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CAPACITY THRESHOLD FOR THE ISING PERCEPTRON

BRICE HUANG

ABSTRACT. We show that the capacity of the Ising perceptron is with high probability upper bounded by the
constant a, ~ 0.833 conjectured by Krauth and Mézard, under the condition that an explicit two-variable
function &4 (A1, A2) is maximized at (1,0). The earlier work of Ding and Sun [DS18] proves the matching
lower bound subject to a similar numerical condition, and together these results give a conditional proof of
the conjecture of Krauth and Mézard.
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1. INTRODUCTION

The Ising perceptron was introduced in [Wen62, Cov65] as a simple model of a neural network. Math-
ematically, it is an intersection of a high-dimensional discrete cube with random half-spaces, defined as
follows. Fix any x € R (our main result is for k = 0). For N > 1,let Ly = {£1}"¥, and let g', g%, ... be a
sequence of i.i.d. samples from N (0, Iy ). For M > 1, the Ising perceptron is the random set

(g" %)
VN

As explained in [Gar87], S%I models the set of configurations of synaptic weights in a single-layer neural

S%—{erN: > K V1<a<M}. (1)

network that memorize all M patterns gl, el gM . Define the random variable My = My(k) as the
largest M such that S% # . Then, the capacity of this model is defined as the ratio My /N, and models
the maximum number of patterns this network can memorize per synapse.

Krauth and Mézard [KM89] analyzed this model using the (non-rigorous) replica method from statis-
tical physics. They conjectured that as N — o0, the capacity concentrates around an explicit constant
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®x = a,(x), which is approximately 0.833 for ¥ = 0 and is formally defined in Proposition 3.2 below.’
This was part of a series of works in the statistical physics literature [Gar87, GD88, Gar88, KM89, Méz89]
which analyzed various perceptron models using the replica or cavity methods and put forward detailed
predictions for their behavior. In particular, [KM89] provided a conjecture for the limiting capacity of the
Ising perceptron, while [GD88] gave an analogous conjecture for the spherical perceptron, where the spins
x belong to the sphere {x € RN : |x| = v/N} instead of L.

Ding and Sun [DS18] proved that «., is a rigorous lower bound for the capacity, subject to a numerical
condition that an explicit univariate function is maximized at 0.

Theorem 1.1. [DS18, Theorem 1.1] Under Condition 1.2 therein, the following holds for the k = 0 Ising
perceptron. For any a < a,, liminfn_,o, P(My/N = a) > 0.

Furthermore, [Xu21, NS23] showed that the capacity has a sharp threshold sequence, thereby improving
the positive probability guarantee of Theorem 1.1 to high probability. Our main result is a matching upper
bound for the capacity, subject to a similar numerical condition.

Theorem 1.2. Under Condition 1.3 below, the following holds for the k = 0 Ising perceptron. For any a > a,,

Condition 1.3. The function &, (A1, A;) defined in (8) satisfies &x (A1, Az) < 0forall Ay, A, € R.

See §2.6 for a discussion of this condition. In particular §,(1,0) = 0 is a local maximum, and numerical
plots suggest it is the unique global maximum.

Theorem 1.2 is a consequence of the more general Theorem 3.6, which states that a. (k) upper bounds
the capacity for general x, under a number of numerical conditions depending on k. The most complicated
of these is Condition 1.3, and we derive Theorem 1.2 by verifying the remaining conditions when x = 0.
This computer-assisted verification is described in Appendix B and carried out in the attached Python 3
file using python-flint, a rigorous library for interval arithmetic.

1.1. Related work. For the spherical perceptron, the capacity threshold of [GD88] has been proved rig-
orously for all k > 0 [ST03, Sto13a]. (See also [Sto13b] for some work on the k¥ < 0 case.) These works
exploit the fact that the spherical perceptron with ¥ > 0 is a convex optimization problem. The Ising
perceptron does not have this property, and our understanding of it is comparatively less complete. The
replica heuristic also gives a prediction for the free energy of a positive-temperature version of this model
[GD88, KM89], which was verified by [Tal00] at sufficiently high temperature using a rigorous version of
the cavity method. The works [KR98, Tal99] showed that for the ¥ = 0 perceptron, there exists € > 0 such
that ¢ < My/N < 1 — & with high probability. The breakthrough work of Ding and Sun [DS18] showed
that a. lower bounds the capacity for the ¥ = 0 perceptron, conditional on a numerical assumption. Very
recently, [AT24] showed that 0.847 is a rigorous upper bound for the capacity in this model. Recent works
have also shown the replica-symmetric formula for the free energy at low constraint density in generalized
perceptron models [BNSX22], existence of a sharp threshold sequence [Xu21, NS23], and universality in
the disorder [NS23]. We also mention the works [AS22, MZZ24] on algorithms for the negative spherical
perceptron.

Another recent line of work originating with [APZ19] studied the symmetric binary perceptron,
where the constraints in (1) are replaced by (g%, x)|/v/N < k. Symmetry makes this model significantly
more tractable (see §2.1 for more discussion); a series of remarkable works have established the limiting

1[KM89] studied a model with Bernoulli disorder, i.e. where the g} areiid. samples from unif(£1) rather than N'(0, 1). As
[NS23] shows this model’s sharp threshold sequence is universal with respect to any subgaussian disorder, we may work with
gaussian disorder for convenience.
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capacity [PX21, ALS22b], “frozen 1-RSB” structure [PX21], lognormal limit of partition function [ALS22b],
and critical window [Alt23, SS23], and shed light on the performance of algorithms [ALS22a, GKPX22,
GKPX23, BAKZ23].

1.2. Notation. While we introduce other parameters over the course of the proof, unless stated otherwise
we send N — oo first, treating the remaining parameters as small or large constants. Thus, we use on(1)
to denote a quantity vanishing with N, while notations like 0,(1) denote quantities independent of N
tending to zero as the subscripted parameter tends to 0 or co (which will be clear from context). We say
an event occurs with high probability if it occurs with probability 1 — on(1). Further notations will be
introduced in §4.1, before the main body of proofs.

Acknowledgements. I would like to thank Mehtaab Sawhney for pointing me to the reference [GZ00],
and Will Perkins, Mehtaab Sawhney, Mark Sellke, and Nike Sun for helpful feedback on the manuscript. I
am also grateful to Andrea Montanari and Huy Tuan Pham for a collaboration that inspired parts of this
work. Thanks to Saba Lepsveridze for a helpful and motivating conversation. This work was supported by
a Google PhD Fellowship, NSF CAREER grant DMS-1940092, and the Solomon Buchsbaum Research Fund
at MIT.

2. FURTHER BACKGROUND AND PROOF OUTLINE

This section contains a technical overview of the paper, and is organized as follows. In §2.1, we review
the AMP-conditioned moment method used in [DS18] to prove the capacity lower bound and discuss the
main difficulties of proving the upper bound. In §2.2, we outline a new approach based on reducing to a
planted model and argue that if three primary inputs (R1), (R2), (R3) hold, then the upper bound reduces to
a tractable moment computation. §2.3 discusses the most difficult input (R1), and §2.4 discusses the more
straightforward inputs (R2) and (R3). §2.5 discusses related work involving planted models. Finally, §2.6
heuristically carries out the aforementioned moment computation, explains how Condition 1.3 emerges
from it, and gives numerical evidence for Condition 1.3 when x = 0.

2.1. AMP-conditioned moment method. A natural approach to studying the limiting capacity is the
moment method. Let M = aN, and let G € RM*N have rows g ..., gM. Then let Sy (G) = S%I (recall
(1))and ZN (G) = [SNn(G)|. fE[ZN(G)] « 1,then SN (G) is w.h.p. empty, andif E[ZN (G)?]/ E[ZN(G)]?
is bounded, then Sy (G) is nonempty with positive probability. If these two estimates hold for (respec-
tively) @« = a. + € and a = a,. — ¢, for any € > 0, this shows the limiting capacity is a..

Let m.(G) = m 2xesy(G) X denote the barycenter of the solution set Sy (G). For models where
m,(G) = 0, such as the symmetric binary perceptron [APZ19, PX21, ALS22b], this two-moment anal-
ysis often suffices to determine the limiting capacity. However, due to the asymmetry of the activation
in the present model, m,(G) is typically macroscopic and random. It is expected that for any @ > 0,
large-deviations events in the location of m,(G) dominate the first and second moments. Thus Zy (G) is
typically exponentially smaller than E[Zn(G)], and E[Zx(G)]? exponentially smaller than E[Zy (G)?],
which causes the moment method to fail. For example, for the k¥ = 0 perceptron, + log E[Zn(G)] crosses
zero at a = 1, larger than a,(0) ~ 0.833.

To overcome this difficulty, [DS18] and [Bol19] (the latter for the Sherrington-Kirkpatrick model) con-
currently developed a conditional moment method, in which one conditions on a suitable proxy for m.(G)
before computing moments. The conditioning step effectively recenters spins around m., (G), after which
the moment method can potentially succeed.

The choice of conditioning is motivated by the TAP heuristic [TAP77] from statistical physics, which
provides a powerful but non-rigorous framework to study this and other mean-field models. The central
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object in this framework is a TAP free energy Frap(m, n), which is defined in (15) and can be thought of
as a mean-field (dense graph) limit of the Bethe free energy of an appropriate message-passing system. It is
expected that Frap has a unique stationary point (m,n) € [—1,1]N x RM, with the following interpreta-
tion: m approximates the barycenter m,(G) of Sx(G), and for each a € [M], n, approximates a function
of the average slack of the constraint (g%, x)/+/N > x over solutions x € Sy(G).? It is also predicted
that m and n have specific coordinate profiles: for (4., 1+) defined as the fixed point of a scalar recursion
(see Condition 3.1) and F = F;_, as in (13), the prediction is that the coordinates of h = th™'(m) and
h=F1 (PAl) have empirical distribution approximating N (0, ¢,) and N(0, g4).”

An important fact we will exploit is that for fixed (m, n), the stationarity condition VFrap(m,n) = 0
can be written as two linear equations in G. These are the TAP equations, defined in (16). Using this fact,
we can define a planted model, which plays an important motivational role in [DS18, Bol19]: we first
chooose (m, n) with aforementioned coordinate profile, and then sample G conditional on VFrap(m, n) =
0. (This is different from the more well-known notion of planted model introduced in [AC08], in that we
are planting a TAP fixed point rather than a satisfying assignment; see §2.5 for further discussion.)

If we imagine for a moment that G were sampled from this planted model, then the moment method
becomes tractable. In this model, the law of G conditional on (m, n) remains gaussian because the TAP
equations are linear in G, and the conditional first and second moments of Zn(G) can be computed. They
amount to tractable O(1)-dimensional optimization problems: for example, computing E[ZN (G)|m, n]
amounts to optimizing the exponential-order contribution to the first moment from subsets of Xy defined
by their inner products with m and h (see §2.6 for details). The planted model removes the main difficulty
of the macroscopically-fluctuating barycenter, giving the moment method a chance to succeed.

However, this planted model is different from the true model, in which the TAP solution (m,n) de-
pends on G in a complicated way. It is a priori unclear that these can be rigorously linked, because
in the true model both existence and uniqueness of the TAP solution are not known. To carry out this
approach, [DS18, Bol19] instead condition on a sequence of approximate message passing (AMP) it-
erates (m°,n°, ..., m", n*) whose dependence on G is explicit. The AMP iteration was introduced in
[Bol14, BM11], and is defined (roughly speaking, see (17)) by iterating the TAP equations. Its behavior can
be understood through the powerful state evolution description of [Bol14, BM11, JM13, BMN20]: for any k
not growing with N, state evolution exactly characterizes the limiting overlap structure of (m°, ..., m")
and (n°, ..., n¥). Using this description, it can be shown that the AMP iterates converge to an approximate
stationary point of Frap:

lim p-lim N~V2| (", n*1) — (m*, n*2)| = lim p-lim N~V2|VFppp(m*, n*)| = o. (2)
ki,ko—00 N o0 k—00 N oo
Here p-lim denotes limit in probability. It is in this sense that the AMP iterates are a proxy for (m, n).

While the main advantages of conditioning on the AMP filtration are explicit dependence on G and state
evolution, the main disadvantage is the greater complexity of the resulting moment calculation. Although
the law of G conditional on (m°, n°, ..., m*, n*) remains gaussian, the conditional first and second mo-
ments of Zx(G) are now O (k)-dimensional optimization problems, in which one optimizes over subsets

ZMore generally, the statistical physics literature predicts that the Gibbs measure — here, the uniform measure on Sy (G) —
decomposes as a convex combination of well-concentrated “pure states,” whose barycenters each approximate a stationary point
of the TAP free energy [MPV87]. The present model is expected to be replica symmetric, meaning the entire Gibbs measure is
one pure state.

3Here and throughout, nonlinearities such as th™! and F~! are applied coordinate-wise.
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of X defined by their inner products with m°, . . ., m* and related vectors. These problems are not in gen-
eral tractable. We note that [Bol19, BNSX22] successfully carry out this optimization in their respective
settings, but only at sufficiently high temperature or low constraint density.

An important insight of [DS18] is that this approach still gives a tractable proof of the capacity lower
bound, because — to show a lower bound for Zy (G) — one may truncate Zy (G) before computing mo-
ments. They construct a truncation ZN(G) of Zn(G), restricting (among other conditions) to x € Ly
with prescribed inner products with m°, . .., m*. The conditional first moment of Z N (G) is then explicit,
while the conditional second moment becomes a 1-dimensional optimization. [DS18] shows that (under
the aforementioned numerical condition) E[Zx (G)2]/E[ZN(G)]? is bounded for any a < a., which
implies the capacity lower bound.

We mention that [BY22, BNSX22] carry out similar truncated second moment arguments in their re-
spective settings, and the former improves the parameter regime where the method of [Bol19] obtains the
replica symmetric free energy lower bound for the Sherrington-Kirkpatrick model.

The main difficulty of the capacity upper bound is that truncation is no longer available. Without it,
proving the capacity upper bound within the AMP-conditioned moment method would require solving
the above O (k)-dimensional optimization problem, which does not appear to be tractable.

2.2. Approximate contiguity with planted model. Our proof revisits and justifies the planted model
heuristic described above, where we select (m, n) with appropriate coordinate profile and generate G
conditional on VFrap(m,n) = 0. We will show that the true model is approximately contiguous to the
planted model, in the sense of (3) below. So, rather than conditioning on the AMP filtration, we can
condition directly on (m,n) after all. The conditional first moment of Zy(G) then reverts to a simple
optimization in two, rather than O(k), dimensions. This makes the capacity upper bound tractable.

The idea of passing by contiguity to a model with a planted TAP solution is also used in simultaneous
joint work with A. Montanari and H. T. Pham [HMP24], on sampling from the Gibbs measure of a spherical
mixed p-spin glass in total variation by an algorithmic implementation of stochastic localization [Eld20,
AMS22]. A similar inequality to (3) appears as Proposition 4.4(d) therein. However, these two papers differ
in both how this reduction is used, and how it is proved. While [HMP24] develops a reduction similar
to (3), its main focus is to compute a high-precision estimate for the mean of a Gibbs measure, and the
reduction to a planted model arises as a step in the analysis of this estimator. In the present paper, the
reduction (3) is itself the main technical step, but the proof of it is also more challenging. Most notably, a
key ingredient in the proof of (3), in both the present paper and [HMP24], is the uniqueness of the TAP
fixed point in a certain region, see (R1) below. Whereas this ingredient is available in the spin glass setting
of [HMP24] from known results, showing it in our setting requires new ideas, described in detail in §2.3.

We now state the approximate contiguity estimate. For small v > 0, let S, denote the set of (m, n)
whose coordinate profile is v-close (in a suitable metric, see (27)) to that predicted by the TAP heuristic.
We will show, roughly speaking, that there exists C = O(1) such that for any G-measurable event &,

P(&) <C sup P(&|VFrap(m,n) = 0)2 + on(1). (3)
(m,n)eS,
Remark 2.1. For reasons described below, we actually prove (3) for perturbations -, . S¢» of Frap, Sy,
and this qualification holds for the entire discussion below, even where not stated. These perturbations are
defined in (24) and (27), and the formal version of (3) is given in Lemma 3.8.

We then take & = {SN(G) # J}. The first moment bound will show that (under Condition 1.3) this
event has vanishing probability in the planted model for any o > a,. Then (3) implies the conclusion.
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Next, we discuss the proof of (3). The following two central ingredients establish uniqueness and exis-
tence of the critical point of Frap within the set S,, with high probability in the true model.

(R1) The expected number of critical points of Frap in S, is 1 + 0(1).
(R2) With high probability, there exists a critical point of Frap in S,.

Remark 2.2. Although the TAP perspective predicts Frap has a unique critical point in the full input
space, uniqueness in S, (and for the perturbed ¥, ;) suffices for our proof.

A short argument based on the Kac-Rice formula [Kac48, Ric44] (see [AT09, Theorem 11.2.1] for a textbook
treatment) shows that (3) follows from (R1), (R2), and the following additional input, which is a concentra-
tion condition on the change of volume term | det V>Frap(m, )| in the Kac—Rice formula. This argument
is carried out in the proof of Lemma 3.8, see (33).

(R3) There exists C' = O(1) such that uniformly over (m, n) € S,,
E[| det V*Frap(m, n)[*|VFrap(m, n) = 0]Y% < C'E[| det V2 Frap(m, n)||VFrap(m, n) = 0].

Remark 2.3. Since the probability in (3) is exponentially small, the proof can be carried out with e®N) in
place of C in (3). Consequently, showing (R1) and (R3) with e°N) in place of 1 + 0(1), O(1) also suffices.

Input (R2) is proved constructively, by showing that AMP finds a critical point in the following sense.

(R4) There exists rx = 0x(1) such that with high probability, Frap has a unique critical point in a
vV N-neighborhood of the AMP iterate (m*, n*) (which lies in S, by state evolution), for each
sufficiently large k.

Input (R3) will follow from a classic spectral concentration argument of [GZ00]. We next discuss the proofs
of (R1), (R4) and (R3), in that order.

2.3. Topological trivialization of TAP free energy. Condition (R1) is the most important input to the
proof of (3). It is related to a remarkable line of work pioneered by [Fyo04, ABC13], on the landscapes
of random high-dimensional functions. This line of work has obtained expected critical point counts in
a variety of settings, including spherical p-spin glasses [AB13, ABCB] (see [Sub17, AG20, SZ21, BSZ20,
HS23a] for matching second moment estimates in certain cases) spiked tensor models [BMMN19, ABL22],
the TAP free energy for Z,-synchronization [FMM21, CFM23], bipartite spin glasses [Kiv23, McK24], the
elastic manifold [BBM24], and generalized linear models [MBB20]. We also refer the reader to earlier
non-rigorous work on this topic from the statistical physics literature [BM80, PP95, CLR05].

One phenomenon studied in these works is topological trivialization [FL14, Fyo15, BCNS22, HS23b],
a phase transition where the number of critical points drops from eN to e?(N)
(R1) amounts to showing annealed topological trivialization for ¥, on S ;.

The strategy of these works is to calculate the expected number of critical points using the Kac-Rice
formula, evaluating the integrand using random matrix theory. Usually, the most complicated term in the

integrand is the expected absolute value of the determinant of a random matrix. The most well-understood

, or often O(1). Proving

application is where the landscape is a spherical mixed p-spin glass, in which case this random matrix is a
GOE shifted by a scalar multiple of the identity. For this case, an exact formula for this expected absolute
determinant is known, see [ABC13, Lemma 3.3]. This makes the Kac-Rice calculation explicit and tractable.
In particular, [Fyo15, BCNS22] use this approach to determine the topologically trivial phase of spherical
mixed p-spin glasses, and [HMP24] uses these results to establish (R1) for its application. However, for
other models, results on topological trivialization are not as readily available.

It may still be possible to show (R1) for our model in this way, by evaluating the more general random
determinant that appears in the Kac—Rice formula. This is the approach taken by [FMM21] which, for
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Z.,-synchronization at sufficiently large signal, shows annealed trivialization of suitably low-energy TAP
solutions. Their method bounds the random determinant in the Kac-Rice formula using free probability
[Voi91]. Furthermore, [BBM22] introduced a general tool for studying random determinants, showing
that under mild conditions, their exponential order is the integral of log |A| against the random matrix’s
limiting spectral measure. The spectral measure can then be studied using free probability.

Using this approach, one can often express the exponential order of the expected number of critical
points as a variational formula, in which one term is an implicitly-defined function arising from free prob-
ability [Kiv23, HS23b, BBM24, McK24]. This yields a plausible way to show (R1): if we can show the
variational formula for our model has value zero, annealed trivialization follows (in the sense of e0(N)
expected critical points, which suffices by Remark 2.3). Recently, [HS23b] showed that this method can
be carried out for multi-species spherical spin glasses, and it in fact characterizes the topologically trivial
phase. Nonetheless, the variational formula is highly model-dependent — the proof in [HS23b] relies on
a detailed understanding of a vector Dyson equation — and it is unclear if this method can be carried out
for our model.

We instead show annealed topological trivialization by a different, and arguably more conceptual, ap-
proach. We will show that (R1) follows from the following variant of (R4):

(R5) Inamodel where we plant a stationary point (m, n) € S¢ ,, of ¥, (i.e. conditionon VF, ,(m, n) =
0), the same AMP iteration finds (m, n), in the sense of (R4), with high probability.

This implication is proved in Lemma 4.15. Heuristically, the reason (R5) implies (R1) is that any realization

of the disorder where ¥, ,

the event in (R5) can hold in only one of these T realizations. If the expected number of critical points is

has T > 1 stationary points in S; , can arise in T different planted models, and

too large, (R5) cannot occur with the stated probability. The input (R5) can be proved by similar methods
as (R4), as described in the next subsection. This method yields the first proof of topological trivialization
that does not directly evaluate the Kac-Rice formula. We believe this is interesting in its own right.

2.4. Critical point near late AMP iterates and determinant concentration. This subsection dis-
cusses inputs (R4), (R5), and (R3), in that order. As state evolution ensures |VFrap(m¥, n®)| = 0x(1)v'N
(recall (2)), (R4) holds if, for example, Frap is C-strongly concave in a neighborhood of late AMP iterates
for C > 0 independent of k. Recent works in the variational inference literature [CFM23, CFLM23, Cel24]
develop tools to establish this local concavity, and using them prove analogs of (R4) in several models.

In our setting, the fact that Frap is not strongly concave near late AMP iterates introduces some com-
plications. In fact, Frap is strongly concave in m, but convex — and problematically, not strongly convex
— in n. This issue is one reason we carry out the argument on a perturbation ¥-,, of Frap, and a sim-
ilarly perturbed AMP iteration and set S ,. (This perturbation serves several other purposes as well,
described in Remark 4.5.) We will show that near late AMP iterates, ¥, is strongly convex in # and
Giap(m) = inf, F ,(m, n) is strongly concave, which is enough to imply (R4). Strong convexity of
Fap in 1 holds (deterministically) essentially by construction.

Our proof of local strong concavity of Gr,, uses an idea introduced in [Cel24], to bound the Hessian
at a late AMP iterate by applying a gaussian comparison inequality conditionally on the AMP iterates.
[Cel24] considers a setting where AMP is performed on disorder W ~ GOE(N)) and the relevant Hessian
is of the form A + W, where A is a function of a late AMP iterate. He develops a method to upper bound
the top eigenvalue of this matrix by applying the Sudakov-Fernique inequality [Sud71, Fer75, Sud79] to
the part of W that remains random after observing the AMP iterates. For us, the Hessian takes the form

1
ViGrap(m, ) = Ay + £ GTA:G + A, (@)
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where A;, A, are functions of (m,n), and A is a low-rank term depending on both G and (m, n). We
can arrange %', so that A does not contribute to the top eigenvalue. However, the post-AMP Sudakov-
Fernique inequality does not apply to the remaining part, because — unlike for a GOE matrix — the qua-
dratic form induced by G'A,G is not a gaussian process. We instead recast the top eigenvalue as a
minimax program, via the identity (for A, < 0)
Amas <A1 4 %GTA2G> - sup_int {<7’),A1i)> _(5,A7%) + \/iﬁ@, Gi;>} .

This can be bounded by Gordon’s inequality [Gor85, Gor88] conditional on the AMP iterates. Interestingly,
the bound obtained in this way is sharp, matching a lower bound for the top eigenvalue obtained by free
probability (see Remark 6.15).

The input (R5) follows similarly to (R4). We will show that with high probability over the planted model,
late AMP iterates are approximate critical points of ¥, near which ¥,

TAP
Giap is strongly concave. While the law of the disorder is different under the planted model, it remains

(m, ) is strongly convex and

gaussian and a similar analysis can be carried out.

We turn to (R3). An argument of [GZ00] implies that if a symmetric X € RN*N has independent
(not necessarily centered or identically distributed) entries on and above the diagonal with uniformly
bounded log-Sobolev constant, then \/LITIX enjoys a strong spectral concentration property: any 1-Lipschitz
spectral trace has O(1)-scale subgaussian fluctuations. We will see that conditional on VF, ,(m, n) = 0,
det V2F ¢ o (m, n) is a nonrandom multiple of det V*GZ,,(m, n), which has form (4). The entries of this
matrix are not independent, but we can rewrite it via the classical trick

1 T Al LC‘;T
det (A1 + G A2G> = det X, X=|,. \/WA_I . (5)
VN g

Conditional on Vﬂip(m, n) = 0, the matrices A, A, are nonrandom while G has a (noncentered) gauss-
ian law. Thus the result of [GZ00] applies to X. (A slightly more elaborate version of (5) also accounts for
the random low-rank spike A in (4), see (76).)

From the above discussion, conditional on V¥, ,(m,n) = 0, ¥,,(m, ) is strongly convex near n
and G£,, is wh.p. strongly concave near m. This implies that the spectrum of V2F %, ,(m, n), and thus
X, is bounded away from zero, and provides the final ingredient to prove (R3): since x — log|x| is
O(1)-Lipschitz away from zero, log | det X| is approximately a O(1)-Lipschitz spectral trace, which has
O(1)-scale subgaussian fluctuations by [GZ00].

Remark 2.4. The fact that this log determinant has O(1)-scale fluctuations is only possible because the
spectrum is bounded away from zero. For Wigner or Ginibre matrices, two examples of random matri-
ces whose limiting bulk spectrum does include zero, the log determinant is known to have @(4/log N)
fluctuations [TV12, NV14], which diverges with N.

2.5. On planted models. Reducing to a planted model is a powerful tool in the analysis of random func-
tions. This technique was introduced in the seminal work [AC08] and has seen a wide range of applications
in the past decade. The underlying idea is to show contiguity of the original model with a planted version,
defined as the null model conditioned on having a particular (randomly chosen) solution. If this holds,
properties of the null model can be deduced from the planted version, which is often easier to analyze.

A frequent application of this method is to probe the local landscape around a typical solution. This
is the original application of [AC08]: contiguity implies that the landscape around a typical solution to
the null model can be approximated by the landscape around the planted solution in the planted model.
From this, [AC08] shows the existence of a shattering transition in several random constraint satisfaction
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problems. This approach has since also been used to show “frozen 1RSB” structure in the symmetric binary
perceptron [PX21, ALS22b] and shattering in the Gibbs measures of spherical spin glasses [AMS23b]. In a
similar spirit, [HMP24] passes to a model with a planted TAP solution to obtain a high-precision estimate
of the magnetization of a spherical spin glass.

In other applications, including the present work, the object of interest is not the local landscape, but
the planted model is nonetheless simpler to analyze than the null model. Such applications include the RS
free energy of random constraint satisfaction problems [BC16, BCH" 16, CKPZ17, CEJ" 18, CKM20], the
1RSB free energy of random regular NAE-SAT [SSZ22], and the Parisi formula for spherical spin glasses
in the RS and zero-temperature 1RSB phases [HS23a]. Passage to a planted model is also a crucial tool in
the analysis of sampling algorithms based on stochastic localization [AMS22, AMS23a].

2.6. First moment in planted model. In this subsection, we give a heuristic calculation of the first
moment of Zn(G) in the planted model. The function &,(A;, A;) appearing in Condition 1.3 arises from
this calculation, and under this condition the first moment method succeeds. At the end of this subsection,
we also give numerical evidence for Condition 1.3 when x = 0.

We work at constraint density a,, setting M = |a.N| and G,SN(G), Zn(G) as above with this M.
Let ]PI':,'T’" and ]E']fl’" denote probability and expectation w.r.t. the model conditional on VFrap(m,n) = 0.
We will argue that under Condition 1.3, ]E:,'i’" Zn(G) = e°N)_ Then, at any constraint density a > a.,
the (@ — a,)N additional constraints will make this moment exponentially small.

This argument will be made rigorous in §7. Per the above discussion, the rigorous version of this argu-
ment will plant a critical point of ¥, , rather than Frap.

We first define the function &,. Let (qo, Yo) = (§«(a«, k), P« (a4, k)) be defined by Condition 3.1. As
discussed in §2.1, these are the variances of the (gaussian) coordinate empirical measures of ﬁ, h predicted
by the TAP heuristic, at constraint density a,. Let H ~ N(0,1,) and H ~ N/(0, go). These two random
variables may be defined on different probability spaces, as all expectations in the below formulas will
involve random variables from only one space. Let M = th(H) and N = F;_ qo( ). For any measurable

A:R — [—1,1], define '
ent(A) = EH (HTA(H)> , (6)

where H(x) = —xlogx — (1 —x)log(1 — x) is the binary entropy function. Let W be the complementary
gaussian cumulative density function defined in (12). For s > 0, define

 _ EIMAGD] gy E[HAGD)] o

1 0 0
Su(A,s) = =52 + ent(A) + o Elog W 7 4 4 SN} %)
2 E[MA(E)]?
1 R Sl it Sl B
qo
Finally, let Az, 1,(x) = th(A;x + Asth(x)) and define
S.(A) = inf S.(A,5), Su(A1, Az) = Su(An,n,). (8)

These quantities have the following physical meanings. H,H,M,N are the coordinate distributions of
hh,m,n. A specifies a set Zy(A) < Iy of points x where x; has “conditional average” A(h;), in the
sense that (informally, see (81))

1 . .
i~ A(h), Vh e R.
N ] A e ¥
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Note that ent(A) is the entropy of this set, that is (see Lemma 7.6)
1
N log |[EN(A)| ~ ent(A). (10)

Here and throughout, ~ denotes equality up to additive on(1).

Let ZN(G,A) = |SN(G) n Zn(A)| denote the number of solutions with profile A. We will see that for
alls > 0, 84 (A, s) upper bounds the exponential order of Ep™ Zn (G, A). Thus &, (A) also upper bounds
this quantity, and [E;" Zn (G) is bounded (heuristically) by Laplace’s principle:

1 1
—log Ef"ZN(G) ~ sup { —log Eg"ZN (G, A) p < sup Su(A) + on(1).
N P A N P A

While this supremum is a priori an infinite-dimensional optimization problem, the following observation
reduces it to two dimensions. For any a1, d,, a Lagrange multipliers calculation (see Lemma 7.10) shows
that the maximum of ent(A) subject to E[HA(H)] = a;, EIMA(H)| = ay is attained by A of the form
Aj, 1,. As the remaining terms in &, (A, s) depend on A only through E[HA(H)] and E[MA(H)], we
may restrict attention to A of this form. Thus
%log]E;nl’"ZN(G) < sup Si(Ay, Az) + on(1).

A1,
This implies Ep " Zn(G) = ¢°(N) under Condition 1.3.

We next argue that &, (A, s) upper bounds the exponential order of Ej"” Zn (G, A), as claimed above.
Due to (10), it suffices to bound the probablhty that some x € L (A) satisfies all constraints. The planted
model has the following law. Let heRN, h € RM have coordinate distributions approximating N (0, ¢g),
N(0,qo), and let m = — th(h), n = Fl_qo(h). A gaussian conditioning calculation (see Corollary 4.18)

shows that conditional on VFrap(m, n) = 0,
~ T ~
G 4 hm' N nh N P,-GP;,
VN Ngo  Nyo N
Here G is an iid. copy of G, P;, denotes the projection operator to the orthogonal complement of 1,

and on (1) is a matrix of operator norm oy (1). For any x € Ly (A), we have 3 (m, x) ~ E[MA(H)] and
+(h, xy ~ B[HA(H)]. So

Gx 4 E[MA(H)]~ E[HA(H)] \/ E[MA(H)]? .
= h+ n+4/1—- ————2%+0(VN),

VN o ) o § +olVN)
where § ~ N(0, P;}) and 0(v/N) denotes a vector of norm o(v/N). Thus

+ on(1).

E[MA(H)]7  E[HA(H)]
ilog]P:,"I’" (ﬂ >K1> ~ ilOglP g) K1 — qo h — o n ‘ (11)
N VN N 1 E[MA(H)]?

qdo

This can be bounded by a change of measure calculation also used in [DS18]. Let § ~ N(sn, Iy) for any
s = 0. Note that conditional on (g, n) = 0, we have § =4 . So, if S denotes the event in (11), then

P(ges) N 1 N
) ~ exp (55%{)0]\]) ]P(g € S)

P(FeS)<—9"-2
(&€35) P((3, 1) ~ 0
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02 g4

0.6

-1.0
0.8 1.0

(a)x,ye[-1,1] (8) S, (th~(x),th~!(y)) = —0.01

FIGURE 1. Plots of (x,1) — &, (th™*(x),th™!(y)) for ¥ = 0. Figure 1a plots over x, y €
[—1, 1], while Figure 1b restricts to inputs with &, (th™(x), th™!(y)) = —0.01. The plots
lie below 0, and from Figure 1b it appears the unique maximizer is (x,y) = (th(1),0),
corresponding to (Ay,Az) = (1,0).

Since h has coordinate distribution H, this implies (see Lemma 7.8 for formal statement) that (11) is
bounded by
_ EMAMH)] gy E[HA(H)] 5,
1 2 qo o
=51 + a. ElogW +sN
2 E[MA(H)]?
1] — ==
9o
Combining with (10) shows that 1 log S\ Zn (G, A) < Su(A,s) + on(1).
We conclude this subsection with a discussion of Condition 1.3. We expect m to approximate the
barycenter of Sy (G), and therefore that &,(Ay,Az) is maximized by (A;,A;) = (1,0), corresponding
to Ap, 0, (H) = th(H) = M. Let

E* (/\1, /\2) = S*(AAl,Azl M)/

which is an upper bound for .

Lemma 2.5 (Proved in §7). The following holds.
(a) The function $,(A1, A2) attains its supremum on R?.

(b) $x(1,0) = S.(1,0) = 0.
(¢) VS,(1,0) = VS, (1,0) = 0.

(d) V3$,(1,0) < V28,(1,0)
Claim 2.6 (Proved in Appendix B). Fork = 0, there exists C > 0 such that V2§, (1,0) < —CI.

Lemma 2.5 is proved for all x, while Claim 2.6 is verified numerically for k = 0 using rigorous interval
arithmetic. Together, they imply that for k = 0, (1, 0) is a local maximum of &, and &.. In Figure 1, we
provide a plot of &', for the case k¥ = 0. This gives numerical evidence that &, and therefore &, has global

maximum (1, 0).
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3. FORMAL STATEMENT OF RESULTS

In this section we state our main result for general x, Theorem 3.6. We also reduce Theorem 3.6 to two
primary inputs: approximate contiguity with a planted model (Lemma 3.8) and the upper bound for the
first moment in the planted model (Proposition 3.9), which are proved in §4-6 and §7.

3.1. Krauth-Mézard threshold. We first define the threshold a, conjectured by [KM89], following the
presentation of [DS18]. Define the standard gaussian density and complementary CDF by

ol - 22 e = [ ol d. (12

Fix once and for all k¥ € R. For g € [0, 1), define*

P(x) & K—x
60 = $y P = ((1 - q>1/2> | -

For ¢ > 0 and Z ~ N(0, 1), further define

P() = E[th(p'*Z)?], Ra(q) = a E[F1_4(7"*Z)*],
and define the Gardner free energy (or Gardner volume formula) by
1— —q'%z
C(a,q,¢) = —ﬂ + ]Elog(Zch(gbl/ZZ)) —aElogV¥ k-9 2 . (14)
2 (1—q)"2

The physical meanings of these formulas are best understood in terms of a heuristic derivation of the TAP
free energy Frap(m, n) and TAP equations, which we explain next. (These quantities will be formally de-
fined in (15), (16).) If we regard G as a complete bipartite factor graph on N variables and M constraints,
we can study the perceptron model by the standard belief propagation (BP) equations [MM09, Chapter
14]. In the mean-field (dense graph) limit, these equations simplify considerably. First, because the influ-
ence of any particular message is small, all the messages emanating from a particular variable i € [M]
(resp. constraint a € [M]) can be consolidated into a single message m; (resp. n,). The TAP variables
(m,n) thus represent these consolidated messages. The BP equations then become the TAP equations,
and the Bethe free energy of this BP system becomes the TAP free energy. See [Méz17] for an example
of this derivation in a related model.

Moreover, by central limit theorem considerations, we expect that the coordinates of h = th™!(m)
and h = F:HMHZ /N(n) have gaussian empirical measure. Let these gaussians have variance 1) and g,
respectively; this is the physical meaning of these parameters. Then the BP consistency relations require
that ¢, g satisty the fixed-point equation g = P(¢), ¥ = R, (q), and the corresponding Bethe free energy
is precisely €(a, q,1)). Finally, we expect a, to be the constraint density where this Bethe free energy
crosses zero. Under the following condition, which was verified in [DS18] for k¥ = 0, this heuristic picture
can be formalized into a definition of a,..

Condition 3.1. There exist0 < ap, < ay, and 0 < g1, < gubp < 1(depending on k) such that the following
holds. For any a € (ap, @up),
sup (PoRy)(q) <1,
7€ (b, ub)

“4The function F 1—q is denoted Fy in [DS18]. We change this notation to be consistent with the meaning of F, , (18) appearing

in our proofs.
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and there is a unique g, = g.(@, k) € (g, gup) such that g, = P(Rn(q4)). Let ¥, = Y. (a, k) = Ra(g4)-
For @ € (am, au), the function G, (a) = (e, g.(a, ), P.(a, k)) is strictly decreasing, with a unique
root a, = a(x).

Proposition 3.2 ([DS18, Proposition 1.3]). For k = 0, Condition 3.1 holds for ay, = 0.833078599, ay, =
0.833078600, g1pb = 0.56394907949, gup, = 0.56394908030.

3.2. Main result. Throughout, let @, = a.(x) and (g, o) = (g«(a+, k), P« (a4, k)) be given by Con-
dition 3.1. We now introduce two more numerical conditions needed for our main result, which will be
verified for k = 0 in Appendix B using rigorous interval arithmetic. In the below formulas, let Z ~ N(0, 1).

Condition 3.3. We have a, E[th’( é/ZZ)Z] ]E[F{_qo(qé/ZZ)z] <1

Condition 3.4. Define the functions m : (—1, +00) — (0, +00) and ﬁ] : R — (0, +00) by
m(z) = E[(z + ch*(y*2)) 7],

A = Fiog®) &'((k —0)/(1 — q0)**))

L= @)F (0 (1= q0)(1 = &((c = x)/(1 = 90)"2))

(By Lemma 4.21(b) below, & has image in (0, 1), and thus fo(x) > 0.) Then, for dy = a. ]E[F;fqo(qé/ZZ)]
and A : (—1, +00) — R defined by

12
/\(z)zz—a*]E[ foldy 2) )] —dy,

1+ m(2)folgy°Z
we have Ay = inf,~_; A(z) < 0.

The following lemma shows that minimizer of A exists and is the unique root of a decreasing function, and
it suffices to check Condition 3.4 at the value A(z,).

Lemma 3.5 (Proved in §6). The function A is differerentiable with A’ (z) = 1—a,0(z), where 0 : (—1, +0) —
(0, +00) is defined by

S~ 1 2
0(z) = E[(z + ch*(¢y°Z)) 2 E ( fO(%AZ)l/z )
1+ m(2)fo(q)?2)

Moreover 0 is continuous and strictly decreasing, with

lim 6(z) = 400, lim 6(z) = 0.
z|—1 z1+00

In particular O has a well-defined inverse 0! : (0, +0) — (—1, +), and A is strictly convex on (—1, +0)
with minimizer zy = 6_1(05:1). Thus A defined in Condition 3.4 satisfies Ay = A(z).

Theorem 3.6 (Main result, general k). For any k € R, under Conditions 1.3, 3.1, 3.3, and 3.4 the following
holds. For any a > a.(x), we have limy_,oo P(Mn(x)/N > a) = 0.

Remark 3.7. The conditions in Theorem 3.6 serve the following purposes.

e Condition 1.3 controls the first moment of the partition function in the planted model.
e Condition 3.1 makes the threshold a, (k) well-defined.

e Condition 3.3 ensures that the AMP iterates converge in the sense of (2).

e Condition 3.4 ensures that G7,, (see §2.4) is locally concave near late AMP iterates.

With the exception of Appendix B, we will assume all conditions in Theorem 3.6 without further notice.
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3.3. Proof of Theorem 3.6. We will carry out nearly the entire proof at constraint density a.. Thus, we
set M = |a,N| and define G € RM*N and Zy (G) as above.

The main step of the proof is a reduction to a planted model, formalized by Lemma 3.8 below. Let IP
denote the law of G with ii.d. N(0, 1) entries, and let ]Pm be the planted law defined in Definition 4.3.
This is the law of G conditional on VF,,(m,n) = 0, for a perturbation ¥, , of F1ap defined in (24).
(These will actually be probability measures over (G, g, g) for auxiliary disorder g, g defined below.) Let
S; v be a similar perturbation of S, defined in (27).

Lemma 3.8 (Proved in §4-6). For any (G, g, g)-measurable event & and any &, v > 0, there exists C =
C(¢&,v) such that
P(&)<C sup P& +on(1).

(m,n)eS;

The following proposition controls the first moment of Zxn (G) in the planted model, formalizing the heuris-
tic calculation in §2.6. Here ]E denotes expectation with respect to ]P‘S bl -

Proposition 3.9 (Proved in §7). For any 6 > 0, there exists £, v > 0 such that
sup 7 I[ZN(G)] < e

(m,n)eS;,,

From these two results, Theorem 3.6 follows by a short argument.
Proposition 3.10. For any 6 > 0,
P[Zn(G) < e®N] =1 —on(1).
Proof. Let & = {Zn(G) < e®N}. By Lemma 3.8 and Markov’s inequality,
P(&)<C sup PUa(&)7 +on(1) <Ce ™2 sup  ENH[Zn(G)]Y* + on(1).

Pl
(mm)eSey (m,1)eSe »

By Proposition 3.9, we may choose ¢, v so this supremum is at most eON/4, O

Proof of Theorem 3.6. Let My = |aN|, and let G, = (g) e RMaN ywhere G € RMai=M)xN hag jjd.
N(0,1) entries. Set 6 < 1(a — a,)log %. Let & = {Zn(G) < e®N}, which satisfies P(&) = 1 — on(1)
by Proposition 3.10. Then

P(Mn(k)/N = a) = P(Zn(Gan) > 0) < P(&°) + E[ZN(Gan)1{&}].

Since the rows of G are i.i.d. samples from N(0, Iy) independent of G, for any x € Xy,

May—M
P (<g,x> > K) — eONp()Ma=M — o (1). O
g~NOIN) \ VN
3.4. TAP and AMP formulas. In this subsection we provide the formulas for the TAP free energy, TAP
equations, and AMP iteration mentioned above. The heuristic derivation of the former two were discussed
below (14), and the latter is obtained by iterating the TAP equations in a suitable way.
The contents of this subsection play no formal role in the following proofs. We include these formulas for

E[ZN(Ga)1{&}] <

the reader’s convenience, to allow a comparison with the e-perturbed TAP free energy and AMP iteration
defined in §4.2 below. (See also (36), (37) for the e-perturbed TAP equations.) For (m, n) € RV x RM, let
g(m) = |m|?/N and ¢(n) = ||n||?/N. The TAP free energy for this model is

M — S22 4 (1 - q(m)n,
Fing m, ) ;w (5 + Soww | —— i | 5 (-t 19
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(Recall H(x) = —xlog(x) — (1 — x)log(1 — x) is the binary entropy function.) The TAP equations are
the stationarity conditions of Frap, and are

.
1 = Fi_qm) (1) = Fi_gm) (G—m - b(m)n> ,  m=th(h)=th (G 2 d(m,n)m> , (16)

VN VN

where

M
b(m) = 1—q(m), d(m,n) = % STFL o (1a).

Recall that these are the mean-field limit of the BP equations for this model. The terms b(m)n and
d(m,n)m compensate for backtracking and are known as the Onsager correction terms.
Let g9, Yo be as in Condition 3.1, and define

by = E[th' (p)*Z)] = 1 — qo, do = a, E[F,

1—(]0

(9.°2))-

0

The AMP iteration associated to Frap is givenby n=! = 0 € RM, m° = q(l)/zl e RN, and

~ k . T,k
n* = Fi_g,(h") = Fi_y, (% _ bonk1> ;o om (T = (Ci/g . domk> . )

4. REDUCTION TO PLANTED MODEL

In this section we prove the central Lemma 3.8, using inputs from §5-6 as described below. §4.1-4.5 are
devoted to this proof. §4.6 derives the law of the planted model ]PT; which will be useful for calculations
in the rest of the paper. To maintain a smooth presentation, we defer some proofs to §4.7, and routine but

technical arguments to Appendix A.

4.1. Parameter list and notations. For convenience, we record here the order in which several param-
eters used in the proof of Lemma 3.8 are set. Each item in this list can be set sufficiently small or large
depending on any preceding item.

e ¢, size of the perturbation to the AMP iteration and TAP free energy.

e C.x and Cpq, estimates for p, (defined below, see (22)) and its derivatives.

e 7, bound on strong convexity of 7.5, (m, n) in n, and C,, bound on regularity of VZTT‘ZP.

e 79, radius around late AMP iterates where there is a unique critical point of ¥, ;.

® Vg, accuracy of AMP iterate under which there is a unique critical point of ¥, , nearby.

o k, index of AMP iterate (m*, n*) with accuracy v,.

e v, tolerance in S, ,,.

e vy, accuracy of AMP iterate under which, by convex-concavity considerations, the nearby unique
critical point lies in S ,.

e {,index of AMP iterate (m’, n’) with accuracy v;.

e N, problem dimension.

This information will be reviewed when these parameters are introduced. Notations such as 0 (1) will
denote quantities that tend to zero as the subscripted parameter tends to zero or infinity, which may depend
arbitrarily on preceding items in this list but do not depend on subsequent items. We will use the term
“absolute constant” to mean a constant depending on none of these parameters (but possibly depending
on K, &x, 4o, Yo, which are fixed at the outset). Note that the statement of Lemma 3.8 is monotone in v,
and thus v can be set small depending on the parameters preceding it in this list.
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We also define more notations appearing in the proofs. Throughout, Z, Z’, Z” denote i.i.d. standard
gaussians. We use P, (IR¥) to denote the space of probability measures on R¥ with bounded second mo-
ment and W, to denote 2-Wasserstein distance. p-lim denotes limit in probability.

We often consider functions # : RV x RM — R, with input (m,n) € RN x RM. We will write
V¥ € RN, V,F € RM for the restriction of VF to the coordinates corresponding to m and n. The
Hessian restrictions V2, ,F € RN*N, V2 F ¢ RN*M and V2 F € RM*M are defined similarly.
P, = mm'/|m|? € RN*N denotes the projection operator onto the span of m, and P;; = In — Py,
denotes the projection operator onto its orthogonal complement.

4.2. Perturbed nonlinearities, AMP iteration, and TAP free energy. We next introduce perturbed
versions of the AMP iteration (17) and TAP free energy (15). The purpose of the various perturbations is
discussed in Remark 4.5 below. Let ¢ > 0 be small. For ¢ > 0, define

1
Feo(x) =1ogE . (x + 0'22), Xe(x) =exp (—Eex2> P(x + 27" > «).
Then, define the perturbed nonlinearities
th.(x) = th(x) + ex, Feo(x) =F, ,(x). (18)

An elementary calculation shows that explicitly,

3 __10 . ex? . K(1+¢e0) —x
Feolx) = 21 g(1+ €p) —2(1 o) + log W (\/(Q +e(1+€0))(1+ &_0))

& 1 K1+ o) —x
Feol®) = —13 w0 Vi +e(1+e0))(1+ e@)a (W@ +e(1+€0))(1+ 80)> W

- -+ o)
1l—q+e—e*(P+e
0:(4:¥) = 1—-2¢(p+e)
Define perturbed variants of the functions P, R,, by
P () = E[the(( + €)°2)*], R(9,9) = a. E[Fep(q0)((q +€)2)7],

and let C.(¢) = R*(P(¥), ¥).

Proposition 4.1 (Proved in Appendix A). There exists t > 0 such that for all sufficiently small € > 0,

sup  C(¥) <1,
Ye[ho—t,po+1]

and there is a unique solution Y € [Yo— 1, Yo+ 1] toe = Ce(Pe). Let qe = PE(P¢) and 0¢ = 0¢(qe, Pe).
We further have (q¢, Ve, 0¢) — (o, Yo, 1 —qo) as€ | 0.

Lemma 4.2 (Proved in §4.7). We have 9. = E[thl((y. + €)"/?Z)].

Letd, = a. E[F; , ((9c + €)Y/2Z)]. Further, let ¢ ~ N'(0,Iy), § ~ N(0,I) be independent of G. The
perturbed AMP iteration is defined by n™! = 0 € RM, m° = ql/zl e RN, and

~k
n* = Fep, (h ) =Fep, (— + 61/2§ - ank—1> ’ (20)

m"! =the(h ) = th, +e2g —d.mk ). (21)
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Define the convex function V, : R — R and its dual

V.(h) = log(2¢h(i)) + %eiﬁ, VE(m) = inf {—mh + Ve(h)}
h
Let Cevx, Chg > Obelargein €. Let p. : R — R be an (unspecified) thrice-differentiable function satisfying
pe(ge) = 0e, pe(ge) = —1, p(9e) = Coves (22)

such that the image of p, and its derivatives satisfies

pe € [Crl, Coal, 0P| < Cpa for p € {1,2,3}. (23)

(For every Ccyy, there exists Cpq such that this is possible.) Recall that for (m, n) € RN x RM, we defined
g(m) = |m|?*/N and tb(n) = ||n||?/N. The perturbed TAP free energy is

jﬂ:é m n Z V* + 81/2<g m> + Z L (a(m) <<ga, m>
TAP &,pe(q(m /
a=1 N

v %pgw(m))wn). @

We are now ready to define the planted model.

b etlg, pe<q<m>>na>

Definition 4.3. For (m,n) € RN xRM, let ]Pm’" denote the law of (G, ¢, §) conditional on VF i, ,(m, n) =
0, and ]E denote the corresponding expectatlon (IP and E continue to refer to the law of (G, ¢, §) with
iid. standard gaussian entries.)

Remark 4.4. As shown in Lemma 4.16 below, for any fixed (m,n), V¥, ,(m,n) = 0 is equivalent to
two linear equations (36), (37) in (G, g, §), and thus in the planted model (G, ¢, §) remains gaussian.

Remark 4.5. The above perturbations serve the following purposes.

o V*(m;) regularizes the term 7-{( ") in the original #rap, avoiding the singular behavior of Frap
near the boundary of [—1, 1]N.
e F.,, is chosen so that £, is strongly convex in . As a consequence, if we define

Grar(m) = igfﬂAP(m,"), Grap(m) = inf Frap(m, n),

then G3,,(m) also regularizes Grap(m ), avoiding a singular behavior near the boundary of —= \ﬁ Gm >
k. Indeed, Grap(m) = —oo if this inequality fails in any coordinate.
e The nonlinearities th, and F, ,, have Lipschitz inverses, so that Euclidean distances in (m, n) and

(h, ﬁ) are comparable.

1/25

o The perturbations ¢!/2g and ¢'/2g are for technical convenience, as solutions to the original TAP

equation (16) must lie on the codimension-one manifold
. 1 ~
h+dmnym,m)=—un,Gm)={n,h+b(m)n).
( (m,n)m,m) \/W< > =X (m)n)

With this perturbation, Kac-Rice arguments can take place on full space.

e We will see in §6 that the Hessian of G:,,(m) is the sum of an anisotropic sample covariance
matrix, a full-rank diagonal matrix, and a low-rank spike (recall (4)). The condition p?(g,) = Cevx
ensures this spike cannot contribute to the top eigenvalue by adding a large negative spike to the
Hessian. This simplifies the proof of strong concavity of G1,, near late AMP iterates.
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4.3. Inputs to reduction. We next state several inputs needed to prove Lemma 3.8. As anticipated in
§2.2, the main input is Proposition 4.8, which formalizes criteria (R4) and (RS5). First, we record that ¥,
is (deterministically) strongly convex in .

Proposition 4.6 (Proved in §4.7). There exists 11 = 1(¢&, Ccyx, Chd) > 0 such that Vf,,n?}ip(m, n) > nly
forany (m,n) e RN x RM,

We next record a basic regularity estimate. Define

- T
V2 Tap(m, n) = an,m Tap(m, 1) — (an,n TZP(mln))(Vft,n Tap(m, 1)) 1(an,n Tap(m,m)) . (25)

This arises as the Hessian of G, , as shown in Lemma 4.10 below.

Proposition 4.7 (Proved in Appendix A). For any D > 0, there exists Creg = Creg(e, Cevx, Cbd, D) such

that over both P and ]P’;;,’Inl for any |m’|?, ||n’|* < DN, with high probability the following holds. For all
lm|?, |n|> < DN, we have |V*F,p(m, n)[op < Creg.

For h e RN , ﬁ € RM, define the coordinate empirical measures
1S 1 &~
i = N ; 5(hi), Ui = 3 g 5(hi). (26)
In words, these are probability measures on R with mass 1/N on each hi (resp. 1/M, FAll) For v > 0, let
Tew = {(h,ﬁ) e RN x RM s Wa (), N(0, e +€)), Wa(uj;, N(0,q: + €)) < U} ’
Sew = {(the (), P, () : (1) € To} (27)
Let (m*, n*) be as in (20), (21).

Proposition 4.8 (Proved in §5 and §6). There exist ro > 0, ko : R — N, v : Ry x N — Ry, depending
on €, Cevx, Cpd, 1, Creg, and an absolute constant Cspec > 0 such that the following holds. For any vy > 0
and k = ko(vy), with high probability under P:

(@) (m*, n*) e S, ,,,

(b) [VFLp(m*, n*)| < voV/N,

(¢) VEFip(m, n) < —Cspecln for all (m, n) such that |(m,n) — (m*, n*)| < rgv/N.

m’ ,n’
e,Pl

Moreover, let v = v(vg, k). For any (m',n’) € S, ,, with high probability under P the above three

conclusions hold and:
@) ||(m*,n*) — (m’,n")|| < voV/N.
The following concentration estimate follows by adapting an argument of [GZ00] and provides input (R3).

Lemma 4.9 (Proved in §6). There exists C depending on €, C.yx such that for sufficiently small v, uniformly
over (m,n) € S, ,,

EZ@T [| det V2 Tip(mr"”z]l/z < C]EZ;,’I’ [| det V2 Tip(m'")” :
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4.4. Unique nearby critical point and conditioning lemma. Lemma 4.11 below provides a criterion
under which a function has a unique critical point near a given approximate critical point. Lemma 4.12 is
a lemma about conditioning a random function on a random vector with a unique critical point nearby,
which is an adaptation of the Kac-Rice formula. This important technical tool also appears as [HMP24,
Lemma 3.6], where it is used in conjunction with known results on topological trivialization to condition
on the TAP fixed point selected by AMP. Here, we use it with properties of the planted model provided by
Proposition 4.8 to prove topological trivialization itself.

Lemma 4.10. LetU; < RN, U, € RM be open and convex. Suppose F : Uy x U, — R is twice differentiable
and satisfies V2  F (m,n) > nly forall (m,n) € Uy x U, for somen > 0, and G(m) = mingey, ¥ (m, n)
exists for allm € U,. Then n(m) = arg min,,.;, ¥ (m, n) is unique and differentiable, with

Vn(m) = (Vi F (m,n(m)) " (V3 ,F (m,n(m)))". (28)
Moreover G is twice differentiable, with
VG(m) =V, F (m,n), ViG(m) = VAF (m,n). (29)

Proof. Strong convexity of # in n implies that n(m) is unique, and can be defined as the solution to
V¥ (m,n) = 0. Then (28) follows from the implicit function theorem, while (29) follows from (28) and
the chain rule. O

Lemma 4.11. Let F : RN x RM — R be twice differentiable and (m,, n,) € RN x RM, Let1), Creg, Vo > 0,
ro = 20 (1 + Cregl] *)?v0o, and U = B((mo,no),r()\/ﬁ). Suppose that:

(C1) [VF (mo,10)| < voVN,

(C2) |V*F (m,n)|op < Creg forall (m,n) € U,

(C3) V2 F (m,n) = nly forall (m,n) € RN x RM,

(C4) V2F (m,n) < —nly forall (m,n) € U.
Then, there is a unique (my, n) € U such that VF (m,, n,) = 0. Moreover, for sufficiently small (possibly
in N) 1 > 0, the image of U under the map VF contains B(0,1) < RN x RM and is one-to-one on this set.

Proof. Let U; = B(mg, 7ov/N) < RN and U, = RM. Item (C3) implies that the hypotheses of Lemma 4.10

hold for ¥, with this (Uy, U;). Thus, for m € Uy, n(m) and G(m) from Lemma 4.10 are well-defined,

with derivatives given therein. If (m., n,) is a critical point of ¥, then m, must be a critical point of G.
Item (C4) and equation (29) imply that VG (m) < —nly for all m € U;. Thus G has at most one critical
point in Uy, and ¥ has at most one critical point in U; x Uy 2 U.

We now show that such a point exists. By strong concavity of ¥ (m,, -) and (C1),

[0 — n(mo)| < 0~ [Va (mo, mo)| < 1" voVN.
Because |V2F (m, n)|op < Creg, the map (m,n) — VF (m, n) is Cyeg-Lipschitz. Thus
IVG (mo)| = |[VF (1m0, 1(mo))| < [VF (0, m0)| + Creglito — n(mo)|| < (1+ Cregn™)voVN.
By strong concavity of G, there exists a critical point m,. of G with
[mo — m.| < ' [VG(mo)| <0 (1+ Cregi voVN.

Then, with n,, = n(m.), (m,, n,) is a critical point of ¥ . By conditions (C2), (C3) and equation (28), n(-)
is Cregny~'-Lipschitz. So,

[0 — m| < llno — n(mo) | + Cregnt™*[1mo — m| < 17" (1 + Cregn™*)*voVN.
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This shows that (m,, n.) € U, proving the first claim, and furthermore (m., n,) lies in the interior of
U. To show the second claim, we first prove that any (m,n) € U such that [|[VF (m,n)| < tliesina
neighborhood of (m*, n*). First,

In —n(m)| <7 VaF (m,m)| <n~'e.

Similarly to above, [VG(m)|| < (1 + Creg)™!)t, so we conclude

[ — ] <7 (1 + Cregn ™)1, [ —nall <0711+ Cregn ™)t
Thus (m, n) lies in a neighborhood of (m., n,), which is contained in U because (m,,n) lies in the
interior of U. However, by Schur’s lemma,
det V2F (my, ny) = detVf,,nT(m*,n*) det V2F (my, ny) # 0.

By the inverse function theorem, VF is invertible in a neighborhood of (m.., n.), mapping it bijectively
to a neighborhood of 0. This concludes the proof. O

Lemma 4.12. Let ¥ : RN x RM — R be a twice differentiable random function and (my, ny) € RN x
RM be a random vector in the same probability space. Let 1, Cieg, Vo, 7o be as in Lemma 4.11, and U =
B((mg,no),rox/ﬁ) (which is now a random set). Let D > 0 be arbitrary and &, be the event that (C1)
through (C4) hold and |my|?, |no||* < DN.

Let Qv (1m,n) denote the probability density of VF (m, n) w.r.t. Lebesgue measure on RN x RM. Suppose
OV (m,n)(z) is bounded for (m,n) € RN x RM and z in a neighborhood of 0, and continuous in z in this
neighborhood uniformly over (m,n). Then, for any event & < &, in the same probability space,

P(&) = fRNxRM E [|det V*F (m,n)|1{& ~ {(m,n) € U}}VF (m,n) = 0] ov#(m,q)(0) d(m, n).

Proof. On &, Lemma 4.11 implies there is a unique critical point (m., n,) of ¥ in U. Moreover the image
of U under VF contains B(0, t) for small ¢ and is one-to-one on this set. By the area formula, on &,

= —‘B(;/ = L | det V2 (m, )| 1{[VF (m, )| < ¢} d(m, ).

Since & < &, multiplying both sides by 1{&} and taking expectations (via Fubini’s theorem) yields

1
P&) = — ]Ef | det V2F (1, ) [1{|VF (m, n)|| < (}1{m € U} d(m, n)
|B(O, l)| RN xRM
P{|V , <
_ f E [| det V2F (1, n)[1{& o {m e U}}||VF (m,n)] < 1] UVF G, WIS 8, m).
RN xRM 1B(0, 1)]
We now take the limit as ¢ — 0. On &, |det V*F (m, n)| < Cf\ngrN. Since m, ny are bounded on &,

1{m € U} = 0 almost surely for m outside a compact set. Since Qv (;u,)(2) is bounded and continuous
in z, P{|VF (m,n)| < 1}/|B(0, t)| is bounded, and limits to @y (su,4)(z) as t — 0. Taking t — 0 gives
the result by dominated convergence. O

4.5. Proof of planted reduction. We are now ready to prove Lemma 3.8. As anticipated in §2.2, Lemma 4.13
deduces (R2) from (R4), and Lemma 4.15 deduces (R1) from (R5). Then, Lemma 3.8 follows readily from the
Kac—Rice formula.

Lemma 4.13. For any v > 0, S;, contains a critical point of F,, with high probability under IP.
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Proof. Let 1 = min(1(&, Cevx, Chd), Cspec), Where these terms are given by Propositions 4.6 and 4.8. Then,
let D = 2max(ge,1Pe) and Creg = Creg(€, Cevx, Chd, D) be given by Proposition 4.7. Let 7y be given by
Proposition 4.8. Let v; be small enough in v that, with r; = 2171(1 + Cegf)™*)?v1, we have 71 < 7 and

lJ B((#, ), nVN) S S (30)

(,11)€Se,v,

(Since S;,, is the image of a product of two Wasserstein-balls under (th,, F¢ ,,), and th. ', F;;g have
Lipschitz constant depending only on ¢, there exists v; such that this holds.) Let £ = ko(v;) be given by
Proposition 4.8. By Propositions 4.7 and 4.8, with high probability under P,

o [V2Flp(m, n)|op < Creg for all [m|?, [n|* < DN,

o (m,n") e S. o

. \\V?}Zp(m n’)| < vivN,

o V2F £ o(m,n) < —Copecly forall |[(m,n) — (m®, n')| < < roVN.
We now apply Lemma 4.11 with (Fp, m' nt, v, r1) in place of (F,my, ny, vo, 1y). The above points
imply that conditions (C1), (C2), (C4) hold, and condition (C3) holds by Proposition 4.6. By Lemma 4.11,
F.i\p has a critical point in B((m", n’), 1V N). This lies in S¢ ,, by (30). m]

The following lemma shows that the condition in Lemma 4.12 regarding @y holds for # = ¥,

Lemma 4.14 (Proved in §4.7). The density Qv (m,n)(z) under P is bounded for (m,n) € RN x RM and

z in a neighborhood of 0, and continuous in z in this neighborhood uniformly over (m,n).
Lemma 4.15. Let Crt, denote the set of critical points of ¥, , in S . For smallv > 0, E [Crt,| < 14+0n/(1).

Proof. By the Kac—Rice formula,
E|Crt,| L " [| det VAT (m, 1)[] @ ) (0) d(m, ). (31)

As above, let n = min(1(&, Cevx, Cpbd), Cspec), D = 2max(ge, 1¢), and Creg = Creg(€, Cevx, Cbd, D). Let
7o be given by Proposition 4.8, and o
2(1 4 Cregn™1)?"
Then set k = ko(vo), where kq(-) is as in Proposition 4.8. Let & be the event that:

o |mk[?, |nk* < DN,

° Hvz?dTéAp(m n)HOp < Creg for all [m|?, [n|* < DN,

o [VFp(m®, 1) < vV N,

o V2FEo(m, n) < —Copecly forall |(m,n) — (m*, n*)| < roV/N.
We claim that & < &, where & is the event defined in Lemma 4.12 with (7., mk, n*) for (F,m,, no)
(and thus U = B((m*,n*),r9v/N)). The above points imply conditions (C1), (C2), (C4), and condition
(C3) follows from Proposition 4.6. By Lemma 4.14, Lemma 4.12 applies. Thus,

1>P(&) = fRN o EY ) [| det VEFyp(m, n)|[1{& n {(m, n) € UL}] ovge (mm)(0) d(m,n).  (32)

Vo =

Let v < min(v(vy, k), v(ro, k)), for v(-, ) as in Proposition 4.8. Define (compare with (31))

I = J ]Eg o [ det VI (m, n) [{E  {(m, n) € U}}]| @uge (m,n)(0) d(m, n)
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and I, = E|Crt,| — I;. By Propositions 4.7 and 4.8, for any (m,n) € S, ,, we have ]P 0 (& {(m,n)e
U}) = 1 — 1 for some ¢ = on(1). By Cauchy-Schwarz and Lemma 4.9,

I - L B | det Vs (m, 1) [1{(E  {(m, 1) € UNY] @y (0) d(m, m)
< f L [| det V? TAP(m'n)|2]1/2 PP (& {(m,n) e )] PYFp(m,n) (0) d(m, 1)

3
< cLI/ZJ E" ! [| det V5o (m, 1)[| v ) (0) d(m, 1) 2 CL2E [Crty .

So, I = (1 — Ct'/?) E |Crt,|. Since (32) implies I; < 1, and 1 = ox/(1), the conclusion follows. ]
Proof of Lemma 3.8. Set v > 0 small enough that Lemma 4.15 holds. Let &; be the event that £, , has a
critical point in S; ;. By the Kac-Rice formula,
P(& n &) < E[1{& n & }|Crt,|]
J ]Em |d tVz (m,n)|1{% N 51}] g[)vq-’T;P(m,n)(O) d(m,n).
This is bounded by
1/2
J E" | det VA, (m, 1) P] 2 P2 (&) 2 use. mmy (0) d(m, n)
<C s BIIE) | B[ VT )] s 0) dom
(m,n)eS;,
o 1/2 Lem. 4.15 m,n 1/2
<C sup PL(&)7-E[Crty| < (1+0n(1))C sup PTLI(E)/" (33)
(mn)eSe, (m,n)eSep
The result follows because P(&) < IP(& n &) + P(&;), and P(&]) = on(1) by Lemma 4.13. m]

4.6. Conditional law in planted model. Having proved the reduction to the planted model ]PmP'II, we

now calculate the law of the disorder in it. This is stated in Lemma 4.17 for general (m, n), and Corol-
lary 4.18 for (m, n) € S; ,. The following lemma is proved by direct differentiation of -, ;.

Lemma 4.16 (Proved in Appendix A). Letm € RN, n e RM, and
Gm

l:l = \/_]\»] + 81/2§ _ P&(Q(m))n’ Z:: F, pe(q ))(]/Eu))z 4 F‘lot(q(m))(lf;a)
Then,
| G Fopu(atomy ()
Vi Fiap(m, n) = —th, ' (m) + p\/%( ) g+ pl(q(m))de(m,n)m (34)
Vi (m,n) = pe(q(m)) (1= Fep,qom) () (35)
In particular V¥, ,(m, n) = 0 if and only if, withh = th; ' (m) and h = F;:} v(q(m))(n),
Gm ~
Wil e'?g = h + pe(q(m))n, (36)
GTn 1/2 . " /
—— + 78 = h—p.(q(m))de(m, n)m. (37)

VN
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(Note that (36) is equivalent to h = fl.)

Lemma 4.17. Under ]PmP[, G has law
G d hmT nhT A(m,n)an G L 38
VN Nam it Nemieo  Ngmivmio v o e O
i i
Am, 1) = pe(a(m)) — (g (m))de(m, m) — — 1) o, ) (39)

N(q(m)+¢)  N(p(n) +e)
and where G has the following law. Let éy,...,éN and €y, ..., ey be orthonormal bases of]RN and RM
with e, = m/|m| and e, = n/|n|, and abbreviate G(i, j) = {ej, Gé;). Then the G(i, j) are independent
centered gaussians with variance

e/(gim) +p(n) +¢) i=j=1,

EG(, ) = e/(g(m) + ¢) i=1,j#1, (40)
e/(YP(n) + ¢) i#1,j=1,
1 i#1,j# 1.

Proof. This is a standard gaussian conditioning calculation, which we present briefly. For fixed » € RN,

9 € RM and

P (m,0) . (m,0)(n,0v) .
N(ﬂl(mz+ ¢) N?*(q(m) +€)(Q(m)A+ P(n)+e)
0 — (n,v) o (m,v)(n,v) m,

N@(n)+e)  N2(@(n)+e)(q(m) + ¢(n) + ¢)

we may verify the independence

<U G77> om 1/24 . G_m 1/24 G_T" 1/2;
< =t > < \/, g>i|_{\/ﬁ+é g,eré g7

By Lemma 4.16, V?’Tkp(m, n) = 0 if and only if (36) and (37) hold. Let #, 1 denote the right-hand sides of
(36), (37), respectively. Then, for all 0, v,
5 Gi
[ @Co
VN

Expanding shows G has the conditional mean given in (38). The law (40) of G follows from computing the

(36), (37)} ={(w,uy+ (w,u).

covariance of the gaussian process

... (0,G0) (9,G0) /. Gm /2A> . G'n .
0,0)— = —(w,——+ ¢ —( w,——+ ¢ .
(0,0) ~ ~ N g N 4

(Note that if o € {e3,...,eum}, then (n,0) = 0 and thus @w = 0. Similarly if 0 € {é,,...,én}, then
W = 0. So in most cases the above formulas simplify considerably.) m|

Corollary 4.18. If (m,n) € S ,, then under P P], G has law

G a4 (1+ov(1))ﬁmT+ (1400 op(1)nm” .G
\/N_ N(q.: + ¢€) N + ¢) N \/N/

where 0, (1) denotes a term vanishing as v — 0 and G is as in Lemma 4.17.

This corollary is proved by a standard approximation argument, which we record as Fact 4.20 below.
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Definition 4.19. A function f : R — Ris (2, L)-pseudo-Lipschitz if | f (x)— f (y)| < L|x—y|(|x|+|y|+1).

Fact 4.20 (Proved in Appendix A). Suppose i, i’ € P3(R) and let i, = By, [x*]. If f is (2, L)-pseudo-
Lipschitz, then

[Bulf] = By [f1] < 3LWa (g, 1) (2 + Wa(p, 1) +1).
Proof of Corollary 4.18. Let h = th; ' (m), h = F;Qe(n), so (h, ﬁ) € Te,v- Recall y; defined in (26). Since
h — th,(h)? is (2, O(1))-pseudo-Lipschitz, by Fact 4.20,

[q(m) = qe| = |Ej . [the (1)) = Ej o, 40y [the (1)7]] = 05(1).

Similarly ¢(n) = ¢ + 0,(1) and d.(m,n) = d. + 0,(1). Also, by gaussian integration by parts and
Lemma 4.2,

Ejyno.pe o) [ithe ()] = (e + €)o

Thus )

(m, k) . . .

NGt ‘]Ehw [ithe (7)) = Bj (o g, 1.0 [the ()] = 0,(1).

Similarly NEZ;TE) = d; + 0,(1). Finally, equation (22) and regularity of p,, p. (recall (23)) imply

pe(q(m)) = 0. + 0y(1), pe(q(m)) = =1+ 0,(1).
Combining these estimates shows the conditional mean of G in (38) simplifies to the form (41). In particular
note that A(m,n) = 0,(1). O

4.7. Deferred proofs. We now prove various results deferred from the above proof.

Lemma 4.21 ([DS18, Lemma 10.1]). The function & satisfies the following for all x € R.

(@) 0 < E(x) < [x|+ 1.
(b) &'(x) = E(x)(E(x) — x) € (0,1).

(c) &"(x) € (0, 1).
@ & e (-1/2,13).

Proof of Lemma 4.2. We calculate
ge = Elthe (e + €)"/2Z)?]
— (P + &) + 2¢ E[(Y, + €)V2Zth((Y, + €)V2Z)] + E[th?((. + €)V/2Z)?]
= (P + &) + 26(Pe + &) E[1 — th® (Y. + €)V2Z)] + E[th®((Y. + €)V2Z)?].

Thus
E[th?((p. + )2)7] = L= Zéiw_g;;(?b::e(ﬂ’g te)
and
]E[th/e((l;bs + E)l/ZZ)] =1+¢e— ]E[thz((l;bs n 6)1/2Z)] _ 1—qge+e— 52(1/)5 +e) L

1—2e(¢e + €)

Differentiating (19) and applying Lemma 4.21(b) shows the following fact.
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Fact 4.22. Fore,p0 > 0 and anyx € R,

1+ ¢ , €
R, ——
0+ &(1+¢p) ’ 1+ ¢
Thus .
14 0F, ,(x) > ——— (42)

T o+e(1+ep)

For g in any compact set away from 0, |F; ,|, |F{ ,| and |F£32)| are uniformly bounded independently of ¢.

ol |
Proof of Proposition 4.6. Itis clear that V3, , 7% ,(m, n) is diagonal, so it suffices to check 0% F.,,(m, n) >
n for all a € [M]. We calculate

& Fwm, ) = pelatm) (14 pelgm)E, (S22 4 2, — . (glmm )
@ epglm)
" pelq(m)) + e(1+ epe(q(m)))”

Cbd] the result follows. O

Since p, € [Cp/,

Proof of Lemma 4.14. The function x +— p.(q(m))Fe o, (q(m))(x) is uniformly Lipschitz over m € RY, be-
cause pe(q(m)) € [C;dl, Cbd]. Note that g appears in (35) through the term /2g in h and is independent
of all other terms apeparing in (35). Thus PV, Fip (m,m) (z) is bounded, and continuous for z in an neigh-
borhood of 0, uniformly in m, n. Similarly, g appears in (34), (35) only as the term el/? g in (34). This
implies the conclusion. O

5. ANALysIs oF AMP
In this section, we prove items (a), (b), and (d) of Proposition 4.8. Item (c) will be proved in §6.

5.1. Scalar recursions. For g € [0, 4.], ¢ € [0,1.], define

Pavie(y) = Elthe ((y + €)' °Z + (e = ) 2Z)the (p + &)°Z + (e = 9)22")],

Ramp(q) = axE[Fe,.((q + e)'*Z + (qe — Q)I/ZZ/)F&@(((Q + &) PPZ + (g — 9)'*Z")],
Define the sequences (7, )k=o and (¥ )k=1 by §, = 0 and the recursion

Vi = Raw(7), Tr = Pane(¥y).

Lemma 5.1. The sequences (4, )k=0, ({1 )k>1 are increasing, and for small €, we haveq, 1 g, and ¥, 1 ..

Proof. Let the functions

the (x) = the (e + €)*x), Fe(x) = Fep ((qe + €)x)
have Hermite expansions
the(x) = Y a,Hy(x), Fe(x) =Y. byHp(x),
p=0 p=0

where H, (x) is the p-th Hermite polynomial, normalized to IE H,(Z)? = 1. Then

p p
Pamp () = Z 0,2, <1:Lb&—:—gg> , Rame(q) = ax Z bf, (;;:_i) .

p=0 p=0
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So, Pamp and Rayp are increasing and convex. Thus (4, ) x>0, (Ek)kzl are increasing, and their limit is the
smallest fixed point of Panp © Rayp. It remains to show this fixed point is (q,, ¢ ). By definition of g, 1,
(ge, Ye) is a fixed point. Since Panvp © Ramp is convex, it suffices to show (Pamp © Ramp)'(g¢) < 1. Note
that

(Pamp © Ramp)'(9e) = Pynp (e ) Rigyp (7e)-
By gaussian integration by parts,

Phw(¥) = B[ (¢ + &)Z + (e — ) P2t ((p + )P Z + (e — 9)*2")],
Rinp(9) = a E[FL, (9 + )2 Z + (qe — )P Z)FL,, (g + ) Z + (g — 9)°Z")],
and in particular
Py (Ye) = E[thi (e + 8)1/22)2], Riyvp(ge) = ax ]E[F/s,gg((ﬂle + 5)1/2Z>2]-
In light of Proposition 4.1, a simple continuity argument shows
E[th, (Y + €)'°2)") SB[ (9,°2)"),  E[FL, (4. + ©)72)°) S EIF|_,(9,°2)").
Thus,

(Pamp © Rawp)'(qe) = ax E[thl (Ve + )/ Z)* | E[F,, (g + &)"*Z)*]

el0 Cond. 3.3
<

5 o, B[t (¢, *2)! E[F;_, (9,°2)"]
Thus, (Ramp © Pamp)’(ge) < 1 for sufficiently small ¢. Hence g, 1 q. and Ek T Y. O

5.2. State evolution. The limiting overlap structure of the AMP iterates in the null model follows directly
from the state evolution of [Bol14, BM11, JM13, BMN20]. Define the infinite arrays (X;; : i,j > 1) and

(Zij:i,j=0)by
i=j, i=],
Zq_{‘/’s J Zl]_{qf . ]
llbl/\] 17&]' ql/\j L#].
For any k > 0, let ©<j € R¥*¥ and Z:k e RE+Dx(k+1) denote the sub-arrays indexed by ,j < k.
Proposition 5.2. For any k > 0, as N — oo the empirical coordinate distribution of the AMP iterates
converges in Wy, in probability under P, to
M
—Zé L. 1) 2 N0, ey + e117T), Z (1, Y Y N0, Sk + e11T). (43)

Proof. The state evolution [BMN20, Theorem 1] implies that (in probability)

N M

1 . . . 1 ~ ~ ~

< D00k, . i) W N(0,£2) 4+ e117), i Z 5(hS, ..., 1) ¥ N(0,£9) 4 e11T).
i=1

holds for arrays ¥(0) 2(0) defined as follows. As initialization, Z( ) Z(O) 201 for all i > 0. Then, for

(ﬁo, . ,ﬁk) ~ N(o, i( ) ¢t €11") and 0 < i < k, define recurswely
(0) (0) 2
Zk+1 it1 Zz+1 k1 = O E[Fep, (Hi)F“"'@S (Hi)]-

For (Ho, ..., Hier) ~ N(0,29) |+ e117) and 1 <i <k + 1, let

2O O B[th, (H;)the (Hii1)]-
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It remains to show - ), T coincide with 2, Y. Since io,o = (¢, induction shows the diagonal entries are

Z,((O,)( Ve = Tik, i,(f,)( = qe = ik
Then, the above recursion gives ZZ(JF)I = = Ramp (Z(O)) iz( ]) Pam p(Z( )) By induction, for i # j,
Ilbzx\] l]’ Z‘i/]‘ = qi/\j = Zi,j
Thus ©(®) = ¥ and Z( ) = )i O

The following proposition characterizes the limiting overlap structure in the planted model. To conserve
notation, we will denote the planted solution by (m, n), rather than (m’, n") as in Proposition 4.8.

Proposition 5.3. Let (m,n) € S; o, (1) h = th, ' (m), h = F;g{_ (n), and (G,&,8) ~ P, For any
k>0 asN — © the empirical coordinate distribution of(h, 12) and the AMP iterates converges in Wy in
probability under P™ PI’

\%

M
1 . . ~ ) ~
~ 2 S(hY, . h Ry YN0, By + €117 Z B ) BN, Sk + €117,

We prove this proposition by introducing an aux1hary AMP iteration. We fix m, n, i, h as in Proposi-
tion 5.3. Let G € RM*N pe given by (40) and G € RM*N have iid. N(0, 1) entries, and couple these
matrices so that a.s.

PLGPL = PLGPL, (44)
and, with G denotlng this common value, G — G and G — G are independent. Further, let Z ~ N(0, 1),
&~ N(0,I), & ~ N(0,I) be coupled to G such that

G+A=G-— where (45)
\ q(m) + ¢ HmH Vo(m) +e H"H

€ T
A‘W( T <m>+¢<n>+eunuumuz

(Such a coupling exists by (40).) The auxiliary AMP iteration has initialization nW—1 =0, m0 = qi/ 2 1,
and iteration

(46)

- (1),k

m WK —th, ("), nWk —F, , (I

A(l)/k N
Jh as follows. Let 1, = 0, and
pk_ 1 & (m(l),k _ @m> " Ve(qe —qy) By 9 + - o [ nWA=1 ﬂn (47)
VN ge(ge +e) et

h(l)/kH _ 1 aT n(Wk ¢k+ln " \/E(‘J’e - ¢k+1)€ n ¢k+1 + eh —d, <m(1),k . ﬂm) ‘
Ye(e + ) Pete




28 BRICE HUANG

Define augmented arrays (Z:r] :1,j € {o,x} UZx) and (ij] t1,j € {o,x} UZsg) by

(e + ¢ i=j=lori=j=o, (g: + ¢ i=j=0ori=j=o,
ll)]»+.£ i>j=1, §j+€ i>j>0,
pr _JVite == e lre 1E0=e
i,j Ve(pe—1;) i> 1,]- =1, ij ege—9q; i> 0,]' =0,
Ye(ete) Vae(gete)
1 i=j=~, 1 i=j=m,
0 i=0,j =, L0 i=09,j =X,

with the remaining entries defined by symmetry over the diagonal. Note that on indices (i, j) where
{i,j} n{o,} = (&, these arrays coincide with £ + €117 and X + e11". Let &}, € R(k+2)x(k+2) apnd
i;k e RU+3)x(k+3) denote the sub-arrays indexed by {o, >} and {1,...,k} (resp. {0, ..., k}).

Proposition 5.4 (Proved in Appendix A). For any k > 0, as N — o0 we have the convergence in Wy in
probability under ]Pr,"’"
— 2 o(hi, &, B, ) YN (0,2, " Z 8(ha, &a, 1, . B T N0, 2E,).
i=1 a=1
This is proved by applying state evolution, analogously to Proposition 5.2. We next show that this AMP

iteration approximates the original one, in the following sense.

Proposition 5.5 (Proved in Appendix A). For any k = 0, as N — o0 we have ||h - h |[/VN — 0 in
- (1),k - k
probability under]P’E'fl’:]’ and ifk > 1, h(l) —h |/v/N — 0 in probability under ]PE,PI

Proof of Proposition 5.3. If we identify index ¢ with k + 1, the array {Zj] :i,je{o}u{l,..., k}} coincides

with Y41 + €117, and similarly {i:r] : 1,7 € {o} U {0,...,k}} coincides with Sk + €117, By
Proposition 5.4,

N
1 " (1),k Wz
5 2O Y ) BN, B+ 1),
i=1
1 &~ ~(1),k W,
2 o, hV ) M N(0, 25, |+ e11)
a=1
in probability under ]P Proposmon 5.5 implies the conclusion. O

oy m,n
5.3. Completion of the proof. We separately prove Proposition 4.8 under P and IPé bl

Proof of Proposition 4.8(a)(b), under P. By Proposition 5.2, for any k,
W. W.
ik = N0, g, + ), ok = N(0,qe + €)

-k o~k
in probability. So, with high probability, (h ,h ) € 7;,, and thus item (a) holds. Approximation argu-
ments similar to the proof of Corollary 4.18 using Fact 4.20 yield

Q(mk) — E[the((e + 5)1/2Z)2] = 4.
in probability. Regularity of p. and its derivatives then implies

pe(q(m*)) — o, pL(q(m*)) — —1
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in probability. Proposition 5.2 also implies

-k ~k
hm phm—Hh "k I> = hm phm—“h " h =0
k—o0 N—)OO N—»oo
Below, let ox,p(V N) denote a random vector v such that limg_,, p-limy_, \/LWHUH = 0, and ok p(1)
denote a random scalar ¢ such that limy_,, p-limy_, . [t| = 0. Let
‘k GmF
h = Z— + &'%g — p(q(m"))n*.
By Lemma 4.2,
~k  Gm*
h = Z— +eV%g — pent!
\/ﬁ g QE

~k .
The above discussion implies b — . ok,p(VN), and thus n* — Fglp{(q(m))(hk) = oxp(VN). By (35),

VuFfap(m®, n*) = o p(VN).
Moreover,

de(m Z Fp g (%) + 0k,p(1) = de + 0k p(1),

for d, defined below Lemma 4.2. So

‘ G 'nk ) Gl
Vgl ) =t on) 4 S g o+ (1 ; %) 0p (V).

Since |G|lop < CVN whop,

Vi Frbp(mk, nk) = A G n* +e2g —dem* + 0 p(VN)
VN
W i o p(WN) = 0kp (W),
proving item (b). O
Proof of Proposition 4.8(a)(b)(d), under ]Pé b+ Suppose first (m,n) € S o (1), and let h = th; ' (m), h =
F c_g (n). The above argument, using Proposition 5.3 in place of Proposition 5.2, shows items (a) and (b)

hold with high probability under ]Pm . Proposition 5.3 also yields

hm pthHh —h|? = hm pthHh —th

k=00 N o0 O N—w
Thus item (d) holds with high probability under ]Pm . Finally, we show this remains true for (m,n) € S; ,,
for suitably small v. Let (m, 1) € S o\ (1) be such that = Hm m|?, 5|ln —n)* = 0,(1). We will show
there is a coupling of (G, ¢, g) ~ IP':;,'I' and (G, g g) ~ ]P | such that

|G~ Glop, 12 — 313 —EH < 0y(1)VN. (48)

If (m*, n ) are the AMP iterates under P’ s ' and (mk nk) are the AMP iterates under P™", this implies

PI ’
|m* —m H, |n* — H < 0,(1)V/N (this uses crucially that v is set small depending on k). This implies
(a) and (d) continue to hold, and similar approximation arguments to above show (b) continues to hold.
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We now prove (48). Let h th,'(m) and h F ! Another approximation argument shows

) ¢ pe(g(my (-
h—h ,|h = k|| < 0,(1)V/N. The conditional means of G, G are given b (38), and an approximation
g y pp

argument shows

e,Pl &,Pl

[EYAIG] -~ EZNIGI, < 0s()VN.

We couple the random parts é,E as follows. Let 1, € (resp. El,ﬁl) be ’Fhe the unit vectors parallel to
m, n (resp. m, n). Let T, T be rotation operators on RN, RM with Tgl = El and f?l = El. These can be
set so ||T — IN|op, T — Inm|op < 0,(1). By (40), we can couple G, G such that G = TGT . Since, for
(N;Hop < C+/N with high probability, on this event

HG GHOP HGHOP(”T INH0p+|‘T IMHorJ)—Ov(l)\/N

Thus |G — EHOP < 0,(1)VN. The stationary equations (36), (37) then imply |g — ?HOP, g — §”0p <
0,(1)V/N. This proves (48). O

6. LOCAL CONCAVITY OF PERTURBED TAP FREE ENERGY
In this section, we prove Lemmas 3.5 and 4.9 and Proposition 4.8(c).

6.1. Description of spectral gap bound. We first define a quantity A, which is a perturbed analog of
the value Ay = inf,~_; A(z) defined in Condition 3.4. We will see that A, upper bounds the maximum
eigenvalue of VZF ¢, , near late AMP iterates. To define A, we introduce ¢-perturbed variants of quantities
appearing in Condition 3.4 and Lemma 3.5. Let

. ch2x ~ F ij 0e ( )

(x) = ————, (x) = ——————.
fe) 1+ ech?(x) felx) 1+ 0.F; , (x)
We extend these definitions to ¢ = 0 by defining fo( ) = ch®(x) and ]?0 as in Condition 3.4; this extension
will be used solely i in Lemma 6.1 and the proof of Lemma 3.5 below.

Note that fé and fé are positive, the latter because Fact 4.22 implies F; , (x) < 0and 1+¢.F; , (x) >0,

andfg( ) has mmlmumfg( ) = o=

Oand 1+ (1— qo)Fi_qo(x) > 0. In the below, it will be convenient to abbreviate §, = g, + &, 1!)5 =1 +e.

The function fo is also positive, as Lemma 4.21(b) implies F; 0 (x) <

Lemma 6.1. For any ¢ > 0 (including ¢ = 0), the functions m, 0, : (— +0) — (0, +00) defined by

me(z) = E[(z + fe(3172))71],

1+e’

Ry 2
0:(2) = E[(z + fe(§.°2)*| E ( - Z)l/z )
1+me(z )fé( Z)

are continuous and strictly decreasing, with

lim m.(z) = lim 0O(z)=+o0, lim m.(z) = lim 0.(z) = 0.
z)—(14¢)~1 z)—(1+¢)! 21400 zt 400

In particular O, has a well-defined inverse 0" : (0, +0) — (——, +0).

Proof of Lemma 6.1. Note that m.(z) is clearly decreasing on (———
show the other limit, let
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_ 1 :
For z = et with ¢ > 0 small,

me(z) = B[+ &(§°2) 7] = BIH{|Z] < 0+ g (9°2)) 71 = Q).

Thus lim, | _ (14 ¢)-1 m(z) = +00. We can write 0.(z) as

AN ~1/2
o) - Bzt £GP 2) ) [ @R G2 ] )

E[(z + f:%2)1 L1+ me(2)f5)°2))?

Since m,(z) is decreasing and fe is positive, the second factor of (49) is manifestly decreasing. The z-

derivative of the first is

—E[(z + £@°Z) E[(z + f(§Y°2) %] + El(z + fo(§1°2)) 2P

1/2 <0
E[(z + fe(§°2)) ']
by Cauchy-Schwarz. Thus 0, is decreasing on (—5 + =, +0). We now calculate its limits as z | _1+_s and
z 1 400. Consider first z = _1+_e + t for ¢ small. Then the first factor of (49) is
El(+&@ °2)% _ EM{Zl<oPe+e@2) 0

=

E[(+ & "2) P E(Z] < 08+ g 2) 7 oz O
which diverges as ¢ | 0. The second factor of (49) tends to 1 in this limit by dominated convergence. Thus
lim | (14¢)-1 Oc(z) = +00. We can write the first factor of (49) as

E[(1 + =" £e(9:"2)) )

E[(1+27 £ 2)
which tends to 1 as z 1 +00 by dominated convergence. In this limit, the second factor of (49) tends to 0
by dominated convergence, so lim;14 0:(z) = 0. This completes the proof. O

Proof of Lemma 3.5. Note that
m'(z) = —E[(z + ch?(y)*Z)) 2.
Thus, differentiating A yields
2 (V27
folas*2)
1+ m(2)fo(a,°2)

The assertions about 6 follow from Lemma 6.1, with ¢ = 0. Since 6 is strictly decreasing on (—1, +0),

NMNiz)=1+4a.m'(z)E ( ) =1—a,0(z).

A’ is strictly increasing on this interval, and therefore A is strictly convex on this interval. Since 67! :
(0, +90) — (—1, +0) is well-defined, we may define zo = 0~ (a; '). This point satisfies the stationarity
condition A’(zg) = 0 and is thus the unique minimizer of A on (—1, +0). m]

Recall from below Lemma 4.2 that d, = a. E[F; , (ﬁl/ZZ)]. We now define the threshold A,.

Definition 6.2. Let z, = 6, '(a; ') and

A=z, —a,E (50)

2312y
fe(@:2) ] .
e-
1+ me(z)fe (3. 2)
Lemma 6.3. As¢ | 0, A, — A (defined in Condition 3.4).
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Proof. By Proposition 4.1, as ¢ | 0, (Fe, 0e) — (4o, 4}0) Thus, for fo( ) = ch®(x), the push-forwards
(fo)«N(0, ) and (fg)#N(O Je) converge weakly to (fo)+N (0, 1) and (fo)#N(O qo)-

Forany z > —1and small ¢, the integrand of 1, (z) is bounded independently of ¢, and thus lim, o . (z) =
m(z) by dominated convergence. Similarly, all three integrands in (49) are bounded, so lim; o 0,(z) =
O(z). Moreover, one easily checks that on any compact subset of (—1, +00), the derivatives of m,, 6 are
bounded independently of ¢. Thus m, — m, 6, — 6 uniformly on compact subsets of (—1, +00).

By Lemma 3.5, lim;|_; 6(z) = +00, s0 zg = 0~ '(a; ') is bounded away from —1. The above uniform
convergence then implies z, — z¢ and m.(z.) — m(z). Since the below integrands are bounded,

fé(~1/2 ) ]_)]E ﬁ)( 1/2 ) ]
1+ me(ze) fe (70 Z) 1+ m(z0) fo(qy°2)

Finally, as F 2,@ is bounded (by Fact 4.22) and limits to the bounded function F] _ 4o°

E

we have d, — dy. O
6.2. Hessian estimate. We next prove the following upper bound on V275, ..

Lemma 6.4. Suppose (m,n) € S y,, and | G|op, || < CV/'N for some absolute constant C (i.e. independent
of all parameters in §4.1). Let heRN, e RM be defined (as in Lemma 4.16) by

i = th=1(m), h— j—ﬁ &2 — po(g(m)n,
and
D, = diag(f.(h)), D, = diag(f.(h)).
Then,
Ae mmT

) 1
ViTo(m,m) < Pi (D1 = 5,67DaG — Iy ) Py + S 4 (oc (1) + o (1)

(Recall the meaning of oc,,, (1), 04,(1) discussed in §4.1.)

Fact 6.5 (Proved in Appendix A). Letm € RN, n e RM, and let h, h be as above. Let F = Fe po(q(m)) and

D; = diag (P’(ﬁ)) , D, = Iy + pe(q(m))Ds.
Then,
-
Vi T, m) = Dy + 2 ol g m))d (m, )
Tion(i, AN T i N T
+ ol (g(my) . CLLE"R) = 2D5(F(T) n))mN:;zm(F (h) + 2Ds(F(h) —n))TG
/ z M ) ) mm?T
+ {pfg(q(m»dg(m,m P S (2 () <3><hu>)} 5
pe(q(m)) m(pe(q(m))F"(h) + 2D4(F(h) — n))"

SN 6D plalm) N

Vf,,n tap(m, 1) = pe(q(m))Dy,

Furthermore, for

Vz TAP(m n) =
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we have
¢ G'D,G
VeFrap(m,n) = =Dy — N2 + pe(q(m))d(m,n)Iy
G'D,'F'(hym™ + mF"(h)"D,'G
+ pe(q(m)) - - 4

N3/2

/ 2 M
+ {ottqom.on,m) + ELIIL S* (o G2+ 9

_ (pela(m)P" (i) + 2(F(e) —ma)(1 + m(q(m))F’(iia)))Z) e

a=1

pe(q(m))(1 + pe(q(m))F'(h,)) N

Lemma 6.6 (Proved in Appendix A). Suppose (m,n) € S, and |G|op, |§| < CVN for an absolute
constant C. The following estimates hold for sufficiently small r( (depending on €, Ccyx, Cpd, 1)

(a) Up to additive o,(1) error, g(m) ~ q¢, Y(n) ~ Y, and d.(m,n) ~ d, p.(gim)) ~ o,

P;(Q(M)) ~ —1, p{(q(m)) ~ Cewx.

(b) |Dz — Dalop = 0, (1).

(c) ﬁ Zﬁil(ZF’(hu)z + F(S)(hu)) is bounded by an absolute constant.

() \/Lﬁ HD;lF”(I/z) | is bounded, with bound depending only on ¢.
Proof of Lemma 6.4. By Fact 6.5 and Lemma 6.6,

G'D.G Gloym' + mo!G mm '
NZ —d Iy + - N L 4 (Cede + Cy) N

for C; € R, v; € RN with |Cy], |v,]| bounded depending only on ¢. By the assumption on | G|op,
1
N

ViFip(m,n) < —D; — + 04 (1IN,
|G 04| is also bounded depending only on ¢. Note that

(PsDym)m" + m(P;;Dym)
q(m)N

—D, < —P;,DP;; — (Pj;D1Py, + PyDP;5) = —P;,D1P;; —

and similarly

1

PLEG'D,G T PLG'D,Gm)T
GTD,G < PG D,GpL — LuG DoGmym_ & m(P;, G DoGm)

N q(m)N?
Moreover |D1op, [D2llop < O(e71), the latter by (42). So, there exists C, € R, v, € RN with |C,|, |0,
bounded depending only on ¢, such that
G'D,G vym! +mv, mm’
ViFfp(m,n) < Pl (—Dl - )P,ﬁ—dslm N2 2+ (Conde + Cy) N Hon(DIN-
Note that d, < 0, because Fé,gé < 0 by Fact 4.22. So, for large Cyy,
mm!  vom! +mv] (A +d)mm’ vy0,
(Ccvxde + CZ) + < b + .
N N2 [m] Conlde| = Cz + (Ae +de)/q(m)

The final term has operator norm oc_, (1). m]
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6.3. Null model: post-AMP Gordon’s inequality. We turn to the proof of Proposition 4.8(c), first under
the measure IP. In light of Lemma 6.4, we define

1
R(m,n) = P: <—D1 - NGTDZG> PL, (51)

where, as in that lemma, D; = diag(fg(il)), D, = diag(ﬁ(fl(m, n,G))) for h = th, ' (m) and

i, n, G) = &+ &g — pu(q(m)n.

Proposition6 7. With high probability under P, R(m, n) < (A +d.+0,,(1)+0k(1))Pps forall | (m,n)—
(m*, n*)| < roVN.

For z, defined in Definition 6.2, let

712
ri = El(ze + fe(@!°2)) 7]
Define the AMP iterates m°, n°, ..., m*, n* and h h1 ﬁl h ﬁ as in (20), (21), and
<k . ~0 ~k

DATA:(g,h,...,h,g,h,...,h).
Let U(ry) = {(m,n) : |(m,n) — (m*,n")| < rov/N}. Leth = h(m*,n*, G), and note that
h"=h +0en* ™t — pe(g(m*)n*

, , Lk

is DATA-measurable. Let U'(ro) = {h : [h — h | < Crov/N}, for a suitably large absolute constant C.

Since |G|lop = O(v/N) with high probability, on this event i(m, n, G) € U'(r,) for all (m,n) € U(ro).
Below, we will write D,(h) = diag( fg(h)) for a varying J which is not necessarily /1(m,n,G). On

(52)

the other hand D always refers to the function of m defined above. The starting point of our proof of
Proposition 6.7 is to recast the maximum eigenvalue as a minimax program, as follows:

1 .
sup sup D' <D1 — —G ' Dy(h(m,n, G))G> v
(mnel(ro) 011 N

olm

= sup sup inf { (D10,0) + (Dy(h(m,n,G))"'%,0) + —<Gv v>}
(m,m)el (ro) o] =1 0€RM VN
olm

Here we used that D4, D, are positive definite, by positivity of fg, fg On the high probability event that
|Glop = O(V/N), this is bounded by

up sup inf {~(Dio,0) + (Dall) 5,8) + (G0, D). )
(1m,m)eU (ro) 0] = 1lel=re VN
hell'(r,) olm oln
We will control (53) by applying Gordon’s minimax inequality conditional on the AMP iterates; we explain
this next. Let
1o . M R R
Hamp = NZ (%8, 1}, 1), favp = M Z (€23, 1S, ..., hb).
i=1 !

Further let (Z+ )ij=0 and (Z )Z j>—1 be augmented versions of (%, j)ij=1, (Zi,j)i,jzo where we add a row

and column of zeros, i.e. Z+ = Z+ = Z+ = Z+ =
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Lemma 6.8. For any v > 0, with high probability,
Wa(fiame, N(0, 25, + 117)), Wa(fiame, N(0, 25, + e117)) <. (54)
Proof. Follows from AMP state evolution, identically to Proposition 5.2. m|

We now let v be sufficiently small depending on 7o, k and condition on a realization of DATA such that
(54) holds. (Note that (54) is DATA-measurable.) Define ' = W el/? g, W=n— e'/2g and
8 8

M = (m’, ... ,m*) e RNV*(k+1), Ny =1’ ... ,nf1) e RM*K,
H ) = (i,..., 1) e RN*K, Hy = (ilo,...,ilk) e RMx(k+1)
Note that on event (54),
NM&)M(;() = Tk +0u(1), ;]N(T)N(k) = Yk + 0,(1), (55)
zirH<T>H<"> Lk +0u(1), Mﬁ< JHy = ek +0u(1), (56)

e . _ =1 =k
where 0,(1) denotes an additive error of operator norm 0,(1). That is, {n°,...,n* Y and {h ,..., h"}
span k-dimensional subspaces of RM and RV, and the linear mapping between them that sends n’ to
B s an approximate isometry. The same is true, after scaling by a factor a,, for {m°,...,m*} and

v vk
{ho, ..., h }. Define the linear maps

i % T —1n7T & T —1asT
T = H(N ;)Nx) " 'N ), T = H (M M) "' M.
(The inverses are well-defined because the matrices are full-rank, by (55).) That is, T (resp. T) projects

onto the span of {n°,...,n "1} (resp. {m°,..., m"}) and then applies the linear map that sends n’ to
41 i

h (resp. m' to lAlZ)

Lemma 6.9 (Post-AMP Gordon’s inequality). Conditional on any realization of DATA satisfying event (54),
the following holds. Let & ~ N(0,In), & ~ N(0,Ip), Z ~ N(0,1) be independent of everything else and

(D) = VNT% + HPN(,{)UHPM(M gipr( ) = VNT + HPM(,{)UHPNW
For any continuous f : RN x RM x RN x (RM)? x RNx(k+1) o RMx(k+2) _, R,

2Pk, 1Py, o]

. : 2 .

sup  sup inf < f(9,0;m,n,h,DATA) + —(Gv,0) +

(m,m)eU(ro) [o]]=1 12 ="e, VN VN
hel’(r,) ©tm 01

is stochastically dominated by
sup sup inf {f(i),ﬁ;m,n,ft,DATA)

(m,m)ell(ro) [o]=12=re,
hel’(r) oLlm* vln

T, @)+ =5, Bl >>} +0,(1).

Proof. We will first show that conditional on DATA,
cpl
PN& : GPM<k)

1 d =T A
—G=T +T+0,(1) + ———,
VN o) VN
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where 0,(1) is a deterministic error of operator norm 0,(1) and G is an i.i.d. copy of G. Conditioning on
DATA amounts to conditioning on the linear relations

1 . oi - 1 . —i+1 .
—Gm'=h 491", —G'ni=h" +d.m (58)
VN % VN
for0 < i< kand0 < i < k — 1. So, Pﬁ GP]%,I is independent of DATA and G — PL GPZtI is
(k) (k) N (x) (k)

DATA-measurable. It suffies to show the latter part is T +T, up to 0, (1) additive operator norm error.
Recall from (55) that the condition number of ﬁM&)M(k) and ﬁN&)N(k) is bounded depending on k.

So it suffices to show

1 T A
—GM(k) - (T + T)M(k)

— — 0,(1)VN. (59)

I—GTN —(T+T )Ny

op op
By (58) and the definition of T,T,
1 . 1 _
\/_ﬁGM(k) = H(k) + (_OE[O,N(k)], \/_NGTN(]() = H(k) + dsM(k—l)/
TM ) = H), TN ) = Hp).

For all i,j > 1, we have by gaussian integration by parts
B ml) = B () + €2g)
—1/2 — —1/2 —
= E[(¢; ;Z + (e + € - lal’iAj)Z,)the(EbiAjZ + (e + e EbiA]')l/zZ”)] +0u(1)
= @Jw +0u(1).

Moreover ﬁ(fli, m®) = 0,(1). Thus,

T 1 1T
T M) =N <ﬁN&)N<k>> <ﬁH<k>M<k>>

=Ny (Zax+00(0) (10,0 2] + 00(1)) = [0, Ny] + 0, (DVN,
where the errors are all in operator norm. A similar calculation shows
AT
T Ny =deM_q) + Ov(l)m.
Combining proves (59) and thus (57). So, conditional on DATA,

1 oA A e A A~ e 1 -
\/—N<Gv,v> =0, To)+ {0, Tv)+ 0,(1) + \/_><GPM<1<)U Pva)

By Gordon’s inequality applied to G,

sup  sup inf {f(i),z?; m,n, h, DATA) + 2(0, T?) + 2(3, T0)
(m,m)eU (ro) 0] =1 o] =re,
hel'(ry) ©lm olm

+ —<GPM(k>v Pﬁmw

VN

ﬂPvaMPM“WZ}
VN
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is stochastically dominated by

sup sup inf {f(v, o:m,n,h, DATA) + 20, T5> + 2(v, Tv>
(m n)el(ry) |v|=1 ||77H Te,
hell!(r) olm oln

2|Py 2| 2Py, 2
(k) . 1 i (k) ~
W@,PM(H &)+ T< PN(k)§>}
The quantity inside the sup-inf is precisely f (9,0, DATA) + \/Lﬁ@, $ap(0) + \/Lﬁ@\, S (0))- m|
Define
Samp(0) = VNT? + ”PN k)vHé, Samp(0) = VNT? + HP 7’H5
Note that

1 . ~ ./ ~ rg N 1 ~ . ./ . 1
— 9) — )| < —=|Pm,&l, — D) — o) < —
\/ﬁHgAMP( ) gAMP( )H \/NH (k) H \/ﬁ“gAMP( ) gAMP( )H \/N
are both bounded by v with high probability, and similarly |Z|/+/N < v with high probability. Below, let

err denote an error term of order 0,,(1) + 0x(1) + 0,(1). By (53), Lemma 6.9, and these observations, it
suffices to show that with high probability,

HPN<k>5H/

sup sup inf { —(D19,%) + (Dy(h)"'9,9)

(mm)el (ro) |b]=112]=re,

hel!(rp) olm Uln
2 2
+ —0, 4 0))+—(v,8 V) < Ae +de +err. (60)
\/ﬁ< gAMP( )> \/N< gAMP( )>} € €
Lemma 6.10. Let
N
Hanp = Z 51' :()/ Hanp = Z o éﬂ/h2/-~ hy).

Conditional on a realzzatlon of DATA such that (54) holds, with high probability,

Wa(p N (0, 1) x N(0, i), Wl il N(0,1) x N(0, 8<p) < 20. (61)

Proof. Under event (54), the W,-distance of the marginal of i/, , on all but the first coordinate to NV (0, Yer))
is deterministically at most v. Since & is independent of DATA, it follows that W, (W N(0,1) X
N(0,Z<k)) < 2v with high probability. The estimate for 1’ \p is analogous.

Fact 6.11 (Proved in Appendix A). Let i1, i’ € P2(R?), and suppose the marginals of u have fourth moments.
Suppose f1, f2, f3 are L-Lipschitz functions, and fs is bounded by L. Then there exists C = C(u, L) such that

|]E(x,y,z)~,uf1(x)fz(]/)f3(z) - ]E(x’,y/,z/)~y/f1(x/)fZ(y/)f3(Z/)| < Cmax(Wa(u, 1), Wa (g, Pl/)z)- (62)
Lemma 6.12. Suppose (61) holds. Uniformly over (m,n) € U(ro), h e U'(ro), 0 € {|[o| = 1,9 L m},

W, ( Zé 1, i, o, G (9)a), (722,52, Fo (712 »z’)) <err. (63)

a=1

Similarly, uniformly over (m, n) e U(ry), v € {|v]| =r1e,0 L n},

( 25 (¥, mi, ganp(8)i), (D2 Z, the( 1/22),r€z’)) <err. (64)

i=1
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Proof. We first show that for any ¢’ € {|?'| = 1,0" L m},

< 3 0%, Savel@)), (722, 2 >>=ov<1>. (©5)

a=1

Indeed, let o’ = \/LNM(;()Z_} + P]t[(k)i) for some T € RK+1, so that Sap(@) = I:I(k)z_} + ||P]f,[(k)i)/|\g. By the
5 vk o 5

approximate isometry (55), (56), since \/LNM(;{)Z) 1 m*, we have ~(h, H(y0) = 0,(1). (Since v is small

depending on k, we may take it much smaller than the condition number of ig k-) By this isometry,

( 25 k)v )a), (77227, 1Py © \Z)> 0, (1).

Then (61) implies (65). Now consider (m,n) € U(r,) and let T be a rotation operator mapping m/|m| to
m* /|m*|. Note that [T — I|op = 0y,(1). Consider any v € {|0| = 1,9 L m}, and let o' = To. Then,

18anp (@) = Zane (@)1 < (VNI Top + [EDI" = 0]l < VN([T[op + O(1))05, (1)

Note that

A 5 IR 10Ty @2
. |TM (10| |H7| (yH H,0 )
ITlop = sup ———— = sup ——— = su —%

deritt [M)?]  Geritr [M)0]  derert \ (FMTM, 7 )

is bounded by an absolute constant by (55), (56). Thus | g xp(?') — S anp (@) < 07,(1)V/N. By (52) and
definition of U’(ry),

~k ~k -k ko
|h" —h| <[k =R+ [k — k| < (0k(1) + 0, (1))VN. (66)
Similarly,
~k
|Fep () —n| = [n* —n| <o, (1)VN. (67)
Combining these bounds with (65) proves (63). (64) is proved similarly. a

Proposition 6.13. If (61) holds, uniformly over (m,n) € U(ry), h € U'(ry), v € {|0]| = 1,% L m},

f(3°2)

. 2
inf (Dy(h)™'9,0)+ —(0,3 v)) < —a,.E
~ ./< 2( ) > '\/ﬁ< gAMP( )>

] — me(ze)r? + err.

fol=. 1+ me(ze) fe(3,°Z)

Proof. Let

A~/ 1 7\ — -1

:_\/_ﬁ <D2(h) ‘*‘ma‘(Zf)I) amp(0)
Note the identity
2 =1/, 2
o E ( f@.2) ) B 1S )
1+ me(z) fe(3°2) El(ze + f(9*2)))
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Then,

~ 1. . ~ -2 .
B = S 8awe (@) (Dz<h> LEme(z)l) ave(®)

i < ) >2§AMP(@)§
M a=1 1+m£( )fE( a)

S1/2, 2
a.E < fg( Z) > (Z? | +err =72 +err.
1 me(z)fe(3°2)

In the last line we used Lemma 6.12 and Fact 6.11, with fi(x) = fa(x) = x, f3(x) = (%)2
me(ze) fe(x
(Note that we have not shown the coordinate empirical measure in (63) has bounded fourth moments, but

it suffices for Fact 6.11 that the gaussian approximating it does.) Similarly,

TN Y o
WO M & (1 + me<ze>ﬁ»<ﬁa>> oSl
( f.@°z)
RV ACH

= —a,E

7 )) Fg,gg(ﬁi/ZZ)Z’] + err = err.

Likewise,

(Dalh)™ + me(z) I}, 37 = ———@/, <>>=“*§]< fell) ) (6)?
2 e(Ze)IM)O, \/7 gAMP M 1+m£(zg)fg(ﬁ) 8amr\?);

f(3°2) ]

=a.E 1/2
1+m&(zé)ﬂ_( Z)

From this, it follows that

. fe(§%2)
D, —(v’, =—a,E
< ( ) >+\/*<’v gAMP( )> a 1+m{(zg)f£( 1/2 )

By the above estimates on |9’|? and \/Lﬁ@\/, n), we can find o such that |9| = 7., L n,and |5 — 9’| <

] — me(ze)1E + err.

err. Since D, (fl)_1 has operator norm bounded independently of 7, k, v,
KD, (h)™'%,8) —(D;'9",8")| < 2|D; " (h)|op© — &'|| < err,

By Cauchy-Schwarz,
2

—= @, 8ane(®)) — @', Earp (O] < —= 8 v (@)[7 — 7| < err.
VN AMP AMP \/7 AMP
This completes the proof. o

Proposition 6.14. If (61) holds, uniformly over (m,n) € U(r,), v € {|0| = re, 0 L n}, we have

. 2 . . ~
sup —(D19,0) + —(v, (D)) < ze + me(ze)r? + err.
o ) N Eamp(0)) € elZe)Te
vlm

Proof. Fix any (m,n) and v satisfying the stated conditions. We estimate
. 2 .. ~ . 2 .. A .
sup —(D190,0) + —(v, (0)) < sup —(D90,0) + —(0, (@) —ze (Jo|* —1). (69)
1 N 8 amp 1 N 8 amp e )

[o]=1 olm
olm
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Note that —D; — z I is negative definite, as z, > —— = maxxeR{ff'(x)}. So, the supremum on the

T+e
right-hand side of (69) is maximized by © solving the stationarity condition (in span(m)=):

) 1 - ; 5
v = —Pi(Dl + ZeIN) 1PrJr_lgAMP(v)'

VN
Let .
v = —(D +ZgIN_1. 0).
\/N( 1 ) gAMP( )
Note that, by Fact 6.11 and Lemma 6.12,
((Dy + z:In)?', 0"y = m(v , &amp (@ Z gamp(? ) +2z¢)7!

=r’E [(fg(tng) +ze)” ] + err
= m.(z¢)r? + err.
Thus
D8+ —= (0, g () — ze ([0 — 1) = 2o + me(ze)r? + err.

VN

We now estimate |& — ©'|. Note that

6= '] < | (D1 + 2In) " lop P anp (B)] + [Pur(Dy + 2eIn) "' g o)1,

and by Fact 6.11 and Lemma 6.12, both terms on the right-hand side are bounded by err. Since D; + z.In
has bounded operator norm,

(D1 + zeIN)©,0) — (D1 + z:IN)D', 9" < 2|D1 + zIn|opllo — 0| < err.
By Cauchy-Schwarz,
. ,‘

|| <err.

2 Lo ~ .o .
\/—NKUC Eamp(0)) = (0, g anp(0))] < \/7HgAMP( 0)[o -
Combining completes the proof. m|

Proof of Proposition 6.7. By Propositions 6.13 and 6.14, on the high probability event (61), the left-hand side
of (60) is bounded by

72y
Ze — ax E fe(d: )~1/2 ] +err = A, +d. + err.
14 m(z )fé( Z)
This proves (60), and by the discussion leading to (60) the proposition follows. O

Proof of Proposition 4.8(c), under P. By Proposition 4.8(a), with high probability, (m*, n*) € S, ,,. Recall
that th, F, ,, are O(1)-Lipschitz, with O, (1)-Lipschitz inverses (i.e. Lipschitz constant depending only
on ¢). On this event, for vy small depending on 7y and some C, = O,(1),

u(”o) = Se,voJngro = SS,ZCgi’o' (70)

Since |G |op, [g] < CV/N holds with high probability under P, Lemma 6.4 applies. Applying this lemma
with 2C, 7y in place of 1 shows that for all (m, n) € U(ro),

VeFtap(m, n) < R(m,n) + AePu + (0c,, (1) + 05, (1))IN.
Combined with Proposition 6.7, this gives that with high probability,
ViF (m,n) < (Ae + 0cy, (1) + 05, (1) + 0k (1)) IN-

cvXx
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By Lemma 6.3,
VEF (m,n) < (Ao + 0:(1) +oc., (1) + 0r,(1) + 0k (1))In.

Under Condition 3.4, A; < 0. The conclusion follows by setting the parameters so the error term in the
last display is bounded by |Ao|/2. m]

Remark 6.15. The bound A, + d, in Proposition 6.7 is tight. One way to see this is to calculate the upper
edge of the limiting spectral measure of

A= P]t[(k)( D, — W) P4, where W= ~GTpt

D,P+
M (i’ N N® D,

L

using free probability [Voi91]. We now outline this calculation. Note that conditional on DATA, —D; and
—W are orthogonally invariant as quadratic forms on span(m?, ..., m*)L. The inverse Cauchy transform
of —D) is approximated within err by m '(t). By e.g. [BS98, Equation 1.2], the inverse Cauchy transform

of —W is approximated within err by
fe(@:"z) ]

1+ tf(5%Z)

Since R-transforms add under free additive convolution, A has limiting inverse Cauchy transform
2 ~1/2
fe(@z) ]

1+ 1.3 2)

- —o,E

S:(t) =m; (t) — a, E

One calculates that
~ ol /2 2
SLH) = —E[on (0) + fe(PV*2) 7 + B (4ﬁ—:%j>

1+ tfe(
has the same sign as 0. (m, ' (t))—a; . Thus 9. (t) is decreasing on (0, 1 (z¢ )] and increasing [, (z,), +0).
It follows that the limiting spectral measure of A has upper edge 9.(m.(z.)) = A¢ + d.. By the Weyl
inequalities the same is true for R(m, n), so Proposition 6.7 is tight.

6.4. Planted model. The proof of Proposition 4.8(c) in the planted model is only simpler, as we will be
able to apply Gordon’s inequality directly rather than conditional on AMP iterates. The main step is the
following proposition. Let v be sufficiently small depending on 7y, k.

Proposition 6.16. Suppose (m’,n’) € S, ,,. With high probability under P™ PI ,Rim,n) < (A¢ +d +
err)P;L forall |(m,n) — (m',n')| < 2rygv/N.

Let it = th, ' (m’), W= F;:)g(q(m))(nl)'
For this subsection, let U (1) = {(m,n) : |(m,n)—(m',n’)| < 2r0\/>} and U'(ro) = {h : |h— W | <
Crygv/N}, for suitably large constant C. Identically to the discussion above (53), to prove Proposition 6.16

it suffices to show, with high probability,

’ s ~/
By Lemma 4.16, under ]Pm’" we have h(m',n’,G) = h .

sup  sup inf {—<D1iz,7}> +{(Dy(h)"'9,9) + —<Gv v>} < Ag +de +err.
(mm)EU(r) [] =1 121 =re VN

olm 7in
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Lemma 6.17. Let &, él ~ N(0,1y), &, 3 ~N(0,Im),Z,Z" ~ N(0,1) be independent of everything else
and

./ . ~/
o PwB|(H + e PLE) - [P (h + e?PLE) e
gn(®) = — "+ |PBIP,E, gh(@) = i + P 0lPyS
W

e qe

For any continuous f : RN x RM x (RN)? x (RM)? - R,

wup  sup inf | £(6, B, m ) + —(Go, 5y + AL Pt
(mm)eU(r) [o)=1 18]=re, |77 TN VN
hel’(r,) ©lm vln

is stochastically dominated by

25, 8n(o)

2o, gn(®)) + T

VN

sup  sup inf {f(z),ﬁ;m’,m,n’,n,fl)—l—

(m,n)el (ro) [0 =1 I2]=Te,

hel!(ry) oLlm Uln
26| Py || P

(qe + e + €)12VN

Proof. By Corollary 4.18, the gaussian process (0, ) — \LW<G7}, 0 ) has the form
Lo s 4 2 (B oXa, o) oWh, 5>

VN Ny, N{qe
./ ~1
Pyo|<(h ,0 Puo|(h,v 1~ .
L AN TP SRR
J VN g/ VN VN
Here the 0,(1) is uniform over bounded ||, |7 . Moreover, by (40), the random part {G®, ¥ expands as

(GD,D) = <GPL,Z) P v>+<GP 0, Py + (GPyy®, P 0 4+ (GP 0, Py

Z’} + 0,(1).

+oy(1) + Tlﬁ<éb,a>

el/2 el/2 el/2 ~ .
d &l 1 | Pu o[ P
=GP,v,P + —|Py0|{P,&E,0) + PvP
(&PL0,PL5) Ni/zn KPLE, o) qi/z” Py o)+ T
Thus, (as processes)
o PEEIPRDL 4 @i e+ IPyolIPa 0l
[PuoIGH + e2PLE o) |PwilH + e PLE D)
)/ *VN §.*VN
N 2| Pwd || P | '+ 0y(1)
v(1).
(ge + Ye + &)V2VN
: . : 1 /5l - pla IP5ol|P 0|
The result now follows by using Gordon’s inequality to compare \_FN<GPm’v’Pn’v> + TZ to
L |P581(5, P &) + - |PL b5, PLE). 0

Let

./ ~/ ~/
o IPwB|(h + ) S o o |Pwd|(h 4 €28 (3
gPI( ) JI/Z + ”Pi/’vHél gPI(v) = = ~1/2 + “Pi’v‘|5

& qé‘
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As argued above (60), with high probability,
1 1

f' |\F| I\ﬁ”sup 18p1(@) — &01(D)], T‘sup 1861(2) — &pi(D)] < v-

| =r¢ o]l=1
So it suffices to show that with high probability,

sup  sup inf { — (D19, )+ (Dy(h)"'3,%)
(m,m)eU (ro) 0] =1 Io)=re,
hel'(rp) olm Lin

2 .. 2
+ \/—N@,gm(v)} + \/—N<v,gp|(v)>} < A +dg + err. (71)

Lemma 6.18. For all (m’,n’) € S;,, the following holds with high probability. Uniformly over (m,n) €
U(rg), he U (r), v € {HvH =1,0 1L m},

W, ( " 0 o Go(00e), (772,012, G2, '>> <err. (72
a=1
Similarly, uniformly over (m’,n’') € S;,,, (m,n) € U(ry), 0 € {|0| = 7., 0 L n},

N
( Z (!, m!, gm(D):), (P2 Z, the( 1/22%762')) S err (73)

Proof. Let B = F,,.(n). Consider first o € {|0'| = 1,9’ L m}, Then gp(0') = &, so clearly

< Z 6 al gPI (51/2 /)> = Ov(l).

For (m,n) € U(ro),let T be a rotation operator mapping m /|m|| to m’/|m’|. Note that |T —I|op = 0r,(1).
0| =1,0 L m},andlet o' = T, s0 |0 — 9’| = 0,,(1). Then

~ . ~ . ~/ ~/ ~ . .
1801(@) = (@) < O) (I + €]+ 121) Jo — .
With high probability over g, 2/ this is bounded by o,,(1)v/N. Thus

( 25 1, 8n(0)a), (32, 2 )) = 07, (1) + 0y (1). (74)

Note that , ,
7 ’\ -1 / —1 (1
B =B = 1F gy (8) — Foh ()] < errVN.
Identically to (66) and (67), we can show
~/ - ~I
| — R, |Feg.(h) —n| < errVN.
Combined with (74), this proves (72). The proof of (73) is analogous. o

The following two propositions are proved identically to Propositions 6.13 and 6.14, with gp,, &p, and
Lemma 6.18 playing the roles of § ,\p»  anp» @0d Lemma 6.12.

Proposition 6.19. Forall(m',n’) € S, ,, the following holds with high probability. Uniformly over (m,n) €
U(rg), heU'(ry), v € {||o| = 1,0 L m}, we have

fe(32)
1+ me(ze) (727 2)

nt D) 19,0) (0, 8(8)) < .

oln

] — me(ze)r? + err.
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Proposition 6.20. Forall(m',n’) € S, ,, the following holds with high probability. Uniformly over (m,n) €
U(ro), v € {|o|| = re, 0 L n}, we have

. 2 .. A
sup —(D0,0) + \/—N@,gm(v» < ze + me(ze)r? + err.

[of=1

vlm
Proof of Proposition 6.16. Adding Propositions 6.19 and 6.20 shows that (71) holds with high probability.
The result follows from the discussion leading to (71). m|

(m*, n*) — (m,n)| = vyv/'N with high

Proof of Proposition 4.8(c), under ]PTPT By Proposition 4.8(d),
probability. We set vy < ry. Since we defined

U(ro) = {(m,n) : |[(m,n) — (m',n")| < 2r0V'N} 2 {(m, ) : || (m, n) — (m", n*)| < roVN},
the conclusion of Proposition 6.16 holds for all |(m, n) — (m*, n*)|| < r9v/N. Identically to (70), we have
{(m,n) : | (m,m) — (m*,n")| < reVN} € Se o,
for some C, = O.(1). Since |Gllop, [§] < CV/N holds with high probability under ]P’;;II, Lemma 6.4
holds. Applying this lemma (with 2C.r, in place of 7o) gives that for all (1, n) — (m*, n*)| < rov/N,
ViFip(m,n) < R(m,n) + APy + (0c,, (1) + 05, (1)) In
< (Ae + 0c,, (1) + 04 (1) + 0k (1)) In
< (Ao +0¢(1) + 0c,, (1) + 04y (1) + 0k (1))IN.
Under Condition 3.4, Ay < 0, and the result follows by setting the error terms small. O

6.5. Determinant concentration. In this subsection, we prove Lemma 4.9. We fix some (m,n) € S; ,
and work under the measure ]P’g"gl’. Define, as in Lemma 4.16,

Gm

I = th; ' (m), h = Fol (), h = il €28 — pe(q(m))n.

Recall from Lemma 4.16 that under ]P':":[', we have 1 = ﬁ deterministically. We computed VzﬂAP(m, n)

in Fact 6.5, and under ]PTI’)T the matrices D1, f)g, D3, D, therein are all nonrandom. By Schur’s lemma,
| det VzﬁAp(m, n)\ = ’ det Vi,nﬁAp(m, n) H det Viﬁ‘Ap(ﬂ’l, 1’1) |, (75)

and V2 , Frap(m, n) is nonrandom. By Fact 6.5,

1 ~ C 1
ViﬁAp(m,n) =—-D; — NGTDZG + p(q(m))d.(m,n)Iy + NmmT + N(GTva + mvTG)

for some nonrandom C € R, v € RM depending on (m, ). By Lemma 6.6,

C|, |v| are uniformly bounded
over (m,n) € S, ,, with bound depending on ¢, Cy. Define for convenience the nonrandom matrix

C
A =D = p(q(m))de(m, m)Iy — mm '
and note that |A|,p is uniformly bounded (depending on ¢, C\x) over (m, n) € S¢ . Then let
T 1 AT
1 A : wa \/NG
X = Tﬁlvm D, Iy | e RIV+2M)x(N+2M) (76)
\_WG Im

Lemma 6.21. We have | det V2Frap(m, n)| = |det X]|.
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Proof. LetY = [DNZI IM] Note that [detY| = 1and Y ' = [I(;A _Igz] By Schur’s lemma,
1 T om'
| det X| = |det <A—N[mvT G ]Yl[ G })‘: | det V2Frap(m, n)|. m]

It therefore suffices to study | det X|. This formulation has the benefit that the only randomness in X is
from G, and by Lemma 4.17 (in a suitable orthonormal basis) G is a matrix of independent (noncentered)
gaussians. This structure will enable us to prove Lemma 4.9 using the spectral concentration results of
[GZ00]. Before carrying out this argument, we first prove a preliminary lemma.

Lemma 6.22. There exists T > 0 depending on ¢, Coyx such that, for all (m,n) € S; ,,, X has no eigenvalues
in [—t, ] with high probability under ]PZ"PT
Proof. We will show that det(zIn2m — X) has no zeros in [—7, 7]. By Schur’s lemma, for any z # 0,

| det(zIm — Y)| = |det(zIp — Dy)|| det(zIy — (zI — D2)™")| = | det(z(zIm — D) — In)]

Let 7; be the smallest positive solution to 7| max(j?g) + 7| < 4. Note that 7; depends only on ¢, and the
above determinant is nonzero for any |z| < t;. Further, note that

(2L — )~ = ~2(Im — 2(zIy — Dy)) ! (Tm — 2(zIm — D))"
M (Im — z(zIm — D2))™' —(zIm — Do) (Im — z(zIpm — Do) ' |

From this, we see that there exists C; > 0 such that for all |z| < 1,
[(zT1 = ¥) 7" + Y op < Celzl-
By Schur’s lemma, for all |z| < 7,

| det(zInont — X)| = | det(zLop — Y)

| det B(z)],
for .
1
B(z) =zIy —A—— [moT GT](zLm —Y)"! [”m } :

It follows that for all |z| < 14,

VN VN

As shown in Proposition 4.8(c), Vfﬂ'}ip(m, n) < —CspecIn with high probability under ]Pm Further-
||z;mTH0p

more, ——=
I%lo is bounded by an absolute constant. It follows that for |z| small enough depending on &, Ccyx,

B(z) < —CspecIn/2, and thus | det B(z)| # 0. 0

2
2 Jom op  1Glop
|B(z) = VeFpap(m, n)llop < [2] + Celz| + :

= \/;IT]HUH |m| is bounded, with bound depending on €, C.., and with high probablhty,

The core of the proof of Lemma 4.9 is the following spectral concentration inequality, which adapts
[GZ00, Theorem 1.1(b)]. For any f : R — R, let

N+2M

trf(X 2 f(A
where A1(X), ..., AN+am(X) are the eigenvalues ofX.

Lemma 6.23. If f is L-Lipschitz, then for anyt > 0

PP ([t f (X) — EXgitef (X)| > £) < 2¢ /58,
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Proof. Let {w,; : a € [M],i € [N]} be i.i.d. standard gaussians, and let é;,...,éN and €;,..., €y be
orthonormal bases of RN and RM as in Lemma 4.17. By (40), we can sample G by

Ve/(qim) + () +e) i=j=1,

. I ¢/(q(m) + ¢) i=1,j#1,
= Z Z Wy,iWy, zea ’ Wa,i = . .
=2 e/(Y(n) + ¢) i#1,j=1
1 i#1,j#1.
By [GZ00, Lemma 1.2(b)], the map {w,,; : a € [M],i € [N]|} — trf(X) is 2L-Lipschitz. The result follows
from the gaussian concentration inequality. i

Proof of Lemma 4.9. Define f(x) = log max(|x|, ), which is 7~ !-Lipschitz. Lemma 6.23 implies that
Pla ([f (X) — Euf (X)] > ) < 2e77 (77)
Let (;{gt(X ) = exptrf(X). Also let
Espec(X) = {spec(X) n [-7,7] = &},

so that P(Espec) = 1 — ¢ for some ¢ = o (1) by Lemma 6.22. Note that | det(X)| < &Zt(X) for all X, with
equality for all X € &;,ec. Thus

E[| det(X)[*] < B [det(X)?], E"[| det(X)[] > B [det(X)1{Expec}].  (78)

By the concentration (77), there exists C depending on &, C¢.x such that
E"[det(X)*] < C exp(2E"trf (X)).

Furthermore, by Jensen’s 1nequahty]E [det(X )] = exp ]E?P’Ttrf (X)). Thus,

]EZ"P'I‘ [det( )] < C]EZ;,’I‘ [det(X)]2. (79)

By Cauchy-Schwarz,
E 1 [det(X) 1{EGec}] < EY i [det(X)*] /P (Ege)* < CV2PET 1 [det(X)].

e,Pl ,Pl spec
It follows that
EY 0 [det(X)1{Egpec}] = (1 — CY22)ET ) [det(X)].
Combining with (78), (79) shows that
EYp [l det(X)]"* < CY2(1 = CV2) B[ det(X))],

which implies the result after adjusting C. m|

7. FIRST MOMENT IN PLANTED MODEL

In this section, we prove Proposition 3.9, bounding the first moment of Zy(G) in the planted model.
The proof is structured as follows. In §7.1, we show this moment is bounded by a optimization problem
over A : R — R encoding subsets of X with a certain coordinate profile (heuristically described in (9)).
§7.2 reduces this optimization to two dimensions by showing the maximizer is attained in a two-parameter
family. For technical reasons, the functional in this optimization problem is not the &, defined in (8), but
a variant &,™* where s is minimized over [0, Smax] instead of [0, +00) see (80). §7.3 and §7.4 show that
we recover the optimization of &, when sp,x — 00, completing the proof of Proposition 3.9. §7.5 proves
Lemma 2.5, on the local behavior of the first moment functional &8, (A, A;) near (1,0).
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7.1. Reduction to functional optimization. Recall that (o, 19) are given by Condition 3.1. Let H ~
N(0,10),M = th(H), and H ~ N(0,40),N = Fi_y, (ﬁ), for F1_4, givenby (13). Let & = L*(R, N(0, 1))
denote the space of measurable functions A : R — R, equipped with the inner product

(A1, Ag) = E[A;(H)Ao(H)]
and square-integrable w.r.t. the associated norm. Let # < &£ denote the set of functions with image in

[—1,1]. For Syax > 0, define
S (A) = ,inf Se(A,8), (80)

<S<Smax
where &, : # x [0,+0) — R is defined by (7). The following proposition bounds the first moment
by the maximum of an optimization problem over functions A, and is the starting point of the proof of
Proposition 3.9.

Proposition 7.1. For any smax > 0, (m,n) € S¢,, we have x log]Eg s [ZN(G)] < suppcgy S (A) +
0¢,0(1).

Here 0, , (1) denotes a term vanishing as &, v — 0, which can depend on Spax; We send Spyax — 00 after
&,V — 0 in the end.

Before proving Proposition 7.1, we state a few facts that will be useful below. Lemma 7.2 ensures that the
denominator of &, (A, s) is well-behaved, while Lemmas 7.3 and 7.4 are useful in approximation arguments.

Lemma 7.2. There exists t > 0 such that E[]MA(H)]? < (1 — 1)qo forall A € .
Proof. Since |A(H)| < 1, by Cauchy-Schwarz,
E[MA(H))? < E[|M|? < E[M?].

The inequality is strict because |M| has nonzero variance. Since E[M?] = P(1y) = gy (recall Condi-
tion 3.1), the result follows. ad

Lemma 7.3. The function log W(x) is (2, 1)-pseudo-Lipschitz (recall Definition 4.19).
Proof. Note that (logW)'(x) = —&(x). Recall from Lemma 4.21(a) that 0 < &(x) < 1 + |x|. Thus,
[ log W(x) —logW(y)| =

s)ds| < |x = y|(1 + [x] + |y])-

Lemma 7.4 (Proved in Appendix A). There exists C > 0 such that for all ay,a,,by, by, c1,c2 > 0,

—a,H — )N —a,H — b,N
IElog\If{K ‘“C by }—log\lf{K “2C bz }
1 2

C max(al/ a, bl/ b2/ C1,Ca, )

(|ay — az| + |by — ba| + [c1 — c2l) .

X

mm(cl, Cz)

We turn to the proof of Proposition 7.1. The main step will be Proposition 7.5 below, where we show
the bound in Proposition 7.1 holds for piecewise-constant A with finitely many parts. This case follows
from a direct moment calculation, and Proposition 7.1 follows by approximation.

Forany 7 = (ry,...,tp—1) With —00 < 11 < 15 < --+ < 1y < +00, let Hei(¥) S F denote the set
of right-continuous functions which are constant on each interval [rx_y, 7¢), 1 < k < n. Here we take as
convention 7y = —0, 7, = +00. Define the quantiles = (py, ..., pn) by px = P(H < r}), and let

mesh(p) = mm (pk — Pk—1)-
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Let 0, ,,5(1) denote a term vanishing as ¢, v, mesh(p) — 0, where (like before) this limit is taken after
N — oo for fixed Spax. We will show the following.

Proposition 7.5. Suppose Syax > 0, (m,n) € S;,, and¥ = (ry,...,ry_1) is as above. We have that
§ log EY[ZN(G)] < suppesr, iy Sa™ (A) + 0, 5(1)-

For the rest of this subsection, fix Syay, €, v, 7 and (m, n) as in Proposition 7.5. Let h = thg_l(m) and
h = F;;E(n), so that (h, h) € 7; ,. Fix a partition [N] = I; U - - - U I}, satisfying
’fk|= lpkNJ—lpkleJ, Vi<k<n,
max{f; : i € It} < min{h; : i € Tri1}, Vi<k<n-1

(In words, J is the set of coordinates i € [N] such that the quantile of hi among the entries of h, breaking
ties in an arbitrary but fixed order, lies in [px_1, px).) Then, partition Ly into sets

Yn(a) = erN:inzak,Vlékgn . (81)

iEIk

indexed by 4 = (ay,...,a,) € Z". Let J be the set of 7 such that X (@) is nonempty, and note that
|J| < N". Thus

1
7 g B [Zn( =—log2 Z " <\/,>K>

ieJ xerLn(d

1 S Gx
= sup {Nlog\ZN(aﬂ +osup o log]PE bl (\/_ﬁ > K)} + on(1). (82)

XGZN(IZ)

Associate to each 4 € J a function Al e He(r1,...,n—1) defined by

= a
A(x) = ﬁ, X € [re—1,1x),1 <k <n.

Recall the function ent : # — R defined in (6).

Lemma 7.6. We have 3; log |Xn(d)| = ent(A?) + on(1) for an error on (1) uniform overi € J.

- | 7|
=@l -1 <%<|fk| +ak>>'

k=1

Proof. By direct counting,

Stirling’s approximation yields

n 14— i(F
%log\ZN(ﬁ)] -y {(pk —p)H (M) } +on(1) = EH (%) +on(1),

k=1

where the last equality holds because ]P(H € [rk—1,7k)) = Pk — Pk—1- O

Lemma 7.7. Foralld € J and x € ZN(d),
1 . L 1 Lo
(%) = E[HA(H)] + 0.,0,5(1), 7 m %) = E[MA"(H)] + 0., 5(1),

for error terms o, ,, 5(1) uniform over ax.
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Proof. We will only show the proof for ﬁ<h, x), as the other estimate is analogous. Let x € Yy(4) be
fixed, and let y € [—1,1]N be defined by y; = IZ'_];I for all i € 1. We write (Hl, X, Y, K) for the random
variable with value (ﬁi, Xi, Yi, k), where i ~ unif([N]) and k € [n] is the index of the set 7 containing i.
Recall that H ~ N(0, ¢). Note that

Wa(L(H'), LH)) < Waujy, N0, e + €)) + Wa(N(0, e + £), N(0,1h0)) = 0c,0(1),

where the latter two distances are bounded by definition of 7;, and Proposition 4.1, respectively. We couple
(H ' H ) monotonically (which is the W;-optimal coupling) and write

1 . . . . . .
5wy = E[H'X] = E[HY] + E[(H — H)X] + E[H(X — Y)].
We now estimate each of these terms. Because (H/,H ) are coupled monotonically, K = k if and only
if the quantile of H lies in [p} ., p}), where p;{ = %|pkN| = pr + O(N7Y). ’qus on an event with
probability 1 — O(N '), K = k if and only if H € [r¢_y, 7). On this event, Y = A”(H). Thus
E[HY] = E[HA(H)] + on(1).

Moreover,
/

|E[(H - H)X]| <E[(H — H)*"? = Wy(L(H), LH)) = 0.,,(1).
Finally, note that Y = E[X|K], so
E[E[H|K](X —Y)] = E[E[H|K]E[X — Y|K]] = 0.
Thus
|E[H(X - Y)]| = | E[(H - E[H|K])(X - Y)]| < E[(H - E[H|K])*]'"*.
Recall from the above discussion that conditioning on K reveals the interval [p;{_l, p;{) containing the

quantile of H. It follows that E[(H — E[H|K])?] = 0¢,p,5(1)- ]

Lemma 7.8. Foralldi € J,x € LN(d), and s € [0, Smax],

Gx 1 qo
log P/ (— > x| < =s*y + a, Elog W
’ /N 2

1
N

where the o, ,, 5(1) is uniform over a,x,s (but can depend on Smay).

Proof. Let G be defined in Corollary 4.18. By Corollary 4.18 and Lemma 7.7,

Gx d (1 + Os,v(l))" 1 (1 + Os,v(l))
Vi = ( P h + ogrv(l)n) N(m,x> + Tn

E[MA®(H)] +0,.,5(1)~ E[HAH)]+0.,51)  Gx
= h + n+ .

qo Yo VN
Let 1 = n/|n||. By inspecting (40), we see that for independent § ~ N'(0, P;-) and Z ~ N(0, 1),
Ex 4 (12t
VN N

E[MA’ (H)]*
qo

I v X Voo,
+ 05(1)) g +o.()Zi =tV2g + /74,

where t =1 — +tzand 1y, Lz = 0., 5(1). For Z' ~ N(0, 1) independent of g, Z, let

g=8+Z'n+sn
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so that § ~ N(sn,Iy). Then, for any measurable S RY,

P(tY2g + [ Zn € S) _ P(*ZeT)
< su
P(t1/2g € S) Tg% P(st'/2|n| + t1/2Z' € T)
;" exp(—5-x?) ’ ( 5|2 >
< sup 1 =4/—exp| ———— | .
xeR t7Y2 exp(—5 (x — st1/2||n|)?) l 2(1—u/t)
Thus,
1 Gx s2(n)
—logP"" (= > k) < —— 1
woePlh (5> ) < i ron
1 E[MA*(H)] + 0, ,5(1)~ E[HA(H)]+o0,,;(1 ~
+ Liogp [MA(H)] + 0,,,,5( )h+ [HA"(H)] + 0, ,5( )n+t1/2g>1< L 63
N o Yo
By Lemma 7.2, t is bounded away from 0. Since ¢(n) = 1y + 0,(1), we have
s?(n) 1, 1,
0—0/D (14 06,05(1) 58P0 = 5570 + 0c45(1)-
The last estimate holds uniformly over s € [0, Spmax]. The last term of (83) equals
M o _ EMATE) o, 5(1) o JE[HANHJHOS,U,,;(U”&
Nlelog\If 0 - + 81, ¢ +on(1).
a=

E[MA"(H)]?
\/1 CEMAGE )

By Lemma 7.3, log WV is (2, 1)-pseudo-Lipschitz. By Fact 4.20 and Lemma 7.4 (using again that the denom-
inator is bounded away from 0), the last display equals

E[MA"(H)] fi— E[HA"(H)] N

K= qo Yo
a, ElogW +sN ¢ +0.,5(1).
1— E[MA’(H)]?
qo
Combining the above concludes the proof. |
Proof of Proposition 7.5. Follows from equation (82) and Lemmas 7.6 and 7.8. m|

Proof of Proposition 7.1. Set 7 such that mesh(p) is suitably small depending on (¢, v). Then
1
—logE™'[ZN(G)] < sup S (A) + 0.(1) < sup S, (A) + 0,(1).

¢,Pl
N AeFH e (7) AeH

O

7.2. Reduction to two parameters. Let %,  Z denote the set of functions of the form A, 1, defined
above (8). Let & . denote the closure of this set in the topology of £. We next prove the following, which
reduces the functional optimization problem in Proposition 7.1 to an optimization over % .

Proposition 7.9. For anySmay > 0, we havesup, .o Sy (A) = Sup,\ 37, S5 (A). Similarly, sup oy Se(A) =
sups g7, S+(A) for Si(A) defined in (8).
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Lemma 7.10. Let a;,a; € R be such that there exists A € # with E[HA(H)] = a,, E[MA(H)] = a,.
Then, the concave optimization problem
maximize ent(A) subjectto Ae ¥, E[HA(H))]=a,, E[MA(H))]=a,
has a maximizer in g*

Proof. Introduce Lagrange multipliers Ay, A, € R. The Lagrangian is

MAJhMy—E{H<li%QQ>+AJhMHthMAUﬂ}—Am1—M@.

The quantity inside the expectation is concave in A(H), with derivative
—th ™ (A(H)) + \\H + A;M.
This is pointwise maximized by A(H) = th(A;H + A,M),ie. A = Aj, 5, ]

Proof of Proposition 7.9. Note that ;™ (A) is the sum of ent(A) and a term depending on A only through
E[HA(H)] and EIMA(H)]. Let A € % be arbitrary. By Lemma 7.10, the maximum of ent(A) subject

to A € %, E[HA(H)] = E[HA(H)], Ef]MA(H)] = E[MA(H)] is attained by some A € F,. Thus

~

Sim(A) < 8™ (A), which implies the conclusion for §*mex. The proof for &, is identical. O

7.3. The 5y,x — o0 limit. In this subsection, we prove the following proposition, which shows that the
optimization problem derived in Proposition 7.9 has a well-behaved limit when we take Sp.x — 00. This
allows us to remove the parameter sy,y, replacing the constrained optimization §,™* defined in (80) with

the &, defined in (8).

Pl‘OpOSitiOll 7.11. We have limsmax_,oo supAeg* Cs’fmax (A) = supAeg* S (A)’ and moreover &, attains its

supremum on K .
Lemma 7.12. The function S, : & x R — R (recall (7)) is continuous.

Proof. Note that s — 15?1 is manifestly continuous. By concavity of H, |H (x) — H(y)| < H(|x — y)
for all x, y € [0, 1]. By concavity of x — H(1/x/2) and Jensen’s inequality,
AH)-AN(H
w<|<> <MN

?%?+Mm>_ﬂ<yuwm>
2 2 2

gﬂCWMm—NmWWjZH<A—N>_

lent(A) —ent(A')| < E <E

2 2
Thus ent is continuous. By Cauchy-Schwarz,
[E[HA] - E[HA')| < E[H?|A - | = 9, |A - A
and similarly |[E[MA] — E[MA’]| < q(l)/ ?|A — A’|. Since the denominator 1 — ]E[Mf;#
away from 0 by Lemma 7.2, the final term of &, is continuous by Lemma 7.4. Thus &, is continous. m|

is bounded

We will need the following analytical lemma, which is a simple adaptation of Dini’s Theorem [Rud76,
Theorem 7.13]. We provide a proof for completeness.

Lemma 7.13. Suppose f1, f2,... : K — R are a decreasing sequence of continuous functions on a compact
space K. Let f : K — R U {—0} denote their (not necessarily continuous) pointwise limit, which we assume
is not —o0 everywhere. Then lim,,_,o, sup f,, = sup f, and furthermore f attains its supremum.
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Proof. Without loss of generality assume sup f = 0. For ¢t > 0,let E, = {x € K : f,(x) < t}. Then
E, is open and E,, < E, ;. Since the f, converge pointwise to f, U,E, = K. By compactness of K,
E, = K for some finite n, and thus sup f, < (. As this holds for any ¢, lim,_, sup f, = 0. Finally, f,
as the decreasing limit of (upper-semi)continuous functions, is upper-semicontinuous. Therefore f attains
its supremum. |

To apply Lemma 7.13, we verify that &, is not —o0 everywhere by calculating its value at A o(x) =
th(x) in Lemma 7.15 below. Recalling §2.6, we expect this to be the maximizer of §,.

Lemma 7.14. Forany A e #,s = 0, we have aa—:zoS’*(A, s) > 0.
Proof. Since (log W)’ = —&, we have

2 K —

@S*(A,S) = l’b() — OC*JE 8/ 1o

Lem. 4.21

b
> ( )gbo—a*]E[Nz] =0.

Lemma 7.15. We have S.(A1,) = Si(A10,1/1 — q0) = 0.

Proof. Let A = A, . Note that A(H) = th(H) = M. Thus E[MA(H)] = g, and, by gaussian integration
by parts, EfHA(H)] = (1 — qo)io. So

E[MA(H)] ¢y E[HA(H)] .

- H- N _a
n i + /1N = 2
E[MA(H)]? V1=14o

1 —
qo
By the identity 7‘((#) = log(2chx) — xthx,
1+ A

EH ( > = Elog(2chH) — E[HA] = Elog(2chH) — (1 — go)s.

Thus

x—H

Se(A, 1—q0)=—%(1—qo)t,bo+]Elog(2chH)+a]Elog\I’< =y
— o

) =G (a., 90, V0),

which equals 0 by definition of a,. Furthermore,

5 A
%5*(1\,5)‘5:@ =4/1— qO¢0 — OK*IE{(S (\;1—_71—;0> N}
— /T 40 (o — a. E[N?]) = o.

By Lemma 7.14, this implies s = /1 — go minimizes $4 (A, s), and thus &, (A) = Sk (A, /1 —q¢). O

Proof of Proposition 7.11. The set F , is compact in the topology of &. The functions &i™ : ¥, — R
are continuous by Lemma 7.12 and compactness of [0, Spax].- On any sequence of sp,y tending to o,
the sequence of §,™ is decreasing with pointwise limit &,. Since Lemma 7.15 implies &, is not —oo
everywhere, the result follows from Lemma 7.13. O
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7.4. No boundary maximizers and conclusion. The results proved so far imply that the exponential
order of ]EZ;I’Z N(G) is bounded up to vanishing error by sup, S+ (A). Condition 1.3 provides a bound
on suppc gy, S +(A). Since &, (unlike ;™) is not a priori continuous, to complete the proof we verify in
the following proposition that it is not maximized on the boundary.

Proposition 7.16. The maximum of S,(A) on K (which exists by Proposition 7.11) is not attained on
H o \H.

1/22)], and

Lemma 7.17. Letd, = o, ]E[F;_qo(qo

0= {A e % : dy E]MA(H)] + E[HA(H)] > a*K} .

Then, for A € H,
+oo AE€O,
lim S.(A,s) =
§—>+00 -0 A¢O0.
Proof. A well-known gaussian tail bound gives @ <W(x) < %(;? for all x > 0. Thus, for large x,
1
logW(x) = —Exz —logx + O(1). (84)
Let s be large and define
) « — EIMA(ED] oy E[HA(E)] o
E(x) = —=x? —1{s"? < x < s’}logx, U= 0 b0 , V=U-+5sN.
2 | EIMAGDF
qo

Note that
[ElogW(V) —E&(V)| < [E1{V < loglogs}(log W (V) — &(V))|
+[E1floglogs < v < 5%} (log W(V) — £(V))
+ ’]E 1{s"2 < V < 5%} (log W(V) — .S(V))‘
+|E1{V = s*}(log ¥(V) — &(V))|.

We will show each of these terms is 0(logs). Let V., = max(V,0), V_ = —min(V,0), and let C > 0 be
a constant varying from line to line. Then,

|E 1{V <loglogs}(log W (V) — &(V))|
<E1{V <loglogs}|/log W (V)| + E1{V < loglogs}V% + EV2
< C(loglogs)? + EU? < C(loglogs)?.

In the last line we used that N > 0 almost surely, and thus U_ > V _. By the estimate (84), if loglogs <
V < 512, then |log W(V) — £(V)| < Clogs. Thus

E1{loglogs < V < s?}(log W(V) — £(V))| < (Clogs) P(V < s'?)

< (Clogs) (]P(U < —sY%) + P(sN < 251/2)) = o(logs).
The estimate (84) directly implies
E1{sY2 < V < 2} (log W(V) — E(V))‘ - 0(1).
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Finally, Lemma 4.21(a) gives 0 < &(x) < |x| + 1. Thus

s g x= H
A/ 1-— 6]0 «/1 — qO
It follows that for t > s?, we have P(|V| > t) < exp(—t?/Cs?). So, crudely
IE1{V > s*}(log W(V) — &(V))| < CEL{V > s*}V?

C

C

vi<|uf+ > < Cs(|H| +1).

0

! <52exp(—32/C) + f

52

< 2t exp(—t%/Cs?) dt>
< C's?exp(—s?/C).
Thus |ElogW (V) —E&(V)| = o(logs). So,
Se(A,s) = %szlpo + a, E&E(V) + o(logs).
We now evaluate a, E £(V). First,
%a*]EVz = %a*sz E[N?] + a,s E[UN] + O(1)

s (omc — dyE[MA(H)] — E[HA(H)])

1
=~y + +0(1).

2 | EIMAGD]:

— EMAEP
Thus
s (do E[MA(H)] + E[HA(H)] - a.x)
Si(A,s) = —E1{s"? <V < s%}logV + o(logs).
| EIMAGDP
qo

The logarithmic term clearly has magnitude O(logs). So, lims_, 1o S%(A,s) = +0 if A € 0, and —c0 if
A is in the interior of % \O. Finally, we have shown above that P(V < s'/2), P(V > s?) = 0,(1), so

1
E1{s'? <V <s%}logV > - (1= 04(1)) logs.
Thus lims_, 4 on Sx(A, s) = —oo for A on the boundary of #\0. ]

Proof of Proposition 7.16. Suppose for contradiction that A € # ,\.%; maximizes &, (A) in # . By Propo-
sition 7.9, A is also a maximizer of & (A) in #.

By Lemma 7.17, if A ¢ O, then &, (A) = —o0 is not a maximizer (recall Lemma 7.15). Thus A € O. Let
A" = (1 — t)A. Since O is open, A’ € O for t € [0, t, ), for sufficiently small £, .

By Lemma 7.17, for t € [0, t ), the infimum of § (A, s) is attained at some s(A’) € [0, +00). Note that

E[MA'(H)] ¢y _ E[HA'(H)]

J K== 1~ TN
—&(As) =—-a,E{LE& +sN [N} <o
Js s—o | _ EIMA'(H)]?

qo

because N > 0 almost surely and the image of & is positive. Combined with Lemma 7.14, this implies
s(A") is the unique solution to a—asé’*(A, s) = 0,and s(A") > 0.
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E[MA'(H)]?
qo
from 0 by Lemma 7.2. By Lemma 7.14 and the implicit function theorem, s(A") is differentiable in ¢ for all

t €[0,t4). It follows that

Note that a%&(At, s) is differentiable in f, as the denominator 4 /1 — is bounded away

_ EMAH) gy JE[HII;t(H)]
0

E[MA!(H)]?
qo

K N

d 1
—{ Zs(Ah? .ElogW i
m 25( )+ a og

1_

+s(AHN

t=0

exists and is finite. However, since A € & ,\Hx, we have A(H) € {—1, 1} H-almost surely. Thus

d ¢ d
Eent(A )|t=0 = EWG/Z)LZO = +00.
Hence &8, (A") |,_, = +, and A is not a maximizer of &, (A) in %. m]
Proof of Proposition 3.9. By Propositions 7.1, 7.9, for any Spm,x > 0,
1
—log E"'[ZN(G)] < sup S™(A) + 0¢,(1) = sup ™ (A) + 0, (1). (85)

,Pl —
N ANeFH AEH 4

By Propositions 7.11 and 7.16 and Condition 1.3,

lim  sup & (A) = sup Si(A) = sup Si(A) = sup (A1, Az) <O0.
Smax—>0 Aeﬁ* AG%* AE%* A1,A26R

Thus, taking the limit €, v — 0 followed by Spax — 20 in (85) implies the result. O
7.5. Local analysis of first moment functional at (1,0). We now prove Lemma 2.5. Note that part (a)

follows from Proposition 7.16, and part (b) was already proved in Lemma 7.15. We turn to the proofs of
the remaining parts.

Proof of Lemma 2.5(c). Let Sx(A1, A2, 8) = Su(An,,0,,5), andlet s(A1, A2) minimize 4 (A1, Az, s). Lemma 7.15
shows s(1,0) = /1 — go, and the proof of Proposition 7.16 shows that for (A1, A;) in a neighborhood of
(1,0), s(Aq, Az) is the unique solution to 0sS§4 (A1, A2, 5) = 0. By Lemma 7.14 and the implicit function
theorem, s(A, A,) is differentiable in this neighborhood. So,

V& (A1, A2) = Vi, 1,8 (A1, Az, s(A1, A2)) 4+ 0sSu (A1, Az, s(A1, A2)) Vs (Aq, A2)
= Vi 1,8 (A1, A, 5(Aq, A7), (86)
and in particular V&,(1,0) = VE*(L 0). To calculate the latter gradient, let u;, u; € R be arbitrary and
A = (u10y, + uz00,)A = (1 — A®)(us H + u,M).

Then
_ EMAl gy IE[HA]N
(VS (A1, Ag), (1, u5)y = —E[th ' (A)A] — a, E {8 Gl E[MA]Z’(’ +4/1—qoN | (87)
1 — ==L
qo

E[MA] ry E[HA] E[MA] ¢y  E[HA]
D H- ) N 90 H- ) N_]E[MA]]E[MA] }

| _ EIMAF (1 1E[MA]2>3/2 qo

qo B

qdo
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Specializing to (A;, A2) = (1,0),

<V§*(1, O), (1/[1, ng)>
. E[MA] zy  E[HA]
- - H — N x—H-(1-g)N
— —E[th"{(M)A] —a,E{ & [ = H n il L (1~ 90) E[MA]
V1I=40 V140 (1—q0)%?
: ~ ( E[MA] . E[HA —H—(1-q0)N
— _E[HA] - a. E{F,_ (8 [ EMAly  EIHAl X 1= 90N prara]
qo Uy 1—4o
. .E[N?] . —-H
:—]E[HA]+a—[]]E[HA]+a* g+lE N(N-Z E[MA]
Uy qo 1—qo
The first two terms cancel because a, [E[N?] = 1. Finally, note the identity
X
Flg0) = ~Froa () (Froa) - 120 ).
By gaussian integration by parts,
o . K- @
E[NH] = E[HF,—4,(H)] = E[H ] E[F)_g,(H)] = —qoE N | N — — -
It follows that {V&§,(1,0), (11, uz)) = 0. Since u;, u, were arbitrary, VS, (1,0) = 0. O

Proof of Lemma 2.5(d). Differentiating (86) and applying the implicit function theorem yields
Vz&*()\ll Az) = vf\h}[zéj*(/\lr Ag, s (/\1, /\2)) + VAl,Azas5*(A1, A, S(All )\2))<VS ()\1, Az))T
(V/\l,/\zasos)* (/\1/ /121 S (/\1/ /\2)))®2
35209*()\1/ AZ! S (/111 /\2))

= Vil,Azé)*(/\ll /\2/ S(/\l, /\2)) —

= Vf\l,AZCSj*(AlI/\Z/ S(/\ll /\2))

Specializing to (A1, A2) = (1, 0) yields the result. ]
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APPENDIX A. DEFERRED PROOFS

In this appendix, we provide proofs of various results deferred from the paper.

A.1. Well definedness and ¢ | 0 limit of (g, ¢, 0¢)-

Proof of Proposition 4.1. Let o be small enough that [go — 3¢9, g0 + 3] < [0,1]. Note that Co(y)) =
(Ra, © P)(¢). By Condition 3.1, Co(19) = P and

Co(tho) = R%, (90)P' (o) = (P o Ra,) (90) < 1.
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By continuity of (o and (j, we can find ¢ > 0 such that for all ¢ € [1pg—t, o+ t], P() € [go— to, o + Lo]
and C((¢) < 1. Set 1 small enough that

Co(l’bg—L) 21][10—[+2L1, C0(¢0+l) <1,b0+l—2l1, sup Cg(w) < 1—2[1.
Ye[Po—tPoti]

We will show that for sufficiently small ¢,

sup [Ce(¥) = Co()l,  sup |CL() = Co(¥)] = 0e(1). (88)
Ve[Po—tPo+i] Ve[Yo—tpo+i]
We first explain why this implies the result. First, (88) implies that for sufficiently small ¢,
Cc(o—1) = o — L+ 11, Ce(Po+ 1) <¢Po+1—1y, sup () <1—1.

velpo—tpo+i]
This implies that C, has a unique fixed point ¢ in [1pg —t, g+ t]. Furthermore, it implies |C, (o) —1Po| =
0¢(1), which combined with the above derivative estimate gives

[We — ol < [Ce(to) — Pol/t1 = 0,(1).
Continuity considerations then imply (4., ¥¢, 0¢) — (qo, Yo, 1 — qo) as € | 0. We now turn to the proof
of (88). Let ¢ € [g — 1,1 + t]. Below, 0,(1) is an error uniform over . Let ¢ = P*() and § = P(¢).
Note that
9=l < E[|(h(( + €)/22) + e(y + ©)2)" - (p'22)] | < 0.(1).
Let 0 = 0.(q,1), and note that
0 = (1 =g)| = 0.(1).
Thus
0= (1=q) =g —ql=lo—(1=q)>200-0:1) = 1,

so ¢ is bounded away from 0. By Cauchy-Schwarz,

L)~ o)l = IR(g, ) ~ Ra. @)

— B [Fep((q + €)°Z) = Fi gy (92 2)|[Fe,((q + ©)22) + Fiyy (42

/2 /2

E[(Feol(q+0)22) + Fuy@P2)7]

Expanding F, , using (19) shows the first expectation is 0. (1), while the second is bounded by Lemma 4.21(a).
Thus |Ce(¢) — Co(¥)| = 0¢(1) uniformly in ¢ € [pg — t, Yo + t]. Furthermore,

<a,E [(Fg,@((q +e)2z) - Fl_ﬁ(ﬁl/zz))z]l

/ _ JR*® ey/ JR*® / _ pl oo\ D!
Ce(¥) = 3q (4, )(P*)' () + a0 (4, ¢), Co() = Ry, ()P ().
Similar computations to above show
OR*® OR*®

o 0.0) = R @) 10 ) - @)L S 0,9 = 0.,

and thus |C(¢) — C;(1)| = 0¢(1) uniformly in 1. This proves (88). m]
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A.2. Approximation for (pseudo)-Lipschitz functions.
Proof of Fact 4.20. Let (x, y) be a sample from the optimal coupling of (i, ¢’). Then
[Eulf]1-Ew[fIl <E|[f(x) = f(y)] < LE[]x — y[(|x| + |y| + 1)]
< LE[lx — y["TZEB(Ix + [yI* + 1]
< LE[lx — y P2 EBGIE + 20x — yf + 1]
< BLWo(p, 1) (12 + Wa(p, 1) + 1),
where we have used the estimate |y|? < 2|x|* + 2|x — y|% O

Proof of Fact 6.11. Couple (x,y,z) ~ pand (x/,y’,z") ~ p’ in the W,-optimal way. Then, the left-hand
side of (62) is bounded by the sum of:

Elfi ()| )Ifs(2) — fs(z)] < LEA ()Y (Ef(y)")/*(Blz — 2'[*)"*
< L(BA()) M (EL1)) " Wa(y, 1),
Elf:(x)|lfs(2)|f2(y) — £(v)] < L(BAX))*(Ely — y'|)"* < LA(BA(X)?)*Wa(u, 1)
ElL)Ifs(2)]1fi(x) = A()] < L(Ef(y')) 2 (Blx — x'})* < L(Efa(y')*)/* Wa(u, 1').

Finally, by Fact 4.20,
Ef(y)* <Ef(y)” + 3Wa(u, ) Bf(y)* + Wa(u, 1) + 1).

Combining gives the conclusion. O

A.3. Gradient and Hessian formulas for .,

Tap> and regularity estimates.

Proof of Lemma 4.16. By standard properties of convex duals,
(V¥)(m) = — arg min {—mh + vg(i&)} — —th ! (m).
h

We differentiate the interaction term in 7.5, , by gaussian integration by parts. For each i € [N], a € [M],

TAP

0 = <g 1m> ~
am: Fepelatm) (W + 78 — pe(q(m))nu>

togE e (S 4 2, gl + pula(m) 22 )

6mi
B <<gf> + gl/zg — pe(q(m))n, + Pe(‘J(m))l/ZZ> <5_;Tf - pIe(CI(m))zmz\l}na + pféfi(?;n;))l)/z %Z>
E x& <<{/ﬁ’> + €128, — pe(q(m))ng + pg(q(m))yzz)

_ (8 2ming\  Ex{(ha + pe(q(m))"°Z) pi(q(m))m;
—Fs,psw(m))(hu)(m Pe(q(m))—5 >+]E)(g(ﬁa+pg(q(m))1/2Z) N

g?’ . m; .
= \/—;vFe,mq(m))(ha) e (—2Fe,p¢-<q<m>>(h Y0+ Fe,p(qom) (Ba)* + F (o) (o ))-
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Thus
GTF& ’/;a i
% op(m,n) = —th ' (m;) + e2¢; + ( pl(/(ﬁ m)) (a))
pelq(m))mi & ) ,
+ ST ale <(7’lu - FE,Pg(ﬁ](m))(ha)) + Fz pé(q( ))(ha)) ,

which implies (34). The formula (35) follows by directly differentiating 7=}, . Setting (35) to zero shows

that V,, ,p(m, n) = 0if and only if i = h, which rearranges to (36). This implies F, ,_(4(m ))(fl) =1, so
setting (34) to zero yields (37). m|

Proof of Fact 6.5. Note that
0 1 1 h(h;
th; ' (m;) = — = = c (21). .
om; thi(h;) 1+ e—th®(h) 1+ ech®(h;)
The functions F ,, F;g can be differentated in ¢ as follows. By gaussian integration by parts (or It6’s
formula),

4 E x.(x + 0Y%7) = 11E;(’g(x +0Y%7),

do
and similarly for x’. Thus, abbreviating x.,(x) = E x.(x + 0'/22),
dp o AKX o) 1 .52;( ) Nep(0)XE,(%)
do ** doxl,(x) 2\ Xep(®) Xepo(X)?
We also have
) Xto(X)  (Xe,(x))? ) Xtp(x) 3o (X)) (XEp(x) 22X, (x))°
F ,(x) = — = Fi,(x)= - 2 + 3
’ Xs,@<x> Xe,@(x) ’ Xe,g(x) Xs,g(x) Xe,g(x)
Thus d )
gFee =3 (2Feo(x)FL,(x) + FLy(x))
A similar calculation shows
d 1
g Feo) = 5 (Pea(VEL () + 2FL (1) + ()
The result follows by directly differentiating (34) and (35) using the above formulas. a

Proof of Lemma 6.6. As (m,n) € S; ,, approximation arguments identical to the proof of Corollary 4.18
show the estimates for q(m), (n), d.(m, n) in part (a). The regularity estimate (23) of p, and its deriva-
tives proves the rest of part (a). Differentiating (19) yields

, e 1 , (1+e€p)—x
A T R PR R <¢<@+e<1+e@>><1+e@>’>'

By Lemma 4.21, we see that for ¢ in a neighborhood of ¢, sup, g )%F’&@(x)‘ is bounded by an absolute
constant. Note that
d  Fiolx)

< sup

Pl =
xeR d@ 1+ LOFQ,Q(x) xeR

F (%)
(1+0F4(x))?

1 d
+s ——— —F (x)].
AT ol )| R |agt ™

xeR

- sup (89)

xeR
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By (42),

1 ot e(1+ €p)
14 0F,,(x) ~ ¢ ’
which for ¢ in a neighborhood of ¢, is bounded depending only on ¢. It follows that (89) is is bounded
depending only on ¢. So,

/
~ Fep. (%) F ps(q(m»(x) -
“DZ - DZHop X 7 = Or0<l).
1"‘0&1:&@&( ) 1+ pe(q (m)) )(x)
This proves part (b). Part (c) follows from Fact 4.22, as (for p.(q(m )) in a neighborhood of g, > 0) the
images of Fé pe(q(m)) and FES; (q(m)) 2T€ bounded. Similarly,

9 pe(q(m)) + e(1 + epe(q(m)))

THD_IF"( ) < 1D op| " (R o < - [E"(R) oo
Since the image of F oe(g(m)) is bounded by Fact 4.22, this proves part (d). m]
Proof of Proposition 4.7. We will show that the matrices V3, ., Fiip» Viu nFiaps Vi uFrap in Fact 6.5 have

bounded operator norm (with bound depending on €, C¢yx, Cpq, D). Throughout thlS proof, C is a constant
depending on &, Ceyx, Chd, D, which may change from line to line.
Under PP, we have |Gllop, [g] < CVN with high probability. Under P" PI , we may write G =

E™™ G + G for G as in Lemma 4.17. Then |G lop < CV/N with high probability, and by Lemma 4.17,

e,Pl
~/ o
H]EZM G” C\/7 Since Pg(Q( )) [de /de] h = Fg,:,g(q(m/))(n)

satisfies Hh | < C\/7. N. Then, (37) implies ||g| < Cv/N. So, underboth]Pand]PmPI’1 ,wehave |G|op, [g] <
C+/N with high probability. For the remainder of this proof, we assume this event holds.
Consider any |[m|?, |n|?> < DN. The above bounds on | G|lop, || imply || < Cv/N. By (23), C, ' <

pe(q(m)) < Cpq and |p;(q(m))], |p%(q(m))| < Cpy. Abbreviate F = F. , (4(m)) as above. By Fact 4.22,
sup |[F(x)|, sup [F"(x)|, sup [F®) (x)| < C. (90)
xeR xeR

xeR

Thus F is C-Lipschitz. By (19),

1 ( 1+epé<q< ) )
V(pe(q(m)) + e(1+ epe(q(m)))(1 + epe(q m +e(1+ epe(q(m)))

is bounded, and thus
HF(/)H < [E(@)] + Clli| < CVN.
By (90) we also have |F'(h)|, |[F”(h)], |F® (k)| < Cv/N. This also implies d (m,n) < C.
Since fé D |op < C. Since F' i |D4lop < C. The estimate (42) also im-
plies ||52||0p, 1D op < C. Combining these estimates shows IV, i Fap (1, 1) |op, [ V2, Fiap (M, 1) |op,
vaz,n?trixp(m/")HoP < C. a

A.4. Analysis of AMP iteration in planted model.

Proof of Proposition 5.4. The state evolution [BMN20, Theorem 1] implies that

M
. 1 ~ A o~ ~ ~
—25 (hi, &, B n Y N0, 20, MZ5(ha,5u,h§”'°,...,hg”f")‘&N(o £,
=1
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and X)) agrees with ©* on where {(i,])} n {¢,,0} # J. The remaining entries are defined by

for the following arrays ©(), £()._ First, £(1) agrees with £+ on indices (i, j) where {(i, )} n {0, x} # &,
(i)
(H,&,H,...,He) ~ N(0,£0)) and 0 < i < K,

the following recursion. For

£ =E [(thg(Hi) - %th (H)) thy (Fl) — T, (H))} L0 2 3)0: =30 (@ &)@t e)

qe Ge(qe + €) e + ¢
(91)
For (H,E,Ho,..., ~ N(o, (S and 0 < i < k, we have
: Ao W A A A
szl oy = 0 E [( e (L)) 1:1 Fep (H) | | Fep. (Hy) — w—ja,@{ (H)
'abzﬂ)(lp lPkﬂ) (Eiﬂ + 5)(@“1 +¢) (92)

+
Pe(e + ¢) Pe e
We now verify by induction that £ and 2V coincide with £+ and X Suppose ZS])C = Zi . Then,
Elth, (E)th, (F)] = %0, Elth, (Fl)th. (F1)] = 7, Elth. (FI)?] = q.,
so the right-hand side of (91) simplifies as
9 n €qe —q9;,)(qe —q,) | (q; +€)(q, + €)
qe qe(qe + €) Je + €
Now, suppose ig?{ = iik Then,
A ]E[Fs,@g (ﬁi)Fs,@g (ﬁk)] = ii+1,k+1/ Ak ]E[Fs,@g (ﬁi)Fs,@e (ﬁ)] = EiJrl’ Ax ]E[Fé'/@e (FI)Z] = Ve,
so the right-hand side of (92) simplifies as

ii,k — = 2,‘,}( + &= Zj_k

~ v 0 & - — . R . + € v + ¢ ~

Zi+1,k+1 . labz+1l:bk+1 4 (l,b{ ¢z+1)(¢é libk+1) i (¢1+1 )(lnbk+1 ) _ Zi+1,k+1 L= Z‘;:_l e
Ve Ve(pe +€) Yot €

This completes the induction. O

To prove Proposition 5.5, we introduce two additional auxiliary AMP iterations. They are initialized at
n@—1 = 031 = 0, m@0 = (3.0 = ql/zl, with iteration

. (l)/k

Ok the (s ~(i),k

), nk = Fs,@g(h ),

koo~ (i),k — _
, h(l) as follows. Recall that G is the matrix (44), and 1), = 0. Then,

sk _ 1 = (m(z)'k B @m> N Ve(ge —4) r (% £ 0e [ n®H1 Y, (93)
VN qe ge(qe +€) qete v
h(z),k+1 _ LET n(z)’k B lnbk+1n T \E(l;be - ¢k+1)é + 4’k+1 + El;l _d, (m(z),k _ @m)
VN Ve Ye(e + €) Pe + ¢ e
O ey gy + e _ (3)k—1 Jk +1{k > 1}e
h —WG(m m>+qe+€h 0s | 1 Ty n (94)

h(3),k+1 _ 1 (~;T <n(3)’k B n) + ¢k+1 + € h d, ( (3)k 9 + Sm) .
Ve + e + €

The following proposition shows that all these AMP iterations approximate each other.
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Proposition A.1. Foranyk > 0, as N — oo we have the following convergences in probability under ]PZE,T

k k
@ " RN o and ik s i Ay
k k
) |2 —h PIVN = 0, and ik = 1, [ i
© 1 VN — 0, andik > 1, i i H/\Feo.
Proof of Proposition A.1(a). Similarly to (45), we can sample Z' ~ N(0, 1), él ~ N(0,In), E/ ~ N(0,Iny)
coupled to G such that

(3),k

~1 ./
ng_n(§>T ’r nm' /

G+AN=G-— ,
|m | |n| |n ||| m]|

(95)

Note that |A"|op = 0(v/N) with high probability. Let ~ denote equality up to additive ox(1). By Propo-
sition 5.4, for (H,H,Hl, e ,Hk) N(o, »( )) and (H, ._.,Hg, e ,ﬁk) ~ N(O,ig{),

R > Bl (E)R = 00+ ) i) = au Bl ()] = 47, + ),
N<m, i ~ Efth. ()] = 0. (e + ¢), %<n, hy = a, E[F.,, (H)H] = de(q. + ¢).
Also,
<m m( k——m>~§k—% ge =0, %<n,n(1)'kl—%n>zak_%‘¢s =0. (%96)

Finally ﬁ<<§/ my ~ ﬁ(é, n) ~ 0. Considering the inner product of (47) with n shows

1 J SN Tk
~—(n,—G (m(l)’k - —m>>
v (-3

We can expand G using (95). Since ' G = 0, & ~N<n, 5 ) ~ 0 in probability, and ||A'[o, = o(m)

1 1 — 5 m' n(é/)—r , ( (1),k ‘7k ) ”nH < >
~ — —— —A = .
Y <"' VN (G [m] ] ) m ™) ) N cm

Thus,
10k _ 1k ~
N <<§ m> ~ 0 (97)

in probability for all k. An analogous computation shows

1 ~/ E

il (k-1 _ Tk ~
,n n )~0.

N <5 P, >

%ﬁ(a_awm(l)h%m) fm< mit - qk > fynu<‘§’ >

1 Tk
— —N (m(l)'k - —m) ,
VN qe
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and this has norm o(v/N) by (96), (97). Subtracting (47) and (93) yields

~(1)k ~(2)k 1~ = Tk 1 = k k 1),k—1 2),k—1
b’ —-h’ =—(G-G <m(1)'k — —m) + —G(mWKk — DKy (nDHE=1 _ @)
1 —
— L Gk _ @y (k=1 @1y 4oV,
where 0(v/N) denotes a vector with this norm. Analogously,
- (1),k+1 - (2),k+1 1 =T
OGO L BT Wk @8 g Dk @K 4 oV,
On the high probability event that HEHOP = O(V/N), we have
~(1),k  ~(2),k
i = W) < 0% — @ 4 g, |n A - @E 1 o(VN),
- (1),k - (2),k
i B < 0O < @l O — @] 4 o (VN).
The claim now follows by induction on k: ||mM)°® — m@0| = |n()~1 — 4(@).=1| = 0 by initialization,
and because th and F ,, are O(1)-Lipschitz,
- (1),k - (2),k ~(1),k  ~(2),k
% — @5 <o = P, 0k —a@y < o™t -,
for all k > 1, k > 0 respectively. O

Proof of Proposition A.1(b). Note that A defined in (46) w.h.p. satisfies |Aop = 0(v/N). We write (94) as

E(S),k _ L(‘;(m(Z)/k )+ 9 + €0 o [ n@F1_ Y, + 1{k > 1}en
'\/ﬁ qé‘ + € l,bg + &
_|_

1 ~
G(mO* — m@ky _ g (n®k=1 _ y@)k=1y,

VN
By Proposition A.1(a), Wz(yh(z),k, ‘uh(l),k) = on(1). So, Fact 4.20 and Proposition 5.4 imply
1 1
— (2)k\ o & O,k =
1. 1. Vee =)
(& mI) > =& mIE) ~ 1{k > 1}, ——.
N N V(e +€)
By (45),
A~ LT
1 ~ 1 — e Em’ £ né
—GmI* —m)= — (G- : — : —A ) (DK —m
Nkl N\ TV e Tl N e Tl 8) )
1 — Ve — Ty 5 e — 9y
= —GmP* —m)+ T 1{k > 1}0.——— 5 + 0(V/N).
VN Ge(ge + €) Ve(Pe + )
Since Gm = 0, we have G(m@* —m) = G(m®@* — %m) Moreover,
P+ k= 1je 1k > 1}5(% ¥ W

Ve + &

Combining the above and comparing with (93) shows

~(3), (2),k 1 ~ _ _
h + —G(mO*F — @Ky o (n®F1 g @Ry L 6(V/N).

V(e +&) Ve

ko~
=h
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Similarly,
A Al LE;T(nm'k —n®F) —d. (m®* — @Ky 4 o(VN).
N
On the high-probability event that |G lop = O(VN), this implies
~(3),k ~(2),k
B R < 0@)[mOF — m @K 4 g n®kt @k 1 o(VN),
. ~(2),k
[ RO < 0()n®k — n@F ) 4 | |m®F — @K 4 o(VN).

The result follows by induction on k, like above. m|

Proof of Proposition A.1(c). By Corollary 4.18, we have

G a4 (1+on()hm’ e on(1))nht L ov(mm’ G

VN N(qe +¢) N +¢) N VN
hm™ nh' G
= + + +on(1), (99)

 N(@e+e) N@:+¢) VN
for G as above and oy (1) a matrix with this operator norm. Since g(m) ~ q¢, P(n) ~ e, and under

m,n s _ —1 . . . .
]Pg,PI we have a.s. h = Fé‘,pg(q(m)) (n), the following terms appearing in (36), (37) satisfy

pe(q(m)) =~ oe, pe(q(m)) ~ -1, de(m,n) > de.
Combining the AMP iteration (20) with (37) yields
~k 1 ~
h = —Gm"—m)+h+o.(n—n"
1 ~ 1
= —GmI* —m) + h— 0. (nF T — ) + —G(mk — mOF) — g (nFTT -

By Proposition A.1(a)(b), W, (yh(g),k, yhm,k) = on/(1). So, Fact 4.20 and Proposition 5.4 imply 5 (m, mB)ky ~
g (similarly to (98)) and

1 . 1 . —
N<h' mky ~ N<h,m(1)'k> ~ (Y, + 1{k = 1}¢)o,.

Expanding G using (99) then yields

1 ~ ﬁk + & k— Ek + &
— G(m®k _ h—o. | n®k-1_
TN (m m)+q£+€ 0¢ | m ¢E+€n
_I_

——G(m* —m®F) — (T = n K1) 4o (VN)

Analogously,
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So, on the high probability event that |G|, = O(vV/N),

~k  ~(3)k
Ih —h“) O(1)|m* — m® o —n<~°’>'k-1u +o(VN),
k1 (3) k4
Ik | = O()n* —n®* m' (VN).
The result follows by induction on k, like above. O
Proof of Proposition 5.5. Immediate from Proposition A.1. O

A.5. Continuity of first moment functional term.

Proof of Lemma 7.4. Let C denote an absolute constant, which may change from line by line. By Lemma 7.3,
log W is (2, 1)-pseudo-Lipschitz. By Cauchy-Schwarz (similarly to the proof of Fact 4.20),

—a,H —bN —a,H — b,N
]Elog\lf{K ! : by } - log\I’{K azc bz } < CVTiTy,
1 2

where
N N 2
le]E (K—ﬂlH—blN_K—agH—b2N>
Cq1 C2
<C max(ay, a, by, by, c1, ¢, 1)(Jay — az| + |by — ba| + |c1 — c2|) 2
= mil’l(C1,C2)2
and

cq Ca min(cy, Cz)

. 2 R 2
T,—E (K—a1H—b1N> +<K—a2H—b2N> 1 gc(max(al,az,bl,bz,cl,cz,1))4.

APPENDIX B. VERIFICATION OF NUMERICAL CONDITIONS FOR Kk = 0

In this appendix, we use rigorous interval arithmetic (implemented in the attached Python 3 file using
python-flint) to verify the conditions in Theorem 3.6, other than Condition 1.3, at k = 0. This proves
Theorem 1.2. We also verify Claim 2.6 using interval arithmetic.

Throughout this section we take ¥ = 0, . = a4(0), go = g« (a4, 0), and Py = P, (s, 0). We will use
Claims to denote statements whose proofs require interval arithmetic.

B.1. Numerical estimates of parameters and special functions. By [DS18, §7], the following are
lower and upper bounds for a., qo, Vo:

ap = 0.833078599, g = 0.56394907949, U = 2.5763513100,
aup = 0.833078600, Jub = 0.56394908030, P = 2.5763513224.
Let yo = Vb = and yu = q“b . Note that Condition 3.4 only requires us to exhibit a value of

‘10 1 qlb
z>—1 such that A(z) < 0. In the verlﬁcatlon below we will use the value

Z = —0.669316.
For k € {2, 4}, define

pe(y) = E[th(y'?2)"], re(y) = E[8(y"*Z)"].
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Note that the fixed-point condition in Condition 3.1 defining (g, o) implies (for k = 0)

p2(o) = qo, r2(y0) = % (100)
Let
m(z,¢) = E[(z + ch®(¢*2)) 7). (101)
Finally, define
_ &'(y*z)
sl = { (1~ (1~ &) + m&(Z) } | ey

We now collect the main estimates in the verification whose proofs require computer assistance. The proofs
of these claims are deferred to §B.4, with computer-assisted parts carried out in the attached Python file.

Claim B.1. We have p4(1)) € [Pab, Paun] = [0.4405902310, 0.4405902320].

Claim B.2. We have r4()o) € [Fa1b, T4,up] = [5.297,5.317].

Claim B.3. We have m(z) < my, = 0.9309695, where m(z) = m(z, 1) is defined in Condition 3.4.
Claim B.4. We have ¢(m(Z2), qo, Vo) = Qb = 0.7739.

We conclude this preparatory subsection with a few useful lemmas. First, we reduce several integrals
that will appear below to the functions py, ps, 2, 4.

Lemma B.5. The following identities hold.

() = B[t (1 °2)"] = 1 = 2p2(9) + ps(¥), (103)
s(y) = E{&(y"27)} - ﬁyy), (104)
w(y) = E {607 2780 2)) - 10, (105
() = E {y"280"2)80"2)} = ~n0) + o) (106)
i) ={ziee iz} - - L) ), 0
() =E{8/0" 2} = n0) + g, (108)

Proof. Equation (103) follows directly from the identity
th’(x)? = (1 — th®(x))* = 1 — 2th*(x) + th*(x).

For the remaining parts, we apply the identity &'(x) = &(x)(E(x) — x) (Lemma 4.21(b)) and integrate by
parts. First,

s(y) = E{8(2)*| ~ E{&("2)y"z}

~E{80"°2)*}| - yE{&(02)} = (y) = ys1(),
which proves (104). Similarly,

s(y) = E{8(/2) | - E{&(*2)y"*Z} = r4(y) = 3yn2(y),
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which proves (105). Then,
s(y) = E{y2ze( 227} - B{ (210 2))
=3y E{80° 278 (y'*2)} - yE{E()'?2)*} — 2y E{(y'*2)E(y2)E (y"*7) }

= 3ysa(y) — yra(y) — 2yss(y)-
Rearranging proves (106). Further,

s(y) = E{(/"2)6(°27 | ~B{("*2)8(y"2)}
=y E {8(71/2Z>2} + 2y E {(')/I/ZZ)S(VI/ZZ)SI()/l/ZZ)}
—27E {(yl/ZZ)S(yl/ZZ)} —vE {(yl/ZZ)ZS’(yl/ZZ)} .
Integrating by parts again yields

E{(y"?2)E0/2)} = yE{E (1 2)} = ys1(0).
So

sa(y) = yra(y) +2yss(y) — 2y%1(y) — ysa(y)-
Rearranging proves (107). Finally,

) - E{60°42)) ~2k {0 210027} (020 )
~B{e0 2y} - B {en zre o) s e oo o)
+2yE {(Vl/zz)S(VI/ZZ)SI(VI/ZZ)}
= r4(y) —6ys2(y) + yra(y) + 2ys3(y).

Rearranging proves (108). i
Recall from Condition 3.4 that dy = a, ]E[Fi_qO (q;/ZZ)]. As a consequence of (100) and (104), we have
a. a. r2()0)
g _ % - _(1— 109
0 14, s1(0) —q0 1+ (1—g0)¥o, (109)

where we have used that (1 — go)(1 + o) = 1.

Lemma B.6. The functions p4 and r4 are increasing. Moreover, for any z > —1, and m defined in (101), the
function p — m(z, ) is decreasing.

Proof. The function py is increasing simply because the maps ¢ +— th(lpl/ 2x)* are pointwise increasing
for all x € R. Similarly, since the maps ¢ — (z + ch?(1)'/2x))~"! are pointwise increasing for all x € R,
z > —1, the function 1) — m(z, ¢) is decreasing. Finally,

r(y) = E{eE(y 2228 (2" + 28(y 228" (v 2) | = 0,

as Lemma 4.21(c) implies &” > 0. Thus 74 is increasing. ]
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B.2. Verification of numerical conditions in Theorem 3.6. Condition 3.1 was proved in [DS18, Propo-
sition 1.3] (recorded as Proposition 3.2). We now verify Conditions 3.3 and 3.4 by proving the following.

Claim B.7. Condition 3.3 holds for = 0, with a, E[th(; *Z)*| E[F]_, (4,°Z)*] < au = 0.5446.

Proof. We calculate:
Qs
a, E[th'( é/ZZ)Z]E[F;—qo(Qé/ZZ)Z] = mt(%)ﬁs(%)

(1~ 2p2(9) + pa(®) (

Lem. B.5 (o2

(1—q0)?

r2(yo) + ( Sl )74(7/0)>

1+ 2y 14 2y0)(1+ 3y

(100) O Y0 (1—q0)o 1—"%0 )
= _(1—2gp + : -
(1 _ %)2( q0 p4(11b)) <1 +2,)/0 a, (1 _’_2,)/0)(1 +3y0)”4(70)
Yoo ax(1— 7o) )
— (1—2q0 + +
(1= 20+ paly) (2250 4 0T

Wy ap (1 — (%)
Vubipub b1~ 7w) f4,1b> < Aup.
1+ gw (14 qub)(1 + 2qub)
The estimate () is verified in the attached Python file. We note that this is a simple arithmetic comparison,
as all terms are explicitly defined decimal numbers. O

< (1 — 2491 + paub) (

Claim B.8. Condition 3.4 holds for k = 0, with A(Z) < Ay, = —0.1906.
Proof. Note that for ¢ defined in (102),

(109) ~

MzZ) =2z — a.g(m(2), 90, y0) —do = Z — a.g(m(2), o, vo) + (1 — q0)¥o

~ (%)
<z —angp + (1= gn)Pw < Aw.

The step (x) is verified in the attached Python file, and is a simple arithmetic comparison of explicitly
defined decimal numbers. O

Proof of Theorem 1.2. Follows from Theorem 3.6, Proposition 3.2, and Claims B.7 and B.8. O
B.3. Local maximality of first moment functional at (1,0). We next verify Claim 2.6.
Lemma B.9. For k = 0, we have
(VZ8,(1,0), (11, u2)®? = —E[(1 — M?)(uH + u;M)?] + C, E[(1 — M?)(u; H + u,M)H|?
+ G, E[(1 — M?)(uH + u,M)M] E[(1 — M?)(uH + u,M)H]
+ G E[(1 — M?)(uH + u;M)M?,

o A 2a A 1 A 2
C:=—=E{F,__, (H)N?*}, C z—*]E{P’ H <—H+N>N}+ ,
1 770(2) { 1 qo( ) } 2 IPO 1 qo( ) ¢10(1—¢10) 1_q0

A 1 PN 2 lPo
Cs=a.E{F_, (H|—H+N + —.
e { 10 )<q0(1q0) ) } 90

Proof. Analogously to the proof of Lemma 2.5(c), define A, = (110, + uzﬁ,\z)zA. Also abbreviate

E[MA] &y E[HA]
v K== H - 7
| _ E[MAJ?
qo

N

1—q0N
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We differentiate (87) to obtain
(Se(A1, Ag), (11, u2)®%) = —E[(u1H + u,M)A]

2

_E[MA] ¢y E[HA] _ E[MA] ¢y E[HA]
CwEBlem | et Tw N KT BT e N EMAJEMA]
| _ EIMAF (1 B ]E[MA]2>3/2 qo
go qo

2E[MA] ¢y  2E[HA]
o H - N E[MAJE[MA
_a*E{S(V)< ] 0 [MA]E[MA]

3/2
(1_IE[1\;IOA]2> do
E[MA] 4 E[HA E[MA] 4 E[HA
KOS TR sEMAPEMAR | <o SRR TN EMap )
(i- IE[MA]Z)S/Z 9 (1- E[MA]z)s/z 9o i
qo qo

where f(A;) is (87) with A replaced by A,. We now specialize to (A1, A3) = (1,0). As argued in the proof
of Lemma 2.5(c), at (Al,Az) = (1 0) we have f(Az) = 0. So,

<§*(1 0) (1/[1, Mz = —]E LllH + MzM)A]
: . 2
]E i _ E[HA k—H—(1—¢g0)N
+a,E{F,_, (H HAL (1~ 40) . E[MA]
Yo 1—qo
i _ 2EIHA]

Yo N

—a*]E{Fl g ( ( -E[MA]
1-— qO
k—H— 1—q0)N E[MAP + k—H—(1-g))N E[MA]?
(1—q0)° 1—4o To '
Specializing further to ¥ = 0 (which was not used up to here),
(84(1,0), (11, u2)®*)

= —E[(u;H + u,M)A] + a, E {P; 50 (H) <<MH + N) E[MA] + #}ﬂ IE[HA]> 2}

0
3 A 1 +2q0 2 2
tak {N <(q0(1 - %)ZH N qo(1 — 40)N> EIMAJ" Yo(1 — go)

Finally, as &, E[NH| = qodo = —q0(1 — q0) o (by (109)) and a, E[N?] = 1)y, the last term simplifies to

N E[MA] ]E[HA]> }

2 .
Yo E[MAJ? + E[MA] E[HA].
qo 1 =10
Expanding A = (1 — M?)(uyH + 13 M) concludes the proof. ]

Claim B.10. The following estimates hold.
(@) Cy € [Cyop, Ciup] = [—0.7193, —0.7165].
(b) Cy € [Cap, Copup] = [5.0439, 5.0568].
(c) Cs € [Camp, Csup] = [1.1345,1.1526].
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Proof. We compute using Lemma B.5 and (100):

o —52(7/0) 7 a.r4()0) B a.74()0)
1 : - - - 7
R (1 —q0)>  P2(1— qo)*(1 + 3yp) 5 (1 —qo)(1 + 240)
2
Cz ( 52 y0)> +
1-— %
( (2 —g0)(1 — qo)ra(y0) 72(7/0)> 2 2(2—qo)asra(yo) 240
1—510 (1+ q0)(1 + 240) 1+ 4o 1—qo  o(1—qd)(1+2q0) 1—4g3
2
C, — ( (%) 54(72/0)> Lo
1 —qo)? 9o 95 qo
1—4o 2% -1 > Wy a.r4(Yo) o
r T = + .

1—qo <1+2q PR T C R 1R R g

So
c (i) B QubT4,ub <Ci<_ AT lb (i) c
TR g (Tt 2qn) 9ROt 2qw)
b (i) 2(2 — q;b)albm,lb 2111b2 <G, < 2(2— ’/];b)aubu,ub 26]ub2 (2 Cou,
Pub(1 — Cllb)(l +2qw)  1- b (1 — E]ub)(l +2qp)  1-— 4
Cam (2 B QubT4,ub (11 Qb4 1b Yup (;) Ca.

+ <Cs < — +
(I—qw)(+2q0)  1—qn (=)L +2qw) 1—qu
The steps marked () are verified in the attached Python file, and are simple arithmetic comparisons of
explicitly defined decimal numbers. O

Claim B.11. DefineI; = E[(1 — M2)H"], I, = E[(1 — M})HM], I = E[(1 — M?)M?]. Then,
(@) I € [, I1,up] = [0.24759912, 0.24759923].
(b) I, € [Io b, L2 ub] = [0.16997315,0.16997318].
(c) I € [Is 1, I3,up] = [0.12335884, 0.12335885].

Proof. By repeated integration by parts and (100):

I = Po(1 — o) — 205(1 — 4q0 + 3pa(0)), L = o(1 — 440 + 3pa(0)),  Is = go — pa(to).
Thus

(x) ) ) ()
L < Y1 —quw) — 295, (1 —4q1 + 3paw) < It < Pu(1 — qun) — 200 (1 — 49w + 3pan) < I1u,

(%) (%)
L < Yip(1—4qu + 3pan) < Lo < Pup(1 — 491 + 3pauw) < Izub,

(*) (*)
Ly < gib— paub < Is < gub — papp < Iup-
The steps marked () are verified in the attached Python file, and are simple arithmetic comparisons of
explicitly defined decimal numbers. O

Claim B.12. Let M = V2§,(1,0). The following estimates hold.
(@) My1 < My 1w = —0.045408.
(b) My < My g up = —0.020490.
() My € [Myz1p, My guw] = [—0.025685, —0.026567].
(d) det(M) = Mget 1 = 0.0002246.
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Proof. By Lemma B.9,
My = =1 + CiI} + CLi L, + G512,
M, =—L + CiLL + écz(lg + II3) + Csl3I,
My, = —I3 + CiI; + CoLo15 + G513

Estimating with Claims B.10 and B.11, we find

(%)
2 2
Ml,l < _Il,lb + Cl,ubILIb + CZ,ubII,ubIZ,ub + C3,ub12,ub < Ml,l,ub/

()
M < I + Cl,ublgllb + Caz,ubl2,ubl3,ub + CS,ubI32,ub < Mz 2ub,
D *)
M < I + Crunlywlon + Ecz,ub(Izrub + I upl3,u) + Csublo,ublsup < Mi2,ub,

1 (%)
My, = —Ipu + Cowliunlz,uw + Ecz,lba;lb + Liwlsw) + Csplowls iy = M.
The steps marked () are verified in the attached Python file, and are simple arithmetic comparisons of

explicitly defined decimal numbers. This proves parts (a), (b), and (c). Finally,

(%)
2 2
det(M) = M1,1M2,2 - Ml,z = Ml,l,usz,Z,ub - M1,2,1b = Mdet,lb/

where the step () is verified in the attached Python file. This proves part (d). ]
Proof of Claim 2.6. Follows from Claim B.12, which implies M; 1, M, < 0 and det(M) > 0. O

B.4. Interval arithmetic estimates. We now describe the computer-assisted proofs of Claims B.1, B.2,
B.3, and B.4. We begin with the more straightforward Claims B.1 and B.3.

Proof of Claim B.1. We first show the upper bound. Set L = 10. Since th* takes values in [0, 1],

Lem. B.6

pai(o) < pa(Yw) < E[th* (p'2)1{|Z] < L}] + P[|Z] > L]

k 1/2 2/ (%)
< j th*(y , %) @(x) dx + 2e 712 < pa,
-L

where the step () is verified in the attached Python file. Similarly,
Lem. B.6 L (%)
patvn) 5" palyn) > B} °200012) < 1)) = | o 0 dv 2 pon,
L

where the step () is verified in the attached Python file. O

Proof of Claim B.3. Let L = 10. Note that for any x € R, (Z + ch?(x))™! < (1 + 2)~L. Then,

. ~ Lem. B.6 ~ ~ 2,.,1/2 -1 >\—1
m(z) =m(z,o) < m(z,Pp) <E[(Z+ch*(Y,"2)) H|Z| <L} + (1+2) P[|Z] = L]
L 275 (%)
< J (2 + ch?(Yy*x)) M (x) dx + 2(1 +2) e T2 < my,,
—L
where the step () is verified in the attached Python file. O

Claims B.2 and B.4 will involve integrating functions that involve & against the gaussian measure. This
is more challenging because & is itself defined in terms of an integral, which makes these claims less
amenable to numerical integration. We take a cruder approach of discretizing these integrals into small
intervals, and bounding the integral on each small interval using monotonicity properties of & and &’.
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Proof of Claim B.2. Let L = 8,6 = 1073, and | = L/0. For integer j € [—], J], let xj = jo. Then,

J-1
o) < rw) = 3 B{EOWZIUZ € [ ]} | + E{&(y 2) 112 > L}
j==]
These terms can be bounded as follows. Since & is nonnegative and increasing (by Lemma 4.21(a)(b)),

E{E(0'2) UZ € [xj, %11} } < E0xj00) PIZ € [x7, 2711),

and this probability is bounded above by 0¢(x;41) if j < —1 and 6¢(x;) if j > 0. We estimate the tail
term using Cauchy-Schwarz:

12 1/2 1/2
E{&(w2)'1{1Z] > L}} <E{&( 7)) Pl1Z] > 1]V

The probability is bounded by 2¢~L*/2. For the remaining expectation, recall from Lemma 4.21(a) that
0 < &(x) < |x| + 1. So,

E {a(yfﬂ/fZ)S} <E {(1 + yl/2|Z|)8} <2E{1+y4 7% =27(1 + 1052,).
Combining these estimates yields

]E{8(y1/2 )1{|Z| = }} < 241+ 105)2,) 27 < 24(1 + 11y )e A
All in all,

72 (%)
<6 2 E(r %) p(xj11) + 6 Z ELxin) o(x)) + 24 (1 + 1yw)e V74 < raw,
== j=0
where the step () is verified in the attached Python file. (See Remark B.13 below for how the function &
is evaluated numerically). For the lower bound, we similarly have

J—1

Lem. B.6
nn) 2 nm) = Y E{804 21 UZ € [xj, xj]}
j==T
1/2 = 1/2 (*)
>0 Z 711) x] ¢ (x)) +628 b x]) P(Xj11) = Tap,
j==1 j=0
where the step (*) is verified in the attached Python file. O

Remark B.13. The above computer-assisted proof requires evaluating the function &(x) = @(x)/W¥(x),
where W(x) = P[Z > x] is itself an integral. We evaluate this as follows. Note that the inputs x on which

llﬂ/)ZL < 10. Define L, = 12. We estimate

Ly Ly —(L2 —x%)/2
B o(y) P[Z > L4] f 22 e\
S(x) = dy + [T,
&) . e Y o (x) x Y V2n

we numerically evaluate & are bounded above by y

and

L+ 2 2
E(x)'= e~ W =32 gy,
X

X
The remaining integral can be rigorously bounded by numerical integration, and for x < 10 the term

e~ (Li=2)/2 /A/271 will contribute an error that is multiplicatively small.
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Finally, we turn to Claim B.4. By Lemma 4.21(b), &' takes values in (0, 1). Thus the function g defined
in (102) is decreasing in m and increasing in g, and
g(m(Z),q0,70) = g(Mub, g1, Y0)- (110)

However, ¢ is not clearly monotone in y, so we instead control the derivative of g in .

Lemma B.14. Let §(y) = g(muw, qu, V). Then, forally =0, |3’ (y)| < 20.

Proof. We write $(y) = E[g(y"/?Z)], where
o &)
S i) T )
A straightforward calculation shows that
§(x) = (1 — )& () 20— gw)(may + g — 1)E" ()"
(1= gw)(1 = &'(x)) + mp&'(x))* (1= qu)(1 = &'(x)) + mup&'(x))?)?
Since &'(x) € (0, 1) by Lemma 4.21(b),
(1—qw)(1—&'(x)) + mwE (x) = min(1 — g, Muw) = 1 — G-
Lemma 4.21(c)(d) yields |E”(x)| < 1, |E®)(x)| < 13. Thus
~ 13 2(mub + qn — 1)
/" <
187 (x)] 1— g (1— qu)?

where the final estimate follows from the simple bounds gy, < 3/5, 1y, < 1. Finally, a gaussian integration

(111)

< 40,

by parts calculation yields

~ 1~
¥() = LER"(2)),
which implies the result. O

Proof of Claim B.4. In light of (110) and Lemma B.14, we will estimate

8(m(2), 40, 70) = §(muv, qin, Y1b) = 20/ yub = Vibl-
We will estimate ¢ (b, q1b, Vib) by discretization, like in the proof of CLaim B.2. Let L = 8, 6 = 1077,
and | = L/6. For integer j € [—], ]], let x; = jo.
Note that g(x) defined in (111) takes positive values, and is an increasing function of &'(x). Moreover,
by Lemma 4.21(c), &'(x) is an increasing function of x. Thus g(x) is an increasing function of x. Hence,
J—1
112, 1/2

g(mu, g, yw) = BIZ(ry 2)] = Y E[Z(yy, Z2)UZ € [x), xj111}]
=

-1 J—1
>6 > S0 x)p(x) +8 2 g 1) e(xjen).
j== j=0

Combining the above,

(%)
g(m(Z),q0,70) =6 Z P xp)p(x)) +5Zg (%)@ (x41) — 20[yup — Y| = b,
=

where the step (*) is verified in the attached Python file. We numerically evaluate g using the identity
E'(x) = E(x)(E(x) — x) (Lemma 4.21(b)), evaluating & as in Remark B.13. O
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