
Findings of the Association for Computational Linguistics: ACL 2025, pages 6921–6936
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

LLM-Forest: Ensemble Learning of LLMs with Graph-Augmented
Prompts for Data Imputation

Xinrui He1, Yikun Ban1† , Jiaru Zou1, Tianxin Wei1, Curtiss B. Cook2, Jingrui He1†
1University of Illinois at Urbana-Champaign, 2Mayo Clinic Arizona
{xhe33,yikunb2,jiaruz2,twei10,jingrui}@illinois.edu

cook.curtiss@mayo.edu

Abstract

Missing data imputation is a critical chal-
lenge in various domains, such as healthcare
and finance, where data completeness is vital
for accurate analysis. Large language mod-
els (LLMs), trained on vast corpora, have
shown strong potential in data generation, mak-
ing them a promising tool for data imputa-
tion. However, challenges persist in design-
ing effective prompts for a finetuning-free pro-
cess and in mitigating biases and uncertainty
in LLM outputs. To address these issues,
we propose a novel framework, LLM-Forest,
which introduces a "forest" of few-shot learn-
ing LLM "trees" with their outputs aggregated
via confidence-based weighted voting based on
LLM self-assessment, inspired by the ensem-
ble learning (Random Forest). This framework
is established on a new concept of bipartite
information graphs to identify high-quality rel-
evant neighboring entries with both feature and
value granularity. Extensive experiments on 9
real-world datasets demonstrate the effective-
ness and efficiency of LLM-Forest. The im-
plementation is available at https://github.
com/Xinrui17/LLM-Forest

1 Introduction

Handling missing data is a fundamental challenge
across various domains, including datasets such
as clinical reports, financial records, product char-
acteristics, and survey data in a tabular format
(Sterne et al., 2009; Shwartz-Ziv and Armon, 2022;
Hernandez et al., 2022). However, these datasets
frequently suffer from missing values, which can
severely impact the reliability of critical decision-
making processes that depend on complete and
accurate data. To address this issue, feature impu-
tation (Brick and Kalton, 1996; Troyanskaya et al.,
2001; Jazayeri et al., 2020; Bernardini et al., 2023),
the process of estimating missing values based on

† Corresponding authors.

observed data, plays a crucial role in maintaining
data integrity and ensuring meaningful analysis.

Common approaches for feature imputation can
be broadly categorized into two groups. (1) Statis-
tical Methods: Techniques such as mean or mode
imputation and MICE (Little and Rubin, 2019) are
simple and widely used due to their ease of imple-
mentation. While these methods are straightfor-
ward, they can introduce bias. (2) Deep Learning-
Based Methods: Models like GAIN (Yoon et al.,
2018), DIFFIMPUTE (Mattei and Frellsen, 2019),
and GRAPE (You et al., 2020) aim to model com-
plex data distributions and dependencies leveraging
advanced neural network architectures to capture
non-linear relationships within the data. However,
they typically require large volumes of data and
can be challenging to train, particularly in scenar-
ios like healthcare where data are often limited,
imbalanced, or subject to strict privacy regulations.
Recently, Large Language Models (LLMs)

(Brown, 2020; Devlin, 2018; Beltagy et al., 2019;
Agrawal et al., 2023) have demonstrated strong
potential in handling complex tasks by using ex-
ternal knowledge and contextual learning, offering
a promising solution for enhancing performance
on tabular data tasks (Gong et al., 2020; Yin et al.,
2020; Abraham et al., 2022; Thirunavukarasu et al.,
2023). Anam (Nazir et al., 2023) began explor-
ing the adoption of ChatGPT (Brown, 2020) as
a data imputer by formulating text questions and
prompting ChatGPT to respond with imputed val-
ues for each missing cell. Similarly, CLAIM
(Hayat and Hasan, 2024) introduced an LLM-based
approach to generate text-specific descriptions of
missing data. However, both methods require fine-
tuning processes, which can be time-consuming
and resource-intensive, limiting their scalability
across different datasets. In contrast, in-context
learning (Wei et al., 2022; Min et al., 2022; Gru-
ver et al., 2024) has excelled in tasks such as
tabular classification (e.g., CancerGPT (Li et al.,

6921

https://github.com/Xinrui17/LLM-Forest
https://github.com/Xinrui17/LLM-Forest

2024)) and reasoning (e.g., CHAIN-OF-TABLE
(Wang et al., 2024)). Yet the use of LLMs’ broad
knowledge and reasoning ability for data imputa-
tion, without relying on task-specific fine-tuning,
remains largely unexplored.
In this paper, we explore fine-tuning-free ap-

proaches to harness the power of pre-trained LLMs
for data imputation. We aim to overcome two pri-
mary challenges: (1) extracting high-quality infor-
mation from observed data to align with the pref-
erences of the target entries to effectively guide
LLMs, and (2) reduce potential output bias and
uncertainty in current LLMs.

To address these challenges, we propose a novel
framework, LLM-Forest. It consists of multiple
trees utilizing few-shot in-context learning with
LLMs, inspired by ensemble learning (Random
Forest), reducing the chance of bias and uncertainty
compared to relying on a single LLM.
Each tree in the forest represents an LLM with

a particular few-shot prompt learning process. To
construct high-quality yet diverse prompts, we de-
sign a graph-based retrieval algorithm to explore
highly relevant neighboring entries in preparation
for constructing LLM-Forest. This graph algo-
rithm is based on Information-Theoretic Bipartite
Graphs to quantify relevance at both the feature-
level and value-level granularity. Meanwhile, it
reduces the computational complexity in the graph
construction process and allows for the subsequent
merging process to be easily implemented in paral-
lel. This makes it scalable for very large datasets.
We then carefully design prompts to integrate the
retrieved neighbors and inject domain-level guid-
ance, maximizing the utility of pre-trained LLMs
without any fine-tuning. Finally, we aggregate the
outputs of the LLM trees by weighting each tree’s
prediction according to its self-assessed confidence
level, ensuring more robust and reliable results. In
summary, our main contributions are :

• Stronger LLM decision-maker: We incorporate
the concept of ensemble learning, inspired by
Random Forests, into the in-context learning of
LLMs. By combining diverse and independent
LLMs into a more powerful decision-maker, our
framework enhances robustness by aggregating
the outputs of multiple LLM trees, which reduces
biases and the high variance associated with indi-
vidual LLMs.

• Information-based Graph retrieval for LLM: We
integrate information theory into the construction

of bipartite information graphs to accommodate
different distributions and value-level granularity,
along with an efficient merging process. Ran-
dom walk-based retrieval adds randomness (ex-
ploration) to each LLM tree, ensuring that the
trees are less correlated with each other.

• We conduct comprehensive experiments on 9
real-world tabular datasets under various settings.
The results demonstrate the effectiveness and effi-
ciency of LLM-Forest in imputing missing data.
Our framework outperforms traditional imputa-
tion methods, highlighting its potential for prac-
tical applications in data analysis.

Since the construction of each LLM tree is indepen-
dent, we can compute the predictions of LLM trees
in parallel. Moreover, the graph retrieval compo-
nent is efficient, enabling the framework to handle
large-scale datasets by retrieving a small number of
high-quality data objects for each LLM tree. This
ensures that the inference time of LLM-Forest does
not increase significantly in large-scale datasets.

2 Notations and Problem Definitions

Let [n] = {1, 2, . . . , n} and define N = [n]. Sup-
pose the matrix X ∈ Rn×d represents a tabular
dataset with n entries and d-dimensional features.
The matrix X = [A1, A2, . . . , An]

⊤, where each
entry Ai ∈ Rd, i ∈ [n], is a d-dimensional vector.
For example, in a diabetes dataset, A⊤

i could repre-
sent the feature set of the patient i. LetAij , j ∈ [d],
denote the j-th feature value of the i-th entry A⊤

i .
For convenience, we use {C1, C2, . . . , Cd} to rep-
resent the d-dimensional features (columns) of X,
where Cji ∈ Rn, j ∈ [d], i ∈ N , denotes the i-
th entry of the j-th feature. Let Rj represent the
set of distinct values in feature Cj , which can be
viewed as the collection of attribute values for all
patients in the dataset. Additionally, define a matrix
M ∈ Rn×d to represent the missingness pattern of
X, where a cell has the value 1 if the corresponding
entry inX is missing, and 0 otherwise.

The objective is to predict the missing values in
X based on the available information in the dataset.

3 Proposed Method: LLM-Forest

In this section, we present our proposed framework,
LLM-Forest, which consists of four key compo-
nents, as illustrated in Figure 1. The first three
steps form the information-based graph retrieval
module: (1) Table to Bipartite Information Graphs:

6922

Table Input

Bipartite Graph
Construction

P0

P0: Patient 0 *: classified level

P3
0High

BP

P1 1High
BP

P2 ?

P0

P3

Low*BMI
P1

High*BMIP2

P0

P3

1Veggie
P2

0VeggieP1

P2
Low*Gen

Hlth

P0 High*Gen
Hlth

P3 ?

P1

…

𝐺1

𝐺2

𝐺3

𝐺4

M
erge

P0

P3

P1

P2

Cumulative Weighted

P0

P3

P1

P2

…

…

Random
 W

alk

Merge
Bipartite Graph

Random
Walk

LLM
Tree-to-Forest

M
erge

[MASK 1]

[MASK 2]

P0

P1

(1) Neighbors (2) Instruction
(3) Meta Strategies
(4) Correlations/Distribution
(5) Feature Description

Prompt

[Mask 1] is 0
[Mask 2] is 3

[Mask 1] is 1
[Mask 2] is 1

[Mask 1] is 1
[Mask 2] is 3

Output 1

Output 2

Output 3

Confidence 1

Confidence 2

Confidence 3

W
eighted Voting

[Mask 1] is 0
[Mask 2] is 3

…

……

…

Final Output

Imputed Table

(1) (2) (3) (4)

P1

P2

(1) Neighbors

Prompt

P1

P2

(1) Neighbors

Prompt

Patient
ID

0

1

2

3

…

High BP BMI Veggie GenHlth …

0 33 1 4 …

1 32 0 1 …

[𝐌𝐀𝐒𝐊 𝟏] 60 1 2 …

0 25 1 [MASK 2] …

… … … … …

Diabetes

No

Yes

Yes

No

…

FeaturesIndex Label

1High BP
High*BMI

0High BP
Low*BMI

1Veggie
High*GenHlth

0Veggie
Low*GenHlth

Imputed Table

LLM-Forest

Patient
ID

0

1

2

3

…

High BP BMI Veggie GenHlth …

0 33 1 4 …

1 32 0 1 …

0 60 1 2 …

0 25 1 3 …

… … … … …

Diabetes

No

Yes

Yes

No

…

Downstream
Tasks

LLM-Forest e.g., Table Classification

LLM-Tree

LLM-Tree

LLM-Tree

(2) Instruction
(3) Meta Strategies
(4) Correlations/Distribution
(5) Feature Description

(2) Instruction
(3) Meta Strategies
(4) Correlations/Distribution
(5) Feature Description

Cumulative Weighted

Cumulative Weighted

Figure 1: Overview of LLM-Forest. LLM-Forest consists of four key steps: (1) Bipartite Information Graph
construction: converts tabular data into bipartite information graphs, capturing the relationships between data entries
and the values of their associated dimensional features. (2) Merge Bipartite Graphs: Hierarchically merges the
bipartite information graphs to aggregate shared information across features. (3) Graph Retrieval via Random Walk:
Performed on the merged graphs to identify correlated and diverse neighbors for each entry. (4) Construct LLM-tree
to Forest: Builds a tailored few-shot prompt using the identified neighbors for each LLM; Multiple LLMs form a
“forest” whose outputs are aggregated via confidence-weighted voting to generate the final imputed values.

This step converts tabular data into bipartite in-
formation graphs connecting dimensional features
and their corresponding entries, where edges are
weighted based on self-information to quantify the
informativeness of feature values, enriching the rep-
resentation of feature–entry relationships. (2) Hi-
erarchical Bipartite Graph Merging: The bipartite
graphs are then hierarchically merged, aggregating
shared information across different features. (3)
Graph Retrieval via Random Walk: Random walks
are performed on the merged bipartite graphs to
identify correlated and diverse neighbor nodes for
each entry (node), preparing for the construction
of the LLM-tree. Finally, (4) Construct LLM-tree
to Forest: Based on the identified neighbors, a tai-
lored few-shot prompt is constructed for each LLM,
forming a forest with confidence-weighted voting.
We detailed each procedure below.

3.1 Table to Bipartite Information Graphs

Given the dataset X with n entries and d-
dimensional features, we construct d bipartite
graphs. For each j ∈ [d], a bipartite graph
Gj = (N ∪Rj , Ej) is constructed, where Ej rep-
resents the set of edges connecting the two inde-
pendent sets N (the set of entries) and Rj (the set
of distinct values in feature j with continuous fea-
tures discretized into bins). For any i ∈ N and a
distinct value ajk ∈ Rj , an edge ei(a

j
k) is formed

if Aij = ajk. In this way, we construct d bipartite
graphs {G1, G2, . . . , Gd}, as illustrated on the left
side of Figure 1 (1). Next, we will elaborate on
the calculation of the weight wi(a

j
k) for each edge

ei(a
j
k).

Given an entry Ai, a dimension Cj , and a value
ajk ∈ Rj , suppose that the probability of the event
Aij = ajk is pi(a

j
k). Grounded in information the-

ory (Ash, 2012), the self-information of the event
that entry Ai takes the value a

j
k in dimension j is

6923

defined as:

wi(a
j
k) = log

(
1 + pi(a

j
k)
)
. (1)

It is important to note that for an entry with a miss-
ing value in dimension j, an isolated node will be
formed in the corresponding bipartite graph Gj .
To address this challenge, we introduce a merging
process, which will be detailed in Section 3.2.
Determine pi(a

k
j). To compute the

informativeness-based edge weight wi(a
j
k),

we estimate the probability pi(a
j
k) based on the

type of feature Cj . We consider three cases:
1. For a categorical feature Cj , where j ∈ [d] is

an attribute feature, we assume a uniform distribu-
tion and set:

pi(a
j
k) =

1

|Rj |
, (2)

where Rj represents the set of distinct values of
Cj . This approximation works well for randomized
features such as gender.
2. For features that follow a normal distribu-

tion, we approximate pi(a
j
k) using the probability

density function:

pi(a
j
k) =

1

σj
√
2π

exp

(
−(ajk − µj)

2

2σ2
j

)
, (3)

where µj is the mean and σ2
j is the variance of Cj .

This approximation is suitable for features that are
expected to follow a normal distribution, such as
weight or body mass index.

3. For features with skewed or unknown distri-
butions, we estimate pi(a

j
k) based on the empirical

distribution:

pi(a
j
k) =

|{i ∈ N : Aij = ajk}|
n

. (4)

This method is effective for features with skewed
distributions and low entropy, such as income or
salary.

Therefore, we can construct d bipartite informa-
tion graphs for the n entries with d features, where
the edge weights in each graph reflect the infor-
mation shared among entries through the feature
value nodes. To effectively compress the informa-
tion shared by entries across multiple features, we
introduce the following approach to merge any two
informative bipartite graphs.
Time complexity. We propose constructing d bi-
partite graphs to avoid building the conventional
n× n similarity graph, such as those used in KNN

methods. In the conventional approach, calculating
the similarity between two nodes (entries) takes
O(d), resulting in a total complexity of O(n2d)
to construct the adjacency similarity matrix. In
contrast, constructing each bipartite graph only re-
quires two scans of the corresponding feature di-
mension, leading to a total complexity of O(nd)
to build all d bipartite graphs. Consequently, this
approach significantly reduces the computational
cost of graph construction.

3.2 Hierarchical Bipartite Graph Merging
We use a bottom-up hierarchical process to merge
the d bipartite graphs into compressed bipartite
information graphs. In each step, two bipartite
graphs are merged into one, while accumulating
the shared information of entries across the two
dimensional features. Given two bipartite graphs
Gj = (N ∪ Rj , Ej) and Gj′ = (N ∪ Rj′ , Ej′),
where j, j′ ∈ [d], we merge the right sides Rj and
Rj′ , as both graphs share the same left side N .
The goal is to merge two nodes ajk ∈ Rj and

aj
′
k′ ∈ Rj′ if they have many shared neighbors in

N . Let N (ajk) represent the set of nodes in N

connected to ajk in Gj , i.e., N (ajk) = {i ∈ N :

Aij = ajk} ⊆ N . We use the Jaccard coefficient to
measure the similarity between two nodes:

S(ajk, a
j′
k′) =

|N (ajk) ∩N (aj
′
k′)|

|N (ajk) ∪N (aj
′
k′)|

. (5)

We set a threshold σ to determine whether to
merge two value nodes. We merge ajk and aj

′
k′ if

S(ajk, a
j′
k′) ≥ σ. The merged node is denoted by

aĵ
k̂
= {ajk, a

j′
k′}. The edges are merged as follows:

∀i ∈ N (ajk) ∪N (aj
′
k′),

wi(a
ĵ

k̂
) = wi(a

j
k) + wi(a

j′
k′).

(6)

This rule ensures that the information shared
by entry i is accumulated across both dimensions.
Note that wi(a

j
k) = 0 if the edge ei(a

j
k) does not

exist. By merging nodes in descending order of
the Jaccard coefficient S, a new bipartite graph
Gĵ = (N ∪Rĵ , Eĵ) is formed.
Using this merging rule, we recursively apply

the merging process, as illustrated in Figure 1 (2).
At each level of merging, we prioritize merging
two nodes whose corresponding right-side sets are
of similar size, i.e., |Rj | ≈ |Rj′ |. This approach
ensures a balanced merging process.

6924

Time complexity. Merging two bipartite graphs
Gj andGi takesO(n) time. To ensure high-quality
merging, we can apply the Jaccard similarity mea-
sure, which requires O(|Rj | × |Rj′ | + n) time to
compute for each pair of graphs. However, the
merging process can be parallelized, allowing it to
scale efficiently for large datasets. Consequently,
the hierarchical merging process for d bipartite
graphs requires O(log2(d)) levels.

3.3 Graph Retrieval via Random Walk

After the recursive merging process, we obtain a
set of merged bipartite graphs. Given a target node
î, for which we aim to predict the missing values,
the next step is to identify neighboring nodes that
share strong informational edges with it. These
selected neighbors will then be used to construct
the LLM-forest.
To achieve this, we propose using a simple yet

effective approach: the random walk. In a bipartite
graph Gj , the random walk begins from the tar-
get node î. The transition matrix Pj,1 ∈ Rn×|Rj |,
which represents transitions from N to Rj , is de-
fined as:

Pj,1
ik =





wi(a
j
k)

∑
a
j
k′∈N (i)

e
wi(a

j
k′)

, if (i, ajk) ∈ Ej

0, otherwise
(7)

for i ∈ N, ajk ∈ Rj . And the transition matrix
Pj,2 ∈ R|Rj |×n, which represents transitions from
Rj to N , is defined as

Pj,2
ki =





wi(a
j
k)

∑
i′∈N (a

j
k
)
e
wi′ (a

j
k
)
, if (i, ajk) ∈ Ej

0 otherwise
(8)

for ajk ∈ Rj , i ∈ N . The walker moves to the next
node according to either Pj

1 or Pj
2. To identify

q neighboring nodes, we first perform q rounds
of random walks on each merged bipartite graph,
selecting q neighbors per graph. We then take the
union of the nodes found across all merged graphs
and assign each node a score, calculated as the
average edge weight along its random walk path.
Finally, we rank the nodes based on these scores
and choose the top q nodes. Since we are working
with bipartite graphs, the number of steps for the
random walk can be set to 2 or 4.

3.4 Construct LLM-tree to Forest

Inspired by ensemble learning, we introduce the
LLM Forest, which consists of multiple LLM Trees.
Each tree is designed as a diverse few-shot learner
using an LLM. Specifically, each tree is prompted
with a set of neighboring nodes returned by random
walk on the compressed bipartite graphs. Suppose
there are m trees in LLM-Forest, and then run the
graph merging processm times. This aim is to pro-
vide high-quality and diverse information for each
LLM. In addition to this, we carefully design the
prompt for each LLM-tree as follows. Note that we
employ a single LLM model, feeding the prompts
sequentially and allowing the LLM to make the
necessary inferences, to conserve resources.
Promept design. To bridge the gap between the
structured format of tabular data and the natural
language processing capabilities of LLMs, our
methodology incorporates a table transformation
module. This module utilizes a simple template
to convert structured tabular data into a natural
language format. For each entry (representing an
individual sample), we extract the data across var-
ious features, such as age, gender, smoking sta-
tus, and more from the structured dataset. These
feature-value pairs are then formatted into a sample
using the template: for each feature, if a value is
present, it is included as "feature: value;" and we
add a statement as "the sample has missing features:
missing feature 1, missing feature 2," at the end
for all the missing values.
Using the extracted neighbors’ information for

each entry, we structure the graph-augmented
prompt to include several key components: the
sample and their neighbors’ data, meta strate-
gies, dataset-specific correlations and distributions,
dataset and feature descriptions, and instructions.
We detail each component of the prompt in Ap-
pendix A.1 in Table 6.
Confidence-weighted Voting. The most straight-
forward method for determining the ensemble out-
put of the LLM Forest is majority voting. How-
ever, leveraging the self-assessment ability, we pro-
pose an enhanced strategy by weighting each LLM-
tree’s vote according to its confidence level. Cur-
rent LLMs can provide a confidence level associ-
ated with their inferences for specific tasks. For ex-
ample, GPT4 assigns "High", "Medium" or "Low"
confidence levels to its inference output. A higher
confidence reflects a stronger alignment between
the model’s output and its internal logic and prior

6925

knowledge. Therefore, we introduce a criterion
where higher confidence results in a greater voting
weight. For instance, LLM trees with "High" confi-
dence receive a voting weight of 1.0, while those
with "Medium" confidence are assigned a weight
of 0.6, "Low" with 0.3. The final imputed value is
determined by selecting the value with the largest
cumulative weighted votes.

4 Experiments

In this section, we evaluate LLM-Forest across
various real-world datasets under different settings.

4.1 Exepriment setup

We evaluate the imputation performance of the pro-
posed method using 9 datasets from different do-
mains: NPHA (nat, 2017), Gliomas (Tasci and
Zhuge, 2022), Cancer (Borzooei and Tarokhian,
2023), Credit-g (Hofmann, 1994), Concrete (Yeh,
1998), Yacht (Gerritsma and Versluis, 1981) and
Wine (Cortez and Reis, 2009) datasets from the
UCI Machine Learning Repository and Diabetes
and Housing (Harrison Jr and Rubinfeld, 1978)
dataset from Kaggle. The detailed information on
datasets, the preprocessing procedures, the con-
struction of the training and test sets, and the evalu-
ation metrics are elaborated in Appendix A.2.

We compare LLM-Forest with the baselines in-
cluding both statistic and deep learning-based meth-
ods as described in Appendix A.2. We also in-
troduce zero-shot LLM (without similar samples
provided): LLM-zero and adapt Chain-of-Thought
(Wei et al., 2022) framework by providing exam-
ple questions alongside corresponding imputation
results and explanations for LLMs for comparison.
The method proposed in (Nazir et al., 2023) gen-
erating a separate question for each missing value
can be considered a variant of the LLM-zero.

Main experiments are conducted with GPT-4o
(referred to as GPT-4 in the following discussion)
and we also provided the results with Claude-3.5
and open-source model Mixtral-8×22B-v0.1 in the
Appendix A.3. The experiments are conducted
3 times to ensure reliability. The performance
improvements are statistically significant with p-
values less than 0.05 when compared to baselines.
The hyperparameter settings for LLM-Forest and
baseline methods are provided in Appendix A.2.

4.2 Main Results & Discussion

Imputation Performance. We begin by evaluating
the imputation accuracy of our proposed methods,
as presented in Table 1. LLM-Forest achieves the
strong imputation performance across all datasets
when compared to traditional imputation tech-
niques and LLM-based in-context learning base-
lines. From the main experiments, we derive the
following insights:
(i) LLMs exhibit strong performance for data

imputation across datasets with varying feature
distributions. For instance, In Gliomas, over 70%
of features are highly skewed, with over 90% of val-
ues in one category. Despite this, LLM-Forest still
outperforms statistical baselines. (ii) LLMs are ef-
fective for imputing continuous datasets. As shown
in Table 1, LLM-Forest achieves the lowest MAE
on most continuous datasets and ranks second on
the remaining one. These results demonstrate the
capability of LLMs to generate accurate values
when faced with a wide range of possible outcomes
in continuous imputation tasks. (ii) A single LLM
(LLM-Tree), when provided with an appropriately
designed prompt, is capable of delivering accu-
rate imputations. Across all datasets, the LLM-
Tree achieves performance within less than 1% of
the best method, consistently maintaining a high
level of accuracy. (iii) LLMs’ own knowledge is
limited, and they need to learn from informative
contexts to perform well in this task. In the zero-
shot LLM setting, without informative neighbors,
LLM-Zero leaves 9.27% of Gliomas and 9.52% of
Diabetes cells unimputed. It also produces uncer-
tain or unreasonable outputs, like "approximately"
or "18000" for Age. (iv) Forming an LLM forest
enhances the accuracy and robustness of imputa-
tion results. Compared to a single LLM, using just
three trees can lead to performance improvements
across all datasets. This highlights the effective-
ness of ensemble learning in improving imputation
robustness and accuracy of LLMs.
Performance on Downstream tasks. We evaluate
the downstream classification task performance us-
ing a logistic regression model (Cox, 1958) on five
datasets. As shown in Figure 2, LLM-Forest con-
sistently achieves the highest performance across 4
datasets and second-best on Gliomas. This superior
performance can be attributed to the LLMs’ ability
to identify relevant patterns among features and
entries during imputation, as well as its capacity to
effectively apply its extensive base knowledge.

6926

Methods NPHA Gliomas Diabetes Cancer Credit-g Concrete Yacht Wine Housing

ACC↑ ACC↑ ACC↑ ACC↑ ACC↑ MAE↓ MAE↓ MAE↓ MAE↓
Statistic & Deep Learning
Mean Imputation 64.88 83.29 53.90 - - 0.1814 0.2185 0.0988 0.1847
Mode Imputation 66.10 83.29 61.25 68.39 53.49 0.2568 0.2256 0.1142 0.2308
MICE 62.69 84.15 57.54 42.52 44.00 0.1357 0.2002 0.0921 0.1115
GAIN 60.68 84.13 54.18 42.52 53.49 0.1831 1.3642 0.1085 0.1381
KNN 64.28 83.92 62.07 71.98 54.15 0.1580 0.1937 0.1060 0.1130
GRAPE 65.01 81.36 61.26 68.90 53.48 0.1816 0.2150 0.1564 0.2493
Miracle 56.05 77.73 52.47 32.07 35.73 0.1320 0.2189 0.0820 0.1655
Hyperimpute 58.80 72.00 52.35 58.25 41.11 0.1310 0.1807 0.0788 0.1315
TDM 66.29 79.80 52.10 32.67 42.52 0.1678 0.1668 0.1000 0.1376
Remasker 65.38 83.45 57.16 42.52 36.26 0.1159 0.1819 0.0780 0.0948

LLM-based
Chain-of-Thought 63.81 81.83 61.24 71.06 45.63 0.1991 0.1739 0.0990 0.1212
LLM-zero 59.18 77.86 55.80 59.32 36.12 0.1959 0.2231 0.1123 0.1226
LLM-Tree (Ours) 65.57 83.55 62.46 71.52 54.08 0.1105 0.1528 0.0816 0.1074
LLM-Forest (Ours) 66.35 84.41 63.18 72.18 54.46 0.1036 0.1478 0.0768 0.1026

Table 1: Comparison of imputation accuracy (ACC↑) for categorical-dominant datasets (NPHA, Gliomas, Diabetes,
Cancer, Credit-g) and mean absolute error (MAE↓) for continuous datasets (Concrete, Yacht, Wine, Housing) with
different baseline methods. ACC values are reported with % omitted. The best results are highlighted in boldface,
and the second-best results are underlined.

Figure 2: Performance on downstream classification
task.

4.3 Ablation Study

Impact of the different components in the
prompt. We conducted an ablation study on
Meta Strategies (M-S) and Correlations and Dis-
tributions (C-D (Table 2). Meta Strategies aim
to inspire the LLM by offering flexible reason-
ing approaches, leading to improved accuracy for
NPHA (65.48% → 66.35%) and Gliomas (84.10%
→ 84.41%). Correlations and Distributions pro-
vide dataset-specific context, particularly for im-
balanced features, and further boost accuracy for
NPHA (65.73% → 66.35%) and Gliomas (83.55%
→ 84.41%). These demonstrate that M-S and C-D
complement the core prompt components, enhanc-
ing the LLM’s reasoning capabilities and contex-
tual understanding.
Impact of tree count on LLM-Forest. We analyze
how the number of trees impacts the performance
of the LLM-forest. Firstly, as we mentioned in the
main results, the ensemble model outperforms a sin-

Datasets w/ M-S w/o M-S w/ C-D w/o C-D

NPHA 66.35 65.48 66.35 65.73
Gliomas 84.41 84.10 84.41 83.55

Table 2: Impact of the different components in the
prompt. Results are with % omitted. M-S: Meta Strate-
gies, and C-D: Correlations and Distributions.

gle LLM. Secondly, while adding more trees allows
us to provide LLMs with varied perspectives, the
imputation results ultimately rely on the informa-
tion present in the datasets and the LLM’s external
knowledge. Given that the pre-trained model for
each few-shot LLM remains the same, thus, the
information contained within the entire dataset and
the external knowledge are both fixed, this poses
an upper limit to the LLM’s inference capabilities.
As shown in Table 4, beyond three trees, the per-
formance improvements plateau, with results such
as only 0.1% improvement for Cancer and 0.31%
for Gliomas when using 7 trees compared to us-
ing 3 trees. This highlights a trade-off between
performance and computational cost. Although
more trees can improve accuracy to some extent,
the marginal benefits diminish and the additional
inference steps introduce overhead. In practice, us-
ing a moderate number of trees (e.g., 3 to 5) offers a
good balance between efficiency and performance.

Effectiveness of confidence levels. In LLM
prompts, we include instructions for the models
to output a confidence level for each imputed value,
which we then use as weights when obtaining the
ensemble results. We compute the imputation ac-
curacy within different confidence level, the results

6927

Confidence NPHA Gliomas Diabetes Cancer

High 71.67 87.19 76.15 79.09
Medium 51.42 63.15 40.18 38.79
Low 50.00 66.17 41.67 25.00

M-V 65.91 84.35 63.33 72.08
C-W 66.35 84.41 63.18 72.18

Table 3: Imputation accuracy w.r.t. different confidence
levels with % omitted, with Majority Voting (M-V) and
Confidence-Weighted (C-W) Aggregation.

Figure 3: Time efficiency verification. LLM-Forest
refers to processing 1 record per process in parallel,
while LLM-Forest* refers to processing 10 records per
process in parallel.

are shown in Table 3. High-confidence imputa-
tions consistently achieve higher accuracy across
all datasets which proves that LLMs can evalu-
ate the quality of their own outputs. This strong
self-assessment capability plays a crucial role in
improving the final outcomes by leveraging the
strengths of each tree while downplaying less cer-
tain imputations. We further discuss the impact of
confidence-weighted voting in Appendix A.4, and
provide an additional sensitivity analysis of differ-
ent confidence threshold settings in Appendix A.5.

4.4 Case study
Scalability and time efficiency analysis. To ana-
lyze the scalability and efficiency of LLM-Forest,
we randomly sample 1,000–5,000 entries from the
Diabetes dataset and measure the runtime for neigh-
bor searching and the entire pipeline. As shown
in Figure 3, the runtime for neighbor searching
with KNN grows sharply, reaching 10,000 seconds
for 5,000 records, while our graph-based retrieval
method (Graph_ns) remains below 2,000 seconds,
demonstrating superior scalability. Importantly, the
constructed graph is shared across all trees in the
ensemble, eliminating the need for repeated compu-
tation and further reducing overhead. For the entire
pipeline, KNN’s exponential growth remains a bot-
tleneck, whereas LLM-Forest scales efficiently. Its
parallelizable architecture ensures computational
efficiency for large datasets while maintaining accu-

Tree count 3 4 5 6 7

Cancer 72.18 71.98 72.23 72.34 72.28
Gliomas 84.41 84.51 84.62 84.60 84.72

Table 4: Impact of tree count on LLM-Forest perfor-
mance. Results are with % omitted.

racy and robustness in imputation results. We also
provide results on a large-scale balanced dataset
in Appendix A.6, where LLM-Forest demonstrates
great performance and scalability.
Effects on Different Types of Missing Data. We
explore how LLM-Forest performs under various
types of missing data mechanisms which we in-
troduce in detail in Appendix A.7. The results on
Diabetes dataset (Table 5), show that our approach
consistently outperforms the baselines across all
types of missing data. The largest improvement
is observed with MNAR data, where information
loss is more significant. In such cases, statistical
methods struggle to accurately infer the real rela-
tionships between features when entire categories
are missing for several features. However, LLMs,
leveraging their external knowledge, retain the abil-
ity to infer missing categories by understanding the
meaning of missing features and analyzing their
relationships with existing data, allowing them to
perform well even in more challenging scenarios.

Dataset Mode MICE GAIN KNN LLM-Tree LLM-Forest

MCAR 61.25 57.54 54.18 62.07 62.46 63.18
MAR 63.06 60.75 57.70 63.04 63.03 64.48
MNAR 38.12 41.34 37.37 41.36 49.97 51.25

Table 5: Comparison of LLM-Forest against baseline
imputation methods for three missingness patterns on
Diabetes dataset. Results are with % omitted.

5 Related Work

LLM for Tabular Data Recent researches have
extended the use of LLMs beyond natural language
tasks to structured formats like tabular data (Lu
et al., 2024b; Zhang et al., 2024; Fang et al., 2024).
Reasoning on tabular data with LLMs can be ap-
proached in two key areas. (1) Global Table Un-
derstanding: GPT models face challenges in pro-
cessing large tables due to several reasons such as
the semi-structure of the tabular data (Sui et al.,
2023), the limited token capacity of LLMs (Chen
et al., 2024), and abstract or unseen information
provided in table cells (Ye et al., 2023). These
challenges prevent LLMs from fully capturing the
table’s structure and content for downstream tasks.
To tackle this, several studies such as TaPas (Herzig
et al., 2020) and Chain-of-Table (Wang et al., 2024)

6928

have proposed advanced table encoding and table-
reasoning-chain approaches to help LLMs better
understand and reason with tables. (2) Adaptation
to Tabular Formats: LLMs, like GPT4, are primar-
ily trained on textual data, limiting their adaptabil-
ity and effectiveness when applied to the distinct
nature of tabular datasets. Recent works (Chen
et al., 2022; Cheng et al., 2022; Sui et al., 2023;
Jiang et al., 2023; Lu et al., 2024a; Zou et al., 2025)
have proposed prompting and table pre-processing
methods incorporating natural language techniques
for improved analysis of tabular data. Notably, pre-
vious works have focused on downstream tabular
reasoning tasks, such as QA and classification. The
application of LLMs in tabular data imputation re-
mains significant room for development.

Tabular Data Imputation Tabular data imputa-
tion aims to fill in missing values in structured
datasets. Simple statistical methods like mean,
mode, and median imputation are widely used but
often yield biased results. Methods like Multiple
Imputation by Chained Equations (MICE) (Little
and Rubin, 2019) and MissForest (Stekhoven and
Bühlmann, 2012) improve accuracy by iteratively
estimating missing values based on other observed
features, but struggle with high-dimensional or
imbalanced data. Recently, deep learning-based
models such as GAIN (Generative Adversarial Im-
putation Networks) (Yoon et al., 2018) and DIF-
FIMPUTE (Wen et al., 2024) have been devel-
oped to model complex data distributions, which
require large and balanced datasets making them
less practical for applications where data can be
limited. GRAPE (You et al., 2020), which en-
codes relationships between data points by graphs,
offers an alternative by leveraging network struc-
tures to inform imputation. Leveraging the capa-
bilities of LLMs, Anam (Nazir et al., 2023) and
CLAIM (Hayat and Hasan, 2024) explored their
use for imputation; however, both approaches re-
quire resource-intensive fine-tuning. Our work fo-
cuses the less explored area of table imputation
with fine-tuning-free approach, marking a new di-
rection within downstream tabular tasks.

6 Conclusion

In this paper, we propose a novel framework
LLM-Forest designed to enhance the data impu-
tation via Large Language Models. The frame-
work combines multiple LLM trees employing di-
verse few-shot learning, forming an LLM forest to

achieve robust and accurate imputations. Specif-
ically, to extract high-quality contextual informa-
tion for LLM trees, we developed a graph-based
retrieval algorithm. To mitigate LLM bias and
uncertainty, we introduce a confidence-weighted
voting mechanism that aggregates outputs from
all LLM trees based on their self-assessed confi-
dence levels. Comprehensive experiments on 9 real-
world datasets in various domains demonstrate that
LLM-Forest effectively improves imputation accu-
racy while maintaining scalability and efficiency.
The results highlight the potential of combining
ensemble learning of LLMs with graph-based re-
trieval methods to tackle the complex problem of
data imputation.

Limitations

The limitations of this paper are stated as follows:

• In our experiments, we use GPT-4 and Claude-
3.5 as backbone models via the OpenAI and
Anthropic APIs and open-source model Mixtral-
8×22B-v0.1. While LLM-Forest is compatible
with other causal language models, performance
may vary with different models (Achiam et al.,
2023; The). Using more static large language
model, such as Llama-3-70B (Dubey et al., 2024),
could further mitigate this variability, but would
require significant computing resources, which
are often constrained.

• The potential benefits of integrating our method
with fine-tuning techniques have not been investi-
gated. Such combinations could reveal additional
insights into task dimensions or enhance model
performance.

Ethics Statement

This work fully adheres to the ACL Ethics Policy.
To the best of our knowledge, no ethical concerns
are associated with this paper. We use only exist-
ing open-source datasets, none of which contain
private, personally identifiable information or of-
fensive content.

Acknowledgements

This work is supported by National Science Foun-
dation under Award No. IIS-2117902. The views
and conclusions are those of the authors and should
not be interpreted as representing the official poli-
cies of the funding agencies or the government.

6929

References
The claude 3 model family: Opus, sonnet, haiku.

2017. National Poll on Healthy Aging (NPHA).
UCI Machine Learning Repository. DOI:
https://doi.org/10.3886/ICPSR37305.v1.

Abhijith Neil Abraham, Fariz Rahman, and Damanpreet
Kaur. 2022. Tablequery: Querying tabular data with
natural language. arXiv preprint arXiv:2202.00454.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

M Agrawal, S Hegselmann, H Lang, Y Kim, and D Son-
tag. 2023. Large language models are zero-shot clin-
ical information extractors. arxiv, 2022.

Robert B Ash. 2012. Information theory. Courier Cor-
poration.

Gustavo EAPA Batista, Maria Carolina Monard, et al.
2002. A study of k-nearest neighbour as an imputa-
tion method. His, 87(251-260):48.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Michele Bernardini, Anastasiia Doinychko, Luca
Romeo, Emanuele Frontoni, and Massih-Reza Amini.
2023. A novel missing data imputation approach
based on clinical conditional generative adversarial
networks applied to ehr datasets. Computers in Biol-
ogy and Medicine, 163:107188.

Shiva Borzooei and Aidin Tarokhian. 2023.
Differentiated Thyroid Cancer Recurrence.
UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5632J.

J Michael Brick and Graham Kalton. 1996. Handling
missing data in survey research. Statistical methods
in medical research, 5(3):215–238.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Si-An Chen, Lesly Miculicich, Julian Martin Eisen-
schlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and
Tomas Pfister. 2024. Tablerag: Million-token table
understanding with language models. arXiv preprint
arXiv:2410.04739.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022. Binding language models in symbolic
languages. arXiv preprint arXiv:2210.02875.

Cerdeira A. Almeida F. Matos T. Cortez, Paulo and
J. Reis. 2009. Wine Quality. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C56S3T.

David R Cox. 1958. The regression analysis of binary
sequences. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 20(2):215–232.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Tianyu Du, Luca Melis Melis, and Ting Wang. 2024.
Remasker: Imputing tabular data with masked au-
toencoding. In International Conference on Learning
Representations (ICLR’24). International Conference
on Learning Representations.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Jane Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, Christos Falout-
sos, et al. 2024. Large language models (llms) on tab-
ular data: Prediction, generation, and understanding-
a survey. URL https://arxiv. org/abs/2402.17944.

Onnink R. Gerritsma, J. and A. Versluis. 1981. Yacht
Hydrodynamics. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5XG7R.

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin,
Wei Bi, Xiaojiang Liu, and Ting Liu. 2020. Tablegpt:
Few-shot table-to-text generation with table structure
reconstruction and content matching. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 1978–1988.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G
Wilson. 2024. Large language models are zero-shot
time series forecasters. Advances in Neural Informa-
tion Processing Systems, 36.

David Harrison Jr and Daniel L Rubinfeld. 1978. He-
donic housing prices and the demand for clean air.
Journal of environmental economics and manage-
ment, 5(1):81–102.

Ahatsham Hayat and Mohammad Rashedul Hasan.
2024. Claim your data: Enhancing imputation accu-
racy with contextual large language models. arXiv
preprint arXiv:2405.17712.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo
Cilla, and Debbie Rankin. 2022. Synthetic data gen-
eration for tabular health records: A systematic re-
view. Neurocomputing, 493:28–45.

6930

https://api.semanticscholar.org/CorpusID:268232499

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Hans Hofmann. 1994. Statlog (German Credit
Data). UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5NC77.

Sebastian Jäger, Arndt Allhorn, and Felix Bießmann.
2021. A benchmark for data imputation methods.
Frontiers in big Data, 4:693674.

Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia
Curth, and Mihaela van der Schaar. 2022. Hyperim-
pute: Generalized iterative imputation with automatic
model selection. In International Conference on Ma-
chine Learning, pages 9916–9937. PMLR.

Ali Jazayeri, Ou Stella Liang, and Christopher C Yang.
2020. Imputation of missing data in electronic health
records based on patients’ similarities. Journal of
healthcare informatics research, 4(3):295–307.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela
van der Schaar. 2021. Miracle: Causally-aware im-
putation via learning missing data mechanisms. Ad-
vances in Neural Information Processing Systems,
34:23806–23817.

Tianhao Li, Sandesh Shetty, Advaith Kamath, Ajay
Jaiswal, Xiaoqian Jiang, Ying Ding, and Yejin Kim.
2024. Cancergpt for few shot drug pair synergy pre-
diction using large pretrained language models. NPJ
Digital Medicine, 7(1):40.

Roderick JA Little and Donald B Rubin. 2019. Statis-
tical analysis with missing data, volume 793. John
Wiley & Sons.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2024a. Chameleon: Plug-and-play
compositional reasoning with large language models.
Advances in Neural Information Processing Systems,
36.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo
Chen. 2024b. Large language model for table pro-
cessing: A survey. arXiv preprint arXiv:2402.05121.

Pierre-Alexandre Mattei and Jes Frellsen. 2019. Mi-
wae: Deep generative modelling and imputation of
incomplete data sets. In International conference on
machine learning, pages 4413–4423. PMLR.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Anam Nazir, Muhammad Nadeem Cheeema, and
Ze Wang. 2023. Chatgpt-based biological and
psychological data imputation. Meta-Radiology,
1(3):100034.

Seyed Amir Ahmad Safavi-Naini, Shuhaib Ali, Omer
Shahab, Zahra Shahhoseini, Thomas Savage, Sara
Rafiee, Jamil S Samaan, Reem Al Shabeeb, Farah
Ladak, Jamie O Yang, et al. 2024. Vision-language
and large language model performance in gas-
troenterology: Gpt, claude, llama, phi, mistral,
gemma, and quantized models. arXiv preprint
arXiv:2409.00084.

Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular
data: Deep learning is not all you need. Information
Fusion, 81:84–90.

Daniel J Stekhoven and Peter Bühlmann. 2012.
Missforest—non-parametric missing value imputa-
tion for mixed-type data. Bioinformatics, 28(1):112–
118.

Jonathan AC Sterne, Ian R White, John B Carlin,
Michael Spratt, Patrick Royston, Michael G Ken-
ward, Angela MWood, and James R Carpenter. 2009.
Multiple imputation for missing data in epidemiolog-
ical and clinical research: potential and pitfalls. Bmj,
338.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2023. Tap4llm: Table
provider on sampling, augmenting, and packing semi-
structured data for large language model reasoning.
arXiv preprint arXiv:2312.09039.

Camphausen Kevin Krauze Andra Valentina Tasci,
Erdal and Ying Zhuge. 2022. Glioma Grading Clini-
cal and Mutation Features. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C5R62J.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock,
Pat Brown, Trevor Hastie, Robert Tibshirani, David
Botstein, and Russ B Altman. 2001. Missing value
estimation methods for dna microarrays. Bioinfor-
matics, 17(6):520–525.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

6931

Yizhu Wen, Yiwei Wang, Kai Yi, Jing Ke, and Yiqing
Shen. 2024. Diffimpute: Tabular data imputation
with denoising diffusion probabilistic model. In 2024
IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6. IEEE.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language
models are versatile decomposers: Decompose evi-
dence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808.

I-Cheng Yeh. 1998. Concrete Compressive
Strength. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5PK67.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Jinsung Yoon, James Jordon, and Mihaela Schaar. 2018.
Gain: Missing data imputation using generative ad-
versarial nets. In International conference on ma-
chine learning, pages 5689–5698. PMLR.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochen-
derfer, and Jure Leskovec. 2020. Handling missing
data with graph representation learning. Advances in
Neural Information Processing Systems, 33:19075–
19087.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2024. A survey
of table reasoning with large language models. arXiv
preprint arXiv:2402.08259.

He Zhao, Ke Sun, Amir Dezfouli, and Edwin V Bonilla.
2023. Transformed distribution matching for missing
value imputation. In International Conference on
Machine Learning, pages 42159–42186. PMLR.

Jiaru Zou, Dongqi Fu, Sirui Chen, Xinrui He, Zihao Li,
Yada Zhu, Jiawei Han, and Jingrui He. 2025. Gtr:
Graph-table-rag for cross-table question answering.
arXiv preprint arXiv:2504.01346.

A Appendix

A.1 Prompts Example
We present a detailed explanation of the prompts
used for our few-shot learning LLM tree. Table 6
outlines each component of the designed prompt,
along with a concise example for each part for
Diabetes dataset.

A.2 Experiments Setting
Datasets construction. Our experiments are con-
ducted on 9 real-world public datasets (NPHA,
Gliomas, Diabetes, Credit-g, Concrete, Yacht,
Wine, Housing and Cancer), and the statistics of
the processed datasets are shown in Table 7. These
datasets vary in feature types: some consist of cat-
egorical features only, others have continuous fea-
tures only, and a few include a mix of categorical
and continuous features. For the Diabetes dataset,
we randomly sample 1,000 records for experimen-
tation. To simulate missing data scenarios, we ran-
domly mask 40% of the values in each feature. The
datasets are then split into training and testing sets
using an 80:20 ratio for downstream classification
task evaluation. To prevent data leakage, imputa-
tion is performed only on the training data, and the
trained classifier is then applied directly to the (still
masked) test set.
Baseline methods. We compare our method
against widely used tabular data imputation tech-
niques, including approaches such as mode impu-
tation and mean imputation (for numerical datasets
only), K-Nearest Neighbors (KNN) (Batista et al.,
2002), Multiple Imputation by Chained Equations
(MICE) (Little and Rubin, 2019) and Generative
Adversarial Imputation Networks (GAIN) (Yoon
et al., 2018). We further include advanced meth-
ods such as GRAEPE (You et al., 2020), which
treats the missing data imputation as graph repre-
sentation learning task; MIRACLE (Kyono et al.,
2021), which integrates causal regularization into
iterative refinement; HyperImpute (Jarrett et al.,
2022), a hybrid imputer with automatic model se-
lection; TDM (Zhao et al., 2023), a transformed
distribution matching approach; and Remasker (Du
et al., 2024), which adopts a masked autoencoding
framework. Since Cancer and Credit-g consist pre-
dominantly of non-numerical features, traditional
methods like MICE requiring numerical input, can-
not be directly applied. For these datasets, we
use one-hot encoding to transform non-numerical
features into numerical representations before ap-

6932

Role Components Contents

System

Setup Specify the task. For example, "You are a helpful assistant tasked with filling
in the missing values for respondent 1 in a health-related telephone survey."

Meta strategies

Provide several strategies for inspiration. For example, "You have the flex-
ibility to determine the best approach for each missing feature. Possible
methods may include in no particular sequence (1) Using the mode of similar
neighbors (2). . . (3) Applying your knowledge in health domain (4). . . ".

User

Correlations and distributions

Provide dataset-specific characteristics. For example, "Here are some pat-
terns observed based on the correlations: Diabetes_binary is correlated with
high blood pressure (0.40);. . . ;. . . ;. . . . Almost everyone has some form of
healthcare (mean = 0.97);. . . ".

Dataset/feature descriptions

Include the introduction of the dataset and feature descriptions. For example,
"The data is from a health-related telephone survey that is collected annually
by the CDC. . . . Below is detailed information about the respondent’s feature
description. It follows the format of <Feature Name>: <Indicated Value> =
<Indicated Value Description> . . . ".

Sample and neighbors’ data

Provide the records of the patient for imputation and their neighbors’ records.
For example, "the records of the similar patients for patient 1 are: Similar
patient records 1 are HighBP:1,...,...;...Please infer the missing values in
patient 1’s records:....".

Instruction Give the output format. For example, "Give the imputation results in a
succinct JSON format with the following structure: "feature name": "inferred
value"".

Table 6: LLM tree’s prompt components and the examples.

Datasets NPHA Gliomas Diabetes Cancer Credit-g Concrete Yacht Wine Housing

of features 14 23 22 16 20 8 7 11 14
of entries 714 839 1000 383 1000 1030 308 1599 506

Table 7: The datasets statistics.

plying imputation. After imputation, we reverse
the transformation back to the original feature for-
mat and calculate the accuracy of the restored data.
Notably, we didn’t include the comparison with
CLAIM (Hayat and Hasan, 2024) since it fine-tunes
the LLM for downstream tasks by replacing miss-
ing cells with LLM-generated descriptions rather
than providing actual imputation values.
Hyperparameter settings. We provide the experi-
ments setting for LLM-Forest and baseline meth-
ods. For MICE, we applied the default settings
as provided in the PyPI package. For the KNN
approach, we selected k = 5 for Gliomas dataset,
k = 7 for Daibetes, Cancer and NPHA datasets
and k=10 for the rest, as the neighbors we used
in LLM-Forest for fair comparison. For all other
baselines, we adopt their original implementations
and follow the hyperparameters recommended in
their respective papers.
In the experiments, we set the number of trees

in the LLM forest as 3. The threshold σ for merg-
ing nodes on two bipartite graphs is set to 20 for
all datasets. The jump steps for random walk on

Methods NPHA Gliomas Diabetes Cancer

ACC(↑) ACC(↑) ACC(↑) ACC(↑)
Statistic & Deep Learning
Mean Imputation 64.88 83.29 53.90 -
Mode Imputation 66.10 83.29 61.25 68.39
MICE 62.69 84.15 57.54 42.52
GAIN 60.68 84.13 54.18 42.52
KNN 64.28 83.92 62.07 71.98
GRAPE 65.01 81.36 61.26 68.90
Miracle 56.05 77.73 52.47 32.07
Hyperimpute 58.80 72.00 52.35 58.25
TDM 66.29 79.80 52.10 32.67
Remasker 65.38 83.45 57.16 42.52

LLM-based
Chain-of-Thought 63.81 81.83 61.24 71.06
LLM-zero 59.18 77.86 55.80 59.32
LLM-tree 65.57 83.55 62.46 71.52
LLM-Forest (Claude-3.5-based) 64.41 82.97 59.02 73.51
LLM-Forest (Mixtral-based) 63.91 84.34 63.21 71.47
LLM-Forest (GPT-4-based) 66.35 84.41 63.18 72.18

Table 8: Comaparison of imputation accuracy of
Mixtral-based LLM-Forestwith different baseline meth-
ods on four datasets with % omitted. The best results
are highlighted in boldface. Underlined values indicate
the second best.

merged bipartite graphs are 2 in the experiments.
The graph merging step is 1 for Gliomas and Wine
dataset, 2 for Concrete, NPHA and Housing dataset,

6933

and 3 for the rest.
Evaluation metric. We use two evaluation metrics
to assess the imputation performance depending on
the dataset type:
For datasets primarily composed of categori-

cal features including NPHA, Gliomas, Diabetes,
Cancer and Credit-g, Imputation Accuracy (ACC)
is computed based on exact matches between the
imputed values and the ground truth. For those
numerical features in the categorical datasets, we
introduce a small tolerance to account for minor
deviations, such as NPHA, Gliomas, and Diabetes,
a tolerance of ±1 is used for features like Age and
BMI. On Credit-g dataset, for continuous feature
credit amount, accuracy is evaluated by matching
the most significant digit.
For datasets with predominantly continuous

features, we compute the Mean Absolute Error
(MAE) after performing min-max normalization.
The MAE is then defined as:

MAE =
1

N

N∑

i=1

|xi − x̂i|, (9)

where xi is the ground truth value, x̂i is the im-
puted value, and N is the total number of imputed
entries. This ensures a fair comparison across fea-
tures with different ranges. MAE is applied to
Concrete, Yacht, Wine, and Housing datasets.

A.3 Evaluating LLM-Forest with Claude-3.5
and Mixtral

In addition to GPT-4, we evaluate the model frame-
work using Claude-3.5 and the open-source Mixtral
(Mixtral-8×22B-v0.1), which aims to demonstrate
the performance of the LLM-Forest framework
when different base LLMs are utilized. As shown
in Table 8, due to inherent performance differences
between models (Safavi-Naini et al., 2024), Claude-
3.5 and Mixtral does not always achieve the top
results compared to GPT-4, yet it consistently deliv-
ers competitive performance across most datasets.
Mixtral, which institutions can deploy locally,

offers a privacy-preserving alternative to closed
models. Despite its smaller size and lower general
capabilities compared to GPT-4, Mixtral achieves
the best result on Diabetes (63.21%) and second-
best on Gliomas (84.34%), outperforming strong
baselines like KNN and GRAPE on most datasets.

The Claude-3.5-based LLM-Forest achieves the
best result on Cancer (73.51%), demonstrating its
strengths in this domain while underperforming

on Diabetes dataset, likely due to limitations in
its internal knowledge base regarding this specific
domain (Safavi-Naini et al., 2024).
Overall, these results showcase the adaptabil-

ity of the LLM-Forest to both open-source and
closed-source models, with Mixtral demonstrating
strong potential for privacy-sensitive applications
and Claude-3.5 proving to be a reliable and effec-
tive option for data imputation in specific domains.

A.4 Effectiveness of Graph-based Retrieval
and Confidence-weighted Voting

As shown in Tables 9 and 10, Mode Impu, which
imputes missing values using the mode of neigh-
bors retrieved by our graph-based retrieval algo-
rithm, highlights the high quality of the retrieved
neighbors, achieving competitive results, such as
65.80% on NPHA and 84.36% on Gliomas. Fur-
ther, GPT-4 Impu leverages these high-quality
neighbors as contextual input and consistently
achieves better performance by identifying patterns
and producing informed predictions. These results
demonstrate that incorporating confidence levels
allows the model to prioritize higher-quality predic-
tions, leading to more accurate imputations, while
Mode Imputation validates the effectiveness of the
retrieved neighbors as a strong foundation for im-
putation.

A.5 Confidence Threshold Sensitivity
We conducted a sensitivity analysis on the Cancer
dataset using 7 trees, evaluating several alternative
confidence threshold settings. Our default scheme
assigns weights of 1.0, 0.6, and 0.3 to “High,”
“Medium,” and “Low” confidence predictions, re-
spectively, based on the straightforward principle
that more confident predictions should exert greater
influence.
As shown in Table 11, the overall performance

remains stable across reasonable weight configu-
rations, with only minor variations. A key reason
for this stability is that high-confidence predictions
consistently dominate the results, as shown in Ta-
ble 12. However, assigning disproportionately high
weights to low-confidence predictions (e.g., [0.1,
1.0, 0.6]) results in performance degradation, some-
times even worse than using a single tree. This
suggests that amplifying the influence of unreliable
outputs can negatively affect the effectiveness of
the ensemble.
Table 12 further confirms that across different

trees, our results are highly consistent, with "High"

6934

Dataset Mask% n Methods Tree 1 Tree 2 Tree 3 Majority voting Confidence-weighted

Gliomas 40% 5 Mode Impu 83.65 83.27 83.50 84.36 -
GPT-4 Impu 83.53 83.55 83.35 84.35 84.41

Diabetes 40% 7 Mode Impu 60.61 59.33 59.87 61.82 -
GPT-4 Impu 62.46 61.29 62.38 63.33 63.18

Cancer 40% 7 Mode Impu 70.08 70.34 70.39 71.31 -
GPT-4 Impu 71.11 71.11 71.52 72.08 72.18

NPHA 40% 7 Mode Impu 64.54 64.51 65.41 65.80 -
GPT-4 Impu 65.16 64.13 65.57 65.91 66.35

Credit-g 40% 7 Mode Impu 52.13 51.64 53.09 53.23 -
GPT-4 Impu 53.66 53.00 54.08 54.17 54.46

Table 9: Imputation ccuracy (ACC↑) on categorical-dominant datasets for individual LLM trees, majority voting,
and confidence-weighted voting. The mask ratio is 40%, and n represents the number of neighbors provided in the
prompts. The results are reported with % omitted.

Dataset Mask% n Methods Tree 1 Tree 2 Tree 3 Majority voting Confidence-weighted

Concrete 40% 10 Mode Impu 0.1399 0.1391 0.1392 0.1361 -
GPT-4 Impu 0.1105 0.1108 0.1087 0.1085 0.1036

Yacht 40% 10 Mode Impu 0.1988 0.1989 0.2094 0.1912 -
GPT-4 Impu 0.1544 0.1528 0.1674 0.1531 0.1478

Wine 40% 10 Mode Impu 0.0870 0.0876 0.0877 0.0855 -
GPT-4 Impu 0.0817 0.0816 0.0819 0.0782 0.0768

Housing 40% 10 Mode Impu 0.1388 0.1396 0.1395 0.1371 -
GPT-4 Impu 0.1074 0.1087 0.1087 0.1059 0.1026

Table 10: Mean absolute error (MAE↓) on continuous datasets for individual LLM trees, majority voting, and
confidence-weighted voting. The mask ratio is 40% and n is the number of neighbors provided in the prompts.

Confidence threshold
[High, Medium, Low] [1.0,0.6,0.3] [1.0,0.4,0.2] [1.0,0.3,0.2] [0.1,1.0,0.6]

Cancer 71.93 71.57 71.47 70.80

Table 11: Performance under different confidence
threshold combinations (Cancer dataset). Results are
reported with % omitted.
Confidence level tree1 tree2 tree3 tree4 tree5 tree6 tree7

High 79.34 78.21 78.99 81.05 78.79 80.25 79.41
Medium 17.99 18.35 18.25 16.85 19.31 16.56 18.24
Low 2.67 3.44 2.77 2.10 1.90 3.19 2.35

Table 12: Confidence level distribution across trees
(with % omitted)

confidence consistently dominating (80%). This
consistency indicates that regardless of specific val-
ues within a reasonable range, the overall decision-
making trend remains unchanged and reliable.

A.6 Results on Large Scale Dataset

To evaluate the performance of LLM-Forest on
general large-scale balanced datasets, we con-
structed a balanced version of the Diabetes dataset
Diabetes_L by sampling records according to the
size of the smallest class, resulting in 56,552
records. Retrieval was conducted across the
entire dataset, with performance evaluated on
600 entries to ensure efficient analysis within
resource constraints. As shown in Table 13,

LLM-Forest achieves the best performance with
an accuracy of 61.61%. In this setting, KNN was
not applicable due to its computational limitations
and inability to scale to datasets of this size.

Dataset Mode MICE GAIN KNN GRAPE LLM-Forest

Diabetes_L 61.54 59.81 54.99 OTT 61.02 61.61

Table 13: Performance on the large-scale balanced Dia-
betes dataset. OTT stands for "Over Time Threshold."
Results are reported with % omitted.

A.7 Effects on Different Types of Missing
Data

To create datasets with missingness, we introduced
up to 40% missing values using three distinct miss-
ingness mechanisms: MCAR (40% masked), MAR
(20% masked), and MNAR (33% masked). These
methods were implemented following (Hayat and
Hasan, 2024; Jäger et al., 2021) customized for our
experimental needs, starting from fully complete
datasets.

• Missing Completely at Random (MCAR) In
this scenario, missing values occur without any
pattern as what we used in the above evaluations.

• Missing at Random (MAR) The likelihood of

6935

data being missing is related to other observed
variables. Following the setting in (Hayat and
Hasan, 2024), we identify the observations within
the 30th percentile of the label column and ran-
domly remove 40% of the values in the other
columns for these selected observations.

• Missing Not at Random (MNAR) The miss-
ing data is related to the value of the missing
variable itself. For binary features we apply self-
dependent (make ’1’ values missing with 30%
probability) and cross-feature MNAR masking
(make current value missing with 40% probabil-
ity if the next feature’s value is ’0’). For other
features, we remove observations that fall within
the 30th percentile of the feature value.

6936

