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Abstract

We develop a unifying framework for information-theoretic lower bound in statistical es-
timation and interactive decision making. Classical lower bound techniques—such as Fano’s
method, Le Cam’s method, and Assouad’s lemma—are central to the study of minimax risk in
statistical estimation, yet are insufficient to provide tight lower bounds for interactive decision

making algorithms that collect data interactively (e.g., algorithms for bandits and reinforcement
learning). Recent work of Foster et al. [2021, 2023b] provides minimax lower bounds for inter-
active decision making using seemingly different analysis techniques from the classical methods.
These results—which are proven using a complexity measure known as the Decision-Estimation

Coefficient (DEC)—capture difficulties unique to interactive learning, yet do not recover the
tightest known lower bounds for passive estimation. We propose a unified view of these distinct
methodologies through a new lower bound approach called interactive Fano method. As an
application, we introduce a novel complexity measure, the Fractional Covering Number, which
facilitates the new lower bounds for interactive decision making that extend the DEC method-
ology by incorporating the complexity of estimation. Using the fractional covering number, we
(i) provide a unified characterization of learnability for any stochastic bandit problem, (ii) close
the remaining gap between the upper and lower bounds in Foster et al. [2021, 2023b] (up to
polynomial factors) for any interactive decision making problem in which the underlying model
class is convex.

1 Introduction

The minimax criterion is a standard approach to studying the intrinsic difficulty of problems in
statistics and machine learning. For an algorithm ALG that collects data (either passively or inter-
actively) from the model M , the minimax criterion (stated somewhat informally here) is

min
ALG

max
M*M

Cost(ALG,M). (1)

The expression reflects the best cost that can be achieved by an algorithm ALG for a worst-case
problem instance in a collection M, measured according to an appropriate cost function Cost. In

∗Massachusetts Institute of Technology.
†Microsoft Research.
‡New York University.
§National University of Singapore.

1



statistics, the minimax approach was pioneered by A. Wald [Wald, 1945], who made the connection
to von Neumann’s theory of games [Von Neumann and Morgenstern, 1944] and unified statistical
estimation and hypothesis testing under the umbrella of statistical decision theory. Minimax opti-
mality and minimax rates of convergence of estimators have since become a central object in the
modern non-asymptotic statistics [van de Geer, 2000, Wainwright, 2019]; here, for instance, ALG is
an estimator of an unknown parameter based on noisy observations.

Upper bounds on the minimax value (1) are typically achieved by choosing a particular algorithm,
while lower bounds often require specialized techniques. In statistics, three such techniques are
widely used: Le Cam’s two-point method, Fano’s method, and Assouad’s method. These techniques
entail constructing “difficult” subsets of the class M. Le Cam’s method focuses on two hypotheses,
while Assouad’s method and Fano’s method involve multiple hypotheses indexed by the vertices of
a hypercube and a simplex, respectively. The relationships between these methods are explored in
Yu [1997].

Classical statistical estimation is a purely passive task. A parallel line of research [Lattimore and
Szepesvári, 2020a] considers the task of interactive decision making, where ALG is a multi-round
procedure that directly interacts with the data generating process and iteratively makes decisions
with the (often contradictory) aims of minimizing cost and collecting information. Proving minimax
lower bounds for interactive decision making problems presents unique challenges. The aforemen-
tioned lower bound techniques for estimation require quantifying the amount of information that
can be gained from passively acquired data from a hard problem instance, but the amount infor-
mation acquired by an interactive algorithm is harder to quantify [Agarwal et al., 2012, Raginsky
and Rakhlin, 2011a,b], since it depends on the decisions made by the algorithm itself over multiple
rounds.

In spite of the challenges, recent work of Foster et al. [2021, 2023b] shows that a complexity measure
known as the Decision-Estimation Coefficient (DEC) leads to both lower and upper bounds on the
minimax rates for a general class of interactive decision making problems. Interestingly, the lower
bound techniques in Foster et al. [2021] proceed in a seemingly different fashion from classical lower
bounds for statistical estimation; most notably, their techniques involve an algorithm-dependent
(as opposed to oblivious) choice of a hard-to-distinguish alternative problem instance. Yet, while
the setting of interactive decision making encompasses statistical estimation, the DEC lower bound
does not recover Fano’s method or Assouad’s lemma. Intuitively, DEC captures the complexity of
exploration for the interactive problems, which is complementary to the complexity of estimation,
typically captured by Fano’s method and Assouad’s lemma. As a result, the DEC only characterizes
the minimax rates for interactive decision making up to a gap related to the complexity of a certain
induced estimation problem; see Section 2.3 for detailed discussion.

Given the differences between the classical Assouad, Fano, and Le Cam methods, and the even larger
disparity between these methods and the interactive decision making techniques of Foster et al. [2021,
2023b], it is natural to ask whether there is a hope of unifying these lower bounds techniques. Beyond
the fundamental nature of this question, there is hope that a unified understanding might lead to
tighter lower bounds, or even inspire new algorithms and upper bounds; of particular interest is to
close the remaining (estimation-based) gaps between the upper and lower bounds on the minimax
rates for interactive decision making left open by Foster et al. [2023b].
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1.1 Contributions

We present a new framework for information-theoretic lower bounds which allows for a unifying
presentation of classical lower bounds in statistical estimation (Assouad, Fano, and Le Cam) and
recent Decision-Estimation Coefficient-based lower bounds for interactive decision making [Foster
et al., 2021, 2023b].

Interactive lower bound framework (Section 3). Our main result is to introduce a new
lower bound technique, the interactive Fano method. The interactive Fano method generalizes
the stringent separation condition in the classical Fano’s method to a novel algorithm-dependent
condition by introducing the concept of “ghost data” generated from a reference distribution. This
technique recovers Le Cam’s two-point method (and the convex hull method), Assouad’s method,
and Fano’s method as special cases. Further, by virtue of being algorithm-dependent in nature, the
interactive Fano method also seamlessly recovers DEC-based lower bounds for interactive decision
making as a special case, and leads to refined quantile-based variants.

Fractional covering number and bandit learnability (Section 4). As an application of the
interactive Fano method, we derive lower bounds for interactive decision making based on a new
complexity measure, the fractional covering number, which quantifies the difficulty of estimating
a near-optimal policy/decision, and complements the original DEC lower bounds (which reflect
difficulty of exploration as opposed to difficulty of estimation). As an application, the fractional
covering number provides the first complete characterization for finite-time learnability of any struc-
tured bandit problem, albeit up to an exponential gap in quantitative rates. As a secondary result,
we use the fractional covering number to close the remaining gap between the upper and lower
bounds in Foster et al. [2021, 2023b], up to polynomial factors, for any interactive decision making
problem in which the underlying model class is convex.

1.2 Preliminaries

Let P and Q be two distributions over a space Ω such that P is absolutely continuous with respect
to Q. Then, for a convex function f : [0,+>) ³ (2>,+>] such that f(x) is finite for all x > 0,
f(1) = 0, and f(0) = limx³0+ f(x), the f -divergence of between P and Q is defined as

Df (P,Q) :=

∫

Ω
f

(
dP

dQ

)
dQ.

Concretely, we make use of three well-known f -divergences: the KL-divergence DKL, the squared
Hellinger distance D2

H, and the total variation distance DTV, for which the function f(x) is chosen
to be x log x, 1

2 (
:
x2 1)2, and 1

2 |x2 1| respectively.

For a pair of random variables (X,Y ) with joint distribution PX,Y , the mutual information is defined
as

I(X;Y ) = EX

[
DKL

(
PY |X ‖PY

)]
,

where PY |X is the conditional distribution of Y |X and PY is the marginal distribution of Y .

2 Statistical Estimation and Interactive Decision Making

We work in a general framework we refer to as Interactive Statistical Decision Making (ISDM).
We adopt this framework as a convenient formalism which encompasses statistical estimation and
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interactive decision making in a unified fashion. We first introduce the framework and show how
it subsumes statistical estimation (Section 2.1) and interactive decision making (Section 2.2), then
give brief background on existing lower bound techniques and gaps in understanding (Section 2.3).

Interactive Statistical Decision Making. An ISDM problem is specified by (X ,M,D, L),
where X is the space of outcomes,M is a model class (parameter space), D is the space of algorithms,
and L is a non-negative risk function. For an algorithm ALG * D chosen by the learner and a model
M * M specified by the environment, an observation X is generated from a distribution induced by
M and ALG: X > PM,ALG. The performance of the algorithm ALG on the model M is then measured
by the risk function L(M,X). The learner’s goal is to minimize the risk by choosing the algorithm
ALG. As described in the Introduction, the best possible expected risk the learner may achieve is
the following minimax risk :

inf
ALG*D

sup
M*M

EM,ALG[L(M,X)]. (2)

While our main results concern the general problem formulation in Eq. (2), we focus on applications
to statistical estimation and interactive decision making throughout. Below, we give additional
background on these settings and show how to view them as special cases.

2.1 Statistical estimation

In statistical decision theory [Wald, 1945, Bickel and Doksum, 2001, Berger, 1985], the learner is
given the parameter space Θ, observation space Y, decision space A, and a loss function L. For
an underlying parameter »æ * Θ, n i.i.d. samples Y1, ..., Yn > P»æ are drawn and observed by the
learner. The learner then chooses a decision A = A(Y1, · · · , Yn) * A based on the observations, and
incurs the loss L(»æ, A). This general framework subsumes most statistical estimation problems.

Example 1 (Mean estimation). For the mean estimation task, the parameter space Θ ¦ Rd, and
for each » * Θ, P» = N (», Id). The goal is to estimate the ground truth parameter »æ, i.e., the
decision space is A = Rd, and the loss is given by L(»,A) = ‖» 2A‖, where ‖·‖ is a norm over Rd.

Example 2 (Functional estimation). In the functional estimation task, a function T : Θ ³ R is
given, and the goal is to estimate the value of T (»æ), i.e., the decision space is A = R, and the loss
is L(»,A) = |T (»)2A|.
Example 3 (Density estimation). In the density estimation task, the goal is to estimate P»æ , i.e.,
the decision space A ¦ ∆(Y), and the loss is given by L(»,A) = D(P», A), where D is a certain
divergence (e.g., TV distance or KL divergence).

Statistical estimation as an instance of ISDM. Any general statistical estimation problem can
be trivially viewed as a ISDM instance, by choosing the model class as M = {P» : » * Θ} and the
algorithm space as D = {ALG : Y·n ³ A} (the set of all decision rules). For model M = P» and
algorithm ALG, the distribution of the whole observation X > PM,ALG is given by

X = (Y1, · · · , Yn, A), Y1, ..., Yn
i.i.d> P», A = ALG(Y1, · · · , Yn).

The loss under model M is then measured by the loss of the decision A, i.e., L(M,X) := L(»,A).
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2.2 Interactive decision making

For interactive decision making, we consider the following variant of the Decision Making with
Structured Observations (DMSO) framework [Foster et al., 2021], which subsumes bandits and
reinforcement learning. The learner interacts with the environment (described by an underlying
model Mæ : Π³ ∆(O), unknown to the learner) for T rounds. For each round t = 1, ..., T :

• The learner selects a decision Ãt * Π, where Π is the decision space.

• The learner receives an observation ot * O sampled via ot >Mæ(Ãt), where O is the observa-
tion space.

The underlying model Mæ is formally a conditional distribution, and the learner is assumed to have
access to a known model class M¦ (Π³ ∆(O)) with the following property.

Assumption 1 (Realizability). The model class M contains Mæ.

The model class M represents the learner’s prior knowledge of the structure of the underlying
environment. For example, for structured bandit problems, the models specify the reward distri-
butions and hence encode the structural assumptions on the mean reward function (e.g. linearity,
smoothness, or concavity). For a more detailed discussion, see Appendix A.

To each model M * M, we associate a risk function L(M, ·) : Π ³ Rg0, which measures the
performance of a decision in Π under M . We consider two types of learning goals under the DMSO
framework:

• Generalized no-regret learning: The goal of the agent is to minimize the cumulative sub-
optimality during the course of the interaction, given by

RegDM(T ) :=
∑T

t=1
L(Mæ, Ãt), (3)

where Ãt can be randomly drawn from a distribution pt * ∆(Π) chosen by the learner at step t.

• Generalized PAC (Probably Approximately Correct) learning: the goal of the agent is to
minimize the sub-optimality of a final output decision Ã̂ (possibly randomized), which is
selected by the learner once all T rounds of interaction conclude. We measure performance via

RiskDM(T ) := L(Mæ, Ã̂). (4)

With an appropriate choice for L, the setting captures reward maximization (regret minimiza-
tion) [Foster et al., 2021, 2023b], model estimation and preference-based learning [Chen et al.,
2022a], multi-agent decision making and partial monitoring [Foster et al., 2023a], and various other
tasks. In the main text of this paper, we focus on reward maximization and defer the results for
more general choices L to the appendices (cf. Appendix A).

Example 4 (Reward maximization). In the reward-maximization task, R : O ³ [0, 1] is a known
reward function.1 For a model M * M, EM,Ã[·] denotes expectation under the process o > M(Ã),
and fM(Ã) := EM,Ã[R(o)] denotes the expected value function. For any M * M, we let ÃM *
argmaxÃ*Π fM(Ã) be an optimal decision under M , and the risk function is defined by L(M,Ã) =
fM(ÃM)2 fM(Ã), measuring the sub-optimality of the decision Ã under model M .

1We assume the reward function R is known without loss of generality, since the observation o may have a
component containing the random reward.
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DMSO as an instance of ISDM. Any DMSO class (M,Π) induces an ISDM as follows. For any
t * [T ], denote the full history of decisions and observations up to time t by Ht21 = (Ãs, os)t21

s=1.
The space of observations X consists of all X of the form X = (HT , Ã̂), where Ã̂ is a final decision.
An algorithm ALG = {qt}t*[T ] * {p} is specified by a sequence of mappings, where the t-th mapping

qt(· | Ht21) specifies the distribution of Ãt based on Ht21, and the final map p(· | HT ) specifies
the distribution of the output decision Ã̂ based on HT . The algorithm space D consists of all such
algorithms. The loss function is chosen to be L(Mæ,X) = L(Mæ, Ã̂) for PAC learning (4), and
L(Mæ,X) =

∑T
t=1 L(M

æ, Ãt) for no-regret learning (3). For any algorithm ALG and model M ,
PM,ALG(·) is the distribution of X = (HT , Ã̂) generated by the algorithm ALG under the model M ,
and we let EM,ALG[·] to be the corresponding expectation.

2.3 Background on Lower Bound Techniques

To motivate our results, we briefly survey the most relevant lower bound techniques for estimation
and decision making.

Minimax bounds for statistical estimation. There is a vast body of literature on minimax
risk bounds for statistical estimation, including Hasminskii and Ibragimov [1979], Bretagnolle and
Huber [1979], Birgé [1986], Donoho and Liu [1991a], Cover and Thomas [1999], Ibragimov and
Has’Minskii [1981], Tsybakov [2008] as well as references therein. For minimax lower bounds, the
most widely applied techniques are Le Cam’s two-point method and convex-hull method [LeCam,
1973], Assouad’s lemma [Assouad, 1983], and Fano’s method [Cover and Thomas, 1999]. Variants
and applications of these three methods abound [Acharya et al., 2021, Chen et al., 2016, Polyanskiy
and Wu, 2019, Duchi and Wainwright, 2013]; Fano’s method in particular has perhaps the largest
number of variants, of which the most general version we are aware of is due to Chen et al. [2016],
which is recovered by our interactive Fano method (cf. Proposition 3). Another celebrated thread,
starting from the seminal work of Donoho and Liu [1987], provides upper and lower bounds for a
large class of non-parametric estimation problems based on Le Cam’s two-point method through
the study of a complexity measure known as the modulus of continuity [Donoho and Liu, 1991a,b,
Le Cam and Yang, 2000, Polyanskiy and Wu, 2019].

Lower bounds for interactive learning. There is a long line of work studying the fundamental
limits of online learning and reinforcement learning (RL), including lower bounds for structured
bandits [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Simchowitz et al., 2017, Lattimore
and Szepesvári, 2020a, Kleinberg et al., 2019, etc.], contextual bandits [Rigollet and Zeevi, 2010,
Foster et al., 2020, etc.], Markov Decision Processes (MDPs) [Osband and Van Roy, 2016, Domingues
et al., 2021, Zhou et al., 2021, Weisz et al., 2021, Wang et al., 2021, etc.], partially observable RL
[Krishnamurthy et al., 2016, Liu et al., 2022, Chen et al., 2023, 2024, etc.], dynamical systems
and control [Simchowitz et al., 2018, Jedra and Proutiere, 2019, Simchowitz and Foster, 2020,
Wagenmaker and Jamieson, 2020, Ziemann and Sandberg, 2024, etc.], and offline RL [Rashidinejad
et al., 2021, Xie et al., 2021, Wagenmaker et al., 2021, Jin et al., 2021, Chen et al., 2022b, Li et al.,
2024, Wagenmaker et al., 2024, etc.]. Most of these lower bounds are proven in a case-by-case basis,
as the constructions of hard instances are specialized to the specific settings.

Decision-Estimation Coefficient. Toward a unifying understanding of the minimax complexity
for interactive decision making problems, Foster et al. [2021, 2023b] introduce Decision-Estimation
Coefficient (DEC) as a complexity measure and show that it characterizes the minimax-optimal
regret up to a log|M| factor. The DEC can be viewed as an interactive counterpart of the modulus
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of continuity [Donoho and Liu, 1987], and captures hardness of interactive decision making related
to exploration, but not necessarily estimation. An active line of research has built on the DEC
to encompass a variety of more general decision making settings [Foster et al., 2021, 2022, Chen
et al., 2022a, Foster et al., 2023b,a, Glasgow and Rakhlin, 2023], including adversarial decision
making [Foster et al., 2022], PAC decision making [Chen et al., 2022a, Foster et al., 2023b], reward-
free learning and preference-based learning [Chen et al., 2022a], and multi-agent decision making
and partial monitoring [Foster et al., 2023a].

However, there is a remaining gap between the DEC lower and upper bounds [Foster et al., 2021,
2023b], which closely relates to the complexity of estimation. Specifically, through the DEC frame-
work, the sample complexity (number of rounds required to achieve ·-risk) is characterized as

T DEC(M, ·) . # sample complexity . T DEC(M, ·) × Est(M),

where T DEC(M, ·) is a quantity measuring the complexity of exploration,2 and Est(M) is a measure
of the complexity of online estimation over M. The dependency on Est(M) can be necessary: For
example, in linear bandits, the optimal sample complexity scales as d2/·2, while T DEC(M, ·) o d/·2,
and Est(M) o d. However, the complexity of estimation Est(M) is missing from the DEC lower
bound. This gap remains one of the main open questions in the DEC approach.

One potential reason is that the DEC lower bound does not recover Fano’s method or Assouad’s
lemma, as it essentially generalizes Le Cam’s two-point method. More specifically, while the sta-
tistical estimation task is subsumed by the DMSO framework, the DEC lower bound specialized to
this setting at best recovers Le Cam’s two-point method. On the other hand, the Ω(d2/·2) lower
bound for linear bandits is typically proven through Assouad’s lemma [Bubeck et al., 2015] or Fano’s
method [Rajaraman et al., 2023], similar to its statistical estimation analog. Therefore, to close the
remaining gap in the DEC approach, it is necessary to have a deeper understanding of the latter
two methods in the interactive setting.

Additional related work. A large portion of the aforementioned lower bounds for interactive
learning are proven using (variants of) the two-point method and can be recovered by the DEC
lower bound approach [Foster et al., 2021, 2023b]. Beyond the two-point method, comparatively
fewer lower bounds for interactive learning have been established using Assouad’s lemma or Fano’s
method [Castro and Nowak, 2008, Rigollet and Zeevi, 2010, Agarwal et al., 2009, Raginsky and
Rakhlin, 2011b, Foster et al., 2020, Simchowitz and Foster, 2020, Rajaraman et al., 2023, etc.]. The
approaches in these papers are specialized to the specific settings under consideration, and there is
not a general principle through which Fano’s method or Assouad’s lemma can be lifted to handle
interactivity. Indeed, the challenge of applying Fano’s method in interactive contexts has been
highlighted in various prior works, e.g., Arias-Castro et al. [2012, Section 1.3] and Rajaraman et al.
[2023, Section 1.5.4].

The DEC is also closely related to a Bayesian complexity measure known as the information ra-
tio [Russo and Van Roy, 2016, 2018, Lattimore and Szepesvári, 2019, Lattimore and Gyorgy, 2021,
etc.],which was originally introduced to analyze Bayesian algorithms such as posterior sampling. It
is also related to a more recent generalization known as the algorithmic information ratio (AIR)
[Xu and Zeevi, 2023], developed for frequentist algorithms. Additionally, the DEC is connected to
asymptotic instance-dependent complexity, as explored by Wagenmaker and Foster [2023].

2Formally, the quantity T DEC(M, ε) here is the sample complexity implied by DEC (cf. Section 4).
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3 A General Lower Bound

In this section, we introduce our general lower bound technique, the interactive Fano method, and
use it to provide minimax lower bounds for the ISDM framework.

Background: Fano’s method. To motivate our approach, we which can be viewed as a gener-
alization of the classical Fano method [Cover and Thomas, 1999], let us briefly recall the classical
approach and highlight some shortcomings. The classical Fano method applies to the statistical
estimation setting Section 2.1 (a special case of ISDM), and takes the following form.

Proposition 1 (Classical Fano method). Consider the statistical estimation setting (Section 2.1)
with parameter space Θ. Suppose that there exist »1, . . . , »m * Θ such that the following separation
condition holds:

L(»i, a) + L(»j , a) g 2∆, "i 6= j * [m],"a * A. (5)

Let µ be the uniform distribution over {»1, · · · , »m}, and let Iµ(»;Y ) denote the mutual information

of (», Y ) > Pµ generated by » > µ and Y = (Y1, . . . , Yn)
i.i.d> P». Then for any algorithm ALG, we

have

E»>µ,Y>P»
[L(», ALG(Y ))] g ∆ · sup

·>0
{· : Iµ(»;Y ) < kl(12 · ‖ 1/m)}, (6)

where the binary KL divergence is defined as kl(p ‖ q) = DKL(Bern(p) ‖ Bern(q)). This implies the
minimax lower bound

inf
ALG

sup
»*Θ

EY>P»
[L(», ALG(Y ))] g ∆

(
12 Iµ(»;Y ) + log 2

logm

)
. (7)

The logm factor in Eq. (7) reflects the complexity of estimation in the parameter space, which is a
key concept we aim to incorporate into interactive decision making. Looking deeper, the “estimation
complexity” term logm in Eq. (7) arises from the "quantile" parameter 1/m appearing in the Eq.
(6). This parameter reflects the fact that under the separation condition (5), the following quantile
probability is at most 1/m for any distribution Y > Q:

P»>µ,Y>Q(L(», ALG(Y )) < ∆) f sup
a

P»>µ(L(», a) < ∆) f 1

m
. (8)

Note that in this expression, » is drawn from the uniform prior µ and Y is drawn independently of
». To deduce Eq. (6), it suffices to choose Q = E»>µP» and apply data-processing inequality:

Iµ(»;Y ) g kl(Pµ(L(», ALG(Y )) < ∆) ‖ P»>µ,Y>Q(L(», ALG(Y )) < ∆))

g kl(Pµ(L(», ALG(Y )) < ∆) ‖ 1/m).

In particular, for any · * (0, 1) such that Iµ(»;Y ) f kl(1 2 · ‖ 1/m), we have Pµ(L(», ALG(Y )) <
∆) f 12·, using the monotonicity of the KL divergence. This argument gives Eq. (6) immediately,

and by choosing ·æ = 12 Iµ(»;Y )+log 2
logm in Eq. (6), we arrive in the canonical statement in Eq. (7).

To summarize, the structure of the classical Fano lower bound involves (i) a prior µ, (ii) a reference
distribution Q = E»>µP», and (iii) a quantile parameter · determined by the (iv) separation
condition (5) in the argument above. Crucially, we understand that the complexity of estimation
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logm arises from the quantile probability P»>µ,Y>Q(L(», ALG(Y )) < ∆), and the only use of the
traditional separation condition (5) is to further bound this quantile by 1/m as in Eq. (8).

Having gained these insights into classical Fano method, we would like to point out several limita-
tions:

• First, in the form above, it is only applicable to statistical estimation rather than general
interactive settings.

• Second, it relies on mutual information due to the choice of the reference distribution, which
depends on the evolution of the algorithm over all T rounds in interactive settings, making it
difficult to analyze in many interactive problems.

• Third, and perhaps most importantly, the separation condition (5) must hold for an arbitrary
decision a. This “hard” separation condition is unlikely to hold for general model classes, as
noted throughout the DEC approach [Foster et al., 2023b, Remark 2.3] line of work.

To address these shortcomings, we make use of core concepts (prior, reference distribution, quantile
parameter, separation condition) above, but adopt a new perspective that emphasizes and general-
izes the role of the quantile probability P»>µ,Y>Q(L(», ALG(Y )) < ∆).

The interactive Fano method. We now present our new lower bound approach, the interactive
Fano method. The core idea here is to relax the separation condition by introducing a general
reference distribution Q. We also consider a a general prior µ and a general f -divergence Df .

Theorem 2 (Interactive Fano method). Fix a f -divergence Df . Let ALG be a given algorithm,
µ * ∆(M) be a given prior distribution over models, and ∆ > 0 be a given risk level. For any
reference distribution Q * ∆(X ), we define

Ã∆,Q = PM>µ,X>Q(L(M,X) < ∆). (9)

Then, the following quantile lower bound holds:

PM>µ,X>PM,ALG(L(M,X) g ∆) g sup
Q*∆(X ),·*[0,1]

{· : EM>µ[Df (P
M,ALG,Q)] < df,·(Ã∆,Q)} , (10)

where we denote df,·(p) = Df (Bern(12 ·),Bern(p)) if p f 12 ·, and df,·(p) = 0 otherwise.

In particular, Eq. (10) implies the following in-expectation lower bound:

sup
M*M

EX>PM,ALG [L(M,X)] g EM>µEX>PM,ALG[L(M,X)]

g ∆ · sup
Q*∆(X ),·*[0,1]

{· : EM>µ[Df (P
M,ALG,Q)] < df,·(Ã∆,Q)} .

This result generalizes the classical Fano method in the prequel (as well as more sophisticated
variants [Zhang, 2006, Duchi and Wainwright, 2013, Chen et al., 2016]) in multiple ways:

• It encompasses general interactive learning/estimation problems in the ISDM framework, as
opposed to purely passive estimation. This is reflected in the fact that the distribution over
the outcome X is allowed to depend on ALG itself.

• It makes use of an arbitrary user-specified f -divergence Df and a general prior µ rather than
the discrete uniform prior, both of which are generalizations of the Fano method that have
appeared in previous works [Zhang, 2006, Duchi and Wainwright, 2013, Chen et al., 2016].
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• The most important and novel change is that Theorem 2 generalizes the “hard” separation
condition required in the classical Fano method to a “soft” notion of separation captured by
the quantile Ã∆,Q in Eq. (9). The quantile Ã∆,Q reflects the average separation under “ghost
data” X generated from an arbitrary reference distribution Q, which is independent of the
true model M > µ. In addition, instead of relying on mutual information, which is difficult to
quantify for interactive problems, we use divergence with respect to the reference distribution
Q, generalizing a central idea in Foster et al. [2021, 2023b].

In what follows, we will show that these generalizations allow the Interactive Fano method to achieve
two important desiderata: (1) unifying the methods of Fano, Le Cam, and Assouad (Section 3.1),
and (2) integrating these traditional lower bound techniques with the DEC approach [Foster et al.,
2021, 2023b] to derive new lower bounds (see Section 3.2).

3.1 Recovering non-interactive lower bounds

We begin by applying Theorem 2 to recover classical non-interactive lower bounds for statistical
estimation. Since a goal of our paper is to integrate the Fano and Assouad methods (which provide
dimensional insights but are typically challenging to apply in interactive settings) with the DEC
framework, this serves as an important sanity check to demonstrate that our framework can recover
the non-interactive versions of these methods.

3.1.1 Generalized Fano method

We begin by recovering a generalized version of the classical Fano method which subsumes Proposi-
tion 1, as well as other prior generalizations [Zhang, 2006, Duchi and Wainwright, 2013, Chen et al.,
2016] developed in statistical estimation.

Proposition 3 (Recovering the generalized Fano method). Fix an algorithm ALG and prior distri-
bution µ * ∆(M), and let Iµ,ALG(M ;X) be the mutual information between M and X under M > µ
and X > PM,ALG. The following Bayes risk lower bound holds for all ∆ g 0:

EM>µEX>PM,ALG [L(M,X)] g ∆

(
1 +

Iµ,ALG(M ;X) + log 2

log supx µ(M : L(M,x) < ∆)

)
. (11)

This result recovers the classical Fano method for statistical estimation (Proposition 1), which
corresponds to the special case where Θ = {1, 2, . . . ,m}, µ = Unif(Θ) is the uniform prior, and
supa µ(» : L(», a) < ∆) f 1/m under the separation condition (5). In its narrowest form, Fano’s
inequality—which is often used as a lemma in classical Fano’s method—is a further specialization
obtained by considering A = Θ and the indicator function 1(» 6= a). We note that Proposition 3
is stated for interactive setting, while the generalized Fano’s inequalities in previous works [Zhang,
2006, Duchi and Wainwright, 2013, Chen et al., 2016] is only stated for statistical estimation.

Proof of Proposition 3. Fix the parameter ∆ > 0 and let µ * ∆(M) be given. To apply Theorem 2,
we consider KL divergence (corresponding to f(x) = x log x) and choose the reference distribution

Q = EM>µP
M,ALG.

Then, by the choice of Q and definition of KL-divergence, we have

EM>µDKL(P
M,ALG ‖ Q) = Iµ,ALG(M ;X),

10



and by definition, we have

Ã∆,Q = PM>µ,X2>Q(L(M,X 2) < ∆) f sup
x

µ(M : L(M,x) < ∆), (12)

By Theorem 2, for any · * (0, 1) such that Iµ,ALG(M ;X) < kl(12 · ‖ Ã∆,Q), we have

EM>µEX>PM,ALG [L(M,X)] g ·∆.

In particular, we may choose

·æ := 1 +
Iµ,ALG(M ;X) + log 2

log supx µ(M : L(M,x) < ∆)
.

As long as ·æ > 0, we have Iµ,ALG(M ;X) < kl(12·æ ‖ Ã∆,Q), and hence EM>µEX>PM,ALG[L(M,X)] g
·æ∆. This gives the desired lower bound (note that if ·æ f 0, there is nothing to prove).

Note that in Proposition 3, the term log supx µ(M * M : L(M,x) < ∆) in the denominator of
Eq. (11) takes the supremum over the outcome x, resulting in a simplified expression that removes
the role of the algorithm ALG. This simplification is often sufficient to derive tight guarantees for
estimation, but is insufficient to derive tight guarantees for interactive decision making in general.
The Decision-Estimation Coefficient, which we define in Section 3.2, more precisely accounts for the
role of decisions selected by the algorithm on the loss L(M,X) (as well as the information acquired).

3.1.2 Le Cam’s two-point method and Assouad’s method

To recover Le Cam’s two-point method and Assouad’s method from Theorem 2, we appeal to the
following result, which recovers a lower bound known as the Le Cam convex hull method [LeCam,
1973, Yu, 1997] which generalizes both approaches.

Proposition 4 (Recovering Le Cam’s convex hull method). For a parameter space Θ and observa-
tion space Y, consider a class of distributions P = {P» | » * Θ} ¦ ∆(Y) indexed by Θ. Let L : Θ×
A ³ R+ be a loss function. Let Θ0 ¦ Θ and Θ1 ¦ Θ be subsets that satisfy the separation condition

L(»0, a) + L(»1, a) g 2∆, "a * A, »0 * Θ0, »1 * Θ1 (13)

for a parameter ∆ > 0. Then it holds that

inf
ALG

sup
»*Θ

EY>P»
L(», ALG(Y )) g ∆

2
max

¿0*∆(Θ0),¿1*∆(Θ1)

(
12DTV

(
P·n
¿0 , P·n

¿1

))
,

where the infimum is taken over all algorithms ALG : Y·n ³ A, and P·n
¿i is the distribution on Y·n

induced by » > ¿i, Y = (Y1, . . . , Yn)
i.i.d> P» for i * {0, 1}.

Le Cam’s convex hull method is the most general formulation of the Le Cam two-point method,
which—in its most basic form—corresponds to the case in which ¿0 and ¿1 are singletons. The convex
hull method is also capable of recovering Assouad’s method [Yu, 1997]. It is important to note that
the classical Fano’s method, e.g. in the form of Proposition 3, cannot recover Proposition 4. This is
because of fundamental differences between the divergences (KL versus TV) used in the traditional
Fano method and the convex hull method.
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Proof of Proposition 4. We recover this result by applying Theorem 2 with TV distance. We first
frame the problem in the ISDM framework. Consider the “enlarged” model class M = {M¿ : ¿ *
∆(Θ)}, where for any algorithm ALG : Y·n ³ A, the distribution PM¿ ,ALG is given by

X = (Y, ALG(Y )) > PM¿ ,ALG : » > ¿, Y = (Y1, · · · , Yn)
i.i.d> P».

In other words, PM¿ ,ALG is the distribution induced by the prior ¿ and the algorithm ALG. We then
extend the loss function to L :M×X ³ R+ as

L(M¿ ,X) := inf
»*supp(¿)

L(», ALG(Y )), "X = (Y, ALG(Y )), ¿ * ∆(Θ).

By the separation condition (13), we have L(M¿0 ,X) + L(M¿1 ,X) g 2∆ for any ¿0 * ∆(Θ0),
¿1 * ∆(Θ1). Therefore, choosing the prior µ = Unif({M¿0 ,M¿1}) and the reference distribution
Q = EM>µP

M,ALG gives

Ã∆,Q = PM>µ,X>Q(L(M,X) < ∆) f 1/2,

and by the data-processing inequality,

EM>µ[DTV (PM,ALG,Q)] =
1

2

(
DTV

(
PM¿0 ,ALG,Q

)
+DTV

(
PM¿1 ,ALG,Q

))

f 1

2
DTV

(
PM¿0 ,ALG,PM¿1 ,ALG

)
f 1

2
DTV

(
P·n
¿0 , P·n

¿1

)
.

Therefore, for any 0 f · < 1
2 2 1

2DTV

(
P·n
¿0 , P·n

¿1

)
, we have

EM>µ[DTV(P
M,ALG,Q)] f dTV,·(Ã∆,Q),

and hence applying Theorem 2 gives

E
»> ¿0+¿1

2

EY>P»
[L(», ALG(Y ))] g EM>µEX>PM,ALG [L(M,X)] g ∆

2

(
12DTV

(
P·n
¿0 , P·n

¿1

))
.

Taking the supremum over ¿0 * ∆(Θ0) and ¿1 * ∆(Θ1) gives the desired result.

We can use the Le Cam convex hull method to recover the classic two-point method and Assouad’s
method, as follows.

Example 5 (Le Cam’s two-point method). In Proposition 4, we can take the distribution ¿0 (¿1)
to be supported on a single point in Θ0 (Θ1), to recover the classical two-point method. Concretely,
under the setting and assumption of Proposition 4, we have the following two-point lower bound:

inf
ALG

sup
»*Θ

EY>P»
L(», ALG(Y )) g ∆

2
max

»0*Θ0,»1*Θ1

(
12DTV

(
P·n
»0

, P·n
»1

))
,

where P·n
» is the distribution of Y = (Y1, · · · , Yn)

i.i.d> P». ³

Example 6 (Assouad’s method). Suppose that Θ = {21, 1}d for some d g 1, and that the loss
function has the following coordinate-wise structure:

L(», a) =

d∑

j=1

Lj(», a), "» * Θ, a * A.

12



We write » >j »
2 if » and »2 differ only in the j-th coordinate. Assume that the following separation

condition holds for all j * [d]:

Lj(», a) + Lj(»
2, a) g 2∆, "a * A, » >j »

2.

To apply Proposition 4, we consider Θj
i = {» : »j = i} for i * {0, 1} and j * [d]. Then, for each

j * [d], the separation condition (13) holds for the loss Lj and the subsets Θj
0,Θ

j
1. Therefore,

applying Proposition 4 for each j * [d] with ¿j0 = Unif(Θj
0) and ¿j1 = Unif(Θj

1) gives the following
Assouad-type lower bound:

inf
ALG

sup
»*Θ

EY>P»
L(», ALG(Y )) g d∆

2
min

#j:»>j»2

(
12DTV

(
P·n
» , P·n

»2

))
.

³

3.2 Recovering DEC-based lower bounds for interactive decision making

Within the DMSO framework (Section 2.2), Foster et al. [2021, 2023b] introduced the Decision-
Estimation Coefficient (DEC) as a complexity measure governing the statistical complexity of in-
teractive decision making, providing both upper and lower bounds for any model classM. We now
show how to recover the lower bounds of Foster et al. [2021, 2023b] through Theorem 2. We focus
on the lower bounds from Foster et al. [2023b], which are based on a variant of the DEC called the
constrained DEC, and provide the tightest guarantees from prior work.

3.2.1 Background on the Decision-Estimation Coefficient

Consider the reward maximization variant of the DMSO setting (Example 4). For a model class
M and a reference model �M : Π ³ ∆(O) (not necessarily in M), we define the constrained
regret-DEC via

r-decc·(M, �M ) := inf
p*∆(Π)

sup
M*M

{
EÃ>p[L(M,Ã)] | EÃ>pD

2
H

(
M(Ã), �M (Ã)

)
f ·2

}
, (14)

and define the constrained PAC-DEC via

p-decc·(M, �M ) := inf
p,q*∆(Π)

sup
M*M

{
EÃ>p[L(M,Ã)] | EÃ>qD

2
H

(
M(Ã), �M (Ã)

)
f ·2

}
. (15)

Here, the superscript “c” indicates “constrained”, and the superscript “r” (resp. “p”) indicates “regret”
(resp. “PAC”). We further define

p-decc·(M) = sup
�M*co(M)

p-decc·(M, �M ), r-decc·(M) = sup
�M*co(M)

r-decc·(M* {�M}, �M ),

where co(M) denotes the convex hull of the model class M.

Based on these complexity measures, Foster et al. [2023b] (see also Glasgow and Rakhlin [2023]) pro-
vide the following lower and upper bounds on optimal risk and regret, under mild growth conditions
on the DECs.

Theorem 5 (Informal; Foster et al. [2023b]). Consider the reward maximization variant of the
DMSO setting (Example 4). For any model class M and T * N, the following lower and upper
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bounds hold:
(1) For PAC learning,

p-decc·(T )(M) . inf
ALG

sup
M*M

EM,ALG[RiskDM(T )] . p-decc·̄(T )(M),

where ·(T ) o
√

1/T and ·̄(T ) o
√

log|M|/T (up to logarithmic factors).

(2) For no-regret learning,

r-decc·(T )(M) · T . inf
ALG

sup
M*M

EM,ALG[RegDM(T )] . r-decc·̄(T )(M) · T + T · ·̄(T ).

Therefore, up to the log|M|-gap between the parameters ·(T ) and ·̄(T ) appearing in the lower
and upper bounds, the constrained PAC-DEC tightly captures the minimax risk of PAC learning,
and the constrained regret-DEC captures the minimax regret of no-regret learning. Informally, the
log|M| factor in the upper bound arises from the complexity of estimating the underlying model
Mæ, which is not captured by the DEC itself. There exist classesM for which the upper and lower
bounds are tight individually, but both can be loose in general.

3.2.2 A new complexity measure: The quantile Decision-Estimation Coefficient

We recover the DEC-based lower bounds from Foster et al. [2023b] through lower bounds based on
a new variant we refer to as the quantile DEC. To do so, we briefly recount the proof technique used
by Foster et al. [2023b] to prove the lower bounds in Theorem 5.

Let us focus on PAC guarantees for the DMSO setting. Given an algorithm ALG, the proof strategy is
to first fix an arbitrary reference model �M , then adversarially choose a hard alternative model M *
M (in a way that is guided by the DEC and the algorithm ALG itself) such that DTV(P

M,ALG,P
�M,ALG) is

small, yet ALG cannot achieve low risk on model M . This lower bound technique does not explicitly
require a separation condition between M and �M , which is a departure from the classical Fano and
two-point methods. Thus to recover it, the lack of an explicit separation condition in Theorem 2 will
be critical. We now apply the reasoning above within Theorem 2. For any model M , we consider
the following distributions over decisions:

qM,ALG = EM,ALG

[
1

T

T∑

t=1

qt(· | Ht21)

]
* ∆(Π), pM,ALG = EM,ALG

[
p(HT )

]
* ∆(Π). (16)

That is, qM,ALG is the expected empirical distribution over the decisions (Ã1, · · · , ÃT ) played by the
algorithm under M , and pM,ALG is the expected distribution of the final decision Ã̂.

With these definitions, we instantiate Theorem 2 with the Hellinger distance. We will use the
sub-additivity of Hellinger distance (Lemma B.1), which allows us to bound

D2
H

(
PM,ALG,P

�M,ALG
)
f 7T · EÃ>p �M,ALG

[
D2

H

(
M(Ã), �M (Ã)

)]
. (17)

Theorem 2 then yields the following intermediate result.

Lemma 6 (Recovering interactive two-point method). Let · * [0, 1] be given, and consider an
algorithm ALG. Define

∆æ
ALG,· := sup

�M*co(M)

sup
M*M

sup
∆g0

{
∆ :

√
p�M,ALG(Ã : L(M,Ã) g ∆) >

:
· +

√
14T EÃ>q �M,ALG

D2
H

(
M(Ã), �M (Ã)

)}
.

Then there exists M * M such that PM,ALG

(
L(M, Ã̂) g ∆æ

ALG,·

)
g ·.
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Proof of Lemma 6. To apply Theorem 2, we consider the squared Hellinger distance (which we
recall is a f -divergence corresponding to f(x) = 1

2(
:
x 2 1)2). Consider a fixed tuple (�M,M,∆)

with M * M, �M * co(M), and ∆ g 0 that satisfies

√
p�M,ALG(Ã : L(M,Ã) g ∆) >

:
· +

√
14T EÃ>q �M,ALG

D2
H

(
M(Ã), �M (Ã)

)
. (18)

We choose the reference distribution to be Q = P
�M,ALG, and take µ to be the singleton distribution

supported on M . Recall that for the DMSO framework, the observation is X = (HT , Ã̂), and the
loss function is L(M,X) = L(M, Ã̂) (Section 2.2). Then, by definition, we have

Ã∆,Q = PX>Q(L(M,X) < ∆) = p�M,ALG(Ã : L(M,Ã) < ∆).

Further, using the sub-additivity of Hellinger distance (17), we have

D2
H

(
PM,ALG,P

�M,ALG
)
f 7T · EÃ>q �M,ALG

D2
H

(
M(Ã), �M (Ã)

)
.

Therefore, using the condition (18), we have

1

2

(:
· 2

√
12 Ã∆,Q

)2
> D2

H

(
PM,ALG,P

�M,ALG
)
.

Hence, it holds that D2
H (PM,ALG,Q) < D2

H (12 ·, Ã∆,Q), and applying Theorem 2 gives

PM,ALG(L(M, Ã̂) g ∆) g ·.

Taking supremum over all pairs (�M,M,∆) satisfying Eq. (18) gives the desired lower bound.

The quantile Decision-Estimation Coefficient. Using Lemma 6, as a starting point, we derive
a new quantile-based variant of the DEC, which we will show can be viewed as a slight generalization
of the original PAC DEC of Foster et al. [2023b].

For any model M * M and any parameter · * [0, 1], we define the ·-quantile risk as follows:

L̂·(M,p) = sup
∆g0
{∆ : PÃ>p(L(M,Ã) g ∆) g ·};

this serves as a measure of the sub-optimality of the distribution p * ∆(Π) in terms of ·-quantile.
We now define the quantile PAC DEC as follows:

p-dec
q
·,·(M, �M ) := inf

p,q*∆(Π)
sup

M*M

{
L̂·(M,p)

∣∣∣ EÃ>qD
2
H

(
M(Ã), �M (Ã)

)
f ·2

}
, (19)

and define p-dec
q
·,·(M) := sup�M*co(M) p-dec

q
·,·(M, �M ). Applying Lemma 6, it is immediate to see

that the quantile PAC-DEC provides a lower bound on the PAC risk.

Theorem 7 (Quantile DEC lower bound). Let any T g 1 and · * [0, 1) be given, and define

··(T ) :=
1
14

√
·
T . Then, for any algorithm ALG, there exists Mæ * M such that

PMæ,ALG

(
RiskDM(T ) g p-dec

q
··(T ),·(M)

)
g ·

2
.
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Proof of Theorem 7. Fix any algorithm ALG and abbreviate · = ··(T ). Take an arbitrary parameter
∆0 < p-dec

q
·,·(M). Then there exists �M such that ∆0 < p-dec

q
·,·(M, �M ). Hence, by the definition

(19), we know that

∆0 < sup
M*M

{
L̂·(M,p�M,ALG)

∣∣∣ EÃ>q �M,ALG
D2

H

(
M(Ã), �M (Ã)

)
f ·2

}
.

Therefore, there exists M * M such that

EÃ>q �M,ALG
D2

H

(
M(Ã), �M (Ã)

)
f ·2, PÃ>p �M,ALG

(L(M,Ã) g ∆0) g ·.

This immediately implies

√
p�M,ALG(Ã : L(M,Ã) g ∆) >

√
·1 +

√
14TEÃ>q �M,ALG

D2
H

(
M(Ã), �M (Ã)

)
,

where
:
·1 =

:
· 2

√
14T·2. Notice that ·1 > ·

2 by the choice of · = 1
14

√
·
T , and hence applying

Lemma 6 shows that there exists M * M such that PM,ALG(L(M, Ã̂) g ∆0) g ·
2 . Letting ∆0 ³

p-dec
q
·,·(M) completes the proof.

Unlike the original constrained DEC lower bounds (Theorem 5), which are restricted to the reward
maximization variant of the DMSO setting (Example 4), the quantile DEC lower bound in The-
orem 7 holds for any risk function L. As a result, the lower bound applies to a broader range of
generalized PAC learning tasks, including model estimation [Chen et al., 2022a] and multi-agent
decision making [Foster et al., 2023a], where DEC-based lower bounds from prior work are loose in
general; as a concrete application, we derive a new lower bound for interactive estimation (Exam-
ple 10) in Appendix D.2. Nonetheless, Theorem 7 is powerful enough to recover the lower bounds
for reward maximization in Theorem 5, as we will now show.

3.2.3 Recovering DEC-based lower bounds using the quantile DEC

At first glance, Theorem 7 might appear to be weaker than the constrained PAC-DEC lower bound
in Theorem 5, since a conversion from quantile risk to expected risk will yield a loose lower bound.
However, by specializing to reward maximization (Example 10) and leveraging the structure of the
risk function L, we show that quantile PAC-DEC is equivalent to its constrained counterpart for
this setting, leading to a tight lower bound.

Proposition 8 (Recovering the PAC DEC lower bound). Under the reward maximization set-
ting (Example 4), for any · > 0 and · * [0, 1) it holds that

p-decc·(M) f p-dec
q:
2·,·

(M) +
4·

12 ·
.

As a corollary, we may choose · = 1
2 and ·(T ) = 1

20
:
T

in Theorem 7, so that

sup
M*M

EM,ALG[RiskDM(T )] g 1

4
p-dec

q:
2·(T ),1/2

(M) g 1

4

(
p-decc·(T )(M)2 8·(T )

)
.

Thus, the quantile PAC-DEC lower bound indeed recovers the constrained PAC-DEC lower bound
in Theorem 5.

Recovering DEC lower bounds for regret. Our quantile DEC lower bound extends to regret
with minor modifications, allowing us to recover the regret lower bounds of Foster et al. [2023b]
(Theorem 5). We defer the details to the Appendix D.1 (Theorem D.1).
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3.3 Recovering mutual information-based lower bounds for interactive decision

making

Beyond the DEC methodology, a number of prior works have proven lower bounds for interactive
decision making using extensions of the classical Fano method, typically in a somewhat case-by-case
fashion [Castro and Nowak, 2008, Agarwal et al., 2009, Raginsky and Rakhlin, 2011b, etc.]. Notably,
recent work of Rajaraman et al. [2023] provides tight lower bounds for linear and ridge bandit
problem through a variant of Fano method which involves directly analyzing the cumulative mutual
information acquired by the decision making algorithm of the course of T rounds of interaction.
This approach achieves tight dependence on the problem dimension, which is not recovered by the
standard DEC lower bound in Foster et al. [2021, 2023b].

In the following, we apply Theorem 2 to provide a mutual information-based approach for interactive
decision making, recovering Rajaraman et al. [2023].

Proposition 9 (Mutual information-based lower bound for interactive decision making). Consider
the DMSO setting. For any T g 1 and prior µ * ∆(M), we define the maximum T -round mutual
information as

Iµ(T ) := sup
ALG

Iµ,ALG(M ;HT ),

where we recall that Iµ,ALG(M ;HT ) is the mutual information between M and HT under M > µ and
HT > PM,ALG, and the supremum is taken over all possible DMSO algorithms ALG. Then for any
algorithm ALG,

sup
M*M

EM,ALG[L(M, Ã̂)] g 1

2
sup

µ*∆(M)
sup
∆>0

{
∆ | sup

Ã
µ(M : L(M,Ã) f ∆) f 1

4
exp(22Iµ(T ))

}
.

Proof of Proposition 9. Recall that we frame the DMSO setting as an instance of ISDM in Sec-
tion 2.2, where the observation is given by X = (HT , Ã̂), and the loss is L(M,X) = L(M, Ã̂). In
particular, for any prior µ * ∆(M), we have

sup
X

µ(M : L(M,X) < ∆) = sup
Ã*Π

µ(M : L(M,Ã) < ∆),

and by definition, Iµ,ALG(M ;X) f Iµ(T ). In particular, for any pair (∆, µ) such that

sup
Ã

µ(M : L(M,Ã) f ∆) f 1

4
exp(22Iµ(T )), (20)

we have
Iµ,ALG(M ;X)+log 2

log supx µ(M :L(M,x)<∆) g 21
2 , and hence applying Proposition 3 gives supM*M EM,ALG[L(M, Ã̂)] g

∆
2 . Taking supremum over all pairs (∆, µ) satisfying (20) gives the desired lower bound.

Proposition 9 is an important departure from the classical (non-interactive) Fano method (Propo-
sition 1), replacing the non-interactive mutual information by the maximum (interactive) mutual
information that can be achieved by a T -round algorithm. It allows us to analyze the T -round
evolution of the mutual information under interactions, which can lead to tighter bounds than any
analysis that proceeds on a per-round.

Using Proposition 9, along with mutual information bounds from Rajaraman et al. [2023], we
recover a Ω(d/

:
T ) PAC lower bound for d-dimensional linear bandits, which in turn recovers the

Ω(d
:
T ) regret lower bound [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Lattimore

and Szepesvári, 2020a, etc.].
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Corollary 10. For d g 2, consider the d-dimensional linear bandit problem with decision space
Π = {Ã * Rd : ‖Ã‖2 f 1}, parameter space Θ = {» * Rd : ‖»‖2 f 1}, and Gaussian rewards. The
model class isM = {M»}»*Θ, where for each » * Θ, the model M» is given by M»(Ã) = N (〈Ã, »〉 , 1).
Then Proposition 9 implies a minimax risk lower bound:

inf
ALG

sup
M*M

EM,ALG[RiskDM(T )] g Ω
(
min{d/

:
T , 1}

)
. (21)

Notably, the DEC-based lower bounds in Foster et al. [2021, 2023b] only scale as
√

d/T for this
problem setting; informally, this is because one

:
d factor in Eq. (21) arises from hardness of

exploration (which is captured by the DEC), but the other
:
d factor arises from hardness of

estimation (which is not captured by the DEC).

4 Application to Interactive Decision Making: Bandit Learnability

and Beyond

In this section, we focus on the DMSO setting and apply our general results (Theorem 2) to derive
new lower and upper bounds for interactive decision making that go beyond the previous results
based on the Decision-Estimation Coefficient [Foster et al., 2021, 2023b] by incorporating hardness
of estimation. First, in Section 4.1, we introduce a new complexity measure, the fractional covering
number, which serves as a lower and upper bound for interactive decision making with any model
classM satisfying a certain regularity condition; informally, the fractional covering number reflects
the complexity of estimating a near-optimal decision. In Section 4.2, we specialize this result to the
problem of structured bandits and complement our lower bounds based on the fractional covering
number with an upper bound, thereby establishing that the fractional covering number gives the
first complete characterization for structured bandit learnability (albeit, with an exponential gap
between the upper and lower bounds). Finally, in Section 4.3, we show how to combine the fractional
covering number with the DEC to derive tighter lower bounds for general decision making. In the
process, we close the remaining gap between the upper and lower bounds in [Foster et al., 2021,
2023b] up to a quadratic factor for any convex model class M.

Background: Gaps between DEC-based and upper and lower bounds. A fundamental
open question of the DEC framework is whether the log |M|-gap between DEC lower and upper
bounds in Theorem 5 can be closed. To highlight this gap in a more interpretable fashion, we
re-state Theorem 5 in terms of a quantity we refer to as the minimax sample complexity. Let us
focus on regret. Recall that for a fixed model class M, the following notion of minimax regret (2)
is the central objective of interest:

Regæ(M, T ) := inf
ALG

sup
M*M

EM,ALG[RegDM(T )].

Given a parameter ∆ > 0, we define the minimax sample complexity

T æ(M,∆) := inf
Tg1
{T : Regæ(M, T ) f T∆} (22)

as the least value T for which there exists an algorithm that achieves ∆T regret. Clearly, charac-
terizing T æ(M,∆) is equivalent to characterizing the minimax regret Regæ(M, T ).

Consider the following quantity induced by DEC for a class M and parameter ∆ > 0:

T DEC(M,∆) = inf
·*(0,1)

{·22 : r-decc·(M) f ∆}. (23)

18



With this definition, Theorem 5 is equivalent to the following characterization of the minimax
sample complexity T æ(M,∆):

T DEC(M,∆) . T æ(M,∆) . T DEC(M,∆) · log |M|. (24)

That is, Theorem 5 characterizes the minimax sample complexity up to a multiplicative log|M|
factor. Our main result in this section will be to use the fractional covering number and interactive
Fano method (Theorem 2), to (i) tighten the above characterization (24) for various special cases
of interest, and (ii) give a new characterization for T æ(M,∆) in structured bandit problems which
avoids spurious parameters such as log|M| altogether.

4.1 New upper and lower bounds through the fractional covering number

For the a model classM and parameter ∆ > 0, we define the fractional covering number as follows:

Nfrac(M,∆) := inf
p*∆(Π)

sup
M*M

1

p(Ã : L(M,Ã) f ∆)
. (25)

Informally, the fractional covering number Nfrac(M,∆) represents the best possible coverage over
∆-optimal decisions that can be achieved through a single exploratory distribution in the face of an
unknown model M * M.

As will now show, fractional covering number naturally arises as a lower bound on optimal risk/regret
through the interactive Fano method. We begin with the following regularity assumption.

Assumption 2 (Regular model class). There exists a constant CKL > 0 and a reference model �M
such that DKL(M(Ã) ‖ �M(Ã)) f CKL for all M * M and Ã * Π.

Assumption 2 is a mild assumption on the boundedness of KL divergence. As an example, for
structured bandits with means in [0, 1] and Gaussian rewards, Assumption 2 holds with CKL = 1

2 .
Details and more examples are provided in Appendix A.1.

Our main lower bound based on the fractional covering number follows by specializing Theorem 2
to KL divergence.

Theorem 11 (Fractional covering number lower bound). Suppose that M satisfies Assumption 2
with parameter CKL > 0. Then for any algorithm ALG and ∆ > 0, unless

T g logNfrac(M, 2∆) 2 2

2CKL
,

there exists Mæ * M such that

PMæ,ALG[L(Mæ, Ã̂) g ∆] g 1

2
.

In particular, for (generalized) no-regret learning, fractional covering number also implies a regret
lower bound through Theorem 11.3

Corollary 12. Suppose that Assumption 2 holds. Then for any ∆ > 0, it holds that

T æ(M,∆) g logNfrac(M, 2∆) 2 2

2CKL
.

3For any T -round no-regret algorithm ALG, we can take the output decision π̂ ∼ Unif(π1, · · · , πT ) (online-to-batch

conversion), and then EM,ALG[RiskDM(T )] =
1

T
EM,ALG[Reg

DM
(T )] for any model M .
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That is, for any algorithm to achieve ∆T -regret, it is necessary to have T = Ω(logNfrac(M, 2∆)).
Combining this with Theorem 5, we conclude that boundedness of both the DEC and the fractional
covering number is necessary for learning with any model class M.

Upper bounds based on the fractional covering number. We now complement Theorem 11
by showing that for any reward maximization instance of the DMSO setting (Example 4), bounded-
ness of the fractional covering number alone is also sufficient to derive upper bounds on the sample
complexity of learning. The caveat is that while the lower bound is logarithmic in Nfrac(M,∆), the
upper bound will be polynomial.

Theorem 13 (Fractional covering number upper bound). Consider the reward maximization task
(Example 4). There exists an algorithm that for any classM and ∆ > 0, ensures that with probability
at least 12 ·,

RegDM(T ) f T ·∆+O(log(T/·)) ·
√

T · Nfrac(M,∆).

Combining Theorem 11 and Theorem 13 yields the following bounds on T æ(M,∆) (omitting poly-
logarithmic factors):

logNfrac(M, 2∆)

CKL
. T æ(M,∆) .

Nfrac(M,∆/2)

∆2
. (26)

The gap between the lower and upper bounds of Eq. (26) is exponential; However, for model classes
with CKL = O(1), Eq. (26) is enough to provide a characterization of finite-time learnability. As
a special case, we now show that fractional covering number characterizes the learnability of any
structured bandit problem.

4.1.1 Properties of the fractional covering number

Before proceeding to applications, let us briefly discuss some connections between the fractional
covering number and classical notions of covering number considered in the context of statistical
estimation.

To start, we recall that for many standard statistical estimation tasks such as regression and non-
parametric estimation, the risk function L is given by a (pseudo) metric (e.g., 32 distance between
parameters or mean-squared error in predictions). The following lemma shows that in this case, the
fractional covering number coincides with the classical covering number induced by the metric, e.g.,
in location estimation (Example 1), density estimation (Example 3), etc.

Lemma 14 (Connection to classical covering numbers). Suppose the decision space Π is equipped
with a pseudo-metric Ã : Π×Π³ R+ and there is a map M 7³ ÃM * Π such that the risk function
is given by

L(M,Ã) = Ã(ÃM , Ã), "M * M, Ã * Π. (27)

Let ΠM := {ÃM : M * M} ¦ Π, and define N(ΠM,∆) to be the ∆-covering number of ΠM under
Ã. Then

N(ΠM, 2∆) f Nfrac(M,∆) f N(ΠM,∆).
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Duality between fractional covering and fractional packing For classical covering numbers
with respect to a pseudo-metric (as in Lemma 14), it is known that there is a duality between
covering and packing. In spite of a lack of metric structure for the general setting we study, we can
show that fractional covering number naturally admits a dual representation in terms of a fractional
packing number. Specifically, it holds that

inf
µ*∆(M)

sup
Ã*Π

µ(M : L(M,Ã) f ∆) = sup
p*∆(Π)

inf
M*M

p(Ã : L(M,Ã) f ∆),

as long as the minimax theorem can be applied (e.g. when Π orM are finite or satisfy appropriate
compactness conditions). Therefore, in this case, we have

Nfrac(M,∆) = sup
µ*∆(M)

inf
Ã*Π

1

µ(M : L(M,Ã) f ∆)
(28)

which can be interpreted as a fractional packing number. We mention in passing that using this
interpretation, it is possible to derive Theorem 11 directly from Proposition 9.

Recovering the Yang-Barron method. As a simple example of the fractional covering number,
we recover and further generalize the well-known Yang-Barron method [Yang and Barron, 1999] for
statistical estimation problems (see also [Wainwright, 2019, Section 15.3.5]).

Example 7 (Yang-Barron method). For a statistical estimation problem with model class M, we
define the KL covering number of M as

NKL(M, ·) := min

{
k : #M1, · · · ,Mk * M, such that "M * M,min

i*[k]
DKL(M ‖M i) f ·2

}
.

For a fixed parameter · > 0, we can pick k = NKL(M, ·) and M1, · · · ,Mk * M such that
mini*[k]DKL(M ‖ M i) f ·2 for all M * M. Then, let us consider the localized sub-class Mi :=
{M * M : DKL(M ‖ M i) f ·2} for each i * [k]. It is clear that Assumption 2 holds for each Mi

with CKL f ·2. Further, using M =
⋃n

i=1Mi, we have

logNfrac(M,∆) f max
i*[k]

logNfrac(Mi,∆) + log k. (29)

For details, see Appendix G.4. Therefore, applying Theorem 11 toMi and take supremum over i *
[k] and · > 0 gives the following result: For any algorithm ALG to achieve sup»*Θ E»,ALGL(M,Ã) f ∆,
it is necessary that

logNfrac(M,∆) f inf
·>0

(
2T·2 + logNKL(M, ·)

)
+ 2.

When the risk function L is given by a metric (cf. Eq. (27)), this inequality coincides with the
Yang-Barron method formulated in Wainwright [2019, Section 15.3.5], as the fractional covering
number Nfrac(M,∆) can be lower bounded by the covering number (Lemma 14).

Recovering the local packing lower bound for statistical estimation. As a simple example
of the fractional covering number, we recover the well-known local packing-based lower bound [Birgé,
1986] for the classical problem of location estimation [Wainwright, 2019].
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Example 8 (Local packing lower bound for location estimation). In the location estimation task
(Example 1), recall that the model class is given by M = {M» : » * Θ}, where M» = N (», Id).
Consider the local packing number of Θ around »æ * Θ, which is given by

Nloc(Θ,∆; »æ) := max

{
k : #»1, · · · , »k * Θ,

∥∥»i 2 »æ
∥∥ f ∆,

∥∥»i 2 »j
∥∥ >

∆

2
,"i 6= j

}
.

Then, for the localized sub-class M·,»æ := {M» : ‖» 2 »æ‖ f ·} ¦ M, Assumption 2 holds with
CKL f 1

2·
2, and we also have Nfrac(M·,»æ , ·/4) g Nloc(Θ, ·; »æ). Therefore, we can apply Theorem 11

to M·,»æ and take supremum over all »æ * Θ and · g 8∆ to show the following result: For any
algorithm ALG to achieve sup»*Θ E»,ALG‖Ã̂ 2 »‖ f ∆, it is necessary that

T g sup
·g8∆

logNloc(Θ, ·) 2 2

·2
,

where Nloc(Θ, ·) = sup»æ*ΘNloc(Θ, ·; »æ) is the local packing number of Θ. This lower bound is
known to be tight in general [Birgé, 1983, 1986, Le Cam, 1986, etc.]. ³

4.2 Application: Bandit learnability

As our main application of the fractional covering number, we provide a new characterization of
learnability (i.e., asymptotic achievability of non-trivial sample complexity) for structured bandits
with general function approximation. In the literature on statistical learning, there is a long line of
work which characterizes learnability of hypothesis classes in terms of abstract complexity measures.
Examples include the Vapnik-Chervonenkis dimension for binary classification [Vapnik and Cher-
vonenkis, 1971, Blumer et al., 1989], the Littlestone dimension [Littlestone, 1988] for online classifi-
cation [Ben-David et al., 2009] and differentially private classification [Bun et al., 2020, Alon et al.,
2022], and their real-valued counterparts (e.g. scale-sensitive dimensions) for regression [Bartlett
et al., 1994, Alon et al., 1997].

Beyond the settings above—particularly for interactive settings—learnability is less well understood.
The question of what complexity measure characterizes bandit learnability has been explored in
Russo and Van Roy [2013], Abernethy et al. [2013], Simchowitz et al. [2017], Hashimoto et al.
[2018, etc.], but a complete resolution has yet to be reached. Remarkably, Ben-David et al. [2019]
demonstrate that there exists a simple and natural learning task for which it is impossible to
characterize learnability through any combinatorial dimension. More recently, Hanneke and Yang
[2023] provide similar impossibility results for characterizing the learnability of noiseless structured
noiseless bandits with real-valued rewards.

Our characterization bypasses the impossibility results of Hanneke and Yang [2023]. Specifically,
Hanneke and Yang [2023] show that for noiseless structured bandit problems, there exist classes
H for which bandit learnability is independent of the axioms of ZFC. Therefore, their results rule
out the possibility of a characterization of noiseless bandit learnability through any combinatorial
dimension [Ben-David et al., 2019] for the problem class. Our characterization is compatible with
this result because the argument of Hanneke and Yang [2023] relies on the noiseless nature of the
bandit problem, and hence does not preclude a characterization for the noisy setting.

Structured bandit setting and learnability characterization. We consider a structured
bandit setting given by a reward function class H ¦ (Π ³ [0, 1]). The protocol is as follows: For
each round t * [T ], the learner chooses a decision Ãt * Π, then receives a reward rt > N

(
hæ(Ã

t), 1
)
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in response, where the mean reward function hæ * H. This corresponds to an instance of the DMSO
framework with induced model classMH = {Ã 7³ N (h(Ã), 1) | h * H}.

MH = {Ã 7³ N (h(Ã), 1) | h * H}.
We define the fractional covering number for H via

Nfrac(H,∆) := Nfrac(MH,∆) = inf
p*∆(Π)

sup
h*H

1

p(Ã : h(Ãh)2 h(Ã) f ∆)
, (30)

where we denote Ãh := argmaxÃ*Π h(Ã). This exactly coincides with the notion of maximin volume
of Hanneke and Yang [2023], which was shown to give a tight characterization of learnability for the
special case of noiseless binary-valued structured bandits. We discuss the connection to Hanneke
and Yang [2023] in more detail at the end of this section.

It is straightforward to show that for any structured bandit problem, the induced classMH satisfies
Assumption 2 with CKL = 1

2 (see Appendix A.1 for details). This leads to the following lower bound.

Corollary 15 (Lower bound for stochastic bandits). For the bandit model class MH defined as
above, it holds that T æ(MH,∆) g 2 logNfrac(H,∆)2 2.

Combining this result with the upper bound in Theorem 13, we obtain the following bounds on the
minimax-optimal sample complexity for the structure bandit problem with class H:

logNfrac(H, 2∆) . T æ(MH,∆) .
Nfrac(H,∆/2)

∆2
. (31)

This implies that Nfrac(H,∆) characterizes learnability for structured bandits.

Theorem 16 (Structured bandit learnability). For a given reward function class H, the bandit
problem class MH is learnable for finite T if and only if Nfrac(H,∆) < +> for all ∆ > 0.

We remark that the lower and upper bound in Eq. (31) cannot be improved in terms of the fractional
covering number alone:

• For K-armed bandits, we have Nfrac(H,∆) f K, meaning the upper bound is tight.

• For d-dimensional linear bandits, we have logNfrac(H,∆) = Ω(d), meaning the lower bound
is nearly tight.

Nevertheless, the exponential gap in Eq. (31) can be partly mitigated by combining the fractional
covering number with the DEC, as we will show in Section 4.3.

Remark 17 (Noise distribution). We note that the upper bound in Eq. (31) applies to any reward
distribution with sub-Gaussian noise (cf. Appendix G.2). Meanwhile, since the lower bound in
Corollary 15 is specialized to Gaussian noise, it acts as a lower bound for the broader class of sub-
Gaussian noise distributions as well. We expect the lower bound to extend to other “reasonable”
noise distributions.

Connection to the maximin volume. Complementary to the hardness results, Hanneke and
Yang [2023] propose a complexity measure called the maximin volume which tightly characterizes
the complexity of learning noiseless binary-valued structured bandit problems. For such problem
classes, the fractional covering number is exactly the inverse of the maximin volume. While the
fractional covering number can be viewed as a generalization of the maximin volume in this sense,
we emphasize that the fractional covering number directly arises from our general lower bound
framework, and is applicable to general decision making problems in the DMSO framework.
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4.3 Improved upper bounds for general decision making

To close this section, we derive tighter upper bounds that scale with logNfrac(M,∆) by combin-
ing the fractional covering number with the Decision-Estimation Coefficient.We focus on regret
minimization, but upper bounds for PAC can be derived similarly.

To state our upper bound in the simplest form possible, we focus on the the reward maximization set-
ting variant of the DMSO setting, and make the following regularity assumption on the DEC forM.4

Assumption 3 (Regularity of constrained DEC). A function d : [0, 1]³ R is said to have moderate

decay if d(·) g 10· "· * [0, 1], and there exists a constant c g 1 such that cd(·)· g d(·2)
·2 for all

·2 g ·. We assume the function · 7³ r-decc·(co(M)), as a function of ·, satisfies moderate decay for
a constant creg g 1.

This condition essentially requires that the DEC for co(M) exhibits moderate growth, which means
that learning with co(M) is not “too easy”.For a broad range of classes M (see, e.g., Foster et al.
[2023b]), we have r-decc·(co(M)) o L·Ã for some problem-dependent parameter L > 0 and Ã * (0, 1],
so that Assumption 3 is automatically satisfied.

We now state our upper bound, which tightens Theorem 5 by replacing the log|M| dependence in
the upper bound with logNfrac(M,∆) (with the caveat that the upper bound scales with the DEC
for the convexified model class co(M)).

Theorem 18 (Upper bound with DEC and fractional covering number). Consider the reward
maximization variant of the DMSO setting. Let M be any class for which Assumption 3 holds, and
assume that Π is finite5. Let ·̄(T ) o

√
logNfrac(M,∆)/T . Then for any ∆ > 0, Algorithm 1 (see

Appendix F.1) ensures that with high probability,

RegDM f T ·∆+O
(
cregT

√
log T

)
· r-decc·̄(T )(co(M)).

Restating this upper bound in terms of minimax sample complexity and combining it with the
preceding lower bounds yields the following result.

Theorem 19. For any class M that satisfies Assumption 2 and 3, we have

max

{
T DEC(M,∆),

logNfrac(M, 2∆)

CKL

}
. T æ(M,∆) . T DEC(co(M),∆) · logNfrac(M,∆/2), (32)

up to dependence on creg and logarithmic factors.

In particular, when the model class M is convex (i.e. co(M) =M) and CKL = O(1), Theorem 19
provides lower and upper bounds for learning withM that match up to a quadratic factor. Indeed,
for convex model classes, the upper bound of Eq. (32) is always tighter than Eq. (24) (and also
tighter than the result in Foster et al. [2022]), as by definition we have

logNfrac(M,∆) f logNfrac(M, 0) f min {log |M|, log |Π|} , "∆ > 0.

Furthermore, logNfrac(M,∆) can be significantly smaller than min {log |M|, log |Π|}:
4Both restrictions can be removed; the fully general upper bound is detailed in Appendix F.1 and Appendix G.5.

Note that a similar growth assumption is also required in the regret upper bound in Theorem 5.
5The finiteness assumption on the decision space Π can be relaxed, e.g. to require that Π admits finite covering

number.
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• For d-dimensional concave bandits (see e.g. Foster et al. [2021, Section 6.1.2]), the log covering
number of M is eΩ(d), while we have logNfrac(M,∆) f Õ(d).

• For any class of structured contextual bandits (Appendix F.2), we have log |Π| = |C| log |A|
and the log covering number ofM is Ω(|C|), while logNfrac(M,∆) can be bounded even when
the context space C is infinite.

This reflects the fact that the fractional covering number adapts to the intrinsic complexity of
estimation in interactive decision making.

Remark 20 (Necessity of convex hull). We note that in general, we cannot replace the T DEC(co(M), ·)
by T DEC(M, ·) in the upper bound of Eq. (32). Specifically, Chen et al. [2023] construct a classM of
partially observable MDPs, such that T æ(M, ·) can be arbitrarily is not polynomial in T DEC(M, ·)
and log |Π| (see also the discussion in Chen et al. [2023, Appendix I]). Therefore, the upper bound
of Theorem 18 cannot be improved to scale with the DEC for M.

Remark 21 (Regularity condition). In Theorem 18 and Theorem 19, we assume the regularity
of DEC (Assumption 3) for a clean presentation of the upper bound. Without the regularity
condition, the upper bound of Eq. (32) becomes slightly worse (with an extra ∆21 factor). A
detailed discussion is deferred to Appendix G.5 (Remark G.4).

4.3.1 Application: Structured bandits

We now instantiate our general results to give tighter guarantees for structured bandits, improving
the upper bounds in Section 4.2.

DEC for structured bandits. We consider the same structured bandit protocol as in Section 4.2;
recall that H denotes the reward function class and MH denotes the induced model class. In what
follows, we simplify the results in Theorem 19 to be stated purely in terms of H. For a reference
value function sh : C × A ³ [0, 1], we define

r-decc·(H,sh) := inf
p*∆(Π)

sup
h*H

{
EÃ>p

[
h(Ãh)2 h(Ã)

] ∣∣ EÃ>p(h(Ã) 2 sh(Ã))2 f ·2
}
,

where we recall that Ãh := maxÃ*Π h(Ã). We then define the DEC for H as

r-decc·(H) = sup
sh*co(H)

r-decc·(H * {sh},sh).

As a corollary of Theorem F.2, the r-decc·(H) and logNfrac(H,∆) together provide an upper bound
for structured bandits with H.

Theorem 22. Let H be given. Suppose that Π is finite, and that · 7³ r-decc·(co(H)) satisfies mod-
erate decay as a function of · (Assumption 3) with constant creg. Let ·̄(T ) o

√
logNfrac(H,∆)/T .

The Algorithm 1 ensures that high probability,

RegDM f T ·∆+O(cregT
√

log T ) · r-decc·̄(T )(co(H)).

As a corollary, the minimax sample complexity of structured bandit learning with H is bounded as

max
{
T DEC(H,∆), logNfrac(H, 2∆)

}
. T æ(MH,∆) . T DEC(co(H),∆) · logNfrac(H,∆/2), (33)

where we denote T DEC(H,∆) = inf·*(0,1){·22 : r-decc·(H) f ∆} (following Eq. (23)) and omit
logarithmic factors and dependence on the constant creg.
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There are many standard structured bandit problems where the value function class H is convex,
including multi-armed bandits, linear bandits, and non-parametric bandits (with smoothness [Rigol-
let and Zeevi, 2010], or concavity [Lattimore, 2020], or sub-modularity [Nie et al., 2022], or etc.).
For these problem classes, the complexity of no-regret learning is completely characterized by the
DEC of H and the fractional covering number Nfrac(H,∆) (up to a quadratic factor).

We also note that the lower bound of Eq. (33) is proven for Gaussian noise, while our upper bound
applies to a much more general class of reward distributions (with bounded variance).

Additional result: Structured contextual bandits We also apply the results of Theorem 18
and Theorem 19 to structured contextual bandits, providing new characterization in terms of the
DEC and the fractional covering number. The detailed discussion is presented in Appendix F.2.
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A Additional Background on DMSO Framework

The DMSO framework (Section 1.2) encompasses a wide range of learning goals beyond the reward
maximization setting [Foster et al., 2021, 2023b], including reward-free learning, model estimation,
and preference-based learning [Chen et al., 2022a], and also multi-agent decision making and partial
monitoring [Foster et al., 2023a]. We provide two examples below for illustration.

Example 9 (Preference-based learning). In preference-based learning, each model M * M is
assigned with a comparison function CM : Π × Π³ R (where CM(Ã1, Ã2) typically the probability
of Ç1 { Ç2 for Ç1 > (M,Ã1), Ç2 > (M,Ã2)), and the risk function is specified by L(M,Ã) =
maxÃæ CM(Ãæ, Ã). Chen et al. [2022a] provide lower and upper bounds for this setting in terms of
Preference-based DEC (PBDEC).
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Example 10 (Interactive estimation). In the setting of interactive estimation (a generalized PAC
learning goal), each model M * M is assigned with a parameter »M * Θ, which is the parameter
that the agent aims to estimate. The decision space Π = Π0 × Θ, where each decision Ã * Π
consists of Ã = (Ã0, »), where Ã0 is the explorative policy to interact with the model6, and » is
the estimator of the model parameter. In this setting, we define L(M,Ã) = Dist(»M , ») for certain
distance Dist(·, ·).
This setting is an interactive version of the statistical estimation task, and it is also a generalization
of the model estimation task studied in Chen et al. [2022a]. Natural examples include estimating
some coordinates of the parameter » in linear bandits. We provide nearly tight guarantee for this
setting in Appendix D.2.

Applicability of our results Our general interactive Fano method Lemma 6 applies to any
generalized no-regret / PAC learning goal (Section 1.2). Therefore, our risk lower bound in terms of
quantile PAC-DEC Theorem 7 and fractional covering number lower bound Theorem 11 both apply
to any generalized learning goal. For a concrete example, see Appendix D.2 for the application to
interactive estimation.

A.1 Examples for Assumption 2

In this section, we provide three general types of model classes where Assumption 2 holds with mild
CKL. It is worth noting that in Assumption 2, the reference model �M does not necessarily belong
to co(M).

Example 11 (Gaussian bandits). Suppose that H ¦ (A ³ [0, 1]) is a class of mean value function,
and MH,V is the class of the model M associated with a hM * H:

M(Ã) = N (hM(Ã), 1), Ã * A.

Then, consider the reference model �M given by �M (Ã) = N (0, 1)"Ã * A. It is clear that for any Ã,
and model M * MH,V,

DKL(M(Ã) ‖ �M (Ã)) =
1

2
hM(Ã)2 f 1

2
,

and hence Assumption 2 holds with CKL = 1
2 .

Example 12 (Problems with finite observations). Suppose that the observation space O is finite.
Then, consider the reference model �M given by �M(Ã) = Unif(O)"Ã * Π. It holds that

DKL(M(Ã) ‖ �M(Ã)) f log |O|, "Ã * Π,

and hence Assumption 2 holds with CKL = log |O|.
Example 12 can further be generalized to infinite observation space, as long as every model in M
admits a bounded density function with respect to the same base measure.

Example 13 (Contextual bandits). Suppose that H ¦ (C × A ³ [0, 1]) is a class of mean value
function, andMH,V is the class of the model M specified by a value function hM * H and a context
distribution ¿M * ∆(C). More specifically, for any Ã * Π = (C ³ A), M(Ã) is the distribution of
(c, a, r), generated by c > ¿M , a = Ã(c), and r > N (hM(c, a), 1).

6In other words, M(π) only depends on π through π0.
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Then, consider the reference model �M specified by ¿�M = Unif(C) and h
�M c 0. It is clear that for

any Ã, and model M * MH,V,

DKL(M(Ã) ‖ �M(Ã)) f log |C|+ 1

and hence Assumption 2 holds with CKL = log |C|+ 1.

The factor of log |C| in Example 13 is due to the definition (45) of logNfrac(H,∆), where we take
supremum over all context distribution µ. This factor can be removed if we instead restrict the
model class to have a common context distribution (i.e., the setting where context distribution is
known or can be estimated from samples).

B Technical Tools

The following lemma is the “chain rule” of Hellinger distance [Jayram, 2009] (see also Duchi [2024,
Lemma 11.5.3] and Foster et al. [2024, Lemma D.2]).

Lemma B.1 (Sub-additivity for squared Hellinger distance). Let (X1,F1), . . . , (XT ,FT ) be a se-
quence of measurable spaces, and let X t =

∏t
i=1 Xi and F t =

⊗t
i=1Fi. For each t, let Pt(· | ·) and

Qt(· | ·) be probability kernels from (X t21,F t21) to (Xt,Ft).

Let P and Q be the laws of X1, . . . ,XT under Xt > Pt(· | X1:t21) and Xt > Qt(· | X1:t21) respectively.
Then it holds that

D2
H(P,Q) f 7 EP

[
T∑

t=1

D2
H

(
Pt(· | X1:t21),Q

t(· | X1:t21)
)
]
. (34)

In particular, given a T -round algorithm ALG and a model M , we can consider random variables
X1 = (Ã1, o1), · · · ,XT = (ÃT , oT ). Then, PM,ALG(Xt = · | X1:t21) is the distribution of (Ãt, ot),
where Ãt > pt(· | Ã1, o1, · · · , Ãt21, ot21), and ot > M(Ãt). Therefore, applying Lemma B.1 to
D2

H

(
PM,ALG,P�M,ALG

)
gives the following corollary.

Corollary B.2. For any T -round algorithm ALG, it holds that

1

2
DTV

(
PM,ALG,P

�M,ALG
)2 f D2

H

(
PM,ALG,P

�M,ALG
)
f 7T · EÃ>p�M,ALG

[
D2

H

(
M(Ã), �M (Ã)

)]
.

Lemma B.3 (Foster et al. [2021, Lemma A.4]). For any sequence of real-valued random variables
(Xt)tfT adapted to a filtration (Ft)tfT , it holds that with probability at least 12 ·, for all t f T ,

t∑

s=1

2 logE [exp(2Xs)| Fs21] f
t∑

s=1

Xs + log (1/·) .

Lemma B.4. For any pair of random variable (X,Y ), it holds that

EX>PX

[
D2

H

(
PY |X ,QY |X

)]
f 2D2

H (PX,Y ,QX,Y ) .

Lemma B.5. Suppose that for a random variable X, its mean and variance under P is µP and Ã2
P,

and its mean and variance under Q is µQ and Ã2
Q. Then it holds that

|µP 2 µQ|2 f 4

(
Ã2
P + Ã2

Q +
1

2
|µP 2 µQ|2

)
D2

H (P,Q) .
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In particular, when µP, µQ, ÃP, ÃQ * [0, 1], we have D2
H (P,Q) g 1

10 |µP 2 µQ|2.
On the other hand, when P = N (µP, 1),Q = N (µQ, 1), then D2

H (P,Q) f 1
8 |µP 2 µQ|2.

Proof. Let ¿ = P+Q
2 be the common base measure and set µ =

µP+µQ

2 . Then

|µP 2 µQ|2 = |EP[X 2 µ]2 EQ[X 2 µ]|2

=

∣∣∣∣E¿

[(
dP

d¿
2 dP

d¿

)
(X 2 µ)

]∣∣∣∣
2

f E¿

þ
ø
(√

dP

d¿
2
√

dP

d¿

)2
ù
ûE¿

þ
ø
(√

dP

d¿
+

√
dP

d¿

)2

(X 2 µ)2

ù
û

f 2D2
H (P,Q) · 2

(
EP(X 2 µ)2 + EQ(X 2 µ)2

)

= 4

(
Ã2
P + Ã2

Q +
1

2
|µP 2 µQ|2

)
D2

H (P,Q) .

C Proofs from Section 3

In this section, we present proofs for the results in Section 3, except Section 3.2.

C.1 Proof of Theorem 2

In the following, we fix a prior µ * ∆(M), parameter ∆ > 0, f -divergence Df , and an algorithm
ALG. For simplicity, we denote Df (x, y) = Df (Bern(x),Bern(y)) for x, y * [0, 1].

We only need to prove the following claim.

Claim. Suppose that there exists a reference distribution Q such that

df,·(Ã∆,Q) > EM>µDf (P
M,ALG,Q),

then PM>µ,X>PM,ALG(L(M,X) g ∆) g ·.

We denote Ã̄∆ = PM>µ,X>PM,ALG(L(M,X) < ∆), and recall that we define Ã∆,Q = PM>µ,X>Q(L(M,X) <
∆). We then consider the following two distributions over M×X :

P0 : M > µ,X > PM,ALG, P1 : M > µ,X > Q.

By the data processing inequality of f -divergence, we have

Df (Ã̄∆, Ã∆,Q) f Df (P0, P1) = EM>µDf (P
M,ALG,Q).

Therefore, using df,·(Ã∆,Q) > EM>µDf (P
M,ALG,Q), we know that df,·(Ã∆,Q) > Df (Ã̄∆, Ã∆,Q). In

particular, this implies Ã∆,Q < 12 ·, and

Df (Ã̄∆, Ã∆,Q) < Df (12 ·, Ã∆,Q)

Hence, we consider two cases: (1) Ã̄∆ f Ã∆,Q, and (2) Ã̄∆ > Ã∆,Q. For case (1), we have Ã̄∆ f
Ã∆,Q < 1 2 ·. For case (2), we can use the monotone property of Df (Lemma C.1), which also
implies Ã̄∆ < 12 ·.
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Therefore, it holds that Ã̄∆ < 12 ·, and

PM>µ,X>PM,ALG(L(M,X) g ∆) = 12 Ã̄∆ > ·.

Hence, the proof of Eq. (10) is completed. The in-expectation lower bounds then follows from the
fact that

EM>µEX>PM,ALG[L(M,X)] g∆ · PM>µ,X>PM,ALG(L(M,X) g ∆).

Lemma C.1. For x, y * [0, 1], the quantity Df (x, y) is increasing with respect to x when x g y.

Proof of Lemma C.1 Fix any 1 g x > z g y g 0, we define

p = y · x2 z

x2 y
* [0, 1], q = 12 (12 y) · x2 z

x2 y
* [0, 1].

Then, by definition,

p(12 x) + qx = z, p(12 y) + qy = y,

and hence for the channel P from {0, 1} to itself given by P (·|0) = Bern(p), P (·|1) = Bern(q), it
holds that

P ç Bern(x) = Bern(z), P ç Bern(y) = Bern(y).

Therefore, by data-processing inequality, we have

Df (Bern(z),Bern(y)) f Df (Bern(x),Bern(y)).

This is the desired result.

C.2 Proof of Corollary 10

Consider the following setup of linear bandits: let »æ * Rd be an unknown parameter. At time
t, the learner chooses an action Ãt * {Ã * Rd : ‖Ã‖2 f 1} and receives a Gaussian reward rt >
N
(〈
»æ, Ãt

〉
, 1
)
. For T * N, let HT = (Ã1, r1, · · · , ÃT , rT ) be the observed history up to time T . The

central claim of this section is the following upper bound on the mutual information.

Theorem C.2. For any r > 0, we define the prior µr over Bd(r) by

µr : »
æ > N

(
0,

r2

4d
Id

)
| ‖»æ‖ f r.

Then for any algorithm ALG, we have

Iµr ,ALG(»
æ;HT ) f d log

(
1 +

r2T

4d2

)
.

Proof. Denote » = r2

4 . We first prove that if »æ > µ = N (0, »Id/d), then

Iµ,ALG(»
æ;HT ) f d

2
log

(
1 +

»T

d2

)
. (35)
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By the Bayes rule, the posterior distribution of »æ conditioned on (Ht21, Ãt) is

p(»æ | Ht21, Ãt) ? exp

(
2d‖»æ‖22

2»
2 1

2

∑

s<t

(rs 2 〈»æ, Ãs〉)2
)
,

which is a Gaussian distribution with covariance (Σt21)21, where

Σt21 =
d

»
Id +

∑

s<t

Ãs(Ãs)¦.

Therefore, by the chain rule of mutual information, we have

Iµ,ALG(»
æ;HT ) =

T∑

t=1

Iµ,ALG(»
æ; rt | Ht21, Ãt)

=
T∑

t=1

Eµ,ALG

[
1

2
log
(
1 + (Ãt)¦(Σt21)21Ãt

)]

= Eµ,ALG

[
1

2

T∑

t=1

log
det(Σt)

det(Σt21)

]

= Eµ,ALG

[
1

2
log

det(ΣT )

(d/»)d

]

f Eµ,ALG

[
d

2
log

Tr(ΣT )/d

d/»

]

f d

2
log

(
1 +

»T

d2

)
,

which is exactly Eq. (35).

Next we deduce the claimed result from Eq. (35). Consider the random variable Z = 1 {‖»æ‖2 f r} *
{0, 1}, and then

d

2
log

(
1 +

»T

d2

)
g Iµ,ALG(»

æ;HT )

g Iµ,ALG(»
æ;HT | Z)

g P(Z = 1) · Iµr ,ALG(»
æ;HT |Z = 1)

= Pµ(‖»æ‖2 f r) · Iµr ,ALG(»
æ;HT ).

Here the first inequality is Eq. (35), the second inequality follows from I(X;Y )2 I(X;Y | f(X)) =
I(f(X);Y )2I(f(X);Y | X) g 0, the third identity follows from the definition of conditional mutual
information. Finally, noticing that Pµ(‖»æ‖2 f r) g 1

2 by concentration of Ç2
d random variable, we

arrive at the desired statement.

Next we show how to translate the mutual information upper bound in Theorem C.2 to lower bounds
of estimation and regret.

Theorem C.3. Let T g 1, r = min
{

c0d:
T
, 1
}

for a small absolute constant c0, and consider the

prior µ = µr. For any T -round algorithm with output Ã̂, Proposition 9 implies that

Eµ,ALG

[∥∥∥∥Ã̂ 2
»æ

‖»æ‖

∥∥∥∥
2
]
g 1

4
.
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Therefore, we may deduce that

sup
Mæ*M

EMæ,ALG[RiskDM(T )] & min

{
d:
T
, 1

}
.

Proof. We first prove the first inequality by applying Proposition 9 to the following risk function

L̃(M», Ã) = ‖Ã 2 normalize(»)‖22,

where we denote normalize(») = »
‖»‖ * Bd(1). Notice that for » * Θ, we have

L(M», Ã) = ‖»‖ 2 〈», Ã〉 g ‖»‖ ·
∥∥∥∥Ã 2

»

‖»‖

∥∥∥∥
2

= ‖»‖ · L̃(M», Ã).

For ∆ * (0, 1), we first claim that

Ã∆ := sup
Ã

µ
(
» : L̃(M», Ã) f ∆

)
= O

(:
d∆(d21)/2

)
. (36)

To see so, by symmetry of Gaussian distribution, we know for fixed any Ã * Rd,

µ
(
» : L̃(M», Ã) f ∆

)
= P»>Unif(Sd21)

(
» : ‖» 2 Ã‖2 f ∆

)
,

and hence we can instead consider the uniform distribution over the sphere Sd21. By rotational
invariance, we may assume that Ã = (x, 0, · · · , 0), with x g 0. Then

{
» * Sd21 : ‖» 2 Ã‖22 f ∆

}
=

{
» * Sd21 : »1 g

x2 + 12∆

2x

}
¦
{
» * Sd21 : »1 g

:
12∆

}
.

By Bubeck et al. [2016, Section 2], for » > Unif(Sd21), the density of »1 * [21, 1] is given by

f(»1) =
Γ(d/2)

Γ((d2 1)/2)
:
Ã
(12 »21)

(d23)/2.

Therefore,

Ã∆ f
∫ 1

:
12∆

f(»1)d»1 = O(
:
d) · (12

:
12∆)∆(d23)/2 = O

(:
d∆(d21)/2

)
.

With the upper bound (36) of Ã∆, we know that for ∆ = 1
2 , it holds

log(1/Ã∆) g 2Iµ(T ),

as long as c0 is a sufficiently small constant. Therefore, Proposition 9 gives that

Eµ,ALG

[
‖Ã̂ 2 normalize(»)‖2

]
= Eµ,ALG

[
L̃(M», Ã̂)

]
g 1

4
.

This completes the proof of the first inequality.

Finally, using the fact that P»æ>µ(‖»æ‖ f c1r) f 1
100 for a small absolute constant c1, we can

conclude that

sup
Mæ*M

EMæ,ALG[RiskDM(T )] g Eµ,ALG[L(M», Ã)] g
c1r

8
= Ω

(
min

{
d:
T
, 1

})
.

This is the desired result.
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D Additional Results from Section 3.2

In addition to the reward-maximization setting (Example 4), we also introduce a slightly more
general setting. In this setting, we assume that for each model M * M, the risk function is
L(M,Ã) = fM(ÃM)2fM(Ã), but fM is not assumed to be the expected reward function (Example 4).
Instead, we only require fM satisfying the following assumption, where M+ ¦ (Π ³ ∆(O)) is a
pre-specified model class of reference models that contains co(M) (following Foster et al. [2023b]).
The lower bound we prove can be stronger by allowing M+ to be a larger model class.

Assumption 4. Let M+ ¦ (Π³ ∆(O)) be a given class of reference models, such that co(M) ¦
M+. For any M *M, the risk function takes form L(M,Ã) = fM(ÃM)2fM(Ã) for some functional
fM : Π ³ R, so that fM can be extended to M+, such that for any model M * M and reference
model �M *M+ we have

|fM(Ã)2 f
�M(Ã)| f CrDH

(
M(Ã), �M (Ã)

)
, "Ã * Π. (37)

In some cases, considering a larger reference model class M+ can be convenient for proving lower
bounds, see e.g., Appendix A.1 and Appendix G.7.

D.1 Recovering DEC-based regret lower bounds

In this section, we demonstrate how our general lower bound approach recovers the regret lower
bounds of Foster et al. [2023b], Glasgow and Rakhlin [2023]. We first state our lower bound in
terms of constrained DEC in the following theorem.

Theorem D.1. Under the reward maximization setting (Example 4), for any T -round algorithm
ALG, there exists Mæ *M such that

RegDM g
T

2
·
(
r-decc·(T )(M)2 6·(T )

)
2 1

with probability at least 0.01 under PMæ,ALG, where ·(T ) = 1
100

:
T
.

Theorem D.1 immediately yields an in-expectation regret lower bound in terms of constrained DEC.
It also shaves off the unnecessary logarithmic factors in the lower bound of Foster et al. [2023b,
Theorem 2.2].

For the remainder of this section, we sketch how we prove Theorem D.1 in a slightly more general
setting (Assumption 4), following Appendix E.1. Before providing our regret lower bounds, we first
present several important definitions.

Definition of quantile regret-DEC We note that it is possible to directly modify the definition
of quantile PAC-DEC (19), and then apply Theorem 7 to obtain an analogous regret lower bound
immediately. However, as Foster et al. [2023b] noted, the “correct” notion of regret-DEC (cf. Eq.
(14)) turns out to be more sophisticated. Therefore, we define the quantile version of regret-
DEC similarly, as follows.

Throughout the remainder of this section, we fix the integer T . Define

ΠT =

{
Ã̂ : Ã̂ =

1

T

T∑

t=1

·Ãt , where Ã1, · · · , ÃT * Π

}
¦ ∆(Π),
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i.e., ΠT is the class of all T -round mixture decision. We introduce the mixture decision space ΠT

here to handle the average of T -round profile (Ã1, · · · , ÃT ) of the algorithm. In particular, when Π
is convex, we may regard ΠT = Π.

Next, we define the quantile regret-DEC as

r-dec
q
·,·(M, �M ) := inf

p*∆(ΠT )
sup

M*M

{
L̂·(M,p) * EÃ>p[L(�M,Ã)]

∣∣∣ EÃ>pD
2
H

(
M(Ã), �M (Ã)

)
f ·2

}
,

(38)

and define r-dec
q
·,·(M) := sup�M*M+ r-dec

q
·,·(M, �M ).

The following proposition relates our quantile regret-DEC to the constrained regret-DEC (proof in
Appendix E.3).

Proposition D.2. Suppose that Assumption 4 holds forM. Then, for any �M * M+, it holds that

r-decc·(M* {�M}, �M ) f 2 · r-dec
q
·,·(M, �M ) + c·Cr·,

where we denote c· = max
{

·
12· , 1

}
. In particular, it holds that

r-dec
q
·,1/2(M) g 1

2

(
max

�M*M+
r-decc·(M* {�M}, �M )2 Cr·

)
.

Lower bound with quantile regret-DEC Now, we prove the following lower bound for the
regret of any T -round algorithm, via our general interactive Fano method (Lemma 6). The proof is
presented in Appendix E.2.

Theorem D.3. Suppose that Assumption 4 holds for M. Then, for any T -round algorithm ALG,
parameters ·, ·, C > 0, there exists M * M such that

PM,ALG

(
RegDM(T ) g T · (r-dec

q
·,·(M)2 CCr·)2 1

)
g · 2 1

C2
2
:
14T·2.

As a corollary, there exists Mæ * M such that

RegDM(T ) g T

2
·
(

max
�M*M+

r-decc·(T )(M*{�M}, �M )2 4Cr·(T )

)
2 1

g T

2
·
(
r-decc·(T )(M)2 4Cr·(T )

)
2 1

with probability at least 0.01 under PMæ,ALG, where ·(T ) = 1
100

:
T
.

Theorem D.1 is now an immediate corollary, because for reward-maximization setting, we always
have Cr =

:
2 in Assumption 4.

D.2 Results for interactive estimation

More generally, we show that for a fairly different task of interactive estimation (Example 10), we
also have an equivalence between quantile PAC-DEC with constrained PAC-DEC.

Recall that in this setting, each model M * M is assigned with a parameter »M * Θ, which is the
parameter that the agent want to estimate. The decision space Π = Π0 × Θ, where each decision
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Ã * Π consists of Ã = (Ã0, »), where Ã0 is the explorative decision to interact with the model, and »
is the estimator of the model parameter. The risk function is then defined as L(M,Ã) = Ã(»M , »),
for certain distance Ã(·, ·).
In interactive estimation, we can show that the quantile DEC is in fact lower bounded the con-
strained DEC, as follows (proof in Appendix E.4).

Proposition D.4. Consider the setting of Example 10. Then as long as · < 1
2 , it holds that

p-decc·(M) f 2 · p-dec
q
·,·(M).

In particular, for such a setting (which encompasses the model estimation task considered in Chen
et al. [2022a]), Theorem 7 provides a lower bound of estimation error in terms of constrained PAC-
DEC. This is significant because the constrained PAC-DEC upper bound in Theorem 5 is actually
not restricted to Example 4, and we have hence shown that

p-decc·(T )(M) . inf
ALG

sup
Mæ*M

EMæ,ALG[RiskDM(T )] . p-decc·̄(T )(M),

where ·(T ) o
√

1/T and ·̄(T ) o
√

log|M|/T . Therefore, for interactive estimation, constrained
PAC-DEC is also a nearly tight complexity measure.

Remark D.5. The log |M|-gap between the lower and upper bound can further be closed for
convex model class, utilizing the upper bounds in Appendix F.1. More specifically, we consider a
convex model class M, where M 7³ »M is a convex function on M. Then, a suitable instantiation
of ExO+ (Algorithm 1) achieves

RiskDM(T ) . ∆+ inf
³>0

(
p-deco³(M) +

logN(Θ,∆) + log(1/·)

T

)
,

where N(Θ,∆) is the ∆-covering number of Θ, because we have logNfrac(M,∆) f logN(Θ,∆) by
considering the prior q = Unif(Θ0) for a minimal ∆-covering of Θ. Similar to Theorem G.5, we can
upper bound p-deco³(M) by p-decc·(M). Taking these pieces together, we can show that under the
assumption that p-decc·(M) is of moderate decay, ExO+ achieves

RiskDM(T ) . p-decc·(T )(M),

where ·(T ) o
√

logN(Θ, 1/T )/T .

In particular, for the (non-interactive) functional estimation problem (see e.g. Polyanskiy and
Wu [2019]), the parameter space Θ ¢ R, and hence by considering covering number, we have
log |Θ| = Õ (1). Therefore, for convex M, under mild assumption that the DEC is of moderate
decaying (Assumption 3), the minimax risk is then characterized by (up to logarithmic factors)

inf
ALG

sup
Mæ*M

EMæ,ALG[RiskDM(T )] o p-decc:
1/T

(M).

This result can be regarded as a generalization of Polyanskiy and Wu [2019] to the interactive
estimation setting.

E Proofs from Section 3.2 and Appendix D

Additional notations For notational simplicity, for any distribution q * ∆(Π) and reference
model �M , we denote the localized model class around �M as

Mq,·(�M) :=
{
M * M : EÃ>qD

2
H

(
M(Ã), �M (Ã)

)
f ·2

}
.
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E.1 Proof of Proposition 8

In this section, we prove Proposition 8 under the slightly more general setting of Assumption 4.

Proposition E.1. Under Assumption 4, for any reference model �M * M+ and · > 0, · * [0, 1), it
holds that

p-decc
·/

:
2
(M, �M ) f p-dec

q
·,·(M, �M ) +

2·Cr

12 ·
.

For Example 4, we always have Cr f
:
2, and hence Proposition 8 follows immediately from

Proposition E.1.

Proof of Proposition E.1. Fix a reference model �M and a ∆0 > p-dec
q
·,·(M, �M ). Then, we

pick a pair (p̄, q̄) such that

∆0 > sup
M*M

{
L̂·(M, p̄)

∣∣∣ EÃ>q̄D
2
H

(
M(Ã), �M (Ã)

)
f ·2

}
,

whose existence is guaranteed by the definition of p-dec
q
·,·(M, �M ) in (19). In other words, we have

PÃ>p̄(L(M,Ã) f ∆0) g 12 ·, "M * Mq̄,·(�M)

Consider q = p̄+q̄
2 and ·2 = ·:

2
. Also let

M̃ := argmax
M*Mq,·2 (

�M)

fM(ÃM).

Now, consider p * ∆(Π) given by

p(·) = p̄
(
·|L(M̃ , Ã) f ∆0

)
.

By definition, for Ã > p we have f M̃(Ã) g f M̃(ÃM̃ )2∆0, and hence

EÃ>p[L(M,Ã)] = fM(ÃM)2 EÃ>p[f
M(Ã)]

f fM(ÃM)2 EÃ>p

[
f M̃(Ã)

]
+ Cr · EÃ>pDH

(
M(Ã), M̃ (Ã)

)

f fM(ÃM)2 f M̃(ÃM̃ ) + ∆0 + Cr · EÃ>pDH

(
M(Ã), M̃ (Ã)

)
.

Notice that for any M * Mq,·2(�M ), we have fM(ÃM) f f M̃(ÃM̃ ) and also

EÃ>pDH

(
M(Ã), M̃ (Ã)

)
f 1

p̄
(
L(M̃, Ã) f ∆0

)EÃ>p̄DH

(
M(Ã), M̃ (Ã)

)

f 1

12 ·

(
EÃ>p̄DH

(
M(Ã), �M (Ã)

)
+ EÃ>p̄DH

(
M̃(Ã), �M (Ã)

))

f 2·

12 ·
.

Combining these inequalities gives

p-decc·2(M, �M ) f sup
M*M

{
EÃ>p[L(M,Ã)] | EÃ>qD

2
H

(
M(Ã), �M (Ã)

)
f ·2

2

}
f ∆0 +

2·Cr

12 ·
.

Letting ∆0 ³ p-dec
q
·,·(M, �M ) completes the proof.
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E.2 Proof of Theorem D.3

Our proof adopts the analysis strategy originally proposed by Glasgow and Rakhlin [2023].

Fix a 0 < ∆ < r-dec
q
·,·(M) and a parameter c * (0, 1). Then there exists �M * M+ such that

r-dec
q
·,·(M, �M ) > ∆.

Fix a T -round algorithm ALG with rules p1, · · · , pT , we consider a modified algorithm ALG2 : for
t = 1, · · · , T , and history H(t21), we set p2t(·|H(t21)) = pt(·|H(t21)) if

∑t21
s=1 L(

�M,Ã)s) < T∆ 2 1,
and set p2t(·|H(t21)) = 1Ã �M

if otherwise. By our construction, it holds that under ALG2, we have∑T
t=1 L(

�M,Ãt) < T∆ almost surely. Furthermore, we can define the stopping time

Ç = inf

{
t :

t∑

s=1

L(�M,Ã)s) g T∆2 1 or t = T + 1

}
.

If Ç f T , then it holds that
∑Ç

t=1 L(
�M,Ãt) g T∆2 1.

Now, we consider p = P
�M,ALG2( 1

T

∑T
t=1 Ã

t = ·) * ∆(ΠT ). Using our definition of r-decq, we know that
EÃ>pL(�M,Ã) < ∆ by our construction, and hence there exists M * M such that

PÃ̂>p(L(M, Ã̂) g ∆) > ·, EÃ̂>pD
2
H

(
M(Ã̂), �M(Ã̂)

)
f ·2.

By definition of p and Lemma B.1, we have

P
�M,ALG2

(
T∑

t=1

L(M,Ãt) g T∆

)
> ·, D2

H

(
PM,ALG2 ,P

�M,ALG2
)
f 7T·2. (39)

We also know

E
�M,ALG2

[
1

T

T∑

t=1

|fM(Ãt)2 f
�M(Ãt)|2

]
f E

�M,ALG2

[
1

T

T∑

t=1

C2
rD

2
H

(
M(Ãt), �M (Ãt)

)
]

= C2
rEÃ̂>pD

2
H

(
M(Ã̂), �M (Ã̂)

)
f C2

r ·
2,

and hence by Markov inequality,

P
�M,ALG2

(
1

T

T∑

t=1

|fM(Ãt)2 f
�M(Ãt)| g CCr·

)
f 1

C2
.

In the following, we consider events

E1 :=
{

T∑

t=1

L(M,Ãt) g T∆

}
,

and the random variable X :=
∑T

t=1|fM(Ãt)2 f �M(Ãt)|. By definition, P�M,ALG2(E1) > ·, P�M,ALG2(X g
CTCr·) f 1

C2 . We have the following claim.

Claim: Under the event E1 + {Ç f T}, we have

Ç∑

t=1

L(M,Ãt) g T∆2X 2 1.
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To prove the claim, we bound

Ç∑

t=1

L(M,Ãt) =

T∑

t=1

L(M,Ãt)2
T∑

t=Ç+1

L(M,Ãt)

g T∆2
T∑

t=Ç+1

[fM(ÃM)2 fM(Ãt)]

g T∆2 (T 2 Ç)fM(ÃM) +

T∑

t=Ç+1

f
�M(Ãt)2X

= T∆2 (T 2 Ç) ·
(
fM(ÃM)2 f

�M(Ã�M)
)
2X,

where the first inequality follows from E1, and the second inequality follows from
∑T

t=Ç+1|fM(Ãt)2
f �M(Ãt)| f X. On the other hand, we can also bound

Ç∑

t=1

L(M,Ãt) =
Ç∑

t=1

[fM(ÃM)2 fM(Ãt)]

g ÇfM(ÃM)2
Ç∑

t=1

f
�M(Ãt)2X

= Ç ·
(
fM(ÃM)2 f

�M(Ã�M)
)
+

Ç∑

t=1

L(�M,Ãt)2X

g Ç ·
(
fM(ÃM)2 f

�M(Ã�M)
)
+ T∆2 12X,

where the first inequality follows from
∑Ç

t=1|fM(Ãt) 2 f
�M(Ãt)| f X, and the second inequality is

because
∑Ç

t=1 L(
�M,Ãt) g T∆ 2 1 given Ç f T , which follows from the definition of the stopping

time Ç . Therefore, taking maximum over the above two inequalities proves our claim.

Now, using the claim, we know

P
�M,ALG2

(
Ç'T∑

t=1

L(M,Ãt) g T (∆2 C·)2 1

)
g P

�M,ALG2(E1 + {X f CT·}) g · 2 1

C2
.

Notice that D2
H

(
PM,ALG2 ,P

�M,ALG2
)
f 7T·2, and hence for any event E , it holds PM,ALG2(E) g P

�M,ALG2(E)2:
14T·2. In particular, we have

PM,ALG2

(
Ç'T∑

t=1

L(M,Ãt) g T (∆2 CCr·)2 1

)
g · 2 1

C2
2
:
14T·2.

Finally, we note that ALG and ALG2 agree on the first Ç ' T rounds (formally, ALG and ALG2 induce
the same distribution of (Ã1, · · · , ÃÇ'T )), and hence

PM,ALG

(
Ç'T∑

t=1

L(M,Ãt) g T (∆2 CCr·)2 1

)
g · 2 1

C2
2
:
14T·2.

The proof is hence complete by noticing that
∑Ç'T

t=1 L(M,Ãt) f ∑T
t=1 L(M,Ãt) = RegDM(T ) and

taking ∆³ r-dec
q
·,·(M).
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E.3 Proof of Proposition D.2

Fix a �M * M+, and ∆ > r-dec
q
·,·(M, �M ). Choose p * ∆(ΠT ) such that

L̂·(M,p) * EÃ>p[L(�M,Ã)] f ∆, "M * Mp,·(�M ).

The existence of p is guaranteed by the definition (38). In other words, we have EÃ>p[L(�M,Ã)] f ∆
and

PÃ>p(L(M,Ã) g ∆) f ·, "M * Mp,·(�M).

We then has the following claim.

Claim. Suppose that M *Mp,·(�M ). Then it holds that

EÃ>p[L(M,Ã)] f EÃ>p[L(�M,Ã)] + ∆ + c·CrEÃ>pDH

(
M(Ã), �M (Ã)

)
. (40)

Fix any M * Mp,·(�M), we prove (40) as follows. Consider the event E = {Ã : L(M,Ã) f ∆}.
Then,

p(E)
(
fM(ÃM)2 f

�M(Ã�M)
)
= EÃ>p1 {E}

(
L(M,Ã) 2 L(�M,Ã) + f

�M(Ã)2 fM (Ã)
)

f p(E)∆ +CrEÃ>p1 {E}DH

(
M(Ã), �M (Ã)

)
,

where the inequality uses L(M,Ã) f ∆ for Ã * E and Assumption 4. Therefore,

EÃ>pL(M,Ã) = EÃ>p1 {E}L(M,Ã) + EÃ>p1 {Ec}L(M,Ã)

f p(E)∆ + EÃ>p1 {Ec}
(
fM(ÃM)2 f

�M(Ã�M) + f
�M(Ã)2 fM(Ã) + L(�M,Ã)

)

f 2∆ +
p(Ec)Cr

p(E) EÃ>p1 {E}DH

(
M(Ã), �M (Ã)

)
+ CrEÃ>p1 {Ec}DH

(
M(Ã), �M (Ã)

)

f 2∆ +max

{
p(Ec)
p(E) , 1

}
CrEÃ>pDH

(
M(Ã), �M (Ã)

)
.

This completes the proof of our claim.

Therefore, using (40) with EÃ>p[L(�M,Ã)] f ∆ yields

EÃ>p[L(M,Ã)] f 2∆ + c·Cr·, "M * Mp,·(�M).

This immediately implies

r-decc·(M* {�M}, �M) f 2∆ + c·Cr·.

Finally, taking ∆³ r-dec
q
·,·(M, �M ) completes the proof.

E.4 Proof of Proposition D.4

Fix a reference model �M and let ∆0 > p-dec
q
·,·(M, �M ). Then there exists p, q * ∆(Π) such that

sup
M*M

{
L̂·(M,p)

∣∣∣ EÃ>qD
2
H

(
M(Ã), �M (Ã)

)
f ·2

}
< ∆0.

Therefore, it holds that

PÃ>p(L(M,Ã) f ∆0) g 12 ·, "M * Mq,·(�M).
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If the constrained setMq,·(�M ) is empty, then we immediately have p-decc·(M, �M ) = 0, and the proof

is completed. Therefore, in the following we may assumeMq,·(�M ) is non-empty, and M̂ * Mq,·(�M ).

Claim. Let »̂ = »M̂ and Ã̂ = (Ã0, »̂) for an arbitrary Ã0, it holds that

L(M, Ã̂) f ∆0, "M *Mq,·(�M).

This is because for any M * Mq,·(�M ), it holds that

PÃ>p(L(M,Ã) f ∆0, L(M̂ , Ã) f ∆0) g 12 2· > 0.

Hence, there exists » * Θ such that Ã(»M , ») f ∆0 and Ã(»M̂ , ») f ∆0 holds. Therefore, it must
hold that Ã(»M , »̂) f 2∆0 for any M * Mq,·(�M).

The above claim immediately implies that

p-decc·(M, �M ) f sup
M*M

{
L(M, Ã̂) | EÃ>qD

2
H

(
M(Ã), �M (Ã)

)
f ·2

}
f 2∆0.

Letting ∆0 ³ p-dec
q
·,·(M, �M ) yields p-decc·(M, �M ) f 2p-dec

q
·,·(M, �M ), which is the desired result.

F Additional discussion and results from Section 4

F.1 Exploration-by-Optimization Algorithm

In this section, we present a slightly modified version of the Exploration-by-Optimization Algorithm
(ExO+) developed by Foster et al. [2022], built upon Lattimore and Szepesvári [2020b], Lattimore
and Gyorgy [2021]. The original ExO+ algorithm has an adversarial regret guarantee for any model
classM, scaling with r-deco³(co(M)), the offset DEC of the mode class co(M), and log |Π|, the log-
cardinality of the decision space. For our purpose, we adapt the original ExO+ algorithm by using
a prior q * ∆(Π) not necessarily the uniform prior, and with a suitably chosen prior q, ExO+ then
achieves a regret guarantee scaling with logNfrac(M,∆), instead of log |Π| (cf. Foster et al. [2022]),
which is always an upper bound of logNfrac(M,∆).

Offset DEC for regret. We first recall the following (original) definition of DEC [Foster et al.,
2021]:

r-deco³(M, �M ) := inf
p*∆(Π)

sup
M*M

EÃ>p[L(M,Ã)] 2 ³EÃ>pD
2
H

(
M(Ã), �M (Ã)

)
, (41)

and r-deco³(M) := sup�M*co(M) r-deco³(M, �M ). Through the Estimation-to-Decision (E2D) algo-
rithm [Foster et al., 2021], offset regret-DEC provides an upper bound of RegDM for any learning
problem, and it is also closely related to the complexity of adversarial decision making.

As discussed in Foster et al. [2023b], in the reward maximization setting (Example 4), the con-
strained regret-DEC r-decc can always be upper bounded in terms of the offset DEC r-deco. Con-
versely, in the same setting, we also show that the offset DEC can also be upper bounded in terms
of the constrained DEC (Theorem G.5), and hence the two concepts can be regarded as equivalent
under mild assumptions (e.g. moderate decaying, Assumption 3).
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Algorithm 1 Exploration-by-Optimization (ExO+)

Input: Problem (M,Π), prior q * ∆(Π), parameter T g 1, ³ > 0.
1: Set q1 = q.
2: for t = 1, · · · , T do
3: Solve the exploration-by-optimization objective

(pt, 3t)± argmin
p*∆(Π),3*L

Γqt,³(p, 3)

4: Sample Ãt > pt, execute Ãt and observe ot

5: Update

qt+1(Ã) ?Ã qt(Ã) exp(3t(Ã;Ãt, ot))

Exploration-by-Optimization algorithm. The algorithm, ExO+, is restated in Algorithm 1.
At each round t, the algorithm maintains a reference distribution qt * ∆(Π), and use it to obtain a
decision distribution pt * ∆(Π) and an estimation function 3t * L := (Π×Π×O ³ R), by solving
a joint minimax optimization problem based on the exploration-by-optimization objective: Defining

Γq,³(p, 3;M,Ãæ) = EÃ>p[f
M(Ãæ)2 fM(Ã)]

2 ³EÃ>pEo>M(Ã)EÃ2>q

[
12 exp

(
3(Ã2;Ã, o) 2 3(Ãæ;Ã, o)

)]
,

(42)

and

Γq,³(p, 3) = sup
M*M,Ãæ*Π

Γq,³(p, 3;M,Ãæ), (43)

the algorithm solve (pt, 3t) ± argminp*∆(Π),3*L Γqt,³(p, 3). The algorithm then samples Ãt > pt,
executes Ãt and observes ot from the environment. Finally, the algorithm updates the reference
distribution by performing the exponential weight update with weight function 3t(·;Ãt, ot).

Guarantee of ExO+. Following Foster et al. [2022], we define

exo1/³(M, q) := inf
p*∆(Π),3*L

Γq,³(p, 3), (44)

and exo1/³(M) = supq*∆(Π) exo1/³(M, q). The following theorem is deduced from Foster et al.
[2022, Theorem 3.1 and 3.2].

Theorem F.1. Under the reward maximization setting7(Assumption 4), it holds that

r-deco³/4(co(M))) f exo1/³(M) f r-deco³/8(co(M))), "³ > 0.

Now, we present the main guarantee of Algorithm 1, which has the desired dependence on the prior
q * ∆(Π).

Theorem F.2. It holds that with probability at least 12 ·,

RegDM f T
(
∆+ r-deco³/8(co(M))

)
+ ³ log

(
1

· · q(Ã : fMæ
(ÃMæ)2 fMæ

(Ã) f ∆)

)

7We remark that their proof applies as long as fM can be linearly extended to co(M).
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Proof. Consider the set Πæ := {Ã : fMæ
(ÃMæ)2 fMæ

(Ã) f ∆} and the distribution qæ = q(·|Πæ).

Following Proposition F.3, we consider

Xt(Ã
t, ot) := EÃ>qæ

[
3t(Ã;Ãt, ot)

]
2 logEÃ>qt

[
exp

(
3t(Ã;Ãt, ot)

)]
,

and Proposition F.3 implies that

T∑

t=1

Xt(Ã
t, ot) f log(1/q(Πæ)).

Applying Lemma B.3, we have with probability at least 12 ·,

T∑

t=1

2 logEt21

[
exp

(
2Xt(Ã

t, ot)
)]
f

T∑

t=1

Xt(Ã
t, ot) + log(1/·).

Notice that

Et21

[
exp

(
2Xt(Ã

t, ot)
)]

= EÃ>ptEo>Mæ(Ã)EÃ2>qt
[
exp

(
3t(Ã2;Ã, o)2 EÃæ>qæ3

t(Ãæ;Ã, o)
)]
.

Using the fact that 12 x f 2 log x and Jensen’s inequality, we have

T∑

t=1

EÃæ>qæErr(p
t, 3t; qt,Mæ, Ãæ) f log(1/q(Πæ)) + log(1/·),

where we denote

Err(p, 3; q,Mæ, Ãæ) := EÃ>pEo>Mæ(Ã)EÃ2>q

[
12 exp

(
3(Ã2;Ã, o) 2 3(Ãæ;Ã, o)

)]
.

Therefore, it holds that

RegDM =

T∑

t=1

EÃ>pt
[
fMæ

(ÃMæ)2 fMæ

(Ã)
]

f
T∑

t=1

∆+ EÃæ>qæEÃt>pt
[
fMæ

(Ãæ)2 fMæ

(Ãt)
]

= T∆+ ³

T∑

t=1

EÃæ>qæErr(p
t, 3t; qt,Mæ, Ãæ)

+
T∑

t=1

EÃæ>qæ
[
EÃt>pt

[
fMæ

(Ãæ)2 fMæ

(Ãt)
]
2 ³Err(pt, 3t; qt,Mæ, Ãæ)

]
︸ ︷︷ ︸

=Γqt,³(p
t,3t;Mæ,Ãæ)

f T∆+ ³(log(1/q(Πæ)) + log(1/·)) +

T∑

t=1

Γqt,³(p
t, 3t)

f T
(
∆+ exo1/³(M)

)
+ ³(log(1/q(Πæ)) + log(1/·)).

Applying Theorem F.1 completes the proof.

49



Proposition F.3. For any q2 * ∆(Π), it holds that

T∑

t=1

EÃ>q2 [3
t(Ã;Ãt, ot)]2 logEÃ>qt

[
exp

(
3t(Ã;Ãt, ot)

)]
f DKL(q

2 ‖ q).

Proof. This is essentially the standard guarantee of exponential weight updates. For simplicity, we
assume Π is discrete. Then, by definition,

qt(Ã) =
q(Ã) exp

(∑t
s=1 3

s(Ã;Ãs, os)
)

∑
Ã2*Π q(Ã2) exp

(∑t21
s=1 3

s(Ã2;Ãs, os)
) ,

and hence

logEÃ>qt
[
exp

(
3t(Ã;Ãt, ot)

)]
= logEÃ>q exp

(
t∑

s=1

3s(Ã;Ãs, os)

)

2 logEÃ>q exp

(
t21∑

s=1

3s(Ã;Ãs, os)

)
.

Therefore, taking summation over t = 1, · · · , T , we have

2
T∑

t=1

logEÃ>qt
[
exp

(
3t(Ã;Ãt, ot)

)]
= 2 logEÃ>q

[
exp

(
T∑

t=1

3t(Ã;Ãt, ot)

)]
.

The proof is then completed by the following basic fact of KL divergence: for any function h : Π³ R,

EÃ>q2[h(Ã)] f logEÃ>q exp(h(Ã)) +DKL(q
2 ‖ q).

F.2 Application: Contextual bandits with general function approximation

Next, we instantiate our general results for stochastic contextual bandits with general function
approximation, generalizing the structured bandit problem. We consider the stochastic contextual
bandit problem with context space C, action space A, and a reward function class H ¦ (C × A ³
[0, 1]). This problem is a special case of the DMSO setting with decision space Π = (C ³ A),
and the environment is specified by a tuple (hæ * H, ¿æ * ∆(C)). The protocol is as follows: For
each round t, the environment draws ct > ¿, and the learner takes action at = Ãt(ct) based on the
decision Ãt : C ³ A, and receives a reward rt > N

(
hæ(c

t, at), 1
)
.

We can formulate the model class as follows. For a reward function h * H and context distribution
¿ * ∆(C), the corresponding model Mh,¿ is specified as

(c, a, r) >Mh,¿(Ã) : c > ¿, a = Ã(a), r > N (h(c, a), 1).

Let MH = {Mh,¿ : h * H, ¿ * ∆(C)} be the induced model class of contextual bandits. Following
Section 4.3.1, we instantiate Theorem 19 to provide characterization of learning MH.

DEC for contextual bandits. For any context c * C, the value function class H induces a
restricted value function class H|c = {h(c, ·) : h * H}, which corresponds to a (non-contextual)
bandit function class. We define the following variant of the DEC

r-decc·(H) := sup
c*C

r-decc·(H|c),
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which corresponds to the maximum of the per-context DEC over all contexts. We also define
T DEC(H,∆) = inf·*(0,1){·22 : r-decc·(H) f ∆}, following Eq. (23).

Fractional covering number for contextual bandits. Specializing the fractional covering
number to contextual bandits, we define

Nfrac(H,∆) := inf
p*∆(Π)

sup
h*H,¿*∆(C)

1

p(Ã : Ec>¿ [h(c, Ãh(c)) 2 h(c, Ã(c))] f ∆)
, (45)

where Ãh * Π is defined via Ãh(c) := argmaxa*A h(c, a) for c * C.
Intuitively, the value of the fractional covering number logNfrac(H,∆) for contextual bandits cap-
tures the difficulty of estimating optimal actions, but also the difficulty of generalizing across con-
texts. For example, when we consider the unstructured contextual bandit problems (i.e., H = (C ×
A ³ [0, 1])), it holds that logNfrac(H,∆) = |C| log |A|, but in general we can have logNfrac(H,∆)j
log |Π| = |C| log |A|.
As a corollary of Theorem 19, we derive the following upper and lower bounds on the complexity
of contextual bandit learning with H.

Theorem F.4. Let H be given. Suppose that both the context space C and the action space A are
finite, and that · 7³ r-decc·(co(H)) satisfies moderate decay as a function of · (Assumption 3) with
constant creg. Let ·̄(T ) o

√
logNfrac(H,∆)/T . Then Algorithm 1 ensures that with high probability,

;

RegDM f T ·∆+O(cregT
√

log T ) · r-decc·̄(T )(co(H)).

As a corollary, the complexity of learning MH is bounded by

max

{
T DEC(H,∆),

logNfrac(H, 2∆)

log |C|

}
. T æ(MH,∆) . T DEC(co(H),∆) · logNfrac(H,∆/2), (46)

omitting dependence on creg and logarithmic factors.

By definition, we have r-decc·(co(H)) = r-decc·(H) if the per-context value function class H|c is
convex for every context c * C. Natural settings in which H|c is convex include contextual linear
bandits [Chu et al., 2011], contextual non-parametric bandits [Cesa-Bianchi et al., 2017], contextual
concave bandits [Lattimore, 2020], etc. For these problem classes, the complexity of no-regret
learning is completely characterized by the DEC of H and the newly proposed Nfrac(H,∆) (up to a
quadratic factor and a factor of log |C|).
As a concrete example. we can derive upper bounds based on the fractional covering number for
finite-action contextual bandits as follows.

Corollary F.5. For any value function class H, Algorithm 1 ensures the following regret bound
with high probability.

RegDM(T ) f T ·∆+O
(√

T |A| · logNfrac(H,∆)
)
.

Compared to the well-known regret bound of O(
√

T |A| · log |H|) for learning any with any finite
contextual bandit class H [Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2020], this result above
always provides a tighter upper bound, as logNfrac(H,∆) f log |H|. For certain (very simple)
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function classes H, the quantity logNfrac(H,∆) can be much smaller than log |H| (for details, see
Example 14). More importantly, logNfrac(H,∆) leads to lower bounds for any contextual bandit
function class (Theorem F.4). By contrast, lower bounds for structured contextual bandits in prior
work have been proven in a case-by-case fashion (for specific value function classes H).

G Proofs from Section 4 and Appendix F

In this section, we mainly focus on no-regret learning, and we present the regret upper and lower
bounds in terms of DEC and logNfrac(M,∆). The results can be generalized immediately to PAC
learning.

G.1 Proof of Theorem 11

Fix an arbitrary reference model �M * (Π³ ∆(O)) such that Assumption 2 holds. We remark that
�M is not necessarily in M or co(M).

We only need to prove the following fact.

Fact. If T < logNfrac(M,∆)22
2CKL

, then for any T -round algorithm ALG, there exists a model M * M
such that RiskDM(T ) g ∆ with probability at least 1

2 under PM,ALG.

Proof. By the definition (25) of Nfrac(M,∆), we know

1

Nfrac(M,∆)
:= sup

p*∆(Π)
inf

M*M
p(Ã : L(M,Ã) f ∆).

Therefore, we have

inf
M*M

p�M,ALG(Ã : L(M,Ã) f ∆) f 1

Nfrac(M,∆)
,

and hence there exists M * M such that

T <
log
(
1/p�M,ALG(Ã : L(M,Ã) f ∆)

)
2 2

2CKL
.

Notice that by the chain rule of KL divergence, we have

DKL(P
M,ALG ‖ P�M,ALG) = EM,ALG

[
T∑

t=1

DKL(M(Ãt) ‖ �M(Ãt))

]
f TCKL.

Hence, using data-processing inequality,

DKL(pM,ALG ‖ p�M,ALG) <
log
(
1/p�M,ALG(Ã : L(M,Ã) f ∆)

)
2 2

2
f DKL(1/2 ‖ p�M,ALG(Ã : L(M,Ã) f ∆)).

This immediately implies pM,ALG(Ã : L(M,Ã) f ∆) < 1
2 by the monotonicity of KL divergence.
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G.2 Proof of Theorem 13

In this section, we present an algorithm based on reduction to multi-arm bandits (Algorithm 2)
that achieves the desired upper bound. For the application to bandits with Gaussian rewards, we
relax the assumption R : O ³ [0, 1] as follows.

Assumption 5. For any M * M and Ã * Π, the random variable R(o) is 1-sub-Gaussian under
o >M(Ã).

Suppose that ∆ > 0 is given, and fix a distribution pæ∆ that attains the infimum of (25). Based on
pæ∆, we consider a reduced decision space Πsub ¢ Π, generated as

Πsub = {Ã(1), · · · , Ã(N)}, Ã(1), · · · , Ã(N) > pæ∆ independently,

where we set N = Nfrac(M,∆) log(1/·). Then the space Πsub is guaranteed to contain a near-
optimal decision, as follows.

Lemma G.1. With probability at least 12 ·, there exists Ã * Πsub such that L(Mæ, Ã) f ∆.

Therefore, we can then regard Mæ as a N -arm bandit instance with action space A = Πsub, and for
each pull of an arm Ã * A, the stochastic reward r is generated as r = R(o), o > Mæ(Ã). Then,
we pick a standard bandit algorithm BanditALG, e.g. the UCB algorithm (see e.g. Lattimore and
Szepesvári [2020a]), and apply it to the multi-arm bandit instance Mæ

Bandit
, and the guarantee of

BanditALG yields

T∑

t=1

max
Ã2*Πsub

fMæ

(Ã2)2 fMæ

(Ãt) f O
(√

TN log(T/·)
)
.

with probability at least 12 ·. Therefore, we have

RegDM(T ) f T · (fMæ

(ÃMæ)2 max
Ã2*Πsub

fMæ

(Ã2)) +O
(√

TN log(T/·)
)

f T ·∆+O
(√

TN log(T/·)
)
,

with probability at least 1 2 2·. This gives the desired upper bound, and we summarize the full
algorithm in Algorithm 2.

Proof of Lemma G.1. By definition,

P

(
"i * [N ], L(Mæ, Ã(i)) > ∆

)
f pæ∆(Ã : L(Mæ, Ã) > ∆)N

f
(
12 1

Nfrac(M,∆)

)N

f exp

(
2 N

Nfrac(M,∆)

)
f ·.

G.3 Proof of Lemma 14

Proof of the upper bound. Take a minimal ∆-covering of ΠM, i.e., a set {Ã1, · · · , Ãn} ¦ Π
such that for all M * M, there exists i * [n] such that Ã(ÃM , Ãi) f ∆. Therefore, we may consider
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Algorithm 2 A reduction algorithm based on the fractional covering number

Input: Problem (M,Π), parameter ∆, · > 0, T g 1, Algorithm BanditALG for multi-arm bandits.

1: Set

pæ∆ = arg inf
p*∆(Π)

sup
M*M

1

p(Ã : L(M,Ã) f ∆)
. (47)

2: Set N = Nfrac(M,∆) log(1/·) and sample the decision subspace Πsub = {Ã(1), · · · , Ã(N)} ¢ Π
as

Ã(1), · · · , Ã(N) > pæ∆ independently.

3: Run the bandit algorithm BanditALG on the instance Mæ
Bandit

for T rounds.

the distribution p = Unif({Ã1, · · · , Ãn}), which guarantee

Nfrac(M,∆) f sup
M*M

1

p(Ã : Ã(ÃM , Ã) f ∆)
f n = N(ΠM,∆).

Proof of the lower bound. Consider the maximal 2∆-packing of ΠM, i.e., let {Ã1, · · · , Ãm} ¦
ΠM be a maximal set such that Ã(Ãi, Ãj) > 2∆ for any i 6= j. Then, by the duality between packing
and covering, the set {Ã1, · · · , Ãm} form a 2∆-covering of ΠM, and hence we have m g N(ΠM, 2∆).
On the other hand, the sets Πi := {Ã : Ã(Ã, Ãj) f ∆} are pairwise disjoint, and hence for any
p * ∆(Π), we have

m · inf
M*M

p(Ã : Ã(ÃM , Ã) f ∆) f
m∑

i=1

p(Ã : Ã(Ãi, Ã) f ∆) f 1.

Therefore, it holds that Nfrac(M,∆) g m g N(ΠM, 2∆).

G.4 Proof of Example 7

It remains to prove Eq. (29). More generally, we prove the following lemma.

Lemma G.2. For model class M =
⋃n

i=1Mi, it holds that

Nfrac(M,∆) f
n∑

i=1

Nfrac(Mi,∆).

Proof of Lemma G.2 For each i * [n], we define »i =
Nfrac(Mi,∆)∑n

j=1
Nfrac(Mj ,∆)

.

Fix p1, · · · , pn * ∆(Π). Then, let us consider the distribution p =
∑n

i=1 »ipi * ∆(Π). For any model
M * M, there exists i * Mi, and hence p(Ã : L(M,Ã) f ∆) g »i minMi*Mi

pi(Ã : L(Mi, Ã) f ∆).
Therefore, it holds that

inf
M*M

p(Ã : L(M,Ã) f ∆) g min
i*[n]

»i inf
M*Mi

pi(Ã : L(M,Ã) f ∆).
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In other words,

sup
M*M

1

p(Ã : L(M,Ã) f ∆)
g max

i*[n]

1

»i
sup

M*Mi

1

pi(Ã : L(M,Ã) f ∆)
.

Taking infimum over p1, · · · , pn * ∆(Π) gives

Nfrac(M,∆) = inf
p*∆(Π)

sup
M*M

1

p(Ã : L(M,Ã) f ∆)
g max

i*[n]

1

»i
sup

M*Mi

1

pi(Ã : L(M,Ã) f ∆)

f inf
p1,··· ,pn*∆(Π)

max
i*[n]

1

»i
sup

M*Mi

1

pi(Ã : L(M,Ã) f ∆)

= max
i*[n]

1

»i
inf

pi*∆(Π)
sup

M*Mi

1

pi(Ã : L(M,Ã) f ∆)

= max
i*[n]

1

»i
· Nfrac(Mi,∆) =

n∑

i=1

Nfrac(Mi,∆),

where the last line follows from the definition of »1, · · · , »n. This is the desired result.

G.5 Proof of Theorem 18

We first state the following more general result, and Theorem 18 is then a direct corollary (under
Assumption 3). Analoguous guarantees also hold for PAC learning.

Theorem G.3. Let T g 1, · * (0, 1). With suitably chosen prior q * ∆(Π), ExO+ (Algorithm 1)
achieves with probability at least 12 ·:

1

T
RegDM f ∆+ r-deco³/8(co(M)) + ³

logNfrac(M,∆) + log(1/·)

T
. (48)

In particular, when M is a reward-maximization problem class (Example 4), ExO+ achieves (with
a suitable parameter ³) that with probability at least 12 ·:

1

T
RegDM f ∆+ C

√
log(T ) · r-dec

c
·̄(T )(co(M)), (49)

where C is an absolute constant, ·̄(T ) =
√

logNfrac(M,∆)+log(1/·)
T , and the modified version of con-

strained regret-DEC is defined as

r-dec
c
·(co(M)) := · · sup

·2*[·,1]

r-decc·2(co(M))

·2
. (50)

Remark G.4 (Upper bound without regularity condition). In Theorem 18 (and Eq. (49)), we
assume that (1) M is a reward-maximization problem, and (2) the constrained regret-DEC of
co(M) satisfies certain regularity condition (Assumption 3). As we have noted in Remark 21, we
can relax these two assumptions and obtain a weaker upper bound.

Specifically, we may only assume that fM : Π ³ [0, 1] is affine with respect to M * co(M) (cf.
Theorem F.1). In this case, we can still bound the regret of ExO+ as

1

T
RegDM f ∆+ r-decc:

³/8
(co(M)) + ³

logNfrac(M,∆) + log(1/·)

T
, (51)
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which follows from Eq. (48) and the fact that (by definition)

r-deco³(co(M)) f r-decc:³(co(M)), "³ > 0.

In particular, using Eq. (51) above, we can show that (omitting poly-logarithmic factors)

T æ(M,∆) .
1

∆
· T DEC(co(M),∆/3) · logNfrac(M,∆/2).

This is worse than the upper bound of Theorem 19 by (roughly) a factor of ∆21.

Proof of Theorem G.3. By the definition (25) of Nfrac(M,∆), we know

1

Nfrac(M,∆)
:= sup

p*∆(Π)
inf

M*M
p(Ã : L(M,Ã) f ∆).

Therefore, there exists q * ∆(Π) such that

inf
M*M

q(Ã : L(M,Ã) f ∆) g 1

Nfrac(M,∆)
,

We then instantiate Algorithm 1 with such a prior q, and Eq. (48) follows immediately from
Theorem F.2. To prove Eq. (49), we invoke the following structural result that relates offset DEC
to constrained DEC.

Theorem G.5. Suppose that Assumption 4 holds for the model class M. Then for any · * (0, 1],
it holds that

inf
³>0

(
r-deco³(M) + ³·2

)
f
(
3
√
+log2(2/·)+ + 2

)
·
(
r-dec

c
·(M) +Cr·

)
.

Under the assumption that · 7³ r-decc·(co(M)) is of moderate decay with a constant creg, we have

r-dec
c
·(co(M)) f cregr-decc·(M), "· * (0, 1].

Hence, Eq. (49) follows from (48) as long as the parameter ³ is chosen according to Eq. (G.5).

G.5.1 Proof of Theorem G.5

Fix a · * (0, 1] and �M * co(M). We only need to prove the following result:

Claim. Suppose that r-decc·2(M, �M ) f D·2 for all ·2 * [·, 1]. Then there exists ³ = ³(D, ·) such
that

r-deco³(M) + ³·2 f
(
3
√
+log2(2/·)+ + 2

)
· (D + Cr)·.

Set K = +log2(1/·)+ + 1 and fix a parameter c = c(·) * (0, 12 ] to be specified later in proof. Define
·i := 22i for i = 0, · · · ,K 2 1 and ·K = ·. We also define »i := c· · 2i for i = 0, · · · ,K 2 1, and
»K = 12∑K21

i=0 »i g c.

Define ∆i = r-decc·i(M * {�M}, �M ), and let pi attains the infp. In the following, we choose ³ =

³(D, ·) = 9(D+Cr)
8c· .
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By definition of pi, it holds that

EÃ>pi[L(M,Ã)] f ∆i, "M * M* {�M} : EÃ>piD
2
H

(
M(Ã), �M (Ã)

)
f ·2i .

In particular, we may abbreviate Mi := {M * M : EÃ>piD
2
H

(
M(Ã), �M (Ã)

)
f ·2i }, and it holds

fM(ÃM) f f
�M(Ã�M) + ∆i + Cr·i, "M * Mi.

Next, we choose p =
∑K

i=0 »ipi * ∆(Π), and we know

EÃ>p[L(�M,Ã)] f
K∑

i=0

»iEÃ>p[L(�M,Ã)] f
K∑

i=0

»i∆i =: ∆.

Fix a M * M. Let j * {0, · · · ,K} be the maximum index such that M * Mj . Such a j must
exists becauseM =M0. Now,

EÃ>p[L(M,Ã)] = fM(ÃM)2 f
�M(Ã�M) + EÃ>p[L(�M,Ã)] + EÃ>p[f

�M(Ã)2 fM(Ã)]

f ∆j + Cr·j +∆+ CrEÃ>pDH

(
M(Ã), �M (Ã)

)
.

Case 1: j = K. Then, using AM-GM inequality, we have

EÃ>p[L(M,Ã)] 2 ³EÃ>pD
2
H

(
M(Ã), �M (Ã)

)
f ∆K + ·K +∆+

C2
r

4³
.

Case 2: j < K. Then for each i > j, it holds that EÃ>pjD
2
H

(
M(Ã), �M (Ã)

)
> ·2j , and hence

EÃ>pD
2
H

(
M(Ã), �M (Ã)

)
g

K∑

i=j+1

»jEÃ>pjD
2
H

(
M(Ã), �M (Ã)

)
g

K∑

i=j+1

»j·
2
j g

c· · ·j
2

.

Therefore, using AM-GM inequality,

EÃ>p[L(M,Ã)] 2 ³EÃ>pD
2
H

(
M(Ã), �M (Ã)

)

f ∆j + Cr·j +∆+
9C2

r

4³
2 8

9
³EÃ>pD

2
H

(
M(Ã), �M (Ã)

)

f ∆j + Cr·j +∆+
9C2

r

4³
2 8c³·

9
·j.

By our choice of ³, we have ³· g 9
8c

(
∆j

·j
+ Cr

)
, and hence in both cases, we have

EÃ>p[L(M,Ã)] 2 ³EÃ>pD
2
H

(
M(Ã), �M (Ã)

)
f ∆+ (D + Cr)·+

9C2
r

4³
.

Note that by definition, we have ∆ f (cK + 1)D· and ³(·) · · = 9
8c(D + Cr), and hence

r-deco³(·)(M, �M ) f (2D + Cr + cKD + 2cCr)·.

Thus,

r-deco³(·)(M, �M ) + ³(·)·2 f
(
2D + Cr + cK(D + Cr) +

9(D + Cr)

8c

)
·K .

Balancing c and re-arranging yields the desired result.
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G.6 Proof of Theorem 19

Note that the minimax-optimal sample complexity T æ(M,∆) is just a way to better illustrate our
minimax regret upper and lower bounds. By the definition of T æ(M,∆), we have

1

T
Regæ(M, T ) = sup{∆ : T æ(M,∆) f T}.

Under Assumption 3, the regret upper bound in Theorem 18 implies (up to creg, CKL and logarithmic
factors)

1

T
Regæ(M, T ) . r-decc·̄(T )(M).

And the regret lower bound Theorem D.1 implies (up to creg and logarithmic factors)

r-decc·(T )(M) .
1

T
Regæ(M, T ).

By the definition of T æ(M,∆) and T DEC(M,∆), we then have

T DEC(M,∆) . T æ(M,∆) . T DEC(co(M),∆) · logNfrac(M,∆/2).

Together with Theorem 10, we prove that

max

{
T DEC(M,∆),

logNfrac(M,∆)

CKL

}
. T æ(M,∆) . T DEC(co(M),∆) · logNfrac(M,∆/2).

G.7 Proof of Theorem 22

For the upper bound, we work with more general noise structure (beyond Gaussian noises). We
define MH,V to be the class of all bandits models with mean reward function in H and variance
bounded by 1. Specifically, for any M * MH,V, it is associated with a value function hM * H, such
that for any decision Ã * Π, the distribution M(Ã) of the random reward r has mean hM(Ã) and
variance at most 1.

We also recall that the subclassMH ¦MH,V is the bandit problem class with the standard Gaussian
noise.

Proof of Theorem 22: lower bound of (33). The lower bound with logNfrac(H,∆) is exactly
Corollary 15.

To prove the lower bound with T DEC(H,∆), we need to lower bound the DEC of MH in terms of
the DEC of H, as follows.

Lemma G.6. Consider M+ =Mco(H),V as the class of all reference models (Appendix D). Then,

max
�M*M+

r-decc·(MH * {�M}, �M ) g r-decc
2
:
2·
(H). (52)
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Notice that forM+, Assumption 4 holds with Cr =
:
10 (by Lemma B.5). Therefore, as a corollary

of Theorem D.3: for any T -round algorithm ALG, there exists Mæ * MH such that

RegDM(T ) g
T

2
· (r-decc·(T )(H)2 5·(T ))2 1 (53)

with probability at least 0.01 under PMæ,ALG, where ·(T ) = 1
50

:
T

. Therefore, the lower bound in

terms of T DEC(H,∆) follows immediately (using regularity condition Assumption 3).

Combining both lower bounds completes the proof.

Proof of Theorem 22: upper bound. We apply Theorem G.3 similar to the proof of Theo-
rem 19 (in Appendix G.2).

Using Theorem G.3, we know that ExO+ can be suitably instantiated on the model class MH,V so
that with probability at least 12 ·,

1

T
RegDM f ∆+ C

√
log(T ) · r-dec

c
·̄(T )(co(MH,V)),

where C is an absolute constant, ·̄(T ) =

√
logNfrac(H,∆)+log(1/·)

T . We only need to upper bound the

r-dec
c
·(co(MH,V)) (defined in (50)) in terms of the DEC of co(H).

Lemma G.7. For any · g 0, it holds that

r-decc·(MH,V) f r-decc:
10·

(H)

We also note that co(MH,V) ¦Mco(H),V because the model classMco(H),V is convex and it contains
MH,V. Therefore, we know

r-decc·(co(MH,V)) f r-decc·(Mco(H),V) f r-decc:
10·

(co(H)).

Using the regularity of · 7³ r-decc·(co(H)), we know

r-dec
c
·̄(T )(co(MH,V)) f creg · r-decc:

10·
(co(H)).

This gives the desired upper bound.

G.7.1 Proof of Lemma G.6

Fix a · * [0, 1], we denote ·1 = 2
:
2· and take any ∆ < r-decc·1(H). We pick sh * co(H) such that

r-decc·1(H,sh) > ∆. Then, it holds that

inf
p*∆(Π)

sup
h*H*{sh}

{
EÃ>p[h(Ãh)2 h(a)] | EÃ>p(h(a) 2 sh(a))2 f ·21

}
g ∆.

Suppose that sh * co(H) is given by sh = Eh>µ[h] with µ * ∆(H). Then, consider the reference
model �M * M+ with mean reward function sh and Gaussian noise, i.e. �M (Ã) = N

(
sh(Ã), 1

)
. Then,

we know that forM =MH,

r-decc·(M* {�M}, �M )

= inf
p*∆(Π)

sup
M*M*{�M}

{
EÃ>p[L(M,Ã)] | EÃ>pD

2
H

(
M(Ã), �M (Ã)

)
f ·2

}
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= inf
p*∆(Π)

sup
h*H*{sh}

{
EÃ>p[h(Ãh)2 h(Ã)] | EÃ>pD

2
H

(
N (h(Ã), 1),N

(
sh(Ã), 1

))
f ·2

}

g inf
p*∆(Π)

sup
h*H*{sh}

{
EÃ>p[h(Ãh)2 h(Ã)] | EÃ>p(h(Ã) 2 sh(Ã))2 f 8·2

}
g ∆,

where the last line follows from Lemma B.5. Taking ∆³ r-decc·1(H) completes the proof of (52).

G.7.2 Proof of Lemma G.7

Fix a reference model �M * co(MH,V). By definition, we know the mean reward function h�M of �M
belongs to co(H), i.e. �M * Mco(H),V. Therefore, for any model M * MH,V and decision Ã * Π, by
Lemma B.5,

D2
H

(
M(Ã), �M (Ã)

)
g 1

10
|hM(Ã)2 h

�M(Ã)|2.

Therefore, for M =MH,V,

r-decc·(M*{�M}, �M )

= inf
p*∆(Π)

sup
M*M*{�M}

{
EÃ>p[L(M,Ã)] | EÃ>pD

2
H

(
M(Ã), �M (Ã)

)
f ·2

}

g inf
p*∆(Π)

sup
M*M*{�M}

{
EÃ>p[L(M,Ã)] | EÃ>p|hM(Ã)2 h

�M(Ã)|2 f 10·2
}

= inf
p*∆(Π)

sup
h*H*{sh}

{
EÃ>p[h(Ãh)2 h(Ã)] | EÃ>p(h(Ã)2 sh(Ã))2 f 8·2

}

= r-decc:
10·

(H * {sh},sh),

where the second equality follows from the fact that when = h, we have L(M,Ã) = h(Ãh)2 h(Ã).
Taking supremum over �M completes the proof.

G.8 Proof of Theorem F.4

Similar to Appendix G.7, we consider a larger model class MH,V of models with general noise
structure. A model M * MH,V is specified by a context distribution ¿M * ∆(C), a reward function
hM * H, and a reward distribution RM(·|·, ·), such that for any c * C, a * A, r > RM(·|c, a) has
mean hM(c, a) and variance at most 1. The model M is then given by

(c, a, r) >M(Ã) : c > ¿M , a = Ã(c), r > RM(·|c, a).

The model class MH,V is defined to be the set of all possible models described above.

Proof of Theorem F.4: lower bound. The lower bound with logNfrac(H,∆) follows immedi-
ately by applying Theorem 11 to the class MH, which admits CKL = O (log |C|) in Assumption 2
(as shown in Example 13).

On the other hand, the lower bound with T DEC(H,∆) follows from the reduction to the per-context
bandits problem. Specifically, for a fixed context c * C, H|c corresponds to a structure bandits class
MH|c . Notice that we can naturally regardMH|c ¢MH by viewingMH|c as a contextual bandits
class with the fixed context c. Therefore, by Theorem 22 (specifically (53)):

1

T
Regæ(MH, T ) g

1

T
Regæ(MH|c , T ) & r-decc·(T )(H|c)2 6·(T ), ·(T ) =

1

50
:
T
.
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Taking maximum over c * C yields

1

T
Regæ(MH, T ) & r-decc·(T )(H)2 6·(T ).

This gives the desired lower bound with T DEC(H,∆).

Combining both lower bounds completes the proof.

Proof of Theorem F.4: upper bound. We follow the proof strategy of Appendix G.7. By
Theorem G.3, ExO+ can be suitably instantiated on the problem classMH,V so that with probability
at least 12 ·:

1

T
RegDM f ∆+ C inf

³>0

(
r-deco³/8(co(MH,V)) + ³

logNfrac(M,∆) + log(1/·)

T

)
.

We also note that co(MH,V) ¦ Mco(H),V. Therefore, it remains to upper bound the offset DEC of
Mco(H),V.

Lemma G.8. For ³ > 0, it holds that

r-deco³(MH,V) f sup
c*C

r-deco³/2(MH|c,V).

Then, we can apply the result of Theorem G.5. From the proof of Theorem G.5, it is not hard to
see that: for any · > 0, there exists ³ = ³(·) such that for any c * C,

r-deco³/2(MH|c,V) + ³·2 .
√

log(2/·) · (creg · r-decc·(co(H)) + ·),

where we also use the regularity condition of · 7³ r-decc·(co(H)). This immediately gives

RegDM f T∆+O(cregT
√
log T ) · r-decc·̄(T )(co(H)),

where ·̄(T ) =

√
logNfrac(H,∆)+log(1/·)

T . This is the desired upper bound.

G.8.1 Proof of Lemma G.8

Fix a reference model �M * co(MH,V), and then �M * Mco(H),V by definition. In particular, �M has
mean value function h

�M * H and context distribution ¿̄ * ∆(C). We also know that for each c * C,
h

�M(x, ·) * co(H|c).
Then, by Lemma B.4, we also have

2D2
H

(
M(Ã), �M (Ã)

)
g Ec>¿M ,a=Ã(c)D

2
H

(
RM(r = ·|c, a),R�M (r = ·|c, a)

)
.

Thus, we adopt the following notations: For each c * C and model M * MH,V, we define Mc *
MH|c,V to be a bandit model such that for every action a * A, Mc(a) = RM(r = ·|c, a). Then by
definition, it holds that

2D2
H

(
M(Ã), �M (Ã)

)
g Ec>¿M ,a=Ã(c)D

2
H

(
Mc(a), �Mc(a)

)
.

Now, combining the inequalities above, we have

r-deco³(MH,V, �M )
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= inf
p*∆(Π)

sup
M*MH,V

EÃ>p[L(M,Ã)] 2 ³EÃ>pD
2
H

(
M(Ã), �M (Ã)

)

f inf
p*∆(Π)

sup
M*MH,V

EÃ>pEc>¿M ,a=Ã(c)

[
hM(c, ÃM(c)) 2 hM(c, a) 2 ³

2
D2

H

(
Mc(a), �Mc(a)

)]

(1)
= inf

p=(pc),pc*∆(A)
sup

M*MH,V

Ec>¿M ,a>pc

[
hM(c, ÃM(c)) 2 hM(c, a) 2 ³

2
D2

H

(
Mc(a), �Mc(a)

)]

(2)

f inf
p=(pc),pc*∆(A)

sup
M*MH,V

sup
c*C

Ea>pc

[
hM(c, ÃM(c))2 hM(c, a) 2 ³

2
D2

H

(
Mc(a), �Mc(a)

)]

(3)
= inf

p=(pc),pc*∆(A)
sup
c*C

sup
Mc*MH|c,V

Ea>pc

[
hMc(ÃMc)2 hMc(a)2 ³

2
D2

H

(
Mc(a), �Mc(a)

)]

(4)
= sup

c*C
inf

pc*∆(A)
sup

Mc*MH|c,V

Ea>pc

[
hMc(ÃMc)2 hMc(a)2 ³

2
D2

H

(
Mc(a), �Mc(a)

)]

= sup
c*C

r-deco³/2(MH|c,V, �Mc) f sup
c*C

r-deco³/2(MH|c,V),

where the equality (1) is because for a sequence (pc * ∆(A))c*C , there is a corresponding p * ∆(Π)
such that for Ã > p, we have Ã(c) > pc independently; in inequality (2) we bound the expectation
over c > ¿M by the supremum supc*C ; the equality (3) follows from the fact that Mc *MH|c,V is a
bandit model with mean reward function hMc(·) = hM(c, ·); and the equality (4) is because we can
choose pc separately for every c * C. By the arbitrariness of �M * co(M), we now have

r-deco³(MH,V) f sup
c*C

deco³/2(MH|c,V).

G.9 Proof of Corollary F.5

We follow the notations of Appendix G.8. By Lemma G.8, we have

r-deco³(MH,V) f sup
c*C

r-deco³/2(MH|c,V).

Notice that for each c * C, MH|c,V is a class of |A|-arm bandits, and hence by Foster et al. [2021,
Proposition 5.1] and Lemma B.5, we have

r-deco³(MH|c,V) f
8|A|
³

.

Therefore, Theorem G.3 implies that ExO+ achieves with probability at least 12 ·:

1

T
RegDM f ∆+

16|A|
³

+ ³
logNfrac(H,∆) + log(1/·)

T
.

Balancing ³ > 0 gives the desired upper bound.

As a remark, we provide an example of function class H with logNfrac(H,∆)j log |H|.
Example 14. Suppose that A = {0, 1}, and the function class H = {hx}x*C , where

hx(c, 0) =
1

2
, hx(c, 1) =

{
1, c = x,

0, c 6= x.
.
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Clearly, we have log |H| = log |C|.
On the other hand, we consider a distribution p over policies, such that Ã > p is generated as
Ã(c) > Bern(·), independently over all c > C. Then, for any h = hx * H and ¿ * ∆(C), we have

Ec>¿ [h(c, Ãh(c)) 2 h(c, Ã(c))] = ¿(x) · 1
2
1 {Ã(x) = 1}+ 1

2
Ec>¿[1 {c 6= x, Ã(c) = 1}].

Notice that Ã(x) = 1 with probability ∆, and conditional on the event {Ã(x) = 1},

EÃ>p[Ec>¿[1 {c 6= x, Ã(c) = 1}]|Ã(x) = 1] f ∆.

Hence,

p(Ã : Ec>¿[h(c, Ãh(c)) 2 h(c, Ã(c))] f ∆) g ∆

2
,

which implies logNfrac(H,∆) f log(2/∆).

Therefore, for unbounded context space C, we have logNfrac(H,∆)j log |H| for the function class
H defined above.
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