 so that for every f : [q] — R,
(117) CHSar < If = Bynn f(V)]loo < Cllfllar-
Proof. This simply follows from both || f||as and || f —Ef||s are both norms on the finite dimensional
space {f:[¢g] = R : Ey . f(Y) =0} O
Lemma B.3. There exists C > 1 depending on M such that For any function f : [q] — R and
keN,
(118) IM* fllar < CRINF|| £l

Remark B.4. Notice that M¥f can be interpreted as

E[f(Xu) | Xpry = 1] = (M*£)(0),
for every u € T where p¥(u) is well-defined.
Proof.

(119) IME fllar =1PIECY diea)llar = 13 D diei)lloc- < g max [|6;]] max [J7
ield = e

Notice that J* is the diagonal block matrix whose blocks J* for s € [s1]. The block J* can be
computed directly: In the case when J corresponds to a complex conjugate pair of eigenvalues,

NERE (ASTIREL ()bt Rhomat]
k pk :
(120) J’;: AR :
k\yk—1 pk—1
Ay RS
(1) oy

where we treat (7]?) = 0 if r > k. It can be verified directly by induction, relying on the identity
(,F) + (¥) = ("), Further, removing the Rj terms in the above equation we obtain the formula

for J¥ when J, corresponds to a real eigenvalue.
Therefore, with (];) < k9, |NL| < A", and max; j R, < 1 for r > 1, we obtain the bound

Sij

(121) max max |(JsF);;| < CRINF,
s€[2,q] 4,5€q]

where C” is a constant which depends on g and .
Now we substitute the above bound into (119) to get

IM* fllar < gC RN f |-
The proof is completed by taking C = qC".
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Proof of Lemma 2.2. The proof of Lemma 2.2 follows from the || - ||as decay from Lemma B.3 and
that both Var[f] and ||f — Ef|lec are comparable to || f||as within a constant multiplicative factor
(Lemma B.1 and Lemma B.2). O

7
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