
CAPACITY THRESHOLD FOR THE ISING PERCEPTRON
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Abstract. We show that the capacity of the Ising perceptron is with high probability upper bounded by the

constant 
‹ « 0.833 conjectured by Krauth and Mézard, under the condition that an explicit two-variable

function ÿ‹p�1 ,�2q is maximized at p1, 0q. �e earlier work of Ding and Sun [DS18] proves the matching

lower bound subject to a similar numerical condition, and together these results give a conditional proof of

the conjecture of Krauth and Mézard.
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1. Introduction

�e Ising perceptron was introduced in [Wen62, Cov65] as a simple model of a neural network. Math-

ematically, it is an intersection of a high-dimensional discrete cube with random half-spaces, de�ned as

follows. Fix any � P ℝ (our main result is for � < 0). For Ċ ě 1, let ΣĊ < t˘1uĊ , and let ĝ1 , ĝ2 , . . . be a
sequence of i.i.d. samples fromNp0, ąĊq. For ĉ ě 1, the Ising perceptron is the random set

ďĉĊ <
"
Į P ΣĊ :

xĝ ė , Įy?
Ċ

ě � @1 ď ė ď ĉ

*
. (1)

As explained in [Gar87], ďĉ
Ċ

models the set of con�gurations of synaptic weights in a single-layer neural

network that memorize all ĉ pa�erns ĝ1 , . . . , ĝĉ . De�ne the random variable ĉĊ < ĉĊp�q as the

largestĉ such that ďĉ
Ċ

‰ H. �en, the capacity of this model is de�ned as the ratioĉĊ{Ċ , and models

the maximum number of pa�erns this network can memorize per synapse.

Krauth and Mézard [KM89] analyzed this model using the (non-rigorous) replica method from statis-

tical physics. �ey conjectured that as Ċ Ñ 8, the capacity concentrates around an explicit constant
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9 < 
9p�q, which is approximately 0.833 for � < 0 and is formally de�ned in Proposition 3.2 below.1

�is was part of a series of works in the statistical physics literature [Gar87, GD88, Gar88, KM89, Méz89]

which analyzed various perceptron models using the replica or cavity methods and put forward detailed

predictions for their behavior. In particular, [KM89] provided a conjecture for the limiting capacity of the

Ising perceptron, while [GD88] gave an analogous conjecture for the spherical perceptron, where the spins

Į belong to the sphere tĮ P ℝĊ : }Į} <
?
Ċu instead of ΣĊ .

Ding and Sun [DS18] proved that 
9 is a rigorous lower bound for the capacity, subject to a numerical

condition that an explicit univariate function is maximized at 0.

�eorem 1.1. [DS18, �eorem 1.1] Under Condition 1.2 therein, the following holds for the � < 0 Ising

perceptron. For any 
 ă 
9, lim infĊÑ8 9pĉĊ{Ċ ě 
q ą 0.

Furthermore, [Xu21, NS23] showed that the capacity has a sharp threshold sequence, thereby improving

the positive probability guarantee of �eorem 1.1 to high probability. Our main result is a matching upper

bound for the capacity, subject to a similar numerical condition.

�eorem 1.2. Under Condition 1.3 below, the following holds for the � < 0 Ising perceptron. For any 
 ą 
9,
limĊÑ8 9pĉĊ{Ċ ě 
q < 0.

Condition 1.3. �e function ÿ9p�1 ,�2q de�ned in (8) satis�es ÿ9p�1 ,�2q ď 0 for all �1 ,�2 P ℝ.

See §2.6 for a discussion of this condition. In particularÿ9p1, 0q < 0 is a local maximum, and numerical

plots suggest it is the unique global maximum.

�eorem 1.2 is a consequence of the more general �eorem 3.6, which states that 
9p�q upper bounds
the capacity for general �, under a number of numerical conditions depending on �. �e most complicated

of these is Condition 1.3, and we derive �eorem 1.2 by verifying the remaining conditions when � < 0.

�is computer-assisted veri�cation is described in Appendix B and carried out in the a�ached Python 3

�le using python-flint, a rigorous library for interval arithmetic.

1.1. Related work. For the spherical perceptron, the capacity threshold of [GD88] has been proved rig-

orously for all � ě 0 [ST03, Sto13a]. (See also [Sto13b] for some work on the � ă 0 case.) �ese works

exploit the fact that the spherical perceptron with � ě 0 is a convex optimization problem. �e Ising

perceptron does not have this property, and our understanding of it is comparatively less complete. �e

replica heuristic also gives a prediction for the free energy of a positive-temperature version of this model

[GD88, KM89], which was veri�ed by [Tal00] at su�ciently high temperature using a rigorous version of

the cavity method. �e works [KR98, Tal99] showed that for the � < 0 perceptron, there exists � ą 0 such

that � ď ĉĊ{Ċ ď 1 ´ � with high probability. �e breakthrough work of Ding and Sun [DS18] showed

that 
9 lower bounds the capacity for the � < 0 perceptron, conditional on a numerical assumption. Very

recently, [AT24] showed that 0.847 is a rigorous upper bound for the capacity in this model. Recent works

have also shown the replica-symmetric formula for the free energy at low constraint density in generalized

perceptron models [BNSX22], existence of a sharp threshold sequence [Xu21, NS23], and universality in

the disorder [NS23]. We also mention the works [AS22, MZZ24] on algorithms for the negative spherical

perceptron.

Another recent line of work originating with [APZ19] studied the symmetric binary perceptron,

where the constraints in (1) are replaced by |xĝ ė , Įy|{
?
Ċ ď �. Symmetry makes this model signi�cantly

more tractable (see §2.1 for more discussion); a series of remarkable works have established the limiting

1[KM89] studied a model with Bernoulli disorder, i.e. where the ĝė
ğ
are i.i.d. samples from unifp˘1q rather than Np0, 1q. As

[NS23] shows this model’s sharp threshold sequence is universal with respect to any subgaussian disorder, we may work with

gaussian disorder for convenience.
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capacity [PX21, ALS22b], “frozen 1-RSB” structure [PX21], lognormal limit of partition function [ALS22b],

and critical window [Alt23, SS23], and shed light on the performance of algorithms [ALS22a, GKPX22,

GKPX23, BAKZ23].

1.2. Notation. While we introduce other parameters over the course of the proof, unless stated otherwise

we send Ċ Ñ 8 �rst, treating the remaining parameters as small or large constants. �us, we use ĥĊp1q
to denote a quantity vanishing with Ċ , while notations like ĥ�p1q denote quantities independent of Ċ

tending to zero as the subscripted parameter tends to 0 or 8 (which will be clear from context). We say

an event occurs with high probability if it occurs with probability 1 ´ ĥĊp1q. Further notations will be
introduced in §4.1, before the main body of proofs.

Acknowledgements. I would like to thank Mehtaab Sawhney for pointing me to the reference [GZ00],

and Will Perkins, Mehtaab Sawhney, Mark Sellke, and Nike Sun for helpful feedback on the manuscript. I

am also grateful to Andrea Montanari and Huy Tuan Pham for a collaboration that inspired parts of this

work. �anks to Saba Lepsveridze for a helpful and motivating conversation. �is work was supported by

a Google PhD Fellowship, NSF CAREER grant DMS-1940092, and the Solomon Buchsbaum Research Fund

at MIT.

2. Further background and proof outline

�is section contains a technical overview of the paper, and is organized as follows. In §2.1, we review

the AMP-conditioned moment method used in [DS18] to prove the capacity lower bound and discuss the

main di�culties of proving the upper bound. In §2.2, we outline a new approach based on reducing to a

planted model and argue that if three primary inputs (R1), (R2), (R3) hold, then the upper bound reduces to

a tractable moment computation. §2.3 discusses the most di�cult input (R1), and §2.4 discusses the more

straightforward inputs (R2) and (R3). §2.5 discusses related work involving planted models. Finally, §2.6

heuristically carries out the aforementioned moment computation, explains how Condition 1.3 emerges

from it, and gives numerical evidence for Condition 1.3 when � < 0.

2.1. AMP-conditioned moment method. A natural approach to studying the limiting capacity is the

moment method. Let ĉ < 
Ċ , and let ă P ℝĉˆĊ have rows ĝ1 , . . . , ĝĉ . �en let ďĊpăq < ďĉ
Ċ

(recall

(1)) andĖĊpăq < |ďĊpăq|. IfĀrĖĊpăqs ! 1, then ďĊpăq is w.h.p. empty, and ifĀrĖĊpăq2s{ĀrĖĊpăqs2
is bounded, then ďĊpăq is nonempty with positive probability. If these two estimates hold for (respec-

tively) 
 < 
9 ` � and 
 < 
9 ´ �, for any � ą 0, this shows the limiting capacity is 
9.
Let ģ9păq < 1

|ďĊ păq|
ř

ĮPďĊ păq Į denote the barycenter of the solution set ďĊpăq. For models where

ģ9păq < 0, such as the symmetric binary perceptron [APZ19, PX21, ALS22b], this two-moment anal-

ysis o�en su�ces to determine the limiting capacity. However, due to the asymmetry of the activation

in the present model, ģ9păq is typically macroscopic and random. It is expected that for any 
 ą 0,

large-deviations events in the location of ģ9păq dominate the �rst and second moments. �us ĖĊpăq is
typically exponentially smaller than ĀrĖĊpăqs, and ĀrĖĊpăqs2 exponentially smaller than ĀrĖĊpăq2s,
which causes the moment method to fail. For example, for the � < 0 perceptron, 1

Ċ logĀrĖĊpăqs crosses
zero at 
 < 1, larger than 
9p0q « 0.833.

To overcome this di�culty, [DS18] and [Bol19] (the la�er for the Sherrington–Kirkpatrick model) con-

currently developed a conditional moment method, in which one conditions on a suitable proxy forģ9păq
before computing moments. �e conditioning step e�ectively recenters spins around ģ9păq, a�er which
the moment method can potentially succeed.

�e choice of conditioning is motivated by the TAP heuristic [TAP77] from statistical physics, which

provides a powerful but non-rigorous framework to study this and other mean-�eld models. �e central
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object in this framework is a TAP free energy ℱTAPpģ , Ĥq, which is de�ned in (15) and can be thought of

as a mean-�eld (dense graph) limit of the Bethe free energy of an appropriate message-passing system. It is

expected that ℱTAP has a unique stationary point pģ , Ĥq P r´1, 1sĊ ˆℝĉ , with the following interpreta-

tion: ģ approximates the barycenterģ9păq of ďĊpăq, and for each ė P rĉs, Ĥė approximates a function

of the average slack of the constraint xĝ ė , Įy{
?
Ċ ě � over solutions Į P ďĊpăq.2 It is also predicted

that ģ and Ĥ have speci�c coordinate pro�les: for pħ9 ,#9q de�ned as the �xed point of a scalar recursion
(see Condition 3.1) and Ă < Ă1´ħ‹

as in (13), the prediction is that the coordinates of 9Ğ < th´1pģq and
pĞ < Ă´1ppĞq have empirical distribution approximatingNp0,#9q andNp0, ħ9q.3

An important fact we will exploit is that for �xed pģ , Ĥq, the stationarity condition ∇ℱTAPpģ , Ĥq < 0

can be wri�en as two linear equations ină. �ese are the TAP equations, de�ned in (16). Using this fact,

we can de�ne a planted model, which plays an important motivational role in [DS18, Bol19]: we �rst

chooose pģ , Ĥqwith aforementioned coordinate pro�le, and then sampleă conditional on∇ℱTAPpģ , Ĥq <
0. (�is is di�erent from the more well-known notion of planted model introduced in [AC08], in that we

are planting a TAP �xed point rather than a satisfying assignment; see §2.5 for further discussion.)

If we imagine for a moment that ă were sampled from this planted model, then the moment method

becomes tractable. In this model, the law of ă conditional on pģ , Ĥq remains gaussian because the TAP

equations are linear in ă, and the conditional �rst and second moments of ĖĊpăq can be computed. �ey

amount to tractable ċp1q-dimensional optimization problems: for example, computing ĀrĖĊpăq|ģ , Ĥs
amounts to optimizing the exponential-order contribution to the �rst moment from subsets of ΣĊ de�ned

by their inner products with ģ and 9Ğ (see §2.6 for details). �e planted model removes the main di�culty

of the macroscopically-�uctuating barycenter, giving the moment method a chance to succeed.

However, this planted model is di�erent from the true model, in which the TAP solution pģ , Ĥq de-

pends on ă in a complicated way. It is a priori unclear that these can be rigorously linked, because

in the true model both existence and uniqueness of the TAP solution are not known. To carry out this

approach, [DS18, Bol19] instead condition on a sequence of approximate message passing (AMP) it-

erates pģ0 , Ĥ0 , . . . ,ģġ , Ĥġq whose dependence on ă is explicit. �e AMP iteration was introduced in

[Bol14, BM11], and is de�ned (roughly speaking, see (17)) by iterating the TAP equations. Its behavior can

be understood through the powerful state evolution description of [Bol14, BM11, JM13, BMN20]: for any ġ

not growing with Ċ , state evolution exactly characterizes the limiting overlap structure of pģ0 , . . . ,ģġq
and pĤ0 , . . . , Ĥġq. Using this description, it can be shown that the AMP iterates converge to an approximate

stationary point of ℱTAP:

lim
ġ1 ,ġ2Ñ8

p-lim
ĊÑ8

Ċ´1{2}pģġ1 , Ĥġ1q ´ pģġ2 , Ĥġ2q} < lim
ġÑ8

p-lim
ĊÑ8

Ċ´1{2}∇ℱTAPpģġ , Ĥġq} < 0. (2)

Here p-lim denotes limit in probability. It is in this sense that the AMP iterates are a proxy for pģ , Ĥq.
While themain advantages of conditioning on the AMP �ltration are explicit dependence onă and state

evolution, the main disadvantage is the greater complexity of the resulting moment calculation. Although

the law of ă conditional on pģ0 , Ĥ0 , . . . ,ģġ , Ĥġq remains gaussian, the conditional �rst and second mo-

ments of ĖĊpăq are now ċpġq-dimensional optimization problems, in which one optimizes over subsets

2More generally, the statistical physics literature predicts that the Gibbs measure — here, the uniform measure on ďĊ păq —

decomposes as a convex combination of well-concentrated “pure states,” whose barycenters each approximate a stationary point

of the TAP free energy [MPV87]. �e present model is expected to be replica symmetric, meaning the entire Gibbs measure is

one pure state.
3Here and throughout, nonlinearities such as th´1 and Ă´1 are applied coordinate-wise.
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ofΣĊ de�ned by their inner products withģ0 , . . . ,ģġ and related vectors. �ese problems are not in gen-

eral tractable. We note that [Bol19, BNSX22] successfully carry out this optimization in their respective

se�ings, but only at su�ciently high temperature or low constraint density.

An important insight of [DS18] is that this approach still gives a tractable proof of the capacity lower

bound, because — to show a lower bound for ĖĊpăq — one may truncate ĖĊpăq before computing mo-

ments. �ey construct a truncation rĖĊpăq of ĖĊpăq, restricting (among other conditions) to Į P ΣĊ

with prescribed inner products with ģ0 , . . . ,ģġ . �e conditional �rst moment of rĖĊpăq is then explicit,

while the conditional second moment becomes a 1-dimensional optimization. [DS18] shows that (under

the aforementioned numerical condition) ĀrrĖĊpăq2s{ĀrrĖĊpăqs2 is bounded for any 
 ă 
9, which
implies the capacity lower bound.

We mention that [BY22, BNSX22] carry out similar truncated second moment arguments in their re-

spective se�ings, and the former improves the parameter regime where the method of [Bol19] obtains the

replica symmetric free energy lower bound for the Sherrington–Kirkpatrick model.

�e main di�culty of the capacity upper bound is that truncation is no longer available. Without it,

proving the capacity upper bound within the AMP-conditioned moment method would require solving

the above ċpġq-dimensional optimization problem, which does not appear to be tractable.

2.2. Approximate contiguity with planted model. Our proof revisits and justi�es the planted model

heuristic described above, where we select pģ , Ĥq with appropriate coordinate pro�le and generate ă

conditional on ∇ℱTAPpģ , Ĥq < 0. We will show that the true model is approximately contiguous to the

planted model, in the sense of (3) below. So, rather than conditioning on the AMP �ltration, we can

condition directly on pģ , Ĥq a�er all. �e conditional �rst moment of ĖĊpăq then reverts to a simple

optimization in two, rather than ċpġq, dimensions. �is makes the capacity upper bound tractable.

�e idea of passing by contiguity to a model with a planted TAP solution is also used in simultaneous

joint work with A. Montanari and H. T. Pham [HMP24], on sampling from the Gibbs measure of a spherical

mixed Ħ-spin glass in total variation by an algorithmic implementation of stochastic localization [Eld20,

AMS22]. A similar inequality to (3) appears as Proposition 4.4(d) therein. However, these two papers di�er

in both how this reduction is used, and how it is proved. While [HMP24] develops a reduction similar

to (3), its main focus is to compute a high-precision estimate for the mean of a Gibbs measure, and the

reduction to a planted model arises as a step in the analysis of this estimator. In the present paper, the

reduction (3) is itself the main technical step, but the proof of it is also more challenging. Most notably, a

key ingredient in the proof of (3), in both the present paper and [HMP24], is the uniqueness of the TAP

�xed point in a certain region, see (R1) below. Whereas this ingredient is available in the spin glass se�ing

of [HMP24] from known results, showing it in our se�ing requires new ideas, described in detail in §2.3.

We now state the approximate contiguity estimate. For small  ą 0, let S denote the set of pģ , Ĥq
whose coordinate pro�le is  -close (in a suitable metric, see (27)) to that predicted by the TAP heuristic.

We will show, roughly speaking, that there exists ÿ < ċp1q such that for any ă-measurable event1,

9p1q ď ÿ sup
pģ ,ĤqPS 

9p1|∇ℱTAPpģ , Ĥq < 0q1{2 ` ĥĊp1q. (3)

Remark 2.1. For reasons described below, we actually prove (3) for perturbations ℱ �
TAP, S�, of ℱTAP, S ,

and this quali�cation holds for the entire discussion below, even where not stated. �ese perturbations are

de�ned in (24) and (27), and the formal version of (3) is given in Lemma 3.8.

We then take1 < tďĊpăq ‰ Hu. �e �rst moment bound will show that (under Condition 1.3) this

event has vanishing probability in the planted model for any 
 ą 
9. �en (3) implies the conclusion.
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Next, we discuss the proof of (3). �e following two central ingredients establish uniqueness and exis-

tence of the critical point of ℱTAP within the set S , with high probability in the true model.

(R1) �e expected number of critical points of ℱTAP in S is 1 ` ĥp1q.
(R2) With high probability, there exists a critical point of ℱTAP in S .

Remark 2.2. Although the TAP perspective predicts ℱTAP has a unique critical point in the full input

space, uniqueness in S (and for the perturbed ℱ �
TAP) su�ces for our proof.

A short argument based on the Kac–Rice formula [Kac48, Ric44] (see [AT09,�eorem 11.2.1] for a textbook

treatment) shows that (3) follows from (R1), (R2), and the following additional input, which is a concentra-

tion condition on the change of volume term | det∇2ℱTAPpģ , Ĥq| in the Kac–Rice formula. �is argument

is carried out in the proof of Lemma 3.8, see (33).

(R3) �ere exists ÿ1 < ċp1q such that uniformly over pģ , Ĥq P S ,

Ār| det∇2ℱTAPpģ , Ĥq|2
ˇ̌
∇ℱTAPpģ , Ĥq < 0s1{2 ď ÿ1

Ār| det∇2ℱTAPpģ , Ĥq|
ˇ̌
∇ℱTAPpģ , Ĥq < 0s.

Remark 2.3. Since the probability in (3) is exponentially small, the proof can be carried out with ěĥpĊq in
place of ÿ in (3). Consequently, showing (R1) and (R3) with ěĥpĊq in place of 1 ` ĥp1q, ċp1q also su�ces.

Input (R2) is proved constructively, by showing that AMP �nds a critical point in the following sense.

(R4) �ere exists Ĩġ < ĥġp1q such that with high probability, ℱTAP has a unique critical point in a

Ĩġ
?
Ċ-neighborhood of the AMP iterate pģġ , Ĥġq (which lies in S by state evolution), for each

su�ciently large ġ.

Input (R3) will follow from a classic spectral concentration argument of [GZ00]. We next discuss the proofs

of (R1), (R4) and (R3), in that order.

2.3. Topological trivialization of TAP free energy. Condition (R1) is the most important input to the

proof of (3). It is related to a remarkable line of work pioneered by [Fyo04, ABČ13], on the landscapes

of random high-dimensional functions. �is line of work has obtained expected critical point counts in

a variety of se�ings, including spherical Ħ-spin glasses [AB13, ABČ13] (see [Sub17, AG20, SZ21, BSZ20,

HS23a] for matching second moment estimates in certain cases) spiked tensor models [BMMN19, ABL22],

the TAP free energy for ℤ2-synchronization [FMM21, CFM23], bipartite spin glasses [Kiv23, McK24], the

elastic manifold [BBM24], and generalized linear models [MBB20]. We also refer the reader to earlier

non-rigorous work on this topic from the statistical physics literature [BM80, PP95, CLR05].

One phenomenon studied in these works is topological trivialization [FL14, Fyo15, BČNS22, HS23b],

a phase transition where the number of critical points drops from ě ęĊ to ěĥpĊq, or o�en ċp1q. Proving
(R1) amounts to showing annealed topological trivialization for ℱ �

TAP on S�, .

�e strategy of these works is to calculate the expected number of critical points using the Kac–Rice

formula, evaluating the integrand using random matrix theory. Usually, the most complicated term in the

integrand is the expected absolute value of the determinant of a randommatrix. �emost well-understood

application is where the landscape is a spherical mixed Ħ-spin glass, in which case this random matrix is a

GOE shi�ed by a scalar multiple of the identity. For this case, an exact formula for this expected absolute

determinant is known, see [ABČ13, Lemma 3.3]. �ismakes the Kac–Rice calculation explicit and tractable.

In particular, [Fyo15, BČNS22] use this approach to determine the topologically trivial phase of spherical

mixed Ħ-spin glasses, and [HMP24] uses these results to establish (R1) for its application. However, for

other models, results on topological trivialization are not as readily available.

It may still be possible to show (R1) for our model in this way, by evaluating the more general random

determinant that appears in the Kac–Rice formula. �is is the approach taken by [FMM21] which, for
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ℤ2-synchronization at su�ciently large signal, shows annealed trivialization of suitably low-energy TAP

solutions. �eir method bounds the random determinant in the Kac–Rice formula using free probability

[Voi91]. Furthermore, [BBM22] introduced a general tool for studying random determinants, showing

that under mild conditions, their exponential order is the integral of log |�| against the random matrix’s

limiting spectral measure. �e spectral measure can then be studied using free probability.

Using this approach, one can o�en express the exponential order of the expected number of critical

points as a variational formula, in which one term is an implicitly-de�ned function arising from free prob-

ability [Kiv23, HS23b, BBM24, McK24]. �is yields a plausible way to show (R1): if we can show the

variational formula for our model has value zero, annealed trivialization follows (in the sense of ěĥpĊq

expected critical points, which su�ces by Remark 2.3). Recently, [HS23b] showed that this method can

be carried out for multi-species spherical spin glasses, and it in fact characterizes the topologically trivial

phase. Nonetheless, the variational formula is highly model-dependent — the proof in [HS23b] relies on

a detailed understanding of a vector Dyson equation — and it is unclear if this method can be carried out

for our model.

We instead show annealed topological trivialization by a di�erent, and arguably more conceptual, ap-

proach. We will show that (R1) follows from the following variant of (R4):

(R5) In amodelwherewe plant a stationary point pģ , Ĥq P S�, ofℱ
�
TAP (i.e. condition on∇ℱ

�
TAPpģ , Ĥq <

0), the same AMP iteration �nds pģ , Ĥq, in the sense of (R4), with high probability.

�is implication is proved in Lemma 4.15. Heuristically, the reason (R5) implies (R1) is that any realization

of the disorder where ℱ �
TAP has Đ ą 1 stationary points inS�, can arise in Đ di�erent planted models, and

the event in (R5) can hold in only one of these Đ realizations. If the expected number of critical points is

too large, (R5) cannot occur with the stated probability. �e input (R5) can be proved by similar methods

as (R4), as described in the next subsection. �is method yields the �rst proof of topological trivialization

that does not directly evaluate the Kac–Rice formula. We believe this is interesting in its own right.

2.4. Critical point near late AMP iterates and determinant concentration. �is subsection dis-

cusses inputs (R4), (R5), and (R3), in that order. As state evolution ensures }∇ℱTAPpģġ , Ĥġq} < ĥġp1q
?
Ċ

(recall (2)), (R4) holds if, for example, ℱTAP is ÿ-strongly concave in a neighborhood of late AMP iterates

for ÿ ą 0 independent of ġ. Recent works in the variational inference literature [CFM23, CFLM23, Cel24]

develop tools to establish this local concavity, and using them prove analogs of (R4) in several models.

In our se�ing, the fact that ℱTAP is not strongly concave near late AMP iterates introduces some com-

plications. In fact, ℱTAP is strongly concave in ģ, but convex — and problematically, not strongly convex

— in Ĥ. �is issue is one reason we carry out the argument on a perturbation ℱ �
TAP of ℱTAP, and a sim-

ilarly perturbed AMP iteration and set S�, . (�is perturbation serves several other purposes as well,

described in Remark 4.5.) We will show that near late AMP iterates, ℱ �
TAP is strongly convex in Ĥ and

G�
TAPpģq = infĤ ℱ

�
TAPpģ , Ĥq is strongly concave, which is enough to imply (R4). Strong convexity of

ℱ �
TAP in Ĥ holds (deterministically) essentially by construction.

Our proof of local strong concavity of G�
TAP uses an idea introduced in [Cel24], to bound the Hessian

at a late AMP iterate by applying a gaussian comparison inequality conditionally on the AMP iterates.

[Cel24] considers a se�ing where AMP is performed on disorderē > GOEpĊq and the relevant Hessian
is of the form ý ` ē , where ý is a function of a late AMP iterate. He develops a method to upper bound

the top eigenvalue of this matrix by applying the Sudakov–Fernique inequality [Sud71, Fer75, Sud79] to

the part ofē that remains random a�er observing the AMP iterates. For us, the Hessian takes the form

∇2G�
TAPpģ , Ĥq < ý1 ` 1

Ċ
ăJý2ă ` �, (4)



8 BRICE HUANG

where ý1 ,ý2 are functions of pģ , Ĥq, and � is a low-rank term depending on both ă and pģ , Ĥq. We

can arrange ℱ �
TAP so that � does not contribute to the top eigenvalue. However, the post-AMP Sudakov–

Fernique inequality does not apply to the remaining part, because — unlike for a GOE matrix — the qua-

dratic form induced by ăJý2ă is not a gaussian process. We instead recast the top eigenvalue as a

minimax program, via the identity (for ý2 ă 0)

�max

ˆ
ý1 ` 1

Ċ
ăJý2ă

˙
< sup

} 9Ĭ}<1

inf
pĬPℝĉ

"
x 9Ĭ ,ý1 9Ĭy ´ xpĬ ,ý´1

2 pĬy ` 2?
Ċ

xpĬ ,ă 9Ĭy
*
.

�is can be bounded by Gordon’s inequality [Gor85, Gor88] conditional on the AMP iterates. Interestingly,

the bound obtained in this way is sharp, matching a lower bound for the top eigenvalue obtained by free

probability (see Remark 6.15).

�e input (R5) follows similarly to (R4). We will show that with high probability over the planted model,

late AMP iterates are approximate critical points of ℱ �
TAP, near which ℱ �

TAPpģ , ¨q is strongly convex and

G�
TAP is strongly concave. While the law of the disorder is di�erent under the planted model, it remains

gaussian and a similar analysis can be carried out.

We turn to (R3). An argument of [GZ00] implies that if a symmetric Ĕ P ℝĊˆĊ has independent

(not necessarily centered or identically distributed) entries on and above the diagonal with uniformly

bounded log-Sobolev constant, then 1?
Ċ
Ĕ enjoys a strong spectral concentration property: any 1-Lipschitz

spectral trace has ċp1q-scale subgaussian �uctuations. We will see that conditional on ∇ℱ �
TAPpģ , Ĥq < 0,

det∇2ℱ �
TAPpģ , Ĥq is a nonrandom multiple of det∇2G�

TAPpģ , Ĥq, which has form (4). �e entries of this

matrix are not independent, but we can rewrite it via the classical trick

det

ˆ
ý1 ` 1

Ċ
ăJý2ă

˙
< detĔ , Ĕ <

«
ý1

1?
Ċ
ăJ

1?
Ċ
ă ´ý´1

2

ff
. (5)

Conditional on ∇ℱ �
TAPpģ , Ĥq < 0, the matrices ý1 ,ý2 are nonrandomwhileă has a (noncentered) gauss-

ian law. �us the result of [GZ00] applies to Ĕ . (A slightly more elaborate version of (5) also accounts for

the random low-rank spike � in (4), see (76).)

From the above discussion, conditional on ∇ℱ �
TAPpģ , Ĥq < 0, ℱ �

TAPpģ , ¨q is strongly convex near Ĥ

and G�
TAP is w.h.p. strongly concave near ģ. �is implies that the spectrum of ∇2ℱ �

TAPpģ , Ĥq, and thus

Ĕ , is bounded away from zero, and provides the �nal ingredient to prove (R3): since Į ÞÑ log |Į| is
ċp1q-Lipschitz away from zero, log | detĔ | is approximately a ċp1q-Lipschitz spectral trace, which has

ċp1q-scale subgaussian �uctuations by [GZ00].

Remark 2.4. �e fact that this log determinant has ċp1q-scale �uctuations is only possible because the

spectrum is bounded away from zero. For Wigner or Ginibre matrices, two examples of random matri-

ces whose limiting bulk spectrum does include zero, the log determinant is known to have Θp
a
logĊq

�uctuations [TV12, NV14], which diverges with Ċ .

2.5. On planted models. Reducing to a planted model is a powerful tool in the analysis of random func-

tions. �is technique was introduced in the seminal work [AC08] and has seen a wide range of applications

in the past decade. �e underlying idea is to show contiguity of the original model with a planted version,

de�ned as the null model conditioned on having a particular (randomly chosen) solution. If this holds,

properties of the null model can be deduced from the planted version, which is o�en easier to analyze.

A frequent application of this method is to probe the local landscape around a typical solution. �is

is the original application of [AC08]: contiguity implies that the landscape around a typical solution to

the null model can be approximated by the landscape around the planted solution in the planted model.

From this, [AC08] shows the existence of a sha�ering transition in several random constraint satisfaction
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problems. �is approach has since also been used to show “frozen 1RSB” structure in the symmetric binary

perceptron [PX21, ALS22b] and sha�ering in the Gibbs measures of spherical spin glasses [AMS23b]. In a

similar spirit, [HMP24] passes to a model with a planted TAP solution to obtain a high-precision estimate

of the magnetization of a spherical spin glass.

In other applications, including the present work, the object of interest is not the local landscape, but

the planted model is nonetheless simpler to analyze than the null model. Such applications include the RS

free energy of random constraint satisfaction problems [BC16, BCH`16, CKPZ17, CEJ`18, CKM20], the

1RSB free energy of random regular NAE-SAT [SSZ22], and the Parisi formula for spherical spin glasses

in the RS and zero-temperature 1RSB phases [HS23a]. Passage to a planted model is also a crucial tool in

the analysis of sampling algorithms based on stochastic localization [AMS22, AMS23a].

2.6. First moment in planted model. In this subsection, we give a heuristic calculation of the �rst

moment of ĖĊpăq in the planted model. �e function �9p�1 ,�2q appearing in Condition 1.3 arises from

this calculation, and under this condition the �rst moment method succeeds. At the end of this subsection,

we also give numerical evidence for Condition 1.3 when � < 0.

We work at constraint density 
9, se�ing ĉ < t
9Ċu and ă, ďĊpăq, ĖĊpăq as above with this ĉ.

Let 9ģ ,Ĥ
Pl

and Ā
ģ ,Ĥ
Pl

denote probability and expectation w.r.t. the model conditional on ∇ℱTAPpģ , Ĥq < 0.

We will argue that under Condition 1.3, Āģ ,Ĥ
Pl

ĖĊpăq < ěĥpĊq. �en, at any constraint density 
 ą 
9,
the p
 ´ 
9qĊ additional constraints will make this moment exponentially small.

�is argument will be made rigorous in §7. Per the above discussion, the rigorous version of this argu-

ment will plant a critical point of ℱ �
TAP rather than ℱTAP.

We �rst de�ne the function �9. Let pħ0 ,#0q < pħ9p
9 , �q,#9p
9 , �qq be de�ned by Condition 3.1. As

discussed in §2.1, these are the variances of the (gaussian) coordinate empirical measures of pĞ, 9Ğ predicted

by the TAP heuristic, at constraint density 
9. Let 9Ą > Np0,#0q and Ą̂ > Np0, ħ0q. �ese two random

variables may be de�ned on di�erent probability spaces, as all expectations in the below formulas will

involve random variables from only one space. Let ĉ < thp 9Ąq and Ċ < Ă1´ħ0pĄ̂q. For any measurable

� : ℝ Ñ r´1, 1s, de�ne

entp�q < Āℋ

˜
1 ` �p 9Ąq

2

¸
, (6)

whereℋpĮq < ´Į log Į´ p1´ Įq logp1´ Įq is the binary entropy function. Let« be the complementary

gaussian cumulative density function de�ned in (12). For ĩ ě 0, de�ne

�9p�, ĩq < 1

2
ĩ2#0 ` entp�q ` 
9 Ā log«

$
’’’&
’’’%

� ´ Ārĉ�p 9Ąqs
ħ0

Ą̂ ´ Ār 9Ą�p 9Ąqs
#0

Ċ
c
1 ´ Ārĉ�p 9Ąqs2

ħ0

` ĩĊ

,
///.
///-
. (7)

Finally, let ��1 ,�2pĮq < thp�1Į ` �2thpĮqq and de�ne

�9p�q < inf
ĩě0

�9p�, ĩq, �9p�1 ,�2q < �9p��1 ,�2q. (8)

�ese quantities have the following physical meanings. 9Ą , Ą̂ ,ĉ ,Ċ are the coordinate distributions of
9Ğ , pĞ ,ģ , Ĥ. � speci�es a set ΣĊp�q Ď ΣĊ of points Į where Įğ has “conditional average” �p 9ℎğq, in the

sense that (informally, see (81))

1

#tğ P rĊs : 9ℎğ « 9ℎu

ÿ

ğPrĊs: 9ℎğ« 9ℎ

Įğ « �p 9ℎq, @ 9ℎ P ℝ. (9)
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Note that entp�q is the entropy of this set, that is (see Lemma 7.6)

1

Ċ
log |ΣĊp�q| » entp�q. (10)

Here and throughout, » denotes equality up to additive ĥĊp1q.
Let ĖĊpă,�q < |ďĊpăq XΣĊp�q| denote the number of solutions with pro�le�. We will see that for

all ĩ ě 0,�9p�, ĩq upper bounds the exponential order ofĀģ ,Ĥ
Pl

ĖĊpă,�q. �us�9p�q also upper bounds
this quantity, and Ā

ģ ,Ĥ
Pl

ĖĊpăq is bounded (heuristically) by Laplace’s principle:

1

Ċ
logĀģ ,Ĥ

Pl
ĖĊpăq » sup

�

"
1

Ċ
logĀģ ,Ĥ

Pl
ĖĊpă,�q

*
ď sup

�

�9p�q ` ĥĊp1q.

While this supremum is a priori an in�nite-dimensional optimization problem, the following observation

reduces it to two dimensions. For any ė1 , ė2, a Lagrange multipliers calculation (see Lemma 7.10) shows

that the maximum of entp�q subject to Ār 9Ą�p 9Ąqs < ė1, Ārĉ�p 9Ąqs < ė2 is a�ained by � of the form

��1 ,�2 . As the remaining terms in �9p�, ĩq depend on � only through Ār 9Ą�p 9Ąqs and Ārĉ�p 9Ąqs, we
may restrict a�ention to � of this form. �us

1

Ċ
logĀģ ,Ĥ

Pl
ĖĊpăq ď sup

�1 ,�2

�9p�1 ,�2q ` ĥĊp1q.

�is implies Āģ ,Ĥ
Pl

ĖĊpăq < ěĥpĊq under Condition 1.3.

We next argue that �9p�, ĩq upper bounds the exponential order of Āģ ,Ĥ
Pl

ĖĊpă,�q, as claimed above.

Due to (10), it su�ces to bound the probability that some Į P ΣĊp�q satis�es all constraints. �e planted

model has the following law. Let 9Ğ P ℝĊ , pĞ P ℝĉ have coordinate distributions approximatingNp0,#0q,
Np0, ħ0q, and let ģ < thp 9Ğq, Ĥ < Ă1´ħ0ppĞq. A gaussian conditioning calculation (see Corollary 4.18)

shows that conditional on ∇ℱTAPpģ , Ĥq < 0,

ă?
Ċ

Ě<
pĞģJ

Ċħ0
` Ĥ 9Ğ

J

Ċ#0
` ČK

Ĥ
răČK

ģ?
Ċ

` ĥĊp1q.

Here ră is an i.i.d. copy of ă, ČK
ģ denotes the projection operator to the orthogonal complement of ģ,

and ĥĊp1q is a matrix of operator norm ĥĊp1q. For any Į P ΣĊp�q, we have 1
Ċ xģ , Įy » Ārĉ�p 9Ąqs and

1
Ċ x 9Ğ , Įy » Ār 9Ą�p 9Ąqs. So,

ăĮ?
Ċ

Ě< Ārĉ�p 9Ąqs
ħ0

pĞ ` Ār 9Ą�p 9Ąqs
#0

Ĥ `

d

1 ´ Ārĉ�p 9Ąqs2
ħ0

rĝ ` ĥp
?
Ċq,

where rĝ > Np0, ČK
Ĥ q and ĥp

?
Ċq denotes a vector of norm ĥp

?
Ċq. �us

1

Ċ
log9ģ ,Ĥ

Pl

ˆ
ăĮ?
Ċ

ě �1

˙
» 1

Ċ
log9

$
’’’&
’’’%
rĝ ě

�1 ´ Ārĉ�p 9Ąqs
ħ0

pĞ ´ Ār 9Ą�p 9Ąqs
#0

Ĥ
c
1 ´ Ārĉ�p 9Ąqs2

ħ0

,
///.
///-
. (11)

�is can be bounded by a change of measure calculation also used in [DS18]. Let pĝ > NpĩĤ , ąĊq for any
ĩ ě 0. Note that conditional on xpĝ , Ĥy < 0, we have pĝ <Ě rĝ . So, if ď denotes the event in (11), then

9prĝ P ďq ď 9ppĝ P ďq
9pxpĝ , Ĥy « 0q « exp

ˆ
1

2
ĩ2#0Ċ

˙
9ppĝ P ďq.
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(a) Į, į P r´1, 1s2 (b) �‹pth´1pĮq, th´1pįqq ě ´0.01

Figure 1. Plots of pĮ, įq ÞÑ �9pth´1pĮq, th´1pįqq for � < 0. Figure 1a plots over Į, į P
r´1, 1s2, while Figure 1b restricts to inputs with�9pth´1pĮq, th´1pįqq ě ´0.01. �e plots

lie below 0, and from Figure 1b it appears the unique maximizer is pĮ, įq < pthp1q, 0q,
corresponding to p�1 ,�2q < p1, 0q.

Since pĞ has coordinate distribution Ą̂ , this implies (see Lemma 7.8 for formal statement) that (11) is

bounded by

1

2
ĩ2#0 ` 
9 Ā log«

¨
˚̊
˚̋
� ´ Ārĉ�p 9Ąqs

ħ0
Ą̂ ´ Ār 9Ą�p 9Ąqs

#0
Ċ

c
1 ´ Ārĉ�p 9Ąqs2

ħ0

` ĩĊ

˛
‹‹‹‚.

Combining with (10) shows that 1
Ċ logĀģ ,Ĥ

Pl
ĖĊpă,�q ď �9p�, ĩq ` ĥĊp1q.

We conclude this subsection with a discussion of Condition 1.3. We expect ģ to approximate the

barycenter of ďĊpăq, and therefore that �9p�1 ,�2q is maximized by p�1 ,�2q < p1, 0q, corresponding
to ��1 ,�2p 9Ąq < thp 9Ąq < ĉ . Let

�9p�1 ,�2q < �9p��1 ,�2 ,
a
1 ´ ħ0q,

which is an upper bound for �9.

Lemma 2.5 (Proved in §7). �e following holds.

(a) �e function �9p�1 ,�2q a�ains its supremum on ℝ2.

(b) �9p1, 0q < �9p1, 0q < 0.

(c) ∇�9p1, 0q < ∇�9p1, 0q < 0.

(d) ∇2
�9p1, 0q ĺ ∇2

�9p1, 0q

Claim 2.6 (Proved in Appendix B). For � < 0, there exists ÿ ą 0 such that ∇2
�9p1, 0q ĺ ´ÿą.

Lemma 2.5 is proved for all �, while Claim 2.6 is veri�ed numerically for � < 0 using rigorous interval

arithmetic. Together, they imply that for � < 0, p1, 0q is a local maximum of �9 and �9. In Figure 1, we

provide a plot of�9 for the case � < 0. �is gives numerical evidence that�9, and therefore�9, has global
maximum p1, 0q.
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3. Formal statement of results

In this section we state our main result for general �, �eorem 3.6. We also reduce �eorem 3.6 to two

primary inputs: approximate contiguity with a planted model (Lemma 3.8) and the upper bound for the

�rst moment in the planted model (Proposition 3.9), which are proved in §4–6 and §7.

3.1. Krauth–Mézard threshold. We �rst de�ne the threshold 
9 conjectured by [KM89], following the

presentation of [DS18]. De�ne the standard gaussian density and complementary CDF by

!pĮq < expp´Į2{2q
p2�q1{2 , «pĮq <

ż 8

Į
)pīq dī. (12)

Fix once and for all � P ℝ. For ħ P r0, 1q, de�ne4

ℰpĮq < !pĮq
«pĮq , Ă1´ħpĮq < ℰ

p1 ´ ħq1{2

˜
� ´ Į

p1 ´ ħq1{2

¸
. (13)

For # ě 0 and Ė > Np0, 1q, further de�ne
Čp#q < Ārthp#1{2Ėq2s, Ď
pħq < 
ĀrĂ1´ħpħ1{2Ėq2s,

and de�ne the Gardner free energy (or Gardner volume formula) by

�p
, ħ,#q < ´p1 ´ ħq#
2

` Ā logp2chp#1{2Ėqq ´ 
Ā log«

˜
� ´ ħ1{2Ė

p1 ´ ħq1{2

¸
. (14)

�e physical meanings of these formulas are best understood in terms of a heuristic derivation of the TAP

free energy ℱTAPpģ , Ĥq and TAP equations, which we explain next. (�ese quantities will be formally de-

�ned in (15), (16).) If we regard ă as a complete bipartite factor graph on Ċ variables and ĉ constraints,

we can study the perceptron model by the standard belief propagation (BP) equations [MM09, Chapter

14]. In the mean-�eld (dense graph) limit, these equations simplify considerably. First, because the in�u-

ence of any particular message is small, all the messages emanating from a particular variable ğ P rĉs
(resp. constraint ė P rĉs) can be consolidated into a single message ģğ (resp. Ĥė). �e TAP variables

pģ , Ĥq thus represent these consolidated messages. �e BP equations then become the TAP equations,

and the Bethe free energy of this BP system becomes the TAP free energy. See [Méz17] for an example

of this derivation in a related model.

Moreover, by central limit theorem considerations, we expect that the coordinates of 9Ğ < th´1pģq
and pĞ < Ă´1

1´}ģ}2{ĊpĤq have gaussian empirical measure. Let these gaussians have variance # and ħ,

respectively; this is the physical meaning of these parameters. �en the BP consistency relations require

that #, ħ satisfy the �xed-point equation ħ < Čp#q, # < Ď
pħq, and the corresponding Bethe free energy
is precisely �p
, ħ,#q. Finally, we expect 
9 to be the constraint density where this Bethe free energy

crosses zero. Under the following condition, which was veri�ed in [DS18] for � < 0, this heuristic picture

can be formalized into a de�nition of 
9.

Condition 3.1. �ere exist 0 ă 
lb ă 
ub and 0 ă ħlb ă ħub ă 1 (depending on �) such that the following

holds. For any 
 P p
lb , 
ubq,
sup

ħPpħlb ,ħubq
pČ ˝ Ď
q1pħq ă 1,

4�e function Ă1´ħ is denoted Ăħ in [DS18]. We change this notation to be consistent with the meaning of Ă�,* (18) appearing

in our proofs.
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and there is a unique ħ9 < ħ9p
, �q P pħlb , ħubq such that ħ9 < ČpĎ
pħ9qq. Let #9 < #9p
, �q < Ď
pħ9q.
For 
 P p
lb , 
ubq, the function �9p
q < �p
, ħ9p
, �q,#9p
, �qq is strictly decreasing, with a unique

root 
9 < 
9p�q.
Proposition 3.2 ([DS18, Proposition 1.3]). For � < 0, Condition 3.1 holds for 
lb < 0.833078599, 
ub <
0.833078600, ħlb < 0.56394907949, ħub < 0.56394908030.

3.2. Main result. �roughout, let 
9 < 
9p�q and pħ0 ,#0q < pħ9p
9 , �q,#9p
9 , �qq be given by Con-

dition 3.1. We now introduce two more numerical conditions needed for our main result, which will be

veri�ed for� < 0 inAppendix B using rigorous interval arithmetic. In the below formulas, letĖ > Np0, 1q.

Condition 3.3. We have 
9 Ārth1p#1{2
0 Ėq2sĀrĂ1

1´ħ0pħ
1{2
0 Ėq2s ă 1.

Condition 3.4. De�ne the functions ģ : p´1,`8q Ñ p0,`8q and pĜ0 : ℝ Ñ p0,`8q by

ģpİq < Ārpİ ` ch2p#1{2
0 Ėqq´1s,

pĜ0pĮq < ´
Ă1
1´ħ0pĮq

1 ` p1 ´ ħ0qĂ1
1´ħ0pĮq < ℰ1pp� ´ Įq{p1 ´ ħ0q1{2qq

p1 ´ ħ0qp1 ´ ℰ1pp� ´ Įq{p1 ´ ħ0q1{2qq
.

(By Lemma 4.21(b) below, ℰ1 has image in p0, 1q, and thus pĜ0pĮq ą 0.) �en, for Ě0 < 
9 ĀrĂ1
1´ħ0pħ

1{2
0 Ėqs

and � : p´1,`8q Ñ ℝ de�ned by

�pİq < İ ´ 
9 Ā

« pĜ0pħ1{2
0 Ėq

1 ` ģpİqpĜ0pħ1{2
0 Ėq

ff
´ Ě0 ,

we have �0 = inf İą´1 �pİq ă 0.

�e following lemma shows that minimizer of � exists and is the unique root of a decreasing function, and

it su�ces to check Condition 3.4 at the value �pİ0q.
Lemma3.5 (Proved in §6). �e function� is di�ererentiable with�1pİq < 1´
9�pİq, where� : p´1,`8q Ñ
p0,`8q is de�ned by

�pİq < Ārpİ ` ch2p#1{2
0 Ėqq´2sĀ

»
–
˜ pĜ0pħ1{2

0 Ėq
1 ` ģpİqpĜ0pħ1{2

0 Ėq

¸2
fi
fl .

Moreover � is continuous and strictly decreasing, with

lim
İÓ´1

�pİq < `8, lim
İÒ`8

�pİq < 0.

In particular � has a well-de�ned inverse �´1 : p0,`8q Ñ p´1,`8q, and � is strictly convex on p´1,`8q
with minimizer İ0 < �´1p
´1

9 q. �us �0 de�ned in Condition 3.4 satis�es �0 < �pİ0q.
�eorem 3.6 (Main result, general �). For any � P ℝ, under Conditions 1.3, 3.1, 3.3, and 3.4 the following

holds. For any 
 ą 
9p�q, we have limĊÑ8 9pĉĊp�q{Ċ ě 
q < 0.

Remark 3.7. �e conditions in �eorem 3.6 serve the following purposes.

‚ Condition 1.3 controls the �rst moment of the partition function in the planted model.

‚ Condition 3.1 makes the threshold 
9p�q well-de�ned.
‚ Condition 3.3 ensures that the AMP iterates converge in the sense of (2).

‚ Condition 3.4 ensures that G�
TAP (see §2.4) is locally concave near late AMP iterates.

With the exception of Appendix B, we will assume all conditions in �eorem 3.6 without further notice.
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3.3. Proof of �eorem 3.6. We will carry out nearly the entire proof at constraint density 
9. �us, we

set ĉ < t
9Ċu and de�ne ă P ℝĉˆĊ and ĖĊpăq as above.
�e main step of the proof is a reduction to a planted model, formalized by Lemma 3.8 below. Let 9

denote the law of ă with i.i.d. Np0, 1q entries, and let 9ģ ,Ĥ
�,Pl

be the planted law de�ned in De�nition 4.3.

�is is the law of ă conditional on ∇ℱ �
TAPpģ , Ĥq < 0, for a perturbation ℱ �

TAP of ℱTAP de�ned in (24).

(�ese will actually be probability measures over pă, 9ĝ , pĝq for auxiliary disorder 9ĝ , pĝ de�ned below.) Let

S�, be a similar perturbation of S de�ned in (27).

Lemma 3.8 (Proved in §4–6). For any pă, 9ĝ , pĝq-measurable event ℰ and any �,  ą 0, there exists ÿ <
ÿp�,  q such that

9pℰq ď ÿ sup
pģ ,ĤqPS�, 

9
ģ ,Ĥ
�,Pl

pℰq1{2 ` ĥĊp1q.

�e following proposition controls the �rstmoment ofĖĊpăq in the plantedmodel, formalizing the heuris-

tic calculation in §2.6. Here Āģ ,Ĥ
�,Pl

denotes expectation with respect to 9
ģ ,Ĥ
�,Pl

.

Proposition 3.9 (Proved in §7). For any � ą 0, there exists �,  ą 0 such that

sup
pģ ,ĤqPS�, 

Ā
ģ ,Ĥ
�,Pl

rĖĊpăqs ď ě�Ċ .

From these two results, �eorem 3.6 follows by a short argument.

Proposition 3.10. For any � ą 0,

9rĖĊpăq ď ě�Ċ s < 1 ´ ĥĊp1q.

Proof. Letℰ < tĖĊpăq ď ě�Ċu. By Lemma 3.8 and Markov’s inequality,

9pℰęq ď ÿ sup
pģ ,ĤqPS�, 

9
ģ ,Ĥ
�,Pl

pℰęq1{2 ` ĥĊp1q ď ÿě´�Ċ{2 sup
pģ ,ĤqPS�, 

Ā
ģ ,Ĥ
�,Pl

rĖĊpăqs1{2 ` ĥĊp1q.

By Proposition 3.9, we may choose �,  so this supremum is at most ě�Ċ{4. □

Proof of �eorem 3.6. Let ĉall < t
Ċu, and let ăall < p ă
pă q P ℝĉallˆĊ , where pă P ℝpĉall´ĉqˆĊ has i.i.d.

Np0, 1q entries. Set � ă 1
2p
 ´ 
9q log 1

¨p�q . Letℰ < tĖĊpăq ď ě�Ċu, which satis�es 9pℰq < 1 ´ ĥĊp1q
by Proposition 3.10. �en

9pĉĊp�q{Ċ ě 
q < 9pĖĊpăallq ą 0q ď 9pℰęq ` ĀrĖĊpăallq1tℰus.
Since the rows of pă are i.i.d. samples fromNp0, ąĊq independent of ă, for any Į P ΣĊ ,

ĀrĖĊpăallq1tℰus ď ě�Ċ 9
ĝ>Np0,ąĊ q

ˆxĝ , Įy?
Ċ

ě �

˙ĉall´ĉ
< ě�Ċ¨p�qĉall´ĉ < ĥĊp1q. □

3.4. TAP and AMP formulas. In this subsection we provide the formulas for the TAP free energy, TAP

equations, and AMP iteration mentioned above. �e heuristic derivation of the former two were discussed

below (14), and the la�er is obtained by iterating the TAP equations in a suitable way.

�e contents of this subsection play no formal role in the following proofs. We include these formulas for

the reader’s convenience, to allow a comparison with the �-perturbed TAP free energy and AMP iteration

de�ned in §4.2 below. (See also (36), (37) for the �-perturbed TAP equations.) For pģ , Ĥq P ℝĊ ˆ ℝĉ , let

ħpģq < }ģ}2{Ċ and #pĤq < }Ĥ}2{Ċ . �e TAP free energy for this model is

ℱTAPpģ , Ĥq <
Ċÿ

ğ<1

ℋ

ˆ
1 ` ģğ

2

˙
`

ĉÿ

ė<1

log«

¨
˝
� ´ xĝ ė ,ģy?

Ċ
` p1 ´ ħpģqqĤė

p1 ´ ħpģqq1{2

˛
‚` Ċ

2
p1´ ħpģqq#pĤq. (15)
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(Recall ℋpĮq < ´Į logpĮq ´ p1 ´ Įq logp1 ´ Įq is the binary entropy function.) �e TAP equations are

the stationarity conditions of ℱTAP, and are

Ĥ < Ă1´ħpģqppĞq = Ă1´ħpģq

ˆ
ăģ?
Ċ

´ ĘpģqĤ
˙
, ģ < thp 9Ğq = th

˜
ăJĤ?
Ċ

´ Ěpģ , Ĥqģ
¸
, (16)

where

Ępģq < 1 ´ ħpģq, Ěpģ , Ĥq < 1

Ċ

ĉÿ

ė<1

Ă1
1´ħpģqpĤėq.

Recall that these are the mean-�eld limit of the BP equations for this model. �e terms ĘpģqĤ and

Ěpģ , Ĥqģ compensate for backtracking and are known as the Onsager correction terms.

Let ħ0 ,#0 be as in Condition 3.1, and de�ne

Ę0 < Ārth1p#1{2
0 Ėqs < 1 ´ ħ0 , Ě0 < 
9 ĀrĂ1

1´ħ0pħ
1{2
0 Ėqs.

�e AMP iteration associated to ℱTAP is given by Ĥ´1 < 0 P ℝĉ , ģ0 < ħ
1{2
0 1 P ℝĊ , and

Ĥġ < Ă1´ħ0ppĞ
ġq < Ă1´ħ0

ˆ
ăģġ

?
Ċ

´ Ę0Ĥ
ġ´1

˙
, ģġ`1 < thp 9Ğ

ġ`1q < th

˜
ăJĤġ?
Ċ

´ Ě0ģ
ġ

¸
. (17)

4. Reduction to planted model

In this section we prove the central Lemma 3.8, using inputs from §5–6 as described below. §4.1–4.5 are

devoted to this proof. §4.6 derives the law of the planted model 9ģ ,Ĥ
�,Pl

, which will be useful for calculations

in the rest of the paper. To maintain a smooth presentation, we defer some proofs to §4.7, and routine but

technical arguments to Appendix A.

4.1. Parameter list and notations. For convenience, we record here the order in which several param-

eters used in the proof of Lemma 3.8 are set. Each item in this list can be set su�ciently small or large

depending on any preceding item.

‚ �, size of the perturbation to the AMP iteration and TAP free energy.

‚ ÿcvx and ÿbd, estimates for �� (de�ned below, see (22)) and its derivatives.

‚ �, bound on strong convexity of ℱ �
TAPpģ , Ĥq in Ĥ, and ÿreg, bound on regularity of ∇2ℱ �

TAP.

‚ Ĩ0, radius around late AMP iterates where there is a unique critical point of ℱ �
TAP.

‚  0, accuracy of AMP iterate under which there is a unique critical point of ℱ �
TAP nearby.

‚ ġ, index of AMP iterate pģġ , Ĥġq with accuracy  0.

‚  , tolerance in S�, .

‚  1, accuracy of AMP iterate under which, by convex-concavity considerations, the nearby unique

critical point lies in S�, .

‚ ℓ , index of AMP iterate pģℓ , Ĥℓ q with accuracy  1.

‚ Ċ , problem dimension.

�is information will be reviewed when these parameters are introduced. Notations such as ĥġp1q will

denote quantities that tend to zero as the subscripted parameter tends to zero or in�nity, whichmay depend

arbitrarily on preceding items in this list but do not depend on subsequent items. We will use the term

“absolute constant” to mean a constant depending on none of these parameters (but possibly depending

on �, 
9 , ħ0 ,#0, which are �xed at the outset). Note that the statement of Lemma 3.8 is monotone in  ,

and thus  can be set small depending on the parameters preceding it in this list.
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We also de�ne more notations appearing in the proofs. �roughout, Ė, Ė1 , Ė2 denote i.i.d. standard

gaussians. We use P2pℝġq to denote the space of probability measures on ℝġ with bounded second mo-

ment andă2 to denote 2-Wasserstein distance. p-lim denotes limit in probability.

We o�en consider functions ℱ : ℝĊ ˆ ℝĉ Ñ ℝ, with input pģ , Ĥq P ℝĊ ˆ ℝĉ . We will write

∇ģℱ P ℝĊ , ∇Ĥℱ P ℝĉ for the restriction of ∇ℱ to the coordinates corresponding to ģ and Ĥ. �e

Hessian restrictions ∇2
ģ ,ģℱ P ℝĊˆĊ , ∇2

ģ ,Ĥℱ P ℝĊˆĉ , and ∇2
Ĥ ,Ĥℱ P ℝĉˆĉ are de�ned similarly.

Čģ < ģģJ{}ģ}2 P ℝĊˆĊ denotes the projection operator onto the span of ģ, and ČK
ģ < ąĊ ´ Čģ

denotes the projection operator onto its orthogonal complement.

4.2. Perturbed nonlinearities, AMP iteration, and TAP free energy. We next introduce perturbed

versions of the AMP iteration (17) and TAP free energy (15). �e purpose of the various perturbations is

discussed in Remark 4.5 below. Let � ą 0 be small. For * ě 0, de�ne

Ă�,*pĮq < logĀ "�pĮ ` *1{2Ėq, "�pĮq < exp

ˆ
´1

2
�Į2

˙
9pĮ ` �1{2Ė1 ě �q.

�en, de�ne the perturbed nonlinearities

th�pĮq < thpĮq ` �Į, Ă�,*pĮq < Ă
1
�,*pĮq. (18)

An elementary calculation shows that explicitly,

Ă�,*pĮq < ´1

2
logp1 ` �*q ´ �Į2

2p1 ` �*q ` log«

˜
�p1 ` �*q ´ Įa

p* ` �p1 ` �*qqp1 ` �*q

¸

Ă�,*pĮq < ´ �Į

1 ` �*
` 1a

p* ` �p1 ` �*qqp1 ` �*q
ℰ

˜
�p1 ` �*q ´ Įa

p* ` �p1 ` �*qqp1 ` �*q

¸
. (19)

Let

*�pħ,#q < 1 ´ ħ ` � ´ �2p# ` �q
1 ´ 2�p# ` �q .

De�ne perturbed variants of the functions Č, Ď
‹ by

Č�p#q < Ārth�pp# ` �q1{2Ėq2s, Ď�pħ,#q < 
9 ĀrĂ�,*�pħ,#qppħ ` �q1{2Ėq2s,
and let ��p#q < Ď�pČ�p#q,#q.

Proposition 4.1 (Proved in Appendix A). �ere exists � ą 0 such that for all su�ciently small � ą 0,

sup
#Pr#0´�,#0`�s

�1
�p#q ă 1,

and there is a unique solution #� P r#0 ´ �,#0 ` �s to #� < ��p#�q. Let ħ� < Č�p#�q and *� < *�pħ� ,#�q.
We further have pħ� ,#� , *�q Ñ pħ0 ,#0 , 1 ´ ħ0q as � Ó 0.

Lemma 4.2 (Proved in §4.7). We have *� < Ārth1
�pp#� ` �q1{2Ėqs.

Let Ě� < 
9 ĀrĂ1
�,*�ppħ� ` �q1{2Ėqs. Further, let 9ĝ > Np0, ąĊq, pĝ > Np0, ąĉq be independent of ă. �e

perturbed AMP iteration is de�ned by Ĥ´1 < 0 P ℝĉ , ģ0 < ħ
1{2
� 1 P ℝĊ , and

Ĥġ < Ă�,*�ppĞ
ġq < Ă�,*�

ˆ
ăģġ

?
Ċ

` �1{2pĝ ´ *�Ĥ
ġ´1

˙
, (20)

ģġ`1 < th�p 9Ğ
ġ`1q < th�

˜
ăJĤġ?
Ċ

` �1{2 9ĝ ´ Ě�ģ
ġ

¸
. (21)
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De�ne the convex function Ē� : ℝ Ñ ℝ and its dual

Ē�p 9ℎq < logp2chp 9ℎqq ` 1

2
� 9ℎ2 , Ē˚

� pģq < inf
9ℎ

!
´ģ 9ℎ `Ē�p 9ℎq

)
.

Let ÿcvx , ÿbd ą 0 be large in �. Let �� : ℝ Ñ ℝ be an (unspeci�ed) thrice-di�erentiable function satisfying

��pħ�q < *� , �1
�pħ�q < ´1, �2

�pħ�q < ÿcvx , (22)

such that the image of �� and its derivatives satis�es

�� P rÿ´1
bd
, ÿbds, |�pĦq

� | ď ÿbd for Ħ P t1, 2, 3u. (23)

(For every ÿcvx, there exists ÿbd such that this is possible.) Recall that for pģ , Ĥq P ℝĊ ˆℝĉ , we de�ned

ħpģq < }ģ}2{Ċ and #pĤq < }Ĥ}2{Ċ . �e perturbed TAP free energy is

ℱ �
TAPpģ , Ĥq <

Ċÿ

ğ<1

Ē˚
� pģğq ` �1{2x 9ĝ ,ģy `

ĉÿ

ė<1

Ă�,��pħpģqq

ˆxĝ ė ,ģy?
Ċ

` �1{2pĝė ´ ��pħpģqqĤė
˙

` Ċ

2
��pħpģqq#pĤq. (24)

We are now ready to de�ne the planted model.

De�nition 4.3. For pģ , Ĥq P ℝĊˆℝĉ , let9ģ ,Ĥ
�,Pl

denote the law of pă, 9ĝ , pĝq conditional on∇ℱ �
TAPpģ , Ĥq <

0, andĀģ ,Ĥ
�,Pl

denote the corresponding expectation. (9 andĀ continue to refer to the law of pă, 9ĝ , pĝq with
i.i.d. standard gaussian entries.)

Remark 4.4. As shown in Lemma 4.16 below, for any �xed pģ , Ĥq, ∇ℱ �
TAPpģ , Ĥq < 0 is equivalent to

two linear equations (36), (37) in pă, 9ĝ , pĝq, and thus in the planted model pă, 9ĝ , pĝq remains gaussian.

Remark 4.5. �e above perturbations serve the following purposes.

‚ Ē˚
� pģğq regularizes the termℋp 1`ģğ

2 q in the original ℱTAP, avoiding the singular behavior of ℱTAP

near the boundary of r´1, 1sĊ .
‚ Ă�,*� is chosen so that ℱ �

TAP is strongly convex in Ĥ. As a consequence, if we de�ne

GTAPpģq < inf
Ĥ

ℱTAPpģ , Ĥq, G�
TAPpģq < inf

Ĥ
ℱ �
TAPpģ , Ĥq,

thenG�
TAPpģq also regularizesGTAPpģq, avoiding a singular behavior near the boundary of 1?

Ċ
ăģ ě

�. Indeed, GTAPpģq < ´8 if this inequality fails in any coordinate.

‚ �e nonlinearities th� and Ă�,*� have Lipschitz inverses, so that Euclidean distances in pģ , Ĥq and
p 9Ğ , pĞq are comparable.

‚ �e perturbations �1{2pĝ and �1{2 9ĝ are for technical convenience, as solutions to the original TAP

equation (16) must lie on the codimension-one manifold

x 9Ğ ` Ěpģ , Ĥqģ ,ģy < 1?
Ċ

xĤ ,ăģy < xĤ , pĞ ` ĘpģqĤy.

With this perturbation, Kac–Rice arguments can take place on full space.

‚ We will see in §6 that the Hessian of G�
TAPpģq is the sum of an anisotropic sample covariance

matrix, a full-rank diagonal matrix, and a low-rank spike (recall (4)). �e condition �2
�pħ�q < ÿcvx

ensures this spike cannot contribute to the top eigenvalue by adding a large negative spike to the

Hessian. �is simpli�es the proof of strong concavity of G�
TAP near late AMP iterates.
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4.3. Inputs to reduction. We next state several inputs needed to prove Lemma 3.8. As anticipated in

§2.2, the main input is Proposition 4.8, which formalizes criteria (R4) and (R5). First, we record that ℱ �
TAP

is (deterministically) strongly convex in Ĥ.

Proposition 4.6 (Proved in §4.7). �ere exists � < �p�, ÿcvx , ÿbdq ą 0 such that ∇2
Ĥ ,Ĥℱ

�
TAPpģ , Ĥq ľ �ąĉ

for any pģ , Ĥq P ℝĊ ˆ ℝĉ .

We next record a basic regularity estimate. De�ne

∇2
˛ℱ

�
TAPpģ , Ĥq < ∇2

ģ ,ģℱ
�
TAPpģ , Ĥq ´ p∇2

ģ ,Ĥℱ
�
TAPpģ , Ĥqqp∇2

Ĥ ,Ĥℱ
�
TAPpģ , Ĥqq´1p∇2

ģ ,Ĥℱ
�
TAPpģ , ĤqqJ. (25)

�is arises as the Hessian of G�
TAP, as shown in Lemma 4.10 below.

Proposition 4.7 (Proved in Appendix A). For any Ā ą 0, there exists ÿreg < ÿregp�, ÿcvx , ÿbd , Āq such
that over both 9 and 9

ģ1 ,Ĥ1

�,Pl
for any }ģ1}2 , }Ĥ1}2 ď ĀĊ , with high probability the following holds. For all

}ģ}2 , }Ĥ}2 ď ĀĊ , we have }∇2ℱ �
TAPpģ , Ĥq}op ď ÿreg.

For 9Ğ P ℝĊ , pĞ P ℝĉ , de�ne the coordinate empirical measures

� 9Ğ < 1

Ċ

Ċÿ

ğ<1

�p 9ℎğq, �pĞ < 1

ĉ

ĉÿ

ė<1

�ppℎğq. (26)

In words, these are probability measures on ℝ with mass 1{Ċ on each 9ℎğ (resp. 1{ĉ, pℎğ). For  ą 0, let

T�, <
!

p 9Ğ , pĞq P ℝ
Ċ ˆ ℝ

ĉ : ă2p� 9Ğ ,Np0,#� ` �qq,ă2p�pĞ ,Np0, ħ� ` �qq ď  
)
,

S�, <
!

pth�p 9Ğq, Ă�,*�ppĞqq : p 9Ğ , pĞq P T�, 

)
. (27)

Let pģġ , Ĥġq be as in (20), (21).

Proposition 4.8 (Proved in §5 and §6). �ere exist Ĩ0 ą 0, ġ0 : ℝ` Ñ ℕ,  : ℝ` ˆ ℕ Ñ ℝ`, depending
on �, ÿcvx , ÿbd , �, ÿreg, and an absolute constant ÿspec ą 0 such that the following holds. For any  0 ą 0

and ġ ě ġ0p 0q, with high probability under 9:

(a) pģġ , Ĥġq P S�, 0 ,

(b) }∇ℱ �
TAPpģġ , Ĥġq} ď  0

?
Ċ ,

(c) ∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ´ÿspecąĊ for all pģ , Ĥq such that }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0

?
Ċ .

Moreover, let  <  p 0 , ġq. For any pģ1 , Ĥ1q P S�, , with high probability under 9
ģ1 ,Ĥ1

�,Pl
, the above three

conclusions hold and:

(d) }pģġ , Ĥġq ´ pģ1 , Ĥ1q} ď  0
?
Ċ .

�e following concentration estimate follows by adapting an argument of [GZ00] and provides input (R3).

Lemma 4.9 (Proved in §6). �ere exists ÿ depending on �, ÿcvx such that for su�ciently small  , uniformly

over pģ , Ĥq P S�, ,

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|2
‰1{2 ď ÿĀģ ,Ĥ

�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|
‰
.
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4.4. Unique nearby critical point and conditioning lemma. Lemma 4.11 below provides a criterion

under which a function has a unique critical point near a given approximate critical point. Lemma 4.12 is

a lemma about conditioning a random function on a random vector with a unique critical point nearby,

which is an adaptation of the Kac–Rice formula. �is important technical tool also appears as [HMP24,

Lemma 3.6], where it is used in conjunction with known results on topological trivialization to condition

on the TAP �xed point selected by AMP. Here, we use it with properties of the planted model provided by

Proposition 4.8 to prove topological trivialization itself.

Lemma4.10. Letđ1 Ď ℝĊ ,đ2 Ď ℝĉ be open and convex. Supposeℱ : đ1ˆđ2 Ñ ℝ is twice di�erentiable

and satis�es ∇2
Ĥ ,Ĥℱ pģ , Ĥq ľ �ąĉ for all pģ , Ĥq P đ1ˆđ2 for some � ą 0, and Gpģq = minĤPđ2 ℱ pģ , Ĥq

exists for all ģ P đ1. �en Ĥpģq < arg minĤPđ2
ℱ pģ , Ĥq is unique and di�erentiable, with

∇Ĥpģq < p∇2
Ĥ ,Ĥℱ pģ , Ĥpģqqq´1p∇2

ģ ,Ĥℱ pģ , ĤpģqqqJ. (28)

Moreover G is twice di�erentiable, with

∇Gpģq < ∇ģℱ pģ , Ĥq, ∇2Gpģq < ∇2
˛ℱ pģ , Ĥq. (29)

Proof. Strong convexity of ℱ in Ĥ implies that Ĥpģq is unique, and can be de�ned as the solution to

∇ģℱ pģ , Ĥq < 0. �en (28) follows from the implicit function theorem, while (29) follows from (28) and

the chain rule. □

Lemma 4.11. Let ℱ : ℝĊˆℝĉ Ñ ℝ be twice di�erentiable and pģ0 , Ĥ0q P ℝĊˆℝĉ . Let �, ÿreg ,  0 ą 0,

Ĩ0 < 2�´1p1 ` ÿreg�
´1q2 0, andđ < Bppģ0 , Ĥ0q, Ĩ0

?
Ċq. Suppose that:

(C1) }∇ℱ pģ0 , Ĥ0q} ď  0
?
Ċ ,

(C2) }∇2ℱ pģ , Ĥq}op ď ÿreg for all pģ , Ĥq P đ ,

(C3) ∇2
Ĥ ,Ĥℱ pģ , Ĥq ľ �ąĉ for all pģ , Ĥq P ℝĊ ˆ ℝĉ ,

(C4) ∇2
˛ℱ pģ , Ĥq ĺ ´�ąĊ for all pģ , Ĥq P đ .

�en, there is a unique pģ˚ , Ĥ˚q P đ such that ∇ℱ pģ˚ , Ĥ˚q < 0. Moreover, for su�ciently small (possibly

in Ċ) � ą 0, the image ofđ under the map ∇ℱ contains Bp0, �q Ď ℝĊ ˆ ℝĉ and is one-to-one on this set.

Proof. Letđ1 < Bpģ0 , Ĩ0
?
Ċq Ď ℝĊ andđ2 < ℝĉ . Item (C3) implies that the hypotheses of Lemma 4.10

hold for ℱ �
TAP with this pđ1 , đ2q. �us, for ģ P đ1, Ĥpģq and Gpģq from Lemma 4.10 are well-de�ned,

with derivatives given therein. If pģ˚ , Ĥ˚q is a critical point of ℱ , then ģ˚ must be a critical point of G.

Item (C4) and equation (29) imply that ∇2Gpģq ĺ ´�ąĊ for all ģ P đ1. �us G has at most one critical

point inđ1, and ℱ has at most one critical point inđ1 ˆđ2 Ě đ .

We now show that such a point exists. By strong concavity of ℱ pģ0 , ¨q and (C1),

}Ĥ0 ´ Ĥpģ0q} ď �´1}∇Ĥℱ pģ0 ,ģ0q} ď �´1 0
?
Ċ.

Because }∇2ℱ pģ , Ĥq}op ď ÿreg, the map pģ , Ĥq ÞÑ ∇ℱ pģ , Ĥq is ÿreg-Lipschitz. �us

}∇Gpģ0q} < }∇ℱ pģ0 , Ĥpģ0qq} ď }∇ℱ pģ0 , Ĥ0q} ` ÿreg}Ĥ0 ´ Ĥpģ0q} ď p1 ` ÿreg�
´1q 0

?
Ċ.

By strong concavity of G, there exists a critical point ģ˚ of G with

}ģ0 ´ ģ˚} ď �´1}∇Gpģ0q} ď �´1p1 ` ÿreg�
´1q 0

?
Ċ.

�en, with Ĥ˚ < Ĥpģ˚q, pģ˚ , Ĥ˚q is a critical point of ℱ . By conditions (C2), (C3) and equation (28), Ĥp¨q
is ÿreg�

´1-Lipschitz. So,

}Ĥ0 ´ Ĥ˚} ď }Ĥ0 ´ Ĥpģ0q} ` ÿreg�
´1}ģ0 ´ ģ˚} ď �´1p1 ` ÿreg�

´1q2 0
?
Ċ.
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�is shows that pģ˚ , Ĥ˚q P đ , proving the �rst claim, and furthermore pģ˚ , Ĥ˚q lies in the interior of

đ . To show the second claim, we �rst prove that any pģ , Ĥq P đ such that }∇ℱ pģ , Ĥq} ď � lies in a

neighborhood of pģ˚ , Ĥ˚q. First,
}Ĥ ´ Ĥpģq} ď �´1}∇Ĥℱ pģ , Ĥq} ď �´1�.

Similarly to above, }∇Gpģq} ď p1 ` ÿreg�
´1q�, so we conclude

}ģ ´ ģ˚} ď �´1p1 ` ÿreg�
´1q�, }Ĥ ´ Ĥ˚} ď �´1p1 ` ÿreg�

´1q2�.
�us pģ , Ĥq lies in a neighborhood of pģ˚ , Ĥ˚q, which is contained in đ because pģ˚ , Ĥ˚q lies in the

interior ofđ . However, by Schur’s lemma,

det∇2ℱ pģ˚ , Ĥ˚q < det∇2
Ĥ ,Ĥℱ pģ˚ , Ĥ˚q det∇2

˛ℱ pģ˚ , Ĥ˚q ‰ 0.

By the inverse function theorem, ∇ℱ is invertible in a neighborhood of pģ˚ , Ĥ˚q, mapping it bijectively

to a neighborhood of 0. �is concludes the proof. □

Lemma 4.12. Let ℱ : ℝĊ ˆ ℝĉ Ñ ℝ be a twice di�erentiable random function and pģ0 , Ĥ0q P ℝĊ ˆ
ℝĉ be a random vector in the same probability space. Let �, ÿreg ,  0 , Ĩ0 be as in Lemma 4.11, and đ <
Bppģ0 , Ĥ0q, Ĩ0

?
Ċq (which is now a random set). Let Ā ą 0 be arbitrary and ℰ0 be the event that (C1)

through (C4) hold and }ģ0}2 , }Ĥ0}2 ď ĀĊ .

Let !∇ℱ pģ ,Ĥq denote the probability density of ∇ℱ pģ , Ĥq w.r.t. Lebesgue measure onℝĊ ˆℝĉ . Suppose

!∇ℱ pģ ,Ĥqpİq is bounded for pģ , Ĥq P ℝĊ ˆ ℝĉ and İ in a neighborhood of 0, and continuous in İ in this

neighborhood uniformly over pģ , Ĥq. �en, for any eventℰ Ď ℰ0 in the same probability space,

9pℰq <
ż

ℝĊˆℝĉ
Ā
“
| det∇2ℱ pģ , Ĥq|1tℰ X tpģ , Ĥq P đuu

ˇ̌
∇ℱ pģ , Ĥq < 0

‰
!∇ℱ pģ ,Ĥqp0q dpģ , Ĥq.

Proof. Onℰ0, Lemma 4.11 implies there is a unique critical point pģ˚ , Ĥ˚q of ℱ inđ . Moreover the image

ofđ under ∇ℱ contains Bp0, �q for small � and is one-to-one on this set. By the area formula, onℰ0,

1 < 1

|Bp0, �q|

ż

đ
| det∇2ℱ pģ , Ĥq|1t}∇ℱ pģ , Ĥq} ď �u dpģ , Ĥq.

Sinceℰ Ď ℰ0, multiplying both sides by 1tℰu and taking expectations (via Fubini’s theorem) yields

9pℰq < 1

|Bp0, �q| Ā
ż

ℝĊˆℝĉ
| det∇2ℱ pģ , Ĥq|1t}∇ℱ pģ , Ĥq} ď �u1tģ P đu dpģ , Ĥq

<
ż

ℝĊˆℝĉ
Ā
“
| det∇2ℱ pģ , Ĥq|1tℰ X tģ P đuu

ˇ̌
}∇ℱ pģ , Ĥq} ď �

‰ 9t}∇ℱ pģ , Ĥq} ď �u
|Bp0, �q| dpģ , Ĥq.

We now take the limit as � Ñ 0. On ℰ0, | det∇2ℱ pģ , Ĥq| ď ÿĉ`Ċ
reg . Since ģ0 , Ĥ0 are bounded on ℰ0,

1tģ P đu < 0 almost surely for ģ outside a compact set. Since !∇ℱ pģ ,Ĥqpİq is bounded and continuous

in İ, 9t}∇ℱ pģ , Ĥq} ď �u{|Bp0, �q| is bounded, and limits to !∇ℱ pģ ,Ĥqpİq as � Ñ 0. Taking � Ñ 0 gives

the result by dominated convergence. □

4.5. Proof of planted reduction. Weare now ready to prove Lemma 3.8. As anticipated in §2.2, Lemma 4.13

deduces (R2) from (R4), and Lemma 4.15 deduces (R1) from (R5). �en, Lemma 3.8 follows readily from the

Kac–Rice formula.

Lemma 4.13. For any  ą 0, S�, contains a critical point of ℱ
�
TAP with high probability under 9.
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Proof. Let � < minp�p�, ÿcvx , ÿbdq, ÿspecq, where these terms are given by Propositions 4.6 and 4.8. �en,

let Ā < 2maxpħ� ,#�q and ÿreg < ÿregp�, ÿcvx , ÿbd , Āq be given by Proposition 4.7. Let Ĩ0 be given by

Proposition 4.8. Let  1 be small enough in  that, with Ĩ1 < 2�´1p1 ` ÿreg�
´1q2 1, we have Ĩ1 ď Ĩ0 and

ď

p rģ ,rĤqPS�, 1

Bpp rģ , rĤq, Ĩ1
?
Ċq Ď S�, . (30)

(Since S�, is the image of a product of two Wasserstein-balls under pth� , Ă�,*�q, and th´1
� , Ă´1

�,*� have

Lipschitz constant depending only on �, there exists  1 such that this holds.) Let ℓ < ġ0p 1q be given by

Proposition 4.8. By Propositions 4.7 and 4.8, with high probability under 9,

‚ }∇2ℱ �
TAPpģ , Ĥq}op ď ÿreg for all }ģ}2 , }Ĥ}2 ď ĀĊ ,

‚ pģℓ , Ĥℓ q P S�, 1 ,

‚ }∇ℱ �
TAPpģℓ , Ĥℓ q} ď  1

?
Ċ ,

‚ ∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ´ÿspecąĊ for all }pģ , Ĥq ´ pģℓ , Ĥℓ q} ď Ĩ0

?
Ċ .

We now apply Lemma 4.11 with pℱ �
TAP ,ģ

ℓ , Ĥℓ ,  1 , Ĩ1q in place of pℱ ,ģ0 , Ĥ0 ,  0 , Ĩ0q. �e above points

imply that conditions (C1), (C2), (C4) hold, and condition (C3) holds by Proposition 4.6. By Lemma 4.11,

ℱ �
TAP has a critical point in Bppģℓ , Ĥℓ q, Ĩ1

?
Ċq. �is lies in S�, by (30). □

�e following lemma shows that the condition in Lemma 4.12 regarding !∇ℱ holds for ℱ < ℱ �
TAP.

Lemma 4.14 (Proved in §4.7). �e density !∇ℱ �
TAPpģ ,Ĥqpİq under 9 is bounded for pģ , Ĥq P ℝĊ ˆ ℝĉ and

İ in a neighborhood of 0, and continuous in İ in this neighborhood uniformly over pģ , Ĥq.

Lemma 4.15. LetCrt denote the set of critical points of ℱ
�
TAP inS�, . For small  ą 0,Ā |Crt | ď 1`ĥĊp1q.

Proof. By the Kac–Rice formula,

Ā |Crt | <
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq. (31)

As above, let � < minp�p�, ÿcvx , ÿbdq, ÿspecq, Ā < 2maxpħ� ,#�q, and ÿreg < ÿregp�, ÿcvx , ÿbd , Āq. Let
Ĩ0 be given by Proposition 4.8, and

 0 < �Ĩ0

2p1 ` ÿreg�´1q2 .

�en set ġ < ġ0p 0q, where ġ0p¨q is as in Proposition 4.8. Letℰ be the event that:

‚ }ģġ}2 , }Ĥġ}2 ď ĀĊ ,

‚ }∇2ℱ �
TAPpģ , Ĥq}op ď ÿreg for all }ģ}2 , }Ĥ}2 ď ĀĊ ,

‚ }∇ℱ �
TAPpģġ , Ĥġq} ď  0

?
Ċ ,

‚ ∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ´ÿspecąĊ for all }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0

?
Ċ .

We claim thatℰ Ď ℰ0, whereℰ0 is the event de�ned in Lemma 4.12 with pℱ �
TAP ,ģ

ġ , Ĥġq for pℱ ,ģ0 , Ĥ0q
(and thus đ < Bppģġ , Ĥġq, Ĩ0

?
Ċq). �e above points imply conditions (C1), (C2), (C4), and condition

(C3) follows from Proposition 4.6. By Lemma 4.14, Lemma 4.12 applies. �us,

1 ě 9pℰq <
ż

ℝĊˆℝĉ
Ā

ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|1tℰ X tpģ , Ĥq P đuu
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq. (32)

Let  ď minp p 0 , ġq,  pĨ0 , ġqq, for  p¨, ¨q as in Proposition 4.8. De�ne (compare with (31))

ą1 <
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|1tℰ X tpģ , Ĥq P đuu
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq
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and ą2 < Ā |Crt | ´ ą1. By Propositions 4.7 and 4.8, for any pģ , Ĥq P S�, , we have 9
ģ ,Ĥ
�,Pl

pℰ X tpģ , Ĥq P
đuq ě 1 ´ � for some � < ĥĊp1q. By Cauchy–Schwarz and Lemma 4.9,

ą2 <
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|1tpℰ X tpģ , Ĥq P đuqęu
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq

ď
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|2
‰1{2

9
ģ ,Ĥ
�,Pl

rpℰ X tpģ , Ĥq P đuqęs1{2 !∇ℱ �
TAPpģ ,Ĥqp0q dpģ , Ĥq

ď ÿ�1{2
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq (31)< ÿ�1{2
Ā |Crt |.

So, ą1 ě p1 ´ ÿ�1{2qĀ |Crt |. Since (32) implies ą1 ď 1, and � < ĥĊp1q, the conclusion follows. □

Proof of Lemma 3.8. Set  ą 0 small enough that Lemma 4.15 holds. Letℰ1 be the event that ℱ
�
TAP has a

critical point in S�, . By the Kac–Rice formula,

9pℰ Xℰ1q ď Ār1tℰ Xℰ1u|Crt |s

<
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|1tℰ Xℰ1u
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq.

�is is bounded by
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|2
‰1{2

9
ģ ,Ĥ
�,Pl

pℰq1{2!∇ℱ �
TAPpģ ,Ĥqp0q dpģ , Ĥq

ď ÿ sup
pģ ,ĤqPS�, 

9
ģ ,Ĥ
�,Pl

pℰq1{2 ˆ
ż

S�, 

Ā
ģ ,Ĥ
�,Pl

“
| det∇2ℱ �

TAPpģ , Ĥq|
‰
!∇ℱ �

TAPpģ ,Ĥqp0q dpģ , Ĥq

ď ÿ sup
pģ ,ĤqPS�, 

9
ģ ,Ĥ
�,Pl

pℰq1{2 ¨ Ā |Crt |
Ĉěģ. 4.15

ď p1 ` ĥĊp1qqÿ sup
pģ ,ĤqPS�, 

9
ģ ,Ĥ
�,Pl

pℰq1{2. (33)

�e result follows because 9pℰq ď 9pℰ Xℰ1q ` 9pℰę
1 q, and 9pℰę

1 q < ĥĊp1q by Lemma 4.13. □

4.6. Conditional law in planted model. Having proved the reduction to the planted model 9ģ ,Ĥ
�,Pl

, we

now calculate the law of the disorder in it. �is is stated in Lemma 4.17 for general pģ , Ĥq, and Corol-

lary 4.18 for pģ , Ĥq P S�, . �e following lemma is proved by direct di�erentiation of ℱ �
TAP.

Lemma 4.16 (Proved in Appendix A). Let ģ P ℝĊ , Ĥ P ℝĉ , and

Ğ́ < ăģ?
Ċ

` �1{2pĝ ´ ��pħpģqqĤ , Ě�pģ , Ĥq < 1

Ċ

ĉÿ

ė<1

pĤė ´ Ă�,��pħpģqqpℎ́ėqq2 ` Ă1
��pħpģqqpℎ́ėq.

�en,

∇ģℱ
�
TAPpģ , Ĥq < ´th´1

� pģq `
ăJĂ�,��pħpģqqpĞ́q

?
Ċ

` �1{2 9ĝ ` �1
�pħpģqqĚ�pģ , Ĥqģ , (34)

∇Ĥℱ
�
TAPpģ , Ĥq < ��pħpģqq

´
Ĥ ´ Ă�,��pħpģqqpĞ́q

¯
. (35)

In particular ∇ℱ �
TAPpģ , Ĥq < 0 if and only if, with 9Ğ < th´1

� pģq and pĞ < Ă´1
�,��pħpģqqpĤq,

ăģ?
Ċ

` �1{2pĝ < pĞ ` ��pħpģqqĤ , (36)

ăJĤ?
Ċ

` �1{2 9ĝ < 9Ğ ´ �1
�pħpģqqĚ�pģ , Ĥqģ. (37)
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(Note that (36) is equivalent to pĞ < Ğ́.)

Lemma 4.17. Under 9
ģ ,Ĥ
�,Pl

, ă has law

ă?
Ċ

Ě<
pĞģJ

Ċpħpģq ` �q ` Ĥ 9Ğ
J

Ċp#pĤq ` �q ` �pģ , ĤqĤģJ

Ċpħpģq ` #pĤq ` �q `
ră?
Ċ
, where (38)

�pģ , Ĥq < ��pħpģqq ´ �1
�pħpģqqĚ�pģ , Ĥq ´ xĤ , pĞy

Ċpħpģq ` �q ´ xģ , 9Ğy
Ċp#pĤq ` �q (39)

and where ră has the following law. Let 9ě1 , . . . , 9ěĊ and pě1 , . . . , pěĉ be orthonormal bases of ℝĊ and ℝĉ

with 9ě1 < ģ{}ģ} and pě1 < Ĥ{}Ĥ}, and abbreviate răpğ , Ġq < xpě Ġ , ră 9ě ğy. �en the răpğ , Ġq are independent
centered gaussians with variance

Ā răpğ , Ġq2 <

$
’’’’&
’’’’%

�{pħpģq ` #pĤq ` �q ğ < Ġ < 1,

�{pħpģq ` �q ğ < 1, Ġ ‰ 1,

�{p#pĤq ` �q ğ ‰ 1, Ġ < 1,

1 ğ ‰ 1, Ġ ‰ 1.

(40)

Proof. �is is a standard gaussian conditioning calculation, which we present brie�y. For �xed 9Ĭ P ℝĊ ,

pĬ P ℝĉ and

pĭ < xģ , 9Ĭy
Ċpħpģq ` �qpĬ ´ xģ , 9ĬyxĤ , pĬy

Ċ2pħpģq ` �qpħpģq ` #pĤq ` �qĤ ,

9ĭ < xĤ , pĬy
Ċp#pĤq ` �q 9Ĭ ´ xģ , 9ĬyxĤ , pĬy

Ċ2p#pĤq ` �qpħpģq ` #pĤq ` �qģ ,

we may verify the independence

xpĬ ,ă 9Ĭy?
Ċ

´
B
pĭ , ăģ?

Ċ
` �1{2pĝ

F
´
C

9ĭ ,
ăJĤ?
Ċ

` �1{2 9ĝ

G
KK

#
ăģ?
Ċ

` �1{2pĝ , ă
JĤ?
Ċ

` �1{2 9ĝ

+
.

By Lemma 4.16, ∇ℱ �
TAPpģ , Ĥq < 0 if and only if (36) and (37) hold. Let pī , 9ī denote the right-hand sides of

(36), (37), respectively. �en, for all 9Ĭ , pĬ,

Ā

„xpĬ ,ă 9Ĭy?
Ċ

ˇ̌
ˇ̌(36), (37)


< x pĭ , pīy ` x 9ĭ , 9īy.

Expanding shows ă has the conditional mean given in (38). �e law (40) of ră follows from computing the

covariance of the gaussian process

p 9Ĭ , pĬq ÞÑ xpĬ , ră 9Ĭy?
Ċ

= xpĬ ,ă 9Ĭy?
Ċ

´
B
pĭ , ăģ?

Ċ
` �1{2pĝ

F
´
C

9ĭ ,
ăJĤ?
Ċ

` �1{2 9ĝ

G
.

(Note that if pĬ P tpě2 , . . . , pěĉu, then xĤ , pĬy < 0 and thus 9ĭ < 0. Similarly if 9Ĭ P t 9ě2 , . . . , 9ěĊu, then
pĭ < 0. So in most cases the above formulas simplify considerably.) □

Corollary 4.18. If pģ , Ĥq P S�, , then under 9
ģ ,Ĥ
�,Pl

, ă has law

ă?
Ċ

Ě< p1 ` ĥ p1qqpĞģJ

Ċpħ� ` �q ` p1 ` ĥ p1qqĤ 9Ğ
J

Ċp#� ` �q ` ĥ p1qĤģJ

Ċ
`

ră?
Ċ
, (41)

where ĥ p1q denotes a term vanishing as  Ñ 0 and ră is as in Lemma 4.17.

�is corollary is proved by a standard approximation argument, which we record as Fact 4.20 below.
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De�nition 4.19. A function Ĝ : ℝ Ñ ℝ is p2, Ĉq-pseudo-Lipschitz if | Ĝ pĮq´ Ĝ pįq| ď Ĉ|Į´į|p|Į|`|į|`1q.

Fact 4.20 (Proved in Appendix A). Suppose �, �1 P P2pℝq and let �2 < ĀĮ>�rĮ2s. If Ĝ is p2, Ĉq-pseudo-
Lipschitz, then

|Ā�r Ĝ s ´ Ā�1r Ĝ s| ď 3Ĉă2p�, �1qp�2 ` ă2p�, �1q ` 1q.

Proof of Corollary 4.18. Let 9Ğ < th´1
� pģq, pĞ < Ă´1

�,*�pĤq, so p 9Ğ , pĞq P T�, . Recall � 9Ğ de�ned in (26). Since
9ℎ ÞÑ th�p 9ℎq2 is p2, ċp1qq-pseudo-Lipschitz, by Fact 4.20,

|ħpģq ´ ħ�| <
ˇ̌
ˇĀ 9ℎ>� 9Ğ

rth�p 9ℎq2s ´ Ā 9ℎ>Np0,#�`�qrth�p 9ℎq2s
ˇ̌
ˇ < ĥ p1q.

Similarly #pĤq < #� ` ĥ p1q and Ě�pģ , Ĥq < Ě� ` ĥ p1q. Also, by gaussian integration by parts and

Lemma 4.2,

Ā 9ℎ>Np0,#�`�qr 9ℎth�p 9ℎqs < p#� ` �q*�.
�us ˇ̌

ˇ̌
ˇ

xģ , 9Ğy
Ċp#� ` �q ´ *�

ˇ̌
ˇ̌
ˇ <

ˇ̌
ˇĀ 9ℎ>� 9Ğ

r 9ℎth�p 9ℎqs ´ Ā 9ℎ>Np0,#�`�qr 9ℎth�p 9ℎqs
ˇ̌
ˇ < ĥ p1q.

Similarly
xĤ ,pĞy

Ċpħ�`�q < Ě� ` ĥ p1q. Finally, equation (22) and regularity of �� , �
1
� (recall (23)) imply

��pħpģqq < *� ` ĥ p1q, �1
�pħpģqq < ´1 ` ĥ p1q.

Combining these estimates shows the conditional mean ofă in (38) simpli�es to the form (41). In particular

note that �pģ , Ĥq < ĥ p1q. □

4.7. Deferred proofs. We now prove various results deferred from the above proof.

Lemma 4.21 ([DS18, Lemma 10.1]). �e function ℰ satis�es the following for all Į P ℝ.

(a) 0 ď ℰpĮq ď |Į| ` 1.

(b) ℰ1pĮq < ℰpĮqpℰpĮq ´ Įq P p0, 1q.
(c) ℰ2pĮq P p0, 1q.
(d) ℰp3q P p´1{2, 13q.

Proof of Lemma 4.2. We calculate

ħ� < Ārth�pp#� ` �q1{2Ėq2s
< �2p#� ` �q ` 2�Ārp#� ` �q1{2Ėthpp#� ` �q1{2Ėqs ` Ārth2pp#� ` �q1{2Ėq2s
< �2p#� ` �q ` 2�p#� ` �qĀr1 ´ th2pp#� ` �q1{2Ėqs ` Ārth2pp#� ` �q1{2Ėq2s.

�us

Ārth2pp#� ` �q1{2Ėq2s < ħ� ´ 2�p#� ` �q ´ �2p#� ` �q
1 ´ 2�p#� ` �q ,

and

Ārth1
�pp#� ` �q1{2Ėqs < 1 ` � ´ Ārth2pp#� ` �q1{2Ėqs < 1 ´ ħ� ` � ´ �2p#� ` �q

1 ´ 2�p#� ` �q < *�.

□

Di�erentiating (19) and applying Lemma 4.21(b) shows the following fact.
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Fact 4.22. For �, * ą 0 and any Į P ℝ,

´ 1 ` �2

* ` �p1 ` �*q ď Ă1
�,*pĮq ď ´ �

1 ` �*
.

�us

1 ` *Ă1
�,*pĮq ě �

* ` �p1 ` �*q . (42)

For * in any compact set away from 0, |Ă1
�,* |, |Ă2

�,* | and |Ăp3q
�,* | are uniformly bounded independently of �.

Proof of Proposition 4.6. It is clear that ∇2
Ĥ ,Ĥℱ

�
TAPpģ , Ĥq is diagonal, so it su�ces to check B2

Ĥėℱ
�
TAPpģ , Ĥq ě

� for all ė P rĉs. We calculate

B2
Ĥėℱ

�
TAPpģ , Ĥq < ��pħpģqq

ˆ
1 ` ��pħpģqqĂ1

�,*

ˆxĝ ė ,ģy?
Ċ

` �1{2pĝė ´ ��pħpģqqĤė
˙˙

(42)
ě ���pħpģqq

��pħpģqq ` �p1 ` ���pħpģqqq .

Since �� P rÿ´1
bd
, ÿbds the result follows. □

Proof of Lemma 4.14. �e function Į ÞÑ ��pħpģqqĂ�,��pħpģqqpĮq is uniformly Lipschitz over ģ P ℝĊ , be-

cause ��pħpģqq P rÿ´1
bd
, ÿbds. Note that pĝ appears in (35) through the term �1{2pĝ in Ğ́ and is independent

of all other terms apeparing in (35). �us !∇Ĥℱ
�
TAPpģ ,Ĥqpİq is bounded, and continuous for İ in an neigh-

borhood of 0, uniformly in ģ , Ĥ. Similarly, 9ĝ appears in (34), (35) only as the term �1{2 9ĝ in (34). �is

implies the conclusion. □

5. Analysis of AMP

In this section, we prove items (a), (b), and (d) of Proposition 4.8. Item (c) will be proved in §6.

5.1. Scalar recursions. For ħ P r0, ħ�s, # P r0,#�s, de�ne
ČAMPp#q < Ārth�pp# ` �q1{2Ė ` p#� ´ #q1{2Ė1qth�pp# ` �q1{2Ė ` p#� ´ #q1{2Ė2qs,
ĎAMPpħq < 
9 ĀrĂ�,*�ppħ ` �q1{2Ė ` pħ� ´ ħq1{2Ė1qĂ�,*�ppħ ` �q1{2Ė ` pħ� ´ ħq1{2Ė2qs,

De�ne the sequences pħġqġě0 and p#ġqġě1 by ħ0 < 0 and the recursion

#ġ`1 < ĎAMPpħġq, ħġ < ČAMPp#ġq.

Lemma 5.1. �e sequences pħġqġě0, p#ġqġě1 are increasing, and for small �, we have ħġ Ò ħ� and #ġ Ò #�.

Proof. Let the functions

rth�pĮq < th�pp#� ` �q1{2Įq, rĂ�pĮq < Ă�,*�ppħ� ` �q1{2Įq
have Hermite expansions

rth�pĮq <
ÿ

Ħě0

ėĦĄĦpĮq, rĂ�pĮq <
ÿ

Ħě0

ĘĦĄĦpĮq,

where ĄĦpĮq is the Ħ-th Hermite polynomial, normalized to ĀĄĦpĖq2 < 1. �en

ČAMPp#q <
ÿ

Ħě0

ė2Ħ

ˆ
# ` �

#� ` �

˙Ħ

, ĎAMPpħq < 
9
ÿ

Ħě0

Ę2Ħ

ˆ
ħ ` �

ħ� ` �

˙Ħ

.
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So, ČAMP and ĎAMP are increasing and convex. �us pħġqġě0, p#ġqġě1 are increasing, and their limit is the

smallest �xed point of ČAMP ˝ĎAMP. It remains to show this �xed point is pħ� ,#�q. By de�nition of ħ� ,#�,

pħ� ,#�q is a �xed point. Since ČAMP ˝ ĎAMP is convex, it su�ces to show pČAMP ˝ ĎAMPq1pħ�q ă 1. Note

that

pČAMP ˝ ĎAMPq1pħ�q < Č1
AMPp#�qĎ1

AMPpħ�q.
By gaussian integration by parts,

Č1
AMPp#q < Ārth1

�pp# ` �q1{2Ė ` p#� ´ #q1{2Ė1qth1
�pp# ` �q1{2Ė ` p#� ´ #q1{2Ė2qs,

Ď1
AMPpħq < 
9 ĀrĂ1

�,*�ppħ ` �q1{2Ė ` pħ� ´ ħq1{2Ė1qĂ1
�,*�ppħ ` �q1{2Ė ` pħ� ´ ħq1{2Ė2qs,

and in particular

Č1
AMPp#�q < Ārth1

�pp#� ` �q1{2Ėq2s, Ď1
AMPpħ�q < 
9 ĀrĂ1

�,*�ppħ� ` �q1{2Ėq2s.
In light of Proposition 4.1, a simple continuity argument shows

Ārth1
�pp#� ` �q1{2Ėq2s �Ó0Ñ Ārth1p#1{2

0 Ėq2s, ĀrĂ1
�,*�ppħ� ` �q1{2Ėq2s �Ó0Ñ ĀrĂ1

1´ħ0pħ
1{2
0 Ėq2s.

�us,

pČAMP ˝ ĎAMPq1pħ�q < 
9 Ārth1
�pp#� ` �q1{2Ėq2sĀrĂ1

�,*�ppħ� ` �q1{2Ėq2s
�Ó0Ñ 
9 Ārth1p#1{2

0 Ėq2sĀrĂ1
1´ħ0pħ

1{2
0 Ėq2s ÿĥĤĚ. 3.3ă 1.

�us, pĎAMP ˝ ČAMPq1pħ�q ă 1 for su�ciently small �. Hence ħġ Ò ħ� and #ġ Ò #�. □

5.2. State evolution. �e limiting overlap structure of the AMP iterates in the null model follows directly

from the state evolution of [Bol14, BM11, JM13, BMN20]. De�ne the in�nite arrays p 9Σğ , Ġ : ğ , Ġ ě 1q and
ppΣğ , Ġ : ğ , Ġ ě 0q by

9Σğ , Ġ <
#
#� ğ < Ġ ,

#ğ^Ġ ğ ‰ Ġ ,
pΣğ , Ġ <

#
ħ� ğ < Ġ ,

ħ ğ^Ġ ğ ‰ Ġ.

For any ġ ě 0, let 9Σďġ P ℝġˆġ and pΣ`
ďġ P ℝpġ`1qˆpġ`1q denote the sub-arrays indexed by ğ , Ġ ď ġ.

Proposition 5.2. For any ġ ě 0, as Ċ Ñ 8 the empirical coordinate distribution of the AMP iterates

converges ină2 in probability under 9, to

1

Ċ

Ċÿ

ğ<1

�p 9ℎ1ğ , . . . ,
9ℎġğ q ă2Ñ Np0, 9Σďġ ` �11Jq, 1

ĉ

ĉÿ

ė<1

�ppℎ0ė , . . . , pℎġėq ă2Ñ Np0, pΣďġ ` �11Jq. (43)

Proof. �e state evolution [BMN20, �eorem 1] implies that (in probability)

1

Ċ

Ċÿ

ğ<1

�p 9ℎ1ğ , . . . ,
9ℎġğ q ă2Ñ Np0, 9Σ

p0q
ďġ ` �11Jq, 1

ĉ

ĉÿ

ė<1

�ppℎ0ė , . . . , pℎġėq ă2Ñ Np0, pΣp0q
ďġ ` �11Jq.

holds for arrays 9Σp0q, pΣp0q de�ned as follows. As initialization, pΣp0q
0,ğ

< pΣp0q
ğ ,0

< pΣ0,ğ for all ğ ě 0. �en, for

p pĄ0 , . . . , pĄġq > Np0, pΣp0q
ďġ ` �11Jq and 0 ď ğ ď ġ, de�ne recursively

9Σ
p0q
ġ`1,ğ`1

< 9Σ
p0q
ğ`1,ġ`1

< 
9 ĀrĂ�,*�p pĄğqĂ�,*�p pĄġqs.

For p 9Ą0 , . . . , 9Ąġ`1q > Np0, 9Σ
p0q
ďġ`1

` �11Jq and 1 ď ğ ď ġ ` 1, let

pΣp0q
ġ`1,ğ

< pΣp0q
ğ ,ġ`1

< Ārth�p 9Ąğqth�p 9Ąġ`1qs.
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It remains to show 9Σp0q , pΣp0q coincide with 9Σ, pΣ. Since pΣ0,0 < ħ�, induction shows the diagonal entries are

9Σ
p0q
ġ,ġ

< #� < 9Σġ,ġ , pΣp0q
ġ,ġ

< ħ� < pΣġ,ġ .

�en, the above recursion gives 9Σ
p0q
ğ`1, Ġ`1

< ĎAMPppΣp0q
ğ , Ġ

q, pΣp0q
ğ , Ġ

< ČAMPp 9Σ
p0q
ğ , Ġ

q. By induction, for ğ ‰ Ġ,

9Σ
p0q
ğ , Ġ

< #ğ^Ġ < 9Σğ , Ġ , pΣp0q
ğ , Ġ

< ħ ğ^Ġ < pΣğ , Ġ .

�us 9Σp0q < 9Σ and pΣp0q < pΣ. □

�e following proposition characterizes the limiting overlap structure in the plantedmodel. To conserve

notation, we will denote the planted solution by pģ , Ĥq, rather than pģ1 , Ĥ1q as in Proposition 4.8.

Proposition 5.3. Let pģ , Ĥq P S�,ĥĊ p1q, 9Ğ < th´1
� pģq, pĞ < Ă´1

�,*�pĤq, and pă, 9ĝ , pĝq > 9
ģ ,Ĥ
�,Pl

. For any

ġ ě 0, as Ċ Ñ 8 the empirical coordinate distribution of p 9Ğ , pĞq and the AMP iterates converges in ă2 in

probability under 9
ģ ,Ĥ
�,Pl

, to

1

Ċ

Ċÿ

ğ<1

�p 9ℎ1ğ , . . . ,
9ℎġğ ,

9ℎğq ă2Ñ Np0, 9Σďġ`1 ` �11Jq, 1

ĉ

ĉÿ

ė<1

�ppℎ0ė , . . . , pℎġė , pℎėq
ă2Ñ Np0, pΣďġ`1 ` �11Jq.

We prove this proposition by introducing an auxiliary AMP iteration. We �x ģ , Ĥ , 9Ğ , pĞ as in Proposi-

tion 5.3. Let ră P ℝĉˆĊ be given by (40) and pă P ℝĉˆĊ have i.i.d. Np0, 1q entries, and couple these

matrices so that a.s.

ČK
Ĥ
răČK

ģ < ČK
Ĥ
păČK

ģ , (44)

and, with ă denoting this common value, ră ´ ă and pă ´ ă are independent. Further, let Ė > Np0, 1q,
9ć > Np0, ąĊq, pć > Np0, ąĉq be coupled to ră such that

ră ` Ā < ă ´
c

�

ħpģq ` �
¨
pćģJ

}ģ} ´
c

�

#pĤq ` �
¨ Ĥ

9ć
J

}Ĥ} , where (45)

Ā <
c

�

ħpģq ` �
` �

#pĤq ` �
´ �

ħpģq ` #pĤq ` �

ĤģJ

}Ĥ}}ģ}Ė. (46)

(Such a coupling exists by (40).) �e auxiliary AMP iteration has initialization Ĥp1q,´1 < 0, ģp1q,0 < ħ
1{2
� 1,

and iteration

ģp1q,ġ < th�p 9Ğ
p1q,ġq, Ĥp1q,ġ < Ă�,*�ppĞ

p1q,ġq,

for 9Ğ
p1q,ġ

, pĞp1q,ġ
as follows. Let #0 < 0, and

pĞp1q,ġ < 1?
Ċ

pă
ˆ
ģp1q,ġ ´

ħġ
ħ�

ģ

˙
`

?
�pħ� ´ ħġqa
ħ�pħ� ` �q

pć `
ħġ ` �

ħ� ` �
pĞ ´ *�

˜
Ĥp1q,ġ´1 ´

#ġ

#�
Ĥ

¸
(47)

9Ğ
p1q,ġ`1 < 1?

Ċ
păJ

˜
Ĥp1q,ġ ´

#ġ`1

#�
Ĥ

¸
`

?
�p#� ´ #ġ`1qa
#�p#� ` �q

9ć `
#ġ`1 ` �

#� ` �
9Ğ ´ Ě�

ˆ
ģp1q,ġ ´

ħġ
ħ�

ģ

˙
.
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De�ne augmented arrays p 9Σ`
ğ , Ġ

: ğ , Ġ P t˛,’u Y ℤě1q and ppΣ`
ğ , Ġ

: ğ , Ġ P t˛,’u Y ℤě0q by

9Σ`
ğ , Ġ

<

$
’’’’’’’’’’&
’’’’’’’’’’%

#� ` � ğ < Ġ ě 1 or ğ < Ġ < ˛,
# Ġ ` � ğ ą Ġ ě 1,

#ğ ` � ğ ě 1, Ġ < ˛,
?
�p#�´#ğq?
#�p#�`�q

ğ ě 1, Ġ <’,

1 ğ < Ġ <’,

0 ğ < ˛, Ġ <’,

pΣ`
ğ , Ġ

<

$
’’’’’’’’’’&
’’’’’’’’’’%

ħ� ` � ğ < Ġ ě 0 or ğ < Ġ < ˛,
ħ Ġ ` � ğ ą Ġ ě 0,

ħ ğ ` � ğ ě 0, Ġ < ˛,?
�pħ�´ħ ğq?
ħ�pħ�`�q

ğ ě 0, Ġ <’,

1 ğ < Ġ <’,

0 ğ < ˛, Ġ <’,

with the remaining entries de�ned by symmetry over the diagonal. Note that on indices pğ , Ġq where

tğ , Ġu X t˛,’u < H, these arrays coincide with 9Σ ` �11J and pΣ ` �11J. Let 9Σ`
ďġ P ℝpġ`2qˆpġ`2q and

pΣ`
ďġ P ℝpġ`3qˆpġ`3q denote the sub-arrays indexed by t˛,’u and t1, . . . , ġu (resp. t0, . . . , ġu).

Proposition 5.4 (Proved in Appendix A). For any ġ ě 0, as Ċ Ñ 8 we have the convergence in ă2 in

probability under 9
ģ ,Ĥ
�,Pl

1

Ċ

Ċÿ

ğ<1

�p 9ℎğ , 9�ğ , 9ℎ
p1q,1
ğ

, . . . , 9ℎ
p1q,ġ
ğ

q ă2Ñ Np0, 9Σ`
ďġq,

1

ĉ

ĉÿ

ė<1

�ppℎė , p�ė , pℎp1q,0
ė , . . . , pℎp1q,ġ

ė q ă2Ñ Np0, pΣ`
ďġq.

�is is proved by applying state evolution, analogously to Proposition 5.2. We next show that this AMP

iteration approximates the original one, in the following sense.

Proposition 5.5 (Proved in Appendix A). For any ġ ě 0, as Ċ Ñ 8 we have }pĞp1q,ġ ´ pĞġ}{
?
Ċ Ñ 0 in

probability under 9
ģ ,Ĥ
�,Pl

and if ġ ě 1, } 9Ğ
p1q,ġ ´ 9Ğ

ġ}{
?
Ċ Ñ 0 in probability under 9

ģ ,Ĥ
�,Pl

.

Proof of Proposition 5.3. If we identify index ˛ with ġ`1, the array t 9Σ`
ğ , Ġ

: ğ , Ġ P t˛uYt1, . . . , ġuu coincides
with 9Σďġ`1 ` �11J, and similarly tpΣ`

ğ , Ġ
: ğ , Ġ P t˛u Y t0, . . . , ġuu coincides with pΣďġ`1 ` �11J. By

Proposition 5.4,

1

Ċ

Ċÿ

ğ<1

�p 9ℎ
p1q,1
ğ

, . . . , 9ℎ
p1q,ġ
ğ

, 9ℎğq ă2Ñ Np0, 9Σ`
ďġ`1

` �11Jq,

1

ĉ

ĉÿ

ė<1

�ppℎp1q,0
ė , . . . , pℎp1q,ġ

ė , pℎėq ă2Ñ Np0, pΣ`
ďġ`1

` �11Jq

in probability under 9ģ ,Ĥ
�,Pl

. Proposition 5.5 implies the conclusion. □

5.3. Completion of the proof. We separately prove Proposition 4.8 under 9 and 9
ģ ,Ĥ
�,Pl

.

Proof of Proposition 4.8(a)(b), under 9. By Proposition 5.2, for any ġ,

�
9Ğ
ġ
ă2Ñ Np0,#� ` �q, �pĞġ

ă2Ñ Np0, ħ� ` �q

in probability. So, with high probability, p 9Ğ
ġ
, pĞġq P T�, 0 and thus item (a) holds. Approximation argu-

ments similar to the proof of Corollary 4.18 using Fact 4.20 yield

ħpģġq Ñ Ārth�pp#� ` �q1{2Ėq2s < ħ�

in probability. Regularity of �� and its derivatives then implies

��pħpģġqq Ñ *� , �1
�pħpģġqq Ñ ´1
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in probability. Proposition 5.2 also implies

lim
ġÑ8

p-lim
ĊÑ8

1

Ċ
} 9Ğ

ġ`1 ´ 9Ğ
ġ}2 < lim

ġÑ8
p-lim
ĊÑ8

1

Ċ
}pĞġ`1 ´ pĞġ}2 < 0.

Below, let ĥġ,Čp
?
Ċq denote a random vector Ĭ such that limġÑ8 p-limĊÑ8

1?
Ċ

}Ĭ} < 0, and ĥġ,Čp1q
denote a random scalar � such that limġÑ8 p-limĊÑ8 |�| < 0. Let

Ğ́
ġ < ăģġ

?
Ċ

` �1{2pĝ ´ ��pħpģġqqĤġ .

By Lemma 4.2,

pĞġ < ăģġ

?
Ċ

` �1{2pĝ ´ *�Ĥ
ġ´1.

�e above discussion implies pĞġ ´ Ğ́
ġ < ĥġ,Čp

?
Ċq, and thus Ĥġ ´ Ă�,��pħpģqqpĞ́

ġq < ĥġ,Čp
?
Ċq. By (35),

∇Ĥℱ
�
TAPpģġ , Ĥġq < ĥġ,Čp

?
Ċq.

Moreover,

Ě�pģġ , Ĥġq < 1

Ċ

ĉÿ

ė<1

Ă1
�,*�ppℎ

ġq ` ĥġ,Čp1q < Ě� ` ĥġ,Čp1q,

for Ě� de�ned below Lemma 4.2. So

∇ģℱ
�
TAPpģġ , Ĥġq < ´th´1

� pģġq ` ăJĤġ?
Ċ

` �1{2 9ĝ ´ Ě�ģ
ġ `

ˆ
1 `

}ă}op?
Ċ

˙
ĥġ,Čp

?
Ċq.

Since }ă}op ď ÿ
?
Ċ w.h.p.,

∇ģℱ
�
TAPpģġ , Ĥġq < ´ 9Ğ

ġ ` ăJĤġ?
Ċ

` �1{2 9ĝ ´ Ě�ģ
ġ ` ĥġ,Čp

?
Ċq

< 9Ğ
ġ`1 ´ 9Ğ

ġ ` ĥġ,Čp
?
Ċq < ĥġ,Čp

?
Ċq,

proving item (b). □

Proof of Proposition 4.8(a)(b)(d), under 9
ģ ,Ĥ
�,Pl

. Suppose �rst pģ , Ĥq P S�,ĥĊ p1q, and let 9Ğ < th´1
� pģq, pĞ <

Ă´1
�,*�pĤq. �e above argument, using Proposition 5.3 in place of Proposition 5.2, shows items (a) and (b)

hold with high probability under 9ģ ,Ĥ
�,Pl

. Proposition 5.3 also yields

lim
ġÑ8

p-lim
ĊÑ8

1

Ċ
} 9Ğ

ġ ´ 9Ğ}2 < lim
ġÑ8

p-lim
ĊÑ8

1

Ċ
}pĞġ ´ pĞ}2 < 0.

�us item (d) holds with high probability under9ģ ,Ĥ
�,Pl

. Finally, we show this remains true for pģ , Ĥq P S�, ,

for suitably small  . Let pģ , Ĥq P S�,ĥĊ p1q be such that 1
Ċ }ģ ´ ģ}2 , 1

Ċ }Ĥ ´ Ĥ}2 < ĥ p1q. We will show

there is a coupling of pă, 9ĝ , pĝq > 9
ģ ,Ĥ
�,Pl

and pă, 9ĝ , pĝq > 9
ģ ,Ĥ
�,Pl

such that

}ă ´ ă}op , } 9ĝ ´ 9ĝ}, }pĝ ´ pĝ} ď ĥ p1q
?
Ċ. (48)

If pģġ , Ĥġq are the AMP iterates under 9ģ ,Ĥ
�,Pl

and pģġ , Ĥġq are the AMP iterates under 9ģ ,Ĥ
�,Pl

, this implies

}ģġ ´ ģġ}, }Ĥġ ´ Ĥġ} ď ĥ p1q
?
Ċ (this uses crucially that  is set small depending on ġ). �is implies

(a) and (d) continue to hold, and similar approximation arguments to above show (b) continues to hold.
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We now prove (48). Let
9
Ğ < th´1

� pģq and pĞ < Ă´1
�,��pħpģqqpĤq. Another approximation argument shows

} 9Ğ ´ 9
Ğ}, }pĞ ´ p

Ğ} ď ĥ p1q
?
Ċ . �e conditional means of ă,ă are given by (38), and an approximation

argument shows

}Āģ ,Ĥ
�,Pl

răs ´ Ā
ģ ,Ĥ
�,Pl

răs}
op

ď ĥ p1q
?
Ċ.

We couple the random parts ră, ră as follows. Let 9ě1 , pě1 (resp. 9
Ğ1 ,

p
Ğ1) be the the unit vectors parallel to

ģ , Ĥ (resp. ģ , Ĥ). Let 9Đ, Đ̂ be rotation operators on ℝĊ ,ℝĉ with 9Đ 9ě1 < 9
Ğ1 and Đ̂pě1 < p

Ğ1. �ese can be

set so } 9Đ ´ ąĊ}op , }Đ̂ ´ ąĉ}op ď ĥ p1q. By (40), we can couple ră, ră such that
r
ă < Đ̂ ră 9Đ´1. Since, for

some absolute constant ÿ, }ră}op ď ÿ
?
Ċ with high probability, on this event

}ră ´ r
ă}op ď }ră}opp} 9Đ ´ ąĊ}op ` }Đ̂ ´ ąĉ}opq < ĥ p1q

?
Ċ.

�us }ă ´ ă}op ď ĥ p1q
?
Ċ . �e stationary equations (36), (37) then imply } 9ĝ ´ 9ĝ}op , }pĝ ´ pĝ}op ď

ĥ p1q
?
Ċ . �is proves (48). □

6. Local concavity of perturbed TAP free energy

In this section, we prove Lemmas 3.5 and 4.9 and Proposition 4.8(c).

6.1. Description of spectral gap bound. We �rst de�ne a quantity ��, which is a perturbed analog of

the value �0 < inf İą´1 �pİq de�ned in Condition 3.4. We will see that �� upper bounds the maximum

eigenvalue of∇2
˛ℱ

�
TAP near late AMP iterates. To de�ne��, we introduce �-perturbed variants of quantities

appearing in Condition 3.4 and Lemma 3.5. Let

9Ĝ�pĮq < ch2Į

1 ` �ch2pĮq
, pĜ�pĮq < ´

Ă1
�,*�pĮq

1 ` *�Ă
1
�,*�pĮq .

We extend these de�nitions to � < 0 by de�ning 9Ĝ0pĮq < ch2pĮq and pĜ0 as in Condition 3.4; this extension

will be used solely in Lemma 6.1 and the proof of Lemma 3.5 below.

Note that 9Ĝ� and pĜ� are positive, the la�er because Fact 4.22 implies Ă1
�,*�pĮq ă 0 and 1`*�Ă

1
�,*�pĮq ą 0,

and 9Ĝ�pĮq has minimum 9Ĝ�p0q < 1
1`� . �e function pĜ0 is also positive, as Lemma 4.21(b) implies Ă1

1´ħ0pĮq ă
0 and 1`p1´ ħ0qĂ1

1´ħ0pĮq ą 0. In the below, it will be convenient to abbreviate rħ� < ħ� `�, r#� < #� `�.

Lemma 6.1. For any � ě 0 (including � < 0), the functions ģ� , �� : p´ 1
1`� ,`8q Ñ p0,`8q de�ned by

ģ�pİq < Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´1s,

��pİq < Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´2sĀ

»
–
˜ pĜ�prħ1{2

� Ėq
1 ` ģ�pİqpĜ�prħ1{2

� Ėq

¸2
fi
fl

are continuous and strictly decreasing, with

lim
İÓ´p1`�q´1

ģ�pİq < lim
İÓ´p1`�q´1

��pİq < `8, lim
İÒ`8

ģ�pİq < lim
İÒ`8

��pİq < 0.

In particular �� has a well-de�ned inverse �
´1
� : p0,`8q Ñ p´ 1

1`� ,`8q.

Proof of Lemma 6.1. Note that ģ�pİq is clearly decreasing on p´ 1
1`� ,`8q with limİÒ`8 ģ�pİq < 0. To

show the other limit, let

9ĝ�pĮq < 9Ĝ�pĮq ´ 1

1 ` �
< sh2pĮq

p1 ` �qp1 ` �ch2pĮqq
.
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For İ < ´ 1
1`� ` �, with � ą 0 small,

ģ�pİq < Ārp� ` 9ĝ�pr#1{2
� Ėqq´1s ě Ār1t|Ė| ď �1{2up� ` 9ĝ�pr#1{2

� Ėqq´1s ě ¬p�´1{2q.
�us limİÓ´p1`�q´1 ģ�pİq < `8. We can write ��pİq as

��pİq < Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´2s

Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´1s2

Ā

«
pģ�pİqpĜ�prħ1{2

� Ėqq2

p1 ` ģ�pİqpĜ�rħ1{2
� Ėqq2

ff
. (49)

Since ģ�pİq is decreasing and pĜ� is positive, the second factor of (49) is manifestly decreasing. �e İ-

derivative of the �rst is

´Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´1sĀrpİ ` 9Ĝ�pr#1{2

� Ėqq´3s ` Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´2s2

Ārpİ ` 9Ĝ�pr#1{2
� Ėqq´1s3

ă 0

by Cauchy–Schwarz. �us �� is decreasing on p´ 1
1`� ,`8q. We now calculate its limits as İ Ó ´ 1

1`� and

İ Ò `8. Consider �rst İ < ´ 1
1`� ` � for � small. �en the �rst factor of (49) is

Ārp� ` 9ĝ�pr#1{2
� Ėqq´2s

Ārp� ` 9ĝ�pr#1{2
� Ėqq´1s2

ě Ār1t|Ė| ď �1{2up� ` 9ĝ�pr#1{2
� Ėqq´2s

Ār1t|Ė| ď �1{3up� ` 9ĝ�pr#1{2
� Ėqq´1 ` ċp�´2{3qs2

< ¬p�´3{2q
ċp�´4{3q

,

which diverges as � Ó 0. �e second factor of (49) tends to 1 in this limit by dominated convergence. �us

limİÓ´p1`�q´1 ��pİq < `8. We can write the �rst factor of (49) as

Ārp1 ` İ´1 9Ĝ�pr#1{2
� Ėqq´2s

Ārp1 ` İ´1 9Ĝ�pr#1{2
� Ėqq´1s2

,

which tends to 1 as İ Ò `8 by dominated convergence. In this limit, the second factor of (49) tends to 0

by dominated convergence, so limİÒ`8 ��pİq < 0. �is completes the proof. □

Proof of Lemma 3.5. Note that

ģ1pİq < ´Ārpİ ` ch2p#1{2
0 Ėqq´2s.

�us, di�erentiating � yields

�1pİq < 1 ` 
9ģ
1pİqĀ

»
–
˜ pĜ0pħ1{2

0 Ėq
1 ` ģpİqpĜ0pħ1{2

0 Ėq

¸2
fi
fl < 1 ´ 
9�pİq.

�e assertions about � follow from Lemma 6.1, with � < 0. Since � is strictly decreasing on p´1,`8q,
�1 is strictly increasing on this interval, and therefore � is strictly convex on this interval. Since �´1 :

p0,`8q Ñ p´1,`8q is well-de�ned, we may de�ne İ0 < �´1p
´1
9 q. �is point satis�es the stationarity

condition �1pİ0q < 0 and is thus the unique minimizer of � on p´1,`8q. □

Recall from below Lemma 4.2 that Ě� < 
9 ĀrĂ1
�,*�prħ

1{2
� Ėqs. We now de�ne the threshold ��.

De�nition 6.2. Let İ� < �´1
� p
´1

9 q and

�� = İ� ´ 
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
´ Ě�. (50)

Lemma 6.3. As � Ó 0, �� Ñ �0 (de�ned in Condition 3.4).



32 BRICE HUANG

Proof. By Proposition 4.1, as � Ó 0, prħ� , r#�q Ñ pħ0 ,#0q. �us, for 9Ĝ0pĮq < ch2pĮq, the push-forwards

p 9Ĝ�q#Np0, r#�q and ppĜ�q#Np0, rħ�q converge weakly to p 9Ĝ0q#Np0,#0q and ppĜ0q#Np0, ħ0q.
For any İ ą ´1 and small �, the integrand ofģ�pİq is bounded independently of �, and thus lim�Ó0ģ�pİq <

ģpİq by dominated convergence. Similarly, all three integrands in (49) are bounded, so lim�Ó0 ��pİq <
�pİq. Moreover, one easily checks that on any compact subset of p´1,`8q, the derivatives of ģ� , �� are

bounded independently of �. �us ģ� Ñ ģ, �� Ñ � uniformly on compact subsets of p´1,`8q.
By Lemma 3.5, limİÓ´1 �pİq < `8, so İ0 < �´1p
´1

9 q is bounded away from ´1. �e above uniform

convergence then implies İ� Ñ İ0 and ģ�pİ�q Ñ ģpİ0q. Since the below integrands are bounded,

Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
Ñ Ā

« pĜ0pħ1{2
0 Ėq

1 ` ģpİ0qpĜ0pħ1{2
0 Ėq

ff
.

Finally, as Ă1
�,*� is bounded (by Fact 4.22) and limits to the bounded function Ă1

1´ħ0 , we have Ě� Ñ Ě0. □

6.2. Hessian estimate. We next prove the following upper bound on ∇2
˛ℱ

�
TAP.

Lemma 6.4. Suppose pģ , Ĥq P S�,Ĩ0 , and }ă}op , }pĝ} ď ÿ
?
Ċ for some absolute constantÿ (i.e. independent

of all parameters in §4.1). Let 9Ğ P ℝĊ , Ğ́ P ℝĉ be de�ned (as in Lemma 4.16) by

9Ğ < th´1
� pģq, Ğ́ < ăģ?

Ċ
` �1{2pĝ ´ ��pħpģqqĤ ,

and

Ā1 < diagp 9Ĝ�p 9Ğqq, Ā2 < diagppĜ�pĞ́qq.
�en,

∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ČK

ģ

ˆ
´Ā1 ´ 1

Ċ
ăJĀ2ă ´ Ě�ąĊ

˙
ČK
ģ ` ��ģģJ

}ģ}2 ` pĥÿcvxp1q ` ĥĨ0p1qqąĊ .

(Recall the meaning of ĥÿcvxp1q, ĥĨ0p1q discussed in §4.1.)

Fact 6.5 (Proved in Appendix A). Let ģ P ℝĊ , Ĥ P ℝĉ , and let Ğ́ , 9Ğ be as above. Let Ă < Ă�,��pħpģqq and

Ā3 < diag
´
Ă1pĞ́q

¯
, Ā4 < ąĉ ` ��pħpģqqĀ3.

�en,

∇2
ģ ,ģℱ

�
TAPpģ , Ĥq < ´Ā1 ` ăJĀ3ă

Ċ
` �1

�pħpģqqĚ�pģ , ĤqąĊ

` �1
�pħpģqq ¨ ă

JpĂ2pĞ́q ` 2Ā3pĂpĞ́q ´ ĤqqģJ ` ģpĂ2pĞ́q ` 2Ā3pĂpĞ́q ´ ĤqqJă

Ċ3{2

`
#
�2
�pħpģqqĚ�pģ , Ĥq ` �1

�pħpģqq2
Ċ

ĉÿ

ė<1

´
2Ă1pℎ́ėq2 ` Ăp3qpℎ́ėq

¯+ ģģJ

Ċ

∇2
ģ ,Ĥℱ

�
TAPpģ , Ĥq < ´��pħpģqq?

Ċ
ăJĀ3 ´ �1

�pħpģqqģp��pħpģqqĂ2pĞ́q ` 2Ā4pĂpĞ́q ´ ĤqqJ

Ċ

∇2
Ĥ ,Ĥℱ

�
TAPpģ , Ĥq < ��pħpģqqĀ4 ,

Furthermore, for

rĀ2 < ´Ā3 ` ��pħpģqqĀ2
3Ā

´1
4 < diag

˜
´ Ă1pĞ́q
1 ` ��pħpģqqĂ1pĞ́q

¸
,
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we have

∇2
˛ℱ

�
TAPpģ , Ĥq < ´Ā1 ´ ăJ rĀ2ă

Ċ
` �1

�pħpģqqĚ�pģ , ĤqąĊ

` �1
�pħpģqq ¨

ăJĀ´1
4 Ă2pĞ́qģJ ` ģĂ2pĞ́qJĀ´1

4 ă

Ċ3{2

`
"
�2
�pħpģqqĚ�pģ , Ĥq ` �1

�pħpģqq2
Ċ

ĉÿ

ė<1

ˆ
2Ă1pℎ́ėq2 ` Ăp3qpℎ́ėq

´ p��pħpģqqĂ2pℎ́ėq ` 2pĂpℎ́ėq ´ Ĥėqp1 ` ��pħpģqqĂ1pℎ́ėqqq2

��pħpģqqp1 ` ��pħpģqqĂ1pℎ́ėqq

˙*
ģģJ

Ċ
.

Lemma 6.6 (Proved in Appendix A). Suppose pģ , Ĥq P S�,Ĩ0 and }ă}op , }pĝ} ď ÿ
?
Ċ for an absolute

constant ÿ. �e following estimates hold for su�ciently small Ĩ0 (depending on �, ÿcvx , ÿbd , �).

(a) Up to additive ĥĨ0p1q error, ħpģq « ħ�, #pĤq « #�, and Ě�pģ , Ĥq « Ě�, ��pħpģqq « *�,

�1
�pħpģqq « ´1, �2

�pħpģqq « ÿcvx.

(b) }rĀ2 ´ Ā2}op < ĥĨ0p1q.
(c) 1

Ċ

řĉ
ė<1p2Ă1pℎ́ėq2 ` Ăp3qpℎ́ėqq is bounded by an absolute constant.

(d) 1?
Ċ

}Ā´1
4 Ă2pĞ́q} is bounded, with bound depending only on �.

Proof of Lemma 6.4. By Fact 6.5 and Lemma 6.6,

∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ´Ā1 ´ ăJ rĀ2ă

Ċ
´ Ě�ąĊ `

ăJĬ1ģ
J ` ģĬJ

1 ă

Ċ
` pÿcvxĚ� ` ÿ1q

ģģJ

Ċ
` ĥĨ0p1qąĊ ,

for ÿ1 P ℝ, Ĭ1 P ℝĊ with |ÿ1|, }Ĭ1} bounded depending only on �. By the assumption on }ă}op,
1?
Ċ

}ăJĬ1} is also bounded depending only on �. Note that

´Ā1 ĺ ´ČK
ģĀ1Č

K
ģ ´ pČK

ģĀ1Čģ ` ČģĀ1Č
K
ģq < ´ČK

ģĀ1Č
K
ģ ´ pČK

ģĀ1ģqģJ ` ģpČK
ģĀ1ģq

ħpģqĊ
and similarly

´ 1

Ċ
ăJĀ2ă ĺ ´ČK

ģă
JĀ2ăČ

K
ģ ´ pČK

ģă
JĀ2ăģqģJ ` ģpČK

ģă
JĀ2ăģqJ

ħpģqĊ2
.

Moreover }Ā1}op , }Ā2}op ď ċp�´1q, the la�er by (42). So, there exists ÿ2 P ℝ, Ĭ2 P ℝĊ with |ÿ2|, }Ĭ2}
bounded depending only on �, such that

∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ČK

ģ

˜
´Ā1 ´ ăJ rĀ2ă

Ċ

¸
ČK
ģ´Ě�ąĊ`

Ĭ2ģ
J ` ģĬJ

2

Ċ1{2 `pÿcvxĚ� ` ÿ2q
ģģJ

Ċ
`ĥĨ0p1qąĊ .

Note that Ě� ă 0, because Ă1
�,*� ă 0 by Fact 4.22. So, for large ÿcvx,

pÿcvxĚ� ` ÿ2q
ģģJ

Ċ
`

Ĭ2ģ
J ` ģĬJ

2

Ċ1{2 ĺ
p�� ` Ě�qģģJ

}ģ}2 `
Ĭ2Ĭ

J
2

ÿcvx|Ě�| ´ ÿ2 ` p�� ` Ě�q{ħpģq .

�e �nal term has operator norm ĥÿcvxp1q. □
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6.3. Nullmodel: post-AMPGordon’s inequality. We turn to the proof of Proposition 4.8(c), �rst under

the measure 9. In light of Lemma 6.4, we de�ne

Ďpģ , Ĥq < ČK
ģ

ˆ
´Ā1 ´ 1

Ċ
ăJĀ2ă

˙
ČK
ģ , (51)

where, as in that lemma, Ā1 < diagp 9Ĝ�p 9Ğqq, Ā2 < diagppĜ�pĞ́pģ , Ĥ ,ăqqq for 9Ğ < th´1
� pģq and

Ğ́pģ , Ĥ ,ăq < ăģ?
Ċ

` �1{2pĝ ´ ��pħpģqqĤ.

Proposition 6.7. With high probability under9, Ďpģ , Ĥq ĺ p��`Ě�`ĥĨ0p1q`ĥġp1qqČK
ģ for all }pģ , Ĥq´

pģġ , Ĥġq} ď Ĩ0
?
Ċ .

For İ� de�ned in De�nition 6.2, let

Ĩ2� < Ārpİ� ` 9Ĝ�pr#1{2
� Ėqq´2s´1.

De�ne the AMP iterates ģ0 , Ĥ0 , . . . ,ģġ , Ĥġ and pĞ0
, 9Ğ

1
, pĞ1

, . . . , 9Ğ
ġ
, pĞġ as in (20), (21), and

DATA < p 9ĝ , 9Ğ
1
, . . . , 9Ğ

ġ
, pĝ , pĞ0

, . . . , pĞġq.

LetđpĨ0q < tpģ , Ĥq : }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0
?
Ċu. Let Ğ́ġ = Ğ́pģġ , Ĥġ ,ăq, and note that

Ğ́
ġ < pĞġ ` *�Ĥ

ġ´1 ´ ��pħpģġqqĤġ (52)

is DATA-measurable. Let đ 1pĨ0q < tĞ́ : }Ğ́ ´ Ğ́
ġ} ď ÿĨ0

?
Ċu, for a suitably large absolute constant ÿ.

Since }ă}op < ċp
?
Ċq with high probability, on this event Ğ́pģ , Ĥ ,ăq P đ 1pĨ0q for all pģ , Ĥq P đpĨ0q.

Below, we will write Ā2pĞ́q < diagppĜ�pĞ́qq for a varying Ğ́ which is not necessarily Ğ́pģ , Ĥ ,ăq. On
the other hand Ā1 always refers to the function of ģ de�ned above. �e starting point of our proof of

Proposition 6.7 is to recast the maximum eigenvalue as a minimax program, as follows:

sup
pģ ,ĤqPđpĨ0q

sup
} 9Ĭ}<1
9ĬKģ

9ĬJ
ˆ

´Ā1 ´ 1

Ċ
ăJĀ2pĞ́pģ , Ĥ ,ăqqă

˙
9Ĭ

< sup
pģ ,ĤqPđpĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
pĬPℝĉ

"
´xĀ1 9Ĭ , 9Ĭy ` xĀ2pĞ́pģ , Ĥ ,ăqq´1pĬ , pĬy ` 2?

Ċ
xă 9Ĭ , pĬy

*
.

Here we used that Ā1 ,Ā2 are positive de�nite, by positivity of 9Ĝ�, pĜ�. On the high probability event that

}ă}op < ċp
?
Ċq, this is bounded by

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ�
pĬKĤ

"
´xĀ1 9Ĭ , 9Ĭy ` xĀ2pĞ́q´1pĬ , pĬy ` 2?

Ċ
xă 9Ĭ , pĬy

*
. (53)

We will control (53) by applying Gordon’s minimax inequality conditional on the AMP iterates; we explain

this next. Let

9�AMP < 1

Ċ

Ċÿ

ğ<1

�p�1{2 9ĝ, 9ℎ1ğ , . . . ,
9ℎġğ q, p�AMP < 1

ĉ

ĉÿ

ė<1

�p�1{2pĝ, pℎ0ė , . . . , pℎġėq.

Further let p 9Σ`
ğ , Ġ

qğ , Ġě0 and ppΣ`
ğ , Ġ

qğ , Ġě´1 be augmented versions of p 9Σğ , Ġqğ , Ġě1 , ppΣğ , Ġqğ , Ġě0 where we add a row

and column of zeros, i.e. 9Σ`
0,ğ

< 9Σ`
ğ ,0

< pΣ`
´1,ğ

< pΣ`
ğ ,´1

< 0.
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Lemma 6.8. For any  ą 0, with high probability,

ă2p 9�AMP ,Np0, 9Σ`
ďġ ` �11Jqq,ă2pp�AMP ,Np0, pΣ`

ďġ ` �11Jqq ď  . (54)

Proof. Follows from AMP state evolution, identically to Proposition 5.2. □

We now let  be su�ciently small depending on Ĩ0 , ġ and condition on a realization of DATA such that

(54) holds. (Note that (54) is DATA-measurable.) De�ne Ğ̄
ğ < 9Ğ

ğ ´ �1{2 9ĝ , Ğ̆
ğ < pĞ ğ ´ �1{2pĝ , and

ĉ pġq < pģ0 , . . . ,ģġq P ℝ
Ċˆpġ`1q , Ċ pġq < pĤ0 , . . . , Ĥġ´1q P ℝ

ĉˆġ ,

Ą̄pġq < pĞ̄1
, . . . , Ğ̄

ġq P ℝ
Ċˆġ , Ą̆pġq < pĞ̆0

, . . . , Ğ̆
ġq P ℝ

ĉˆpġ`1q.

Note that on event (54),

1

Ċ
ĉJ

pġqĉ pġq < pΣďġ ` ĥ p1q, 1

Ċ
ĊJ

pġqĊ pġq < 9Σďġ ` ĥ p1q, (55)

1

Ċ
Ą̄

J
pġqĄ̄pġq < 9Σďġ ` ĥ p1q, 1

ĉ
Ą̆

J
pġqĄ̆pġq < pΣďġ ` ĥ p1q, (56)

where ĥ p1q denotes an additive error of operator norm ĥ p1q. �at is, tĤ0 , . . . , Ĥġ´1u and tĞ̄1
, . . . , Ğ̄

ġu
span ġ-dimensional subspaces of ℝĉ and ℝĊ , and the linear mapping between them that sends Ĥ ğ to

Ğ̄
ğ`1

is an approximate isometry. �e same is true, a�er scaling by a factor 
9, for tģ0 , . . . ,ģġu and

tĞ̆0
, . . . , Ğ̆

ġu. De�ne the linear maps

9Đ < Ą̄pġqpĊJ
pġqĊ pġqq´1ĊJ

pġq , Đ̂ < Ą̆pġqpĉJ
pġqĉ pġqq´1ĉJ

pġq.

(�e inverses are well-de�ned because the matrices are full-rank, by (55).) �at is, 9Đ (resp. Đ̂ ) projects

onto the span of tĤ0 , . . . , Ĥġ´1u (resp. tģ0 , . . . ,ģġu) and then applies the linear map that sends Ĥ ğ to

9Ğ
ğ`1

(resp. ģ ğ to pĞ ğ).

Lemma 6.9 (Post-AMP Gordon’s inequality). Conditional on any realization of DATA satisfying event (54),

the following holds. Let 9ć > Np0, ąĊq, pć > Np0, ąĉq, Ė > Np0, 1q be independent of everything else and
9ĝ 1
AMPppĬq <

?
Ċ 9ĐpĬ ` }ČK

Ċ pġq
pĬ}ČK

ĉpġq

9ć, pĝ 1
AMPp 9Ĭq <

?
ĊĐ̂ 9Ĭ ` }ČK

ĉpġq
9Ĭ}ČK

Ċ pġq

pć.

For any continuous Ĝ : ℝĊ ˆ ℝĉ ˆ ℝĊ ˆ pℝĉq2 ˆ ℝĊˆpġ`1q ˆ ℝĉˆpġ`2q Ñ ℝ,

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

$
&
% Ĝ p 9Ĭ , pĬ;ģ , Ĥ , Ğ́ ,DATAq ` 2?

Ċ
xă 9Ĭ , pĬy `

2}ČK
Ċ pġq

pĬ}}ČK
ĉpġq

9Ĭ}
?
Ċ

Ė

,
.
-

is stochastically dominated by

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1

9ĬKģġ

inf
}pĬ}<Ĩ� ,
pĬKĤġ

"
Ĝ p 9Ĭ , pĬ;ģ , Ĥ , Ğ́ ,DATAq ` 2?

Ċ
x 9Ĭ , 9ĝ 1

AMPppĬqy ` 2?
Ċ

xpĬ , pĝ 1
AMPp 9Ĭqy

*
` ĥ p1q.

Proof. We will �rst show that conditional on DATA,

1?
Ċ
ă

Ě< 9Đ
J ` Đ̂ ` ĥ p1q `

ČĊK
pġq
ăČK

ĉpġq?
Ċ

, (57)
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where ĥ p1q is a deterministic error of operator norm ĥ p1q and ă is an i.i.d. copy of ă. Conditioning on

DATA amounts to conditioning on the linear relations

1?
Ċ
ăģ ğ < Ğ̆

ğ ` *�Ĥ
ğ´1 ,

1?
Ċ
ăJĤ ğ < Ğ̄

ğ`1 ` Ě�ģ
ğ (58)

for 0 ď ğ ď ġ and 0 ď ğ ď ġ ´ 1. So, ČK
Ċ pġq

ăČK
ĉpġq

is independent of DATA and ă ´ ČK
Ċ pġq

ăČK
ĉpġq

is

DATA-measurable. It su�es to show the la�er part is 9Đ
J ` Đ̂ , up to ĥ p1q additive operator norm error.

Recall from (55) that the condition number of 1
ĊĉJ

pġqĉ pġq and
1
ĊĊJ

pġqĊ pġq is bounded depending on ġ.

So it su�ces to show››››
1?
Ċ
ăĉ pġq ´ p 9Đ

J ` Đ̂qĉ pġq

››››
op

< ĥ p1q
?
Ċ,

››››
1?
Ċ
ăJĊ pġq ´ p 9Đ ` Đ̂

JqĊ pġq

››››
op

< ĥ p1q
?
Ċ. (59)

By (58) and the de�nition of 9Đ , Đ̂ ,

1?
Ċ
ăĉ pġq < Ą̆pġq ` *�r0,Ċ pġqs,

1?
Ċ
ăJĊ pġq < Ą̄pġq ` Ě�ĉ pġ´1q ,

Đ̂ĉ pġq < Ą̆pġq , 9ĐĊ pġq < Ą̄pġq.

For all ğ , Ġ ě 1, we have by gaussian integration by parts

1

Ċ
xĞ̄ ğ ,ģ Ġy < 1

Ċ
xĞ̄ ğ , th�pĞ̄ Ġ ` �1{2 9ĝqy

< Ārp#1{2
ğ^ĠĖ ` p#� ` � ´ #ğ^ĠqĖ1qth�p#1{2

ğ^ĠĖ ` p#� ` � ´ #ğ^Ġq1{2Ė2qs ` ĥ p1q

< *�#ğ^Ġ ` ĥ p1q.

Moreover 1
Ċ xĞ̄ ğ ,ģ0y < ĥ p1q. �us,

9Đ
J
ĉ pġq < Ċ pġq

ˆ
1

Ċ
ĊJ

pġqĊ pġq

˙´1ˆ
1

Ċ
Ą̄

J
pġqĉ pġq

˙

< Ċ pġq
´

9Σďġ ` ĥ p1q
¯´1 ´

r0, *� 9Σďġs ` ĥ p1q
¯

< *�r0,Ċ pġqs ` ĥ p1q
?
Ċ,

where the errors are all in operator norm. A similar calculation shows

Đ̂
J
Ċ pġq < Ě�ĉ pġ´1q ` ĥ p1q

?
Ċ.

Combining proves (59) and thus (57). So, conditional on DATA,

1?
Ċ

xă 9Ĭ , pĬy Ě< x 9Ĭ , 9ĐpĬy ` xpĬ , Đ̂ 9Ĭy ` ĥ p1q ` 1?
Ċ

xăČK
ĉpġq

9Ĭ , ČK
Ċ pġq

pĬy

By Gordon’s inequality applied to ă,

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

"
Ĝ p 9Ĭ , pĬ;ģ , Ĥ , Ğ́ ,DATAq ` 2x 9Ĭ , 9ĐpĬy ` 2xpĬ , Đ̂ 9Ĭy

` 2?
Ċ

xăČK
ĉpġq

9Ĭ , ČK
Ċ pġq

pĬy `
2}ČK

Ċ pġq
pĬ}}ČK

ĉpġq
9Ĭ}

?
Ċ

Ė

*
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is stochastically dominated by

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

"
Ĝ p 9Ĭ , pĬ;ģ , Ĥ , Ğ́ ,DATAq ` 2x 9Ĭ , 9ĐpĬy ` 2xpĬ , Đ̂ 9Ĭy

`
2}ČK

Ċ pġq
pĬ}

?
Ċ

x 9Ĭ , ČK
ĉpġq

9ćy `
2}ČK

ĉpġq
9Ĭ}

?
Ċ

xpĬ , ČK
Ċ pġq

pćy
*
.

�e quantity inside the sup-inf is precisely Ĝ p 9Ĭ , pĬ ,DATAq ` 2?
Ċ

x 9Ĭ , 9ĝ 1
AMPppĬqy ` 2?

Ċ
xpĬ , pĝ 1

AMPp 9Ĭqy. □

De�ne

9ĝAMPppĬq <
?
Ċ 9ĐpĬ ` }ČK

Ċ pġq
pĬ} 9ć, pĝAMPp 9Ĭq <

?
ĊĐ̂ 9Ĭ ` }ČK

ĉpġq
9Ĭ}pć.

Note that
1?
Ċ

} 9ĝAMPppĬq ´ 9ĝ 1
AMPppĬq} ď Ĩ�?

Ċ
}Čĉpġq

9ć}, 1?
Ċ

}pĝAMPp 9Ĭq ´ 9ĝ 1
AMPp 9Ĭq} ď 1?

Ċ
}ČĊ pġq

pć},

are both bounded by  with high probability, and similarly |Ė|{
?
Ċ ď  with high probability. Below, let

err denote an error term of order ĥĨ0p1q ` ĥġp1q ` ĥ p1q. By (53), Lemma 6.9, and these observations, it

su�ces to show that with high probability,

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

"
´ xĀ1 9Ĭ , 9Ĭy ` xĀ2pĞ́q´1pĬ , pĬy

` 2?
Ċ

x 9Ĭ , 9ĝAMPppĬqy ` 2?
Ċ

xpĬ , pĝAMPp 9Ĭqy
*

ď �� ` Ě� ` err. (60)

Lemma 6.10. Let

9�1
AMP < 1

Ċ

Ċÿ

ğ<1

�p 9�ğ , ℎ̄
1
ğ , . . . , ℎ̄

ġ
ğ q, p�1

AMP < 1

ĉ

ĉÿ

ė<1

�pp�ė , ℎ̆0ė , . . . , ℎ̆ġėq.

Conditional on a realization of DATA such that (54) holds, with high probability,

ă2p 9�1
AMP ,Np0, 1q ˆ Np0, 9Σďġqq,ă2pp�1

AMP ,Np0, 1q ˆ Np0, pΣďġqq ď 2 . (61)

Proof. Under event (54), theă2-distance of themarginal of 9�1
AMP on all but the �rst coordinate toNp0, 9Σďġqq

is deterministically at most  . Since 9ć is independent of DATA, it follows that ă2p 9�1
AMP ,Np0, 1q ˆ

Np0, 9Σďġqq ď 2 with high probability. �e estimate for p�1
AMP is analogous. □

Fact 6.11 (Proved in Appendix A). Let �, �1 P P2pℝ3q, and suppose the marginals of � have fourth moments.

Suppose Ĝ1 , Ĝ2 , Ĝ3 are Ĉ-Lipschitz functions, and Ĝ3 is bounded by Ĉ. �en there exists ÿ < ÿp�, Ĉq such that

|ĀpĮ,į,İq>� Ĝ1pĮq Ĝ2pįq Ĝ3pİq ´ ĀpĮ1 ,į1 ,İ1q>�1 Ĝ1pĮ1q Ĝ2pį1q Ĝ3pİ1q| ď ÿmaxpă2p�, �1q,ă2p�, �1q2q. (62)

Lemma 6.12. Suppose (61) holds. Uniformly over pģ , Ĥq P đpĨ0q, Ğ́ P đ 1pĨ0q, 9Ĭ P t} 9Ĭ} < 1, 9Ĭ K ģu,

ă2

˜
1

ĉ

ĉÿ

ė<1

�ppℎġė , ℎ́ė , Ĥė , pĝAMPp 9Ĭqėq, prħ1{2
� Ė, rħ1{2

� Ė, Ă�,*�prħ
1{2
� Ėq, Ė1q

¸
ď err. (63)

Similarly, uniformly over pģ , Ĥq P đpĨ0q, pĬ P t}pĬ} < Ĩ� , pĬ K Ĥu,

ă2

˜
1

Ċ

Ċÿ

ğ<1

�p 9ℎġğ , ģğ , 9ĝAMPppĬqğq, pr#1{2
� Ė, th�pr#1{2

� Ėq, Ĩ�Ė1q
¸

ď err. (64)
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Proof. We �rst show that for any 9Ĭ1 P t} 9Ĭ1} < 1, 9Ĭ1 K ģu,

ă2

˜
1

ĉ

ĉÿ

ė<1

�ppℎġė , pĝAMPp 9Ĭ1qėq, prħ1{2
� Ė, Ė1q

¸
< ĥ p1q. (65)

Indeed, let 9Ĭ1 < 1?
Ċ
ĉ pġq

9®Ĭ`ČK
ĉpġq

9Ĭ1 for some 9®Ĭ P ℝġ`1, so that pĝAMPp 9Ĭ1q < Ą̆pġq
9®Ĭ` }ČK

ĉpġq
9Ĭ1}pć. By the

approximate isometry (55), (56), since 1?
Ċ
ĉ pġq

9®Ĭ K ģġ , we have 1
Ċ xĞ̆ġ , Ą̆pġq

9®Ĭy < ĥ p1q. (Since  is small

depending on ġ, we may take it much smaller than the condition number of pΣďġ .) By this isometry,

ă2

˜
1

ĉ

ĉÿ

ė<1

�ppℎġė , pĄ̆pġq
9®Ĭqėq, prħ1{2

� Ė, }Čĉpġq
9Ĭ1}Ė1q

¸
< ĥ p1q.

�en (61) implies (65). Now consider pģ , Ĥq P đpĨ0q and let Đ be a rotation operator mapping ģ{}ģ} to
ģġ{}ģġ}. Note that }Đ ´ ą}op < ĥĨ0p1q. Consider any 9Ĭ P t} 9Ĭ} < 1, 9Ĭ K ģu, and let 9Ĭ1 < Đ 9Ĭ. �en,

}pĝAMPp 9Ĭ1q ´ pĝAMPp 9Ĭq} ď p
?
Ċ}Đ̂}op ` }pć}q} 9Ĭ1 ´ 9Ĭ} ď

?
Ċp}Đ̂}op ` ċp1qqĥĨ0p1q.

Note that

}Đ̂}op < sup
9®ĬPℝġ`1

}Đ̂ĉ pġq
9®Ĭ}

}ĉ pġq
9®Ĭ}

< sup
9®ĬPℝġ`1

}Ą̆ 9®Ĭ}
}ĉ pġq

9®Ĭ}
< sup

9®ĬPℝġ`1

gfffe x 1
Ċ Ą̆

J
Ą̆ , 9®Ĭ

b2
y

x 1
ĊĉJĉ , 9®Ĭ

b2
y

is bounded by an absolute constant by (55), (56). �us }pĝAMPp 9Ĭ1q ´ pĝAMPp 9Ĭq} ď ĥĨ0p1q
?
Ċ . By (52) and

de�nition ofđ 1pĨ0q,

}pĞġ ´ Ğ́} ď }pĞġ ´ Ğ́
ġ} ` }Ğ́ġ ´ Ğ́} ď pĥġp1q ` ĥĨ0p1qq

?
Ċ. (66)

Similarly,

}Ă�,*�ppĞ
ġq ´ Ĥ} < }Ĥġ ´ Ĥ} ď ĥĨ0p1q

?
Ċ. (67)

Combining these bounds with (65) proves (63). (64) is proved similarly. □

Proposition 6.13. If (61) holds, uniformly over pģ , Ĥq P đpĨ0q, Ğ́ P đ 1pĨ0q, 9Ĭ P t} 9Ĭ} < 1, 9Ĭ K ģu,

inf
}pĬ}<Ĩ� ,
pĬKĤ

xĀ2pĞ́q´1pĬ , pĬy ` 2?
Ċ

xpĬ , pĝAMPp 9Ĭqy ď ´
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
´ ģ�pİ�qĨ2� ` err.

Proof. Let

pĬ1 < ´ 1?
Ċ

´
Ā2pĞ́q´1 ` ģ�pİ�qą

¯´1
pĝAMPp 9Ĭq.

Note the identity


9 Ā

»
–
˜ pĜ�prħ1{2

� Ėq
1 ` ģ�pİ�qpĜ�prħ1{2

� Ėq

¸2
fi
fl < 
9��pİ�q

Ārpİ� ` 9Ĝ�pr#1{2
� Ėqq´2s

< Ĩ2�. (68)



CAPACITY THRESHOLD FOR THE ISING PERCEPTRON 39

�en,

}pĬ1}2 < 1

Ċ
pĝAMPp 9ĬqJ

´
rĀ2pĞ́q´1 ` ģ�pİ�qą

¯´2
pĝAMPp 9Ĭq

< 
9
ĉ

ĉÿ

ė<1

˜ pĜ�pℎ́ėq
1 ` ģ�pİ�qpĜ�pℎ́ėq

¸2

pĝAMPp 9Ĭq2ė

< 
9 Ā

»
–
˜ pĜ�prħ1{2

� Ėq
1 ` ģ�pİ�qpĜ�prħ1{2

� Ėq

¸2

pĖ1q2
fi
fl ` err < Ĩ2� ` err.

In the last line we used Lemma 6.12 and Fact 6.11, with Ĝ1pĮq < Ĝ2pĮq < Į, Ĝ3pĮq < p
pĜ�pĮq

1`ģ�pİ�qpĜ�pĮq
q2.

(Note that we have not shown the coordinate empirical measure in (63) has bounded fourth moments, but

it su�ces for Fact 6.11 that the gaussian approximating it does.) Similarly,

1?
Ċ

xpĬ1 , Ĥy < ´
9
ĉ

ĉÿ

ė<1

˜ pĜ�pℎ́ėq
1 ` ģ�pİ�qpĜ�pℎ́ėq

¸
ĤėpĝAMPp 9Ĭqė

< ´
9 Ā

«˜ pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

¸
Ă�,*�prħ

1{2
� ĖqĖ1

ff
` err < err.

Likewise,

xpĀ2pĞ́q´1 ` ģ�pİ�qąĉqpĬ1 , pĬ1y < ´ 1?
Ċ

xpĬ1 , pĝAMPp 9Ĭqy < 
9
ĉ

ĉÿ

ė<1

˜ pĜ�pℎ́ėq
1 ` ģ�pİ�qpĜ�pℎ́ėq

¸
pĝAMPp 9Ĭq2ė

< 
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
` err.

From this, it follows that

xĀ2pĞ́q´1pĬ1 , pĬ1y ` 2?
Ċ

xpĬ1 , pĝAMPp 9Ĭqy < ´
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
´ ģ�pİ�qĨ2� ` err.

By the above estimates on }pĬ1}2 and 1?
Ċ

xpĬ1 , Ĥy, we can �nd pĬ such that }pĬ} < Ĩ�, pĬ K Ĥ, and }pĬ ´ pĬ1} ď
err. Since Ā2pĞ́q´1 has operator norm bounded independently of Ĩ0 , ġ,  ,

|xĀ2pĞ́q´1pĬ , pĬy ´ xĀ´1
2 pĬ1 , pĬ1y| ď 2}Ā´1

2 pĞ́q}op}pĬ ´ pĬ1} ď err.

By Cauchy–Schwarz,

2?
Ċ

|xpĬ , pĝAMPp 9Ĭqy ´ xpĬ1 , pĝAMPp 9Ĭqy| ď 2?
Ċ

}pĝAMPp 9Ĭq}}pĬ ´ pĬ1} ď err.

�is completes the proof. □

Proposition 6.14. If (61) holds, uniformly over pģ , Ĥq P đpĨ0q, pĬ P t}pĬ} < Ĩ� , pĬ K Ĥu, we have

sup
} 9Ĭ}<1
9ĬKģ

´xĀ1 9Ĭ , 9Ĭy ` 2?
Ċ

x 9Ĭ , 9ĝAMPppĬqy ď İ� ` ģ�pİ�qĨ2� ` err.

Proof. Fix any pģ , Ĥq and pĬ satisfying the stated conditions. We estimate

sup
} 9Ĭ}<1
9ĬKģ

´xĀ1 9Ĭ , 9Ĭy ` 2?
Ċ

x 9Ĭ , 9ĝAMPppĬqy ď sup
9ĬKģ

´xĀ1 9Ĭ , 9Ĭy ` 2?
Ċ

x 9Ĭ , 9ĝAMPppĬqy ´ İ�
`
} 9Ĭ}2 ´ 1

˘
. (69)
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Note that ´Ā1 ´ İ�ąĊ is negative de�nite, as İ� ą ´ 1
1`� < maxĮPℝt´ 9Ĝ pĮqu. So, the supremum on the

right-hand side of (69) is maximized by 9Ĭ solving the stationarity condition (in spanpģqK):

9Ĭ < 1?
Ċ
ČK
ģpĀ1 ` İ�ąĊq´1ČK

ģ 9ĝAMPppĬq.

Let

9Ĭ1 < 1?
Ċ

pĀ1 ` İ�ąĊq´1 9ĝAMPppĬq.

Note that, by Fact 6.11 and Lemma 6.12,

xpĀ1 ` İ�ąĊq 9Ĭ1 , 9Ĭ1y < 1?
Ċ

x 9Ĭ1 , 9ĝAMPppĬqy < 1

Ċ

Ċÿ

ğ<1

9ĝAMPppĬq2ğ p 9Ĝ�p 9ℎğq ` İ�q´1

< Ĩ2�Ā
”
p 9Ĝ�pr#�Ėq ` İ�q´1

ı
` err

< ģ�pİ�qĨ2� ` err.

�us

´xĀ1 9Ĭ1 , 9Ĭ1y ` 2?
Ċ

x 9Ĭ1 , 9ĝAMPppĬqy ´ İ�
`
} 9Ĭ1}2 ´ 1

˘
< İ� ` ģ�pİ�qĨ2� ` err.

We now estimate } 9Ĭ ´ 9Ĭ1}. Note that
} 9Ĭ ´ 9Ĭ1} ď }pĀ1 ` İ�ąĊq´1}op}Čģ 9ĝAMPppĬq} ` }ČģpĀ1 ` İ�ąĊq´1 9ĝAMPppĬq},

and by Fact 6.11 and Lemma 6.12, both terms on the right-hand side are bounded by err. Since Ā1 ` İ�ąĊ
has bounded operator norm,

|xpĀ1 ` İ�ąĊq 9Ĭ , 9Ĭy ´ xpĀ1 ` İ�ąĊq 9Ĭ1 , 9Ĭ1y| ď 2}Ā1 ` İ�ąĊ}op} 9Ĭ ´ 9Ĭ1} ď err.

By Cauchy–Schwarz,

2?
Ċ

|x 9Ĭ1 , 9ĝAMPppĬqy ´ x 9Ĭ , 9ĝAMPppĬqy| ď 2?
Ċ

} 9ĝAMPppĬq}} 9Ĭ ´ 9Ĭ1} ď err.

Combining completes the proof. □

Proof of Proposition 6.7. By Propositions 6.13 and 6.14, on the high probability event (61), the le�-hand side

of (60) is bounded by

İ� ´ 
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
` err < �� ` Ě� ` err.

�is proves (60), and by the discussion leading to (60) the proposition follows. □

Proof of Proposition 4.8(c), under 9. By Proposition 4.8(a), with high probability, pģġ , Ĥġq P S�, 0 . Recall

that th� , Ă�,*� are ċp1q-Lipschitz, with ċ�p1q-Lipschitz inverses (i.e. Lipschitz constant depending only

on �). On this event, for  0 small depending on Ĩ0 and some ÿ� < ċ�p1q,
đpĨ0q Ď S�, 0`ÿ�Ĩ0 Ď S�,2ÿ�Ĩ0 . (70)

Since }ă}op , }pĝ} ď ÿ
?
Ċ holds with high probability under 9, Lemma 6.4 applies. Applying this lemma

with 2ÿ�Ĩ0 in place of Ĩ0 shows that for all pģ , Ĥq P đpĨ0q,
∇2

˛ℱ
�
TAPpģ , Ĥq ĺ Ďpģ , Ĥq ` ��Čģ ` pĥÿcvxp1q ` ĥĨ0p1qqąĊ .

Combined with Proposition 6.7, this gives that with high probability,

∇2
˛ℱ pģ , Ĥq ĺ p�� ` ĥÿcvxp1q ` ĥĨ0p1q ` ĥġp1qqąĊ .
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By Lemma 6.3,

∇2
˛ℱ pģ , Ĥq ĺ p�0 ` ĥ�p1q ` ĥÿcvxp1q ` ĥĨ0p1q ` ĥġp1qqąĊ .

Under Condition 3.4, �0 ă 0. �e conclusion follows by se�ing the parameters so the error term in the

last display is bounded by |�0|{2. □

Remark 6.15. �e bound �� ` Ě� in Proposition 6.7 is tight. One way to see this is to calculate the upper

edge of the limiting spectral measure of

ý < ČK
ĉpġq

p´Ā1 ´ ē qČK
ĉpġq

, where ē < 1

Ċ
ăJČK

Ċ pġqĀ2Č
K
Ċ pġqă,

using free probability [Voi91]. We now outline this calculation. Note that conditional on DATA, ´Ā1 and

´ē are orthogonally invariant as quadratic forms on spanpģ0 , . . . ,ģġqK. �e inverse Cauchy transform

of ´Ā1 is approximated within err by ģ´1
� pĪq. By e.g. [BS98, Equation 1.2], the inverse Cauchy transform

of ´ē is approximated within err by

1

Ī
´ 
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` Ī pĜ�prħ1{2
� Ėq

ff
,

Since R-transforms add under free additive convolution, ý has limiting inverse Cauchy transform

'�pĪq < ģ´1
� pĪq ´ 
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` Ī pĜ�prħ1{2
� Ėq

ff
.

One calculates that

'1
�pĪq < ´Ārpģ´1

� pĪq ` 9Ĝ�pr#1{2
� Ėqq´2s´1 ` Ā

»
–
˜ pĜ�prħ1{2

� Ėq
1 ` Ī pĜ�prħ1{2

� Ėq

¸2
fi
fl

has the same sign as��pģ´1
� pĪqq´
´1

9 . �us'�pĪq is decreasing on p0, ģ�pİ�qs and increasing rģ�pİ�q,`8q.
It follows that the limiting spectral measure of ý has upper edge '�pģ�pİ�qq < �� ` Ě�. By the Weyl

inequalities the same is true for Ďpģ , Ĥq, so Proposition 6.7 is tight.

6.4. Planted model. �e proof of Proposition 4.8(c) in the planted model is only simpler, as we will be

able to apply Gordon’s inequality directly rather than conditional on AMP iterates. �e main step is the

following proposition. Let  be su�ciently small depending on Ĩ0 , ġ.

Proposition 6.16. Suppose pģ1 , Ĥ1q P S�, . With high probability under 9
ģ1 ,Ĥ1

�,Pl
, Ďpģ , Ĥq ĺ p�� ` Ě� `

errqČK
ģ for all }pģ , Ĥq ´ pģ1 , Ĥ1q} ď 2Ĩ0

?
Ċ .

Let 9Ğ
1 < th´1

� pģ1q, pĞ1 < Ă´1
�,��pħpģqqpĤ

1q. By Lemma 4.16, under 9ģ ,Ĥ1

�,Pl
we have Ğ́pģ1 , Ĥ1 ,ăq < pĞ1

.

For this subsection, letđpĨ0q < tpģ , Ĥq : }pģ , Ĥq´pģ1 , Ĥ1q} ď 2Ĩ0
?
Ċu andđ 1pĨ0q < tĞ́ : }Ğ́´pĞ1} ď

ÿĨ0
?
Ċu, for suitably large constant ÿ. Identically to the discussion above (53), to prove Proposition 6.16

it su�ces to show, with high probability,

sup
pģ ,ĤqPđpĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

"
´xĀ1 9Ĭ , 9Ĭy ` xĀ2pĞ́q´1pĬ , pĬy ` 2?

Ċ
xă 9Ĭ , pĬy

*
ď �� ` Ě� ` err.
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Lemma 6.17. Let 9ć, 9ć
1 > Np0, ąĊq, pć, pć1 > Np0, ąĉq, Ė, Ė1 > Np0, 1q be independent of everything else

and

9ĝ 1
PlppĬq <

}ČĤ1pĬ}p 9Ğ
1 ` �1{2ČK

ģ1
9ć

1q
r#1{2
�

` }ČK
Ĥ1pĬ}ČK

ģ1
9ć, pĝ 1

Plp 9Ĭq <
}Čģ1 9Ĭ}ppĞ1 ` �1{2ČK

Ĥ1
pć1q

rħ1{2
�

` }ČK
ģ1 9Ĭ}ČK

Ĥ1
pć.

For any continuous Ĝ : ℝĊ ˆ ℝĉ ˆ pℝĊq2 ˆ pℝĉq3 Ñ ℝ,

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

#
Ĝ p 9Ĭ , pĬ;ģ1 ,ģ , Ĥ1 , Ĥ , Ğ́q ` 2?

Ċ
xă 9Ĭ , pĬy `

2}ČK
Ĥ1pĬ}}ČK

ģ1 9Ĭ}
?
Ċ

Ė

+

is stochastically dominated by

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

"
Ĝ p 9Ĭ , pĬ;ģ1 ,ģ , Ĥ1 , Ĥ , Ğ́q ` 2?

Ċ
x 9Ĭ , 9ĝ 1

PlppĬqy ` 2?
Ċ

xpĬ , pĝ 1
Plp 9Ĭqy

` 2�1{2}ČĤ1pĬ}}Čģ1 9Ĭ}
pħ� ` #� ` �q1{2

?
Ċ
Ė1
*

` ĥ p1q.

Proof. By Corollary 4.18, the gaussian process p 9Ĭ , pĬq ÞÑ 1?
Ċ

xă 9Ĭ , pĬy has the form

1?
Ċ

xă 9Ĭ , pĬy Ě< x 9Ğ
1
, 9ĬyxĤ1 , pĬy
Ċ r#�

` xģ1 , 9ĬyxpĞ1
, pĬy

Ċrħ�
` ĥ p1q ` 1?

Ċ
xră 9Ĭ , pĬy

< }ČĤ1pĬ}x 9Ğ
1
, 9Ĭy

r#1{2
�

?
Ċ

` }Čģ1 9Ĭ}xpĞ1
, pĬy

rħ1{2
�

?
Ċ

` ĥ p1q ` 1?
Ċ

xră 9Ĭ , pĬy.

Here the ĥ p1q is uniform over bounded } 9Ĭ}, }pĬ}. Moreover, by (40), the random part xră 9Ĭ , pĬy expands as
xră 9Ĭ , pĬy < xrăČK

ģ1 9Ĭ , ČK
Ĥ1pĬy ` xrăČK

ģ1 9Ĭ , ČĤ1pĬy ` xrăČģ1 9Ĭ , ČK
Ĥ1pĬy ` xrăČģ1 9Ĭ , ČĤ1pĬy

Ě< xrăČK
ģ1 9Ĭ , ČK

Ĥ1pĬy ` �1{2

r#1{2
�

}ČĤ1pĬ}xČK
ģ1

9ć
1
, 9Ĭy ` �1{2

rħ1{2
�

}Čģ1 9Ĭ}xČK
Ĥ1
pć1
, pĬy ` �1{2}ČĤ1pĬ}}Čģ1 9Ĭ}

pħ� ` #� ` �q1{2 Ė
1.

�us, (as processes)

1?
Ċ

xă 9Ĭ , pĬy `
}ČK

Ĥ1pĬ}}ČK
ģ1 9Ĭ}

?
Ċ

Ė
Ě< 1?

Ċ
xrăČK

ģ1 9Ĭ , ČK
Ĥ1pĬy `

}ČK
Ĥ1pĬ}}ČK

ģ1 9Ĭ}
?
Ċ

Ė

`
}ČĤ1pĬ}x 9Ğ

1 ` �1{2ČK
ģ1

9ć
1
, 9Ĭy

r#1{2
�

?
Ċ

`
}Čģ1 9Ĭ}xpĞ1 ` �1{2ČK

Ĥ1
pć1
, pĬy

rħ1{2
�

?
Ċ

` �1{2}ČĤ1pĬ}}Čģ1 9Ĭ}
pħ� ` #� ` �q1{2

?
Ċ
Ė1 ` ĥ p1q.

�e result now follows by using Gordon’s inequality to compare 1?
Ċ

xrăČK
ģ1 9Ĭ , ČK

Ĥ1pĬy ` }ČK
Ĥ1pĬ}}ČK

ģ1 9Ĭ}
?
Ċ

Ė to

1?
Ċ

}ČK
Ĥ1pĬ}x 9Ĭ , ČK

ģ1
9ćy ` 1?

Ċ
}ČK

ģ1 9Ĭ}xpĬ , ČK
Ĥ1
pćy. □

Let

9ĝPlppĬq < }ČĤ1pĬ}p 9Ğ
1 ` �1{2 9ć

1q
r#1{2
�

` }ČK
Ĥ1pĬ} 9ć, pĝPlp 9Ĭq < }Čģ1 9Ĭ}ppĞ1 ` �1{2pć1q

rħ1{2
�

` }ČK
ģ1 9Ĭ}pć.
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As argued above (60), with high probability,

1?
Ċ

|Ė|, 1?
Ċ

|Ė1|, 1?
Ċ

sup
}pĬ}<Ĩ�

} 9ĝPlppĬq ´ 9ĝ 1
PlppĬq}, 1?

Ċ
sup

} 9Ĭ}<1

}pĝPlp 9Ĭq ´ pĝ 1
Plp 9Ĭq} ď  .

So it su�ces to show that with high probability,

sup
pģ ,ĤqPđpĨ0q
Ğ́Pđ 1pĨ0q

sup
} 9Ĭ}<1
9ĬKģ

inf
}pĬ}<Ĩ� ,
pĬKĤ

"
´ xĀ1 9Ĭ , 9Ĭy ` xĀ2pĞ́q´1pĬ , pĬy

` 2?
Ċ

x 9Ĭ , 9ĝPlppĬqy ` 2?
Ċ

xpĬ , pĝPlp 9Ĭqy
*

ď �� ` Ě� ` err. (71)

Lemma 6.18. For all pģ1 , Ĥ1q P S�, , the following holds with high probability. Uniformly over pģ , Ĥq P
đpĨ0q, Ğ́ P đ 1pĨ0q, 9Ĭ P t} 9Ĭ} < 1, 9Ĭ K ģu,

ă2

˜
1

ĉ

ĉÿ

ė<1

�ppℎ1
ė , ℎ́ė , Ĥ

1
ė , pĝPlp 9Ĭqėq, prħ1{2

� Ė, rħ1{2
� Ė, Ă�,*�prħ

1{2
� Ėq, Ė1q

¸
ď err. (72)

Similarly, uniformly over pģ1 , Ĥ1q P S�, , pģ , Ĥq P đpĨ0q, pĬ P t}pĬ} < Ĩ� , pĬ K Ĥu,

ă2

˜
1

Ċ

Ċÿ

ğ<1

�p 9ℎ1
ğ , ģ

1
ğ , 9ĝPlppĬqğq, pr#1{2

� Ė, th�pr#1{2
� Ėq, Ĩ�Ė1q

¸
ď err. (73)

Proof. Let pĞ2 < Ă´1
�,*�pĤ1q. Consider �rst 9Ĭ1 P t} 9Ĭ1} < 1, 9Ĭ1 K ģu, �en pĝPlp 9Ĭ1q < pć, so clearly

ă2

˜
1

ĉ

ĉÿ

ė<1

�ppℎ2
ė , pĝPlp 9Ĭ1qėq, prħ1{2

� Ė, Ė1q
¸

< ĥ p1q.

For pģ , Ĥq P đpĨ0q, letĐ be a rotation operator mappingģ{}ģ} toģ1{}ģ1}. Note that }Đ´ą}op < ĥĨ0p1q.
Consider any 9Ĭ P t} 9Ĭ} < 1, 9Ĭ K ģu, and let 9Ĭ1 < Đ 9Ĭ, so } 9Ĭ ´ 9Ĭ1} < ĥĨ0p1q. �en

}pĝPlp 9Ĭ1q ´ pĝPlp 9Ĭq} ď ċp1q
´

}pĞ1} ` }pć1} ` }pć}
¯

} 9Ĭ ´ 9Ĭ1}.

With high probability over pć, pć1
, this is bounded by ĥĨ0p1q

?
Ċ . �us

ă2

˜
1

ĉ

ĉÿ

ė<1

�ppℎ2
ė , pĝPlp 9Ĭqėq, prħ1{2

� Ė, Ė1q
¸

< ĥĨ0p1q ` ĥ p1q. (74)

Note that

}pĞ1 ´ pĞ2} < }Ă´1
�,��pħpģqqpĤ

1q ´ Ă´1
�,*�pĤ

1q} ď err
?
Ċ.

Identically to (66) and (67), we can show

}pĞ1 ´ Ğ́}, }Ă�,*�ppĞ
2q ´ Ĥ} ď err

?
Ċ.

Combined with (74), this proves (72). �e proof of (73) is analogous. □

�e following two propositions are proved identically to Propositions 6.13 and 6.14, with pĝPl, 9ĝPl, and

Lemma 6.18 playing the roles of pĝAMP, 9ĝAMP, and Lemma 6.12.

Proposition 6.19. For all pģ1 , Ĥ1q P S�, , the following holds with high probability. Uniformly over pģ , Ĥq P
đpĨ0q, Ğ́ P đ 1pĨ0q, 9Ĭ P t} 9Ĭ} < 1, 9Ĭ K ģu, we have

inf
}pĬ}<Ĩ� ,
pĬKĤ

xĀ2pĞ́q´1pĬ , pĬy ` 2?
Ċ

xpĬ , pĝPlp 9Ĭqy ď ´
9 Ā

« pĜ�prħ1{2
� Ėq

1 ` ģ�pİ�qpĜ�prħ1{2
� Ėq

ff
´ ģ�pİ�qĨ2� ` err.
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Proposition 6.20. For all pģ1 , Ĥ1q P S�, , the following holds with high probability. Uniformly over pģ , Ĥq P
đpĨ0q, pĬ P t}pĬ} < Ĩ� , pĬ K Ĥu, we have

sup
} 9Ĭ}<1
9ĬKģ

´xĀ1 9Ĭ , 9Ĭy ` 2?
Ċ

x 9Ĭ , 9ĝPlppĬqy ď İ� ` ģ�pİ�qĨ2� ` err.

Proof of Proposition 6.16. Adding Propositions 6.19 and 6.20 shows that (71) holds with high probability.

�e result follows from the discussion leading to (71). □

Proof of Proposition 4.8(c), under 9
ģ ,Ĥ
�,Pl

. By Proposition 4.8(d), }pģġ , Ĥġq ´ pģ , Ĥq} <  0
?
Ċ with high

probability. We set  0 ă Ĩ0. Since we de�ned

đpĨ0q < tpģ , Ĥq : }pģ , Ĥq ´ pģ1 , Ĥ1q} ď 2Ĩ0
?
Ċu Ě tpģ , Ĥq : }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0

?
Ċu,

the conclusion of Proposition 6.16 holds for all }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0
?
Ċ . Identically to (70), we have

tpģ , Ĥq : }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0
?
Ċu Ď S�,2ÿ�Ĩ0

for some ÿ� < ċ�p1q. Since }ă}op , }pĝ} ď ÿ
?
Ċ holds with high probability under 9ģ ,Ĥ

�,Pl
, Lemma 6.4

holds. Applying this lemma (with 2ÿ�Ĩ0 in place of Ĩ0) gives that for all }pģ , Ĥq ´ pģġ , Ĥġq} ď Ĩ0
?
Ċ ,

∇2
˛ℱ

�
TAPpģ , Ĥq ĺ Ďpģ , Ĥq ` ��Čģ ` pĥÿcvxp1q ` ĥĨ0p1qqąĊ

ĺ p�� ` ĥÿcvxp1q ` ĥĨ0p1q ` ĥġp1qqąĊ
ĺ p�0 ` ĥ�p1q ` ĥÿcvxp1q ` ĥĨ0p1q ` ĥġp1qqąĊ .

Under Condition 3.4, �0 ă 0, and the result follows by se�ing the error terms small. □

6.5. Determinant concentration. In this subsection, we prove Lemma 4.9. We �x some pģ , Ĥq P S�, 

and work under the measure 9ģ ,Ĥ
�,Pl

. De�ne, as in Lemma 4.16,

9Ğ < th´1
� pģq, pĞ < Ă´1

�,��pģqpĤq, Ğ́ < ăģ?
Ċ

` �1{2pĝ ´ ��pħpģqqĤ.

Recall from Lemma 4.16 that under 9ģ ,Ĥ
�,Pl

, we have Ğ́ < pĞ deterministically. We computed ∇2ℱTAPpģ , Ĥq
in Fact 6.5, and under 9ģ ,Ĥ

�,Pl
the matrices Ā1 , rĀ2 ,Ā3 ,Ā4 therein are all nonrandom. By Schur’s lemma,

| det∇2ℱTAPpģ , Ĥq| < | det∇2
Ĥ ,ĤℱTAPpģ , Ĥq|| det∇2

˛ℱTAPpģ , Ĥq|, (75)

and ∇2
Ĥ ,ĤℱTAPpģ , Ĥq is nonrandom. By Fact 6.5,

∇2
˛ℱTAPpģ , Ĥq < ´Ā1 ´ 1

Ċ
ăJ rĀ2ă ` �1

�pħpģqqĚ�pģ , ĤqąĊ ` ÿ

Ċ
ģģJ ` 1

Ċ
păJĬģJ ` ģĬJăq

for some nonrandom ÿ P ℝ, Ĭ P ℝĉ depending on pģ , Ĥq. By Lemma 6.6, |ÿ|, }Ĭ} are uniformly bounded

over pģ , Ĥq P S�, , with bound depending on �, ÿcvx. De�ne for convenience the nonrandom matrix

ý < Ā1 ´ �1
�pħpģqqĚ�pģ , ĤqąĊ ´ ÿ

Ċ
ģģJ

and note that }ý}op is uniformly bounded (depending on �, ÿcvx) over pģ , Ĥq P S�, . �en let

Ĕ <

»
—–

ý 1?
Ċ
ģĬJ 1?

Ċ
ăJ

1?
Ċ
ĬģJ rĀ2 ąĉ
1?
Ċ
ă ąĉ 0

fi
ffifl P ℝ

pĊ`2ĉqˆpĊ`2ĉq. (76)

Lemma 6.21. We have | det∇2
˛ℱTAPpģ , Ĥq| < | detĔ |.
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Proof. Let ĕ <
”

rĀ2 ąĉ
ąĉ 0

ı
. Note that | detĕ | < 1 and ĕ´1 <

”
0 ąĉ
ąĉ ´rĀ2

ı
. By Schur’s lemma,

| detĔ | <
ˇ̌
ˇ̌det

ˆ
ý ´ 1

Ċ

“
ģĬJ ăJ‰ĕ´1

„
ĬģJ

ă

˙ˇ̌
ˇ̌ < | det∇2

˛ℱTAPpģ , Ĥq|. □

It therefore su�ces to study | detĔ |. �is formulation has the bene�t that the only randomness in Ĕ is

from ă, and by Lemma 4.17 (in a suitable orthonormal basis) ă is a matrix of independent (noncentered)

gaussians. �is structure will enable us to prove Lemma 4.9 using the spectral concentration results of

[GZ00]. Before carrying out this argument, we �rst prove a preliminary lemma.

Lemma 6.22. �ere exists � ą 0 depending on �, ÿcvx such that, for all pģ , Ĥq P S�, , Ĕ has no eigenvalues

in r´�, �s with high probability under 9
ģ ,Ĥ
�,Pl

.

Proof. We will show that detpİąĊ`2ĉ ´ Ĕq has no zeros in r´�, �s. By Schur’s lemma, for any İ ‰ 0,

| detpİą2ĉ ´ ĕq| < | detpİąĉ ´ rĀ2q|| detpİąĉ ´ pİąĉ ´ rĀ2q´1q| < | detpİpİąĉ ´ rĀ2q ´ ąĉq|
Let �1 be the smallest positive solution to �1|maxppĜ�q ` �| ď 1

2 . Note that �1 depends only on �, and the

above determinant is nonzero for any |İ| ď �1. Further, note that

pİą2ĉ ´ ĕq´1 <
«

´İpąĉ ´ İpİąĉ ´ rĀ2qq´1 pąĉ ´ İpİąĉ ´ rĀ2qq´1

pąĉ ´ İpİąĉ ´ rĀ2qq´1 ´pİąĉ ´ rĀ2qpąĉ ´ İpİąĉ ´ rĀ2qq´1

ff
.

From this, we see that there exists ÿ� ą 0 such that for all |İ| ď �1,

}pİą2ĉ ´ ĕq´1 ` ĕ´1}op ď ÿ�|İ|.
By Schur’s lemma, for all |İ| ď �1,

| detpİąĊ`2ĉ ´ Ĕq| < | detpİą2ĉ ´ ĕq|| detþpİq|,
for

þpİq < İąĊ ´ ý ´ 1

Ċ

“
ģĬJ ăJ‰ pİą2ĉ ´ ĕq´1

„
ĬģJ

ă


.

It follows that for all |İ| ď �1,

}þpİq ´ ∇2
˛ℱ

�
TAPpģ , Ĥq}op ď |İ| ` ÿ�|İ|

˜
}ĬģJ}op?

Ċ
`

}ă}op?
Ċ

¸2

.

As shown in Proposition 4.8(c), ∇2
˛ℱ

�
TAPpģ , Ĥq ĺ ´ÿspecąĊ with high probability under 9ģ ,Ĥ

�,Pl
. Further-

more,
}ĬģJ}op?

Ċ
< 1?

Ċ
}Ĭ}}ģ} is bounded, with bound depending on �, ÿcvx, and with high probability,

}ă}op?
Ċ

is bounded by an absolute constant. It follows that for |İ| small enough depending on �, ÿcvx,

þpİq ĺ ´ÿspecąĊ{2, and thus | detþpİq| ‰ 0. □

�e core of the proof of Lemma 4.9 is the following spectral concentration inequality, which adapts

[GZ00, �eorem 1.1(b)]. For any Ĝ : ℝ Ñ ℝ, let

tr Ĝ pĔq <
Ċ`2ĉÿ

ğ<1

Ĝ p�ğpĔqq,

where �1pĔq, . . . ,�Ċ`2ĉpĔq are the eigenvalues of Ĕ .

Lemma 6.23. If Ĝ is Ĉ-Lipschitz, then for any Ī ě 0,

9
ģ ,Ĥ
�,Pl

p|tr Ĝ pĔq ´ Ā
ģ ,Ĥ
�,Pl

tr Ĝ pĔq| ě Īq ď 2ě´Ī2{8Ĉ2 .
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Proof. Let t$ė,ğ : ė P rĉs, ğ P rĊsu be i.i.d. standard gaussians, and let 9ě1 , . . . , 9ěĊ and pě1 , . . . , pěĉ be

orthonormal bases of ℝĊ and ℝĉ as in Lemma 4.17. By (40), we can sample ră by

ră <
ĉÿ

ė<1

Ċÿ

ğ<1

ĭė,ğ$ė,ğpěė 9ěJ
ğ , ĭė,ğ <

$
’’’’&
’’’’%

a
�{pħpģq ` #pĤq ` �q ğ < Ġ < 1,a
�{pħpģq ` �q ğ < 1, Ġ ‰ 1,a
�{p#pĤq ` �q ğ ‰ 1, Ġ < 1,

1 ğ ‰ 1, Ġ ‰ 1.

By [GZ00, Lemma 1.2(b)], the map t$ė,ğ : ė P rĉs, ğ P rĊsu ÞÑ tr Ĝ pĔq is 2Ĉ-Lipschitz. �e result follows

from the gaussian concentration inequality. □

Proof of Lemma 4.9. De�ne Ĝ pĮq < logmaxp|Į|, �q, which is �´1-Lipschitz. Lemma 6.23 implies that

9
ģ ,Ĥ
�,Pl

p|tr Ĝ pĔq ´ Ā
ģ ,Ĥ
�,Pl

tr Ĝ pĔq| ě Īq ď 2ě´�2Ī2{8. (77)

Let ĂdetpĔq < exp tr Ĝ pĔq. Also let

ℰspecpĔq < tspecpĔq X r´�, �s < Hu ,

so that 9pℰspecq ě 1 ´ � for some � < ĥĊp1q by Lemma 6.22. Note that | detpĔq| ď ĂdetpĔq for all Ĕ , with

equality for all Ĕ P ℰspec. �us

Ā
ģ ,Ĥ
�,Pl

r| detpĔq|2s ď Ā
ģ ,Ĥ
�,Pl

rĂdetpĔq2s, Ā
ģ ,Ĥ
�,Pl

r| detpĔq|s ě Ā
ģ ,Ĥ
�,Pl

rĂdetpĔq1tℰspecus. (78)

By the concentration (77), there exists ÿ depending on �, ÿcvx such that

Ā
ģ ,Ĥ
�,Pl

rĂdetpĔq2s ď ÿ expp2Āģ ,Ĥ
�,Pl

tr Ĝ pĔqq.

Furthermore, by Jensen’s inequality Ā
ģ ,Ĥ
�,Pl

rĂdetpĔqs ě exppĀģ ,Ĥ
�,Pl

tr Ĝ pĔqq. �us,

Ā
ģ ,Ĥ
�,Pl

rĂdetpĔq2s ď ÿĀģ ,Ĥ
�,Pl

rĂdetpĔqs2. (79)

By Cauchy–Schwarz,

Ā
ģ ,Ĥ
�,Pl

rĂdetpĔq1tℰę
specus ď Ā

ģ ,Ĥ
�,Pl

rĂdetpĔq2s1{2
9
ģ ,Ĥ
�,Pl

pℰę
specq1{2 ď ÿ1{2�1{2

Ā
ģ ,Ĥ
�,Pl

rĂdetpĔqs.
It follows that

Ā
ģ ,Ĥ
�,Pl

rĂdetpĔq1tℰspecus ě p1 ´ ÿ1{2�1{2qĀģ ,Ĥ
�,Pl

rĂdetpĔqs.
Combining with (78), (79) shows that

Ā
ģ ,Ĥ
�,Pl

r| detpĔq|2s1{2 ď ÿ1{2p1 ´ ÿ1{2�1{2q´1
Ā

ģ ,Ĥ
�,Pl

r| detpĔq|s,
which implies the result a�er adjusting ÿ. □

7. First moment in planted model

In this section, we prove Proposition 3.9, bounding the �rst moment of ĖĊpăq in the planted model.

�e proof is structured as follows. In §7.1, we show this moment is bounded by a optimization problem

over � : ℝ Ñ ℝ encoding subsets of ΣĊ with a certain coordinate pro�le (heuristically described in (9)).

§7.2 reduces this optimization to two dimensions by showing the maximizer is a�ained in a two-parameter

family. For technical reasons, the functional in this optimization problem is not the �9 de�ned in (8), but

a variant �ĩmax
9 where ĩ is minimized over r0, ĩmaxs instead of r0,`8q see (80). §7.3 and §7.4 show that

we recover the optimization of �9 when ĩmax Ñ 8, completing the proof of Proposition 3.9. §7.5 proves

Lemma 2.5, on the local behavior of the �rst moment functional �9p�1 ,�2q near p1, 0q.
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7.1. Reduction to functional optimization. Recall that pħ0 ,#0q are given by Condition 3.1. Let 9Ą >
Np0,#0q,ĉ < thp 9Ąq, and Ą̂ > Np0, ħ0q,Ċ < Ă1´ħ0pĄ̂q, for Ă1´ħ0 given by (13). Letℒ < Ĉ2pℝ,Np0,#0qq
denote the space of measurable functions � : ℝ Ñ ℝ, equipped with the inner product

x�1 ,�2y < Ār�1p 9Ąq�2p 9Ąqs
and square-integrable w.r.t. the associated norm. Let 
 Ď ℒ denote the set of functions with image in

r´1, 1s. For ĩmax ą 0, de�ne

�
ĩmax
9 p�q < inf

0ďĩďĩmax

�9p�, ĩq, (80)

where �9 : 
 ˆ r0,`8q Ñ ℝ is de�ned by (7). �e following proposition bounds the �rst moment

by the maximum of an optimization problem over functions �, and is the starting point of the proof of

Proposition 3.9.

Proposition 7.1. For any ĩmax ą 0, pģ , Ĥq P S�, , we have
1
Ċ logĀģ ,Ĥ

�,Pl
rĖĊpăqs ď sup

�P
 �
ĩmax
9 p�q `

ĥ�, p1q.

Here ĥ�, p1q denotes a term vanishing as �,  Ñ 0, which can depend on ĩmax; we send ĩmax Ñ 8 a�er

�,  Ñ 0 in the end.

Before proving Proposition 7.1, we state a few facts that will be useful below. Lemma 7.2 ensures that the

denominator of�9p�, ĩq is well-behaved, while Lemmas 7.3 and 7.4 are useful in approximation arguments.

Lemma 7.2. �ere exists � ą 0 such that Ārĉ�p 9Ąqs2 ă p1 ´ �qħ0 for all � P 
.

Proof. Since |�p 9Ąq| ď 1, by Cauchy–Schwarz,

Ārĉ�p 9Ąqs2 ď Ār|ĉ |s2 ă Ārĉ2s.
�e inequality is strict because |ĉ | has nonzero variance. Since Ārĉ2s < Čp#0q < ħ0 (recall Condi-

tion 3.1), the result follows. □

Lemma 7.3. �e function log«pĮq is p2, 1q-pseudo-Lipschitz (recall De�nition 4.19).

Proof. Note that plog«q1pĮq < ´ℰpĮq. Recall from Lemma 4.21(a) that 0 ď ℰpĮq ď 1 ` |Į|. �us,

| log«pĮq ´ log«pįq| <
ˇ̌
ˇ̌
ż į

Į
ℰpĩq dĩ

ˇ̌
ˇ̌ ď |Į ´ į|p1 ` |Į| ` |į|q.

□

Lemma 7.4 (Proved in Appendix A). �ere exists ÿ ą 0 such that for all ė1 , ė2 , Ę1 , Ę2 , ę1 , ę2 ą 0,
ˇ̌
ˇ̌
ˇĀ log«

#
� ´ ė1Ą̂ ´ Ę1Ċ

ę1

+
´ log«

#
� ´ ė2Ą̂ ´ Ę2Ċ

ę2

+ˇ̌
ˇ̌
ˇ

ď ÿmaxpė1 , ė2 , Ę1 , Ę2 , ę1 , ę2 , 1q3
minpę1 , ę2q2

p|ė1 ´ ė2| ` |Ę1 ´ Ę2| ` |ę1 ´ ę2|q .

We turn to the proof of Proposition 7.1. �e main step will be Proposition 7.5 below, where we show

the bound in Proposition 7.1 holds for piecewise-constant � with �nitely many parts. �is case follows

from a direct moment calculation, and Proposition 7.1 follows by approximation.

For any ®Ĩ < pĨ1 , . . . , ĨĤ´1q with ´8 ă Ĩ1 ă Ĩ2 ă ¨ ¨ ¨ ă ĨĤ´1 ă `8, let 
eltp®Ĩq Ď 
 denote the set

of right-continuous functions which are constant on each interval rĨġ´1 , Ĩġq, 1 ď ġ ď Ĥ. Here we take as

convention Ĩ0 < ´8, ĨĤ < `8. De�ne the quantiles ®Ħ < pĦ0 , . . . , ĦĤq by Ħġ < 9p 9Ą ă Ĩġq, and let

meshp®Ħq < min
1ďġďĤ

pĦġ ´ Ħġ´1q.
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Let ĥ�, ,®Ħp1q denote a term vanishing as �,  ,meshp®Ħq Ñ 0, where (like before) this limit is taken a�er

Ċ Ñ 8 for �xed ĩmax. We will show the following.

Proposition 7.5. Suppose ĩmax ą 0, pģ , Ĥq P S�, , and ®Ĩ < pĨ1 , . . . , ĨĤ´1q is as above. We have that
1
Ċ logĀģ ,Ĥ

�,Pl
rĖĊpăqs ď sup

�P
eltp®Ĩq �
ĩmax
9 p�q ` ĥ�, ,®Ħp1q.

For the rest of this subsection, �x ĩmax , �,  , ®Ĩ and pģ , Ĥq as in Proposition 7.5. Let 9Ğ < th´1
� pģq and

pĞ < Ă´1
�,*�pĤq, so that p 9Ğ , pĞq P T�, . Fix a partition rĊs < ℐ1 Y ¨ ¨ ¨ Y ℐĤ satisfying

|ℐġ | < tĦġĊu ´ tĦġ´1Ċu, @1 ď ġ ď Ĥ,

maxt 9ℎğ : ğ P ℐġu ď mint 9ℎğ : ğ P ℐġ`1u, @1 ď ġ ď Ĥ ´ 1.

(In words, ℐġ is the set of coordinates ğ P rĊs such that the quantile of 9ℎğ among the entries of 9Ğ, breaking

ties in an arbitrary but �xed order, lies in rĦġ´1 , Ħġq.) �en, partition ΣĊ into sets

ΣĊp®ėq <

$
&
%Į P ΣĊ :

ÿ

ğPℐġ
Įğ < ėġ , @1 ď ġ ď Ĥ

,
.
- . (81)

indexed by ®ė < pė1 , . . . , ėĤq P ℤĤ . Let J be the set of ®ė such that ΣĊp®ėq is nonempty, and note that

|J | ď ĊĤ . �us

1

Ċ
logĀģ ,Ĥ

�,Pl
rĖĊpăqs < 1

Ċ
log

ÿ

®ėPJ

ÿ

ĮPΣĊ p®ėq
9
ģ ,Ĥ
�,Pl

ˆ
ăĮ?
Ċ

ě �

˙

< sup
®ėPJ

#
1

Ċ
log |ΣĊp®ėq| ` sup

ĮPΣĊ p®ėq

1

Ċ
log9ģ ,Ĥ

�,Pl

ˆ
ăĮ?
Ċ

ě �

˙+
` ĥĊp1q. (82)

Associate to each ®ė P J a function �
®ė P 
eltpĨ1 , . . . , ĨĤ´1q de�ned by

�
®ėpĮq < ėġ

|ℐġ |
, Į P rĨġ´1 , Ĩġq, 1 ď ġ ď Ĥ.

Recall the function ent : 
 Ñ ℝ de�ned in (6).

Lemma 7.6. We have 1
Ċ log |ΣĊp®ėq| < entp�®ėq ` ĥĊp1q for an error ĥĊp1q uniform over ®ė P J .

Proof. By direct counting,

|ΣĊp®ėq| <
Ĥź

ġ<1

ˆ |ℐġ |
1
2p|ℐġ | ` ėġq

˙
.

Stirling’s approximation yields

1

Ċ
log |ΣĊp®ėq| <

Ĥÿ

ġ<1

#
pĦġ ´ Ħġ´1qℋ

˜
1 ` ėġ

pĦġ´Ħġ´1qĊ
2

¸+
` ĥĊp1q < Āℋ

˜
1 ` �

®ėp 9Ąq
2

¸
` ĥĊp1q,

where the last equality holds because 9p 9Ą P rĨġ´1 , Ĩġqq < Ħġ ´ Ħġ´1. □

Lemma 7.7. For all ®ė P J and Į P ΣĊp®ėq,
1

Ċ
x 9Ğ , Įy < Ār 9Ą�

®ėp 9Ąqs ` ĥ�, ,®Ħp1q, 1

Ċ
xģ , Įy < Ārĉ�

®ėp 9Ąqs ` ĥ�, ,®Ħp1q,

for error terms ĥ�, ,®Ħp1q uniform over ®ė, Į.
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Proof. We will only show the proof for 1
Ċ x 9Ğ , Įy, as the other estimate is analogous. Let Į P ΣĊp®ėq be

�xed, and let į P r´1, 1sĊ be de�ned by įğ < ėġ
|ℐġ | for all ğ P ℐġ . We write p 9Ą

1
,Ĕ ,ĕ ,ćq for the random

variable with value p 9ℎğ , Įğ , įğ , ġq, where ğ > unifprĊsq and ġ P rĤs is the index of the set ℐġ containing ğ.
Recall that 9Ą > Np0,#0q. Note that

ă2pℒp 9Ą
1q,ℒp 9Ąqq ď ă2p� 9Ğ ,Np0,#� ` �qq ` ă2pNp0,#� ` �q,Np0,#0qq < ĥ�, p1q,

where the la�er two distances are bounded by de�nition of T and Proposition 4.1, respectively. We couple

p 9Ą
1
, 9Ąq monotonically (which is theă2-optimal coupling) and write

1

Ċ
x 9Ğ , Įy < Ār 9Ą

1
Ĕ s < Ār 9Ąĕ s ` Ārp 9Ą

1 ´ 9ĄqĔ s ` Ār 9ĄpĔ ´ ĕqs.

We now estimate each of these terms. Because p 9Ą
1
, 9Ąq are coupled monotonically, ć < ġ if and only

if the quantile of 9Ą lies in rĦ1
ġ´1

, Ħ1
ġ
q, where Ħ1

ġ
< 1

Ċ tĦġĊu < Ħġ ` ċpĊ´1q. �us, on an event with

probability 1 ´ ċpĊ´1q, ć < ġ if and only if 9Ą P rĨġ´1 , Ĩġq. On this event, ĕ < �
®ėp 9Ąq. �us

Ār 9Ąĕ s < Ār 9Ą�
®ėp 9Ąqs ` ĥĊp1q.

Moreover,

|Ārp 9Ą
1 ´ 9ĄqĔ s| ď Ārp 9Ą

1 ´ 9Ąq2s1{2 < ă2pℒp 9Ą
1q,ℒp 9Ąqq < ĥ�, p1q.

Finally, note that ĕ < ĀrĔ |ćs, so
ĀrĀr 9Ą |ćspĔ ´ ĕqs < ĀrĀr 9Ą |ćsĀrĔ ´ ĕ |ćss < 0.

�us

|Ār 9ĄpĔ ´ ĕqs| < |Ārp 9Ą ´ Ār 9Ą |ćsqpĔ ´ ĕqs| ď Ārp 9Ą ´ Ār 9Ą |ćsq2s1{2.

Recall from the above discussion that conditioning on ć reveals the interval rĦ1
ġ´1

, Ħ1
ġ
q containing the

quantile of 9Ą . It follows that Ārp 9Ą ´ Ār 9Ą |ćsq2s < ĥ�, ,®Ħp1q. □

Lemma 7.8. For all ®ė P J , Į P ΣĊp®ėq, and ĩ P r0, ĩmaxs,

1

Ċ
log9ģ ,Ĥ

�,Pl

ˆ
ăĮ?
Ċ

ě �

˙
ď 1

2
ĩ2#0 ` 
9 Ā log«

$
’’’&
’’’%

� ´ Ārĉ�
®ėp 9Ąqs

ħ0
Ą̂ ´ Ār 9Ą�

®ėp 9Ąqs
#0

Ċ
c
1 ´ Ārĉ�

®ėp 9Ąqs2
ħ0

` ĩĊ

,
///.
///-

` ĥ�, ,®Ħp1q,

where the ĥ�, ,®Ħp1q is uniform over ®ė, Į , ĩ (but can depend on ĩmax).

Proof. Let ră be de�ned in Corollary 4.18. By Corollary 4.18 and Lemma 7.7,

ăĮ?
Ċ

Ě<
ˆp1 ` ĥ�, p1qq

ħ0
pĞ ` ĥ�, p1qĤ

˙
1

Ċ
xģ , Įy ` p1 ` ĥ�, p1qq

#0
Ĥ ¨ 1

Ċ
x 9Ğ , Įy `

răĮ?
Ċ

<
Ārĉ�

®ėp 9Ąqs ` ĥ�, ,®Ħp1q
ħ0

pĞ `
Ār 9Ą�

®ėp 9Ąqs ` ĥ�, ,®Ħp1q
#0

Ĥ `
răĮ?
Ċ
.

Let pĤ < Ĥ{}Ĥ}. By inspecting (40), we see that for independent rĝ > Np0, ČK
Ĥ q and Ė > Np0, 1q,

răĮ?
Ċ

Ě<
ˆ}ČK

ģpĮq}2
Ċ

` ĥ�p1q
˙1{2

rĝ ` ĥ�p1qĖpĤ < Ī1{2rĝ ` �
1{2
1 ĖpĤ ,

where Ī < 1 ´ Ārĉ�
®ėp 9Ąqs2
ħ0

` �2 and �1 , �2 < ĥ�, ,®Ħp1q. For Ė1 > Np0, 1q independent of rĝ , Ė, let
pĝ < rĝ ` Ė1pĤ ` ĩĤ
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so that pĝ > NpĩĤ , ąĊq. �en, for any measurable ď Ď ℝĊ ,

9pĪ1{2rĝ ` �
1{2
1 ĖpĤ P ďq

9pĪ1{2pĝ P ďq
ď sup

ĐĎℝ

9p�1{2
1 Ė P Đq

9pĩĪ1{2}Ĥ} ` Ī1{2Ė1 P Đq

ď sup
ĮPℝ

�
´1{2
1 expp´ 1

2�1
Į2q

Ī´1{2 expp´ 1
2Ī pĮ ´ ĩĪ1{2}Ĥ}q2q

<
d
Ī

�1
exp

ˆ
ĩ2}Ĥ}2

2p1 ´ �1{Īq

˙
.

�us,

1

Ċ
log9ģ ,Ĥ

�,Pl

ˆ
ăĮ?
Ċ

ě �

˙
ď ĩ2#pĤq

2p1 ´ �1{Īq
` ĥĊp1q

` 1

Ċ
log9

#
Ārĉ�

®ėp 9Ąqs ` ĥ�, ,®Ħp1q
ħ0

pĞ `
Ār 9Ą�

®ėp 9Ąqs ` ĥ�, ,®Ħp1q
#0

Ĥ ` Ī1{2pĝ ě �

+
. (83)

By Lemma 7.2, Ī is bounded away from 0. Since #pĤq < #0 ` ĥ�p1q, we have
ĩ2#pĤq

2p1 ´ �1{Īq
< p1 ` ĥ�, ,®Ħp1qq1

2
ĩ2#0 < 1

2
ĩ2#0 ` ĥ�, ,®Ħp1q.

�e last estimate holds uniformly over ĩ P r0, ĩmaxs. �e last term of (83) equals

1

Ċ

ĉÿ

ė<1

log«

$
’’’&
’’’%

� ´ Ārĉ�
®ėp 9Ąqs`ĥ�, ,®Ħp1q

ħ0
pℎė ´ Ār 9Ą�

®ėp 9Ąqs`ĥ�, ,®Ħp1q
#0

Ĥė
c
1 ´ Ārĉ�

®ėp 9Ąqs2
ħ0

` ĥ�, ,®Ħp1q
` ĩĤė

,
///.
///-

` ĥĊp1q.

By Lemma 7.3, log« is p2, 1q-pseudo-Lipschitz. By Fact 4.20 and Lemma 7.4 (using again that the denom-

inator is bounded away from 0), the last display equals


9 Ā log«

$
’’’&
’’’%

� ´ Ārĉ�
®ėp 9Ąqs

ħ0
Ą̂ ´ Ār 9Ą�

®ėp 9Ąqs
#0

Ċ
c
1 ´ Ārĉ�

®ėp 9Ąqs2
ħ0

` ĩĊ

,
///.
///-

` ĥ�, ,®Ħp1q.

Combining the above concludes the proof. □

Proof of Proposition 7.5. Follows from equation (82) and Lemmas 7.6 and 7.8. □

Proof of Proposition 7.1. Set ®Ĩ such that meshp®Ħq is suitably small depending on p�,  q. �en

1

Ċ
logĀģ ,Ĥ

�,Pl
rĖĊpăqs ď sup

�P
eltp®Ĩq
�
ĩmax
9 p�q ` ĥ�, p1q ď sup

�P

�
ĩmax
9 p�q ` ĥ�, p1q.

□

7.2. Reduction to two parameters. Let
˚ Ď 
 denote the set of functions of the form ��1 ,�2 de�ned

above (8). Let
˚ denote the closure of this set in the topology ofℒ. We next prove the following, which

reduces the functional optimization problem in Proposition 7.1 to an optimization over
˚.

Proposition 7.9. For any ĩmax ą 0, we have sup
�P
 �

ĩmax
9 p�q < sup

�P
˚
�
ĩmax
9 p�q. Similarly, sup

�P
 �9p�q <
sup

�P
˚
�9p�q for �9p�q de�ned in (8).
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Lemma 7.10. Let ė1 , ė2 P ℝ be such that there exists � P 
 with Ār 9Ą�p 9Ąqs < ė1, Ārĉ�p 9Ąqs < ė2.

�en, the concave optimization problem

maximize entp�q subject to � P 
 , Ār 9Ą�p 9Ąqqs < ė1 , Ārĉ�p 9Ąqqs < ė2

has a maximizer in 
˚.

Proof. Introduce Lagrange multipliers �1 ,�2 P ℝ. �e Lagrangian is

Ĉp�;�1 ,�2q < Ā

#
ℋ

˜
1 ` �p 9Ąq

2

¸
` �1

9Ą�p 9Ąq ` �2ĉ�p 9Ąq
+

´ �1ė1 ´ �2ė2.

�e quantity inside the expectation is concave in �p 9Ąq, with derivative

´th´1p�p 9Ąqq ` �1
9Ą ` �2ĉ .

�is is pointwise maximized by �p 9Ąq < thp�1
9Ą ` �2ĉq, i.e. � < ��1 ,�2 . □

Proof of Proposition 7.9. Note that�ĩmax
9 p�q is the sum of entp�q and a term depending on� only through

Ār 9Ą�p 9Ąqs and Ārĉ�p 9Ąqs. Let � P 
 be arbitrary. By Lemma 7.10, the maximum of entpr�q subject
to r� P 
, Ār 9Ą r�p 9Ąqs < Ār 9Ą�p 9Ąqs, Ārĉ r�p 9Ąqs < Ārĉ�p 9Ąqs is a�ained by some r� P 
˚. �us

�
ĩmax
9 p�q ď �

ĩmax
9 pr�q, which implies the conclusion for �ĩmax . �e proof for �9 is identical. □

7.3. �e ĩmax Ñ 8 limit. In this subsection, we prove the following proposition, which shows that the

optimization problem derived in Proposition 7.9 has a well-behaved limit when we take ĩmax Ñ 8. �is

allows us to remove the parameter ĩmax, replacing the constrained optimization �
ĩmax
9 de�ned in (80) with

the �9 de�ned in (8).

Proposition 7.11. We have limĩmaxÑ8 sup
�P
˚

�
ĩmax
9 p�q < sup

�P
˚
�9p�q, and moreover �9 a�ains its

supremum on
˚.

Lemma 7.12. �e function �9 : 
 ˆ ℝ Ñ ℝ (recall (7)) is continuous.

Proof. Note that ĩ ÞÑ 1
2 ĩ

2#0 is manifestly continuous. By concavity ofℋ , |ℋpĮq ´ ℋpįq| ď ℋp|Į ´ į|q
for all Į, į P r0, 1s. By concavity of Į ÞÑ ℋp?

Į{2q and Jensen’s inequality,

|entp�q ´ entp�1q| ď Ā

ˇ̌
ˇ̌
ˇℋ

˜
1 ` �p 9Ąq

2

¸
´ ℋ

˜
1 ` �

1p 9Ąq
2

¸ˇ̌
ˇ̌
ˇ ď Ā

ˇ̌
ˇ̌
ˇℋ

˜
|�p 9Ąq ´ �

1p 9Ąq|
2

¸ˇ̌
ˇ̌
ˇ

ď ℋ

˜
Ār|�p 9Ąq ´ �

1p 9Ąq|2s1{2

2

¸
< ℋ

ˆ}� ´ �
1}

2

˙
.

�us ent is continuous. By Cauchy–Schwarz,

|Ār 9Ą�s ´ Ār 9Ą�
1s| ď Ār 9Ą

2s1{2}� ´ �
1} < #

1{2
0 }� ´ �

1}

and similarly |Ārĉ�s ´ Ārĉ�
1s| ď ħ

1{2
0 }� ´ �

1}. Since the denominator 1 ´ Ārĉ�p 9Ąqs2
ħ0

is bounded

away from 0 by Lemma 7.2, the �nal term of �9 is continuous by Lemma 7.4. �us �9 is continous. □

We will need the following analytical lemma, which is a simple adaptation of Dini’s �eorem [Rud76,

�eorem 7.13]. We provide a proof for completeness.

Lemma 7.13. Suppose Ĝ1 , Ĝ2 , . . . : ć Ñ ℝ are a decreasing sequence of continuous functions on a compact

space ć. Let Ĝ : ć Ñ ℝ Y t´8u denote their (not necessarily continuous) pointwise limit, which we assume

is not ´8 everywhere. �en limĤÑ8 sup ĜĤ < sup Ĝ , and furthermore Ĝ a�ains its supremum.
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Proof. Without loss of generality assume sup Ĝ < 0. For � ą 0, let āĤ < tĮ P ć : ĜĤpĮq ă �u. �en

āĤ is open and āĤ Ď āĤ`1. Since the ĜĤ converge pointwise to Ĝ , YĤāĤ < ć. By compactness of ć,

āĤ < ć for some �nite Ĥ, and thus sup ĜĤ ă �. As this holds for any �, limĤÑ8 sup ĜĤ < 0. Finally, Ĝ ,

as the decreasing limit of (upper-semi)continuous functions, is upper-semicontinuous. �erefore Ĝ a�ains

its supremum. □

To apply Lemma 7.13, we verify that �9 is not ´8 everywhere by calculating its value at �1,0pĮq <
thpĮq in Lemma 7.15 below. Recalling §2.6, we expect this to be the maximizer of �9.

Lemma 7.14. For any � P 
, ĩ ě 0, we have B2

Bĩ2�9p�, ĩq ą 0.

Proof. Since plog«q1 < ´ℰ, we have

B2

Bĩ2�9p�, ĩq < #0 ´ 
9 Ā

$
’’’&
’’’%
ℰ1

¨
˚̊
˚̋
� ´ Ārĉ�p 9Ąqs

ħ0
Ą̂ ´ Ār 9Ą�p 9Ąqs

#0
Ċ

c
1 ´ Ārĉ�p 9Ąqs2

ħ0

` ĩĊ

˛
‹‹‹‚Ċ 2

,
///.
///-

Ĉěģ. 4.21pĘq
ą #0 ´ 
9 ĀrĊ 2s < 0.

□

Lemma 7.15. We have �9p�1,0q < �9p�1,0 ,
a
1 ´ ħ0q < 0.

Proof. Let� < �1,0. Note that�p 9Ąq < thp 9Ąq < ĉ . �usĀrĉ�p 9Ąqs < ħ0 and, by gaussian integration

by parts, Ār 9Ą�p 9Ąqs < p1 ´ ħ0q#0. So

� ´ Ārĉ�p 9Ąqs
ħ0

Ą̂ ´ Ār 9Ą�p 9Ąqs
#0

Ċ
c
1 ´ Ārĉ�p 9Ąqs2

ħ0

`
a
1 ´ ħ0Ċ < � ´ Ą̂a

1 ´ ħ0
.

By the identity ℋp 1`thĮ
2 q < logp2chĮq ´ ĮthĮ,

Āℋ

ˆ
1 ` �

2

˙
< Ā logp2ch 9Ąq ´ Ār 9Ą�s < Ā logp2ch 9Ąq ´ p1 ´ ħ0q#0.

�us

�9p�,
a
1 ´ ħ0q < ´1

2
p1 ´ ħ0q#0 ` Ā logp2ch 9Ąq ` 
Ā log«

˜
� ´ Ą̂a
1 ´ ħ0

¸
< �p
9 , ħ0 ,#0q,

which equals 0 by de�nition of 
9. Furthermore,

B
Bĩ�9p�, ĩq

ˇ̌
ĩ<

?
1´ħ0 <

a
1 ´ ħ0#0 ´ 
9 Ā

#
ℰ

˜
� ´ Ą̂a
1 ´ ħ0

¸
Ċ

+

<
a
1 ´ ħ0

`
#0 ´ 
9 ĀrĊ 2s

˘
< 0.

By Lemma 7.14, this implies ĩ <
a
1 ´ ħ0 minimizes �9p�, ĩq, and thus �9p�q < �9p�,

a
1 ´ ħ0q. □

Proof of Proposition 7.11. �e set 
˚ is compact in the topology of ℒ. �e functions �ĩmax
9 : 
˚ Ñ ℝ

are continuous by Lemma 7.12 and compactness of r0, ĩmaxs. On any sequence of ĩmax tending to 8,

the sequence of �ĩmax
9 is decreasing with pointwise limit �9. Since Lemma 7.15 implies �9 is not ´8

everywhere, the result follows from Lemma 7.13. □
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7.4. No boundary maximizers and conclusion. �e results proved so far imply that the exponential

order ofĀģ ,Ĥ
�,Pl

ĖĊpăq is bounded up to vanishing error by sup
�P
˚

�9p�q. Condition 1.3 provides a bound
on sup

�P
˚
�9p�q. Since �9 (unlike �ĩmax

9 ) is not a priori continuous, to complete the proof we verify in

the following proposition that it is not maximized on the boundary.

Proposition 7.16. �e maximum of �9p�q on 
˚ (which exists by Proposition 7.11) is not a�ained on


˚z
˚.

Lemma 7.17. Let Ě0 < 
9 ĀrĂ1
1´ħ0pħ

1{2
0 Ėqs, and

� <
!
� P 
 : Ě0Ārĉ�p 9Ąqs ` Ār 9Ą�p 9Ąqs ą 
9�

)
.

�en, for � P 
,

lim
ĩÑ`8

�9p�, ĩq <
#

`8 � P �,

´8 � R �.

Proof. A well-known gaussian tail bound gives
!pĮq
Į ă «pĮq ă Į!pĮq

1`Į2 for all Į ą 0. �us, for large Į,

log«pĮq < ´1

2
Į2 ´ log Į ` ċp1q. (84)

Let ĩ be large and de�ne

�pĮq < ´1

2
Į2 ´ 1tĩ1{2 ď Į ď ĩ2u log Į, đ <

� ´ Ārĉ�p 9Ąqs
ħ0

Ą̂ ´ Ār 9Ą�p 9Ąqs
#0

Ċ
c
1 ´ Ārĉ�p 9Ąqs2

ħ0

, Ē < đ ` ĩĊ .

Note that

|Ā log«pĒ q ´ Ā �pĒ q| ď |Ā 1tĒ ď log log ĩuplog«pĒ q ´ �pĒ qq|

`
ˇ̌
ˇĀ 1tlog log ĩ ď Ē ď ĩ1{2uplog«pĒ q ´ �pĒ qq

ˇ̌
ˇ

`
ˇ̌
ˇĀ 1tĩ1{2 ď Ē ď ĩ2uplog«pĒ q ´ �pĒ qq

ˇ̌
ˇ

`
ˇ̌
Ā 1tĒ ě ĩ2uplog«pĒ q ´ �pĒ qq

ˇ̌
.

We will show each of these terms is ĥplog ĩq. Let Ē` < maxpĒ , 0q, Ē´ < ´minpĒ , 0q, and let ÿ ą 0 be

a constant varying from line to line. �en,

|Ā 1tĒ ď log log ĩuplog«pĒ q ´ �pĒ qq|
ď Ā 1tĒ ď log log ĩu| log«pĒ q| ` Ā 1tĒ ď log log ĩuĒ 2

` ` ĀĒ 2
´

ď ÿplog log ĩq2 ` Āđ 2
´ ď ÿplog log ĩq2.

In the last line we used that Ċ ą 0 almost surely, and thusđ´ ě Ē´. By the estimate (84), if log log ĩ ď
Ē ă ĩ1{2, then | log«pĒ q ´ �pĒ q| ď ÿ log ĩ. �us

ˇ̌
Ā 1tlog log ĩ ď Ē ă ĩ1{2uplog«pĒ q ´ �pĒ qq

ˇ̌
ď pÿ log ĩq9pĒ ď ĩ1{2q

ď pÿ log ĩq
´
9pđ ď ´ĩ1{2q ` 9pĩĊ ď 2ĩ1{2q

¯
< ĥplog ĩq.

�e estimate (84) directly implies
ˇ̌
ˇĀ 1tĩ1{2 ď Ē ď ĩ2uplog«pĒ q ´ �pĒ qq

ˇ̌
ˇ < ċp1q.
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Finally, Lemma 4.21(a) gives 0 ď ℰpĮq ď |Į| ` 1. �us

|Ē | ď |đ | ` ĩa
1 ´ ħ0

ℰ

˜
� ´ Ą̂a
1 ´ ħ0

¸
ď ÿĩp|Ą̂ | ` 1q.

It follows that for Ī ě ĩ2, we have 9p|Ē | ě Īq ď expp´Ī2{ÿĩ2q. So, crudely
ˇ̌
Ā 1tĒ ě ĩ2uplog«pĒ q ´ �pĒ qq

ˇ̌
ď ÿ1

Ā 1tĒ ě ĩ2uĒ 2

ď ÿ1
ˆ
ĩ2 expp´ĩ2{ÿq `

ż 8

ĩ2
2Ī expp´Ī2{ÿĩ2q dĪ

˙

ď ÿ1ĩ2 expp´ĩ2{ÿq.
�us |Ā log«pĒ q ´ Ā �pĒ q| < ĥplog ĩq. So,

�9p�, ĩq < 1

2
ĩ2#0 ` 
9 Ā �pĒ q ` ĥplog ĩq.

We now evaluate 
9 Ā �pĒ q. First,
1

2

9 ĀĒ 2 < 1

2

9ĩ

2
ĀrĊ 2s ` 
9ĩ ĀrđĊ s ` ċp1q

< 1

2
ĩ2#0 `

ĩ
´

9� ´ Ě0Ārĉ�p 9Ąqs ´ Ār 9Ą�p 9Ąqs

¯

c
1 ´ Ārĉ�p 9Ąqs2

ħ0

` ċp1q.

�us

�9p�, ĩq <
ĩ
´
Ě0Ārĉ�p 9Ąqs ` Ār 9Ą�p 9Ąqs ´ 
9�

¯

c
1 ´ Ārĉ�p 9Ąqs2

ħ0

´ Ā 1tĩ1{2 ď Ē ď ĩ2u logĒ ` ĥplog ĩq.

�e logarithmic term clearly has magnitude ċplog ĩq. So, limĩÑ`8 �9p�, ĩq < `8 if � P �, and ´8 if

� is in the interior of
z�. Finally, we have shown above that 9pĒ ă ĩ1{2q,9pĒ ą ĩ2q < ĥĩp1q, so

Ā 1tĩ1{2 ď Ē ď ĩ2u logĒ ě 1

2
p1 ´ ĥĩp1qq log ĩ.

�us limĩÑ`8 �9p�, ĩq < ´8 for � on the boundary of 
z�. □

Proof of Proposition 7.16. Suppose for contradiction that � P 
˚z
˚ maximizes�9p�q in
˚. By Propo-

sition 7.9, � is also a maximizer of �9p�q in
.

By Lemma 7.17, if � R �, then �9p�q < ´8 is not a maximizer (recall Lemma 7.15). �us � P �. Let

�
Ī < p1 ´ Īq�. Since � is open, �Ī P � for Ī P r0, Ī`q, for su�ciently small Ī`.
By Lemma 7.17, for Ī P r0, Ī`q, the in�mum of �p�Ī , ĩq is a�ained at some ĩp�Īq P r0,`8q. Note that

B
Bĩ�9p�Ī , ĩq

ˇ̌
ˇ̌
ˇ
ĩ<0

< ´
9 Ā

$
’’’&
’’’%
ℰ

¨
˚̊
˚̋
� ´ Ārĉ�

Īp 9Ąqs
ħ0

Ą̂ ´ Ār 9Ą�
Īp 9Ąqs

#0
Ċ

c
1 ´ Ārĉ�

Īp 9Ąqs2
ħ0

` ĩĊ

˛
‹‹‹‚Ċ

,
///.
///-

ă 0

because Ċ ą 0 almost surely and the image of ℰ is positive. Combined with Lemma 7.14, this implies

ĩp�Īq is the unique solution to B
Bĩ�9p�, ĩq < 0, and ĩp�Īq ą 0.



CAPACITY THRESHOLD FOR THE ISING PERCEPTRON 55

Note that B
Bĩ�9p�Ī , ĩq is di�erentiable in Ī, as the denominator

c
1 ´ Ārĉ�

Īp 9Ąqs2
ħ0

is bounded away

from 0 by Lemma 7.2. By Lemma 7.14 and the implicit function theorem, ĩp�Īq is di�erentiable in Ī for all
Ī P r0, Ī`q. It follows that

d

dĪ

$
’’’&
’’’%

1

2
ĩp�Īq2#0 ` 
9 Ā log«

¨
˚̊
˚̋
� ´ Ārĉ�

Īp 9Ąqs
ħ0

Ą̂ ´ Ār 9Ą�
Īp 9Ąqs

#0
Ċ

c
1 ´ Ārĉ�

Īp 9Ąqs2
ħ0

` ĩp�ĪqĊ

˛
‹‹‹‚

,
///.
///-

ˇ̌
ˇ̌
ˇ
Ī<0

exists and is �nite. However, since � P 
˚z
˚, we have �p 9Ąq P t´1, 1u 9Ą-almost surely. �us

d

dĪ
entp�Īq

ˇ̌
Ī<0

< d

dĪ
ℋpĪ{2q

ˇ̌
Ī<0

< `8.

Hence d
dĪ�9p�Īq

ˇ̌
Ī<0

< `8, and � is not a maximizer of �9p�q in
. □

Proof of Proposition 3.9. By Propositions 7.1, 7.9, for any ĩmax ą 0,

1

Ċ
logĀģ ,Ĥ

�,Pl
rĖĊpăqs ď sup

�P

�
ĩmax
9 p�q ` ĥ�, p1q < sup

�P
˚

�
ĩmax
9 p�q ` ĥ�, p1q. (85)

By Propositions 7.11 and 7.16 and Condition 1.3,

lim
ĩmaxÑ8

sup
�P
˚

�
ĩmax
9 p�q < sup

�P
˚

�9p�q < sup
�P
˚

�9p�q < sup
�1 ,�2Pℝ

�9p�1 ,�2q ď 0.

�us, taking the limit �,  Ñ 0 followed by ĩmax Ñ 8 in (85) implies the result. □

7.5. Local analysis of �rst moment functional at p1, 0q. We now prove Lemma 2.5. Note that part (a)

follows from Proposition 7.16, and part (b) was already proved in Lemma 7.15. We turn to the proofs of

the remaining parts.

Proof of Lemma 2.5(c). Let�9p�1 ,�2 , ĩq < �9p��1 ,�2 , ĩq, and let ĩp�1 ,�2qminimize�9p�1 ,�2 , ĩq. Lemma 7.15

shows ĩp1, 0q <
a
1 ´ ħ0, and the proof of Proposition 7.16 shows that for p�1 ,�2q in a neighborhood of

p1, 0q, ĩp�1 ,�2q is the unique solution to Bĩ�9p�1 ,�2 , ĩq < 0. By Lemma 7.14 and the implicit function

theorem, ĩp�1 ,�2q is di�erentiable in this neighborhood. So,

∇�9p�1 ,�2q < ∇�1 ,�2�9p�1 ,�2 , ĩp�1 ,�2qq ` Bĩ�9p�1 ,�2 , ĩp�1 ,�2qq∇ĩp�1 ,�2q
< ∇�1 ,�2�9p�1 ,�2 , ĩp�1 ,�2qq, (86)

and in particular ∇�9p1, 0q < ∇�9p1, 0q. To calculate the la�er gradient, let ī1 , ī2 P ℝ be arbitrary and

� = pī1B�1 ` ī2B�2q� < p1 ´ �
2qpī1 9Ą ` ī2ĉq.

�en

x∇�9p�1 ,�2q, pī1 , ī2qy < ´Ārth´1p�q�s ´ 
9 Ā

#
ℰ

¨
˚̋� ´ Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

b
1 ´ Ārĉ�s2

ħ0

`
a
1 ´ ħ0Ċ

˛
‹‚ (87)

ˆ

¨
˚̋´Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

b
1 ´ Ārĉ�s2

ħ0

`
� ´ Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

´
1 ´ Ārĉ�s2

ħ0

¯3{2 ¨ Ārĉ�sĀrĉ�s
ħ0

˛
‹‚
+
.
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Specializing to p�1 ,�2q < p1, 0q,
x∇�9p1, 0q, pī1 , ī2qy

< ´Ārth´1pĉq�s ´ 
9 Ā

$
&
%ℰ

˜
� ´ Ą̂a
1 ´ ħ0

¸¨
˝

´Ārĉ�s
ħ0

Ą̂ ´ Ār 9Ą�s
#0

Ċ
a
1 ´ ħ0

` � ´ Ą̂ ´ p1 ´ ħ0qĊ
p1 ´ ħ0q3{2 Ārĉ�s

˛
‚
,
.
-

< ´Ār 9Ą�s ´ 
9 Ā

#
Ă1´ħ0pĄ̂q

˜
´Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ ` � ´ Ą̂ ´ p1 ´ ħ0qĊ

1 ´ ħ0
Ārĉ�s

¸+

< ´Ār 9Ą�s ` 
9 ĀrĊ 2s
#0

Ār 9Ą�s ` 
9

˜
ĀrĊĄ̂s
ħ0

` Ā

«
Ċ

˜
Ċ ´ � ´ Ą̂

1 ´ ħ0

¸ff¸
Ārĉ�s.

�e �rst two terms cancel because 
9 ĀrĊ 2s < #0. Finally, note the identity

Ă1
1´ħ0pĮq < ´Ă1´ħ0pĮq

ˆ
Ă1´ħ0pĮq ´ Į

1 ´ ħ0

˙
.

By gaussian integration by parts,

ĀrĊĄ̂s < ĀrĄ̂Ă1´ħ0pĄ̂qs < ĀrĄ̂2sĀrĂ1
1´ħ0pĄ̂qs < ´ħ0Ā

«
Ċ

˜
Ċ ´ � ´ Ą̂

1 ´ ħ0

¸ff
.

It follows that x∇�9p1, 0q, pī1 , ī2qy < 0. Since ī1 , ī2 were arbitrary, ∇�9p1, 0q < 0. □

Proof of Lemma 2.5(d). Di�erentiating (86) and applying the implicit function theorem yields

∇2
�9p�1 ,�2q < ∇2

�1 ,�2
�9p�1 ,�2 , ĩp�1 ,�2qq ` ∇�1 ,�2Bĩ�9p�1 ,�2 , ĩp�1 ,�2qqp∇ĩp�1 ,�2qqJ

< ∇2
�1 ,�2

�9p�1 ,�2 , ĩp�1 ,�2qq ´ p∇�1 ,�2Bĩ�9p�1 ,�2 , ĩp�1 ,�2qqqb2

B2
ĩ�9p�1 ,�2 , ĩp�1 ,�2qq

ĺ ∇2
�1 ,�2

�9p�1 ,�2 , ĩp�1 ,�2qq.
Specializing to p�1 ,�2q < p1, 0q yields the result. □
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Appendix A. Deferred proofs

In this appendix, we provide proofs of various results deferred from the paper.

A.1. Well de�nedness and � Ó 0 limit of pħ� ,#� , *�q.
Proof of Proposition 4.1. Let �0 be small enough that rħ0 ´ 3�0 , ħ0 ` 3�0s Ď r0, 1s. Note that �0p#q <
pĎ
‹ ˝ Čqp#q. By Condition 3.1, �0p#0q < #0 and

�1
0p#0q < Ď1


‹
pħ0qČ1p#0q < pČ ˝ Ď
‹q1pħ0q ă 1.
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By continuity of �0 and �
1
0, we can �nd � ą 0 such that for all# P r#0 ´ �,#0 ` �s, Čp#q P rħ0 ´ �0 , ħ0 ` �0s

and �1
0p#q ă 1. Set �1 small enough that

�0p#0 ´ �q ě #0 ´ � ` 2�1 , �0p#0 ` �q ď #0 ` � ´ 2�1 , sup
#Pr#0´�,#0`�s

�1
0p#q ď 1 ´ 2�1.

We will show that for su�ciently small �,

sup
#Pr#0´�,#0`�s

|��p#q ´ �0p#q|, sup
#Pr#0´�,#0`�s

|�1
�p#q ´ �1

0p#q| < ĥ�p1q. (88)

We �rst explain why this implies the result. First, (88) implies that for su�ciently small �,

��p#0 ´ �q ě #0 ´ � ` �1 , ��p#0 ` �q ď #0 ` � ´ �1 , sup
#Pr#0´�,#0`�s

�1
�p#q ď 1 ´ �1.

�is implies that �� has a unique �xed point#� in r#0´ �,#0` �s. Furthermore, it implies |��p#0q´#0| <
ĥ�p1q, which combined with the above derivative estimate gives

|#� ´ #0| ď |��p#0q ´ #0|{�1 < ĥ�p1q.
Continuity considerations then imply pħ� ,#� , *�q Ñ pħ0 ,#0 , 1 ´ ħ0q as � Ó 0. We now turn to the proof

of (88). Let # P r#0 ´ �,#0 ` �s. Below, ĥ�p1q is an error uniform over #. Let ħ < Č�p#q and rħ < Čp#q.
Note that

|ħ ´ rħ| ď Ā

”
|pthpp# ` �q1{2Ėq ` �p# ` �q1{2Ėq2 ´ th2p#1{2Ėq|

ı
ď ĥ�p1q.

Let * < *�pħ,#q, and note that

|* ´ p1 ´ ħq| < ĥ�p1q.
�us

* ě p1 ´ rħq ´ |rħ ´ ħ| ´ |* ´ p1 ´ ħq| ě 2�0 ´ ĥ�p1q ě �0 ,

so * is bounded away from 0. By Cauchy-Schwarz,

|��p#q ´ �0p#q| < |Ď�pħ,#q ´ Ď
‹prħq|

< 
9 Ā
”
|Ă�,*ppħ ` �q1{2Ėq ´ Ă1´ħ0pħ1{2Ėq||Ă�,*ppħ ` �q1{2Ėq ` Ă1´ħ0pħ1{2Ėq|

ı

ď 
9 Ā
”
pĂ�,*ppħ ` �q1{2Ėq ´ Ă1´rħprħ1{2Ėqq2

ı1{2
Ā

”
pĂ�,*ppħ ` �q1{2Ėq ` Ă1´rħprħ1{2Ėqq2

ı1{2
.

Expanding Ă�,* using (19) shows the �rst expectation is ĥ�p1q, while the second is bounded by Lemma 4.21(a).

�us |��p#q ´ �0p#q| < ĥ�p1q uniformly in # P r#0 ´ �,#0 ` �s. Furthermore,

�1
�p#q < BĎ�

Bħ pħ,#qpČ�q1p#q ` BĎ�

B# pħ,#q, �1
0p#q < Ď1


‹
prħqČ1p#q.

Similar computations to above show
ˇ̌
ˇ̌BĎ

�

Bħ pħ,#q ´ Ď1

‹

prħq
ˇ̌
ˇ̌ , |pČ�q1p#q ´ Č1p#q|,

ˇ̌
ˇ̌BĎ

�

B# pħ,#q
ˇ̌
ˇ̌ < ĥ�p1q,

and thus |�1
�p#q ´ �1

0p#q| < ĥ�p1q uniformly in #. �is proves (88). □
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A.2. Approximation for (pseudo)-Lipschitz functions.

Proof of Fact 4.20. Let pĮ, įq be a sample from the optimal coupling of p�, �1q. �en

|Ā�r Ĝ s ´ Ā�1r Ĝ s| ď Ā | Ĝ pĮq ´ Ĝ pįq| ď ĈĀ r|Į ´ į|p|Į| ` |į| ` 1qs
ď ĈĀr|Į ´ į|2s1{2

Ār3p|Į|2 ` |į|2 ` 1qs1{2

ď ĈĀr|Į ´ į|2s1{2
Ār3p3|Į|2 ` 2|Į ´ į|2 ` 1qs1{2

ď 3Ĉă2p�, �1qp�2 ` ă2p�, �1q ` 1q,
where we have used the estimate |į|2 ď 2|Į|2 ` 2|Į ´ į|2. □

Proof of Fact 6.11. Couple pĮ, į, İq > � and pĮ1 , į1 , İ1q > �1 in the ă2-optimal way. �en, the le�-hand

side of (62) is bounded by the sum of:

Ā| Ĝ1pĮq|| Ĝ2pįq|| Ĝ3pİq ´ Ĝ3pİ1q| ď ĈpĀ Ĝ1pĮq4q1{4pĀ Ĝ2pįq4q1{4pĀ|İ ´ İ1|2q1{2

ď ĈpĀ Ĝ1pĮq4q1{4pĀ Ĝ2pįq4q1{4
ă2p�, �1q,

Ā| Ĝ1pĮq|| Ĝ3pİ1q|| Ĝ2pįq ´ Ĝ2pį1q| ď Ĉ2pĀ Ĝ1pĮq2q1{2pĀ|į ´ į1|2q1{2 ď Ĉ2pĀ Ĝ1pĮq2q1{2
ă2p�, �1q

Ā| Ĝ2pį1q|| Ĝ3pİ1q|| Ĝ1pĮq ´ Ĝ1pĮ1q| ď Ĉ2pĀ Ĝ2pį1q2q1{2pĀ|Į ´ Į1|2q1{2 ď Ĉ2pĀ Ĝ2pį1q2q1{2
ă2p�, �1q.

Finally, by Fact 4.20,

Ā Ĝ2pį1q2 ď Ā Ĝ2pįq2 ` 3ă2p�, �1qpĀ Ĝ2pįq2 ` ă2p�, �1q ` 1q.
Combining gives the conclusion. □

A.3. Gradient and Hessian formulas for ℱ �
TAP, and regularity estimates.

Proof of Lemma 4.16. By standard properties of convex duals,

pĒ˚
� q1pģq < ´ arg min

9ℎ

!
´ģ 9ℎ `Ē�p 9ℎq

)
< ´th´1

� pģq.

We di�erentiate the interaction term in ℱ �
TAP by gaussian integration by parts. For each ğ P rĊs, ė P rĉs,

B
Bģğ

Ă�,��pħpģqq

ˆxĝ ė ,ģy?
Ċ

` �1{2pĝė ´ ��pħpģqqĤė
˙

< B
Bģğ

logĀ "�

ˆxĝ ė ,ģy?
Ċ

` �1{2pĝė ´ ��pħpģqqĤė ` ��pħpģqq1{2Ė

˙

<
Ā "1

�

´
xĝ ė ,ģy?

Ċ
` �1{2pĝė ´ ��pħpģqqĤė ` ��pħpģqq1{2Ė

¯´
ĝė
ğ?
Ċ

´ �1
�pħpģqq 2ģğĤė

Ċ ` �1
�pħpģqq

��pħpģqq1{2

ģğ
Ċ Ė

¯

Ā "1
�

´
xĝ ė ,ģy?

Ċ
` �1{2pĝė ´ ��pħpģqqĤė ` ��pħpģqq1{2Ė

¯

< Ă�,��pħpģqqpℎ́ėq
ˆ
ĝė
ğ?
Ċ

´ �1
�pħpģqq2ģğĤė

Ċ

˙
` Ā "2

�pℎ́ė ` ��pħpģqq1{2Ėq
Ā "�pℎ́ė ` ��pħpģqq1{2Ėq

¨ �
1
�pħpģqqģğ

Ċ
.

<
ĝė
ğ?
Ċ
Ă�,��pħpģqqpℎ́ėq ` �1

�pħpģqqģğ

Ċ

´
´2Ă�,��pħpģqqpℎ́ėqĤė ` Ă�,��pħpģqqpℎ́ėq2 ` Ă1

�,��pħpģqqpℎ́ėq
¯
.
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�us

B
Bģğ

ℱ �
TAPpģ , Ĥq < ´th´1

� pģğq ` �1{2 9ĝğ `
păJĂ�,��pħpģqqpℎ́ėqqğ?

Ċ

` �1
�pħpģqqģğ

Ċ

ĉÿ

ė<1

´
pĤė ´ Ă�,��pħpģqqpℎ́ėqq2 ` Ă1

�,��pħpģqqpℎ́ėq
¯
,

which implies (34). �e formula (35) follows by directly di�erentiating ℱ �
TAP. Se�ing (35) to zero shows

that ∇Ĥℱ
�
TAPpģ , Ĥq < 0 if and only if Ğ́ < pĞ, which rearranges to (36). �is implies Ă�,��pħpģqqpĞ́q < Ĥ, so

se�ing (34) to zero yields (37). □

Proof of Fact 6.5. Note that

B
Bģğ

th´1
� pģğq < 1

th1
�p 9ℎğq

< 1

1 ` � ´ th2p 9ℎğq
< ch2p 9ℎğq

1 ` �ch2p 9ℎğq
.

�e functions Ă�,* , Ă
1
�,* can be di�erentated in * as follows. By gaussian integration by parts (or Itô’s

formula),
d

d*
Ā "�pĮ ` *1{2Ėq < 1

2
Ā "2

�pĮ ` *1{2Ėq,

and similarly for "1
�. �us, abbreviating "�,*pĮq < Ā "�pĮ ` *1{2Ėq,

d

d*
Ă�,*pĮq < d

d*

"�,*pĮq
"1
�,*pĮq < 1

2

¨
˝"

p3q
�,*pĮq

"�,*pĮq ´
"1
�,*pĮq"2

�,*pĮq
"�,*pĮq2

˛
‚.

We also have

Ă1
�,*pĮq <

"2
�,*pĮq

"�,*pĮq ´
p"1

�,*pĮqq2

"�,*pĮq2 , Ă2
�,*pĮq <

"3
�,*pĮq

"�,*pĮq ´
3p"1

�,*pĮqqp"2
�,*pĮqq

"�,*pĮq2 `
2p"1

�,*pĮqq3

"�,*pĮq3 .

�us
d

d*
Ă�,*pĮq < 1

2

´
2Ă�,*pĮqĂ1

�,*pĮq ` Ă2
�,*pĮq

¯
.

A similar calculation shows

d

d*
Ă1
�,*pĮq < 1

2

´
2Ă�,*pĮqĂ2

�,*pĮq ` 2Ă1
�,*pĮq2 ` Ă

p3q
�,*pĮq

¯
.

�e result follows by directly di�erentiating (34) and (35) using the above formulas. □

Proof of Lemma 6.6. As pģ , Ĥq P S�,Ĩ0 , approximation arguments identical to the proof of Corollary 4.18

show the estimates for ħpģq,#pĤq, Ě�pģ , Ĥq in part (a). �e regularity estimate (23) of �� and its deriva-

tives proves the rest of part (a). Di�erentiating (19) yields

Ă1
�,*pĮq < ´ �

1 ` �*
´ 1

p* ` �p1 ` �*qqp1 ` �*qℰ
1
˜

�p1 ` �*q ´ Įa
p* ` �p1 ` �*qqp1 ` �*q

,

¸
.

By Lemma 4.21, we see that for * in a neighborhood of *�, supĮPℝ

ˇ̌
ˇ dd* Ă1

�,*pĮq
ˇ̌
ˇ is bounded by an absolute

constant. Note that

sup
ĮPℝ

ˇ̌
ˇ̌
ˇ
d

d*

Ă1
�,*pĮq

1 ` *Ă1
�,*pĮq

ˇ̌
ˇ̌
ˇ ď sup

ĮPℝ

ˇ̌
ˇ̌
ˇ

Ă1
�,*pĮq

p1 ` *Ă1
�,*pĮqq2

ˇ̌
ˇ̌
ˇ ` sup

ĮPℝ

ˇ̌
ˇ̌
ˇ

1

p1 ` *Ă1
�,*pĮqq2

ˇ̌
ˇ̌
ˇ ¨ sup

ĮPℝ

ˇ̌
ˇ̌ d
d*
Ă1
�,*pĮq

ˇ̌
ˇ̌ . (89)
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By (42),
1

1 ` *Ă1
�,*pĮq ě * ` �p1 ` �*q

�
,

which for * in a neighborhood of *� is bounded depending only on �. It follows that (89) is is bounded

depending only on �. So,

}Ā2 ´ rĀ2}op ď
ˇ̌
ˇ̌
ˇ

Ă1
�,*�pĮq

1 ` *�Ă
1
�,*�pĮq ´

Ă1
�,��pħpģqqpĮq

1 ` ��pħpģqqĂ1
�,��pħpģqqpĮq

ˇ̌
ˇ̌
ˇ < ĥĨ0p1q.

�is proves part (b). Part (c) follows from Fact 4.22, as (for ��pħpģqq in a neighborhood of *� ą 0) the

images of Ă1
�,��pħpģqq and Ă

p3q
�,��pħpģqq are bounded. Similarly,

1?
Ċ

}Ā´1
4 Ă2pĞ́q} ď }Ā´1

4 }op}Ă2pĞ́q}8
(42)
ď ��pħpģqq ` �p1 ` ���pħpģqqq

�
}Ă2pĞ́q}8.

Since the image of Ă2
�,��pħpģqq is bounded by Fact 4.22, this proves part (d). □

Proof of Proposition 4.7. We will show that the matrices ∇2
ģ ,ģℱ

�
TAP, ∇

2
ģ ,Ĥℱ

�
TAP, ∇

2
Ĥ ,Ĥℱ

�
TAP in Fact 6.5 have

bounded operator norm (with bound depending on �, ÿcvx , ÿbd , Ā). �roughout this proof, ÿ is a constant

depending on �, ÿcvx , ÿbd , Ā, which may change from line to line.

Under 9, we have }ă}op , }pĝ} ď ÿ
?
Ċ with high probability. Under 9

ģ1 ,Ĥ1

�,Pl
, we may write ă <

Ā
ģ1 ,Ĥ1

�,Pl
ă ` ră for ră as in Lemma 4.17. �en }ră}op ď ÿ

?
Ċ with high probability, and by Lemma 4.17,

}Āģ1 ,Ĥ1

�,Pl
ă} ď ÿ

?
Ċ . On this event, }ă}op ď ÿ

?
Ċ . Since ��pħpģ1qq P rÿ´1

bd
, ÿbds, pĞ1 < Ă´1

�,��pħpģ1qqpĤq
satis�es }pĞ1} ď ÿ

?
Ċ . �en, (37) implies }pĝ} ď ÿ

?
Ċ . So, under both9 and9ģ1 ,Ĥ1

�,Pl
, we have }ă}op , }pĝ} ď

ÿ
?
Ċ with high probability. For the remainder of this proof, we assume this event holds.

Consider any }ģ}2 , }Ĥ}2 ď ĀĊ . �e above bounds on }ă}op , }pĝ} imply }Ğ́} ď ÿ
?
Ċ . By (23), ÿ´1

bd
ď

��pħpģqq ď ÿbd and |�1
�pħpģqq|, |�2

�pħpģqq| ď ÿbd. Abbreviate Ă < Ă�,��pħpģqq as above. By Fact 4.22,

sup
ĮPℝ

|Ă1pĮq|, sup
ĮPℝ

|Ă2pĮq|, sup
ĮPℝ

|Ăp3qpĮq| ď ÿ. (90)

�us Ă is ÿ-Lipschitz. By (19),

Ăp0q < 1a
p��pħpģqq ` �p1 ` ���pħpģqqqqp1 ` ���pħpģqqq

ℰ

˜
�
a
1 ` ���pħpģqq

a
��pħpģqq ` �p1 ` ���pħpģqqq

¸

is bounded, and thus

}ĂpĞ́q} ď }Ăp0q} ` ÿ}Ğ́} ď ÿ
?
Ċ.

By (90) we also have }Ă1pĞ́q}, }Ă2pĞ́q}, }Ăp3qpĞ́q} ď ÿ
?
Ċ . �is also implies Ě�pģ , Ĥq ď ÿ.

Since 9Ĝ� is bounded, }Ā1}op ď ÿ. Since Ă1 is bounded, }Ā3}op , }Ā4}op ď ÿ. �e estimate (42) also im-

plies }rĀ2}op , }Ā´1
4 }op ď ÿ. Combining these estimates shows }∇2

ģ ,ģℱ
�
TAPpģ , Ĥq}op, }∇2

ģ ,Ĥℱ
�
TAPpģ , Ĥq}op,

}∇2
Ĥ ,Ĥℱ

�
TAPpģ , Ĥq}op ď ÿ. □

A.4. Analysis of AMP iteration in planted model.

Proof of Proposition 5.4. �e state evolution [BMN20, �eorem 1] implies that

1

Ċ

Ċÿ

ğ<1

�p 9ℎğ , 9�ğ , 9ℎ
p1q,1
ğ

, . . . , 9ℎ
p1q,ġ
ğ

q ă2Ñ Np0, 9Σ
p1q
ďġq,

1

ĉ

ĉÿ

ė<1

�ppℎė , p�ė , pℎp1q,0
ė , . . . , pℎp1q,ġ

ė q ă2Ñ Np0, pΣp1q
ďġq,
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for the following arrays 9Σp1q , pΣp1q. First, pΣp1q agrees with pΣ` on indices pğ , Ġq where tpğ , ĠquXt˛,’u ‰ H,

and 9Σp1q agrees with 9Σ` on pğ , Ġq where tpğ , Ġqu X t˛,’, 0u ‰ H. �e remaining entries are de�ned by

the following recursion. For p 9Ą, 9Ξ, 9Ą1 , . . . , 9Ąġq > Np0, 9Σ
p1q
ďġq and 0 ď ğ ď ġ,

pΣp1q
ğ ,ġ

< Ā

„ˆ
th�p 9Ąğq ´

ħ ğ
ħ�

th�p 9Ąq
˙ˆ

th�p 9Ąġq ´
ħġ
ħ�

th�p 9Ąq
˙

`
�pħ� ´ ħ ğqpħ� ´ ħġq

ħ�pħ� ` �q `
pħ ğ ` �qpħġ ` �q

ħ� ` �
.

(91)

For p pĄ, pΞ, pĄ0 , . . . , pĄġq > Np0, pΣp1q
ďġq and 0 ď ğ ď ġ, we have

9Σ
p1q
ğ`1,ġ`1

< 
9 Ā

«˜
Ă�,*�p pĄğq ´

#ğ`1

#�
Ă�,*�p pĄq

¸˜
Ă�,*�p pĄġq ´

#ġ`1

#�
Ă�,*�p pĄq

¸ff

`
�p#� ´ #ğ`1qp#� ´ #ġ`1q

#�p#� ` �q `
p#ğ`1 ` �qp#ġ`1 ` �q

#� ` �
. (92)

We now verify by induction that pΣp1q and 9Σp1q coincide with pΣ` and 9Σ`. Suppose 9Σ
p1q
ďġ < 9Σ`

ďġ . �en,

Ārth�p 9Ąğqth�p 9Ąġqs < 9Σğ ,ġ , Ārth�p 9Ąğqth�p 9Ąqs < ħ ğ , Ārth�p 9Ąq2s < ħ� ,

so the right-hand side of (91) simpli�es as

9Σğ ,ġ ´
ħ ğħġ
ħ�

`
�pħ� ´ ħ ğqpħ� ´ ħġq

ħ�pħ� ` �q `
pħ ğ ` �qpħġ ` �q

ħ� ` �
< 9Σğ ,ġ ` � < 9Σ`

ğ ,ġ
.

Now, suppose pΣp1q
ďġ < pΣ`

ďġ . �en,


9 ĀrĂ�,*�p pĄğqĂ�,*�p pĄġqs < pΣğ`1,ġ`1 , 
9 ĀrĂ�,*�p pĄğqĂ�,*�p pĄqs < #ğ`1 , 
9 ĀrĂ�,*�p pĄq2s < #� ,

so the right-hand side of (92) simpli�es as

pΣğ`1,ġ`1 ´
#ğ`1#ġ`1

#�
`
�p#� ´ #ğ`1qp#� ´ #ġ`1q

#�p#� ` �q `
p#ğ`1 ` �qp#ġ`1 ` �q

#� ` �
< pΣğ`1,ġ`1 ` � < pΣ`

ğ`1,ġ`1
.

�is completes the induction. □

To prove Proposition 5.5, we introduce two additional auxiliary AMP iterations. �ey are initialized at

Ĥp2q,´1 < Ĥp3q,´1 < 0, ģp2q,0 < ģp3q,0 < ħ
1{2
� 1, with iteration

ģpğq,ġ < th�p 9Ğ
pğq,ġq, Ĥpğq,ġ < Ă�,*�ppĞ

pğq,ġq,

for ğ P t2, 3u and 9Ğ
pğq,ġ

, pĞpğq,ġ
as follows. Recall that ă is the matrix (44), and #0 < 0. �en,

pĞp2q,ġ < 1?
Ċ
ă

ˆ
ģp2q,ġ ´

ħġ
ħ�

ģ

˙
`

?
�pħ� ´ ħġqa
ħ�pħ� ` �q

pć `
ħġ ` �

ħ� ` �
pĞ ´ *�

˜
Ĥp2q,ġ´1 ´

#ġ

#�
Ĥ

¸
(93)

9Ğ
p2q,ġ`1 < 1?

Ċ
ă

J
˜
Ĥp2q,ġ ´

#ġ`1

#�
Ĥ

¸
`

?
�p#� ´ #ġ`1qa
#�p#� ` �q

9ć `
#ġ`1 ` �

#� ` �
9Ğ ´ Ě�

ˆ
ģp2q,ġ ´

ħġ
ħ�

ģ

˙

pĞp3q,ġ < 1?
Ċ

ră
´
ģp3q,ġ ´ ģ

¯
`
ħġ ` �

ħ� ` �
pĞ ´ *�

˜
Ĥp3q,ġ´1 ´

#ġ ` 1tġ ě 1u�
#� ` �

Ĥ

¸
(94)

9Ğ
p3q,ġ`1 < 1?

Ċ
răJ ´

Ĥp3q,ġ ´ Ĥ
¯

`
#ġ`1 ` �

#� ` �
9Ğ ´ Ě�

ˆ
ģp3q,ġ ´

ħġ ` �

ħ� ` �
ģ

˙
.

�e following proposition shows that all these AMP iterations approximate each other.



CAPACITY THRESHOLD FOR THE ISING PERCEPTRON 65

Proposition A.1. For any ġ ě 0, as Ċ Ñ 8 we have the following convergences in probability under 9
ģ ,Ĥ
�,Pl

.

(a) }pĞp1q,ġ ´ pĞp2q,ġ}{
?
Ċ Ñ 0, and if ġ ě 1, } 9Ğ

p1q,ġ ´ 9Ğ
p2q,ġ}{

?
Ċ Ñ 0.

(b) }pĞp2q,ġ ´ pĞp3q,ġ}{
?
Ċ Ñ 0, and if ġ ě 1, } 9Ğ

p2q,ġ ´ 9Ğ
p3q,ġ}{

?
Ċ Ñ 0.

(c) }pĞp3q,ġ ´ pĞġ}{
?
Ċ Ñ 0, and if ġ ě 1, } 9Ğ

p3q,ġ ´ 9Ğ
ġ}{

?
Ċ Ñ 0.

Proof of Proposition A.1(a). Similarly to (45), we can sample Ė1 > Np0, 1q, 9ć
1 > Np0, ąĊq, pć1 > Np0, ąĉq

coupled to pă such that

pă ` �
1 < ă ´

pć1
ģJ

}ģ} ´ Ĥp 9ć
1qJ

}Ĥ} , �
1 < ĤģJ

}Ĥ}}ģ}Ė
1 (95)

Note that }�1}op < ĥp
?
Ċq with high probability. Let » denote equality up to additive ĥĊp1q. By Propo-

sition 5.4, for p 9Ą, 9Ξ, 9Ą1 , . . . , 9Ąġq > Np0, 9Σ
p1q
ďġq and p pĄ, pΞ, pĄ0 , . . . , pĄġq > Np0, pΣp1q

ďġq,
1

Ċ
xģ , 9Ğ

p1q,ġy » Ārth�p 9Ąq 9Ąġs < *�p#ġ ` �q, 1

Ċ
xĤ , pĞp1q,ġy » 
9 ĀrĂ�,*�p pĄq pĄġs < Ě�pħġ ` �q,

1

Ċ
xģ , 9Ğy » Ārth�p pĄq pĄs < *�p#� ` �q, 1

Ċ
xĤ , pĞy » 
9 ĀrĂ�,*�p pĄq pĄs < Ě�pħ� ` �q.

Also,

1

Ċ

B
ģ ,ģp1q,ġ ´

ħġ
ħ�

ģ

F
» ħġ ´

ħġ
ħ�

¨ ħ� < 0,
1

Ċ

C
Ĥ , Ĥp1q,ġ´1 ´

#ġ

#�
Ĥ

G
» #ġ ´

#ġ

#�
¨ #� < 0. (96)

Finally 1
Ċ x 9ć,ģy » 1

Ċ xpć, Ĥy » 0. Considering the inner product of (47) with Ĥ shows

0 » 1

Ċ

B
Ĥ ,

1?
Ċ

pă
ˆ
ģp1q,ġ ´

ħġ
ħ�

ģ

˙F
.

We can expand pă using (95). Since ĤJă < 0, 1
Ċ xĤ , pć1y » 0 in probability, and }�1}op < ĥp

?
Ċq,

0 » 1

Ċ

C
Ĥ ,

1?
Ċ

˜
ă ´

pć1
ģJ

}ģ} ´ Ĥp 9ć
1qJ

}Ĥ} ´ �
1
¸ˆ

ģp1q,ġ ´
ħġ
ħ�

ģ

˙G
» }Ĥ}
Ċ3{2

B
9ć

1
,ģp1q,ġ ´

ħġ
ħ�

ģ

F
.

�us,
1

Ċ

B
9ć

1
,ģp1q,ġ ´

ħġ
ħ�

ģ

F
» 0 (97)

in probability for all ġ. An analogous computation shows

1

Ċ

C
pć1
, Ĥp1q,ġ´1 ´

#ġ

#�
Ĥ

G
» 0.

By (95),

1?
Ċ

ppă ´ ăq
ˆ
ģp1q,ġ ´

ħġ
ħ�

ģ

˙
<

pć1

?
Ċ}ģ}

B
ģJ ,ģp1q,ġ ´

ħġ
ħ�

ģ

F
` Ĥ?

Ċ}Ĥ}

B
9ć

1
,ģp1q,ġ ´

ħġ
ħ�

ģ

F

´ 1?
Ċ
�

1
ˆ
ģp1q,ġ ´

ħġ
ħ�

ģ

˙
,
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and this has norm ĥp
?
Ċq by (96), (97). Subtracting (47) and (93) yields

pĞp1q,ġ ´ pĞp2q,ġ < 1?
Ċ

ppă ´ ăq
ˆ
ģp1q,ġ ´

ħġ
ħ�

ģ

˙
` 1?

Ċ
ăpģp1q,ġ ´ ģp2q,ġq ´ *�pĤp1q,ġ´1 ´ Ĥp2q,ġ´1q

< 1?
Ċ
ăpģp1q,ġ ´ ģp2q,ġq ´ *�pĤp1q,ġ´1 ´ Ĥp2q,ġ´1q ` ĥp

?
Ċq,

where ĥp
?
Ċq denotes a vector with this norm. Analogously,

9Ğ
p1q,ġ`1 ´ 9Ğ

p2q,ġ`1 < 1?
Ċ
ă

JpĤp1q,ġ ´ Ĥp2q,ġq ´ Ě�pģp1q,ġ ´ ģp2q,ġq ` ĥp
?
Ċq.

On the high probability event that }ă}op < ċp
?
Ċq, we have

}pĞp1q,ġ ´ pĞp2q,ġ} ď ċp1q}ģp1q,ġ ´ ģp2q,ġ} ` *�}Ĥp1q,ġ´1 ´ Ĥp2q,ġ´1} ` ĥp
?
Ċq,

} 9Ğ
p1q,ġ`1 ´ 9Ğ

p2q,ġ`1} ď ċp1q}Ĥp1q,ġ ´ Ĥp2q,ġ} ` |Ě�|}ģp1q,ġ ´ ģp2q,ġ} ` ĥp
?
Ċq.

�e claim now follows by induction on ġ: }ģp1q,0 ´ ģp2q,0} < }Ĥp1q,´1 ´ Ĥp2q,´1} < 0 by initialization,

and because th� and Ă�,*� are ċp1q-Lipschitz,

}ģp1q,ġ ´ ģp2q,ġ} ď ċp1q} 9Ğ
p1q,ġ ´ 9Ğ

p2q,ġ}, }Ĥp1q,ġ ´ Ĥp2q,ġ} ď ċp1q}pĞp1q,ġ ´ pĞp2q,ġ},
for all ġ ě 1, ġ ě 0 respectively. □

Proof of Proposition A.1(b). Note that � de�ned in (46) w.h.p. satis�es }�}op < ĥp
?
Ċq. We write (94) as

pĞp3q,ġ < 1?
Ċ

răpģp2q,ġ ´ ģq `
ħġ ` �

ħ� ` �
pĞ ´ *�

˜
Ĥp2q,ġ´1 ´

#ġ ` 1tġ ě 1u�
#� ` �

Ĥ

¸

` 1?
Ċ

răpģp3q,ġ ´ ģp2q,ġq ´ *�pĤp3q,ġ´1 ´ Ĥp2q,ġ´1q.

By Proposition A.1(a), ă2p� 9Ğ
p2q,ġ , �

9Ğ
p1q,ġ q < ĥĊp1q. So, Fact 4.20 and Proposition 5.4 imply

1

Ċ
xģ ,ģp2q,ġy » 1

Ċ
xģ ,ģp1q,ġy » ħġ , (98)

1

Ċ
x 9ć,ģp2q,ġy » 1

Ċ
x 9ć,ģp1q,ġy » 1tġ ě 1u*�

?
�p#� ´ #ġqa
#�p#� ` �q

.

By (45),

1?
Ċ

răpģp2q,ġ ´ ģq < 1?
Ċ

˜
ă ´

c
�

ħpģq ` �
¨
pćģJ

}ģ} ´
c

�

#pĤq ` �
¨ Ĥ

9ć
J

}Ĥ} ´ �

¸
pģp2q,ġ ´ ģq

< 1?
Ċ
ăpģp2q,ġ ´ ģq `

?
�pħ� ´ ħġqa
ħ�pħ� ` �q

pć ´ 1tġ ě 1u*�
�p#� ´ #ġq
#�p#� ` �qĤ ` ĥp

?
Ċq.

Since ăģ < 0, we have ăpģp2q,ġ ´ ģq < ăpģp2q,ġ ´ ħġ
ħ�
ģq. Moreover,

#ġ ` 1tġ ě 1u�
#� ` �

´ 1tġ ě 1u
�p#� ´ #ġq
#�p#� ` �q <

#ġ

#�
.

Combining the above and comparing with (93) shows

pĞp3q,ġ < pĞp2q,ġ ` 1?
Ċ

răpģp3q,ġ ´ ģp2q,ġq ´ *�pĤp3q,ġ´1 ´ Ĥp2q,ġ´1q ` ĥp
?
Ċq.
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Similarly,

9Ğ
p3q,ġ`1 < pĞp2q,ġ`1 ` 1?

Ċ
răJpĤp3q,ġ ´ Ĥp2q,ġq ´ Ě�pģp3q,ġ ´ ģp2q,ġq ` ĥp

?
Ċq.

On the high-probability event that }ră}op < ċp
?
Ċq, this implies

}pĞp3q,ġ ´ pĞp2q,ġ} ď ċp1q}ģp3q,ġ ´ ģp2q,ġ} ` *�}Ĥp3q,ġ´1 ´ Ĥp2q,ġ´1} ` ĥp
?
Ċq,

} 9Ğ
p3q,ġ`1 ´ pĞp2q,ġ`1} ď ċp1q}Ĥp3q,ġ ´ Ĥp2q,ġ} ` |Ě�|}ģp3q,ġ ´ ģp2q,ġ} ` ĥp

?
Ċq.

�e result follows by induction on ġ, like above. □

Proof of Proposition A.1(c). By Corollary 4.18, we have

ă?
Ċ

Ě< p1 ` ĥĊp1qqpĞģJ

Ċpħ� ` �q ` p1 ` ĥĊp1qqĤ 9Ğ
J

Ċp#� ` �q ` ĥĊp1qĤģJ

Ċ
`

ră?
Ċ

<
pĞģJ

Ċpħ� ` �q ` Ĥ 9Ğ
J

Ċp#� ` �q `
ră?
Ċ

` ĥĊp1q, (99)

for ră as above and ĥĊp1q a matrix with this operator norm. Since ħpģq » ħ�, #pĤq » #�, and under

9
ģ ,Ĥ
�,Pl

we have a.s. Ğ́ < Ă´1
�,��pħpģqqpĤq, the following terms appearing in (36), (37) satisfy

��pħpģqq » *� , �1
�pħpģqq » ´1, Ě�pģ , Ĥq » Ě�.

Combining the AMP iteration (20) with (37) yields

pĞġ < 1?
Ċ
ăpģġ ´ ģq ` pĞ ` *�pĤ ´ Ĥġ´1q

< 1?
Ċ
ăpģp3q,ġ ´ ģq ` pĞ ´ *�pĤp3q,ġ´1 ´ Ĥq ` 1?

Ċ
ăpģġ ´ ģp3q,ġq ´ *�pĤġ´1 ´ Ĥp3q,ġ´1q.

By PropositionA.1(a)(b),ă2p� 9Ğ
p3q,ġ , �

9Ğ
p1q,ġ q < ĥĊp1q. So, Fact 4.20 and Proposition 5.4 imply 1

Ċ xģ ,ģp3q,ġy »
ħġ (similarly to (98)) and

1

Ċ
x 9Ğ ,ģp3q,ġy » 1

Ċ
x 9Ğ ,ģp1q,ġy » p#ġ ` 1tġ ě 1u�q*�.

Expanding ă using (99) then yields

pĞġ < 1?
Ċ

răpģp3q,ġ ´ ģq `
ħġ ` �

ħ� ` �
pĞ ´ *�

˜
Ĥp3q,ġ´1 ´

#ġ ` �

#� ` �
Ĥ

¸

` 1?
Ċ
ăpģġ ´ ģp3q,ġq ´ *�pĤġ´1 ´ Ĥp3q,ġ´1q ` ĥp

?
Ċq

< pĞp3q,ġ ` 1?
Ċ
ăpģġ ´ ģp3q,ġq ´ *�pĤġ´1 ´ Ĥp3q,ġ´1q ` ĥp

?
Ċq.

Analogously,

9Ğ
ġ`1 < 9Ğ

p3q,ġ`1 ` 1?
Ċ
ăJpĤġ ´ Ĥp3q,ġq ´ Ě�pģġ´1 ´ ģp3q,ġ´1q ` ĥp

?
Ċq.
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So, on the high probability event that }ă}op < ċp
?
Ċq,

}pĞġ ´ pĞp3q,ġ} < ċp1q}ģġ ´ ģp3q,ġ} ` *�}Ĥġ´1 ´ Ĥp3q,ġ´1} ` ĥp
?
Ċq,

} 9Ğ
ġ`1 ´ 9Ğ

p3q,ġ`1} < ċp1q}Ĥġ ´ Ĥp3q,ġ} ` |Ě�|}ģġ ´ ģp3q,ġ} ` ĥp
?
Ċq.

�e result follows by induction on ġ, like above. □

Proof of Proposition 5.5. Immediate from Proposition A.1. □

A.5. Continuity of �rst moment functional term.

Proof of Lemma 7.4. Letÿ denote an absolute constant, whichmay change from line by line. By Lemma 7.3,

log« is p2, 1q-pseudo-Lipschitz. By Cauchy–Schwarz (similarly to the proof of Fact 4.20),
ˇ̌
ˇ̌
ˇĀ log«

#
� ´ ė1Ą̂ ´ Ę1Ċ

ę1

+
´ log«

#
� ´ ė2Ą̂ ´ Ę2Ċ

ę2

+ˇ̌
ˇ̌
ˇ ď ÿ

a
Đ1Đ2 ,

where

Đ1 < Ā

»
–
˜
� ´ ė1Ą̂ ´ Ę1Ċ

ę1
´ � ´ ė2Ą̂ ´ Ę2Ċ

ę2

¸2
fi
fl

ď ÿ

ˆ
maxpė1 , ė2 , Ę1 , Ę2 , ę1 , ę2 , 1qp|ė1 ´ ė2| ` |Ę1 ´ Ę2| ` |ę1 ´ ę2|q

minpę1 , ę2q2
˙2

and

Đ2 < Ā

»
–
˜
� ´ ė1Ą̂ ´ Ę1Ċ

ę1

¸2

`
˜
� ´ ė2Ą̂ ´ Ę2Ċ

ę2

¸2

` 1

fi
fl ď ÿ

ˆ
maxpė1 , ė2 , Ę1 , Ę2 , ę1 , ę2 , 1q

minpę1 , ę2q

˙4

.

□

Appendix B. Verification of numerical conditions for � < 0

In this appendix, we use rigorous interval arithmetic (implemented in the a�ached Python 3 �le using

python-flint) to verify the conditions in �eorem 3.6, other than Condition 1.3, at � < 0. �is proves

�eorem 1.2. We also verify Claim 2.6 using interval arithmetic.

�roughout this section we take � < 0, 
9 < 
9p0q, ħ0 < ħ9p
9 , 0q, and #0 < #9p
9 , 0q. We will use

Claims to denote statements whose proofs require interval arithmetic.

B.1. Numerical estimates of parameters and special functions. By [DS18, §7], the following are

lower and upper bounds for 
9, ħ0, #0:


lb < 0.833078599, ħlb < 0.56394907949, #lb < 2.5763513100,


ub < 0.833078600, ħub < 0.56394908030, #ub < 2.5763513224.

Let �0 < ħ0
1´ħ0 , �lb < ħlb

1´ħlb and �ub < ħub
1´ħub . Note that Condition 3.4 only requires us to exhibit a value of

İ ą ´1 such that �pİq ă 0. In the veri�cation below we will use the value

pİ < ´0.669316.

For ġ P t2, 4u, de�ne
Ħġp#q < Ārthp#1{2Ėqġs, Ĩġp�q < Ārℰp�1{2Ėqġs.
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Note that the �xed-point condition in Condition 3.1 de�ning pħ0 ,#0q implies (for � < 0)

Ħ2p#0q < ħ0 , Ĩ2p�0q < p1 ´ ħ0q#0


9
. (100)

Let

ģpİ,#q < Ārpİ ` ch2p#1{2Ėqq´1s. (101)

Finally, de�ne

ĝpģ, ħ, �q < Ā

#
ℰ1p�1{2Ėq

p1 ´ ħqp1 ´ ℰ1p�1{2Ėqq ` ģℰ1p�1{2Ėq

+
. (102)

We now collect themain estimates in the veri�cationwhose proofs require computer assistance. �e proofs

of these claims are deferred to §B.4, with computer-assisted parts carried out in the a�ached Python �le.

Claim B.1. We have Ħ4p#0q P rĦ4,lb , Ħ4,ubs = r0.4405902310, 0.4405902320s.

Claim B.2. We have Ĩ4p�0q P rĨ4,lb , Ĩ4,ubs = r5.297, 5.317s.

Claim B.3. We have ģppİq ď ģub = 0.9309695, where ģpİq < ģpİ,#0q is de�ned in Condition 3.4.

Claim B.4. We have ĝpģppİq, ħ0 , �0q ě ĝlb = 0.7739.

We conclude this preparatory subsection with a few useful lemmas. First, we reduce several integrals

that will appear below to the functions Ħ2 , Ħ4 , Ĩ2 , Ĩ4.

Lemma B.5. �e following identities hold.

Ēp#q = Ārth1p#1{2
0 Ėq2s < 1 ´ 2Ħ2p#q ` Ħ4p#q, (103)

đ1p�q = Ā

!
ℰ1p�1{2Ėq

)
< Ĩ2p�q

1 ` �
, (104)

đ2p�q = Ā

!
ℰp�1{2Ėq2ℰ1p�1{2Ėq

)
< Ĩ4p�q

1 ` 3�
, (105)

đ3p�q = Ā

!
�1{2Ėℰp�1{2Ėqℰ1p�1{2Ėq

)
< ´ �

1 ` 2�
Ĩ2p�q ` 3�

p1 ` 2�qp1 ` 3�q Ĩ4p�q, (106)

đ4p�q = Ā

!
p�1{2Ėq2ℰ1p�1{2Ėq

)
< ´ �p4�2 ` � ´ 1q

p1 ` �q2p1 ` 2�q Ĩ2p�q ` 6�2

p1 ` �qp1 ` 2�qp1 ` 3�q Ĩ4p�q, (107)

đ5p�q = Ā

!
ℰ1p�1{2Ėq2

)
< �

1 ` 2�
Ĩ2p�q ` 1 ´ �

p1 ` 2�qp1 ` 3�q Ĩ4p�q. (108)

Proof. Equation (103) follows directly from the identity

th1pĮq2 < p1 ´ th2pĮqq2 < 1 ´ 2th2pĮq ` th4pĮq.
For the remaining parts, we apply the identity ℰ1pĮq < ℰpĮqpℰpĮq ´ Įq (Lemma 4.21(b)) and integrate by

parts. First,

đ1p�q < Ā

!
ℰp�1{2Ėq2

)
´ Ā

!
ℰp�1{2Ėq�1{2Ė

)

< Ā

!
ℰp�1{2Ėq2

)
´ �Ā

!
ℰ1p�1{2Ėq

)
< Ĩ2p�q ´ �đ1p�q,

which proves (104). Similarly,

đ2p�q < Ā

!
ℰp�1{2Ėq4

)
´ Ā

!
ℰp�1{2Ėq3�1{2Ė

)
< Ĩ4p�q ´ 3�đ2p�q,
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which proves (105). �en,

đ3p�q < Ā

!
�1{2Ėℰp�1{2Ėq3

)
´ Ā

!
p�1{2Ėq2ℰp�1{2Ėq2

)

< 3�Ā

!
ℰp�1{2Ėq2ℰ1p�1{2Ėq

)
´ �Ā

!
ℰp�1{2Ėq2

)
´ 2�Ā

!
p�1{2Ėqℰp�1{2Ėqℰ1p�1{2Ėq

)

< 3�đ2p�q ´ �Ĩ2p�q ´ 2�đ3p�q.
Rearranging proves (106). Further,

đ4p�q < Ā

!
p�1{2Ėq2ℰp�1{2Ėq2

)
´ Ā

!
p�1{2Ėq3ℰp�1{2Ėq

)

< �Ā

!
ℰp�1{2Ėq2

)
` 2�Ā

!
p�1{2Ėqℰp�1{2Ėqℰ1p�1{2Ėq

)

´ 2�Ā

!
p�1{2Ėqℰp�1{2Ėq

)
´ �Ā

!
p�1{2Ėq2ℰ1p�1{2Ėq

)
.

Integrating by parts again yields

Ā

!
p�1{2Ėqℰp�1{2Ėq

)
< �Ā

!
ℰ1p�1{2Ėq

)
< �đ1p�q.

So

đ4p�q < �Ĩ2p�q ` 2�đ3p�q ´ 2�2
đ1p�q ´ �đ4p�q.

Rearranging proves (107). Finally,

đ5p�q < Ā

!
ℰp�1{2Ėq4

)
´ 2Ā

!
p�1{2Ėqℰp�1{2Ėq3

)
` Ā

!
p�1{2Ėq2ℰp�1{2Ėq2

)

< Ā

!
ℰp�1{2Ėq4

)
´ 6�Ā

!
ℰp�1{2Ėq2ℰ1p�1{2Ėq

)
` �Ā

!
ℰp�1{2Ėq2

)

` 2�Ā

!
p�1{2Ėqℰp�1{2Ėqℰ1p�1{2Ėq

)

< Ĩ4p�q ´ 6�đ2p�q ` �Ĩ2p�q ` 2�đ3p�q.
Rearranging proves (108). □

Recall from Condition 3.4 that Ě0 < 
9 ĀrĂ1
1´ħ0pħ

1{2
0 Ėqs. As a consequence of (100) and (104), we have

Ě0 < ´ 
9
1 ´ ħ0

đ1p�0q < ´ 
9
1 ´ ħ0

¨ Ĩ2p�0q
1 ` �0

< ´p1 ´ ħ0q#0 , (109)

where we have used that p1 ´ ħ0qp1 ` �0q < 1.

Lemma B.6. �e functions Ħ4 and Ĩ4 are increasing. Moreover, for any İ ą ´1, and ģ de�ned in (101), the

function # ÞÑ ģpİ,#q is decreasing.

Proof. �e function Ħ4 is increasing simply because the maps # ÞÑ thp#1{2Įq4 are pointwise increasing
for all Į P ℝ. Similarly, since the maps # ÞÑ pİ ` ch2p#1{2Įqq´1 are pointwise increasing for all Į P ℝ,

İ ą ´1, the function # ÞÑ ģpİ,#q is decreasing. Finally,

Ĩ1
4p�q < Ā

!
6ℰp�1{2Ėq2ℰ1p�1{2Ėq2 ` 2ℰp�1{2Ėq3ℰ2p�1{2Ėq

)
ě 0,

as Lemma 4.21(c) implies ℰ2 ą 0. �us Ĩ4 is increasing. □
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B.2. Veri�cation of numerical conditions in�eorem 3.6. Condition 3.1 was proved in [DS18, Propo-

sition 1.3] (recorded as Proposition 3.2). We now verify Conditions 3.3 and 3.4 by proving the following.

Claim B.7. Condition 3.3 holds for � < 0, with 
9 Ārth1p#1{2
0 Ėq2sĀrĂ1

1´ħ0pħ
1{2
0 Ėq2s ď ėub = 0.5446.

Proof. We calculate:


9 Ārth1p#1{2
0 Ėq2sĀrĂ1

1´ħ0pħ
1{2
0 Ėq2s < 
9

p1 ´ ħ0q2
Ēp#0qđ5p�0q

Ĉěģ. þ.5< 
9
p1 ´ ħ0q2

p1 ´ 2Ħ2p#q ` Ħ4p#qq
ˆ

�0

1 ` 2�0
Ĩ2p�0q ` 1 ´ �0

p1 ` 2�0qp1 ` 3�0q
Ĩ4p�0q

˙

(100)< 
9
p1 ´ ħ0q2

p1 ´ 2ħ0 ` Ħ4p#qq
ˆ

�0

1 ` 2�0
¨ p1 ´ ħ0q#0


9
` 1 ´ �0

p1 ` 2�0qp1 ` 3�0q
Ĩ4p�0q

˙

< p1 ´ 2ħ0 ` Ħ4p#qq
ˆ

�0#0

1 ` ħ0
` 
9p1 ´ �0q

p1 ` ħ0qp1 ` 2ħ0q
Ĩ4p�0q

˙

ď p1 ´ 2ħlb ` Ħ4,ubq
ˆ
�ub#ub

1 ` ħlb
` 
lbp1 ´ �lbq

p1 ` ħubqp1 ` 2ħubq Ĩ4,lb
˙ p˚q

ď ėub.

�e estimate p˚q is veri�ed in the a�ached Python �le. We note that this is a simple arithmetic comparison,

as all terms are explicitly de�ned decimal numbers. □

Claim B.8. Condition 3.4 holds for � < 0, with �ppİq ď �ub = ´0.1906.

Proof. Note that for ĝ de�ned in (102),

�ppİq < pİ ´ 
9ĝpģppİq, ħ0 , �0q ´ Ě0
(109)< pİ ´ 
9ĝpģppİq, ħ0 , �0q ` p1 ´ ħ0q#0

ď pİ ´ 
lbĝlb ` p1 ´ ħlbq#ub

p˚q
ď �ub.

�e step p˚q is veri�ed in the a�ached Python �le, and is a simple arithmetic comparison of explicitly

de�ned decimal numbers. □

Proof of �eorem 1.2. Follows from �eorem 3.6, Proposition 3.2, and Claims B.7 and B.8. □

B.3. Local maximality of �rst moment functional at p1, 0q. We next verify Claim 2.6.

Lemma B.9. For � < 0, we have

x∇2
ÿ9p1, 0q, pī1 , ī2qb2y < ´Ārp1 ´ ĉ2qpī1 9Ą ` ī2ĉq2s ` ÿ1Ārp1 ´ ĉ2qpī1 9Ą ` ī2ĉq 9Ąs2

` ÿ2Ārp1 ´ ĉ2qpī1 9Ą ` ī2ĉqĉsĀrp1 ´ ĉ2qpī1 9Ą ` ī2ĉq 9Ąs
` ÿ3Ārp1 ´ ĉ2qpī1 9Ą ` ī2ĉqĉs2 ,

where

ÿ1 < 
9
#2
0

Ā

!
Ă1
1´ħ0pĄ̂qĊ 2

)
, ÿ2 < 2
9

#0
Ā

"
Ă1
1´ħ0pĄ̂q

ˆ
1

ħ0p1 ´ ħ0q
Ą̂ ` Ċ

˙
Ċ

*
` 2

1 ´ ħ0
,

ÿ3 < 
9 Ā

#
Ă1
1´ħ0pĄ̂q

ˆ
1

ħ0p1 ´ ħ0q
Ą̂ ` Ċ

˙2
+

` #0

ħ0
.

Proof. Analogously to the proof of Lemma 2.5(c), de�ne �2 < pī1B�1 ` ī2B�2q2�. Also abbreviate

Ē <
� ´ Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

b
1 ´ Ārĉ�s2

ħ0

`
a
1 ´ ħ0Ċ .
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We di�erentiate (87) to obtain

xÿ9p�1 ,�2q, pī1 , ī2qb2y < ´Ārpī1 9Ą ` ī2ĉq�s

´ 
9 Ā

$
’&
’%
ℰ1pĒ q

¨
˚̋´Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

b
1 ´ Ārĉ�s2

ħ0

`
� ´ Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

´
1 ´ Ārĉ�s2

ħ0

¯3{2 ¨ Ārĉ�sĀrĉ�s
ħ0

˛
‹‚

2,/.
/-

´ 
9 Ā

#
ℰpĒ q

˜´ 2Ārĉ�s
ħ0

Ą̂ ´ 2Ār 9Ą�s
#0

Ċ

´
1 ´ Ārĉ�s2

ħ0

¯3{2 ¨ Ārĉ�sĀrĉ�s
ħ0

`
� ´ Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

´
1 ´ Ārĉ�s2

ħ0

¯5{2 ¨ 3Ārĉ�s2Ārĉ�s2
ħ20

`
� ´ Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ

´
1 ´ Ārĉ�s2

ħ0

¯3{2 ¨ Ārĉ�s2
ħ0

¸+
` Ĝ p�2q,

where Ĝ p�2q is (87) with � replaced by �2. We now specialize to p�1 ,�2q < p1, 0q. As argued in the proof

of Lemma 2.5(c), at p�1 ,�2q < p1, 0q we have Ĝ p�2q < 0. So,

xÿ9p1, 0q, pī1 , ī2qb2y < ´Ārpī1 9Ą ` ī2ĉq�s

` 
9 Ā

$
&
%Ă

1
1´ħ0pĄ̂q

˜
´Ārĉ�s

ħ0
Ą̂ ´ Ār 9Ą�s

#0
Ċ ` � ´ Ą̂ ´ p1 ´ ħ0qĊ

1 ´ ħ0
¨ Ārĉ�s

¸2
,
.
-

´ 
9 Ā

#
Ă1´ħ0pĄ̂q

˜´ 2Ārĉ�s
ħ0

Ą̂ ´ 2Ār 9Ą�s
#0

Ċ

1 ´ ħ0
¨ Ārĉ�s

` � ´ Ą̂ ´ p1 ´ ħ0qĊ
p1 ´ ħ0q2

¨ 3Ārĉ�s2 ` � ´ Ą̂ ´ p1 ´ ħ0qĊ
1 ´ ħ0

¨ Ārĉ�s2
ħ0

¸+
.

Specializing further to � < 0 (which was not used up to here),

xÿ9p1, 0q, pī1 , ī2qb2y

< ´Ārpī1 9Ą ` ī2ĉq�s ` 
9 Ā

#
Ă1
1´ħ0pĄ̂q

ˆˆ
1

ħ0p1 ´ ħ0q
Ą̂ ` Ċ

˙
Ārĉ�s ` Ċ

#0
Ār 9Ą�s

˙2
+

` 
9 Ā

"
Ċ

ˆˆ
3

ħ0p1 ´ ħ0q2
Ą̂ ` 1 ` 2ħ0

ħ0p1 ´ ħ0q
Ċ

˙
Ārĉ�s2 ` 2

#0p1 ´ ħ0q
Ċ Ārĉ�sĀr 9Ą�s

˙*

Finally, as 
9 ĀrĊĄ̂s < ħ0Ě0 < ´ħ0p1 ´ ħ0q#0 (by (109)) and 
9 ĀrĊ 2s < #0, the last term simpli�es to

#0

ħ0
Ārĉ�s2 ` 2

1 ´ ħ0
Ārĉ�sĀr 9Ą�s.

Expanding � < p1 ´ ĉ2qpī1 9Ą ` ī2ĉq concludes the proof. □

Claim B.10. �e following estimates hold.

(a) ÿ1 P rÿ1,lb , ÿ1,ubs = r´0.7193,´0.7165s.
(b) ÿ2 P rÿ2,lb , ÿ2,ubs = r5.0439, 5.0568s.
(c) ÿ3 P rÿ3,lb , ÿ3,ubs = r1.1345, 1.1526s.
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Proof. We compute using Lemma B.5 and (100):

ÿ1 < 
9
#2
0

¨ ´đ2p�0q
p1 ´ ħ0q2

< ´ 
9Ĩ4p�0q
#2
0p1 ´ ħ0q2p1 ` 3�0q

< ´ 
9Ĩ4p�0q
#2
0p1 ´ ħ0qp1 ` 2ħ0q

,

ÿ2 < 2
9
#0p1 ´ ħ0q2

ˆ
´đ2p�0q ` đ3p�0q

ħ0

˙
` 2

1 ´ ħ0

< 2
9
#0p1 ´ ħ0q2

ˆp2 ´ ħ0qp1 ´ ħ0qĨ4p�0q
p1 ` ħ0qp1 ` 2ħ0q

´ Ĩ2p�0q
1 ` ħ0

˙
` 2

1 ´ ħ0
< 2p2 ´ ħ0q
9Ĩ4p�0q

#0p1 ´ ħ20qp1 ` 2ħ0q
` 2ħ0

1 ´ ħ20
,

ÿ3 < ´ 
9
p1 ´ ħ0q2

˜
đ2p�0q ´ 2đ3p�0q

ħ0
` đ4p�0q

ħ20

¸
` #0

ħ0

< ´ 
9
p1 ´ ħ0q2

ˆ
1 ´ ħ0

1 ` 2ħ0
Ĩ4p�0q ´ 2ħ0 ´ 1

ħ0
Ĩ2p�0q

˙
` #0

ħ0
< ´ 
9Ĩ4p�0q

p1 ´ ħ0qp1 ` 2ħ0q
` #0

1 ´ ħ0
.

So

ÿ1,lb

p˚q
ď ´ 
ubĨ4,ub

#2
lb

p1 ´ ħubqp1 ` 2ħlbq
ď ÿ1 ď ´ 
lbĨ4,lb

#2
ub

p1 ´ ħlbqp1 ` 2ħubq
p˚q
ď ÿ1,ub ,

ÿ2,lb

p˚q
ď 2p2 ´ ħubq
lbĨ4,lb

#ubp1 ´ ħ2
lb

qp1 ` 2ħubq
` 2ħlb

1 ´ ħ2
lb

ď ÿ2 ď 2p2 ´ ħlbq
ubĨ4,ub

#lbp1 ´ ħ2
ub

qp1 ` 2ħlbq
` 2ħub

1 ´ ħ2
ub

p˚q
ď ÿ2,ub ,

ÿ3,lb

p˚q
ď ´ 
ubĨ4,ub

p1 ´ ħubqp1 ` 2ħlbq ` #lb

1 ´ ħlb
ď ÿ3 ď ´ 
lbĨ4,lb

p1 ´ ħlbqp1 ` 2ħubq ` #ub

1 ´ ħub

p˚q
ď ÿ3,ub.

�e steps marked p˚q are veri�ed in the a�ached Python �le, and are simple arithmetic comparisons of

explicitly de�ned decimal numbers. □

Claim B.11. De�ne ą1 < Ārp1 ´ ĉ2q 9Ą
2s, ą2 < Ārp1 ´ ĉ2q 9Ąĉs, ą3 < Ārp1 ´ ĉ2qĉ2s. �en,

(a) ą1 P rą1,lb , ą1,ubs = r0.24759912, 0.24759923s.
(b) ą2 P rą2,lb , ą2,ubs = r0.16997315, 0.16997318s.
(c) ą3 P rą3,lb , ą3,ubs = r0.12335884, 0.12335885s.

Proof. By repeated integration by parts and (100):

ą1 < #0p1 ´ ħ0q ´ 2#2
0p1 ´ 4ħ0 ` 3Ħ4p#0qq, ą2 < #0p1 ´ 4ħ0 ` 3Ħ4p#0qq, ą3 < ħ0 ´ Ħ4p#0q.

�us

ą1,lb
p˚q
ď #lbp1 ´ ħubq ´ 2#2

ubp1 ´ 4ħlb ` 3Ħ4,ubq ď ą1 ď #ubp1 ´ ħlbq ´ 2#2
lbp1 ´ 4ħub ` 3Ħ4,lbq

p˚q
ď ą1,ub ,

ą2,lb
p˚q
ď #lbp1 ´ 4ħub ` 3Ħ4,lbq ď ą2 ď #ubp1 ´ 4ħlb ` 3Ħ4,ubq

p˚q
ď ą2,ub ,

ą3,lb
p˚q
ď ħlb ´ Ħ4,ub ď ą3 ď ħub ´ Ħ4,lb

p˚q
ď ą3,ub.

�e steps marked p˚q are veri�ed in the a�ached Python �le, and are simple arithmetic comparisons of

explicitly de�ned decimal numbers. □

Claim B.12. Let ĉ < ∇2
ÿ9p1, 0q. �e following estimates hold.

(a) ĉ1,1 ď ĉ1,1,ub = ´0.045408.

(b) ĉ2,2 ď ĉ2,2,ub = ´0.020490.

(c) ĉ1,2 P rĉ1,2,lb , ĉ1,2,ubs = r´0.025685,´0.026567s.
(d) detpĉq ě ĉdet,lb = 0.0002246.
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Proof. By Lemma B.9,

ĉ1,1 < ´ą1 ` ÿ1ą
2
1 ` ÿ2ą1ą2 ` ÿ3ą

2
2 ,

ĉ1,2 < ´ą2 ` ÿ1ą1ą2 ` 1

2
ÿ2pą22 ` ą1ą3q ` ÿ3ą2ą3 ,

ĉ2,2 < ´ą3 ` ÿ1ą
2
2 ` ÿ2ą2ą3 ` ÿ3ą

2
3 .

Estimating with Claims B.10 and B.11, we �nd

ĉ1,1 ď ´ą1,lb ` ÿ1,ubą
2
1,lb ` ÿ2,ubą1,ubą2,ub ` ÿ3,ubą

2
2,ub

p˚q
ď ĉ1,1,ub ,

ĉ2,2 ď ´ą3,lb ` ÿ1,ubą
2
2,lb ` ÿ2,ubą2,ubą3,ub ` ÿ3,ubą

2
3,ub

p˚q
ď ĉ2,2,ub ,

ĉ1,2 ď ´ą2,lb ` ÿ1,ubą1,lbą2,lb ` 1

2
ÿ2,ubpą22,ub ` ą1,ubą3,ubq ` ÿ3,ubą2,ubą3,ub

p˚q
ď ĉ1,2,ub ,

ĉ1,2 ě ´ą2,ub ` ÿ1,lbą1,ubą2,ub ` 1

2
ÿ2,lbpą22,lb ` ą1,lbą3,lbq ` ÿ3,lbą2,lbą3,lb

p˚q
ě ĉ1,2,lb.

�e steps marked p˚q are veri�ed in the a�ached Python �le, and are simple arithmetic comparisons of

explicitly de�ned decimal numbers. �is proves parts (a), (b), and (c). Finally,

detpĉq < ĉ1,1ĉ2,2 ´ ĉ2
1,2 ě ĉ1,1,ubĉ2,2,ub ´ ĉ2

1,2,lb

p˚q
ě ĉdet,lb ,

where the step p˚q is veri�ed in the a�ached Python �le. �is proves part (d). □

Proof of Claim 2.6. Follows from Claim B.12, which implies ĉ1,1 , ĉ2,2 ă 0 and detpĉq ą 0. □

B.4. Interval arithmetic estimates. We now describe the computer-assisted proofs of Claims B.1, B.2,

B.3, and B.4. We begin with the more straightforward Claims B.1 and B.3.

Proof of Claim B.1. We �rst show the upper bound. Set Ĉ < 10. Since th4 takes values in r0, 1s,

Ħ4p#0q
Ĉěģ. þ.6

ď Ħ4p#ubq ď Ārth4p#1{2
ub
Ėq1t|Ė| ď Ĉus ` 9r|Ė| ě Ĉs

ď
ż Ĉ

´Ĉ
th4p#1{2

ub
Įq!pĮq dĮ ` 2ě´Ĉ2{2 p˚q

ď Ħ4,ub ,

where the step p˚q is veri�ed in the a�ached Python �le. Similarly,

Ħ4p#0q
Ĉěģ. þ.6

ě Ħ4p#lbq ě Ārth4p#1{2
lb
Ėq1t|Ė| ď Ĉus <

ż Ĉ

´Ĉ
th4p#1{2

lb
Įq!pĮq dĮ

p˚q
ě Ħ4,lb ,

where the step p˚q is veri�ed in the a�ached Python �le. □

Proof of Claim B.3. Let Ĉ < 10. Note that for any Į P ℝ, ppİ ` ch2pĮqq´1 ď p1 ` pİq´1. �en,

ģppİq < ģppİ,#0q
Ĉěģ. þ.6

ď ģppİ,#lbq ď Ārppİ ` ch2p#1{2
lb
Ėqq´11t|Ė| ď Ĉus ` p1 ` pİq´1

9r|Ė| ě Ĉs

ď
ż Ĉ

´Ĉ
ppİ ` ch2p#1{2

lb
Įqq´1!pĮq dĮ ` 2p1 ` pİq´1ě´Ĉ2{2 p˚q

ď ģub ,

where the step p˚q is veri�ed in the a�ached Python �le. □

Claims B.2 and B.4 will involve integrating functions that involve ℰ against the gaussian measure. �is

is more challenging because ℰ is itself de�ned in terms of an integral, which makes these claims less

amenable to numerical integration. We take a cruder approach of discretizing these integrals into small

intervals, and bounding the integral on each small interval using monotonicity properties of ℰ and ℰ1.
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Proof of Claim B.2. Let Ĉ < 8, � < 10´3, and Ć < Ĉ{�. For integer Ġ P r´Ć , Ćs, let Į Ġ < Ġ�. �en,

Ĩ4p�0q
Ĉěģ. þ.6

ď Ĩ4p�ubq <
Ć´1ÿ

Ġ<´Ć
Ā

!
ℰp�1{2

ub
Ėq41tĖ P rĮ Ġ , Į Ġ`1su

)
` Ā

!
ℰp�1{2

ub
Ėq41t|Ė| ě Ĉu

)
.

�ese terms can be bounded as follows. Since ℰ is nonnegative and increasing (by Lemma 4.21(a)(b)),

Ā

!
ℰp�1{2

ub
Ėq41tĖ P rĮ Ġ , Į Ġ`1su

)
ď ℰp�1{2

ub
Į Ġ`1q4 9rĖ P rĮ Ġ , Į Ġ`1ss,

and this probability is bounded above by �!pĮ Ġ`1q if Ġ ď ´1 and �!pĮ Ġq if Ġ ě 0. We estimate the tail

term using Cauchy–Schwarz:

Ā

!
ℰp�1{2

ub
Ėq41t|Ė| ě Ĉu

)
ď Ā

!
ℰp�1{2

ub
Ėq8

)1{2
9r|Ė| ě Ĉs1{2.

�e probability is bounded by 2ě´Ĉ2{2. For the remaining expectation, recall from Lemma 4.21(a) that

0 ď ℰpĮq ď |Į| ` 1. So,

Ā

!
ℰp�1{2

ub
Ėq8

)
ď Ā

!
p1 ` �

1{2
ub

|Ė|q8
)

ď 27Ā
 
1 ` �4

ubĖ
8
(

< 27p1 ` 105�2
ubq.

Combining these estimates yields

Ā

!
ℰp�1{2

ub
Ėq41t|Ė| ě Ĉu

)
ď 24p1 ` 105�2

ubq1{2ě´Ĉ2{4 ď 24p1 ` 11�ubqě´Ĉ2{4.

All in all,

Ĩ4p�0q ď �
´1ÿ

Ġ<´Ć
ℰp�1{2

ub
Į Ġ`1q4!pĮ Ġ`1q ` �

Ć´1ÿ

Ġ<0

ℰp�1{2
ub
Į Ġ`1q4!pĮ Ġq ` 24p1 ` 11�ubqě´Ĉ2{4 p˚q

ď Ĩ4,ub ,

where the step p˚q is veri�ed in the a�ached Python �le. (See Remark B.13 below for how the function ℰ

is evaluated numerically). For the lower bound, we similarly have

Ĩ4p�0q
Ĉěģ. þ.6

ě Ĩ4p�lbq <
Ć´1ÿ

Ġ<´Ć
Ā

!
ℰp�1{2

lb
Ėq41tĖ P rĮ Ġ , Į Ġ`1su

)

ě �
´1ÿ

Ġ<´Ć
ℰp�1{2

lb
Į Ġq4!pĮ Ġq ` �

Ć´1ÿ

Ġ<0

ℰp�1{2
lb
Į Ġq4!pĮ Ġ`1q

p˚q
ě Ĩ4,lb ,

where the step p˚q is veri�ed in the a�ached Python �le. □

Remark B.13. �e above computer-assisted proof requires evaluating the function ℰpĮq < !pĮq{«pĮq,
where«pĮq < 9rĖ ě Įs is itself an integral. We evaluate this as follows. Note that the inputs Į on which

we numerically evaluate ℰ are bounded above by �
1{2
ub
Ĉ ď 10. De�ne Ĉ` < 12. We estimate

ℰpĮq´1 <
ż Ĉ`

Į

!pįq
!pĮq dį ` 9rĖ ě Ĉ`s

!pĮq ď
ż Ĉ`

Į
ě´pį2´Į2q{2 dį ` ě´pĈ2`´Į2q{2

?
2�

and

ℰpĮq´1 ě
ż Ĉ`

Į

!pįq
!pĮq dį <

ż Ĉ`

Į
ě´pį2´Į2q{2 dį.

�e remaining integral can be rigorously bounded by numerical integration, and for Į ď 10 the term

ě´pĈ2`´Į2q{2{
?
2� will contribute an error that is multiplicatively small.



76 BRICE HUANG

Finally, we turn to Claim B.4. By Lemma 4.21(b), ℰ1 takes values in p0, 1q. �us the function ĝ de�ned

in (102) is decreasing in ģ and increasing in ħ, and

ĝpģppİq, ħ0 , �0q ě ĝpģub , ħlb , �0q. (110)

However, ĝ is not clearly monotone in �, so we instead control the derivative of ĝ in �.

Lemma B.14. Let rĝp�q < ĝpģub , ħlb , �q. �en, for all � ě 0, |rĝ1p�q| ď 20.

Proof. We write rĝp�q < Ārpĝp�1{2Ėqs, where

pĝpĮq < ℰ1pĮq
p1 ´ ħlbqp1 ´ ℰ1pĮqq ` ģubℰ1pĮq . (111)

A straightforward calculation shows that

pĝ2pĮq < p1 ´ ħlbqℰp3qpĮq
pp1 ´ ħlbqp1 ´ ℰ1pĮqq ` ģubℰ1pĮqq2 ´ 2p1 ´ ħlbqpģub ` ħlb ´ 1qℰ2pĮq2

ppp1 ´ ħlbqp1 ´ ℰ1pĮqq ` ģubℰ1pĮqq2q3 .

Since ℰ1pĮq P p0, 1q by Lemma 4.21(b),

p1 ´ ħlbqp1 ´ ℰ1pĮqq ` ģubℰ
1pĮq ě minp1 ´ ħlb , ģubq < 1 ´ ħlb.

Lemma 4.21(c)(d) yields |ℰ2pĮq| ď 1, |ℰp3qpĮq| ď 13. �us

|pĝ2pĮq| ď 13

1 ´ ħlb
` 2pģub ` ħlb ´ 1q

p1 ´ ħlbq2 ď 40,

where the �nal estimate follows from the simple bounds ħlb ď 3{5,ģub ď 1. Finally, a gaussian integration

by parts calculation yields

rĝ1p�q < 1

2
Ārpĝ2p�1{2Ėqs,

which implies the result. □

Proof of Claim B.4. In light of (110) and Lemma B.14, we will estimate

ĝpģppİq, ħ0 , �0q ě ĝpģub , ħlb , �lbq ´ 20|�ub ´ �lb|.
We will estimate ĝpģub , ħlb , �lbq by discretization, like in the proof of CLaim B.2. Let Ĉ < 8, � < 10´3,

and Ć < Ĉ{�. For integer Ġ P r´Ć , Ćs, let Į Ġ < Ġ�.

Note that pĝpĮq de�ned in (111) takes positive values, and is an increasing function of ℰ1pĮq. Moreover,

by Lemma 4.21(c), ℰ1pĮq is an increasing function of Į. �us pĝpĮq is an increasing function of Į. Hence,

ĝpģub , ħlb , �lbq < Ārpĝp�1{2
lb
Ėqs ě

Ć´1ÿ

Ġ<´Ć
Ārpĝp�1{2

lb
Ėq1tĖ P rĮ Ġ , Į Ġ`1sus

ě �
´1ÿ

Ġ<´Ć
pĝp�1{2

lb
Į Ġq!pĮ Ġq ` �

Ć´1ÿ

Ġ<0

pĝp�1{2
lb
Į Ġq!pĮ Ġ`1q.

Combining the above,

ĝpģppİq, ħ0 , �0q ě �
´1ÿ

Ġ<´Ć
pĝp�1{2

lb
Į Ġq!pĮ Ġq ` �

Ć´1ÿ

Ġ<0

pĝp�1{2
lb
Į Ġq!pĮ Ġ`1q ´ 20|�ub ´ �lb|

p˚q
ě ĝlb ,

where the step p˚q is veri�ed in the a�ached Python �le. We numerically evaluate pĝ using the identity

ℰ1pĮq < ℰpĮqpℰpĮq ´ Įq (Lemma 4.21(b)), evaluating ℰ as in Remark B.13. □
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