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Abstract—Vehicle-to-vehicle (V2V) based cooperative percep-
tion enhances autonomous driving by overcoming single-agent
perception limitations such as occlusions, without relying on
extensive infrastructure. However, most existing methods have
two key limitations. They treat cooperative perception in iso-
lation, with little consideration for downstream tasks such as
planning, leading to poor coordination and inefficient planning
decisions. They also assume perception model homogeneity across
all vehicles, which can be impractical among vehicles from
different manufacturers. To bridge such gaps, we propose Scout,
an early-fusion framework for planning-oriented cooperative
perception among vehicles of heterogeneous models. Specifically,
we formalize a notion of ∆θ-Risk Increment Distribution (RID)
to capture the distribution of the risk increment by incomplete
perception to the current trajectory plan, and define a Priority
Index (PI) metric for prioritizing cooperative perception on
riskier regions. We develop algorithms to estimate ∆θ-RID
and PI at run-time with theoretical bounds. Empirical results
demonstrate that Scout surpasses state-of-the-art methods and
strong baselines on challenging benchmarks, achieving higher
success rates with only 3-10% of their communication volume.

I. INTRODUCTION

Cooperative perception provides comprehensive environ-
ment perception to on-road vehicles by aggregating com-
plementary information, enhancing driving safety, efficiency,
and comfort. inter-vehicle communication channel has been
utilized for cooperative perception without relying on dedi-
cated edge infrastructures, holding potential for much broader
coverage at lower costs [1] [2]. Recent years have witnessed
many relevant works on V2V based cooperative perception
[3]–[10]. However, these approaches exhibit two limitations
not yet addressed: 1) Conceptually, to perform a wide diversity
of tasks and achieve advanced-level intelligence, most of them
treat cooperative perception as a standalone task, with little
consideration on the needs and constraints of downstream
driving tasks (e.g., balancing between safety, efficiency and
comfort), this leads to poor coordination thus possibly in-
creased risks and delays in driving decisions (e.g., using much
bandwidth to communicate data on less relevant objects to
safety). 2) From a methodology perspective, many works
exchange and aggregate intermediate features of the perception
model to achieve a trade-off between perception precision and
communication overhead. This implicitly assumes homogene-
ity of the perception model (identical feature structure) among
all vehicles. However, a significant domain gap may exist in
such features between heterogeneous models in vehicles from
different automakers. Thus fusion of features may become
difficult or impossible for multi-vehicle perception. While
recent work [11] addresses this by fusing perception model
outputs (e.g., bounding box proposals and confidence scores)
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instead of intermediate features, they require calibrators pre-
trained on the same standard dataset, which is still impractical
among vehicles of different manufacturers.

To this end, we propose “Scout”, a planning-oriented co-
operative perception framework under model heterogeneity.
Revisiting the early fusion strategy where vehicles fuse raw
data, we recognize that it provides both high perceptual
precision and is model-agnostic. While the amount of data for
all areas can be large in raw data fusion, inspired by recent
works on planning-oriented perception model evaluation [12]
[13] [14], we realize that not all regions are equally important
for driving. Fusing data from those occluded and driving-
crucial regions can significantly enhance driving safety while
not exceeding communication limitations. Informally, We for-
malize a notion of ∆θ-Risk Increment Distribution (RID) to
capture the probability distribution of risk increment to the
current trajectory plan if an occluded region remains unknown.
Based on such distribution, we then define the Priority Index
(PI) as a metric to prioritize data fusion for the most crucial
regions, ensuring effective perception within communication
constraints. We summarized our contributions as follows:

• We critically examine current cooperative perception de-
signs for autonomous driving in light of planning orientation
and heterogeneity compatibility, advocating the necessity of
their considerations in cooperative perception rather than an
isolated design.

• We present Scout, a risk-aware and communication-
efficient framework based on early fusion. The key component
is to determine driving-crucial occlusions and thus schedule
cooperative perception by formalizing notions of ∆θ-RID and
the Priority Index. We develop algorithms to estimate them at
run-time, accompanied by bounds and error analysis.

• Empirical results on challenging benchmarks show that
Scout outperforms state-of-the-arts (SOTAs) and strong base-
lines in a series of driving-related metrics, e.g., higher success
rates than two SOTAs while only requiring 3-10% of their
communication volume.

II. RELATED WORK

V2V based cooperative perception. Contemporary works
on cooperative perception adopt early, intermediate, or late fu-
sion strategies. Intermediate fusion methods (e.g., V2VNet [4],
DiscoNet [5], AttFuse [7], Where2comm [6], CORE [9] and
How2comm [15]) broadcast intermediate features from per-
ception models, balancing perception performance and com-
munication volume. However, these approaches assume iden-
tical models across all collaborating vehicles/infrastructures,
which is unlikely among vehicles of different manufacturers,
thus greatly degrading performance in fusion. Late fusion,
which merges detected bounding boxes, holds the potential for
addressing model heterogeneity but may result in poor percep-
tion accuracy [11]. Intermediate and late fusion do not transmit
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raw perceptual data, making it difficult for the ego vehicle
to re-detect objects that may have been missed. Early fusion
(e.g. [1] [16]) shares raw sensor data among vehicles, provides
strong perception performance and is module-agnostic, mak-
ing it suitable for cooperative perception. However, sharing
raw sensor data incurs large communication volumes. Scout
addresses this by quantifying the risks of occluded regions to
the trajectory plan and prioritizing communication on critical
regions, thus greatly reducing communication overhead while
preserving perception accuracy. We note that our approach
is orthogonal to data compression methods, which can be
incorporated to further reduce communication volume.

Risk assessment. Assessing scenario risk, particularly with
occlusions, is critical for autonomous vehicle safety. Various
approaches have offered different definitions of “risk”. Hu
et al. define the risky region as the unknown region so far
[6]. In [17] and [18], the authors define a risky region as
one that has not been observed for a long time. However,
equating all occlusions oversimplifies the issue by ignoring
the vehicle-environment interaction. Cui et al. utilize an end-
to-end training paradigm to implicitly determine the risk areas
from the supervision of the planner [2], but learning-based
methods often lack Out-of-Distribution (OOD) robustness,
interpretability, or guarantees. A typical family of risk assess-
ment is the Forward Reachability Set (FRS) [19] [20], which
calculates all future behaviors of other road users according
to the assumptions made (e.g. constant speed and heading) to
assess whether a scenario will lead to a hazardous event in
the future. However, it neglects the dependency between the
single-vehicle-perceived scenario and the conjectured scenario
with reasonable inferences about unknowns, resulting in inac-
curate risk assessment. Anatonante et al. explicitly models the
dependency between the perceived and the generated plausible
scenarios for identifying risky perception failures [21], though
their method only qualitatively determines whether the risk
has increased without quantifying the increment or the distri-
bution of the increment. Our method explicitly quantifies the
risk increment if an occluded region remains unknown and
captures its distribution, providing a more comprehensive and
interpretable risk assessment.

III. (θ,∆θ)-RISK INCREMENT DISTRIBUTION

A. Scenario modeling
Formally, let st ∈ S ⊆ Rn be an estimate of the world

state at time t based on the ego vehicle’s perception, which
comprises the state (e.g., velocity, heading and location) of
the ego vehicle, states of non-ego agents (including vehicles
and pedestrians), and map attributes (e.g., lane lines, stop
signs and traffic signals). Conditioned on a perceived world
state history st−Th:t in a past time period Th and the ego
vehicle’s current trajectory plan ιet at time t, we assume the
availability of a trajectory prediction module that provides a
sequence of distribution {ψ(st:t+τ |st−Th:t, ι

e
t )}

Tf

τ=1 over the
world states in a future time period Tf . Scout only assumes
the availability of a module meeting such criteria but is not
tied to specific implementations. We denote c : S → R+ to be
the cost function mapping a world state to a real value, where
higher values indicate riskier scenarios for the ego vehicle.
We adopt a cost function that is roughly inverse-proportional
to the estimated minimal time to collision with other agents
(see Appendix B). Other metrics can also be adapted as cost
functions [22]. The future world state distributions yield a

Figure 1. (Better viewed in color.) Scenario overview: one ego vehicle (cir-
cled in yellow) encounters several occluded regions within its perceptual field
during driving. PI calculation: the ego vehicle uses its onboard perception
system to obtain the point cloud (yellow dash lines) and compute an initial
trajectory plan (the white line); then it assesses for each of the occluded areas
a Priority Index (PI), which quantifies the risks by potential unseen objects
in that area. Regions with higher PIs indicate a greater potential to impact
the ego vehicle’s safety. Comm. on critical regions: With a constrained
communication bandwidth, the ego vehicle selectively requests raw sensor
data (e.g., point clouds) for the regions with the highest PIs. Data fusion &
Plan refinement: the ego vehicle integrates such data with its own sensor
inputs to form a more complete understanding of its environment and adjusts
its trajectory plan in response to the newly obtained information, thereby
improving decision-making in complex environments.

sequence of cost distributions {φ(ct:t+τ |st−Th:t, ι
e
t )}

Tf

τ=1 over
the costs in the future. For simplicity, we focus on the cost
distribution at a particular time and denote it as φ(c).

B. (θ,∆θ)-Risk Increment Distribution Formalization

Understanding the risk increment the vehicle would en-
counter if an occluded region remains unknown is the foun-
dation of the cooperative perception in Scout. To achieve this,
we treat each occluded region individually and conjecture
phantom agents within them. Analyzing all regions is often
computationally intensive and unnecessary since collision risks
of a region are typically accounted for by its boundaries
[23] [24]. Inspired by edge-based FRS methods [24] [25],
we consider lane information and spawn phantom agents of
the “riskiest” cases: at the edge(s) closest to the ego vehicle’s
trajectory plan, and seek to collide with that planned trajectory
in the shortest time. Gaussian noises are added to the agents’
velocity magnitudes and directions. After conjecturing the
phantom agent, we calculate the cost over the state of the
conjectured world. Let ŝ ∈ S ⊆ Rn be the world state
with such conjectured phantom agents in an occluded region.
We denote the distribution over the conjectured world state
by ψ̂(ŝ), which induces another predicted cost distribution
denoted by φ̂(c). Given the two cost distributions over the
two world, we formalize ∆θ-RID as follows:

Definition III.1 (∆θ-Risk Increment Distribution). Let φ :=
φ(c) and φ̂ := φ̂(c) be the cost distribution over the perceived
world and conjectured world, respectively. Let θ ∈ R+ be the
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cost threshold the planner desires to stay below. We then define
the ∆θ-Risk Increment Distribution (RID) as:

RID(∆θ) = Prc∼φ,ĉ∼φ̂(ĉ > θ +∆θ|c ≤ θ). (1)

We note that the notion of ∆θ-RID does not just provide
a risk increment value, but captures a probability distribution
in terms of risk increment, offering a more comprehensive
understanding of the risk from an occluded area. We illustrate
the definition of ∆θ-RID in Figure 2. The choice of θ defines a
desired safety threshold, which is determined by the particular
onboard planner and what kind of scenario (e.g., city or
highway) the vehicle is. For example, a conservative planner
may tend to keep far away from other vehicles leading to
an overall low θ. Even for the same planner, the θ can be
different when the vehicle drives on different scenarios. It can
be difficult to set a proper θ directly. Insighted by [21], we use
a sampling method to compute Φ and simply set θ as Φ−1(p),
the p-quantile of the current sampled Φ−1, which is the reverse
of the marginal cumulative distribution function (CDF) of φ.
The definition 1 can be rewritten as:

RID(∆θ) = Prc∼φ,ĉ∼φ̂(ĉ > Φ−1(p) + ∆θ|c ≤ Φ−1(p)).
(2)

𝜃

Pr(𝑐 ≤ 𝜃)

Pr(𝑐̂ ≥ 𝜃 + Δ𝜃�)

Δ𝜃

Pr(𝑐̂ ≥ 𝜃 + Δ𝜃�)𝜃 𝜃 + Δ𝜃�𝜃 Δ𝜃
Pr(𝑐̂ ≥ 𝜃 + Δ𝜃�)

Δ𝜃� Δ𝜃� …

𝑐̂ ≥ 𝜃 + Δ𝜃  𝑐 ≤ 𝜃

Figure 2. (Better viewed in color.) Illustration of ∆θ-RID. The ego vehicle’s
initial trajectory plan is represented in white, and the trajectory predictions of
other vehicles are in blue (the uncertainty is represented in a semi-transparent
form). Scout conjectures a phantom vehicle (the red rectangle) in the region
occluded by the truck, which leads to a shift of cost distribution. Given
a θ, ∆θ-RID measures the conditional probability that the cost/risk in the
conjectured world increases at least ∆θ, describing the distribution over the
accumulated probability in terms of the cost increase in the conjectured world
if the vehicle follows the current trajectory plan.

C. ∆θ-Risk Increment Distribution Estimation
We note that the distributions φ and φ̂ are dependent,

without explicit analytical representations for them or their
CDFs Φ and Φ̂. To address this, we sample from these distri-
butions independently for a ∆θ-RID estimation. Specifically,
let {ci}ni=1 ∼ φ and {ĉi}ni=1 ∼ φ̂ be i.i.d. samples from φ
and φ̂, respectively. The empirical estimates of Φ and Φ̂ are
computed by Φ(n)(·) ← 1

n

∑n
i=1 1[ci ≤ ·] and Φ̂(n)(·) ←

1
n

∑n
i=1 1[ĉi ≤ ·], where 1 is the indicator function. With

the estimates by sampling, we have Probably Approximately
Correct (PAC) bounds for the ∆θ-RID as follows:

Theorem III.1 (Bounds on ∆θ-RID). Let α ∈ (0, 1). With
probability 1− α:

RID(∆θ) ≥ 1−min{1, Φ̂(Φ
−1(p) + ∆θ)

p
}, (3)

RID(∆θ) ≤ 1 + max{0, Φ̂(Φ
−1(p) + ∆θ) + p− 1

p
}, (4)

where

Φ̂(·) = [Φ̂(n) − ε(n, α)](·),Φ−1(·)= [Φ(n) − ε(n, α)]−1(·),

Φ̂(·) = [Φ̂(n) + ε(n, α)](·),Φ−1(·)= [Φ(n) + ε(n, α)]−1(·),
ε(n, α) =

√
ln(2/α)/(2n).

Proof: See Appendix A.

Informally, we use the Bayesian theorem to rewrite the
definition and copula [26] to model the joint distribution of
the dependent distributions. It was pointed out that copu-
las may be used to construct multivariate distribution func-
tions from univariate ones. Furthermore, we use the Dvoret-
zky–Kiefer–Wolfowitz Confidence Interval [27] [28] along
with the monotonicity of functions to bound the empirical
estimates with empirical samples.

IV. RISK INCREMENT-AWARE COOPERATIVE PERCEPTION

A. Priority Index

We define a Priority Index (PI) based on the risk increment
analysis to determine riskier regions for driving as follows:

Definition IV.1 (Priority Index). For a given cost quantile p,
let RID(∆θ|p) be the conditioned risk increment distribution
of an occluded region. We define the Priority Index as:

PI =

∫ θmax−Φ−1(p)

0

RID(∆θ|p)d(∆θ), (5)

where θmax is the maximum value of cost. Equation 5
calculates the area under the curve RID(∆θ|p), which implies
the expectation of cost increment ∆θ. Consequently, a higher
PI corresponds to a greater expected risk increment, indicating
that the associated occluded region should be prioritized for
perception. This prioritization helps mitigate potential risks by
enhancing the vehicle’s situational awareness. This integration
cannot be computed analytically. We estimate the PI with
Gaussian Quadrature as follows:

Theorem IV.1 (Bounds on Priority Index). Let p be the given
cost quantile. Assume Φ and Φ̂ are locally smooth. Let n∆θ

be the number of samples of ∆θ. For each ∆θ, let n be the
number of samples on both φ and φ̂. Let α ∈ (0, 1). With
probability 1− α:

PI >

n∆θ∑
i=1

wig(∆θi)− ν,

where

g(∆θ) = 1−min{1, Φ̂(Φ
−1(p) + ∆θ)

p
}.

the nodes (the sampled values of ∆θ) {∆θi}n∆θ
i=1 , the weights

{wi}n∆θ
i=1 , and the error ν are determined by the particular

numerical integration method used.
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See Appendix C for proof and particular expressions of ν
and λ when using the Golub-Welsch algorithm [29].

We utilize the above lower bound of PI to determine
the regions to prioritize in communication, as it reflects the
minimal risk level associated with a region. The error of such
estimation is quantified by ϵ in Theorem III.1 and ν above.
Increasing the number of samples (n and n∆θ) reduces the
error, resulting in more accurate estimations, but it also poses
a higher computational overhead. We empirically show the
sample size chosen achieves an effective balance between
accuracy and computational efficiency.

We also point out that as the state of the agent changes
continuously and the cost function used is locally smooth,
thus the local smoothness assumption on the CDFs of cost
distributions is reasonable. The computation complexity of the
integration comprises of a O(n2

∆θ) from ∆θ sampling using
the Golub-Welsch algorithm and a O(n) from cost sampling,
where the former can be replaced with other numerical inte-
gration methods (e.g. Simpson’s [30]) for a different trade-off
between accuracy and complexity. In our context, the sampling
calculates the time to collision given the two trajectories,
which is simple and computationally tractable. We further
empirically show the computation time in Section V-C.

B. Risk Increment-aware Early Fusion
We implement an early fusion strategy by fusing raw point

cloud data for cooperative perception. The ego vehicle com-
putes Priority Indices (PIs) for occluded regions and requests
point clouds for regions by descending order of PI until the
given bandwidth is used up. We assume vehicles share a
common coordinate system and know each other’s positions
and headings like [6]. The ego vehicle aligns the received
point clouds with its own perception using relative position and
heading information. Existing methods for handling temporal
asynchrony and spatial error in data fusion can be integrated
into Scout for improved performance (e.g., [31] and [32]). We
point out that Scout is compatible with a wide range of auton-
omy modules (e.g., learning-based and analytical planners),
as it reuses outputs from common onboard systems without
relying on specific model structures or parameters, allowing
it to function effectively among heterogeneous vehicles with
different modules.

V. EXPERIMENTS

A. Experimental Settings
Scenario Configuration. We focus on and evaluate our ap-

proach with safety-critical scenarios. We evaluate approaches
using the publicly available dataset AutoCastSim [2], includ-
ing Overtaking, Unprotected left turn, and Red-light violation
scenarios. This focus is informed by data showing a higher
frequency of accidents in such situations, with a notable
prevalence of personal injuries occurring in urban settings.

Metrics. Considering the three main concerns for coopera-
tive autonomous driving (driving safety, efficiency, and com-
munication), we report three metrics respectively, including
Success Rate (SR), Success weighted by Completion Time
(SCT) 1 [2], and Communication Volume.

1SCT measures the success rate as the ratio of completion time between
the omniscient expert and the ego car. Since the expert should not take longer
to complete than the ego car, SCT lies in the range [0, 1], with higher values
indicating more efficient driving.

Implementation Details. We conduct our experiments on
a workstation with an Intel i9 CPU and NVIDIA GeForce
RTX 3090 GPU. For modules in the autonomy stack, we
use PredictionNet [33] for perception as well as trajectory
prediction and PDM-closed [34] for planning by default. We
assign each vehicle a perception range of 140m [9] and a com-
munication range of 170m. We simulate an LTE-Direct QPSK
with 10 MHz bandwidth for V-V communication [35], which
translates to a peak rate of 7.2 Mbps. We set the maximum
decision interval to 0.5s, which requires a communication
volume not greater than 450 kilobytes (around 218.78 bytes).
For predefined parameters in Scout, we set the cost quantile
p = 0.99, the confidence 1−α = 0.9, n = 1000 samples from
both perceived and conjecture world and a maximum of node
number n∆θ = 5 in PI calculation.

B. Baselines
Single: The ego vehicle drives solely based on the onboard

data and modules without cooperative perception. Early fu-
sion: Ego vehicle requests all point clouds from neighbor vehi-
cles, which exceeds the available bandwidth. To allow perfor-
mance comparison, we pause the clock of the simulator until
the data transmission is complete. Simplified Reachability
Quantification (SRQ) [24]: We adapt this original work for
cooperative perception, where the ego vehicle requests point
clouds of desired occluded regions based on the reachability
analysis of SRQ. Where2comm [6]: Where2comm is a SOTA
approach using intermediate fusion, which prioritizes unknown
areas via generating spatial confidential maps. CORE [9]:
CORE is a SOTA approach using intermediate fusion, which
studies the V-V cooperative perception from the reconstruction
perspective. How2comm [15]: How2comm is another SOTA
approach using intermediate fusion, proposing a dedicated
transformer against localization errors and feature discrepan-
cies.

C. Main Results
Run time breakdown. We first empirically study the time

complexity of running Scout algorithms on our workstation.
We point out that these numbers are loose higher bounds—
powerful hundreds TOPS-level computers (e.g., [36]) on real
autonomous vehicles can further cut down the run time to
a fraction. This shows the algorithms are suitable for real-
time cooperative perception among on-road vehicles. The
total average time is 0.36s, highlighting the computational
efficiency of our proposed algorithms. Sampling states for
the perceived and conjectured worlds are negligible, taking
only 0.05s and 0.01s on average (about 15% of the total run
time). Priority index computation averages 0.30s, with poten-
tial for improvement through lightweight integration methods.
Additionally, our approach can be easily parallelized, as PI
computation for different occluded regions can be processed
simultaneously, which can further accelerate Scout with the
suggested optimizations.

SR vs Comm. volume. Figure 4(a)-4(c) show the results
of success rate (average and standard deviation) with different
communication volumes. We observe that compared to Single,
Scout achieves much higher (more than 20%) average success
rates. Scout outperforms SRQ by approximately 6% in average
success rate with the same communication overhead across all
scenarios, due to its superior ability to capture risk distribu-
tion and dependencies between vehicles. Additionally, Scout
surpasses three state-of-the-art methods while requiring only
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(a) PI illustration (b) Overtaking (c) Unprotected left turn (d) Red-light violation

Figure 3. (Better viewed in color.) Figure 3(a) illustrates the Priority Indexes (PI) of different occluded regions in an evaluation. The more red colors imply
higher PI values. There is a vehicle in the upper region behind the truck, and Scout successfully assigns this occlusion with the highest PI value because such
occluded agents pose the highest risks and could greatly impact the ego vehicle’s safety. Figure 3(b)-3(d) illustrate the data fusion in three scenarios, with
the point clouds (yellow dashed lines) perceived by the ego vehicle and the initial trajectory plans (white lines). The occluded vehicles are represented by
red bounding boxes, and their intended trajectories are represented by red lines. With Scout, the ego vehicle receives the point clouds of occluded vehicles
(represented by red dots), thus being able to detect the presence of previously occluded vehicles and adjust its plan to avoid potential collisions.

−0.05 0.00 0.05
0.68

0.70

0.72

(a) Overtaking

−0.05 0.00 0.05
0.50

0.55

(b) Unprotected left turn

−0.05 0.00 0.05
0.5

0.6

(c) Red-light violation
m

(d) Performance with different mod-
ules (SR)

Figure 4. Figure 4(a)-4(c) show the results of Success Rate vs. Communication volume in three scenarios. The communication volume results are presented
in logarithmic scale base 2, and the size is counted in bytes. Figure 4(d) shows the success rate when using different modules.

(a) Overtaking (b) Unprotected left turn (c) Red-light violation (d) Performance with different mod-
ules (SCT)

Figure 5. Figure 5(a)-5(c) shows the performance under different traffic densities. We note that Scout becomes Single when density is zero, as no other
vehicles provide occlusion information. Figure 5(d) shows the SCT when using different modules.

at least 1/32 of their communication volumes, respectively,
by prioritizing regions critical to driving success. It achieves
nearly the same success rate as early fusion but with only
1/16 of the communication volume by focusing on high-risk,
occluded regions and avoiding the redundant data that early
fusion indiscriminately includes.

SCT. We further study the average Success weighted by
Completion Time (SCT) of different approaches in three sce-
narios, showing results in Table I2. We observe that the SCT of
Single is significantly lower than cooperative perception-based
approaches (e.g., up to 37% lower than Scout), as the ego ve-
hicle acts more conservatively without information from other
vehicles. Scout outperforms SRQ, Where2comm, CORE, and
How2comm in SCT by up to 13% across cases, due to its abil-

2In the table, SCT1-3 refers to the three scenarios.

ity to prioritize communication on critical occluded regions,
leading to more accurate and faster decision-making. Scout
also approaches the idealistic but impractical early fusion,
which exchanges all point cloud data without any bandwidth
limitation: the same SCT in scenario 1 and marginally lower
performance (within a 2% difference) in scenarios 2 and 3.
Given Scout’s significantly reduced communication overhead,
it is evident that Scout efficiently identifies the critical regions
for driving and satisfies practical constraints, making it a viable
solution for bandwidth-limited environments.

Sensitivity to traffic density and different modules.
We evaluate Scout under different traffic densities (10 by
default) across three scenarios (Figure 5(a)-5(c)). We found
that Scout performs well in the most dense setting with 0.92
SR and 0.83 SCT on average. We also highlight that Scout is
compatible with a wide range of modules in a plug-and-play
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TableI
SUCCESS WEIGHTEDBYCOMPLETIONTIME(SCT).

Approach SCT1↑ SCT2↑ SCT3↑

Single 0.47±0.01 0.42±0.05 0.53±0.14
Earlyfusion 0.84±0.05 0.75±0.08 0.73±0.09
SRQ 0.71±0.03 0.60±0.05 0.61±0.10

Where2comm 0.76±0.04 0.64±0.07 0.64±0.11
CORE 0.77±0.05 0.66±0.06 0.65±0.09

How2comm 0.78±0.05 0.64±0.09 0.67±0.08

Scout(Ours) 0.84±0.01 0.73±0.03 0.71±0.06

manner,enablingittofunctioneffectivelyamongvehiclesof
heterogeneousperceptionmodules.Tovalidatethis,were-
evaluatedScout’sSRandSCTbyreplacingkey modules,
includingPredictionNetwithTrajectron++[37],PDM-Closed
withBC-SAC[38],andbothtogether.Theresults(Figure
5(d)and4(d))showonlyslightluctuationswithin±2%,
demonstratingthatScoutmaintainsperformancewithdifferent
autonomymodules.

VI.DISCUSSIONS

Preciselysensing,modeling,andpredictingtheworldsur-
roundingavehicleremainopenresearchquestions.Inthis
work,weassumethatthefuturestatesofotheragentscanbe
inferredfromtheirpastbehaviors,andaccordinglyintegrate
existingtrajectorypredictionmodules.Itisnotablethat,while
Scoutisdesignedwithearly-fusionperceptionscheme,the
riskassessmentpartcanbeadaptedtomanyothertasks,such
asdrivingriskalert,intermediate/late-fusionperception,and
plannerdesigns. WefocusonandevaluateScoutwiththree
particularscenarios.Weareinterestedinstudyingdrivingrisks
inmoregenerallong-horizonscenesinthefuture.

VII.CONCLUSION

Weproposeanearly-fusionframeworkforcooperative
perceptionamongheterogeneousvehicles,emphasizinga
planning-orientedapproachtoreducecommunicationover-
head. Weintroduceariskdistributionnotionforoccluded
regionsrelativetothecurrenttrajectoryandapriorityin-
dexmetrictooptimizeV-Vcommunicationunderbandwidth
constraints,alongwiththeoreticalguaranteedalgorithmsfor
estimation.Empiricalevaluationsshowthatourframework
outperformsstrongbaselinesandstate-of-the-artmethodsin
drivingsafety,eficiency,andcommunicationoverhead.

APPENDIX

A.ProofofTheoremIII.1

Weuse“copula”[26][21]to modelthedependencies
betweendependentdistributions,whichbehaveslikeajoint
distributionfunction. WepresentSklar’stheorem[39]to
providethetheoreticalfoundationforapplyingcopulas:

TheoremA.1(Sklar’stheorem[39]).LetΦ(x1,...,xd)be
ajointdistributionfunction,andletΦi,(i=1,...,d)be
themarginaldistributions.Then,thereexistsacopulaC:
[0,1]d→[0,1]suchthat∀xi∈[−∞,+∞]:

Φ(x1,...,xd)=C(Φ1(x1),...,Φd(xd)). (6)

UsingtheBayesiantheoremandSklar’stheorem,werewrite
thedeinitioninEquation(2)as:

RID(∆θ)=1−Pr(̂c≤Φ−1(p)+∆θ|c≤Φ−1(p))

=1−
C(p,̂Φ(Φ−1(p)+∆θ))

p
, (7)

where C(·,·) is a copula. After applying the
Frechet–HoeffdingTheorem[26]tothecopulainEquation
(7),weobtaintheInequalities(3)and(4).
Recallthat weempiricallyestimatethe CDFs Φ and
Φ̂. Consideringthenon-decreasingcharacteristicsofthe
CDFsandtheirempiricalestimates, WeapplytheDvoret-
zky–Kiefer–Wolfowitz ConidenceInterval[27][28]to
Φ̂(Φ−1(p)+∆θ),whichboundstheempiricalestimates.With
probabilityatleast1−αandϵ(n,α)= ln(2/α)/2n,

Φ̂(Φ−1(p)+∆θ)≥Φ̂(n)(Φ−1(p)+∆θ)−ϵ(n,α)

≥Φ̂(n)([Φ(n)+ϵ(n,α)]−1(p)+∆θ)−ϵ(n,α), (8)

Φ̂(Φ−1(p)+∆θ)≤Φ̂(Φ−1(p)+∆θ)+ϵ(n,α)

≤Φ̂([Φ(n)−ϵ(n,α)]−1(p)+∆θ)+ϵ(n,α). (9)

Finally,applyingInequality(8)toInequality(4)andapply-
ingInequality(9)toInequality(3),wecompletetheproof.

B.Costfunction

Wedeinethecostfunctionas:

c=1−mina∈A{min{1,
T

Tm
}}, (10)

whereAisthesetofagents(includingphantomones),Tisthe
timeuntilacollisionbetweentheegovehicleandanagentand
Tm isapre-deinedmaximumtime.Thiscostfunctiontakes
valuesin[0,1],wherehighervaluesindicatesmallertime-to-
collisions.Inourexperiment,wesetTm =3s.

C.ProofofTheoremIV.1

WeapplyTheoremIII.1toDeinitionIV.1suchthatwith
probability1−α:

PI≥
θmax−Φ

−1(p)

0

g(∆θ)d(∆θ)

>
θmax−Φ−1(p)

0

g(∆θ)d(∆θ). (11)

ThenweapplyGaussianQuadrature(theGolub-Welschalgo-
rithm[29]speciically)toestimatetheintegrationnumerically:

|
θmax−Φ−1(p)

0

g(∆θ)d(∆θ)−

n∆θ

i=1

wig(∆θi)|<=ν, (12)

where

ν=λmax
ξ∈{0,θmax−Φ−1(p)}

|g(2n∆θ)(ξ)|,

λ=
(θmax−Φ−1(p))

2n∆θ+1(n∆θ!)
4

(2n∆θ+1)[(2n∆θ)!]3
.

Forbrevity,weomittheexpressionsofthenodes{∆θi}
n∆θ
i=1

andweights{wi}
n∆θ
i=1.ApplyingtheInequality(12)tothe

Inequality(11),wecompletetheproof.
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