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Abstract—Decentralized model training for on-road vehicles
offers the potential to harness huge amounts of data at low costs.
However, existing approaches usually depend on the existence of
a coordinator, tight synchronization, or a connected cluster, all of
which can be challenging or infeasible for fast-moving vehicles.
In this work, we propose Learning by Chatting (LbChat), a
fully decentralized and asynchronous model training approach
leveraging coreset-sharing to eliminate the need for a coordinator,
tight synchronization, or even a connected cluster. Different from
conventional decentralized learning methods, a vehicle not only
exchanges its local model but also a coreset, a condensed abstract
of its local training data, with opportunistically encountered
peers. A vehicle measures its model’s performance on a peer’s
coreset, and a lower performance indicates more different data,
thus a more “valuable” model from the peer. Such models are
compressed less during exchange to maximize the aggregate
gain from each encounter. Extensive evaluations on the driv-
ing decision-making task demonstrate that LbChat is strongly
competitive with the central server or roadside infrastructure-
based approaches (e.g., federated learning). Compared to recent
fully decentralized vehicular learning benchmarks, LbChat out-
performs them significantly by up to 20% higher driving success
rate in the most challenging driving condition, demonstrating the
power of insights gained from coresets on peer models’ value.

Index Terms—Vehicular network; coreset; vehicular model
training; opportunistic communication; decentralized learning

I. INTRODUCTION

The demand for models in autonomous vehicles spans
various applications. Collecting data required for training
these models with dedicated fleets entails tremendous resource
investments [1] and is difficult to cover various critical but
corner cases [2]. In response to this data-hungry scenario, as
an alternative, federated learning facilitates leveraging data
from numerous on-road vehicles. While recent research has
demonstrated the effectiveness of such approaches [3], they
still encounter challenges stemming from limited/unstable
data rates to the backend infrastructure and sporadic cellular
network coverage [4]. As a result, fully decentralized methods
emerge as a promising solution [5] [6], as they empower
vehicles to train local iterations and communicate models
directly with nearby peers, thereby generating aggregated
models and circumventing the aforementioned constraints.

In the landscape of decentralized/gossip learning, existing
works can be broadly categorized into two groups: 1) Syn-

This work is supported in part by NSF grant 2007715.

chronous learning (e.g., decentralized federated learning) that
requires tight synchronization among work nodes during the
whole training process: all nodes are expected to start and fin-
ish each global “round” simultaneously. A round refers to a pe-
riod during which all nodes train local iterations and exchange
models with their neighbors. However, this becomes extremely
challenging or simply infeasible among on-road vehicles. The
contact duration between two vehicles in which they are
within the radio range and can communicate, may last only
for tens of seconds or shorter [7]. Wherever central servers or
road-side units (RSUs) are not available (e.g., limited cellular
coverage or RSU deployment), multi-hop coordination thus
tight synchronization is difficult to achieve due to the limited
communication range, loss over wireless channels, and high
mobility of vehicles. While some recent works show tolerance
to stragglers and communication delays [8], they still adhere
to a round-based approach and assume delays are bounded. 2)
Asynchronous learning does not require a common notion of
“round”. Instead, individual nodes train, exchange, and merge
models whenever they encounter neighbors. However, existing
works (e.g. [9]) usually assume a connected cluster/topology
of vehicles, which is often infeasible among fast-moving ones.
Notably, in both categories, existing works exchange among
peers only models but not local training data.

In this paper, we propose Learning by Chatting (LbChat), a
fully decentralized and asynchronous model training approach,
where vehicles exchange not only models but also coresets
[10], succinct summaries of the local training datasets, with
opportunistically encountered peers. By measuring the model’s
performance on a peer’s coreset and comparing how much it
is lower than that of the peer’s model, a vehicle can assess
the “value” of that peer’s model: a larger performance gap
indicates the peer’s model is potentially better-trained on much
different data, thus regarded more “valuable” to this vehicle.
This enables vehicles to allocate communication resources to
valuable models within short contact durations to maximize
the aggregate gain. Thus we eliminate the need for coordi-
nators, consistent global rounds, or even connected topology
among moving vehicles, which are difficult to maintain.

Specifically, a vehicle keeps training local iterations using
the local dataset, while opportunistically exchanging coresets
and aggregating models from other vehicles upon encounters.
During pairwise “chat”, vehicles first exchange their coresets

1



and evaluate the local model’s performance on the peer core-
set, subsequently exchanging the evaluation results. Based on
the results, vehicles dynamically optimize the model compres-
sion ratios for the exchange. Intuitively, this optimization tends
to invest more time in receiving an expected “valuable” model
with a lower compression ratio, and less time to acquire a
less valuable model with a higher compression ratio. Since
the coreset size can be substantially smaller than that of a
vehicular learning model (e.g. two orders of magnitude in our
experiments, a coreset at 0.6MB while an imitation learning
model at 52MB), exchanging coresets takes very little time.
Yet this small “investment” allows vehicles to make intelligent
decisions on using the limited contact durations for the most
“valuable” models for maximum gain. We assume adequate
incentive mechanisms (e.g. [11]) and privacy protection tech-
niques (e.g. [12]) exist for sharing such coreset data.

Our contribution is three-fold:
• We introduce local training data sharing into peer vehic-

ular model training, whereas previous works only exchange
models. We explore a fully decentralized and asynchronous
paradigm, which eliminates the necessity for consistent global
“rounds” or connected topology, hard to maintain under short
contact durations and wireless losses among moving vehicles.

• We propose LbChat, a coreset-based approach, for opti-
mizing collaborative model training. LbChat utilizes coreset
as an estimator to quantitatively assess the value of models
from peer vehicles. By constructing and exchanging coresets,
and conducting evaluations on them, vehicles adapt the model
compression ratio during exchanges and weights in aggrega-
tion, aiming to maximize the aggregate benefits from each
encounter. Vehicles also absorb peer coresets and expand local
datasets, enriching local training data. Route sharing is further
integrated to address wireless losses by prioritizing neighbors
with higher probabilities of exchange completion.

• We evaluate our method on the popular driving decision-
making task using the CARLA simulator. In online evalua-
tions, LbChat achieves driving success rates strongly compet-
itive to central server/roadside infrastructure-based approaches
(e.g., federated learning). When compared to fully decen-
tralized vehicular learning benchmarks subject to the same
constraints, LbChat outperforms them by up to 20% higher
driving success rate in the most challenging driving conditions,
demonstrating the effectiveness of LbChat and unveiling the
potential of data sharing in peer vehicular model training.

To our best knowledge, this is the first work to explore
a coreset-sharing based solution for decentralized and asyn-
chronous vehicular model training. The insights of peer mod-
els’ value through coresets is the key for optimized model
exchange and aggregation.

II. PRELIMINARIES

A. Communication model & Opportunistic model training
We consider a set of vehicles V = {v1, v2, ..., vN}, each

equipped with a local dataset and maintaining a local model.

Continuously training local iterations, the vehicles share core-
sets, pertinent information (e.g. route), and exchange models
with encountered peers. We assume that vehicles have access
to assistant information (e.g. future routes in next few minutes,
which can be obtained from navigation services) and possess
similar hardware as well as communication capabilities. 1

We denote the available bandwidth of vi in a pair-wise
communication as Bi. We also assume the loss in wireless
communication can be roughly estimated based on certain
models (e.g., distance based ones [13] [7]).

In opportunistic vehicular model training, each vehicle
trains a model locally with an identical model structure. Each
vehicle vi possesses its local dataset Di ⊂ D and maintains
its local model xi ∈ P , with D representing the metric space
and P denoting the parameter space. We assume that the
datasets on vehicles are i.i.d. and the models on vehicles have
the same initialization. A vehicle exchanges its local model
with encountered peers and aggregates received parameters to
update its local model. In LbChat, a vehicle also exchanges its
coreset upon encounters to direct model exchange and merging
and incorporates the received coresets into its local dataset.
As the local model evolves and the local dataset expands over
time, we denote the local model and local dataset of vehicle
vi at time t as xti and Dt

i , respectively.
Our objective is to train local models on the n vehicles with

their datasets, which can be formally defined by:

minxT
i ∈R,i=1,...,n

1

n

n∑
i=1

f(xTi ;D
T
i ) (1)

where T is the maximum time for training. We expect that
models on vehicles to be well trained finally and can work on
the overall joint dataset. We note that, in practice, the models
may not be exactly the same. We consider the objective as the
weighted sum of loss over the local dataset:

f(x;D) =
∑
d∈D

w(d)f(x; d), (2)

where d is a single data sample and w(d) is its original weight.

B. Coreset
Coreset is a compact subset approximating a substantially

larger dataset, thereby reducing complexity measures such as
time, space, and communication for running algorithms (e.g.
clustering) on large datasets. Notably, coreset techniques have
demonstrated success in addressing optimization problems
(e.g. logistic regression and Gaussian mixture models [14]).
In this work, our focus on coreset for continuous-and-bound
(CnB) learning problems. We present the formal definition of
continuous-and-bound learning problems below as [15].

Definition II.1 (Continuous-and-Bounded (CnB) Learning).
Let α, l > 0, and x̃ ∈ P . Denote by B(x̃, l) the ball centered

1We leave heterogeneous hardware and communication capabilities to
future investigation.
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at x̃ with radius l in the parameter space P . An objective is
called a Continuous-and-Bounded learning problem with the
parameters (α, l, x̃) if the loss function f(·; d) is α-Lipschitz
continuous for ∀d ∈ D, and x is restricted within B(x̃, l).

A function g : P → R is α-Lipschitz continuous if for any
x1,x2 ∈ P , |g(x1) − g(x2)| ≤ α∥x1 − x2∥, where ∥ · ∥ is
a specified norm in P . We note that it is worth mentioning
that within the context of CnB learning, various alternative
variants can be considered by substituting the α-Lipschitz
continuous assumption [15]. We formally define the coreset
for CnB Learning problems as below:

Definition II.2 (ε-coreset). Let ε > 0. Given a dataset D ⊂ D
and the objective function f(x;D), we say that a weighted set
C ⊂ D is an ε-coreset of D if ∀x ∈ B(x̃, l), we have:

|f(x;C)− f(x;D)| ≤ εf(x;D). (3)

ϵ is usually small so that f(x;C) is close to f(x;D). We
denote the weight of a single data sample d within a coreset
C as wC(d) if it is selected to be part of the coreset. We have
the weighted sum of loss over the coreset as follows:

f(x;C) =
∑
d∈C

wC(d)f(x; d). (4)

It is essential to clarify that wC(d) has a different meaning
from w(d), as the former represents the weight solely within
the corresponding coreset, while the latter is the original
weight of the data sample. If C is an ε-coreset of D, we can
efficiently employ an existing optimization algorithm on C to
obtain an approximate solution. In this work, an important
goal in constructing the coreset is to ensure that the size
of C remains sufficiently small, thus facilitating efficient
computation and communication within constraints.

A significant portion of existing coreset construction meth-
ods are based on the theory of sensitivity proposed by [16].
Informally, sensitivity quantifies the importance of each data
sample to the dataset D across all potential solutions. How-
ever, this type of method is data-dependent [15], in which the
size of the coreset depends on the value of the total sensitivity
of the dataset, and can vary for different inputs. Alternatively,
partition-based coreset construction methods [14] [15] adopt a
different strategy by partitioning the given dataset into several
parts and then performing random sampling within each part,
which yields a coreset of a data-independent size. Therefore,
in this work, we focus on the partition-based method.

III. METHOD

In this section, we present LbChat in detail (Fig. 1). We
begin by introducing how a vehicle determines the sequence of
coreset and model exchange when encountering other vehicles
in III-A. Then we present the coreset construction method in
III-B. Following this, we describe how a vehicle adaptively
compresses its model and aggregates models in III-C, all based
on the exchanged coresets and the evaluation results on them.

To further enhance the training, we show the local dataset
expansion and the coreset updating in III-D, presenting the
entire workflow of LbChat in the same subsection.

Table I
FREQUENT USED NOTATIONS

Notation Explanation

vi Vehicle i
Bi The available bandwidth of vi
xi The model parameter of vi

f(·; ·) The local loss function
Di The local dataset of vi
Ci The coreset of vi
w(d) The original weight a data sample d
wC(d) The weight of a data sample d in the corresponding coreset
φi The compression ratio for xi

ψi The reciprocal of φi

A. Sequence determination of exchange
In LbChat, when a vehicle encounters other vehicles,

it determines the sequence of pairwise coreset and model
exchange with them, prioritizing neighbors with a higher
probability of exchange completion. By exchanging assistive
information such as its location, speed, route (in next few
minutes), and available bandwidth with the encountered peers,
the vehicle can estimate the potential wireless communication
losses, contact durations, and probabilities of model sharing
completion. Following [7], we calculate the contact duration
based communication priority zi,j by a truncated ratio and
the probability of a successful model sending pi,j between
vehicles vi and vj by using a distance-based wireless loss. A
larger zi,j indicates a shorter yet sufficient contact duration
between the two vehicles, and a smaller wireless loss results
in a larger probability pi,j . Considering the available band-
width as well, we define a priority score for determining the
exchange sequence as follows:

ci,j = zi,jpi,jmin{Bi, Bj}, (5)

where Bi and Bj are available bandwidth at vi and vj
correspondingly. A vehicle prioritizes exchanging the coreset
and model with peers of higher scores when there are multiple
available neighbors. We note that the route and bandwidth
information is of small size (e.g., 184 bytes in our experiments)
and lightweight for transmission. Even with potential re-
transmissions, the time taken to share such assistive informa-
tion can be neglected. As vehicles asynchronously determine
the exchange sequence, there can be a small possibility of
deadlocks, which can be addressed by setting a maximum
waiting time or utilizing other existing approaches (e.g. [17]).

B. Coreset construction
Once the exchange sequence is determined, a vehicle com-

mences the pairwise exchange and aggregation. However, the
wireless bandwidth at vehicles is commonly limited (e.g.
31Mbps) [13] [18]. Even considering lightweight models (e.g.,
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Figure 1. Overview of LbChat. Vehicles opportunistically “chat” with encountered peers, all while considering the constrained wireless communication in
dynamic vehicular environments. Each vehicle maintains a compact and continuously updating coreset. Upon encountering other vehicles, a vehicle determines
the sequence of pairwise exchange by estimating the probabilities of exchange completion. Then in each pairwise communication, vehicles exchange their
respective coresets and perform evaluations on them to quantify the values of the other’s local model to themselves. Subsequently, based on the evaluation
results, vehicles tune the model compression ratios to maximize the joint aggregation benefits from the encounter under bandwidth and time constraints, and
aggregate models locally. Finally, vehicles expand local datasets by absorbing received coresets, further enriching their training data.

an imitation learning model [19] of tens MB), exchanging
models can take tens of seconds, easily surpassing the contact
duration between two vehicles and impeding model exchanges
with other encountered peers. Although existing compression
techniques can reduce the model size, blind utilization of lossy
compression can harm the model performance greatly [20].

To tackle this dilemma, our key idea is assessing the “value”
of the encountered vehicle’s model before exchange. More
valuable models are less compressed for higher gain, and vice-
versa. To this end, we use coreset to facilitate model value
assessment. Upon encounter, two vehicles exchange coresets
with each other, and measure the local model’s performance on
the peer’s coreset. A lower performance than that of the peer’s
model indicates more different peer data, thus more valuable
the peer model; and the larger the gap, the higher the value.
We will present the model value assessment, compression,
exchange, and following aggregation in III-C. The size and
quality of coreset are critical to fast and reliable value assess-
ment. We aim to construct a coreset that can approximate the
local dataset closely while maintaining a minimal size for fast
exchanging, striking a balance between efficacy and efficiency.

We present a concise and efficient coreset construction
method (Algorithm 1) based on layered sampling [15], which
constructs a compact mini-set from the original dataset satis-
fying the definition in II-B with theoretical guarantees. The
method first partitions the local dataset into concentric layers
(rings) based on the evaluation losses of data samples. The
process begins by calculating the center of these layers, which
corresponds to the smallest loss over the local dataset based on
the current model. Subsequently, the local dataset is partitioned
into a maximum of log(|D| + 1) layers, with each data
sample being assigned to an appropriate layer based on its
loss. Data samples with larger losses are placed in outer
layers. After the partitioning, we take a small set from each

layer and take the union of these sets to form the desired
coreset. Different from [15] which assumes that data samples
have equal weights and takes samples uniformly at random,
we consider a more general scenario where data samples
have different and continuously updated weights (presented
in III-D). We perform weighted random sampling at each
layer. We note that our coreset construction method can readily
integrate existing efficient sampling techniques.

Algorithm 1 Layered sampling based coreset construction
Input: Weighted local dataset D; loss function f(·; ·);
Output: Coreset C;

1: Calculate the center: f(x; d̃) = mind∈Df(x; d);
2: Calculate the radius of 0-th layer: R = f(x;D)

|D| ;
3: for d in D do
4: Calculate the distance from the center:

distd =
f(x;d)−f(x;d̃)

R ;
5: Assign d to ⌊log(distdR )⌋-th layer;
6: end for
7: Let L = total # of layers;
8: for j = 0, 1, .., L do
9: Let D̂j be the set of data samples in the j-th layer;

10: Take Ĉj ⊂ D̂j by w(d)-weighted random sampling;
11: for d ∈ Ĉj do
12: Assign the weight inside the coreset:

wC(d) =

∑
d′∈D̂j

w(d′)∑
d′∈Ĉj

w(d′) ;

13: end for
14: end for
15: Construct coreset: C =

⋃L
j=0 Ĉj .

The method described in Algorithm 1 can achieve a ε-
coreset of size |C| = Θ( log|D|

ε2 (ddim · log(1/ε) + log(1/η)))
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in linear time with the probability of 1−η, where ddim is the
doubling dimension of parameter space P . And |C| depends
on the Lipschitz constant α and infx∈B(x̃,l)(1/|D|)f(x;D).
However, infx∈B(x̃,l)(1/|D|)f(x;D) can be too small in
practice, thereby necessitating a larger coreset to effectively
represent the local dataset, which can result in additional
bandwidth and time overhead in the vehicular communication
and crowd out limited resources. To address this, we add
penalty terms in the local loss function for constructing a
compact coreset. We modify the loss function in Equations
(2) and (4) as:

f(x; ξ) =
∑
d∈ξ

wξ(d)f(x; d) + λ1∥x∥+ λ2σ(x), (6)

where wξ(d) = wC(d) if ξ is the corresponding coreset,
otherwise wξ(d) = w(d). λ1 and λ2 are coefficients of two
penalty terms, and ∥ · ∥ is the L2-regularizer. The first two
terms minimize the empirical risk and structural risk, corre-
spondingly. Additionally, we introduce a problem-dependent
penalty through the function σ(·). For the specific problem of
a Bird-Eye-View (BEV)-based driving decision model [19],
we define σ(x) as the entropy of the losses observed with
data samples of different driving commands (e.g., ‘turning
left’). This enables the model to effectively address all driving
commands without introducing any bias. For different models
or problems, σ(·) can be tailored accordingly, providing flex-
ibility to various scenarios within the LbChat framework.

C. Adaptive model exchange and aggregation
To optimize model exchange and aggregation under con-

strained communication, vehicles exchange coresets with en-
countered peers and compress models based on the value
assessment using the coresets. We emphasize that the size of
our constructed coreset is substantially smaller than that of the
vehicular learning model (e.g., BEV-based driving decision
model). As a result, a small “investment” in exchanging
coresets gives vehicles insights into which models are the more
valuable, to effectively use the limited communication.

Given two vehicles vi and vj encounter each other, they
exchange their current coresets Ci and Cj . Subsequently, they
evaluate their local models xi and xj on both coresets and
exchange the corresponding losses. Informally, the smaller vj’s
model loss is on Cj than vi’s model, the more “valuable”
vj’s model is to vi. We define the model compression ratio
as φ = S/Sc, where S is the size of the model before
compression and Sc is the size after compression. We denote
ψ = 1/φ. ψ = 0 indicates not sending model and ψ = 1
indicates sending model without compression. We define the
optimization problem for compression ratios as Equation (7) ,
where ϵ(·) is the rectified linear unit function, ϕi and ϕj are
mapping functions of vi and vj that predict the corresponding
losses of compressed models in terms of ψ, λc is a penalty
coefficient, TB is the time budget for the pair-wise model
exchange, Tcontact is the estimated contact duration between

two vehicles, and Tc = S(ψi + ψj)/min{Bi, Bj} is the time
for exchanging models between two vehicles.

maxψi,ψj
ϵ(ϕi(f(xi;Ci), ψi)− f(xj ;Ci))

+ϵ(ϕj(f(xj ;Cj), ψj)− f(xi;Cj))

+λc(min{TB , Tcontact} − Tc)

subject to Tc ≤ min{TB , Tcontact},
ψi, ψj ∈ [0, 1], (7)

There are three terms in the objective of Equation (7). The
first two terms measure a joint potential gain of exchanging
models with fairness consideration. The first term calculates
the truncated difference of weighted losses on coreset Ci
between two models. The larger difference indicates a higher
value that xi holding for vj , resulting in a greater potential
gain that vj can obtain by receiving vi’s model xi. We use the
rectified linear unit function to ensure the difference is non-
negative. Similarly, the second term calculates the truncated
weighted loss difference on coreset Cj , thus the potential gain
that vi can obtain by receiving vj’s model xj . The third term
is an award term, which measures the amount of time saved in
exchanging models. By incorporating this term, two vehicles
can promptly conclude the current exchange and decouple
from each other when they are not interested in each other’s
model, and quickly move on to other encountered vehicles that
might offer more valuable model exchanges.

We set TB to a fixed time for simplicity, which can be set by
other strategies (e.g. a dynamic number based on the number
of neighbors). We use the mapping function ϕ to capture the
relationship between model performance (represented by the
weighted loss on the coreset) and the reciprocal of model
compression ratio ψ. To obtain such mapping functions, a
vehicle first samples a series of ψ’s {0, ψ0, .., ψk, 1}. Then
the vehicle generates a corresponding series of compressed
models based on these compression ratios and evaluates their
performance on the coreset. We represent the results as a
set of pairs {(0, 0), .., (ψk, f(x̂ψk ;C)), (1, f(x;C))}, where
x̂ψ denotes the compressed model under ψ. As |C| is small,
evaluating losses on them is computation-efficient. A vehicle
exchanges the results with the encountered peer. With such
results, we utilize an effective interpolation and curve fitting
method [21] to generate the mapping function ϕ. With explicit
mapping functions, we can solve the optimization problem
defined in Equation (7) with existing solvers efficiently.

We notice a possible conflict of interest between vehicles
in model exchange, as both vehicles prefer to spend limited
bandwidth and time on receiving a model of high value to op-
timize their performance, rather than sending out their models.
To address the conflict, we demand fairness between the two
vehicles by simply adding the first two terms. This strikes
a balance that encourages effective and mutually beneficial
model sharing between vehicles. We also note that if there is
a significant difference between the models of two vehicles,
the representation ability of one vehicle’s coreset may degrade

5



from the perspective of the other vehicle’s model. In this
case, the object in Equation (7) can also be utilized to guide
model exchange and aggregation, as the performance diversity,
measured by loss differences on the same sets of data samples,
remains a valuable metric for model comparison.

After obtaining the optimized ψ values, a vehicle com-
presses its model accordingly and sends the compressed model
to the target vehicle. Regarding the compression method, we
consider top-k sparsification [22] in this work, in which the
component’s k-largest magnitudes in x are transmitted. When
k is small, we can represent a compressed model by index-
value pairs [23], further reducing the size of the model. We
note that other biased/unbiased model compression methods
can also be applied to our design, such as quantization. Upon
receiving the compressed model x̂j from vehicle vj , vehicle vi
aggregates it with its local model xi based on the normalized
losses on the joint coreset as below:

x̄i =
f(xi;Di

⋃
Cj)xi + f(x̂j ;Di

⋃
Cj)x̂j

f(xi;Di

⋃
Cj) + f(x̂j ;Di

⋃
Cj)

. (8)

As f(xi;Di) has been computed during local training,
caching these losses can further reduce repeated future com-
putations. The equation assigns larger weights to better-
performing models to adaptively aggregate them.

D. Local dataset expansion & Coreset updating
In the LbChat, each vehicle continuously receives coresets

from encountered peers. A vehicle vi expands its local dataset
Di by absorbing the received coreset Cj from vehicle vj .
We keep the original weights w(d) of all data samples in the
expanded local dataset Di

⋃
Cj to be the same.

Besides the straightforward coreset updating in Algorithm 1
running on the local dataset, we present a further improvement
in the case of frequent encounters, which is appropriate to
a rapidly expanding local dataset in the early stage. An
important property of the ε-coreset is: If both C1 and C2

are respectively the ε-coresets of datasets D1 and D2, and
D1

⋃
D2 = ∅, their union C1

⋃
C2 is an ε-coreset of D1

⋃
D2

[15]. This property allows vehicle vi to use f(xi;Ci
⋃
Cj)

to approximate f(xi;Di

⋃
Cj) if Di

⋃
Cj = ∅, where the

wC(d) of data samples in Cj need to be updated in this
case. By caching and reusing the losses in Equation (8),
such updating takes negligible computation. By doing so, a
vehicle can update the coreset for the expanded local dataset
by merging its coreset with the received coreset. However, a
simple union of the coresets could lead to a significant increase
in the coreset size. To address this issue, we utilize a ‘reduce’
operation [10] after each merging operation to keep the coreset
size constant. We summarize LbChat in Algorithm 2.

IV. EXPERIMENTS

A. Experimental setup
We focus on a BEV-based driving decision-making, which is

a fundamental but crucial task in autonomous driving [1]. BEV

Algorithm 2 LbChat
Input: t = 0; A set of vehicles V = {vi|i = 1, .., N}, each

vehicle with a weighted local dataset D0
i and a model x0

i ;
the maximum time for training among vehicles T;

Output: Vehicular models {xTi |i = 1, .., N};
1: For each vehicle vi (vehicles act in parallel):
2: while t < T do
3: Training local iterations with Dt

i ;
4: if Encountering other vehicle(s) then
5: Exchange route, bandwidth, and other information;
6: Determine the exchange sequence with (5);
7: for vj in the sequence do
8: Construct coreset Cti with Algorithm 1;
9: Send Cti and receive Ctj ;

10: Evaluate xti on both Cti and Ctj ;
11: Compute the required results for (7);
12: Exchange the results with vj ;
13: Optimize the model compression ratio φti with (7);
14: Send the compressed model x̂ti and receive x̂tj ;
15: Aggregate models with (8);
16: Expand Dt

i ;
17: end for
18: end if
19: end while

is a high-level perception of the surrounding environment,
which is a sparse binary tensor depicting the front view of
a vehicle in a top-down view. For this task, we utilize an imi-
tation learning model with the same structure as the privileged
agent in [19], whose size is 52 MB before compression. The
model takes a BEV and a high-level command (e.g. “turn left”)
from navigation services as inputs and outputs the next few
waypoints the vehicle should follow.

We collect data with the popular CARLA simulator [24].
We utilize the largest built-in map supporting multiple expert
autopilots in CARLA to simulate realistic driving environ-
ments, which covers an area of about 1km×1km, including
both town and rural areas. We run 32 built-in expert autopilot
vehicles as [25], which perform safe and professional driving
using the built-in model and privileged information in CARLA
following routes based on road topology. An additional 50
cars and 250 pedestrians are added into the simulated world
as background traffic, to further enhance the realism of the
environment. These cars and pedestrians are initialized at
random locations and keep roaming on the map. For simplicity,
we use “vehicle” to refer to expert autopilot only in the
following unless otherwise stated. Vehicles collect data at two
frames per second (fps) in the simulated world. Each frame
of a vehicle contains the current BEV, the next high-level
command, and the next few waypoints planned of the vehicle.
We run the vehicles for one hour to collect the local datasets
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for training. To simulate vehicle movements and encounters
for a longer time, we run the vehicles for an additional 120
hours and collect their locations at the same fps.

We initialize vehicles in the simulated world at the same
time, simulating inter-vehicle communications and performing
collaborative model training. We utilize the local loss function
based on [19] with the modification in Equation (6)2. We
set each coreset as containing 150 data samples (frames) by
default, at an approximate coreset size of 0.6MB with simple
lossless compression. The hyper-parameters of all models are
initiated to be identical. The learning rate is 1e−4, and the
batch size is 64. We set the time budget TB in Equation
(7) to be 15 seconds. In communication simulation, we adopt
the same parameters as [18] [26]. Specifically, we consider a
packet size of 1500 bytes, a maximum bandwidth of 31Mbps,
a maximum communication range is 500m, and up to three
retransmissions per packet upon losses. In this setting, the time
to transmit a coreset is less than 0.5 seconds, which accounts
for only a small fraction of the contact duration between the
two vehicles and is much shorter than the time of transmitting
a model. To estimate the wireless loss, we use a distance-based
wireless loss model [7], which utilizes a distance-loss lookup
table based on [13]. We note that there are other ways to
estimate the wireless loss in vehicular communications, which
can be incorporated into LbChat seamlessly. The total size
of route and bandwidth information required for calculating
the score in Equation (5) is 184 bytes. We conduct experi-
ments using an RTX2060 GPU. Given the recent advances
in TFLOPS-level powerful onboard computation devices for
vehicles [27], except for the local training time, we ignore time
for computation and evaluation of Algorithm 2 in simulation.

B. Benchmarks
We empirically compare LbChat with a broad range of

benchmarks of only model sharing as representatives, which
are (adapted from) recent works in central server/roadside
infrastructure-based decentralized learning and fully decentral-
ized (a)synchronous learning for vehicles.

• ProxSkip [28] is a provably efficient federated learning
approach based on central-server coordination, which offers an
effective acceleration of communication compared to conven-
tional methods (e.g. FedAvg). We assume no communication
bandwidth constraint to the backend in ProxSkip, which is
idealistic and non-practical in real environments.

• RSU-L [29] proposes an RSU-based opportunistic learning
approach for vehicles. Each RSU serves as a coordinator,
maintaining an RSU model, receiving models from vehicles,
and sending the aggregated model back. We simulate the
behavior of RSUs at road crosses as [29]. We assume no
backend bandwidth constraint at RSUs.

• DFL-DDS [30] is a synchronous and fully decentralized
learning approach for vehicles, in which each vehicle tunes the

2We consider training converged when the differences among models are
small enough.

aggregation weights to diversify the data sources contributing
to its model. We set the time of one round to be the same
as TB of LbChat. The original work assumes a vehicle can
finish model exchanging with all encountered peers. For a fair
comparison, we consider the same communication ability and
constraints as LbChat and compute a model compression ratio
for each encounter to ensure the vehicle pair can finish the
model exchange within the contact duration.

• Decentralized Powerloss (DP) [5] is a gossip learning
approach for vehicles based on evaluations of loss-based
model merging. A vehicle evaluates received models over
the local validation dataset and derives weights in model
aggregation from a normalized logarithmic function of the
loss. Similarly, for a fair comparison, we also consider the
same communication ability and constraints as LbChat and
compute a model compression ratio for each encounter.

C. Illustration of training loss
We start by comparing LbChat with benchmarks, observing

the training loss decreasing over time in the simulated world.
The results in the case free from wireless loss are shown
in Fig. 2(a). Within the given training time, we observe that
LbChat converges to a similar loss as the central server-based
federated learning approach (ProxSkip), and achieves almost
the same loss as the RSU-based approach (RSU-L). When
compared to fully decentralized benchmarks (DFL-DDS and
DP), LbChat achieves a visible lower loss than them.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time(s) 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 lo
ss

ProxSkip
RSU-L
DFL-DDS
DP
LbChat

(a) Without wireless loss

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time(s) 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 lo
ss

ProxSkip
RSU-L
DFL-DDS
DP
LbChat

(b) With wireless loss

Figure 2. Results of training loss vs. time (LbChat & benchmarks)

We further study the case under wireless loss as described in
IV-A. In ProxSkip and RSU-L, communications suffer from a
wireless loss uniformly sampled from the distance-loss lookup
table. For other benchmarks and LbChat, the wireless loss in
communication is estimated based on the same lookup table
according to the distance between vehicles. The results of the
training loss over time in the simulated world are shown in
Fig. 2(b). With the wireless loss, all approaches exhibit higher
training losses while the loss increase in LbChat is relatively
marginal compared to all benchmarks due to the neighbor
prioritizing based on route-sharing. Notably, in this case,
LbChat achieves almost the same loss as ProxSkip. The above
results show that the proposed coreset-sharing based approach
can converge like the central server/roadside infrastructure-
based approaches when given adequate training time.
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Additionally, for deep insights in the case with wireless
losses, we calculate and compare the successful model receiv-
ing rate on average. Unsurprisingly, we observe that due to
prioritizing neighbors of higher chances of completing model
exchange, LbChat has a significantly higher rate (87%) than
other benchmarks (60% in ProxSkip, 60% in RSU-L, 52%
in DFL-DDS and 51% in DP). The results partly explain the
observations in Fig. 2(b) and demonstrate that LbChat achieves
better robustness to wireless loss based on estimation of the
communication completion probabilities.

D. Online evaluation
We further explore the potential of the training data-sharing

assisted paradigm and compare LbChat with benchmarks by
conducting online evaluations, in which we deploy the trained
model on a testing autopilot to navigate through predefined
navigation routes. Based on a safety-centric consideration,
we utilize driving success rate, a widely used metric in au-
tonomous driving [1] [19], to measure the model performance,
which indicates the ability of a model to drive a car to
destinations safely. We note that other metrics for evaluating
a driving model (e.g., comfort measurements) can be incorpo-
rated into our future work. We consider driving conditions of
different difficulties similar to the CARLA benchmark [24],
which includes driving straight (Straight), driving with one
turn (One Turn), full navigation with multiple turns (Navi.
(Empty)), and the same full navigation routes but with traffic
(Navi. (Normal)). To further evaluate approaches under a more
challenging driving environment, we also test models with a
harder condition called Navi. (Dense), where the number of
roaming cars and pedestrians is 1.2× that of Navi. (Normal).
We consider a trial on a given route successful if the testing
autopilot can safely reach the destination within a budget time
without colliding with other cars or pedestrians.

Table II
DRIVING SUCCESS RATE ON AVERAGE (W/O WIRELESS LOSS) (%)

Task ProxSkip RSU-L DFL-DDS DP LbChat

Straight 100 100 100 100 100
One Turn 100 100 100 100 100

Navi. (Empty) 99 97 90 89 97
Navi. (Normal) 94 89 81 80 90
Navi. (Dense) 83 77 67 65 78

Table II summarizes the results in the idealistic but non-
practical case of no wireless loss. In this case, LbChat
achieves competitive results as the ProxSkip with at most
5% lower driving success rate among all driving conditions.
When compared to RSU-L, LbChat shows almost the same
performance in general and outperforms RSU-L in the hardest
driving condition. Additionally, LbChat notably outperforms
DFL-DDS and DP under the same communication constraints
in all driving conditions and with up to 11% higher driving
success rate than DFL-DDS and up to 13% higher rate than
DP, both in the hardest condition.

Table III
DRIVING SUCCESS RATE ON AVERAGE (W WIRELESS LOSS) (%)

Task ProxSkip RSU-L DFL-DDS DP LbChat

Straight 100 100 100 100 100
One Turn 100 99 96 95 100

Navi. (Empty) 93 89 79 78 93
Navi. (Normal) 87 83 72 70 86
Navi. (Dense) 75 69 57 54 74

Table III summarizes the results in the case with prac-
tical wireless loss. By comparing the results to Table II,
LbChat shows robustness towards the loss in communication
with a limited performance decrease (at most 4% decrease),
whereas benchmarks in comparison commonly show much
larger performance decreases (e.g. 11% decrease of DP in
Navi. (Dense)). We also observe that LbChat achieves almost
the same performance as ProxSkip with at most a 1% driving
success rate decrease in all driving conditions and outperforms
RSU-L by up to 5% higher driving success rate. Moreover,
when compared to DFL-DDS and DP, LbChat significantly
outperforms them in all driving conditions by up to a notable
20% higher driving success rate in the hardest one.

We summarize the observations in online evaluations: 1)
LbChat is quite competitive to central server-based feder-
ated learning, especially under constrained communication
with wireless loss. 2) LbChat can achieve almost the same
performance as the RSU-based approach and even better
performance when considering wireless loss. 3) Compared
to decentralized/gossip learning approaches, LbChat outper-
forms the benchmarks significantly and shows superiority in
addressing multiple real constraints (limited contact duration
and bandwidth, and wireless loss) for on-road vehicles.

These results further demonstrate the effectiveness of
LbChat, which does not require special coordinators, tight
synchronizations, or even connected topology, making it a
promising approach for the real world. The results also high-
light the effectiveness of the coreset-sharing based approach
and the potential of training data sharing assisted paradigm
for collaborative model training among vehicles.

E. Size of the coreset

In communication-limited vehicular scenarios, the size of
a coreset can affect the performance of our approach. A
large coreset can represent the local dataset well but a small
coreset is communication-efficient. Therefore, we study the
influence of the size of coreset on model performance by
considering two additional coreset sizes (1500 and 15), which
correspond to 10x and 1/10 the size of our default size. Table
IV summarizes the results. In two cases with(out) wireless
loss, we both observe that the two sizes of coreset hurt the
performance of LbChat by at most 6% and 8% driving success
rate decrease, respectively. We observe that an improper size
of coreset can visibly degrade the approach performance. The
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results are consistent with the intuition: a larger coreset can
be representative but may consume limited contact duration
and impede model exchange. In contrast, a smaller coreset
can save communication resources but may fail to adequately
represent the diverse characteristics of the dataset. Adaptive
tuning the size of coreset will be our future work.

Table IV
DRIVING SUCCESS RATE ON AVERAGE WITH DIFFERENT CORESET SIZE(%)

Task 1500 (W/O) 15 (W/O) 1500 (W) 15 (W)

Straight 100 100 100 100
One Turn 100 100 100 99

Navi. (Empty) 91 89 87 85
Navi. (Normal) 84 82 80 78
Navi. (Dense) 72 70 68 66

F. Ablations
To quantitatively measure the effects of coreset-sharing in a

more fine-grained manner, we conduct two ablations to LbChat
by replacing the coreset-based designs with straightforward
methods. Firstly, we mask the coreset-based optimization to
compression ratio in Equation (7), and vehicles use equal
compression ratios in model exchange instead. Table V sum-
marizes the results. We observe such fixed compression results
in at most 7% and 8% decrease of driving success rate in
two cases with(out) wireless loss, correspondingly. This is
because, without the coreset-based adaptive tuning to model
compression ratio, a vehicle can spend more time receiving
less-compressed and less valuable models, and vice versa.
Neither is efficient to utilize the limited communication op-
portunities to maximize the gain from each encounter.

Table V
DRIVING SUCCESS RATE ON AVERAGE WITH EQUAL COMP. RATIO (%)

Task W/O wireless loss W wireless loss

Straight 100 100
One Turn 100 100

Navi. (Empty) 91 85
Navi. (Normal) 83 78
Navi. (Dense) 71 66

We then study using averaging to replace the coreset-based
model aggregation described in Equation (8), summarizing
the results in Table VI. We observe at most a 4% decrease
in driving success rates. The reason is that, by masking the
coreset-based weight derivation, vehicles lose the ability to
distinguish models of different values in merging. As a result,
vehicles fail to prevent less-valued (i.e., poorly performing)
models from negatively impacting the merged model.

G. Study of sharing coreset only
In the previous comparisons with benchmarks of pure model

sharing, LbChat shows strong competitiveness and effective-
ness benefiting from coreset-sharing. We compare LbChat with

Table VI
DRIVING SUCCESS RATE ON AVERAGE WITH AVG. AGGREGATION (%)

Task W/O wireless loss W wireless loss

Straight 100 100
One Turn 100 98

Navi. (Empty) 95 90
Navi. (Normal) 88 83
Navi. (Dense) 75 70

an additional approach named SCO, in which vehicles only
share coresets with encountered peers but not exchanging and
merging models, while subjecting to the same coreset size,
contact duration, and communication constraints. Table VII
summarizes the online evaluation results of SCO. We observe
that it can achieve almost the same performance as LbChat
with at most 1% driving success rate decrease without wireless
loss and at most 2% decrease in the wireless loss-free case.

We further study the training speed of the two approaches
in terms of time (shown in Fig. 3). We observe that, though
SCO can achieve similar training loss as LbChat, it takes
about 1.5×-1.8× longer time to converge. The results suggest
that: though vehicles can acquire models of almost the same
performance finally by sharing coresets and expanding the
training dataset only, sharing both the coreset and model can
greatly accelerate the convergence. This is because by merging
valuable models, a vehicle can immediately acquire knowledge
from the local datasets of others with fewer local iterations,
thus accelerating the model training.

Table VII
DRIVING SUCCESS RATE ON AVERAGE WITH SHARING CORESET ONLY (%)

Task W/O wireless loss W wireless loss

Straight 100 100
One Turn 100 100

Navi. (Empty) 96 92
Navi. (Normal) 89 84
Navi. (Dense) 77 72
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Figure 3. Results of training loss vs. time (LbChat & SCO)

V. DISCUSSION

Alternative coreset construction approaches. There are
other kinds of coreset construction strategies (e.g., random
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sampling based [16] and clustering based algorithms [31]).
Since our main idea involves quantifying model values using
the loss differences on the same sets of data samples, other
coreset construction approaches can be adapted in LbChat.
This flexibility enables LbChat to handle diverse datasets
and further enhance its capability for fully decentralized and
asynchronous vehicular model training.

Model value assessment before vs. after exchange. Many
decentralized learning works evaluate models on the local
dataset for various purposes after the exchange, such as gener-
ating weights in model aggregation [5]. While LbChat also has
adaptations, it evaluates before exchanging the model. Because
the communication bandwidth and contact duration among
moving vehicles are very limited, indiscriminately receiving
models from encountered peers may have low chances of
completion and become wasteful; yet blindly utilizing lossy
compression can significantly harm model aggregation. Ex-
changing compact coresets allow vehicles to first evaluate
model “value”, and optimize the following model exchange
with adaptive compression under communication constraints.

Accuracy of simulation results. Conducting real-world
experiments with real vehicles, particularly on a medium or
large scale requires significant resources. In the experiments,
we use CARLA, a widely-used simulator in the field of
autonomous driving that has been extensively used in both
academic and industrial research. CARLA simulates driving
environments with a high degree of realism, making it a
reliable means for empirical studies. Previous research (e.g.,
[32]) demonstrates that when appropriately configured, results
from the CARLA simulator are nearly identical to those
obtained from real-world experiments. Therefore, the results
from simulation are reasonably close to those from real-world
experiments. We note that the coreset-sharing based model
training paradigm proposed in this work can also be applied to
a spectrum of tasks and models. We are interested in showing
its effectiveness on different tasks and models in the future.

Other radios suitable for vehicles. New Radio V2X (NR-
V2X) [33] is a promising vehicular communication technol-
ogy, improving over predecessors under compatibility consid-
erations. Recent data-centric radios have also shown high-rate,
low-loss, and low-latency multicast capability [34], ideal for
vehicles to share models. Some short-range radios provide
accurate motion and health-related event detection [35] [36],
offering potential for in-vehicle applications.

Incentive and privacy. Recent works [11] [37] discuss the
incentives or markets to stimulate cooperation among vehicles
while striking a balance between the conflicting interests of
the platform and drivers. Exactly what incentive design is
most suitable for the scenario needs orthogonal investigation.
Moreover, besides training from scratch, we point out that
LbChat holds the potential of continuously updating/fine-
tuning pre-trained onboard models with locally collected data.
We leave this study to our future work. LbChat is also privacy-
friendly: it shares the BEV abstracted from but not photos or

point clouds directly. As mentioned in IV-A, such BEV only
contains what can be observed from outside a vehicle anyway,
and without specific personal details, such as the face. Existing
privacy-protection techniques for sharing data among vehicles
(e.g. [12] [38] [39]) can also be adapted to our approach.

VI. RELATED WORK

Many works provide decent proof/theoretical analysis of
asynchronous decentralized learning. For example, Lian et al.
proposed an asynchronous decentralized SGD algorithm for a
heterogeneous environment [40], assuming bounded straggler
delay and connected topology. Wang et al. studied decentral-
ized parallel SGD and proposed a unified framework as well
as convergence analysis [41], also based on assumptions about
connected topology and explicit delay bound among worker
nodes. Although there are tons of existing works in this area,
they assume connected communication topology and other
factors (e.g., a maximum delay of stragglers), which are hard
to control or simply infeasible in a realistic vehicular scenario.
Different from the above works, LbChat uses coresets to
evaluate model values to guide model exchange and merge
for fast-moving vehicles, thus eliminating assumptions on
bounded delay or connected cluster/topology.

Focusing on the communication constraints in practice,
recent research proposes various approaches to improve com-
munication efficiency. For instance, Wang et al. proposed
algorithms to jointly tune control knobs in federated learning
to minimize cost and optimize performance [23]. In [42], Han
et al. proposed an online algorithm to adaptively sparsify the
gradients in federated learning. Perazzone et al. proposed a
client selection algorithm for federated learning to minimize
the average communication time [43]. Jiang et al. proposed a
client selection and gradient compression method to alleviate
the communication load and mitigate the straggler effect
[44]. Though the above works study efficiency, they usually
require a global coordinator. In contrast, we emphasize that our
work does not require any central/edge coordinator, multi-hop
coordination, or tight synchronization.

VII. CONCLUSION

We explore a training data sharing based paradigm for
collaborative model training among peer vehicles. We pro-
pose LbChat, a coreset-sharing based decentralized and asyn-
chronous model training approach, without reliance on coor-
dinators, tight synchronizations, or connected topology among
vehicles. The key idea is that the small “investment” of
exchanging coresets and evaluating models on them allow
vehicles to identify the most valuable peer models, thus
optimizing model exchange and aggregation to maximize the
aggregate gain. Empirical results demonstrate that LbChat is
strongly competitive with the central server-based federated
learning and roadside infrastructure-based benchmarks, and
significantly outperforms recent fully decentralized vehicular
learning benchmarks subject to practical constraints.
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