
Pasta: A Cost-Based Optimizer for Generating Pipelining
Schedules for Dataflow DAGs
XIAOZHEN LIU, University of California, Irvine, USA

YICONG HUANG, University of California, Irvine, USA

XINYUAN LIN, University of California, Irvine, USA

AVINASH KUMAR, University of California, Irvine, USA

SADEEM ALSUDAIS∗, King Saud University, Saudi Arabia

CHEN LI, University of California, Irvine, USA

Data analytics tasks are often formulated as data workflows represented as directed acyclic graphs (DAGs) of

operators. The recent trend of adopting machine learning (ML) techniques in workflows results in increasingly

complicated DAGs with many operators and edges. Compared to the operator-at-a-time execution paradigm,

pipelined execution has benefits of reducing the materialization cost of intermediate results and allowing

operators to produce results early, which are critical in iterative analysis on large data volumes. Correctly

scheduling a workflow DAG for pipelined execution is non-trivial due to the richer semantics of operators and

the increasing complexity of DAGs. Several existing data systems adopt simple heuristics to solve the problem

without considering costs such as materialization sizes. In this paper, we systematically study the problem of

scheduling a workflow DAG for pipelined execution, and develop a novel cost-based optimizer called Pasta for
generating a high-quality schedule. The Pasta optimizer is not only general and applicable to a wide variety

of cost functions, but also capable of utilizing properties inherent in a broad class of cost functions to improve

its performance significantly. We conducted a thorough evaluation of developed techniques on real-world

workflows and show the efficiency and efficacy of these solutions.

CCS Concepts: • Information systems→ Query optimization; Data analytics; Computing platforms; •
Software and its engineering→ Data flow architectures.

Additional Key Words and Phrases: scheduler, workflow, pipelined execution, data engine, physical plan

ACM Reference Format:
Xiaozhen Liu, Yicong Huang, Xinyuan Lin, Avinash Kumar, Sadeem Alsudais, and Chen Li. 2024. Pasta: A

Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs. Proc. ACM Manag. Data 2, 6
(SIGMOD), Article 248 (December 2024), 26 pages. https://doi.org/10.1145/3698832

1 Introduction
Many data analytics tasks are conducted as workflows [1, 22, 27] represented as directed-acyclic

graphs (DAGs) of operators. With the recent advances in machine learning techniques, often

incorporated as user-defined functions [8, 29], and the growing popularity of data science in many

disciplines, there is an increasing complexity of dataflow DAGs. This increase is reflected in the

∗
The author did most of her work of the paper while being a PhD candidate at UC Irvine.

Authors’ Contact Information: Xiaozhen Liu, xiaozl3@ics.uci.edu, University of California, Irvine, Irvine, CA, USA; Yicong

Huang, yicongh1@ics.uci.edu, University of California, Irvine, Irvine, CA, USA; Xinyuan Lin, xinyual3@ics.uci.edu, Univer-

sity of California, Irvine, Irvine, CA, USA; Avinash Kumar, avinask1@uci.edu, University of California, Irvine, Irvine, CA,

USA; Sadeem Alsudais, salsudais@ksu.edu.sa, King Saud University, Riyadh, Saudi Arabia; Chen Li, chenli@ics.uci.edu,

University of California, Irvine, Irvine, CA, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/12-ART248

https://doi.org/10.1145/3698832

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

HTTPS://ORCID.ORG/0009-0006-5346-7028
HTTPS://ORCID.ORG/0000-0002-1186-4803
HTTPS://ORCID.ORG/0000-0001-7935-0035
HTTPS://ORCID.ORG/0009-0006-9327-3906
HTTPS://ORCID.ORG/0000-0003-3928-690X
HTTPS://ORCID.ORG/0000-0001-8015-6870
https://doi.org/10.1145/3698832
https://orcid.org/0009-0006-5346-7028
https://orcid.org/0000-0002-1186-4803
https://orcid.org/0000-0002-1186-4803
https://orcid.org/0000-0001-7935-0035
https://orcid.org/0009-0006-9327-3906
https://orcid.org/0000-0003-3928-690X
https://orcid.org/0000-0001-8015-6870
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3698832

248:2 Xiaozhen Liu et al.

number of operators and edges, the variety of operators, and the structural intricacy of the DAGs.

This trend, combined with larger data volumes, poses great challenges to dataflow systems in terms

of both efficiency and scheduling.

As an example, consider an image-analysis workflow shown in Figure 1. It reads 25, 000 images

from a list of files, uses 30% of them (done by the Split operator) to train a machine learning (ML)

model using operator 𝑣6, and utilizes the model to classify the remaining 70% of the images
1
. The

inferred results are aggregated and then visualized using operator 𝑣9. Several operators generate

gigabytes of data due to the large number and size of images (4MB each). Such a workflow arises

often in a data science project, which focuses on model tuning and development, as opposed to a

production setting. For instance, in our analysis of 6,000 workflows (Section 6), 48% of ML-related

workflows include training and inference operators in the same DAG.

Training & InferenceRetrieve Images Visualization

v6
e7v2 e4

e2
e6

ML Classifier
Training

ML
Inference

PlottingFeature
Enrichment

v7v5

e5

30GB

700GBRead
Image Files

70GB

v4

Feature
Enrichment

300GB 5GB (Model File)

v9
e9

1MBRead File
Names

8MB
e1v1

v8
e8

Aggregation
40MB

v3
Split

Generating Features

100GB

e3

Figure 1. A dataflow DAG for ML-based image analysis, which does a 30/70 split of images for training and
inference. The number on each edge is the size of its intermediate results. A red port/edge means a blocking
port/edge, which will be explained in Section 2.

Two execution strategies. One way to execute this workflow is operator-at-a-time, i.e., we follow
a topological order of the operators and run them one by one. After running an operator, we

materialize its output data, either in memory or on disk. For each operator, all of its input data

should be available before it starts its computation. The main drawback of this approach is the large

sizes of intermediate results and the corresponding materialization overhead. We could solve the

problem by doing pipelining. For example, while the Split operator reads the images on the fly, it

immediately sends its produced results to the downstream operators 𝑣4 and 𝑣5 without materializing

these images. This pipelined execution can not only reduce the materialization cost but also allow

operators to produce results early. In particular, once the MLmodel is trained in operator 𝑣6, the user

can see partial results of the ML Inference operator 𝑣7 from the classified images, without waiting

for all the images to be processed. Producing results early by operators is especially beneficial in

data science, which is known to be iterative and requires users to constantly modify a workflow

based on initial results from operators.

Scheduling problems in pipelined execution. A main issue in scheduling this workflow to do a

pipelined execution is the ML training operator 𝑣6. In particular, this operator needs to receive all

its training instances before producing a model. (We represent this behavior of the operator by

marking its output port and the corresponding output edge as red.) If we let all the operators start

their execution at the same time to do pipelining, the ML inference operator 𝑣7 has to wait for the

operator 𝑣6 to complete its training, which may take minutes or even hours. During this period, 𝑣7
has to buffer a large number of images, which again introduces a high materialization cost.

One may wonder whether we can avoid this scheduling problem by dividing the workflow

into two. The first workflow uses 𝑣1, 𝑣2, and 𝑣3 from Figure 1 to produce two sets of images. The

1
This example is based on a real workflow in the domain of neuroscience with simplification for presentation purposes.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:3

second one reads the two image sets and uses the remaining operators to continue the analysis.

(Interestingly, the aforementioned scheduling problem disappears in the second workflow as

its structure is a simple tree rather than a non-tree DAG.) This approach is not ideal in many

applications where the users, especially domain experts, prefer to have a single workflow to

conduct the entire pipeline for the benefit of easy understanding and efficient management of self-

contained workflows. Our analysis of real-world workflows shows that 52% of them are non-tree

DAGs (Section 6).

Existing scheduling solutions and limitations. This scheduling problem was already observed

in push-based data-processing systems that support pipelined execution (e.g., Hyracks [3]), which

often adopt heuristic-based solutions. For the running example, Flink [2] (in its batch mode) and

Hyracks add a materialization step on the edge 𝑒6 immediately before operator 𝑣7. While this

heuristic does solve the aforementioned problem, it needs to materialize 700GB of data, which is

much worse than another plan that materializes edge 𝑒4 with a much lower cost of 70GB. This

example shows that a good materialization choice should be cost-based.
Challenges. When developing a general cost-based solution for this problem, a main challenge is

the complexity of workflows. For instance, Figure 2 shows a real dataflow from Alteryx [1] with

more operators and edges, including blocking edges marked in red. Many real-world workflows

are even more complicated, easily with hundreds of operators and edges. Generating an optimal

execution order (i.e., “schedule” in our context) efficiently on such complex workflows can be

computationally expensive. In addition, when formulating an optimization problem, we notice

that the literature lacks a clear description of the relationships between common concepts such

as blocking, materialization, and pipelining and modules of a workflow such as operators, ports,

and edges, as well as their execution and scheduling. We need to develop a formal framework to

present these relationships and clearly define a scheduling-based optimization problem.

Figure 2. A more complicated dataflow. Red edges are blocking, and operator details are omitted for brevity.

In this paper, we systematically study the problem of generating an efficient execution order

for a dataflow DAG in a pipelining setting. We develop a novel optimizer for data-processing

systems called “Pasta,” as shown in Figure 3. The optimizer is not only general and applicable to a

wide variety of cost functions, but also capable of utilizing common conditions satisfied by many

cost functions to improve its performance significantly. We make the following contributions. In

Section 2, we give an overview of the optimizer, and formally define the optimization problem.

In Section 3 we identify several interesting properties of an optimal execution order. In Section 4,

we develop a top-down search framework to find an execution order, and show how to utilize

these properties to improve the search performance. In Section 5 we show a bottom-up framework

to do a search in the opposite direction, discuss how to obtain costs for the Pasta optimizer, and

extend the results to other cost functions. In Section 6, we report experimental results of a thorough

evaluation of the techniques using real-world dataflows to show their efficiency and efficacy.

1.1 Related Work
Dataflow systems. The studied problem arises in the context of a pipelined-execution model,

which is adopted in systems such as Flink [2], Hyracks [3], and Amber [16]. It also assumes a

push-based engine that executes a physical plan as a DAG as opposed to a tree [1–3, 13, 22, 26].

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:4 Xiaozhen Liu et al.

In pull-based engines such as Apache Spark [31], a physical plan typically is a tree of operators,

where the studied problem becomes less challenging [17].

Physical
Plan

Region Plans

Finder

Execution
Order

Scheduler Executor

Pasta Optimizer

Cluster
Tasks

Figure 3. Overview of our proposed Pasta optimizer in a data-processing system.

Dataflow schedulers. Improving the scheduling of dataflow DAGs has been studied extensively

in the literature. For example, [10, 28] studied optimizations using DAG-aware task scheduling.

Existing studies mainly focused on using a single region plan with a fixed choice of pipelining

or materialization for an edge. Pasta is more powerful as it considers multiple region plans in

scheduling (using the Finder module in Figure 3), and treats the process of generating execution

orders for a region plan as a black box. As a result, existing scheduling optimizations can be adopted

as the Scheduler in Pasta.
Cluster resource managers. These managers, such as Apache Mesos [12], Apache Hadoop

YARN [25], Swarm [7], and Kubernetes [15], correspond to the Executor module in Figure 3. They

focus on how to allocate cluster resources. In the context of dataflow systems, these managers are

used primarily for orchestrating tasks submitted by a dataflow system, and the scheduling usually

takes sets of stages [3, 31] or pipelined regions [20] of operators as the input, which correspond to

the output of Pasta.
Optimizations on pipelining. Pipelining techniques in database systems support inter-operator

parallelism. Early works focused on optimizing pipelining for query-plan trees and for specific

operators [4, 11, 19]. The studies in [5, 23] considered pipelining in the context of multi-query

optimization in DBMS, where DAGs are common. The work [5] did not consider operators with

more than one output port, and did not distinguish between blocking/non-blocking ports in their

problem formulation. For example, consider a workflow DAG with the same structure as in Figure 1

but without any blocking port. An optimal execution order generated in [5] still materializes at

least two edges, while Pasta allows an execution order that pipelines all the edges. [23] studied

a deadlock problem when pipelining is used in multi-query optimization. Another related work

is operator fusion [24], which combines multiple operators in a physical plan. This technique is

orthogonal to our problem, as Pasta can treat a chain of fused operators as a single operator in a

physical plan.

2 Problem Formulation in Pasta
Figure 3 shows a data-processing system that uses Pasta, which takes a physical plan as input,

considers region plans, and generates an execution order to be executed by an Executor on a

compute cluster. A system that intends to use Pasta typically (1) processes bounded input data

(as opposed to stream processing); (2) uses a push-based execution model in the Executor; and (3)

supports execution of DAG-based physical plans with data-processing operators andwithout control

operators [9] such as if-else switches and for-loops. In this section, we formulate an optimization

problem in Pasta to schedule a physical plan.

2.1 Physical Plans and Blocking Ports
A physical plan is a directed acyclic graph (DAG) denoted as 𝑃 = (𝑉 , 𝐸), where each vertex in 𝑉

is an operator that represents a data-processing unit. Each edge 𝑒 = (𝑣𝑥 , 𝑣𝑦) ∈ 𝐸 is a physical edge,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:5

which is a directed connection from an output port of an operator 𝑣𝑥 to an input port of an operator

𝑣𝑦 . A physical plan can be created by an analyst using a GUI interface [18], or generated from a

logical plan by a compiler [21].

Definition 2.1 (Blocking port). An output port of an operator is blocking if it produces output
tuples only after all of this operator’s input ports have received their tuples. Otherwise, the output

port is called non-blocking.

It is often easier to refer to an edge than a port. For easy presentation, we call an edge blocking or
non-blocking if its sending port is blocking or non-blocking, respectively. Correspondingly, we mark

a blocking edge red to make this property more visible. Figure 4 shows an example physical plan

that tests the performance of an MLmodel. Operator 𝑣5 requires receiving all its input tuples to train

a model, thus its output port is blocking and 𝑒6 is a blocking edge. Operator 𝑣6’s output port that

produces evaluation metrics is also blocking since the operator needs both of its input ports to fully

receive their data before producing the metrics. Another output port of 𝑣6 produces the prediction

results for each input tuple of the testing set. Since 𝑣6 produces predictions tuple-by-tuple without

waiting to receive all the tuples from 𝑒5, this port is non-blocking. Finally, the prediction results are

connected to 𝑣8, which selects the wrong predictions for further analysis. Notice that edges 𝑒2 and

𝑒3 are connected to the same output port of operator 𝑣2, which is non-blocking. As a result, these

edges must have the same non-blocking property.

e8

e6

e3

e2

e5

e4

e7

File Scan

Filter
(domain="music")

Filter
(domain="movie")

ML Training

ML Evaluation

Visualization

Filter
(prediction!=label)

v3 v5 v7

v2
v6v4 v8

Model Metrics

Data Results
v1

Projection

e1

Blocking output port
Blocking edge

Figure 4. A physical plan 𝑃1 with blocking ports and their edges marked in red.

2.2 Region Plans with Pipelined/Materialized Edges
Definition 2.2 (Region plan). A region plan 2

of a physical plan 𝑃 = (𝑉 , 𝐸), denoted as𝑈 = (𝑃, 𝜙),
specifies a mapping 𝜙 from the set of edges 𝐸 to a set of two labels {Pipelined,Materialized}. The
two labels specify the method of data transfer on an edge:

• Pipelined Edge: An edge 𝑒𝑖 = (𝑣𝑥 , 𝑣𝑦) is called pipelined if 𝑣𝑥 passes a tuple to 𝑣𝑦 as soon as the

output port of 𝑣𝑥 connected to 𝑒𝑖 produces a tuple.

• Materialized Edge: An edge 𝑒𝑖 = (𝑣𝑥 , 𝑣𝑦) is called materialized if 𝑣𝑥 saves all its output tuples (e.g.,

in memory or on disk), which will later be consumed by 𝑣𝑦 .

For simplicity, in the rest of the paper, we use𝑈 = (𝑉 , 𝐸, 𝛼𝑈 , 𝛽𝑈), or simply (𝑈 , 𝛼𝑈 , 𝛽𝑈) to denote

a region plan for a physical plan 𝑃 = (𝑉 , 𝐸), where 𝛼𝑈 is the set of pipelined edges and 𝛽𝑈 is the

set of materialized edges.

Figure 5a shows a region plan 𝑈1 for the physical plan in Figure 4. Edges 𝑒6 and 𝑒7 need to be

materialized because their connected output ports in𝑈1 are blocking. Edge 𝑒4 is non-blocking in

𝑈1 and is materialized in𝑈1. Interestingly, edge 𝑒2 is materialized and 𝑒3 is pipelined, even though

2
The name “region” will be defined formally in Section 2.3.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:6 Xiaozhen Liu et al.

they are connected to the same non-blocking output port of 𝑣2. Figure 5b shows another region

plan𝑈2 for the same physical plan.

e8

e6

e3

e2
e5

e4
e7

v3 v5 v7

v2 v6v4
v8

v1
e1

Pipelined edge
Materialized edge

(a) A region plan 𝑈1.

e6
e2

e5

e7
v3 v5 v7

v2 v6v4
v8

v1
e1

e8
e3

e4

(b) Another region plan 𝑈2.
Figure 5. Two region plans for the physical plan 𝑃1.

In general, consider a blocking edge 𝑒𝑖 = (𝑣𝑥 , 𝑣𝑦) in a physical plan. If 𝑒𝑖 is pipelined in a region

plan, then whenever 𝑣𝑥 produces a tuple, 𝑣𝑦 should be ready to consume it. In terms of scheduling,

this means that they need to run in parallel. However, as 𝑒𝑖 is blocking, 𝑣𝑥 does not produce anything

until it has processed all its input data. During this period, 𝑣𝑦 is idle, which could waste a significant

amount of system resources. To avoid this problem, Pasta requires a blocking edge to always be

materialized. Table 1 shows the compatibility of physical-plan edges and region-plan edges. Table 2

summarizes the concepts defined so far.

Table 1. Compatibility of physical-plan edges and region-plan edges.

Region plan

Physical plan

Blocking edge Non-blocking edge

Materialized Edge Compatible Compatible

Pipelined Edge Incompatible Compatible

Table 2. Concepts related to pipelined execution.

Level Concept Description

Physical

plans

Operator Basic computing unit in a workflow.

Blocking port

An output port of an operator that does not produce anything

until the operator has received all its input data.

Non-blocking port An output port that is not blocking.

Blocking/non-blocking edge Derived from the blocking property of the sending port of an edge.

Region

plans

Pipelined edge

Transferring data between two operators by

passing the tuple as soon as it is produced.

Materialized edge

Saving all intermediate tuples before

transferring them to the downstream operator.

2.3 Regions and Region Graphs
Given a region plan, Pasta decides an order of executing the operators based on the notion of

regions.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:7

Definition 2.3 (Region). Given a region plan𝑈 = (𝑉 , 𝐸, 𝛼𝑈 , 𝛽𝑈), a region 𝑅 is a weakly-connected

sub-DAG of𝑈 such that all the edges in 𝑅 are pipelined.

Each pipelined edge 𝑒 = (𝑣𝑥 , 𝑣𝑦) in a region plan requires operators 𝑣𝑥 and 𝑣𝑦 to start together.

Pasta ensures this requirement is satisfied for all pipelined edges. A region includes a set of all

the operators that must start processing together. Given a region plan𝑈 = (𝑉 , 𝐸, 𝛼𝑈 , 𝛽𝑈), for an
operator 𝑣𝑖 ∈ 𝑉 , we denote the region that 𝑣𝑖 belongs to as 𝑅𝑈 (𝑣𝑖).
Figure 6a shows the regions of𝑈1 in Figure 5a. Each of the regions 𝑅2, 𝑅3, and 𝑅4 contains one

operator, which is not connected to any other operator by a pipelined edge. The region of 𝑣4 is 𝑅1,

i.e., 𝑅𝑈1
(𝑣4) = 𝑅1.

e6e2
e4 e7v3 v5 v7

v2 v6

v4 v8

v1

R1

R2 R3 R4

Region
Pipelined edge
Materialized edge

(a) Regions of 𝑈1

R1

R2 R3 R4
e2

e4

e6 e7

Region
Region edge

(b) Region graph 𝐺𝑈1

Figure 6. The regions and region graph of 𝑈1 in Figure 5a.

Figure 7a shows the regions of the region plan𝑈2 in Figure 5b.

e6

e3

e2
e7v3 v5 v7

v2 v6

v4 v8

v1

R1
R2

R3

R4

e8
R5

(a) Regions of 𝑈2

R1

R2

R3 R5

e2

e3

e6
e8

R4e7

(b) Region graph 𝐺𝑈2

Figure 7. The regions and region graph of 𝑈2 in Figure 5b.

Region-based execution model. Pasta runs a region plan region by region. In particular, the start
of a region requires all its operators to start processing, allowing pipelined execution among the

operators in the same region. The completion of a region means that all its operators have finished

processing and produced their results. For each materialized edge 𝑒 = (𝑣𝑥 , 𝑣𝑦) in the region plan,

the region 𝑅(𝑣𝑦) can only start execution after 𝑅(𝑣𝑥) has completed execution. In this region-based

execution model, each materialized edge 𝑒 = (𝑣𝑥 , 𝑣𝑦) in a region plan𝑈 derives a time dependency

between the regions 𝑅𝑈 (𝑣𝑥) and 𝑅𝑈 (𝑣𝑦). We denote this dependency as a region edge. We then

have a graph of dependencies between regions.

Definition 2.4 (Region graph). The region graph 𝐺𝑈 for a region plan 𝑈 is a directed graph

𝐺𝑈 = (𝑉𝐺𝑈
, 𝐸𝐺𝑈

), where 𝑉𝐺𝑈
is the set of regions of𝑈 , and 𝐸𝐺𝑈

is the set of region edges derived

from the materialized edges of𝑈 , i.e., each materialized edge 𝑒𝑖 = (𝑣𝑥 , 𝑣𝑦) ∈ 𝛽𝑈 corresponds to a

region edge 𝑒𝑖 = (𝑅𝑈 (𝑣𝑥), 𝑅𝑈 (𝑣𝑦)) ∈ 𝐸𝐺𝑈
. Each region edge 𝑒𝑖 = (𝑅𝑥 , 𝑅𝑦) means 𝑅𝑥 should finish

before 𝑅𝑦 starts.

For example, Figure 6b and Figure 7b show the region graphs of𝑈1 and𝑈2, respectively. A region

edge such as 𝑒3 in 𝐺𝑈2
(Figure 7b) means 𝑅1 must finish before 𝑅3 can start, i.e., all operators in 𝑅1

(𝑣1 and 𝑣2) must finish processing before any operator in 𝑅3 (𝑣4 and 𝑣6) can start processing. The

region graphs𝐺𝑈1
and𝐺𝑈2

capture all such temporal constraints between the regions of𝑈1 and𝑈2,

respectively. Note there is a cycle in 𝐺𝑈1
, and we will explain its meaning next.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:8 Xiaozhen Liu et al.

2.4 Schedulability of Region Plans
Definition 2.5 (Execution order). For a region plan 𝑈 , an execution order 𝑆 of 𝑈 is a ranking of

the regions 𝑉𝐺𝑈
, i.e., a many-to-one mapping from the regions of 𝑈 to a set of rank numbers

(a.k.a. ranks) 𝑓 : 𝑉𝐺𝑈
→ N+, such that for any region edge 𝑒𝑖 = (𝑅𝑥 , 𝑅𝑦) ∈ 𝐸𝐺𝑈

, 𝑓 (𝑅𝑥) < 𝑓 (𝑅𝑦).
We use rankings instead of total orders to define execution orders because Pasta allows two

regions that are not reachable from each other via region edges to start in parallel. For example,

in Figure 7b, 𝑅4 and 𝑅5 can have the same rank.

We call a region plan with an acyclic region graph schedulable. Otherwise, when the region plan

has a cyclic region graph, it is impossible to generate an execution order for this region plan, thus

it is unschedulable. Note schedulability is a property of the region plan instead of the physical plan.

The region graph 𝐺𝑈1
in Figure 6b is cyclic, thus 𝑈1 is unschedulable. The region graph 𝐺𝑈2

in

Figure 7b is acyclic, thus𝑈2 is schedulable. Figure 8 shows two execution orders for𝑈2, namely 𝑆1
and 𝑆2. In execution order 𝑆1, regions 𝑅4 and 𝑅5 are started together, while in execution order 𝑆2,

region 𝑅5 can only start after 𝑅4 has finished.

f (Ri)1 2 3 4
R1 R2 R3 R5

R4

(a) Execution order 𝑆1.

f (Ri)1 2 3 4 5
R1 R2 R3 R5R4

(b) Execution order 𝑆2.
Figure 8. Two execution orders for the region plan 𝑈2.

Goal of Pasta: Given a physical plan as a DAG, generate an optimal execution order based on

a cost function of execution orders.

We can show that two region plans do not share execution orders. Therefore, to enumerate

execution orders for a physical plan, we can first enumerate all its region plans (performed by the

Findermodule), then generate an execution order for each region plan (performed by the Scheduler
module). Figure 9 shows this enumeration process using a region-plan plane and an execution-order
plane. To find a good execution order, the Scheduler needs to choose one from the execution orders

of a region plan. There can be an exponential number of execution orders for a region plan. Many

systems [2, 31] only consider a limited set of execution orders, e.g., a total order of the regions.

There are studies [10, 28] on DAG-based scheduling that can be utilized by the Scheduler module

in Pasta to optimize the process of generating an execution order given a region plan. We treat this

process as a black box in the rest of the discussion.

Figure 9. The region-plan plane for a physical plan and the corresponding execution-order plane.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:9

2.5 Costs of Execution Orders and Region Plans
There can be diverse optimization goals, e.g., minimizing materialization sizes, minimizing CPU

costs, reducing the wall-clock time of a workflow, etc. To maintain the generality of Pasta, we
assume a cost function that computes the cost of running an execution order. The objective and

quality of the given cost function are not the main focus of Pasta. Given a cost function, the cost of

a region plan is based on the costs of its execution orders.

Definition 2.6 (Cost of a region plan). The cost of a region plan𝑈 is𝐶𝑜𝑠𝑡 (𝑈) = min𝑆𝑖 ∈S(𝑈) 𝐶𝑜𝑠𝑡 (𝑆𝑖),
where S(𝑈) is the set of execution orders for𝑈 considered by the Scheduler. If𝑈 is unschedulable,

its cost is infinite.

For easy presentation, we first study the problem by considering a simple and commonly used

cost function.

Cost Function A (total materialization size). The cost of an execution order is the sum of the sizes

of its materialized edges.

Using this cost function, all the execution orders of a region plan have the same cost. Thus the

cost of a region plan is also the sum of the materialization sizes of its materialized edges. We will

extend the results to other cost functions in Section 5.

In the rest of the paper, we denote an optimal schedulable region plan as “OSRP.”

3 Properties of Optimal Schedulable Region Plans
In this section, we present several interesting properties of OSRP’s, which will be used to improve

the performance of a search method to generate an optimal execution order.

3.1 Properties of Chains
Definition 3.1 (Chain). A chain in a physical plan DAG is a path such that each of its operators

(except the first and the last) is connected only to operators on the path.

A chain that is not a proper sub-path of any other chain is called a maximal chain. Figure 10
shows example chains in a physical plan. 𝐻4 is not maximal as it is a proper sub-path of another

chain 𝐻2, which is maximal. Paths 𝐻1 and 𝐻3 are two other maximal chains.

v2 v6

v5

v8
e8(50)

e
7 (5)

v1 e
2 (80)

H2

e4(50) e6(40
0)

v7
v3

v9
e9(70)

e5(20)

H1

v4
e3(40)

H3

H4

e 1(
80
)Non-maximal chain

Maximal chain

Figure 10. A physical plan 𝑃3 with three maximal chains. Edge costs are shown in the parentheses.

The following results show that we only need some of the non-blocking edges on a chain to be

materialized to maintain the schedulability of a region plan.

Lemma 3.2. For a chain 𝐻 in a physical plan 𝑃 , if a schedulable region plan 𝑈 has more than one
materialized edge on 𝐻 , then changing each materialized edge on 𝐻 to pipelined produces another
schedulable region plan.

Lemma 3.3. If a chain 𝐻 in a physical plan 𝑃 contains a blocking edge, each optimal schedulable
region plan for 𝑃 must pipeline all the non-blocking edges on 𝐻 .

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:10 Xiaozhen Liu et al.

For example, for the physical plan 𝑃3 in Figure 10, the chain 𝐻2 has two blocking edges 𝑒3 and 𝑒7,

which must be materialized in each region plan. Thus an OSRP for this physical plan must pipeline

the other edges on this chain, namely 𝑒1 and 𝑒5. Similarly, on the chain 𝐻3, an OSRP must pipeline

𝑒8.

Lemma 3.4. If a chain 𝐻 in a physical plan 𝑃 does not contain a blocking edge, each optimal
schedulable region plan for 𝑃 has at most one non-blocking materialized edge on 𝐻 .

For example, the chain 𝐻1 in the physical plan 𝑃3 is a chain without a blocking edge. Then in

each OSRP, there cannot be more than one materialized edge on this chain. As a consequence, there

is no need to consider region plans with two or more materialized edges on 𝐻1.

Corollary 3.5. Given a physical plan 𝑃 , for a maximal chain 𝐻 that does not contain a blocking
edge, if an optimal schedulable region plan includes a materialized edge 𝑒 in 𝐻 , then 𝑒 has the minimal
cost among all the edges of 𝐻 .

For instance, for the physical plan 𝑃3, if an OSRP has an edge materialized on 𝐻1, then this edge

must be the one with the lowest cost, i.e., 𝑒4.

3.2 Properties of Clean Edges
Next, we identify two classes of edges in a physical plan that should always be pipelined in an

OSRP. The first class of edges, called “bridges,” can be pipelined without causing schedulability

issues, and must be pipelined in an OSRP. Bridges belong to a more general class of edges, called

“clean edges,” which are always pipelined in an OSRP. We first define preliminary concepts. An

undirected cycle 𝐶 of a physical plan 𝑃 is a sub-DAG of 𝑃 such that the underlying graph
3
of 𝐶

forms a cycle. Figure 11 shows a physical plan with two undirected cycles 𝐶1 and 𝐶2. Intuitively,

edges on an undirected cycle can potentially cause a region plan to be unschedulable, and edges

not on any undirected cycle will never cause a region plan to be unschedulable.

v2

v4

v3

v10
e7

e5v1
e1

e4

e3 v5
v12

e11
e2

v6

v7

e6

e10

v9 v11

v8
e8

e9
e12

e13C1

C2

✔
✔

✔
✔ ✔

✔
✔ ✔

Figure 11. A physical plan 𝑃4 with two undirected cycles 𝐶1 and 𝐶2. An edge with a “✓” mark is a bridge,
and an edge with a “✓” mark is a non-bridge clean edge.

Definition 3.6 (Bridge). Given a physical plan 𝑃 , a non-blocking edge 𝑒 in 𝑃 is a bridge if 𝑒 is not
in any undirected cycle.

For instance, the non-blocking 𝑒7 in Figure 11 is a bridge because it is not in any of the two

undirected cycles 𝐶1 and 𝐶2. Similarly, 𝑒4 and 𝑒8 are also bridges.

Lemma 3.7. If a region plan 𝑈 of a physical plan materializes a bridge 𝑒 and is schedulable, then
another region plan𝑈 ′ obtained from𝑈 by changing 𝑒 to a pipelined edge is also schedulable.

3
The “underlying graph” of a directed graph 𝑃 is an undirected graph obtained by replacing all directed edges of 𝑃 with

undirected edges.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:11

This lemma leads to the following corollary.

Corollary 3.8. A bridge in a physical plan is always pipelined in an optimal schedulable region
plan.

For example, for the physical plan 𝑃4 in Figure 11, all the bridges 𝑒4, 𝑒7, and 𝑒8 must be pipelined

in an OSRP. A reason why a bridge is always pipelined in an OSRP is that it is not in the same

undirected cycle as another blocking edge. For example, in Figure 11, 𝑒1, 𝑒2, and 𝑒3 are in the same

undirected cycle𝐶1 as a blocking edge 𝑒5. Edge 𝑒5 has to be materialized in a region plan. Pipelining

𝑒1, 𝑒2, and 𝑒3 together causes a region plan to be unschedulable because doing so puts 𝑣1, 𝑣2, 𝑣4, and

𝑣5 in the same region, and then 𝑒5 causes a cycle in the region graph. On the other hand, pipelining

all the edges in 𝐶2 does not cause this issue, because there is no blocking edge in this undirected

cycle, and all these edges have to be pipelined in an optimal schedulable region plan. Based on this

intuition, we formally define the notion of a clean edge.

Definition 3.9 (Clean Edge). Given a physical plan 𝑃 , a non-blocking edge 𝑒 in 𝑃 is clean if 𝑒 is

not in the same undirected cycle of a blocking edge.

A bridge is always a clean edge, and some clean edges are not bridges. For example, in 𝑃4
(Figure 11), 𝑒9 is not a bridge because it is part of an undirected cycle𝐶2. The edge is clean since𝐶2,

the only undirected cycle that contains 𝑒9, does not have any blocking edge. Similarly, 𝑒10, 𝑒11, 𝑒12,

and 𝑒13 are also clean edges.

Lemma 3.10. All the clean edges in an optimal schedulable region plan of a physical plan are
pipelined.

For instance, in 𝑃4 (Figure 11), besides the bridges, the non-bridge clean edges 𝑒9, . . . , 𝑒13 must

also be pipelined in an OSRP.

4 Top-down Search Framework
In this section, we present a search framework that explores the region-plan plane to find an

OSRP and accordingly compute an optimal execution order. We develop techniques to improve

its performance, including some based on the properties in Section 3. We continue using the cost

function based on the total materialization size (denoted as 𝐶𝑜𝑠𝑡𝑚).

4.1 The Search Algorithm
Algorithm 1 presents the top-down search framework. We use an example shown in Figure 12 to

explain the algorithm. Each region plan with an associated cost in the search space is a state in
the search process. Given a physical plan 𝑃2, the search space has 16 states𝑈0, . . . ,𝑈15. The search

starts from the seed state 𝑈0 (line 1), in which all the edges are materialized. The goal state is an
OSRP 𝑈13. Line 2 initializes the optimal state 𝑈 ∗ using 𝑈0. Line 3 initializes the search frontier,
denoted as F , which is the set of known but unexplored states. The visited-state set E includes all

the states that have been visited during the expansion till now.

Each edge between two states is a transition. For the current state we expand F by including

the state’s neighbors. Additionally, E is used to avoid repeated additions of the same state into F
(lines 12-15). Note this can save computation but increases the space complexity. We repeat the

process of exploring the schedulability and cost of a state from F and including new neighbor

states in F until F is empty. An unschedulable state has an infinite cost, and only schedulable

states are used to update the optimum 𝑈 ∗. We give 𝑈 ∗ to the Scheduler to generate execution

orders for𝑈 ∗ and choose an optimal one.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:12 Xiaozhen Liu et al.

Algorithm 1: Top-down search for an optimal execution order

Input :𝑃 = (𝑉 , 𝐸): a physical plan
𝐶𝑜𝑠𝑡𝑚 : a cost function (total materialization size)

Output :𝑆 : an execution order for 𝑃 with a minimum cost

1 𝑈0 ← the seed state where all edges are materialized ;

2 𝑈 ∗ ← 𝑈0 ; // Initialize the optimum

3 F ← {𝑈0} ; // Initialize the frontier
4 E ← {𝑈0} ; // Initialize the set of visited states
5 while F ≠ ∅ do // Stop when all states are explored
6 Remove one state𝑈𝑖 = (𝑃, 𝛼𝑈𝑖

, 𝛽𝑈𝑖
) from F ;

7 if 𝐶𝑜𝑠𝑡𝑚 (𝑈𝑖) < 𝐶𝑜𝑠𝑡𝑚 (𝑈 ∗) then
8 𝑈 ∗ ← 𝑈𝑖 ; // Update the optimum

9 end
10 foreach 𝑒 ∈ 𝛽𝑈𝑖

not corresponding to a blocking edge in 𝑃 do // Use non-blocking materialized

edges for frontier expansion
11 𝑈𝑖

′ ← (𝑃, 𝛼𝑈𝑖
∪ {𝑒}, 𝛽𝑈𝑖

− {𝑒}) ; // Transform the current state into a neighbor state

12 if 𝑈𝑖
′ ∉ E then // Ensure visiting each state only once

13 Add𝑈𝑖
′
to F ;

14 Add𝑈𝑖
′
to E;

15 end
16 end
17 end
18 𝑆 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟 (𝑈 ∗) // Choose the best execution order for𝑈 ∗ according to the Scheduler

19 return 𝑆

Completeness and complexity. The search algorithm is complete since its expansion process

includes all possible region plans. For a physical plan 𝑃 = (𝑉 , 𝐸), it can have at most 2
|𝐸 |

region

plans. For each state, line 7 takes 𝑂 (|𝑉 | + |𝐸 |) time to check schedulability. Lines 10-16 explore at

most |𝐸 | neighbor states, each taking O(1) time. The time complexity of each iteration is𝑂 (|𝑉 | + |𝐸 |).
Hence the total complexity of the algorithm is 𝑂 ((|𝑉 | + 2|𝐸 |) · 2 |𝐸 |).
Greedy search. The search algorithm is using an exhaustive-search strategy to explore all the

execution orders. If the search space is large and the system has limited search time, we can slightly

modify the algorithm to perform a greedy search. In particular, we modify lines 10-16 to include

only one neighbor state that has the lowest cost among all the neighbors in the frontier.

Next we present several improvement techniques for the search framework.

4.2 Technique: Stopping Exploring Beyond Hopeless States
The search process cannot stop at an unschedulable state. That is, if𝑈𝑖 is unschedulable in line 7,

we cannot skip lines 10-16, because some unschedulable states can still lead to schedulable ones.

Next, we show that there are states that will never lead to a schedulable state, and we can stop

the search at such states.

We first define a basic concept. A blocking region edge in a region graph is an edge that corresponds
to a blocking edge in the physical plan. For example, Figure 13 shows the region graph of 𝑈6 in

Figure 12, where 𝑒4 is a blocking region edge as it is blocking in 𝑃2.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:13

Input physical plan

e cost of
materializing
this edge

Seed state (baseline)

Neighbor
state
transition

Unschedulable
state()

Goal state

Improved seed
state based on
chains alone

Improved seed
state based on
clean edges
alone

Final improved
seed state

Skipped using
chains

:

Skipped using
clean edges

:

Skippable
States

e5 (40)
e
4 (20)e 1 (1

00)

e 3 (5
0)e

2 (200)

P2

v3

v2
v4v1 v5 U0 (410)

U1 (310) U2 (210) U3 (360) U4 (370)

U5 (210) U6 U7 (260) U8 (170) U9 (270) U10 (320)

U11 U12 U13 (70) U14 (220)

U15

Figure 12. The search process of a simple workflow when running the top-down search Algorithm 1.

Definition 4.1 (Hopeless State). Given a physical plan 𝑃 , a hopeless state is an unschedulable region

plan𝑈 for 𝑃 whose region graph 𝐺𝑈 has a cycle that contains a blocking region edge.

In Figure 12,𝑈6 is hopeless because its region graph (shown in Figure 13) has a cycle that contains

a blocking region edge 𝑒4.

R1= v1v3v4

R2 = v2

R3 = v5

e1
e5

e4

Figure 13. The region graph of𝑈6 with a blocking region edge in red.

We can show that during the top-down search,𝑈6 will never lead to a schedulable state.

Lemma 4.2. A hopeless state cannot be transformed into a schedulable state by changing its materi-
alized edges to pipelined edges.

To check if a state is hopeless, we can check if there is a blocking edge on a cycle when we detect

that the current state is unschedulable (line 7). When there are few blocking edges, this additional

step does not incur much overhead. Once a state is determined to be hopeless, we can skip the

expansion of its neighbor states (lines 10-16). For instance, during the search in Figure 12, when we

explore𝑈6 and find it to be hopeless, we do not need to add its neighbors𝑈11 and𝑈12 to the frontier.

Furthermore, the states below a hopeless state are also hopeless and should also be excluded. We

can do this pruning by using a memoization set to save all the known hopeless states. For example,

𝑈6 will be added to this memoization set. When we expand the neighbor states of𝑈13 and see 𝑈15

is a descendent of𝑈6, we do not need to add𝑈15 to the frontier.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:14 Xiaozhen Liu et al.

4.3 Technique: Generating a Better Seed State Using Properties of OSRPs
Next, we discuss how to reduce the search space by generating a better seed state based on the

properties of OSRPs as described in Section 3. We first discuss how to use chain properties. If

we know an edge must be pipelined in an OSRP, we should also pipeline it in the seed state. For

instance, consider the physical plan 𝑃2 in Figure 12. According to Lemma 3.3, the edge 𝑒1 has to

be pipelined in an OSRP because the edge is on a maximal chain 𝑣1 → 𝑣2 → 𝑣4 with a blocking

edge 𝑒4. Then 𝑒1 is pipelined in the improved seed state. According to Lemma 3.4, non-blocking

edges 𝑒2 and 𝑒3 are on the maximal chain 𝑣1→ 𝑣3→ 𝑣4, so they should not both be materialized.

Furthermore, as 𝑒3 has the minimal cost on this chain, based on Corollary 3.5, we materialize 𝑒3
and pipeline 𝑒2 in the improved seed state. Finally, the non-blocking edge 𝑒5 is the only one on the

maximal chain 𝑣4→ 𝑣5, so it still needs to be materialized in the seed. In the end, the improved seed

state is𝑈5, from which we can start the search directly and still find the OSRP𝑈13. This technique

helps us reduce the number of states explored from 16 to 4.

We can also use properties of clean edges to improve the seed state. We can use Lemma 3.10 to

generate an even better seed state where each clean edge is pipelined. For example, in Figure 12,

the non-blocking edge 𝑒5 is clean because it is not in any undirected cycle. Based on the lemma, we

can pipeline 𝑒5 and start the search directly from𝑈4. By applying this technique alone, we can skip

the eight states annotated with a yellow background. By combining the techniques using chains

and clean edges, we improve the seed state to be𝑈13, leaving only one state in the frontier (𝑈15).

5 Discussion and Generalization
In this section, we present another framework that does the search in the bottom-up direction,

discuss how to do cost estimations in Pasta, and extend the results to general cost functions.

5.1 Bottom-up Search Framework
We present another search framework that uses the “bottom-up” direction to explore the search

space. It uses the seed state corresponding to the region plan where all the non-blocking edges are

pipelined. This state has the minimal total sizes of materialization, but could be unschedulable. In

the example in Figure 12, the seed is the bottom state𝑈15. Beginning from this state, we explore

the search space by gradually adding more materialized edges to the region plan. That is, each

neighbor-state transition changes a pipelined edge to materialized. The bottom-up framework has

the same completeness guarantee and time complexity as the top-down search framework, and can

also be adapted to perform a greedy search instead of an exhaustive search by adding only one

neighbor state with the lowest cost to the frontier. Next, we present several techniques to optimize

the performance of the search.

Technique: Stopping exploring beyond schedulable states.When a state is already schedulable,

changing its pipelined edges to materialized can only increase the cost, and will not lead to an

optimal schedulable region plan. Therefore, during the search process, whenever the current state

is already schedulable, there is no need to include its neighbor states in the frontier.

Technique: Pruning using properties of OSRPs. The properties of chains and clean edges can

also be utilized to optimize the bottom-up search. The main idea is to avoid transitioning into a

state that violates the properties of chains and clean edges. In particular, because a state transition

can only change an edge from pipelined to materialized, if we encounter a state that materializes

an edge that must be pipelined in an OSRP, then we should stop exploration beyond this state. To

use properties of chains, we change a pipelined edge 𝑒 of a region plan to materialized if 𝑒 satisfies

the following conditions. (1) According to Lemma 3.3, 𝑒 should not be in a chain that contains a

blocking edge. Furthermore, according to Lemma 3.4, if 𝑒 is in a chain without a blocking edge,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:15

and the chain already has a materialized edge, then 𝑒 should not be changed. (2) According to

Corollary 3.5, if 𝑒 is in a chain with only pipelined edges, then 𝑒 needs to have the lowest cost

among these edges. Moreover, as a maximal chain covers the pruning power of its sub-chains,

we could pre-compute all the maximal chains in the physical plan and use only maximal chains

to do these checks to improve the efficiency of applying these two cases. Similarly, clean edges

can also be used to do pruning during the search. In particular, according to Lemma 3.10, we can

exclude any region plan with a clean edge materialized, as a clean edge should not be changed

from pipelined to materialized.

Table 3 summarizes the applicability of each technique in the two search frameworks.

Table 3. Applicability of techniques on the two search frameworks.

Property Description regarding an OSRP Used in Top-down Search Used in Bottom-up Search

Property 𝐴
Pipelines all non-blocking edges on a chain

with a blocking edge.

Generate a better seed Prune states

Property 𝐵
Has at most one materialized non-blocking

edge on a chain without a blocking edge.

Not applicable Prune states

Property 𝐶
Pipelines an edge on a chain without a blocking

edge and containing a lower-cost edge.

Generate a better seed Prune states

Property 𝐷 Pipelines a clean edge. Generate a better seed Prune states

Property 𝐸
Is unreachable from a hopeless region plan by

changing materialized edges to pipelined.

Prune states Not applicable

Property 𝐹
Is unreachable from a schedulable region plan by

changing pipelined edges to materialized.

Not applicable Prune states

5.2 Obtaining Cost Information
There are various ways to obtain costs of execution orders. One way is to use a two-phase

execution method. In the first phase, we use heuristics to generate an execution order (e.g., one

with all edges materialized), and run it on a small subset of the source data. After this execution,

we collect information about the materialization size of each edge on the sample data. In the

second phase, we use the information to estimate the cost of each edge. Another way is to use

the iterative nature of data analytics tasks, i.e., one workflow may often be executed multiple

times [6]. Thus we can utilize previous executions for cost estimation. The first execution can be

done using any existing methods. For example, Hyracks [3] uses a heuristic where both input edges

to a two-input operator are materialized, or we can use the aforementioned execution method.

During each subsequent execution, Pasta has information about the statistics of each edge, and

uses it to estimate costs of an execution order. In general, having high-quality cost information

is important. Many existing techniques [30] have been proposed to tackle this issue. We can also

first utilize the two aforementioned methods to obtain cost information that is “good enough” to

empower Pasta initially, and gradually improve the statistics to perform re-optimizations when we

find them to be inaccurate.

5.3 General Cost Functions
So far we have used a simple but commonly used function that measures the total materialization

size of an execution order. Next, we consider general cost functions and extend the results. For a

general cost function 𝐶 , we can still use both search frameworks to perform a search to find an

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:16 Xiaozhen Liu et al.

optimal execution order. In the resulting OSRPs, Property 𝐸 (Section 4.2) still holds, as a hopeless

state cannot lead to schedulable states by having more pipelined edges. Other OSRP properties are

no longer valid. Next, we present two conditions for cost functions:

• Condition I: given a region plan 𝑈 , if another region plan 𝑈 ′ is derived from 𝑈 by changing

a materialized edge in 𝑈 to a pipelined edge, then either 𝑈 ′ is unschedulable or 𝐶𝑜𝑠𝑡 (𝑈 ′) ≤
𝐶𝑜𝑠𝑡 (𝑈).
• Condition II: the cost of an execution order 𝑆 for a region plan𝑈 is the summation of a constant

cost of each edge in the region plan of this execution order, i.e.,𝐶𝑜𝑠𝑡 (𝑆) = ∑
𝑒∈𝐸𝑈 𝐶𝑜𝑠𝑡 (𝑒), where

𝐶𝑜𝑠𝑡 (𝑒) is the cost of an edge 𝑒 .

Figure 14 shows the relationships between these conditions and the OSRP properties. An example

cost function that satisfies Condition I but not Condition II is based on the total wall-clock time of

an execution order.

Cost Function B (total wall-clock time). The cost of the total wall-clock time of an execution

order 𝑆 for a region plan𝑈 is the summation of the execution time of the longest-running operator

in each region, i.e., 𝐶𝑜𝑠𝑡𝑡 (𝑆) =
∑

𝑅∈𝑉𝐺𝑈
max𝑣∈𝑅 𝑇𝑖𝑚𝑒 (𝑣), where 𝑇𝑖𝑚𝑒 (𝑣) is the execution time of

an operator 𝑣 .

This cost model assumes that given a region plan, the Scheduler only considers the execution

order that corresponds to a total order on the regions of a region plan. This is a coarse model on the

total wall-clock time, and it is useful for many workflows where the completion time of a region

is dominated by long-running operators, e.g., ML-inference operators. For this cost function, the

OSRP properties 𝐴, 𝐵, 𝐷 , and 𝐹 still hold, since they only need the cost function to penalize having

more materializations. Property 𝐶 does not hold because it assumes an individual cost on each

edge. Finally, when a cost function satisfies both conditions, Property 𝐶 still holds. Notice that the

cost function of the total materialization size belongs to this category.

All cost functions:

Functions with Condition I: Properties A, B, D, and F

Functions with Conditions I & II: Property C

Property E

Figure 14. Relationships between conditions of cost functions and properties of OSRPs.

6 Experiments
In this section we report the results of a thorough evaluation of Pasta on real-world workflows.

6.1 Settings
Workflow Engine.We conducted experiments on the Texera system [26], an open-source data

workflow platform based on the Amber engine [16]. Texera is developed in Scala and supports

push-based execution. It supports pipelined execution of physical plan DAGs and includes a flow-

control mechanism to apply backpressure between operators. A workflow in Texera is constructed

by a user on a GUI-based interface via drag-and-drop operations and processes bounded input

data. A workflow is submitted to Texera as a logical plan DAG that is compiled to a physical plan,

where a logical operator (e.g., HashJoin) may be expanded to multiple physical operators (e.g., Build
followed by Probe). Physical operators are annotated with information about blocking ports. Texera

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:17

also supports data-parallel execution of a physical operator via partitioning. Currently Texera does

not support control operators [9], e.g., for-loops.
Pasta Implementation.We implemented Pasta in Texera. We implemented both the top-down

search (Section 4) and bottom-up search (Section 5.1), along with the improvement techniques,

including Chains (CHN), Clean Edges (CLE), and Early Stop (ESP). Each search framework included

global search and greedy search. Given a region plan, the Scheduler module of Pasta generated
a final execution order by using a topological sort of the regions, and a workflow was executed

region-by-region.

Other Scheduling Methods.We implemented several non-cost-based methods for generating

execution orders in Texera for comparison purposes. “Bottom-up Seed” (BUS) is the method of

generating a region plan using the seed of the bottom-up search framework, which may be un-

schedulable. “Top-down Seed” (TDS) refers to generating an execution order using the seed of the

top-down search framework with no improvement techniques, which guarantees an execution

order but also prevents pipelining. Finally, Baseline is a method corresponding to the existing

heuristics used by systems such as Hyracks, Flink, and Texera. Baseline starts from the seed of

the top-down search process, traverses the edges of the region plan following a topological order

of the operators, and changes a non-blocking materialized edge to pipelined (which leads to a new

region plan) if and only if the new region plan is schedulable. As a result, the final region plan is

also guaranteed to be schedulable. For all these methods, we also generated an execution order

from a region plan by using a total order of the regions.

Optimization Goals and Machines. We used two optimization goals to evaluate Pasta’s per-
formance. The first was minimizing the total sizes of materialization (Mat-Sizes) of a workflow.
As we will show in Section 6.2, the availability of numerous physical plans with cost information

when using this goal allowed us to evaluate Pasta at a large scale. The experiments for this op-

timization goal were conducted on a machine running the Ubuntu 22.04 operating system, with

64 cores, 128 GB of memory, and an 8 TB hard disk. The second was reducing the wall-clock time

of executing a workflow (Clock-Time). We used this goal to show the generality of Pasta as well as
its performance in an end-to-end workflow-execution setting. The experiments of this optimization

goal were conducted on a machine running MacOS Sonoma 14.5, with 10 cores, 32 GB of memory,

and a 1 TB SSD. Each experiment in the evaluations was executed three times, and the averages

were reported.

6.2 Collecting Real Workflows
We used 6,148 real-world workflows from the KNIME Community Hub [14] for analysis. The KNIME

engine does not support pipelined execution. Instead, it executes a physical plan (DAG) operator

by operator and materializes intermediate results. Since Pasta requires pipelined execution, it was

not feasible to use the KNIME engine to evaluate Pasta. We converted those workflows to a format

supported by Texera. During a conversion, the DAG structure was preserved, and each KNIME

operator was mapped to a Texera operator. All the ports and edges were preserved. Around 20% of

the workflows contained control operators, which were treated as normal data-processing operators

during the conversion. For KNIME operators that were not available in Texera, we replaced them

with non-executable Dummy operators. For each output port of a Dummy operator, we annotated

whether it was blocking using the following criteria. (1) If a port was to produce a single object

(e.g., an ML model) instead of a data table, it was blocking. (All KNIME operator ports were already

marked with this information.) (2) If a port was part of a control operator (e.g., Loop Start), it
was blocking. (3) For the remaining cases, we inferred whether a port was blocking based on the

official operator description from KNIME. Each workflow contained one or more weakly connected

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:18 Xiaozhen Liu et al.

components, and each component corresponded to a physical plan DAG (“plan” for short in the

rest of this section). As each plan could be scheduled separately, we used the largest plan (in terms

of number of operators) of each workflow for the analysis and experiments. We derived subsets of

those workflows for specific experiments, summarized in Table 4.

Table 4. Overview of workflow (WF) sets used in evaluations.

WF Set WF # Source Use

6K-Set 6,148

Migrated to Texera from

KNIME Workflows

Analysis

(Section 6.3)

MS-Set 849 Subset of 6K-Set
Mat-Sizes Evaluations

(Section 6.4 & Section 6.5)

CT-Set 2

Created as executable

workflows in Texera

Clock-Time Evaluations

(Section 6.6)

Workflows used for Mat-Sizes Evaluations. The Mat-Sizes experiments were performed on

MS-Set, which was a subset of 6K-Set. We will describe details aboutMS-Set in Section 6.3. We used

the cost function in Section 2.5, and used the materialization information of the original KNIME

workflows as the materialization costs.

Workflows Used for Clock-Time Evaluations. We manually created two executable workflows

in Texera, namely WF1 and WF2, based on two KNIME workflows in 6K-Set. Their physical
plans are shown in Figure 15. WF1 contained 25 operators and 28 edges to process a dataset of

100K email addresses and used a combination of rule-based methods and ML models to identify

fraudulent addresses. WF2 processed a dataset of 5,000 movies, each containing attributes like titles,

genres, synopses, etc. The objective was to leverage pre-trained models for text summarization

and sentiment analysis on textual attributes, and to generate one-hot encodings for categorical

attributes. Its physical plan contained 35 operators and 39 edges.

(a) Workflow 1 (WF1)

(b) Workflow 2 (WF2)
Figure 15. Physical plans evaluated on the Clock-Time goal.

6.3 Complexity of Scheduling Workflows
To understand the complexity of finding optimal execution orders on these workflows, we analyzed

the plans in 6K-Set.
Structural Complexity of Physical Plans. We measured the plans in terms of the complexity of

their DAG structures. We first counted the scale of the plans, measured by the number of operators

and number of edges in a DAG. Figure 16 shows the histogram of the number of operators and

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:19

number of edges in each DAG among the 6K plans. More than half of the DAGs had at least 10

operators; more than 20% of the DAGs contained at least 20 operators; and over 6% of the DAGs

had at least 50 operators. The distribution for the edge numbers was similar. Moreover, 83 DAGs

contained 100+ operators, 99 DAGs had 100+ edges, and the largest plan included 465 operators

and 742 edges. These statistics show that the workflow DAGs had a large scale. We also observed

that the number of edges in many of the plans was higher than the number of operators. This

trend was also reflected in Figure 16. The decrease in frequencies of plans with a larger edge count

was slower than that of the operator count. One reason was the high frequency of non-tree-DAGs,

which typically have more edges than operators. We measured the proportion of non-tree DAGs

in 6K-Set. Out of all the 6K plans, 3,208 (52.2%) of them were non-tree DAGs, and this ratio was

higher (77.7%) among plans with more than 10 operators. Scheduling tree-based plans for pipelined

execution tends to be easier compared to scheduling non-tree plans. For instance, according to

Lemma 3.8, all non-blocking edges in a tree should be pipelined since they are all bridges. Therefore,

for the cost function of Mat-Sizes on a tree-based physical plan, using the BUS method is sufficient.

1-5 16-20 31-35 46-50 61-65 76-80 91-95 100+
of Operators / Edges in the physical plan DAG

101

102

103

of

 W
or

kf
lo

ws
 (L

og
 S

ca
le

) Operators
Edges

Figure 16. Distribution of operator numbers and edge numbers in physical plan DAGs of the 6K workflows.

Schedulability of BUS Region Plans.We next measured the proportions of plans that needed

non-simple methods to enable pipelined execution. We considered BUS to be a simple method. The

reason is that according to Property F (Section 5.3), for theMat-Sizes and Clock-Time cost functions,
if the seed of the bottom-up search is schedulable, it can be directly used to generate an optimal

execution order. Otherwise, either Baseline or Pasta is needed to generate an execution order. For

each physical plan in 6K-Set, we used BUS to generate a region plan and tested its schedulability. In

total, there were 1,259 physical plans (20.4% of all the physical plans, and 39.2% of all the non-tree

DAGs) that had an unschedulable BUS region plan. Figure 17 shows the fraction of unschedulable

BUS region plans with varying scales of physical plans for 6K-Set and for the subset where physical

plans were non-tree DAGs. In general, physical plans with larger scales were more likely to have an

unschedulable BUS region plan. Moreover, when a physical plan (including tree-structured plans)

had more than 10 operators, this ratio was consistently above 20%, and the cut-off increased to 40%

when the scale was above 30 operators. This ratio among the non-tree DAGs was higher, with the

cut-off being 20% among physical plans of all scales. These statistics show that it is challenging to

schedule many workflows for pipelined execution.

Physical Plans in MS-Set. We used 849 of the 6K plans for Mat-Sizes evaluations. When the BUS
method produced an execution order, there was no need to use other methods. Thus, only the 1,259

physical plans on which BUS produced an unschedulable region plan needed evaluations. Note all

these plans were non-tree DAGs. Furthermore, out of the 1,259 physical plans, 849 (67.4%) of them

had the cost information available because they were executed in KNIME before, which resulted in

MS-Set. Plans of all sizes were preserved inMS-Set, from smaller plans (operator count < 15) to

very large plans (operator count ≥ 100, a total of 41 plans).

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:20 Xiaozhen Liu et al.

1-5 16-20 31-35 46-50 61-65 76-80 91-95 100+
Scale of a Physical Plan (# of Operators)

0

20

40

60

80

%
 o

f U
ns

ch
ed

ul
ab

le
 P

la
ns

Among All Plans
Among Non-tree DAGs

Figure 17. Ratio of physical plans whose BUS region plan was not schedulable.

6.4 Effectiveness of Pasta onMat-Sizes
Next, we evaluated the effect of using Pasta on improving the quality of a generated execution order.

We used MS-Set in the evaluation. To measure the materialization cost, we did not need to execute

the workflows, and we conducted the analysis on the generated execution orders for each workflow.

Given each of these 849 plans as an input, we used different methods to generate execution orders,

including Pasta, TDS, and Baseline. We evaluated four configurations of Pasta (ETD, GTD, EBU, and
GBU). We mainly present Pasta’s results when using the top-down search direction (ETD and GTD)
since the bottom-up search direction (EBU and GBU) had similar results.

We enforced a time limit of 300 seconds for each individual run of execution-order generation. For

Pasta methods, if this time limit was reached, we used the best region plan found so far to generate

a final execution order. For each physical plan, if ETD and GTD produced different execution orders,

we used the better one as the result of Pasta. We compared the cost of execution orders generated

by Pasta with those from Baseline and TDS. Note TDS represented another simple method that

materialized all the edges, which had the highest possible cost. As the materialization sizes varied

greatly across different physical plans, we used relative costs (Pasta or Baseline relative to TDS)
for comparisons. For each physical plan, we measured the materialization size 𝑆𝑚 of the execution

order produced by TDS, as well as the size 𝑆 𝑓 of the execution order produced by Pasta or Baseline.
We adjusted 𝑆𝑚 and 𝑆 𝑓 by subtracting the total sizes of blocking edges 𝑆𝑏 in the plan because these

edges had to be materialized in each method. We used (𝑆 𝑓 − 𝑆𝑏)/(𝑆𝑚 − 𝑆𝑏) to represent the relative
cost of an execution order generated by Pasta or Baseline.
Pasta vs. Other Methods. Pasta produced the best execution order among the three methods on

847 of the 849 evaluated plans. 33 (3.9%) out of these 847 execution orders were not produced by

ETD because it was unable to finish within 300 seconds on these plans. Instead, they were produced

by GTD. Pasta produced a worse execution order than that from Baseline only for the two large

plans on which even GTD was unable to finish execution within 300 seconds. On 559 (65.8%) plans

the cost of execution orders generated by Pasta was the same as that of Baseline because the two

methods produced the same execution order. On the remaining 288 (33.9%) plans, the execution

order produced by Pasta had a lower cost than that of Baseline.
To further study the extent to which Pasta could reduce costs, we calculated the ratio of cost

reduction when using Pasta compared to Baseline on each of these 288 workflows. Given the

relative cost 𝐶𝑏 of an execution order from Baseline and the relative cost 𝐶𝑝 of that from Pasta,
this ratio was (𝐶𝑏 −𝐶𝑝)/𝐶𝑏 . We show these ratios as well as the relative costs of the two methods

on these 288 instances in Figure 18. On less than a quarter of these workflows, Pasta improved the

costs by less than 10%; on more than half of these instances, Pasta’s execution order could reduce

over 30% of the costs from Baseline; on around 1/3 of them, Pasta’s execution order was 50%

better than that of Baseline; in some cases Pasta was even able to reduce more than 99% of the

cost compared to Baseline. The relative costs of Pasta’s execution orders were almost consistently

below 50%.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:21

0.03% 1 5 10 15 20 30 40 50 60 70 80 90 99.91%
Cost reductions (%) on individual workflows (Baseline vs. Pasta)

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Co
st

Baseline
Pasta

Figure 18. Materialization costs of execution orders generated by Pasta and Baseline on all the workflows
where the two methods produced different results. Each bar represents a workflow. The relative costs of
execution orders from the two methods are overlapped, and the visible bars for Baseline indicate reduced
relative costs when using Pasta over Baseline. The workflows are ordered by the cost-reduction ratio of
using Pasta compared to Baseline.

Greedy Search vs. Exhaustive Search. In the top-down framework, Pasta offers both an exhaus-

tive search method and a greedy search method. We compared the relative costs of ETD and GTD
on the 812 instances that both methods finished execution on. GTD produced the same execution

order as ETD (i.e., optimal execution order) on 703 (86.6% out of 812) of the instances. This meant

that the faster method GTD was often as effective as the slower method ETD, so using GTD for

quickly generating an execution order would be beneficial. For recurring and costly jobs, if optimal

scheduling is desired, we can run an exhaustive search in the background for further improvements.

Figure 19 shows the cost-comparison results on the remaining 109 (13.4%) instances where the

execution order produced by ETD had a lower cost. For over half of them, the execution order from

ETD reduced more than 30% of the costs compared to the one from GTD. On several instances, the

optimal execution order of ETD reduced over 99% of the cost from that of GTD. These results show
that, compared to the greedy search, using an exhaustive search for an optimal execution order can

further reduce costs.

0.04% 5 10 15 20 30 40 50 60 70 99.55%
Cost reductions (%) on individual workflows (GTD vs. ETD)

0.00

0.25

0.50

0.75

Re
la

tiv
e

Co
st

Pasta (GTD) Pasta (ETD)

Figure 19. Materialization costs of execution orders generated by ETD and GTD on all the workflows where the
two methods produced different results. Similar to Figure 18, the relative costs of execution orders from the
two methods are overlapped, and the workflows are ranked by the cost reduction ratio of using ETD over GTD.

6.5 Efficiency of Pasta onMat-Sizes
Next, we evaluated the efficiency of Pasta. We mainly present Pasta’s results when using the

top-down search direction. We first present the overall results, then show detailed evaluations on

two aspects: (1) Input complexity: How did the scale of input plans affect Pasta’s performance?

(2) Breakdown of improvement techniques: How effective were the techniques (CHN, CLE, and ESP)?
Overall Efficiency. We first considered the efficiency of the exhaustive-search method. Given

the time constraint of 300 seconds, ETD finished on 812 (95.6%) of the 849 plans. Out of the 37

plans on which ETD exceeded the time limit, 33 (89.2%) of the plans had over 80 operators and

over 66 non-blocking edges. This meant that although ETD needed a longer time to find an optimal

execution order for some complicated plans, it could finish within a reasonable amount of time on

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:22 Xiaozhen Liu et al.

the vast majority of real-world plans. Moreover, when we decreased the cut-off time to 5 seconds,

ETD was able to finish scheduling on 675 (79.5%) of the plans. These statistics showed that ETD was

very efficient on most of the plans. Finally, on average the scheduling time of ETD was 13X the

time of Baseline, and for 766 (90.2%) of the plans this ratio was lower than 13. This meant that

with additional search time, ETD could find optimal execution orders that sometimes were much

better than those from Baseline. We next considered the greedy method. Within 300 seconds, GTD
finished on 846 (99.6%) of the 849 plans. There were two plans on which GTD exceeded the time

limit. One had 302 operators and 375 edges, and another contained 465 operators and 742 edges.

When we reduced the cut-off time to 2 seconds, GTD finished on 767 (90.3%) of the plans. On average

the time for GTD to finish was 4X that of Baseline. Considering the fact that GTD generated an

equal or better execution order compared to Baseline on 844 (99.4%) of the plans, using GTD over

Baseline would be a sensible choice.

Impact of Physical Plan Scales. To study the impact of input complexity on the efficiency of the

methods, we measured the average scheduling time of each method on different scale-groups of

physical plans (measured by the number of operators), as shown in Figure 20. For all the methods,

the scheduling time increased with the growing complexity of the input plan. Moreover, although

GTD was slower than Baseline, the growth of GTD’s scheduling time had a similar shape as that of

Baseline, because both methods had a polynomial time-complexity. ETD was faster than GTD for
smaller plans because the search space was small and GTD did not have the extra step of comparing

costs of different neighbors of each visited state during the search. For larger plans, the time for

ETD increased more rapidly and erratically than GTD, because the search space grew exponentially.

Nevertheless, the improvement techniques helped ETD maintain its efficiency for most inputs.

1-10 21-30 41-50 61-70 81-90 100+
Scale of Input Plan (# operators)

10 2

10 1

100

101

102

AV
G

Sc
he

du
lin

g
Ti

m
e

(s
) TDS

Baseline
Pasta(GTD)
Pasta(ETD)

Figure 20. Given a physical plan, the average time it took to generate an execution order for different methods
across varying workflow scales.

Effect of Improvement Techniques. Finally, we studied the effect of each improvement technique

on Pasta’s performance. We first measured their impact on the exhaustive-search method (ETD). For
each plan, we used five methods to generate an execution order with a time budget of 30 seconds.

These searches included: one without any improvement technique (NOP), one for each technique

applied individually (CHN, ESP, and CLE), and one with all techniques applied together (Pasta).
We categorized the results based on the scale of the input plans. We then calculated the ratio of

workflows on which each method successfully finished the search to identify an optimal execution

order within the budget for each group. Figure 21 shows the success ratios on different groups for

each method. NOP succeeded on only plans with smaller scales, and was mostly unsuccessful once

the scales went above 20. ESP alone increased the ratio moderately for smaller plans. CLE alone

greatly increased the success ratio for many plans, and CHN was the most effective. We attribute

the high effectiveness of CHN and CLE to the fact that most of the input plans had many chains

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:23

and clean edges, which enabled the two techniques to reduce the search space significantly. By

combining the three techniques, Pasta achieved the best performance.

1-10 21-30 41-50 61-70 81-90 100+
Scale of Input Plan (# operators)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
io

 (E
xh

au
st

iv
e) Pasta (ETD)

CHA
CLE
ESP
NOP

Figure 21. With a cut-off time of 30s, the success ratio of exhaustive searches across workflows using different
improvement techniques. NOP refers to the method of not using any improvement technique.

We did similar experiments on the greedy-search method (GTD). Due to its shorter search time,

we allocated a smaller time budget of 2 seconds. Figure 22 shows results similar to those in ETD,
and the improvements of combining the three techniques were less.

1-10 21-30 41-50 61-70 81-90 100+
Scale of Input Plan (# operators)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
io

 (G
re

dy
) Pasta (GTD)

CHA
CLE
ESP
NOP

Figure 22. With a cut-off time of 2s, the success ratio of greedy searches across plans using different improve-
ment techniques.

6.6 Evaluations on the Clock-Time Goal
So far, we presented evaluations of Pasta using theMat-Sizes cost function. Next, we considered
another optimization goal, namely Clock-Time. The purposes are (1) to evaluate the generality of

Pasta on other cost functions; and (2) to measure the end-to-end performance of Pasta in Texera.

For both workflowsWF1 andWF2, we used TDS, Baseline, and Pasta (EBU) to generate execution
orders. We varied the input size of each workflow and ran multiple executions. For each execution,

we recorded the scheduling time to generate the final execution order, the cost of the final execution

order, and the end-to-end wall-clock time to finish workflow execution. For each workflow, we

executed the workflow by using TDS to obtain the wall-clock time of each operator and used these

numbers as the cost for Pasta.
Figure 23 shows WF1’s costs and end-to-end execution time on different sizes of the input

data. The execution orders generated by Pasta remained the same for different input sizes. This

was because the size of the input data did not significantly affect how the costs differed between

operators in the same workflow. The lowest costs of Pasta’s execution orders demonstrated its

effectiveness in reducing the costs for the Clock-Time goal. Moreover, the reduced costs also

resulted in reduced end-to-end clock time, and the gap between different methods grew larger

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:24 Xiaozhen Liu et al.

with the increase of the input size. In addition, Pasta’s scheduling time remained consistent across

different input sizes, with an average of 64 ms. This was relatively small compared to the end-to-end

execution time, especially for larger input sizes.

50 100 500 1K 5K 10K 50K 100K
Size of Input Data on WF1 (# tuples)

0

100

200

300

Co
st

TDS (Cost)
Baseline (Cost)
Pasta (Cost)

TDS (Time)
Baseline (Time)
Pasta (Time)

0

100

200

300

400

E2
E

ex
ec

ut
io

n
tim

e
(s

)

Figure 23. Results of Clock-Time evaluations on WF1.

Figure 24 shows the results for WF2. Pasta provided greater benefits for this workflow compared

to WF1 due to the higher costs of the operators. The scheduling time of Pasta on this more

complicated plan remained stable, with an average of 166 ms. These results showed both the

generality of Pasta when using another cost function and its ability to reduce end-to-end workflow

execution time with low overhead.

10 50 100 500 1K 5K
Size of Input Data on WF2 (# tuples)

0

200

400

600

800

Co
st

TDS (Cost)
Baseline (Cost)
Pasta (Cost)

TDS (Time)
Baseline (Time)
Pasta (Time)

0

250

500

750

1000

E2
E

ex
ec

ut
io

n
tim

e
(s

)

Figure 24. Results of Clock-Time evaluations on WF2.

7 Conclusions
In this paper, we studied the problem of generating an optimal execution order of pipelined

execution for a dataflow DAG. We developed a novel cost-based optimizer called Pasta, which
considers multiple region plans for a physical plan to generate an optimal execution order. The Pasta
optimizer is applicable to many cost functions, and can utilize properties in these cost functions

to improve its performance. We conducted a thorough evaluation on real-world workflows and

showed the efficiency and efficacy of the proposed techniques.

Acknowledgments
We thank Jiadong Bai, Yunyan Ding, Shengquan Ni, Kun Woo (Chris) Park, Vincent Thai, Zuozhi

Wang, and Tianyun Yuan for their help. We also thank our anonymous shepherd and reviewers for

their invaluable feedback. This work was supported by NSF award IIS-2107150 and NIH NIDDK

award 2U24DK097771-11.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:25

References
[1] Alteryx 2024. AI Analytics Platform - Alteryx, https://www.alteryx.com/.

[2] Apache Flink 2024. Apache Flink® — Stateful Computations over Data Streams | Apache Flink, https://flink.apache.org.

[3] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares Vernica. 2011. Hyracks: A flexible

and extensible foundation for data-intensive computing. In Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, Serge Abiteboul, Klemens Böhm, Christoph Koch, and

Kian-Lee Tan (Eds.). IEEE Computer Society, 1151–1162. https://doi.org/10.1109/ICDE.2011.5767921

[4] Luc Bouganim, Daniela Florescu, and Patrick Valduriez. 1996. Dynamic Load Balancing in Hierarchical Parallel

Database Systems. In VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6,
1996, Mumbai (Bombay), India, T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda (Eds.).

Morgan Kaufmann, 436–447. http://www.vldb.org/conf/1996/P436.PDF

[5] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. 2001. Pipelining in Multi-Query Optimization. In

Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23,
2001, Santa Barbara, California, USA, Peter Buneman (Ed.). ACM. https://doi.org/10.1145/375551.375561

[6] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zoi Kaoudi, Tilmann Rabl, and Volker Markl. 2022. Materialization and

Reuse Optimizations for Production Data Science Pipelines. In SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1962–1976. https://doi.org/10.1145/3514221.3526186

[7] Docker Swarm 2024. Swarm mode | Docker Docs, https://docs.docker.com/engine/swarm/.

[8] Yannis Foufoulas and Alkis Simitsis. 2023. User-Defined Functions in Modern Data Engines. In 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 3593–3598. https://doi.org/10.

1109/ICDE55515.2023.00276

[9] Gábor E. Gévay, Tilmann Rabl, Sebastian Breß, Lorand Madai-Tahy, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021.

Efficient Control Flow in Dataflow Systems: When Ease-of-Use Meets High Performance. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 1428–1439. https://doi.org/10.1109/

ICDE51399.2021.00127

[10] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan Kulkarni. 2016. GRAPHENE: Packing and

Dependency-Aware Scheduling for Data-Parallel Clusters. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.).

USENIX Association, 81–97. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_

graphene

[11] Waqar Hasan and Rajeev Motwani. 1994. Optimization Algorithms for Exploiting the Parallelism-Communication

Tradeoff in Pipelined Parallelism. In VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo (Eds.). Morgan

Kaufmann, 36–47. http://www.vldb.org/conf/1994/P036.PDF

[12] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy H. Katz, Scott Shenker,

and Ion Stoica. 2011. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April
1, 2011, David G. Andersen and Sylvia Ratnasamy (Eds.). USENIX Association. https://www.usenix.org/conference/

nsdi11/mesos-platform-fine-grained-resource-sharing-data-center

[13] KNIME 2024. Open for Innovation | KNIME, https://www.knime.com/.

[14] KNIME Community Workflows 2024. Workflows | KNIME Community Hub, https://hub.knime.com/search?type=

Workflow.

[15] Kubernetes 2024. Kubernetes, https://kubernetes.io/.

[16] Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: A Debuggable Dataflow System Based on

the Actor Model. Proc. VLDB Endow. 13, 5 (2020), 740–753. https://doi.org/10.14778/3377369.3377381

[17] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan. 2009. Scheduling on Unrelated

Machines under Tree-Like Precedence Constraints. Algorithmica 55, 1 (2009), 205–226. https://doi.org/10.1007/S00453-

007-9004-Y

[18] Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong Huang, Avinash Kumar, and Chen Li. 2022.

Demonstration of Collaborative and Interactive Workflow-Based Data Analytics in Texera. Proc. VLDB Endow. 15, 12
(2022), 3738–3741. https://www.vldb.org/pvldb/vol15/p3738-liu.pdf

[19] Ming-Ling Lo, Ming-Syan Chen, Chinya V. Ravishankar, and Philip S. Yu. 1993. On Optimal Processor Allocation

to Support Pipelined Hash Joins. In Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, Washington, DC, USA, May 26-28, 1993, Peter Buneman and Sushil Jajodia (Eds.). ACM Press, 69–78. https:

//doi.org/10.1145/170035.170053

[20] Pipelined Regions in Apache Flink 2020. Improvements in task scheduling for batch workloads in Apache Flink 1.12,

https://flink.apache.org/2020/12/02/improvements-in-task-scheduling-for-batch-workloads-in-apache-flink-1.12/.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

https://www.alteryx.com/
https://flink.apache.org
https://doi.org/10.1109/ICDE.2011.5767921
http://www.vldb.org/conf/1996/P436.PDF
https://doi.org/10.1145/375551.375561
https://doi.org/10.1145/3514221.3526186
https://docs.docker.com/engine/swarm/
https://doi.org/10.1109/ICDE55515.2023.00276
https://doi.org/10.1109/ICDE55515.2023.00276
https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.1109/ICDE51399.2021.00127
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
http://www.vldb.org/conf/1994/P036.PDF
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.knime.com/
https://hub.knime.com/search?type=Workflow
https://hub.knime.com/search?type=Workflow
https://kubernetes.io/
https://doi.org/10.14778/3377369.3377381
https://doi.org/10.1007/S00453-007-9004-Y
https://doi.org/10.1007/S00453-007-9004-Y
https://www.vldb.org/pvldb/vol15/p3738-liu.pdf
https://doi.org/10.1145/170035.170053
https://doi.org/10.1145/170035.170053
https://flink.apache.org/2020/12/02/improvements-in-task-scheduling-for-batch-workloads-in-apache-flink-1.12/

248:26 Xiaozhen Liu et al.

[21] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems. WCB/McGraw-Hill.

[22] RapidMiner 2024. Data Analytics and AI Platform | Altair RapidMiner , https://rapidminer.com/.

[23] Vladislav Shkapenyuk, Ryan Williams, Stavros Harizopoulos, and Anastassia Ailamaki. 2005. Deadlock resolution in

pipelined query graphs. Carnegie Mellon University Technical Report.

[24] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, and Benjamin Recht. 2017. KeystoneML:

Optimizing Pipelines for Large-Scale Advanced Analytics. In 33rd IEEE International Conference on Data Engineering,
ICDE 2017, San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, 535–546. https://doi.org/10.1109/ICDE.2017.

109

[25] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas

Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin C.

Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet another resource negotiator. In ACM Symposium
on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013, Guy M. Lohman (Ed.). ACM, 5:1–5:16.

https://doi.org/10.1145/2523616.2523633

[26] Zuozhi Wang, Yicong Huang, Shengquan Ni, Avinash Kumar, Sadeem Alsudais, Xiaozhen Liu, Xinyuan Lin, Yunyan

Ding, and Chen Li. 2024. Texera: A System for Collaborative and Interactive Data Analytics Using Workflows. Proc.
VLDB Endow. 17, 11 (2024), 3580–3588. https://www.vldb.org/pvldb/vol17/p3580-wang.pdf

[27] Zuozhi Wang and Chen Li. 2023. Building a Collaborative Data Analytics System: Opportunities and Challenges. Proc.
VLDB Endow. 16, 12 (2023), 3898–3901. https://doi.org/10.14778/3611540.3611580

[28] Yinggen Xu, Liu Liu, and Zhijun Ding. 2020. DAG-Aware Joint Task Scheduling and Cache Management in Spark

Clusters. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, May
18-22, 2020. IEEE, 378–387. https://doi.org/10.1109/IPDPS47924.2020.00047

[29] Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean Wang. 2022. Optimizing Machine Learning

Inference Queries with Correlative Proxy Models. Proc. VLDB Endow. 15, 10 (2022), 2032–2044. https://www.vldb.org/

pvldb/vol15/p2032-yang.pdf

[30] Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. 2015. Robust Query Optimization Methods With Respect to

Estimation Errors: A Survey. SIGMOD Rec. 44, 3 (2015), 25–36. https://doi.org/10.1145/2854006.2854012

[31] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012,
San Jose, CA, USA, April 25-27, 2012. 15–28.

Received April 2024; revised July 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

https://rapidminer.com/
https://doi.org/10.1109/ICDE.2017.109
https://doi.org/10.1109/ICDE.2017.109
https://doi.org/10.1145/2523616.2523633
https://www.vldb.org/pvldb/vol17/p3580-wang.pdf
https://doi.org/10.14778/3611540.3611580
https://doi.org/10.1109/IPDPS47924.2020.00047
https://www.vldb.org/pvldb/vol15/p2032-yang.pdf
https://www.vldb.org/pvldb/vol15/p2032-yang.pdf
https://doi.org/10.1145/2854006.2854012

	Abstract
	1 Introduction
	1.1 Related Work

	2 Problem Formulation in Pasta
	2.1 Physical Plans and Blocking Ports
	2.2 Region Plans with Pipelined/Materialized Edges
	2.3 Regions and Region Graphs
	2.4 Schedulability of Region Plans
	2.5 Costs of Execution Orders and Region Plans

	3 Properties of Optimal Schedulable Region Plans
	3.1 Properties of Chains
	3.2 Properties of Clean Edges

	4 Top-down Search Framework
	4.1 The Search Algorithm
	4.2 Technique: Stopping Exploring Beyond Hopeless States
	4.3 Technique: Generating a Better Seed State Using Properties of OSRPs

	5 Discussion and Generalization
	5.1 Bottom-up Search Framework
	5.2 Obtaining Cost Information
	5.3 General Cost Functions

	6 Experiments
	6.1 Settings
	6.2 Collecting Real Workflows
	6.3 Complexity of Scheduling Workflows
	6.4 Effectiveness of Pasta on Mat-Sizes
	6.5 Efficiency of Pasta on Mat-Sizes
	6.6 Evaluations on the Clock-Time Goal

	7 Conclusions
	Acknowledgments
	References

