Pasta: A Cost-Based Optimizer for Generating Pipelining
Schedules for Dataflow DAGs

XIAOZHEN LIU, University of California, Irvine, USA
YICONG HUANG, University of California, Irvine, USA
XINYUAN LIN, University of California, Irvine, USA
AVINASH KUMAR, University of California, Irvine, USA
SADEEM ALSUDAIS, King Saud University, Saudi Arabia
CHEN LI, University of California, Irvine, USA

Data analytics tasks are often formulated as data workflows represented as directed acyclic graphs (DAGs) of
operators. The recent trend of adopting machine learning (ML) techniques in workflows results in increasingly
complicated DAGs with many operators and edges. Compared to the operator-at-a-time execution paradigm,
pipelined execution has benefits of reducing the materialization cost of intermediate results and allowing
operators to produce results early, which are critical in iterative analysis on large data volumes. Correctly
scheduling a workflow DAG for pipelined execution is non-trivial due to the richer semantics of operators and
the increasing complexity of DAGs. Several existing data systems adopt simple heuristics to solve the problem
without considering costs such as materialization sizes. In this paper, we systematically study the problem of
scheduling a workflow DAG for pipelined execution, and develop a novel cost-based optimizer called Pasta for
generating a high-quality schedule. The Pasta optimizer is not only general and applicable to a wide variety
of cost functions, but also capable of utilizing properties inherent in a broad class of cost functions to improve
its performance significantly. We conducted a thorough evaluation of developed techniques on real-world
workflows and show the efficiency and efficacy of these solutions.

CCS Concepts: « Information systems — Query optimization; Data analytics; Computing platforms; «
Software and its engineering — Data flow architectures.

Additional Key Words and Phrases: scheduler, workflow, pipelined execution, data engine, physical plan

ACM Reference Format:

Xiaozhen Liu, Yicong Huang, Xinyuan Lin, Avinash Kumar, Sadeem Alsudais, and Chen Li. 2024. Pasta: A
Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs. Proc. ACM Manag. Data 2, 6
(SIGMOD), Article 248 (December 2024), 26 pages. https://doi.org/10.1145/3698832

1 Introduction

Many data analytics tasks are conducted as workflows [1, 22, 27] represented as directed-acyclic
graphs (DAGs) of operators. With the recent advances in machine learning techniques, often
incorporated as user-defined functions [8, 29], and the growing popularity of data science in many
disciplines, there is an increasing complexity of dataflow DAGs. This increase is reflected in the

“The author did most of her work of the paper while being a PhD candidate at UC Irvine.

Authors’ Contact Information: Xiaozhen Liu, xiaozl3@ics.uci.edu, University of California, Irvine, Irvine, CA, USA; Yicong
Huang, yiconghl@ics.uci.edu, University of California, Irvine, Irvine, CA, USA; Xinyuan Lin, xinyual3@ics.uci.edu, Univer-
sity of California, Irvine, Irvine, CA, USA; Avinash Kumar, avinask1@uci.edu, University of California, Irvine, Irvine, CA,
USA; Sadeem Alsudais, salsudais@ksu.edu.sa, King Saud University, Riyadh, Saudi Arabia; Chen Li, chenli@ics.uci.edu,
University of California, Irvine, Irvine, CA, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.
BY

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/12-ART248
https://doi.org/10.1145/3698832

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

HTTPS://ORCID.ORG/0009-0006-5346-7028
HTTPS://ORCID.ORG/0000-0002-1186-4803
HTTPS://ORCID.ORG/0000-0001-7935-0035
HTTPS://ORCID.ORG/0009-0006-9327-3906
HTTPS://ORCID.ORG/0000-0003-3928-690X
HTTPS://ORCID.ORG/0000-0001-8015-6870
https://doi.org/10.1145/3698832
https://orcid.org/0009-0006-5346-7028
https://orcid.org/0000-0002-1186-4803
https://orcid.org/0000-0002-1186-4803
https://orcid.org/0000-0001-7935-0035
https://orcid.org/0009-0006-9327-3906
https://orcid.org/0000-0003-3928-690X
https://orcid.org/0000-0001-8015-6870
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3698832

248:2 Xiaozhen Liu et al.

number of operators and edges, the variety of operators, and the structural intricacy of the DAGs.
This trend, combined with larger data volumes, poses great challenges to dataflow systems in terms
of both efficiency and scheduling.

As an example, consider an image-analysis workflow shown in Figure 1. It reads 25, 000 images
from a list of files, uses 30% of them (done by the Split operator) to train a machine learning (ML)
model using operator vg, and utilizes the model to classify the remaining 70% of the images!. The
inferred results are aggregated and then visualized using operator vy. Several operators generate
gigabytes of data due to the large number and size of images (4MB each). Such a workflow arises
often in a data science project, which focuses on model tuning and development, as opposed to a
production setting. For instance, in our analysis of 6,000 workflows (Section 6), 48% of ML-related
workflows include training and inference operators in the same DAG.

Retrieve Images i Generating Features | Training & Inference Visualization
‘ Feature ! ML Classifier ‘
Enrichment i _Training
€3 & !

5GB (Model File)

O O
Read File Read » Split “0Gg 40MB | 1MB
Names Image Files Feature ‘ ML iAggregation Plotting
Enrichment } Inference i

Figure 1. A dataflow DAG for ML-based image analysis, which does a 30/70 split of images for training and
inference. The number on each edge is the size of its intermediate results. A red port/edge means a blocking
port/edge, which will be explained in Section 2.

Two execution strategies. One way to execute this workflow is operator-at-a-time, i.e., we follow
a topological order of the operators and run them one by one. After running an operator, we
materialize its output data, either in memory or on disk. For each operator, all of its input data
should be available before it starts its computation. The main drawback of this approach is the large
sizes of intermediate results and the corresponding materialization overhead. We could solve the
problem by doing pipelining. For example, while the Split operator reads the images on the fly, it
immediately sends its produced results to the downstream operators v4 and vs without materializing
these images. This pipelined execution can not only reduce the materialization cost but also allow
operators to produce results early. In particular, once the ML model is trained in operator vs, the user
can see partial results of the ML Inference operator v; from the classified images, without waiting
for all the images to be processed. Producing results early by operators is especially beneficial in
data science, which is known to be iterative and requires users to constantly modify a workflow
based on initial results from operators.
Scheduling problems in pipelined execution. A main issue in scheduling this workflow to do a
pipelined execution is the ML training operator v¢. In particular, this operator needs to receive all
its training instances before producing a model. (We represent this behavior of the operator by
marking its output port and the corresponding output edge as red.) If we let all the operators start
their execution at the same time to do pipelining, the ML inference operator v; has to wait for the
operator v, to complete its training, which may take minutes or even hours. During this period, v;
has to buffer a large number of images, which again introduces a high materialization cost.

One may wonder whether we can avoid this scheduling problem by dividing the workflow
into two. The first workflow uses vy, vz, and v3 from Figure 1 to produce two sets of images. The

IThis example is based on a real workflow in the domain of neuroscience with simplification for presentation purposes.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:3

second one reads the two image sets and uses the remaining operators to continue the analysis.
(Interestingly, the aforementioned scheduling problem disappears in the second workflow as
its structure is a simple tree rather than a non-tree DAG.) This approach is not ideal in many
applications where the users, especially domain experts, prefer to have a single workflow to
conduct the entire pipeline for the benefit of easy understanding and efficient management of self-
contained workflows. Our analysis of real-world workflows shows that 52% of them are non-tree
DAGs (Section 6).

Existing scheduling solutions and limitations. This scheduling problem was already observed
in push-based data-processing systems that support pipelined execution (e.g., Hyracks [3]), which
often adopt heuristic-based solutions. For the running example, Flink [2] (in its batch mode) and
Hyracks add a materialization step on the edge e, immediately before operator v;. While this
heuristic does solve the aforementioned problem, it needs to materialize 700GB of data, which is
much worse than another plan that materializes edge e, with a much lower cost of 70GB. This
example shows that a good materialization choice should be cost-based.

Challenges. When developing a general cost-based solution for this problem, a main challenge is
the complexity of workflows. For instance, Figure 2 shows a real dataflow from Alteryx [1] with
more operators and edges, including blocking edges marked in red. Many real-world workflows
are even more complicated, easily with hundreds of operators and edges. Generating an optimal
execution order (i.e., “schedule” in our context) efficiently on such complex workflows can be
computationally expensive. In addition, when formulating an optimization problem, we notice
that the literature lacks a clear description of the relationships between common concepts such
as blocking, materialization, and pipelining and modules of a workflow such as operators, ports,
and edges, as well as their execution and scheduling. We need to develop a formal framework to
present these relationships and clearly define a scheduling-based optimization problem.

Figure 2. A more complicated dataflow. Red edges are blocking, and operator details are omitted for brevity.

In this paper, we systematically study the problem of generating an efficient execution order
for a dataflow DAG in a pipelining setting. We develop a novel optimizer for data-processing
systems called “Pasta,” as shown in Figure 3. The optimizer is not only general and applicable to a
wide variety of cost functions, but also capable of utilizing common conditions satisfied by many
cost functions to improve its performance significantly. We make the following contributions. In
Section 2, we give an overview of the optimizer, and formally define the optimization problem.
In Section 3 we identify several interesting properties of an optimal execution order. In Section 4,
we develop a top-down search framework to find an execution order, and show how to utilize
these properties to improve the search performance. In Section 5 we show a bottom-up framework
to do a search in the opposite direction, discuss how to obtain costs for the Pasta optimizer, and
extend the results to other cost functions. In Section 6, we report experimental results of a thorough
evaluation of the techniques using real-world dataflows to show their efficiency and efficacy.

1.1 Related Work

Dataflow systems. The studied problem arises in the context of a pipelined-execution model,
which is adopted in systems such as Flink [2], Hyracks [3], and Amber [16]. It also assumes a
push-based engine that executes a physical plan as a DAG as opposed to a tree [1-3, 13, 22, 26].

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:4 Xiaozhen Liu et al.

In pull-based engines such as Apache Spark [31], a physical plan typically is a tree of operators,
where the studied problem becomes less challenging [17].

Pasta Optimi
Physical as i? plmizer Execution
Plan) A6.4 @ Order Tasks
» Finder 09,8 09,8 Scheduler = » Executor Cluster
Qg:g ‘0-0 OO oo, 00
Region Plans

Figure 3. Overview of our proposed Pasta optimizer in a data-processing system.

Dataflow schedulers. Improving the scheduling of dataflow DAGs has been studied extensively
in the literature. For example, [10, 28] studied optimizations using DAG-aware task scheduling.
Existing studies mainly focused on using a single region plan with a fixed choice of pipelining
or materialization for an edge. Pasta is more powerful as it considers multiple region plans in
scheduling (using the Finder module in Figure 3), and treats the process of generating execution
orders for a region plan as a black box. As a result, existing scheduling optimizations can be adopted
as the Scheduler in Pasta.

Cluster resource managers. These managers, such as Apache Mesos [12], Apache Hadoop
YARN [25], Swarm [7], and Kubernetes [15], correspond to the Executor module in Figure 3. They
focus on how to allocate cluster resources. In the context of dataflow systems, these managers are
used primarily for orchestrating tasks submitted by a dataflow system, and the scheduling usually
takes sets of stages [3, 31] or pipelined regions [20] of operators as the input, which correspond to
the output of Pasta.

Optimizations on pipelining. Pipelining techniques in database systems support inter-operator
parallelism. Early works focused on optimizing pipelining for query-plan trees and for specific
operators [4, 11, 19]. The studies in [5, 23] considered pipelining in the context of multi-query
optimization in DBMS, where DAGs are common. The work [5] did not consider operators with
more than one output port, and did not distinguish between blocking/non-blocking ports in their
problem formulation. For example, consider a workflow DAG with the same structure as in Figure 1
but without any blocking port. An optimal execution order generated in [5] still materializes at
least two edges, while Pasta allows an execution order that pipelines all the edges. [23] studied
a deadlock problem when pipelining is used in multi-query optimization. Another related work
is operator fusion [24], which combines multiple operators in a physical plan. This technique is
orthogonal to our problem, as Pasta can treat a chain of fused operators as a single operator in a
physical plan.

2 Problem Formulation in Pasta

Figure 3 shows a data-processing system that uses Pasta, which takes a physical plan as input,
considers region plans, and generates an execution order to be executed by an Executor on a
compute cluster. A system that intends to use Pasta typically (1) processes bounded input data
(as opposed to stream processing); (2) uses a push-based execution model in the Executor; and (3)
supports execution of DAG-based physical plans with data-processing operators and without control
operators [9] such as if-else switches and for-loops. In this section, we formulate an optimization
problem in Pasta to schedule a physical plan.

2.1 Physical Plans and Blocking Ports

A physical plan is a directed acyclic graph (DAG) denoted as P = (V, E), where each vertex in V
is an operator that represents a data-processing unit. Each edge e = (vx,v,) € E is a physical edge,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:5

which is a directed connection from an output port of an operator v, to an input port of an operator
vy. A physical plan can be created by an analyst using a GUI interface [18], or generated from a
logical plan by a compiler [21].

Definition 2.1 (Blocking port). An output port of an operator is blocking if it produces output
tuples only after all of this operator’s input ports have received their tuples. Otherwise, the output
port is called non-blocking.

It is often easier to refer to an edge than a port. For easy presentation, we call an edge blocking or
non-blocking if its sending port is blocking or non-blocking, respectively. Correspondingly, we mark
a blocking edge red to make this property more visible. Figure 4 shows an example physical plan
that tests the performance of an ML model. Operator vs requires receiving all its input tuples to train
a model, thus its output port is blocking and eg is a blocking edge. Operator v’s output port that
produces evaluation metrics is also blocking since the operator needs both of its input ports to fully
receive their data before producing the metrics. Another output port of vs produces the prediction
results for each input tuple of the testing set. Since vg produces predictions tuple-by-tuple without
waiting to receive all the tuples from es, this port is non-blocking. Finally, the prediction results are
connected to vs, which selects the wrong predictions for further analysis. Notice that edges e; and
es are connected to the same output port of operator v,, which is non-blocking. As a result, these
edges must have the same non-blocking property.

O Blocking output port
= Blocking edge

Filter ML Training \ e, €7 [visualization
(O Metrics
€3 Filtor & Data Results €3 F.@'It
File Scan Projection . ilter
(domain="movie") ML Evaluation (prediction!=label)

Figure 4. A physical plan P; with blocking ports and their edges marked in red.

2.2 Region Plans with Pipelined/Materialized Edges

Definition 2.2 (Region plan). A region plan? of a physical plan P = (V, E), denoted as U = (P, ¢),
specifies a mapping ¢ from the set of edges E to a set of two labels {Pipelined, Materialized}. The
two labels specify the method of data transfer on an edge:

e Pipelined Edge: An edge e; = (vx, vy) is called pipelined if v, passes a tuple to v, as soon as the
output port of v, connected to e; produces a tuple.

o Materialized Edge: An edge e; = (vy,0y) is called materialized if v, saves all its output tuples (e.g.,
in memory or on disk), which will later be consumed by v,,.

For simplicity, in the rest of the paper, we use U = (V, E, ay, fu), or simply (U, ay, fv) to denote
a region plan for a physical plan P = (V, E), where ay is the set of pipelined edges and fy is the
set of materialized edges.

Figure 5a shows a region plan U; for the physical plan in Figure 4. Edges e and e; need to be
materialized because their connected output ports in U; are blocking. Edge e, is non-blocking in
U, and is materialized in U;. Interestingly, edge e, is materialized and e is pipelined, even though

2The name “region” will be defined formally in Section 2.3.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:6 Xiaozhen Liu et al.

they are connected to the same non-blocking output port of v,. Figure 5b shows another region
plan U, for the same physical plan.

-»> Materialized edge , e,
— Pipelined edge @(b® o ’@ @—’@Ot e ’@
@c_" @ B L,? @ :) @ @ € @ ()) @ e .

(a) A region plan Uj. (b) Another region plan Us.
Figure 5. Two region plans for the physical plan P;.

In general, consider a blocking edge e; = (vx, vy) in a physical plan. If e; is pipelined in a region
plan, then whenever v, produces a tuple, v, should be ready to consume it. In terms of scheduling,
this means that they need to run in parallel. However, as e; is blocking, v, does not produce anything
until it has processed all its input data. During this period, v, is idle, which could waste a significant
amount of system resources. To avoid this problem, Pasta requires a blocking edge to always be
materialized. Table 1 shows the compatibility of physical-plan edges and region-plan edges. Table 2
summarizes the concepts defined so far.

Table 1. Compatibility of physical-plan edges and region-plan edges.

Physical plan
Blocking edge | Non-blocking edge
Region plan
Materialized Edge Compatible Compatible
Pipelined Edge Incompatible | Compatible

Table 2. Concepts related to pipelined execution.

Level Concept Description
Operator Basic computing unit in a workflow.

Physical An output port of an operator that does not produce anything
Blocking port

plans until the operator has received all its input data.
Non-blocking port An output port that is not blocking.

Blocking/non-blocking edge | Derived from the blocking property of the sending port of an edge.

) o Transferring data between two operators by
Region | Pipelined edge
passing the tuple as soon as it is produced.

plans
Saving all intermediate tuples before
Materialized edge

transferring them to the downstream operator.

2.3 Regions and Region Graphs

Given a region plan, Pasta decides an order of executing the operators based on the notion of
regions.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:7

Definition 2.3 (Region). Given a region plan U = (V, E, ay, Pu), a region R is a weakly-connected
sub-DAG of U such that all the edges in R are pipelined.

Each pipelined edge e = (vy,v,) in a region plan requires operators v, and v, to start together.
Pasta ensures this requirement is satisfied for all pipelined edges. A region includes a set of all
the operators that must start processing together. Given a region plan U = (V, E, ay, fu), for an
operator v; € V, we denote the region that v; belongs to as Ry (v;).

Figure 6a shows the regions of U; in Figure 5a. Each of the regions Ry, Rs, and R4 contains one
operator, which is not connected to any other operator by a pipelined edge. The region of v, is Ry,
i.e., RUl (04) = Rl.

-+ Materialized edge
— Pipelined edge
" Region

D Region

— Region edge

(a) Regions of Uy (b) Region graph Gy,
Figure 6. The regions and region graph of U in Figure 5a.

Figure 7a shows the regions of the region plan U, in Figure 5b.

(&)

(a) Regions of Uy (b) Region graph Gy,
Figure 7. The regions and region graph of Uz in Figure 5b.

Region-based execution model. Pasta runs a region plan region by region. In particular, the start
of a region requires all its operators to start processing, allowing pipelined execution among the
operators in the same region. The completion of a region means that all its operators have finished
processing and produced their results. For each materialized edge e = (vx, vy) in the region plan,
the region R(v,) can only start execution after R(v,) has completed execution. In this region-based
execution model, each materialized edge e = (vy,v,) in a region plan U derives a time dependency
between the regions Ry (vx) and Ry (vy). We denote this dependency as a region edge. We then
have a graph of dependencies between regions.

Definition 2.4 (Region graph). The region graph Gy for a region plan U is a directed graph
Gu = (Vg Eg,), where Vg, is the set of regions of U, and Eg,, is the set of region edges derived
from the materialized edges of U, i.e., each materialized edge e; = (vy, vy) € Pu corresponds to a
region edge e; = (Ry (vx), Ru(vy)) € Eg,, . Each region edge e; = (R, Ry) means R, should finish
before R, starts.

For example, Figure 6b and Figure 7b show the region graphs of U; and U, respectively. A region
edge such as e; in Gy, (Figure 7b) means R; must finish before R; can start, i.e., all operators in R
(v1 and v3) must finish processing before any operator in R; (v4 and vs) can start processing. The
region graphs Gy, and Gy, capture all such temporal constraints between the regions of U; and Uy,
respectively. Note there is a cycle in Gy,, and we will explain its meaning next.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:8 Xiaozhen Liu et al.

2.4 Schedulability of Region Plans

Definition 2.5 (Execution order). For a region plan U, an execution order S of U is a ranking of
the regions Vg, i.e., a many-to-one mapping from the regions of U to a set of rank numbers
(ak.a. ranks) f : Vi, — N7, such that for any region edge e; = (Ry,Ry) € Eg,,, f(Rx) < f(Ry).

We use rankings instead of total orders to define execution orders because Pasta allows two
regions that are not reachable from each other via region edges to start in parallel. For example,
in Figure 7b, Ry and Rs5 can have the same rank.

We call a region plan with an acyclic region graph schedulable. Otherwise, when the region plan
has a cyclic region graph, it is impossible to generate an execution order for this region plan, thus
it is unschedulable. Note schedulability is a property of the region plan instead of the physical plan.
The region graph Gy, in Figure 6b is cyclic, thus U; is unschedulable. The region graph Gy, in
Figure 7b is acyclic, thus U, is schedulable. Figure 8 shows two execution orders for U,, namely S;
and S,. In execution order Sy, regions Ry and Rs are started together, while in execution order S,

region Rs can only start after Ry has finished.

DEEE , ODEEE
i

4 fR) 1 2 3 4 5

(a) Execution order Sy. (b) Execution order Ss.

Figure 8. Two execution orders for the region plan Us.

Goal of Pasta: Given a physical plan as a DAG, generate an optimal execution order based on

a cost function of execution orders.

We can show that two region plans do not share execution orders. Therefore, to enumerate
execution orders for a physical plan, we can first enumerate all its region plans (performed by the
Finder module), then generate an execution order for each region plan (performed by the Scheduler
module). Figure 9 shows this enumeration process using a region-plan plane and an execution-order
plane. To find a good execution order, the Scheduler needs to choose one from the execution orders
of a region plan. There can be an exponential number of execution orders for a region plan. Many
systems [2, 31] only consider a limited set of execution orders, e.g., a total order of the regions.
There are studies [10, 28] on DAG-based scheduling that can be utilized by the Scheduler module
in Pasta to optimize the process of generating an execution order given a region plan. We treat this

process as a black box in the rest of the discussion.
’ /Region-plan Plane

’ ’ ’ ’ ’ ’ ’ ’ ’ Executlon order Plane

Flgure 9. The region-plan plane fora physncal plan and the correspondlng execution-order plane.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:9

2.5 Costs of Execution Orders and Region Plans

There can be diverse optimization goals, e.g., minimizing materialization sizes, minimizing CPU
costs, reducing the wall-clock time of a workflow, etc. To maintain the generality of Pasta, we
assume a cost function that computes the cost of running an execution order. The objective and
quality of the given cost function are not the main focus of Pasta. Given a cost function, the cost of
a region plan is based on the costs of its execution orders.

Definition 2.6 (Cost of a region plan). The cost of aregion plan U is Cost(U) = ming,es(v) Cost(S;),
where S(U) is the set of execution orders for U considered by the Scheduler. If U is unschedulable,
its cost is infinite.

For easy presentation, we first study the problem by considering a simple and commonly used
cost function.

Cost Function A (total materialization size). The cost of an execution order is the sum of the sizes
of its materialized edges.

Using this cost function, all the execution orders of a region plan have the same cost. Thus the
cost of a region plan is also the sum of the materialization sizes of its materialized edges. We will
extend the results to other cost functions in Section 5.

In the rest of the paper, we denote an optimal schedulable region plan as “OSRP.”

3 Properties of Optimal Schedulable Region Plans

In this section, we present several interesting properties of OSRP’s, which will be used to improve
the performance of a search method to generate an optimal execution order.

3.1 Properties of Chains

Definition 3.1 (Chain). A chain in a physical plan DAG is a path such that each of its operators
(except the first and the last) is connected only to operators on the path.

A chain that is not a proper sub-path of any other chain is called a maximal chain. Figure 10
shows example chains in a physical plan. Hy is not maximal as it is a proper sub-path of another
chain H,, which is maximal. Paths H; and H; are two other maximal chains.

I__1Non-maximal chain
I__1Maximal chain

% (50) ‘.‘M)g";

Hy

Figure 10. A physical plan P3 with three maximal chains. Edge costs are shown in the parentheses.

The following results show that we only need some of the non-blocking edges on a chain to be
materialized to maintain the schedulability of a region plan.

LEMMA 3.2. For a chain H in a physical plan P, if a schedulable region plan U has more than one
materialized edge on H, then changing each materialized edge on H to pipelined produces another
schedulable region plan.

LEMMA 3.3. If a chain H in a physical plan P contains a blocking edge, each optimal schedulable
region plan for P must pipeline all the non-blocking edges on H.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:10 Xiaozhen Liu et al.

For example, for the physical plan Ps; in Figure 10, the chain H; has two blocking edges e; and e,
which must be materialized in each region plan. Thus an OSRP for this physical plan must pipeline
the other edges on this chain, namely e; and es. Similarly, on the chain Hs, an OSRP must pipeline
€g.

LEMMA 3.4. If a chain H in a physical plan P does not contain a blocking edge, each optimal
schedulable region plan for P has at most one non-blocking materialized edge on H.

For example, the chain H; in the physical plan P; is a chain without a blocking edge. Then in
each OSRP, there cannot be more than one materialized edge on this chain. As a consequence, there
is no need to consider region plans with two or more materialized edges on H;.

CoOROLLARY 3.5. Given a physical plan P, for a maximal chain H that does not contain a blocking
edge, if an optimal schedulable region plan includes a materialized edge e in H, then e has the minimal
cost among all the edges of H.

For instance, for the physical plan Ps, if an OSRP has an edge materialized on Hj, then this edge
must be the one with the lowest cost, i.e., e4.

3.2 Properties of Clean Edges

Next, we identify two classes of edges in a physical plan that should always be pipelined in an
OSRP. The first class of edges, called “bridges,” can be pipelined without causing schedulability
issues, and must be pipelined in an OSRP. Bridges belong to a more general class of edges, called
“clean edges,” which are always pipelined in an OSRP. We first define preliminary concepts. An
undirected cycle C of a physical plan P is a sub-DAG of P such that the underlying graph * of C
forms a cycle. Figure 11 shows a physical plan with two undirected cycles C; and C,. Intuitively,
edges on an undirected cycle can potentially cause a region plan to be unschedulable, and edges
not on any undirected cycle will never cause a region plan to be unschedulable.

Figure 11. A physical plan P4 with two undirected cycles C; and Cy. An edge with a “/” mark is a bridge,

and an edge with a “/” mark is a non-bridge clean edge.

Definition 3.6 (Bridge). Given a physical plan P, a non-blocking edge e in P is a bridge if e is not
in any undirected cycle.

For instance, the non-blocking e; in Figure 11 is a bridge because it is not in any of the two
undirected cycles C; and C,. Similarly, e, and eg are also bridges.

LEMMA 3.7. If a region plan U of a physical plan materializes a bridge e and is schedulable, then
another region plan U’ obtained from U by changing e to a pipelined edge is also schedulable.

3The “underlying graph” of a directed graph P is an undirected graph obtained by replacing all directed edges of P with
undirected edges.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:11

This lemma leads to the following corollary.

COROLLARY 3.8. A bridge in a physical plan is always pipelined in an optimal schedulable region
plan.

For example, for the physical plan P, in Figure 11, all the bridges e, e7, and eg must be pipelined
in an OSRP. A reason why a bridge is always pipelined in an OSRP is that it is not in the same
undirected cycle as another blocking edge. For example, in Figure 11, ey, e, and ez are in the same
undirected cycle C; as a blocking edge es. Edge es has to be materialized in a region plan. Pipelining
e1, €2, and es together causes a region plan to be unschedulable because doing so puts vy, v, v, and
vs in the same region, and then es causes a cycle in the region graph. On the other hand, pipelining
all the edges in C, does not cause this issue, because there is no blocking edge in this undirected
cycle, and all these edges have to be pipelined in an optimal schedulable region plan. Based on this
intuition, we formally define the notion of a clean edge.

Definition 3.9 (Clean Edge). Given a physical plan P, a non-blocking edge e in P is clean if e is
not in the same undirected cycle of a blocking edge.

A bridge is always a clean edge, and some clean edges are not bridges. For example, in P,
(Figure 11), o is not a bridge because it is part of an undirected cycle C,. The edge is clean since Cs,
the only undirected cycle that contains ey, does not have any blocking edge. Similarly, ej, €11, €12,
and ej3 are also clean edges.

LEmMMA 3.10. All the clean edges in an optimal schedulable region plan of a physical plan are
pipelined.

For instance, in P, (Figure 11), besides the bridges, the non-bridge clean edges ey, . .., e13 must
also be pipelined in an OSRP.

4 Top-down Search Framework

In this section, we present a search framework that explores the region-plan plane to find an
OSRP and accordingly compute an optimal execution order. We develop techniques to improve
its performance, including some based on the properties in Section 3. We continue using the cost
function based on the total materialization size (denoted as Cost,,).

4.1 The Search Algorithm

Algorithm 1 presents the top-down search framework. We use an example shown in Figure 12 to
explain the algorithm. Each region plan with an associated cost in the search space is a state in
the search process. Given a physical plan P,, the search space has 16 states Uy, . . ., Ujs. The search
starts from the seed state U, (line 1), in which all the edges are materialized. The goal state is an
OSRP Ujs. Line 2 initializes the optimal state U* using Uy. Line 3 initializes the search frontier,
denoted as ¥, which is the set of known but unexplored states. The visited-state set & includes all
the states that have been visited during the expansion till now.

Each edge between two states is a transition. For the current state we expand ¥ by including
the state’s neighbors. Additionally, & is used to avoid repeated additions of the same state into ¥
(lines 12-15). Note this can save computation but increases the space complexity. We repeat the
process of exploring the schedulability and cost of a state from ¥ and including new neighbor
states in ¥ until ¥ is empty. An unschedulable state has an infinite cost, and only schedulable
states are used to update the optimum U*. We give U™ to the Scheduler to generate execution
orders for U* and choose an optimal one.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:12 Xiaozhen Liu et al.

Algorithm 1: Top-down search for an optimal execution order

Input :P = (V,E): a physical plan
Costp,: a cost function (total materialization size)
Output:S: an execution order for P with a minimum cost
1 Uy « the seed state where all edges are materialized ;
2 U* « Uy ; / Initialize the optimum
3 F « {Uo} ; // Initialize the frontier
4 E « {U()} ; // Initialize the set of visited states
5 while ¥ # @ do // Stop when all states are explored

6 Remove one state U; = (P, ay,, fu,) from F ;
7 if Cost,, (U;) < Costp, (U*) then
8 ‘ U* « Uj ; // Update the optimum
9 end
10 foreach e € By, not corresponding to a blocking edge in P do // Use non-blocking materialized
edges for frontier expansion
11 U/ « (P, ay, Y {e}, ﬁUi — {e}) ; // Transform the current state into a neighbor state
12 if Uy’ ¢ & then // Ensure visiting each state only once
13 Add U’ to F;
14 Add Uy’ to &;
15 end
16 end
17 end

18 S = generateExecutionOrder(U*) // Choose the best execution order for U* according to the Scheduler
19 return S

Completeness and complexity. The search algorithm is complete since its expansion process
includes all possible region plans. For a physical plan P = (V, E), it can have at most 2| region
plans. For each state, line 7 takes O(|V| + |E|) time to check schedulability. Lines 10-16 explore at
most |E| neighbor states, each taking O(1) time. The time complexity of each iteration is O(|V|+|E|).
Hence the total complexity of the algorithm is O((|V| + 2|E|) - 2!F1).

Greedy search. The search algorithm is using an exhaustive-search strategy to explore all the
execution orders. If the search space is large and the system has limited search time, we can slightly
modify the algorithm to perform a greedy search. In particular, we modify lines 10-16 to include
only one neighbor state that has the lowest cost among all the neighbors in the frontier.

Next we present several improvement techniques for the search framework.

4.2 Technique: Stopping Exploring Beyond Hopeless States

The search process cannot stop at an unschedulable state. That is, if U; is unschedulable in line 7,
we cannot skip lines 10-16, because some unschedulable states can still lead to schedulable ones.
Next, we show that there are states that will never lead to a schedulable state, and we can stop
the search at such states.
We first define a basic concept. A blocking region edge in a region graph is an edge that corresponds
to a blocking edge in the physical plan. For example, Figure 13 shows the region graph of Us in
Figure 12, where ey is a blocking region edge as it is blocking in P;.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:13

0)
K\Q Jod. (Jg
ey
0 @ 65 “n @ GUD (410)D O‘- - =~ ~Seed state (baseline) Improved seed
The cost of K (200 @ \5 Neighbor state based on
materializing ~ _state cllean edges
o= transition - olne

1

1

1

this edge

Input physical plan

c:fg@- O q‘bp- O QR0 Q00 GO0 IO

4
1
1
1

1
Improved seed

state based on 5 0 . X
chains alone U, X »O UL X O Uy 70){)’—‘0 U1y (220 O
- P
ﬁ R ~

~

\ ~
/ \ ~
~
~
\ ~
. N

Skippable : :]l;ll]:l]‘):d usmg \ Final improved
i “ : " . " \

States : Skipped using | :i::;(h;‘;l-lli‘llli - Us X O Goal state seed state

: clean edges |

Figure 12. The search process of a simple workflow when running the top-down search Algorithm 1.

Definition 4.1 (Hopeless State). Given a physical plan P, a hopeless state is an unschedulable region
plan U for P whose region graph Gy has a cycle that contains a blocking region edge.

In Figure 12, Uy is hopeless because its region graph (shown in Figure 13) has a cycle that contains
a blocking region edge ey.

e €
[R1: Vlvliv'lHRfiz Vs]

Figure 13. The region graph of Us with a blocking region edge in red.

We can show that during the top-down search, Us will never lead to a schedulable state.

LEMMA 4.2. A hopeless state cannot be transformed into a schedulable state by changing its materi-
alized edges to pipelined edges.

To check if a state is hopeless, we can check if there is a blocking edge on a cycle when we detect
that the current state is unschedulable (line 7). When there are few blocking edges, this additional
step does not incur much overhead. Once a state is determined to be hopeless, we can skip the
expansion of its neighbor states (lines 10-16). For instance, during the search in Figure 12, when we
explore Us and find it to be hopeless, we do not need to add its neighbors U;; and Ui, to the frontier.
Furthermore, the states below a hopeless state are also hopeless and should also be excluded. We
can do this pruning by using a memoization set to save all the known hopeless states. For example,
Us will be added to this memoization set. When we expand the neighbor states of U;3 and see Uss
is a descendent of Us, we do not need to add U;s to the frontier.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:14 Xiaozhen Liu et al.

4.3 Technique: Generating a Better Seed State Using Properties of OSRPs

Next, we discuss how to reduce the search space by generating a better seed state based on the
properties of OSRPs as described in Section 3. We first discuss how to use chain properties. If
we know an edge must be pipelined in an OSRP, we should also pipeline it in the seed state. For
instance, consider the physical plan P, in Figure 12. According to Lemma 3.3, the edge e; has to
be pipelined in an OSRP because the edge is on a maximal chain v; — v, — v4 with a blocking
edge e4. Then e is pipelined in the improved seed state. According to Lemma 3.4, non-blocking
edges e; and e; are on the maximal chain v; — v3 — vy, so they should not both be materialized.
Furthermore, as e; has the minimal cost on this chain, based on Corollary 3.5, we materialize es
and pipeline e; in the improved seed state. Finally, the non-blocking edge es is the only one on the
maximal chain v4 — vs, so it still needs to be materialized in the seed. In the end, the improved seed
state is Us, from which we can start the search directly and still find the OSRP U;3. This technique
helps us reduce the number of states explored from 16 to 4.

We can also use properties of clean edges to improve the seed state. We can use Lemma 3.10 to
generate an even better seed state where each clean edge is pipelined. For example, in Figure 12,
the non-blocking edge es is clean because it is not in any undirected cycle. Based on the lemma, we
can pipeline es and start the search directly from Uy. By applying this technique alone, we can skip
the eight states annotated with a yellow background. By combining the techniques using chains
and clean edges, we improve the seed state to be Ujs, leaving only one state in the frontier (Uys).

5 Discussion and Generalization

In this section, we present another framework that does the search in the bottom-up direction,
discuss how to do cost estimations in Pasta, and extend the results to general cost functions.

5.1 Bottom-up Search Framework

We present another search framework that uses the “bottom-up” direction to explore the search
space. It uses the seed state corresponding to the region plan where all the non-blocking edges are
pipelined. This state has the minimal total sizes of materialization, but could be unschedulable. In
the example in Figure 12, the seed is the bottom state U;s. Beginning from this state, we explore
the search space by gradually adding more materialized edges to the region plan. That is, each
neighbor-state transition changes a pipelined edge to materialized. The bottom-up framework has
the same completeness guarantee and time complexity as the top-down search framework, and can
also be adapted to perform a greedy search instead of an exhaustive search by adding only one
neighbor state with the lowest cost to the frontier. Next, we present several techniques to optimize
the performance of the search.

Technique: Stopping exploring beyond schedulable states. When a state is already schedulable,
changing its pipelined edges to materialized can only increase the cost, and will not lead to an
optimal schedulable region plan. Therefore, during the search process, whenever the current state
is already schedulable, there is no need to include its neighbor states in the frontier.

Technique: Pruning using properties of OSRPs. The properties of chains and clean edges can
also be utilized to optimize the bottom-up search. The main idea is to avoid transitioning into a
state that violates the properties of chains and clean edges. In particular, because a state transition
can only change an edge from pipelined to materialized, if we encounter a state that materializes
an edge that must be pipelined in an OSRP, then we should stop exploration beyond this state. To
use properties of chains, we change a pipelined edge e of a region plan to materialized if e satisfies
the following conditions. (1) According to Lemma 3.3, e should not be in a chain that contains a
blocking edge. Furthermore, according to Lemma 3.4, if e is in a chain without a blocking edge,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:15

and the chain already has a materialized edge, then e should not be changed. (2) According to
Corollary 3.5, if e is in a chain with only pipelined edges, then e needs to have the lowest cost
among these edges. Moreover, as a maximal chain covers the pruning power of its sub-chains,
we could pre-compute all the maximal chains in the physical plan and use only maximal chains
to do these checks to improve the efficiency of applying these two cases. Similarly, clean edges
can also be used to do pruning during the search. In particular, according to Lemma 3.10, we can
exclude any region plan with a clean edge materialized, as a clean edge should not be changed
from pipelined to materialized.
Table 3 summarizes the applicability of each technique in the two search frameworks.

Table 3. Applicability of techniques on the two search frameworks.

Property | Description regarding an OSRP Used in Top-down Search | Used in Bottom-up Search
Pipelines all non-blocking edges on a chain

Property A Generate a better seed Prune states
with a blocking edge.

Has at most one materialized non-blocking)
Property B Not applicable Prune states

edge on a chain without a blocking edge.

Pipelines an edge on a chain without a blocking
Property C Generate a better seed Prune states

edge and containing a lower-cost edge.

Property D | Pipelines a clean edge. Generate a better seed Prune states

Is unreachable from a hopeless region plan by .
Property E Prune states Not applicable

changing materialized edges to pipelined.

Is unreachable from a schedulable region plan by
Property F Not applicable Prune states

changing pipelined edges to materialized.

5.2 Obtaining Cost Information

There are various ways to obtain costs of execution orders. One way is to use a two-phase
execution method. In the first phase, we use heuristics to generate an execution order (e.g., one
with all edges materialized), and run it on a small subset of the source data. After this execution,
we collect information about the materialization size of each edge on the sample data. In the
second phase, we use the information to estimate the cost of each edge. Another way is to use
the iterative nature of data analytics tasks, i.e., one workflow may often be executed multiple
times [6]. Thus we can utilize previous executions for cost estimation. The first execution can be
done using any existing methods. For example, Hyracks [3] uses a heuristic where both input edges
to a two-input operator are materialized, or we can use the aforementioned execution method.
During each subsequent execution, Pasta has information about the statistics of each edge, and
uses it to estimate costs of an execution order. In general, having high-quality cost information
is important. Many existing techniques [30] have been proposed to tackle this issue. We can also
first utilize the two aforementioned methods to obtain cost information that is “good enough” to
empower Pasta initially, and gradually improve the statistics to perform re-optimizations when we
find them to be inaccurate.

5.3 General Cost Functions

So far we have used a simple but commonly used function that measures the total materialization
size of an execution order. Next, we consider general cost functions and extend the results. For a
general cost function C, we can still use both search frameworks to perform a search to find an

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:16 Xiaozhen Liu et al.

optimal execution order. In the resulting OSRPs, Property E (Section 4.2) still holds, as a hopeless

state cannot lead to schedulable states by having more pipelined edges. Other OSRP properties are

no longer valid. Next, we present two conditions for cost functions:

e Condition I: given a region plan U, if another region plan U’ is derived from U by changing
a materialized edge in U to a pipelined edge, then either U’ is unschedulable or Cost(U’) <
Cost(U).

e Condition II: the cost of an execution order S for a region plan U is the summation of a constant
cost of each edge in the region plan of this execution order, i.e., Cost(S) = 3.cg,, Cost(e), where
Cost(e) is the cost of an edge e.

Figure 14 shows the relationships between these conditions and the OSRP properties. An example
cost function that satisfies Condition I but not Condition II is based on the total wall-clock time of
an execution order.

Cost Function B (total wall-clock time). The cost of the total wall-clock time of an execution
order S for a region plan U is the summation of the execution time of the longest-running operator
in each region, i.e., Cost;(S) = ZRech max,eg Time(v), where Time(v) is the execution time of
an operator v.

This cost model assumes that given a region plan, the Scheduler only considers the execution
order that corresponds to a total order on the regions of a region plan. This is a coarse model on the
total wall-clock time, and it is useful for many workflows where the completion time of a region
is dominated by long-running operators, e.g., ML-inference operators. For this cost function, the
OSRP properties A, B, D, and F still hold, since they only need the cost function to penalize having
more materializations. Property C does not hold because it assumes an individual cost on each
edge. Finally, when a cost function satisfies both conditions, Property C still holds. Notice that the
cost function of the total materialization size belongs to this category.

Functions with Conditions I & II:
Functions with Condition I: ‘Properﬁes A, B, D, and F‘

All cost functions: |Property £

Figure 14. Relationships between conditions of cost functions and properties of OSRPs.

6 Experiments

In this section we report the results of a thorough evaluation of Pasta on real-world workflows.

6.1 Settings

Workflow Engine. We conducted experiments on the Texera system [26], an open-source data
workflow platform based on the Amber engine [16]. Texera is developed in Scala and supports
push-based execution. It supports pipelined execution of physical plan DAGs and includes a flow-
control mechanism to apply backpressure between operators. A workflow in Texera is constructed
by a user on a GUI-based interface via drag-and-drop operations and processes bounded input
data. A workflow is submitted to Texera as a logical plan DAG that is compiled to a physical plan,
where a logical operator (e.g., HashJoin) may be expanded to multiple physical operators (e.g., Build
followed by Probe). Physical operators are annotated with information about blocking ports. Texera

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:17

also supports data-parallel execution of a physical operator via partitioning. Currently Texera does
not support control operators [9], e.g., for-loops.

Pasta Implementation. We implemented Pasta in Texera. We implemented both the top-down
search (Section 4) and bottom-up search (Section 5.1), along with the improvement techniques,
including Chains (CHN), Clean Edges (CLE), and Early Stop (ESP). Each search framework included
global search and greedy search. Given a region plan, the Scheduler module of Pasta generated
a final execution order by using a topological sort of the regions, and a workflow was executed
region-by-region.

Other Scheduling Methods. We implemented several non-cost-based methods for generating
execution orders in Texera for comparison purposes. “Bottom-up Seed” (BUS) is the method of
generating a region plan using the seed of the bottom-up search framework, which may be un-
schedulable. “Top-down Seed” (TDS) refers to generating an execution order using the seed of the
top-down search framework with no improvement techniques, which guarantees an execution
order but also prevents pipelining. Finally, Baseline is a method corresponding to the existing
heuristics used by systems such as Hyracks, Flink, and Texera. Baseline starts from the seed of
the top-down search process, traverses the edges of the region plan following a topological order
of the operators, and changes a non-blocking materialized edge to pipelined (which leads to a new
region plan) if and only if the new region plan is schedulable. As a result, the final region plan is
also guaranteed to be schedulable. For all these methods, we also generated an execution order
from a region plan by using a total order of the regions.

Optimization Goals and Machines. We used two optimization goals to evaluate Pasta’s per-
formance. The first was minimizing the total sizes of materialization (Mat-Sizes) of a workflow.
As we will show in Section 6.2, the availability of numerous physical plans with cost information
when using this goal allowed us to evaluate Pasta at a large scale. The experiments for this op-
timization goal were conducted on a machine running the Ubuntu 22.04 operating system, with
64 cores, 128 GB of memory, and an 8 TB hard disk. The second was reducing the wall-clock time
of executing a workflow (Clock-Time). We used this goal to show the generality of Pasta as well as
its performance in an end-to-end workflow-execution setting. The experiments of this optimization
goal were conducted on a machine running MacOS Sonoma 14.5, with 10 cores, 32 GB of memory,
and a 1 TB SSD. Each experiment in the evaluations was executed three times, and the averages
were reported.

6.2 Collecting Real Workflows

We used 6,148 real-world workflows from the KNIME Community Hub [14] for analysis. The KNIME
engine does not support pipelined execution. Instead, it executes a physical plan (DAG) operator
by operator and materializes intermediate results. Since Pasta requires pipelined execution, it was
not feasible to use the KNIME engine to evaluate Pasta. We converted those workflows to a format
supported by Texera. During a conversion, the DAG structure was preserved, and each KNIME
operator was mapped to a Texera operator. All the ports and edges were preserved. Around 20% of
the workflows contained control operators, which were treated as normal data-processing operators
during the conversion. For KNIME operators that were not available in Texera, we replaced them
with non-executable Dummy operators. For each output port of a Dummy operator, we annotated
whether it was blocking using the following criteria. (1) If a port was to produce a single object
(e.g., an ML model) instead of a data table, it was blocking. (All KNIME operator ports were already
marked with this information.) (2) If a port was part of a control operator (e.g., Loop Start), it
was blocking. (3) For the remaining cases, we inferred whether a port was blocking based on the
official operator description from KNIME. Each workflow contained one or more weakly connected

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:18 Xiaozhen Liu et al.

components, and each component corresponded to a physical plan DAG (“plan” for short in the
rest of this section). As each plan could be scheduled separately, we used the largest plan (in terms
of number of operators) of each workflow for the analysis and experiments. We derived subsets of
those workflows for specific experiments, summarized in Table 4.

Table 4. Overview of workflow (WF) sets used in evaluations.

WF Set | WF # Source Use
Migrated to Texera from Analysis
6K-Set | 6,148 .
KNIME Workflows (Section 6.3)
Mat-Sizes Evaluations
MS-Set | 849 Subset of 6K-Set])
(Section 6.4 & Section 6.5)
Created as executable Clock-Time Evaluations
CT-Set 2] .
workflows in Texera (Section 6.6)

Workflows used for Mat-Sizes Evaluations. The Mat-Sizes experiments were performed on
MS-Set, which was a subset of 6K-Set. We will describe details about MS-Set in Section 6.3. We used
the cost function in Section 2.5, and used the materialization information of the original KNIME
workflows as the materialization costs.

Workflows Used for Clock-Time Evaluations. We manually created two executable workflows
in Texera, namely WF; and WF,, based on two KNIME workflows in 6K-Set. Their physical
plans are shown in Figure 15. WF; contained 25 operators and 28 edges to process a dataset of
100K email addresses and used a combination of rule-based methods and ML models to identify
fraudulent addresses. WF, processed a dataset of 5,000 movies, each containing attributes like titles,
genres, synopses, etc. The objective was to leverage pre-trained models for text summarization
and sentiment analysis on textual attributes, and to generate one-hot encodings for categorical
attributes. Its physical plan contained 35 operators and 39 edges.

(a) Workflow 1 (WFq)

(b) Workflow 2 (WF3)
Figure 15. Physical plans evaluated on the Clock-Time goal.

6.3 Complexity of Scheduling Workflows
To understand the complexity of finding optimal execution orders on these workflows, we analyzed
the plans in 6K-Set.

Structural Complexity of Physical Plans. We measured the plans in terms of the complexity of
their DAG structures. We first counted the scale of the plans, measured by the number of operators
and number of edges in a DAG. Figure 16 shows the histogram of the number of operators and

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:19

number of edges in each DAG among the 6K plans. More than half of the DAGs had at least 10
operators; more than 20% of the DAGs contained at least 20 operators; and over 6% of the DAGs
had at least 50 operators. The distribution for the edge numbers was similar. Moreover, 83 DAGs
contained 100+ operators, 99 DAGs had 100+ edges, and the largest plan included 465 operators
and 742 edges. These statistics show that the workflow DAGs had a large scale. We also observed
that the number of edges in many of the plans was higher than the number of operators. This
trend was also reflected in Figure 16. The decrease in frequencies of plans with a larger edge count
was slower than that of the operator count. One reason was the high frequency of non-tree-DAGs,
which typically have more edges than operators. We measured the proportion of non-tree DAGs
in 6K-Set. Out of all the 6K plans, 3,208 (52.2%) of them were non-tree DAGs, and this ratio was
higher (77.7%) among plans with more than 10 operators. Scheduling tree-based plans for pipelined
execution tends to be easier compared to scheduling non-tree plans. For instance, according to
Lemma 3.8, all non-blocking edges in a tree should be pipelined since they are all bridges. Therefore,
for the cost function of Mat-Sizes on a tree-based physical plan, using the BUS method is sufficient.

T 103 [Operators
] 774 Edges

(%]

8 o

"

2

o

x

5 10t /]

;

< ‘ ‘ % ‘ ‘ ‘ ‘ ‘ ‘ ZRE ‘ ‘ ‘ v 7 ‘ Z FE ‘
$* 1-5 16-20 31-35 46-50 61-65 76-80 91-95 100+

of Operators / Edges in the physic-al plan DAG
Figure 16. Distribution of operator numbers and edge numbers in physical plan DAGs of the 6K workflows.

Schedulability of BUS Region Plans. We next measured the proportions of plans that needed
non-simple methods to enable pipelined execution. We considered BUS to be a simple method. The
reason is that according to Property F (Section 5.3), for the Mat-Sizes and Clock-Time cost functions,
if the seed of the bottom-up search is schedulable, it can be directly used to generate an optimal
execution order. Otherwise, either Baseline or Pasta is needed to generate an execution order. For
each physical plan in 6K-Set, we used BUS to generate a region plan and tested its schedulability. In
total, there were 1,259 physical plans (20.4% of all the physical plans, and 39.2% of all the non-tree
DAGs) that had an unschedulable BUS region plan. Figure 17 shows the fraction of unschedulable
BUS region plans with varying scales of physical plans for 6K-Set and for the subset where physical
plans were non-tree DAGs. In general, physical plans with larger scales were more likely to have an
unschedulable BUS region plan. Moreover, when a physical plan (including tree-structured plans)
had more than 10 operators, this ratio was consistently above 20%, and the cut-off increased to 40%
when the scale was above 30 operators. This ratio among the non-tree DAGs was higher, with the
cut-off being 20% among physical plans of all scales. These statistics show that it is challenging to
schedule many workflows for pipelined execution.

Physical Plans in MS-Set. We used 849 of the 6K plans for Mat-Sizes evaluations. When the BUS
method produced an execution order, there was no need to use other methods. Thus, only the 1,259
physical plans on which BUS produced an unschedulable region plan needed evaluations. Note all
these plans were non-tree DAGs. Furthermore, out of the 1,259 physical plans, 849 (67.4%) of them
had the cost information available because they were executed in KNIME before, which resulted in
MS-Set. Plans of all sizes were preserved in MS-Set, from smaller plans (operator count < 15) to
very large plans (operator count > 100, a total of 41 plans).

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:20 Xiaozhen Liu et al.

» 80 [Among All Plans 7
s 271 Among Non-tree DAGs

o

60

Qo

©

340

2 %

=) 4 '/
220 ,)
]

s 0 % Z %

& 1-5 16-20 31-35 46-50 61-65 76-80 91-95 100+

Scale of a Physical Plan (# of Operators)

Figure 17. Ratio of physical plans whose BUS region plan was not schedulable.

6.4 Effectiveness of Pasta on Mat-Sizes

Next, we evaluated the effect of using Pasta on improving the quality of a generated execution order.
We used MS-Set in the evaluation. To measure the materialization cost, we did not need to execute
the workflows, and we conducted the analysis on the generated execution orders for each workflow.
Given each of these 849 plans as an input, we used different methods to generate execution orders,
including Pasta, TDS, and Baseline. We evaluated four configurations of Pasta (ETD, GTD, EBU, and
GBU). We mainly present Pasta’s results when using the top-down search direction (ETD and GTD)
since the bottom-up search direction (EBU and GBU) had similar results.

We enforced a time limit of 300 seconds for each individual run of execution-order generation. For

Pasta methods, if this time limit was reached, we used the best region plan found so far to generate
a final execution order. For each physical plan, if ETD and GTD produced different execution orders,
we used the better one as the result of Pasta. We compared the cost of execution orders generated
by Pasta with those from Baseline and TDS. Note TDS represented another simple method that
materialized all the edges, which had the highest possible cost. As the materialization sizes varied
greatly across different physical plans, we used relative costs (Pasta or Baseline relative to TDS)
for comparisons. For each physical plan, we measured the materialization size S, of the execution
order produced by TDS, as well as the size S of the execution order produced by Pasta or Baseline.
We adjusted Sy, and Sy by subtracting the total sizes of blocking edges S, in the plan because these
edges had to be materialized in each method. We used (S¢ — S3)/(Sm — Sp) to represent the relative
cost of an execution order generated by Pasta or Baseline.
Pasta vs. Other Methods. Pasta produced the best execution order among the three methods on
847 of the 849 evaluated plans. 33 (3.9%) out of these 847 execution orders were not produced by
ETD because it was unable to finish within 300 seconds on these plans. Instead, they were produced
by GTD. Pasta produced a worse execution order than that from Baseline only for the two large
plans on which even GTD was unable to finish execution within 300 seconds. On 559 (65.8%) plans
the cost of execution orders generated by Pasta was the same as that of Baseline because the two
methods produced the same execution order. On the remaining 288 (33.9%) plans, the execution
order produced by Pasta had a lower cost than that of Baseline.

To further study the extent to which Pasta could reduce costs, we calculated the ratio of cost
reduction when using Pasta compared to Baseline on each of these 288 workflows. Given the
relative cost Cj, of an execution order from Baseline and the relative cost C,, of that from Pasta,
this ratio was (C — Cp)/Cy,. We show these ratios as well as the relative costs of the two methods
on these 288 instances in Figure 18. On less than a quarter of these workflows, Pasta improved the
costs by less than 10%; on more than half of these instances, Pasta’s execution order could reduce
over 30% of the costs from Baseline; on around 1/3 of them, Pasta’s execution order was 50%
better than that of Baseline; in some cases Pasta was even able to reduce more than 99% of the
cost compared to Baseline. The relative costs of Pasta’s execution orders were almost consistently
below 50%.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:21

08| g Baseline
0.6/ EEH Pasta

hm h ||I|‘ || ||| || | hh"hlh |I|‘ ‘| |||"|||||||| |..| | I||||||||||||I|| ||| || ||| ||| ||||||"I||| Il‘ ||||| |||||||I||||||| |||||||.||| ||||| I|||| |I||||,|||.|I|| ||u|||||..|.||| |||.||||| |||||||.| |I|..I||| 2 [l
15 20 0 40 0 60 70 80 9099

3
Cost reductions (%) on individual workflows (Baseline vs. Pasta)

0.4

Relative Cost

0.2

il
91%
Figure 18. Materialization costs of execution orders generated by Pasta and Baseline on all the workflows
where the two methods produced different results. Each bar represents a workflow. The relative costs of
execution orders from the two methods are overlapped, and the visible bars for Baseline indicate reduced
relative costs when using Pasta over Baseline. The workflows are ordered by the cost-reduction ratio of
using Pasta compared to Baseline.

Greedy Search vs. Exhaustive Search. In the top-down framework, Pasta offers both an exhaus-
tive search method and a greedy search method. We compared the relative costs of ETD and GTD
on the 812 instances that both methods finished execution on. GTD produced the same execution
order as ETD (i.e., optimal execution order) on 703 (86.6% out of 812) of the instances. This meant
that the faster method GTD was often as effective as the slower method ETD, so using GTD for
quickly generating an execution order would be beneficial. For recurring and costly jobs, if optimal
scheduling is desired, we can run an exhaustive search in the background for further improvements.
Figure 19 shows the cost-comparison results on the remaining 109 (13.4%) instances where the
execution order produced by ETD had a lower cost. For over half of them, the execution order from
ETD reduced more than 30% of the costs compared to the one from GTD. On several instances, the
optimal execution order of ETD reduced over 99% of the cost from that of GTD. These results show
that, compared to the greedy search, using an exhaustive search for an optimal execution order can
further reduce costs.

OHE%H L1l s ﬂﬂmnmﬂ L ﬂﬂ I L ﬁﬂﬂﬁﬂﬁﬁﬁﬁﬁaﬁﬁﬂﬂ ﬁaﬁaﬁﬁj i, | Jall) %ﬁ? N E 5 ga

Cost reductlons (%) on individual workflows (GTD vs. ETD)

Figure 19. Materialization costs of execution orders generated by ETD and GTD on all the workflows where the
two methods produced different results. Similar to Figure 18, the relative costs of execution orders from the
two methods are overlapped, and the workflows are ranked by the cost reduction ratio of using ETD over GTD.

6.5 Efficiency of Pasta on Mat-Sizes

Next, we evaluated the efficiency of Pasta. We mainly present Pasta’s results when using the
top-down search direction. We first present the overall results, then show detailed evaluations on
two aspects: (1) Input complexity: How did the scale of input plans affect Pasta’s performance?
(2) Breakdown of improvement techniques: How effective were the techniques (CHN, CLE, and ESP)?
Overall Efficiency. We first considered the efficiency of the exhaustive-search method. Given
the time constraint of 300 seconds, ETD finished on 812 (95.6%) of the 849 plans. Out of the 37
plans on which ETD exceeded the time limit, 33 (89.2%) of the plans had over 80 operators and
over 66 non-blocking edges. This meant that although ETD needed a longer time to find an optimal
execution order for some complicated plans, it could finish within a reasonable amount of time on

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:22 Xiaozhen Liu et al.

the vast majority of real-world plans. Moreover, when we decreased the cut-off time to 5 seconds,
ETD was able to finish scheduling on 675 (79.5%) of the plans. These statistics showed that ETD was
very efficient on most of the plans. Finally, on average the scheduling time of ETD was 13X the
time of Baseline, and for 766 (90.2%) of the plans this ratio was lower than 13. This meant that
with additional search time, ETD could find optimal execution orders that sometimes were much
better than those from Baseline. We next considered the greedy method. Within 300 seconds, GTD
finished on 846 (99.6%) of the 849 plans. There were two plans on which GTD exceeded the time
limit. One had 302 operators and 375 edges, and another contained 465 operators and 742 edges.
When we reduced the cut-off time to 2 seconds, GTD finished on 767 (90.3%) of the plans. On average
the time for GTD to finish was 4X that of Baseline. Considering the fact that GTD generated an
equal or better execution order compared to Baseline on 844 (99.4%) of the plans, using GTD over
Baseline would be a sensible choice.

Impact of Physical Plan Scales. To study the impact of input complexity on the efficiency of the
methods, we measured the average scheduling time of each method on different scale-groups of
physical plans (measured by the number of operators), as shown in Figure 20. For all the methods,
the scheduling time increased with the growing complexity of the input plan. Moreover, although
GTD was slower than Baseline, the growth of GTD’s scheduling time had a similar shape as that of
Baseline, because both methods had a polynomial time-complexity. ETD was faster than GTD for
smaller plans because the search space was small and GTD did not have the extra step of comparing
costs of different neighbors of each visited state during the search. For larger plans, the time for
ETD increased more rapidly and erratically than GTD, because the search space grew exponentially.
Nevertheless, the improvement techniques helped ETD maintain its efficiency for most inputs.

I) —e— TDS —&— Pasta(GTD)
‘q‘) 10%4 Baseline —e— Pasta(ETD)
£
= 101,
o
£
3 10°4
(]
<
@ 191
glo] ‘V/k_‘—_*_‘.__*/b—o———f/'/.
<<
1072

110 2130 4150 61-70 8190 100+

Scale of Input Plan (# operators)
Figure 20. Given a physical plan, the average time it took to generate an execution order for different methods
across varying workflow scales.

Effect of Improvement Techniques. Finally, we studied the effect of each improvement technique
on Pasta’s performance. We first measured their impact on the exhaustive-search method (ETD). For
each plan, we used five methods to generate an execution order with a time budget of 30 seconds.
These searches included: one without any improvement technique (NOP), one for each technique
applied individually (CHN, ESP, and CLE), and one with all techniques applied together (Pasta).
We categorized the results based on the scale of the input plans. We then calculated the ratio of
workflows on which each method successfully finished the search to identify an optimal execution
order within the budget for each group. Figure 21 shows the success ratios on different groups for
each method. NOP succeeded on only plans with smaller scales, and was mostly unsuccessful once
the scales went above 20. ESP alone increased the ratio moderately for smaller plans. CLE alone
greatly increased the success ratio for many plans, and CHN was the most effective. We attribute
the high effectiveness of CHN and CLE to the fact that most of the input plans had many chains

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:23

and clean edges, which enabled the two techniques to reduce the search space significantly. By
combining the three techniques, Pasta achieved the best performance.

__100% —e— Pasta (ETD)
g —— CHA

= 80% CLE

3 —o— ESP

< 60% A —*— NOP

Y

o 40%

T

T 20%

(9]

]

S 0% : : : . ‘ ‘ : : ‘ :
a 1-10 21-30 41-50 61-70 81-90 100+

Scale of Input Plan (# operators)

Figure 21. With a cut-off time of 30s, the success ratio of exhaustive searches across workflows using different
improvement techniques. NOP refers to the method of not using any improvement technique.

We did similar experiments on the greedy-search method (GTD). Due to its shorter search time,
we allocated a smaller time budget of 2 seconds. Figure 22 shows results similar to those in ETD,
and the improvements of combining the three techniques were less.

_100% —e— Pasta (GTD)
e 80% —— CHA
@ 6 CLE
e - ESP
o 60%- —#— NOP
£ 0%
0 (]
%]
[J]
S 20%/
>
2]

0% 1

1-10 21-30 41-50 61-70 81-90 100+
Scale of Input Plan (# operators)

Figure 22. With a cut-off time of 2s, the success ratio of greedy searches across plans using different improve-
ment techniques.

6.6 Evaluations on the Clock-Time Goal

So far, we presented evaluations of Pasta using the Mat-Sizes cost function. Next, we considered
another optimization goal, namely Clock-Time. The purposes are (1) to evaluate the generality of
Pasta on other cost functions; and (2) to measure the end-to-end performance of Pasta in Texera.

For both workflows WF; and WF,, we used TDS, Baseline, and Pasta (EBU) to generate execution
orders. We varied the input size of each workflow and ran multiple executions. For each execution,
we recorded the scheduling time to generate the final execution order, the cost of the final execution
order, and the end-to-end wall-clock time to finish workflow execution. For each workflow, we
executed the workflow by using TDS to obtain the wall-clock time of each operator and used these
numbers as the cost for Pasta.

Figure 23 shows WF;’s costs and end-to-end execution time on different sizes of the input
data. The execution orders generated by Pasta remained the same for different input sizes. This
was because the size of the input data did not significantly affect how the costs differed between
operators in the same workflow. The lowest costs of Pasta’s execution orders demonstrated its
effectiveness in reducing the costs for the Clock-Time goal. Moreover, the reduced costs also
resulted in reduced end-to-end clock time, and the gap between different methods grew larger

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

248:24 Xiaozhen Liu et al.

with the increase of the input size. In addition, Pasta’s scheduling time remained consistent across
different input sizes, with an average of 64 ms. This was relatively small compared to the end-to-end
execution time, especially for larger input sizes.

TDS (Cost) —+--TDS (Time) hd . =
300 . . . 7/ 002
Baseline (Cost) Baseline (Time) 7 Y
Pasta (Cost) —=—Pasta (Time) //‘ 3005
*g‘ 200 y -5
© 2003
%
100 100 :j
_ N

0 PP .

50 100 500 1K 5K 10K 50K 100K
Size of Input Data on WF1 (# tuples)
Figure 23. Results of Clock-Time evaluations on WFj.

Figure 24 shows the results for WF,. Pasta provided greater benefits for this workflow compared
to WF; due to the higher costs of the operators. The scheduling time of Pasta on this more
complicated plan remained stable, with an average of 166 ms. These results showed both the
generality of Pasta when using another cost function and its ability to reduce end-to-end workflow
execution time with low overhead.

800 »
TDS (Cost) —o-TDS (Time) 7 w
600 Baseline (Cost) Baseline (Time) _,'/ 1000 GEJ
Pasta (Cost) —s—Pasta (Time) J l 750 =
% ' S
o 400 =1
o 1500 3
(9]
x
200 250 &
(o]
P w

0 r0

10 50 100 500 1K 5K
Size of Input Data on WF2 (# tuples)
Figure 24. Results of Clock-Time evaluations on WF;.

7 Conclusions

In this paper, we studied the problem of generating an optimal execution order of pipelined
execution for a dataflow DAG. We developed a novel cost-based optimizer called Pasta, which
considers multiple region plans for a physical plan to generate an optimal execution order. The Pasta
optimizer is applicable to many cost functions, and can utilize properties in these cost functions
to improve its performance. We conducted a thorough evaluation on real-world workflows and
showed the efficiency and efficacy of the proposed techniques.

Acknowledgments

We thank Jiadong Bai, Yunyan Ding, Shengquan Ni, Kun Woo (Chris) Park, Vincent Thai, Zuozhi
Wang, and Tianyun Yuan for their help. We also thank our anonymous shepherd and reviewers for
their invaluable feedback. This work was supported by NSF award IIS-2107150 and NIH NIDDK
award 2U24DK097771-11.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

Pasta: A Cost-Based Optimizer for Generating Pipelining Schedules for Dataflow DAGs 248:25

References

[1] Alteryx 2024. AI Analytics Platform - Alteryx, https://www.alteryx.com/.
[2] Apache Flink 2024. Apache Flink® — Stateful Computations over Data Streams | Apache Flink, https://flink.apache.org.
[3] Vinayak R. Borkar, Michael]J. Carey, Raman Grover, Nicola Onose, and Rares Vernica. 2011. Hyracks: A flexible

—
~
—

—
oo
[

(10

[11

[12

[13
[14

[15
[16
[17

[18

[19

[20

—

[t

—

—

[t

]

—_

]

]

]

[t

and extensible foundation for data-intensive computing. In Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, Serge Abiteboul, Klemens Bohm, Christoph Koch, and
Kian-Lee Tan (Eds.). IEEE Computer Society, 1151-1162. https://doi.org/10.1109/ICDE.2011.5767921

Luc Bouganim, Daniela Florescu, and Patrick Valduriez. 1996. Dynamic Load Balancing in Hierarchical Parallel
Database Systems. In VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6,
1996, Mumbai (Bombay), India, T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda (Eds.).
Morgan Kaufmann, 436-447. http://www.vldb.org/conf/1996/P436.PDF

Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. 2001. Pipelining in Multi-Query Optimization. In
Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23,
2001, Santa Barbara, California, USA, Peter Buneman (Ed.). ACM. https://doi.org/10.1145/375551.375561

Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zoi Kaoudi, Tilmann Rabl, and Volker Markl. 2022. Materialization and
Reuse Optimizations for Production Data Science Pipelines. In SIGMOD °22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1962-1976. https://doi.org/10.1145/3514221.3526186

Docker Swarm 2024. Swarm mode | Docker Docs, https://docs.docker.com/engine/swarm/.

Yannis Foufoulas and Alkis Simitsis. 2023. User-Defined Functions in Modern Data Engines. In 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 3593-3598. https://doi.org/10.
1109/ICDE55515.2023.00276

Gabor E. Gévay, Tilmann Rabl, Sebastian Bref3, Lorand Madai-Tahy, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021.
Efficient Control Flow in Dataflow Systems: When Ease-of-Use Meets High Performance. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 1428-1439. https://doi.org/10.1109/
ICDE51399.2021.00127

Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan Kulkarni. 2016. GRAPHENE: Packing and
Dependency-Aware Scheduling for Data-Parallel Clusters. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.).
USENIX Association, 81-97. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl
graphene

Wagqar Hasan and Rajeev Motwani. 1994. Optimization Algorithms for Exploiting the Parallelism-Communication
Tradeoff in Pipelined Parallelism. In VLDB 94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo (Eds.). Morgan
Kaufmann, 36-47. http://www.vldb.org/conf/1994/P036.PDF

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy H. Katz, Scott Shenker,
and Ion Stoica. 2011. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April
1, 2011, David G. Andersen and Sylvia Ratnasamy (Eds.). USENIX Association. https://www.usenix.org/conference/
nsdill/mesos-platform-fine-grained-resource- sharing-data-center

KNIME 2024. Open for Innovation | KNIME, https://www.knime.com/.

KNIME Community Workflows 2024. Workflows | KNIME Community Hub, https://hub.knime.com/search?type=
Workflow.

Kubernetes 2024. Kubernetes, https://kubernetes.io/.

Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: A Debuggable Dataflow System Based on
the Actor Model. Proc. VLDB Endow. 13, 5 (2020), 740-753. https://doi.org/10.14778/3377369.3377381

V.S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan. 2009. Scheduling on Unrelated
Machines under Tree-Like Precedence Constraints. Algorithmica 55, 1 (2009), 205-226. https://doi.org/10.1007/S00453-
007-9004-Y

Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong Huang, Avinash Kumar, and Chen Li. 2022.
Demonstration of Collaborative and Interactive Workflow-Based Data Analytics in Texera. Proc. VLDB Endow. 15, 12
(2022), 3738-3741. https://www.vldb.org/pvldb/vol15/p3738-liu.pdf

Ming-Ling Lo, Ming-Syan Chen, Chinya V. Ravishankar, and Philip S. Yu. 1993. On Optimal Processor Allocation
to Support Pipelined Hash Joins. In Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, Washington, DC, USA, May 26-28, 1993, Peter Buneman and Sushil Jajodia (Eds.). ACM Press, 69-78. https:
//doi.org/10.1145/170035.170053

Pipelined Regions in Apache Flink 2020. Improvements in task scheduling for batch workloads in Apache Flink 1.12,
https://flink.apache.org/2020/12/02/improvements-in-task-scheduling-for-batch-workloads-in-apache-flink-1.12/.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

https://www.alteryx.com/
https://flink.apache.org
https://doi.org/10.1109/ICDE.2011.5767921
http://www.vldb.org/conf/1996/P436.PDF
https://doi.org/10.1145/375551.375561
https://doi.org/10.1145/3514221.3526186
https://docs.docker.com/engine/swarm/
https://doi.org/10.1109/ICDE55515.2023.00276
https://doi.org/10.1109/ICDE55515.2023.00276
https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.1109/ICDE51399.2021.00127
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
http://www.vldb.org/conf/1994/P036.PDF
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.knime.com/
https://hub.knime.com/search?type=Workflow
https://hub.knime.com/search?type=Workflow
https://kubernetes.io/
https://doi.org/10.14778/3377369.3377381
https://doi.org/10.1007/S00453-007-9004-Y
https://doi.org/10.1007/S00453-007-9004-Y
https://www.vldb.org/pvldb/vol15/p3738-liu.pdf
https://doi.org/10.1145/170035.170053
https://doi.org/10.1145/170035.170053
https://flink.apache.org/2020/12/02/improvements-in-task-scheduling-for-batch-workloads-in-apache-flink-1.12/

248:26 Xiaozhen Liu et al.

[21]
[22]
[23]

[24

—

[25]

[26

=

[27

—

[28]

[29]

[30]

[31]

Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems. WCB/McGraw-Hill.

RapidMiner 2024. Data Analytics and Al Platform | Altair RapidMiner , https://rapidminer.com/.

Vladislav Shkapenyuk, Ryan Williams, Stavros Harizopoulos, and Anastassia Ailamaki. 2005. Deadlock resolution in
pipelined query graphs. Carnegie Mellon University Technical Report.

Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, and Benjamin Recht. 2017. KeystoneML:
Optimizing Pipelines for Large-Scale Advanced Analytics. In 33rd IEEE International Conference on Data Engineering,
ICDE 2017, San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, 535-546. https://doi.org/10.1109/ICDE.2017.
109

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin C.
Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet another resource negotiator. In ACM Symposium
on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013, Guy M. Lohman (Ed.). ACM, 5:1-5:16.
https://doi.org/10.1145/2523616.2523633

Zuozhi Wang, Yicong Huang, Shengquan Ni, Avinash Kumar, Sadeem Alsudais, Xiaozhen Liu, Xinyuan Lin, Yunyan
Ding, and Chen Li. 2024. Texera: A System for Collaborative and Interactive Data Analytics Using Workflows. Proc.
VLDB Endow. 17, 11 (2024), 3580-3588. https://www.vldb.org/pvldb/vol17/p3580-wang.pdf

Zuozhi Wang and Chen Li. 2023. Building a Collaborative Data Analytics System: Opportunities and Challenges. Proc.
VLDB Endow. 16, 12 (2023), 3898-3901. https://doi.org/10.14778/3611540.3611580

Yinggen Xu, Liu Liu, and Zhijun Ding. 2020. DAG-Aware Joint Task Scheduling and Cache Management in Spark
Clusters. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, May
18-22, 2020. IEEE, 378-387. https://doi.org/10.1109/IPDPS47924.2020.00047

Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean Wang. 2022. Optimizing Machine Learning
Inference Queries with Correlative Proxy Models. Proc. VLDB Endow. 15, 10 (2022), 2032-2044. https://www.vldb.org/
pvldb/vol15/p2032-yang.pdf

Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. 2015. Robust Query Optimization Methods With Respect to
Estimation Errors: A Survey. SIGMOD Rec. 44, 3 (2015), 25-36. https://doi.org/10.1145/2854006.2854012

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012,
San Jose, CA, USA, April 25-27, 2012. 15-28.

Received April 2024; revised July 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 248. Publication date: December 2024.

https://rapidminer.com/
https://doi.org/10.1109/ICDE.2017.109
https://doi.org/10.1109/ICDE.2017.109
https://doi.org/10.1145/2523616.2523633
https://www.vldb.org/pvldb/vol17/p3580-wang.pdf
https://doi.org/10.14778/3611540.3611580
https://doi.org/10.1109/IPDPS47924.2020.00047
https://www.vldb.org/pvldb/vol15/p2032-yang.pdf
https://www.vldb.org/pvldb/vol15/p2032-yang.pdf
https://doi.org/10.1145/2854006.2854012

	Abstract
	1 Introduction
	1.1 Related Work

	2 Problem Formulation in Pasta
	2.1 Physical Plans and Blocking Ports
	2.2 Region Plans with Pipelined/Materialized Edges
	2.3 Regions and Region Graphs
	2.4 Schedulability of Region Plans
	2.5 Costs of Execution Orders and Region Plans

	3 Properties of Optimal Schedulable Region Plans
	3.1 Properties of Chains
	3.2 Properties of Clean Edges

	4 Top-down Search Framework
	4.1 The Search Algorithm
	4.2 Technique: Stopping Exploring Beyond Hopeless States
	4.3 Technique: Generating a Better Seed State Using Properties of OSRPs

	5 Discussion and Generalization
	5.1 Bottom-up Search Framework
	5.2 Obtaining Cost Information
	5.3 General Cost Functions

	6 Experiments
	6.1 Settings
	6.2 Collecting Real Workflows
	6.3 Complexity of Scheduling Workflows
	6.4 Effectiveness of Pasta on Mat-Sizes
	6.5 Efficiency of Pasta on Mat-Sizes
	6.6 Evaluations on the Clock-Time Goal

	7 Conclusions
	Acknowledgments
	References

