
Learnable Spatial-Temporal Positional Encoding for Link Prediction

Katherine Tieu ^{*} ¹ Dongqi Fu ^{*} ² Zihao Li ¹ Ross Maciejewski ³ Jingrui He ¹

Abstract

Accurate predictions rely on the expressiveness power of graph deep learning frameworks like graph neural networks and graph transformers, where a positional encoding mechanism has become much more indispensable in recent state-of-the-art works to record the canonical position information. However, the current positional encoding is limited in three aspects: (1) most positional encoding methods use pre-defined, and fixed functions, which are inadequate to adapt to the complex attributed graphs; (2) a few pioneering works proposed the learnable positional encoding but are still limited to the structural information, not considering the real-world time-evolving topological and feature information; (3) most positional encoding methods are equipped with transformers' attention mechanism to fully leverage their capabilities, where the dense or relational attention is often unaffordable on large-scale structured data. Hence, we aim to develop Learnable Spatial Temporal Positional Encoding in an effective and efficient manner and propose a simple temporal link prediction model named **L-STEP**. Briefly, for L-STEP, we (1) prove the proposed positional learning scheme can preserve the graph property from the spatial-temporal spectral viewpoint, (2) verify that MLPs can fully exploit the expressiveness and reach transformers' performance on that encoding, (3) change different initial positional encoding inputs to show robustness, (4) analyze the theoretical complexity and obtain less empirical running time than SOTA, and (5) demonstrate its temporal link prediction out-performance on 13 classic datasets and with 10 algorithms in both transductive and inductive settings using 3 different sampling strategies. Also, L-STEP obtains the leading performance in the newest large-scale

TGB benchmark. Our code is available at <https://github.com/kthrn22/L-STEP>.

1. Introduction

Link prediction is an important research topic in the graph learning community (Kumar et al., 2020), especially in complex networks (Lu & Zhou, 2010; Martínez et al., 2017). Learning from the time-evolving topological structures and time-evolving node and edge features, and determining whether the link (i.e., edge or interaction between two nodes) exists at a certain timestamp are challenging (Tieu et al., 2025) but have attracted much research interest from dynamic protein-protein interactions (Taylor et al., 2009; Gupta et al., 2015; Fu & He, 2022; Zhou et al., 2022), recommender systems (Huang et al., 2005; Cong et al., 2023), social network analysis (Daud et al., 2020; Fu et al., 2020; 2023), and many more, as real-world graphs often exhibit temporality (Fu et al., 2022; Li et al., 2023; Lin et al., 2024; Ban et al., 2024; Tieu et al., 2024; Li et al., 2025a;b), and heterogeneity (Le et al., 2024a; Liu et al., 2024; Le et al., 2024b; Zhong et al., 2024; He et al., 2025).

Recently, with the success of the attention mechanism (Vaswani et al., 2017), graph transformers have been proposed for the structured data to obtain the out-performance in many graph applications (Rampásek et al., 2022; Kim et al., 2022; Fu et al., 2024). To preserve the exact ordering information, the corresponding positional encoding plays an important role in boosting the downstream task performance like temporal link prediction. Recent studies show that it can not only help graph transformers (Yu et al., 2023) but also can contribute to graph neural networks (Cong et al., 2023). In spite of the great potential, the research on positional encoding on graphs is limited from at least three aspects. **First**, following (Xu et al., 2020), most positional encoding methods are still based on pre-defined, and fixed functions, which either heavily depends on the domain knowledge of understanding the topological distribution of graphs or not easy to adapt to different complex attributed graphs. **Second**, to the best of our knowledge, a pioneering work (Dwivedi et al., 2022) proposed the learnable position encoding to tackle this problem, but it only considers the static structural information and does not accommodate the realistic time-evolving structural and

^{*}Equal contribution ¹University of Illinois Urbana-Champaign

²Meta AI ³Arizona State University. Correspondence to: Jingrui He <jingrui@illinois.edu>.

Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

feature information. **Third**, most, if not all, of the positional encoding methods need to rely on the transformer’s attention mechanism to fully release the expressiveness power. To be more specific, in order to preserve the long-distance relation into the representation vectors, graph transformers usually need high time complexity due to the dense attention or relational attention (Müller et al., 2023; Min et al., 2022), i.e., each pair of nodes need to be attended with $O(n^2)$ time complexity, which can even approach $O(n^3)$ in a more complex relational setting (Diao & Loynd, 2023), and the prolonged time-aware features also increase the size of neural architectures. A detailed theoretical time complexity and empirical running time comparison with SOTA can be found in Appendix E and Appendix H.3.

In light of the above discussion, we aim to propose learnable positional encoding evolving over time, such that a simple neural architecture can achieve competitive or even the same performance as graph transformers. Thus, we first propose two major novel techniques: **Learnable Positional Encoding Module** (LPE) and **Node-Link-Positional Encoder** based on Discrete Fourier Transform. Then, we combine these two into an end-to-end temporal link prediction framework named **L-STEP**, as illustrated in Section 3.

To be specific, we first prove that the proposed positional encoding method LPE can preserve the temporal graph topology from the spatial-temporal spectral viewpoint and L-STEP having better theoretical runtime complexity compared to SOTAs in Section 4. Moreover, in Section 5, we evaluate the empirical performance of L-STEP extensively, including (1) the comprehensive effectiveness comparison with 13 classic datasets, 10 algorithms, 2 learning settings (transductive and inductive), and 3 sampling strategies, where our L-STEP performs the best across the board, (2) the verification of the role of MLPs and transformers upon L-STEP, (3) the learning robustness of L-STEP in terms of different initial positional encoding inputs, (4) parameter analysis, running time comparison, and ablation studies, and (5) the leading performance in the large-scale TGB open benchmark (Gastinger et al., 2024).

2. Preliminaries

Here, we introduce preliminaries to pave the way for deriving our L-STEP in the next section.

Temporal Graph Snapshot. A snapshot of a temporal graph G is a collection of temporal interactions (i.e., edges) at time $t \in \{1, \dots, T\}$, which is defined as $G^t = \{(u, v, t) | u \in V^t; v \in V^t; (u, v, t) \in E^t\}$. Each event (u, v, t) denotes an interaction between nodes u and v that occurs at time t , and the node and edge sets of G^t are denoted as V^t and E^t respectively. Additionally, for node $u \in V^t$, we denote the node features as $s_u^t \in \mathbb{R}^{d_N}$,

and the edge features associated with an event (u, v, t) as $e_{u,v}^t \in \mathbb{R}^{d_E}$, where d_N and d_E are the dimensions of the node and edge features.

Temporal Neighbors. The temporal neighborhood of a node $u \in V^t$ at time $t \in \{1, \dots, T\}$, denoted as \mathcal{N}_u^t , is the set of all interactions that involve u at time t . Formally, \mathcal{N}_u^t can be mathematically expressed as $\mathcal{N}_u^t = \{(u, v, t) | v \in V^t; (u, v, t) \in E^t\}$.

Time Encoder. A time encoder is a function to obtain the vector representation of time t (Xu et al., 2020; Wang et al., 2021b; Cong et al., 2023). Let d_T be the dimension of the time encoding vector. We define our time encoding function as $f_T : \mathbb{R}^+ \rightarrow \mathbb{R}^{d_T}$. In L-STEP, for $t \in \mathbb{R}^+$, $f_T(t) = \cos(t \cdot \omega)$, where $\omega \in \mathbb{R}^{d_T}$ with the i^{th} entry computed as $\omega_i = \alpha^{-(i-1)/\beta}$, and $\alpha, \beta \in \mathbb{R}$ are hyper-parameters. In order to enhance the ability of d_T in distinguishing all timestamps, given that t_{\max} is the maximum timestamp being considered, α and β should be selected in such a way that $t_{\max} \cdot \alpha^{-(i-1)/\beta} \rightarrow 0$ as i goes towards d_T . Moreover, α, β , and ω are fixed during the training process of L-STEP.

Positional Encoding for Graphs. Originated from the transformer (Vaswani et al., 2017), positional encoding is proposed to add node feature information to support the attention mechanism by indicating the relative position of a node within the input graph (Dwivedi et al., 2023), and the common positional encoding methods include computing the Laplacian eigenvector or Personalized PageRank vector for each node (Rampásek et al., 2022; Chen et al., 2023). Mathematically, given an n -node (static) graph $G = (V, E)$ and its adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the normalized Laplacian of G is computed as $\mathbf{L} = \mathbf{I}_n - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$, where \mathbf{I}_n is the $n \times n$ identity matrix, and \mathbf{D} is the diagonal degree matrix of G . Let the eigen-decomposition of \mathbf{L} be $\mathbf{L} = \mathbf{U} \Lambda \mathbf{U}^\top$, where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ is a diagonal matrix consisting of \mathbf{L} ’s eigenvalues and \mathbf{U} consists of n eigenvectors of \mathbf{L} as its columns. Let $\mathbf{u}_i \in \mathbb{R}^n$ be the i^{th} eigenvector of \mathbf{L} and its j^{th} entry denoted as $\mathbf{u}_{i,j}$. Then, the positional encoding of node $i \in V$ is defined as $\mathbf{p}_i = [\mathbf{u}_{1,i}, \dots, \mathbf{u}_{n,i}]^\top \in \mathbb{R}^n$. In practice, the dimension d_P of positional encoding is usually set to be less than n for computational efficiency (Dwivedi & Bresson, 2020), i.e., $d_P \ll n$ and $\mathbf{p}_i = [\mathbf{u}_{1,i}, \dots, \mathbf{u}_{d_P,i}]^\top \in \mathbb{R}^{d_P}$.

Discrete Fourier Transform. To pave the way for learnable positional encoding, we need to first introduce the basics of Discrete Fourier Transform (DFT) (Sundararajan, 2001). In brief, DFT is designed to convert a finite-length sequence of samples into another sequence in the frequency domain (with the same length). Formally, given a sequence with length N , $\{\mathbf{x}_j\}_{j=1}^N$, the DFT operation $\mathcal{F}(\{\mathbf{x}_j\}_{j=1}^N)$ converts $\{\mathbf{x}_j\}_{j=1}^N$ to the complex-valued sequence $\{\mathbf{X}_j\}_{j=1}^N$ as $\mathbf{X}_j = \sum_{k=1}^N \mathbf{x}_k e^{-i2\pi \frac{j}{N} k}$. Also, to re-construct the original

sequence $\{\mathbf{x}_j\}_{j=1}^N$, inverse DFT (IDFT) $\mathcal{F}^{-1}(\{\mathbf{X}_j\}_{j=1}^N)$ is defined as $\mathbf{x}_j = \sum_{k=1}^N \mathbf{X}_k e^{i2\pi \frac{j}{N} k}$.

3. Proposed Method: L-STEP

To begin with, we focus on a general research question, i.e., *given two nodes u and v , how can we predict whether the link (interaction or edge) exists between u and v at a certain timestamp t , effectively and efficiently?*

To answer this question, we propose a simple temporal link prediction model named L-STEP. It retrieves the interaction history of two nodes and decides whether the current link exists or not. Without heavy neural architectures like dense attention (Rampásek et al., 2022) or relational attention (Diao & Loynd, 2023), L-STEP only depends on two of our proposed simple yet effective techniques, i.e., *Learnable Positional Encoding Module* (LPE) and *Node-Link-Positional Encoder*, such that L-STEP can preserve the spatial-temporal topology rigorously (as shown in Section 4) and outperform attention-based state-of-the-art link prediction methods (as shown in Section 5).

The overall framework of L-STEP is shown in Figure 1 about how to retrieve and learn from history to make the current decision with two proposed techniques. Next, we will introduce the details of the proposed techniques, i.e., *Learnable Positional Encoding Module* in Section 3.1 and *Node-Link-Positional Encoder* in Section 3.2.

3.1. Learnable Positional Encoding (LPE) Module

The main idea of Learnable Positional Encoding (LPE) is to leverage historical positional encoding to determine whether the link exists at the current timestamp. However, learning from the history data in an effective and efficient way and only through positional encoding is challenging, because SOTA methods usually need a complex attention mechanism (Poursafaei et al., 2022; Yu et al., 2023).

To this end, we aim to only use positional encoding to carry informative and useful knowledge to record what had happened in the past (e.g., what interactions occurred and what the node and edge features looked like around the interaction). Existing simple hand-crafted positional encoding can be efficient but tend to induce suboptimal performance (Wang et al., 2021b; Cong et al., 2023).

Thus, we propose a “**learnable**” positional encoding module (LPE), enabling it to reflect complex and non-linear knowledge. As shown in Figure 1, in our L-STEP, LPE estimates (or approximates) the positional encoding at current time t by applying the Fourier Transform (with learnable parameters) on the past positional encoding. It is worth noting that obtaining the positional encoding through LPE: (1) records the complex spatial-temporal information (proved from the

spectral viewpoint in Section 4), (2) and avoids computing the Laplacian eigendecomposition for each timestamp from scratch, which is computationally expensive (e.g., $O(|V|^3)$ (Chen et al., 2023) or $O(|E|^{3/2})$ (Dwivedi et al., 2023))

Because of no peeking at the current graph topology structure and features, our LPE is an iterative updating module. Next, we introduce LPE in two-folds: (1) given the past positional encoding, how LPE approximates the current positional encoding (that will be used to determine links by *Node-Link-Positional Encoder* in Section 3.2), and (2) how to store the approximate positional encoding and update/optimize it in the future round with current topology structure and features observed.

Approximating current position encoding. First of all, we denote the positional encoding of u to be learned for time t as $\mathbf{p}_u^t \in \mathbb{R}^{d_P}$. Suppose there are L most recent distinct timestamps prior to t , i.e., t'_1, \dots, t'_L (where $t'_1 < \dots < t'_L < t$), and we can retrieve the already learned $\{\mathbf{p}_u^{t'_1}, \dots, \mathbf{p}_u^{t'_L}\}$ that is regarded as a L -length sequence. Additionally, considering computational efficiency, we only retrieve L most recent timestamps. Then, in this LPE module, we leverage the Discrete Fourier Transform as a way to capture the temporal dependencies among $\mathbf{p}_u^{t'_1}, \dots, \mathbf{p}_u^{t'_L}$ and derive an estimated positional encoding of u at time t denoted by $\tilde{\mathbf{p}}_u^t \in \mathbb{R}^{d_P}$.

To be specific, we start by applying Discrete Fourier Transform (DFT) on the sequence $\{\mathbf{p}_u^{t'_j}\}_{j=1}^L$ to obtain the corresponding sequence in the frequency domain. Then, we employ a complex-valued learnable filter, $\mathbf{W}_{filter} \in \mathbb{C}^{d_P \times L}$, to filter out noises of the sequence in the frequency domain, (detailed discussion on how positional encoding could be regarded as signals and what kind of noises that our LPE module filters can be founded in Appendix D) and finally transform back to the original domain. The process can be mathematically expressed as

$$\{\tilde{\mathbf{p}}_u^{t'_j}\}_{j=1}^L = \mathcal{F}^{-1}(\mathbf{W}_{filter} \odot \mathcal{F}(\{\mathbf{p}_u^{t'_j}\}_{j=1}^L)) \quad (1)$$

Then, we obtain the approximate positional encoding $\tilde{\mathbf{p}}_u^t$ by applying sum-pooling with learnable weights on $\{\tilde{\mathbf{p}}_u^{t'_j}\}_{j=1}^L$

$$\tilde{\mathbf{p}}_u^t = \begin{bmatrix} \tilde{\mathbf{p}}_u^{t'_1} & \dots & \tilde{\mathbf{p}}_u^{t'_L} \end{bmatrix} \mathbf{W}_P^{sum} \quad (2)$$

where $\mathbf{W}_P^{sum} \in \mathbb{R}^{L \times 1}$. Note that the approximate positional encoding $\tilde{\mathbf{p}}_u^t$ will be sent to the *Node-Link-Positional Encoder* (in Section 3.2) for making predictions for current time t .

Storing approximate positional encoding for future retrieval and optimization. Since L-STEP does not peek at the current topology structure and features when making the

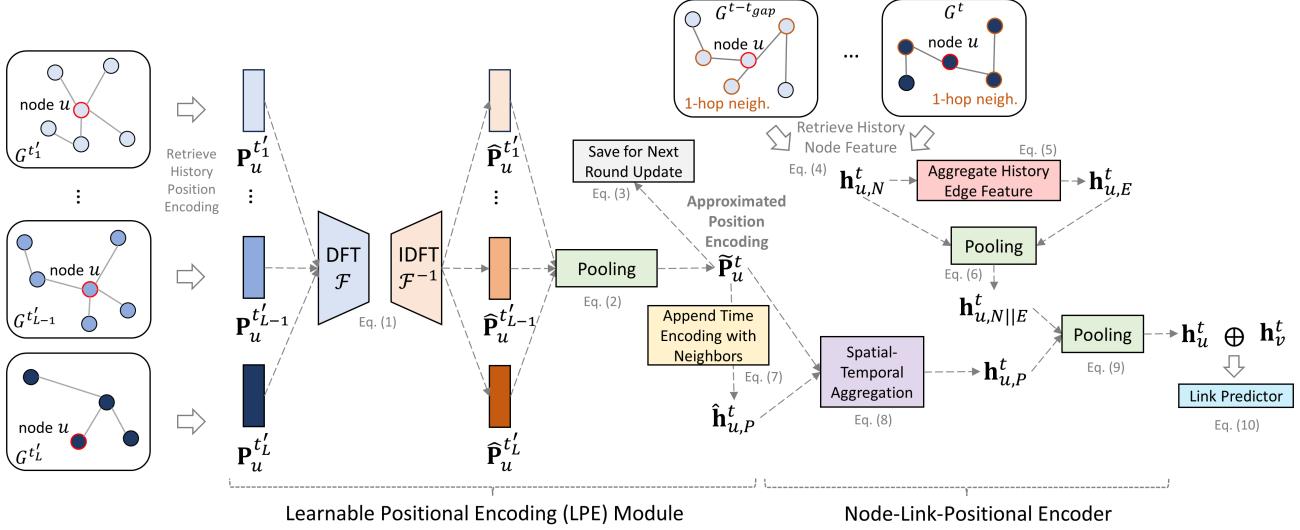


Figure 1. Overall Framework of L-STEP

prediction for now, i.e., only using approximate positional encoding $\tilde{\mathbf{p}}_u^t$, we elaborate on how the current approximate positional encoding gets updated and optimized in the next round.

After making the current link predictions at time t (as shown in Section 3.2), L-STEP can then “peek” (or “reveal”) the ground-truth links at time t , such that it can update the approximation $\tilde{\mathbf{p}}_u^t$ into updated \mathbf{p}_u^t for future retrieval and predictions.

Then, we need to update the positional encoding of for any node u at t . We sample the most K recent interactions, *including those that occur at time t if the node has interactions at time t* . Suppose they are indexed as $\{(\bar{u}_1, u, \bar{t}_1), \dots, (\bar{u}_K, u, \bar{t}_K)\}$ where $\bar{t}_1 \leq \dots \leq \bar{t}_K \leq t$. Leveraging the approximate positional encoding from $\bar{u}_1, \dots, \bar{u}_K$, \mathbf{p}_u^t is derived as

$$\mathbf{p}_u^t = \tilde{\mathbf{p}}_u^t + \tanh(\mathbf{W}_P^{(self)} \tilde{\mathbf{p}}_u^t + \mathbf{W}_P^{(2)} \text{RELU}(\mathbf{W}_P^{(1)} \hat{\mathbf{q}}_u^t)) \in \mathbb{R}^{d_P} \quad (3)$$

where $\hat{\mathbf{q}}_u^t = \sum_{j=1}^K [(f_T(t - \bar{t}_j))^T \parallel (\tilde{\mathbf{p}}_{\bar{u}_j}^t)^T]^T \in \mathbb{R}^{d_T + d_P}$, f_T is the time encoder, and $\mathbf{W}_P^{(1)} \in \mathbb{R}^{d_P \times (d_P + d_T)}$, $\mathbf{W}_P^{(2)} \in \mathbb{R}^{d_P \times d_P}$, $\mathbf{W}_P^{(self)} \in \mathbb{R}^{d_P \times d_P}$ are MLP parameters.

At the first time t_0 , we denote the initial positional encoding as the Laplacian of the initial graph snapshot G^{t_0} . Formally, let \mathbf{L} be the Laplacian of G^{t_0} and the eigen-decomposition of \mathbf{L} be $\mathbf{U} \Lambda \mathbf{U}^T$, then $\mathbf{p}_u^{t_0} = [\mathbf{u}_{1,u}, \dots, \mathbf{u}_{d_P,u}]^T \in \mathbb{R}^{d_P}$, where \mathbf{u}_i is the i^{th} eigenvector of \mathbf{L} , as defined in Section 2.

3.2. Node-Link-Positional Encoder

For node u , the Node-Link-Positional Encoder is designed to aggregate its historical node and edge features with the

positional encoding of its recent 1-hop neighbors prior to time t , and, eventually, derive a compact representation associated with u that encodes all the information.

In general, Node-Link-Positional Encoder works as follows. We first use $\mathbf{h}_{u,N}^t$ and $\mathbf{h}_{u,E}^t$ to denote the node and link encoding of recent 1-hop neighbors of node u . Then, we apply MLP transformations on $\mathbf{h}_{u,N}^t$ and $\mathbf{h}_{u,E}^t$ to obtain the encoding, denoted by $\mathbf{h}_{u,N||E}^t$, which represents the combination of node-link information. For adding positional information, we use $\mathbf{h}_{u,P}^t$ to denote the aggregated positional encoding of recent 1-hop neighbors, and further transform them by MLP layers. Eventually, $\mathbf{h}_{u,N||E}^t$ and $\mathbf{h}_{u,P}^t$ are combined by a 1-layer MLP to derive a temporal representation at time t for u , denoted by \mathbf{h}_u^t , which will be sent together with \mathbf{h}_v^t to the link predictor in Section 3.3 to determine whether the link exists between nodes u and v at time t .

The detailed computational procedures of the Node-Link-Positional Encoder are explained below.

First, the node encoding of recent 1-hop neighbors of u can be obtained by aggregating features of nodes that interact with u in the time interval $[t - t_{gap}; t]$, where t_{gap} is a dataset-dependent hyper-parameter. Mathematically, this process can be described as

$$\mathbf{h}_{u,N}^t = \mathbf{s}_u^t + \text{Mean}(\{\mathbf{s}_{u'}^t | (u', u, t') \in \mathcal{N}_u^{t-t_{gap}} \cup \dots \cup \mathcal{N}_u^t\}) \quad (4)$$

where \mathbf{s}_u^t is the input node features, and $\text{Mean}(\cdot)$ is the mean pooling operation.

Then, we derive the link encoding for u by extracting the

K most recent interactions involving u that occur prior to time t , combine the edge features and the time encoding of these interactions, and further apply MLP transformations on these representations. Specifically, suppose the K most recent interactions of u are indexed as $\{(u_1, u, t'_1), \dots, (u_K, u, t'_K)\}$, where $t'_1 \leq \dots \leq t'_K < t$. Let $\mathbf{H}_{u,E}^t \in \mathbb{R}^{K \times (d_T + d_E)}$ be a matrix, whose k^{th} row is defined as $[\mathbf{H}_{u,E}^t]_k = [(f_T(t - t'_k))^{\top} \parallel (\mathbf{e}_{u,u'_k}^t)^{\top}] \in \mathbb{R}^{1 \times (d_T + d_E)}$, where $[\cdot \parallel \cdot]$ denotes concatenation, f_T is the time encoder, and \mathbf{e}_{u,u'_k}^t denotes the edge features. If u does not involve at least K interactions before t then $\mathbf{H}_{u,E}^t$ is zero-padded so that the matrix has K rows. We first apply a 1-layer MLP on the last dimension of $\mathbf{H}_{u,E}^t$, sum-pool over K rows of $\mathbf{H}_{u,E}^t$ with learnable weights to obtain a vector of dimension $d_T + d_E$, and finalize the encoding with an additional 1-layer MLP transformation as

$$\mathbf{h}_{u,E}^t = \mathbf{W}_{\text{link}}^{(2)} \text{RELU}((\mathbf{H}_{u,E}^t \mathbf{W}_{\text{link}}^{(1)})^{\top} \mathbf{W}_{\text{link}}^{\text{sum}}) \in \mathbb{R}^{d_T + d_E} \quad (5)$$

where $\mathbf{W}_{\text{link}}^{(1)}, \mathbf{W}_{\text{link}}^{(2)} \in \mathbb{R}^{(d_T + d_E) \times (d_T + d_E)}$, and $\mathbf{W}_{\text{link}}^{\text{sum}} \in \mathbb{R}^{K \times 1}$.

After that, $\mathbf{h}_{u,N \parallel E}^t$ is obtained by a 1-layer MLP transformation as

$$\mathbf{h}_{u,N \parallel E}^t = \mathbf{W}_{N \parallel E}([(\mathbf{h}_{u,N}^t)^{\top} \parallel (\mathbf{h}_{u,E}^t)^{\top}])^{\top} \in \mathbb{R}^{d_N} \quad (6)$$

where $\mathbf{W}_{N \parallel E} \in \mathbb{R}^{d_N \times (d_N + d_T + d_E)}$.

Next, for historical positional information, we apply sum aggregation over the positional information from the aforementioned K most recent interactions involving u as

$$\widehat{\mathbf{h}}_{u,P}^t = \sum_{j=1}^K [(f_T(t - t'_j))^{\top} \parallel (\widetilde{\mathbf{p}}_{u,j}^t)^{\top}]^{\top} \in \mathbb{R}^{d_T + d_P} \quad (7)$$

where f_T is the time encoder. Let $\mathbf{W}_P^{(1)} \in \mathbb{R}^{d_P \times (d_P + d_T)}$, $\mathbf{W}_P^{(2)} \in \mathbb{R}^{d_P \times d_P}$, $\mathbf{W}_P^{(\text{self})} \in \mathbb{R}^{d_P \times d_P}$, and \tanh be the hyperbolic tangent function. Then, $\mathbf{h}_{u,P}^t$ is obtained through the neighborhood-aggregated positional encoding $\widehat{\mathbf{h}}_{u,P}^t$ and $\widetilde{\mathbf{p}}_u^t$ as

$$\mathbf{h}_{u,P}^t = \widetilde{\mathbf{p}}_u^t + \tanh(\mathbf{W}_P^{(\text{self})} \widetilde{\mathbf{p}}_u^t + \mathbf{W}_P^{(2)} \text{RELU}(\mathbf{W}_P^{(1)} \widehat{\mathbf{h}}_{u,P}^t)) \quad (8)$$

Finally, the temporal representation at time t of u , \mathbf{h}_u^t , is derived as

$$\mathbf{h}_u^t = \mathbf{W}[(\mathbf{h}_{u,N \parallel E}^t)^{\top} \parallel (\mathbf{h}_{u,P}^t)^{\top}]^{\top} \in \mathbb{R}^{d_N} \quad (9)$$

where $\mathbf{W} \in \mathbb{R}^{d_N \times (d_N + d_P)}$.

3.3. Optimization

With the two embedding vectors \mathbf{h}_u^t and \mathbf{h}_v^t , we can now let L-STEP decide whether a link exists between nodes u

and v at time t and train L-STEP against the ground truth connections before t .

Link Predictor. Given a node pair (u, v) and timestamp t , L-STEP's goal is to predict whether there is a link between (u, v) at time t . Specifically, the Link Predictor would give the probability $\hat{y} \in (0, 1)$ of whether u and v interact at time t by

$$\hat{y} = \text{sigmoid}(\mathbf{W}^{(2)} \text{RELU}(\mathbf{W}^{(1)}[(\mathbf{h}_u^t)^{\top} \parallel (\mathbf{h}_v^t)^{\top}])) \quad (10)$$

where sigmoid denotes the sigmoid function mapping all real values to the range $(0, 1)$, and $\mathbf{W}^{(1)} \in \mathbb{R}^{(2d_N) \times d_N}$, $\mathbf{W}^{(2)} \in \mathbb{R}^{d_N \times 1}$ are 1-layer MLPs.

Loss Functions. To begin with, we point out the necessary components of the objective loss function for the training process of L-STEP, give formal definitions for those components, and derive the final loss function used in the training process of L-STEP.

Suppose there are B positive (i.e., existing edges) samples $(u_1^{(\text{pos})}, v_1^{(\text{pos})}, t_1), \dots, (u_B^{(\text{pos})}, v_B^{(\text{pos})}, t_B)$ and B negative (i.e., non-existing edges) samples $(u_1^{(\text{neg})}, v_1^{(\text{neg})}, t_1), \dots, (u_B^{(\text{neg})}, v_B^{(\text{neg})}, t_B)$. We employed 3 different negative sampling strategies (NSS): random, historical, and inductive; more details can be found in Appendix I.1. Specifically, following (Yu et al., 2023), during the model training stage, we employ random NSS for the loss function computation, and then evaluate our model with all 3 NSS. Thus the ground truth label for the positive samples should be 1, and 0 for the negative samples. As the link prediction can be regarded as a binary classification problem, we employ the binary cross-entropy loss function to obtain the link prediction loss \mathcal{L}_{lp} as

$$\mathcal{L}_{lp} = \frac{-1}{2B} \left[\left(\sum_{i=1}^B \log(\hat{y}_{u_i^{(\text{pos})}, v_i^{(\text{pos})}}) \right) + \left(\sum_{i=1}^B \log(1 - \hat{y}_{u_i^{(\text{neg})}, v_i^{(\text{neg})}}) \right) \right] \quad (11)$$

where $\hat{y}_{u_i^{(\text{pos})}, v_i^{(\text{pos})}}$ denotes the predicted probability of a link existing between $u_i^{(\text{pos})}, v_i^{(\text{pos})}$ at time t_i , as defined in Eq. 10, and $\hat{y}_{u_i^{(\text{neg})}, v_i^{(\text{neg})}}$ is the predicted probability of a link existing between $u_i^{(\text{neg})}, v_i^{(\text{neg})}$ at time t_i . Thus, ideally, $\hat{y}_{u_i^{(\text{pos})}, v_i^{(\text{pos})}}$ should be close to 1, and $\hat{y}_{u_i^{(\text{neg})}, v_i^{(\text{neg})}}$ should be close to zero.

In addition, we introduce the positional encoding loss \mathcal{L}_{pe} to assess the learned positional encoding, defined in Eq. 2. Specifically, we would expect $\widetilde{\mathbf{p}}_{u_i^{(\text{pos})}}^{t_i}$ be close to $\widetilde{\mathbf{p}}_{v_i^{(\text{pos})}}^{t_i}$, as there is a link between $u_i^{(\text{pos})}, v_i^{(\text{pos})}$ at time t_i . Thus, the difference $\|\widetilde{\mathbf{p}}_{u_i^{(\text{pos})}}^{t_i} - \widetilde{\mathbf{p}}_{v_i^{(\text{pos})}}^{t_i}\|_2$ (where $\|\cdot\|_2$ denotes the

2-norm of a real-valued vector) should be small, so that the learned positional encoding correctly reflects the nature of positional encoding. Moreover, in order to avoid L-STEP giving similar positional encoding to all nodes to minimize the aforementioned 2-norm difference of positive samples, we add another constraint, i.e., maximizing the difference $\alpha_{neg} \|\tilde{\mathbf{p}}_{u_i^{(neg)}}^{t_i} - \tilde{\mathbf{p}}_{v_i^{(neg)}}^{t_i}\|_2$, where α_{neg} is a positive scaling factor. As $(u_1^{(neg)}, v_1^{(neg)}, t_1), \dots, (u_B^{(neg)}, v_B^{(neg)}, t_B)$ are not all possible negative links (i.e., not connected), we let $0 < \alpha_{neg} < 1$ to avoid L-STEP emphasizing the negativity of these B negative samples. Therefore, we define the positional encoding loss as

$$\mathcal{L}_{pe} = \frac{1}{B} \left[\left(\sum_{i=1}^B \|\tilde{\mathbf{p}}_{u_i^{(pos)}}^{t_i} - \tilde{\mathbf{p}}_{v_i^{(pos)}}^{t_i}\|_2 \right) - \alpha_{neg} \left(\sum_{i=1}^B \|\tilde{\mathbf{p}}_{u_i^{(neg)}}^{t_i} - \tilde{\mathbf{p}}_{v_i^{(neg)}}^{t_i}\|_2 \right) \right] \quad (12)$$

Finally, the overall loss function is

$$\mathcal{L} = (1 - \alpha_{pe}) \mathcal{L}_{lp} + \alpha_{pe} \mathcal{L}_{pe} \quad (13)$$

where $\alpha_{pe} \in (0, 1)$ is the weight for \mathcal{L}_{pe} .

The training procedures of L-STEP can be found in Appendix B.

4. Theoretical Analysis

In this section, we first theoretically show that, at time t , the approximated positional encoding $\tilde{\mathbf{p}}^t$, defined by Eq. 2, can be a good approximation of the positional encoding of graph snapshot G^t by establishing a bound for the approximation error.

Theorem 4.1. *Suppose the temporal graph G is “slowly changing” (i.e., the ground truth positional encoding $\mathbf{p}^0 \approx \dots \approx \mathbf{p}^{t-1}$), then the corresponding approximated positional encoding of L-STEP satisfies*

$$\|\tilde{\mathbf{p}}_u^t - \tilde{\mathbf{p}}_u^{t''}\|_2 \leq \epsilon \quad (14)$$

where $t'' > t$ is the future distinct timestamp of t , and ϵ is a bounding term that depends on L , which is the number of recent graph snapshots utilized in obtaining the approximated positional encoding, as stated in Eqs. 1 and 2. (Proof in Appendix C)

Briefly, Theorem 4.1 indicates that when the graph is slowly changing, the positional encoding learned at the previous timestamp can well preserve the next close future timestamp’s positional encoding. In other words, as Theorem 4.1 suggests, the positional encoding function of L-STEP can be a good representation of the positional information of

future graph snapshots without leveraging the information about the future graph topology.

Note that the above statements do not necessarily mean that L-STEP does not need to update the positional encoding in every case. Actually, L-STEP indeed updates the positional encoding when new interaction happens. The role of Theorem 4.1 is to demonstrate the effectiveness of our positional encoding in the inductive setting, where the future scenario is usually not given or difficult to observe.

Complexity Analysis. Next, we provide the analysis on L-STEP’s computational complexity. L-STEP consists of two main components: LPE Module and Node-Link-Positional Encoder. In LPE Module, the approximated positional encoding is derived by applying Discrete Fourier Transform on a L -length sequence of previous positional encoding, so the complexity is $\mathcal{O}(L \log(L))$, achieved by utilizing Fast Fourier Transform. Then, we update the positional encoding by sampling the K most recent interactions, adding $\mathcal{O}(K)$ time. Therefore, for n nodes, LPE Module costs $\mathcal{O}(n(L \log(L) + K))$. For Node-Link-Positional Encoder, for each node we retrieve node-level information from its neighborhood in the interval $[t - t_{gap}; t]$ and sample its K most recent interactions, so the complexity is $\mathcal{O}(n \cdot (t_{gap} + K))$, which can be achieved by pre-computing all temporal neighbors in the range $[t - t_{gap}; t]$ of each node. Thus, the total time complexity is $\mathcal{O}(n(t_{gap} + K + L \log(L)))$, which scales linearly with the number of nodes, as L, K, t_{gap} are constants independent of n .

Compared to recent SOTA, DyGFormer (Yu et al., 2023) and FreeDyG (Tian et al., 2024), L-STEP is more efficient as both of these methods employ neighborhood co-occurrence for each node pair of interaction, making their worst-case complexity scale with the number of edges, $|E|$; while L-STEP’s complexity scales with n , the number of nodes, and it is quite common that $n \ll |E|$, showing L-STEP’s advantage in efficiency. Detailed theoretical time complexity comparison can be found in Appendix E, and detailed empirical running time comparison can be found in Appendix H.3.

5. Experiments

Here, we provide the main results showing the outperformance of L-STEP in classic and large-scale benchmark datasets. Furthermore, we leave

- the effectiveness comparison in more learning and sampling settings in Appendix H.1,
- MLPs and Transformers performance on the proposed LPE positional encoding method in Appendix H.2,
- running time comparison with SOTAs in Appendix H.3,
- LPE ablation studies wrt input node and edge features in

Table 1. Performance comparison in the *transductive setting* with *random negative sampling strategy*.

Metric	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	FreeDyG	L-STEP
AP	Wikipedia	96.50 \pm 0.14	94.86 \pm 0.06	96.94 \pm 0.06	98.45 \pm 0.06	98.76 \pm 0.03	96.47 \pm 0.16	97.25 \pm 0.03	99.03 \pm 0.02	99.26 \pm 0.01	99.34 \pm 0.04
	Reddit	98.31 \pm 0.14	98.22 \pm 0.04	98.52 \pm 0.02	98.63 \pm 0.06	99.11 \pm 0.01	97.53 \pm 0.02	97.31 \pm 0.01	99.22 \pm 0.01	99.48 \pm 0.01	99.37 \pm 0.04
	MOOC	80.23 \pm 2.44	81.97 \pm 0.49	85.84 \pm 0.15	89.15 \pm 1.60	80.15 \pm 0.25	82.38 \pm 0.24	82.78 \pm 0.15	87.52 \pm 0.49	89.61 \pm 0.19	86.94 \pm 0.34
	LastFM	70.85 \pm 2.13	71.92 \pm 2.21	73.42 \pm 0.21	77.07 \pm 3.97	86.99 \pm 0.06	67.27 \pm 2.16	75.61 \pm 0.24	93.00 \pm 0.12	92.15 \pm 0.16	96.06 \pm 0.30
	Enron	84.77 \pm 0.30	82.38 \pm 3.36	71.12 \pm 0.97	86.53 \pm 1.11	89.56 \pm 0.09	79.70 \pm 0.71	82.25 \pm 0.16	92.47 \pm 0.12	92.51 \pm 0.05	93.96 \pm 0.36
	Social Evo.	89.89 \pm 0.55	88.87 \pm 0.30	93.16 \pm 0.17	93.57 \pm 0.17	84.96 \pm 0.09	93.13 \pm 0.16	93.37 \pm 0.07	94.73 \pm 0.01	94.91 \pm 0.01	92.22 \pm 0.25
	UCI	89.43 \pm 1.09	65.14 \pm 2.30	79.63 \pm 0.70	92.34 \pm 1.04	95.18 \pm 0.06	89.57 \pm 1.63	93.25 \pm 0.57	95.79 \pm 0.17	96.28 \pm 0.11	96.67 \pm 0.47
	Flights	95.60 \pm 1.73	95.29 \pm 0.72	94.03 \pm 0.18	97.95 \pm 0.14	98.51 \pm 0.01	91.23 \pm 0.02	90.99 \pm 0.05	98.91 \pm 0.01	98.12 \pm 0.19	98.94 \pm 0.10
	Can. Parl.	69.26 \pm 0.31	66.54 \pm 2.76	70.73 \pm 0.72	70.88 \pm 2.34	69.82 \pm 2.34	68.67 \pm 2.67	77.04 \pm 0.46	97.36 \pm 0.45	72.22 \pm 2.47	98.24 \pm 0.11
	US Legis.	75.05 \pm 1.52	75.34 \pm 0.39	68.52 \pm 3.16	75.99 \pm 0.58	70.58 \pm 0.48	69.59 \pm 0.48	70.74 \pm 1.02	71.11 \pm 0.59	69.94 \pm 0.59	76.74 \pm 0.60
	UN Trade	64.94 \pm 0.31	63.21 \pm 0.93	61.47 \pm 0.18	65.03 \pm 1.37	65.39 \pm 0.12	62.21 \pm 0.03	62.61 \pm 0.27	66.46 \pm 1.29	-	75.84 \pm 2.08
	UN Vote	63.91 \pm 0.81	62.81 \pm 0.80	52.21 \pm 0.98	65.72 \pm 2.17	52.84 \pm 0.10	51.90 \pm 0.30	52.11 \pm 0.16	55.55 \pm 0.42	51.99 \pm 1.13	73.40 \pm 0.03
	Contact	95.31 \pm 1.33	95.98 \pm 0.15	96.28 \pm 0.09	96.89 \pm 0.56	90.26 \pm 0.28	92.44 \pm 0.12	91.92 \pm 0.03	98.29 \pm 0.01	97.99 \pm 0.03	98.16 \pm 0.09
	Avg. Rank	6.77	7.38	7.23	4.08	5.85	8.46	6.77	2.77	3.85	1.85
ROC-AUC	Wikipedia	96.33 \pm 0.07	94.37 \pm 0.09	96.67 \pm 0.07	98.37 \pm 0.07	98.54 \pm 0.04	95.84 \pm 0.18	96.92 \pm 0.03	98.91 \pm 0.02	99.41 \pm 0.01	99.48 \pm 0.03
	Reddit	98.31 \pm 0.05	98.17 \pm 0.05	98.47 \pm 0.02	98.60 \pm 0.06	99.01 \pm 0.01	97.42 \pm 0.02	97.17 \pm 0.02	99.15 \pm 0.01	99.50 \pm 0.01	99.49 \pm 0.03
	MOOC	83.81 \pm 2.09	85.03 \pm 0.58	87.11 \pm 0.19	91.21 \pm 1.15	80.38 \pm 0.26	83.12 \pm 0.18	84.01 \pm 0.17	87.91 \pm 0.58	89.93 \pm 0.35	89.28 \pm 0.28
	LastFM	70.49 \pm 1.66	71.16 \pm 1.89	71.59 \pm 0.18	78.47 \pm 2.94	85.92 \pm 0.10	64.06 \pm 1.16	73.53 \pm 0.12	93.05 \pm 0.10	93.42 \pm 0.15	97.52 \pm 0.17
	Enron	87.96 \pm 0.52	84.89 \pm 3.00	68.89 \pm 1.10	88.32 \pm 0.99	90.45 \pm 0.14	75.74 \pm 0.72	84.38 \pm 0.21	93.33 \pm 0.13	94.01 \pm 0.11	95.98 \pm 0.23
	Social Evo.	92.05 \pm 0.46	90.76 \pm 0.21	94.76 \pm 0.16	95.39 \pm 0.17	87.34 \pm 0.08	94.84 \pm 0.17	95.23 \pm 0.07	96.30 \pm 0.01	96.59 \pm 0.04	94.33 \pm 0.21
	UCI	90.44 \pm 0.49	68.77 \pm 2.34	78.53 \pm 0.74	92.03 \pm 1.13	93.87 \pm 0.08	87.82 \pm 1.36	91.81 \pm 0.67	94.49 \pm 0.26	95.00 \pm 0.21	97.62 \pm 0.23
	Flights	96.21 \pm 1.42	95.95 \pm 0.62	94.13 \pm 0.17	98.22 \pm 0.13	98.45 \pm 0.01	91.21 \pm 0.02	91.13 \pm 0.01	98.93 \pm 0.01	98.03 \pm 0.17	99.38 \pm 0.04
	Can. Parl.	78.21 \pm 0.23	73.35 \pm 3.67	75.69 \pm 0.78	76.99 \pm 1.80	75.70 \pm 3.27	72.46 \pm 3.23	83.17 \pm 0.53	97.76 \pm 0.41	81.09 \pm 2.28	98.97 \pm 0.06
	US Legis.	82.85 \pm 1.07	82.28 \pm 0.32	75.84 \pm 1.99	83.34 \pm 0.43	77.16 \pm 0.39	76.27 \pm 0.63	76.96 \pm 0.79	77.90 \pm 0.58	77.26 \pm 0.50	83.89 \pm 0.43
	UN Trade	69.62 \pm 0.44	67.44 \pm 0.83	64.01 \pm 0.12	69.10 \pm 1.67	68.54 \pm 0.18	64.72 \pm 0.05	65.52 \pm 0.51	70.20 \pm 1.44	-	83.17 \pm 1.28
	UN Vote	68.53 \pm 0.95	67.18 \pm 1.04	52.83 \pm 1.12	69.71 \pm 2.65	53.09 \pm 0.22	51.88 \pm 0.36	52.46 \pm 0.27	57.12 \pm 0.62	52.79 \pm 1.56	79.59 \pm 0.02
	Contact	96.66 \pm 0.89	96.48 \pm 0.14	96.95 \pm 0.08	97.54 \pm 0.35	89.99 \pm 0.34	94.15 \pm 0.09	93.94 \pm 0.02	98.53 \pm 0.01	98.39 \pm 0.02	98.72 \pm 0.06
	Avg. Rank	6.08	7.31	7.46	3.92	6.0	8.69	7.15	3.0	3.69	1.69

Appendix H.4.

- analysis of important hyperparameters in Appendix H.5,
- robustness of L-STEP with different initial positional encoding input in Appendix H.6,
- detailed reproducibility in Appendix I.

5.1. Experimental Settings

Datasets and baselines. We assess the ability of L-STEP in performing link prediction with 13 datasets covering various domains and collected by (Poursafaei et al., 2022): *Wikipedia*, *Reddit*, *MOOC*, *LastFM*, *Enron*, *Social Evo.*, *UCI*, *Flights*, *Can. Parl.*, *US Legis.*, *UN Trade*, *UN Vote*, and *Contact*. Details about the dataset statistics are shown in Appendix G. We compare L-STEP with 8 state-of-the-art baselines, including JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2021b), TCL (Wang et al., 2021a), GraphMixer (Cong et al., 2023), DyGFormer (Yu et al., 2023), and FreeDyG (Tian et al., 2024). Across all 13 datasets, training/validation/testing sets are following the standard library (Yu et al., 2023) by chronological splits with ratios 70%/15%/15%. The large-scale datasets with pre-defined splits are publicly available at TGB Benchmark (Gastinger et al., 2024)

Evaluation metrics and settings. Following existing works (Xu et al., 2020; Rossi et al., 2020; Yu et al., 2023) in evaluating models for link prediction, we assess L-STEP under two settings: **transductive** setting and **inductive** setting.

Under the transductive setting, models will predict the link occurrence in future timestamps between nodes that had been observed during the training process, while the inductive setting involves predicting future links between unseen nodes in the training process. For each setting, we use two evaluation metrics: Average Precision (AP) and Area Under the Receiver Operating Characteristic Curve (AUC-ROC). In addition, following (Poursafaei et al., 2022), for more robust evaluation, each baseline is assessed with three negative sampling strategies (NSS): random, historical, and inductive (Details in Appendix I).

5.2. Temporal Link Prediction Performance on 13 Classic Datasets

Due to the limited space, we present all baseline methods with respect to AP and AUC-ROC metrics with *random* negative sampling strategy here for the transductive setting in Table 1 and the inductive setting in Table 5 in Appendix H.1. The performance of *historical* and *inductive* negative sampling strategies on both learning settings are placed in Appendix H.1. The first and second results are highlighted with **Red** and **Blue**. For the *random* negative sampling strategy, in Tables 1 and 5, L-STEP achieves competitive results over 13 datasets, outperforming most of the baselines with average rankings close to 1 under both settings. Moreover, the second-best results of L-STEP closely approach the corresponding best results by a small gap. Notably, on some datasets, such as *UN Trade*, *UN Vote*, the difference between the second-best and L-STEP’s performance is sub-

Table 2. Test MRR and Validation MRR in the worldwide leaderboard of TGB benchmark

tbl-review				tbl-coin			
Rank	Method	Test MRR	Validation MRR	Rank	Method	Test MRR	Validation MRR
1	GraphMixer	0.521 \pm 0.015	0.428 \pm 0.019	1	TNCN	0.762 \pm 0.004	0.740 \pm 0.002
2	L-STEP (Ours)	0.411 \pm 0.011	0.330 \pm 0.017	2	DyGFormer	0.752 \pm 0.004	0.730 \pm 0.002
3	TNCN	0.377 \pm 0.010	0.325 \pm 0.003	3	L-STEP (Ours)	0.711 \pm 0.0185	0.674 \pm 0.021
4	TGAT	0.355 \pm 0.012	0.324 \pm 0.006	4	TGN	0.586 \pm 0.037	0.607 \pm 0.014
5	TGN	0.349 \pm 0.020	0.313 \pm 0.012	5	EdgeBank (tw)	0.580	0.492
6	NAT	0.341 \pm 0.020	0.302 \pm 0.011	6	DyRep	0.452 \pm 0.046	0.512 \pm 0.014
7	DyGFormer	0.224 \pm 0.015	0.219 \pm 0.017	7	EdgeBank (unlimited)	0.359	0.315
8	DyRep	0.220 \pm 0.030	0.216 \pm 0.031				
9	CAWN	0.193 \pm 0.001	0.200 \pm 0.001				
10	TCL	0.193 \pm 0.009	0.199 \pm 0.007				
11	EdgeBank (tw)	0.025	0.024				
12	EdgeBank (unlimited)	0.023	0.023				

stantial, suggesting that L-STEP makes great improvements over existing methods. Regarding the *historical* and *inductive* sampling strategies, L-STEP also attains competitive results, as observed in Tables 6, 7, 8, and 9. In most cases, L-STEP surpasses the second-best by a substantial margin.

5.3. Temporal Link Prediction Performance on the Large-Scale Benchmark – TGB

In this section, we assess the scalability of our method by evaluating L-STEP on large-scale temporal graphs from the TGB Benchmark (Gastinger et al., 2024) with link prediction task. Specifically, we report L-STEP’s performance on *tbl-review* and *tbl-coin* datasets in Table 2, following the given pre-defined splits and metrics. Moreover, *tbl-review* has **352,637 nodes** and **4,873,540 edges**, while *tbl-coin* has **638,486 nodes** and **22,809,486 edges**. As shown in Table 2, our method achieves competitive performance, ranking the 2nd place on *tbl-review*¹ and the 3rd place on *tbl-coin*², according to the worldwide open leaderboard. To further demonstrate the efficiency of L-STEP, we provide runtime comparison between our method and some SOTA methods, DyGFormer (Yu et al., 2023) and FreeDyG (Tian et al., 2024), on *US Legis* and *UN Trade* datasets in Table 11 in Appendix H.3.

6. Related Work

Recently, many efforts have been made to develop the next-generation graph foundation models (Zheng et al., 2024a;b; Xu et al., 2024; Li et al., 2024; Wang et al., 2025; Zou et al., 2025). As an important pillar, current most temporal graph learning methods are designed to learn node temporal repre-

sentations at a certain timestamp, and then obtain the link prediction between a pair of nodes (u, v) at time t . They typically start by concatenating the temporal representations of u, v at time t , and then process the concatenation with MLP layers to estimate the link occurrence probability. Usually, the temporal representations of nodes are obtained by aggregating intrinsic node/edge features from recent temporal neighbors and interactions, which are then processed using more complex architectures.

For example, TGN (Rossi et al., 2020) and JODIE (Kumar et al., 2019) employ the recurrent architecture, TGAT (Xu et al., 2020) utilizes the self-attention mechanism, DyRep (Trivedi et al., 2019) uses Temporal Point Processes, and more recently, GraphMixer (Cong et al., 2023) leverages Mixer-MLP layers, while DyGFormer (Yu et al., 2023) harnesses the power of transformers and FreeDyG (Tian et al., 2024) utilizes Fourier Transform to encode neighborhood co-occurrence information. From another aspect, some methods aggregate information from higher-order graph structures. For example, TGN (Rossi et al., 2020) and TGAT (Xu et al., 2020) both aggregate information from k -hop neighborhoods, and CAWN (Wang et al., 2021b) samples random walks and encode them to derive the node representations. PINT (Souza et al., 2022) leverages positional features constructed from temporal random walks to enhance the model’s expressiveness. A detailed discussion and comparison between our method and PINT (Souza et al., 2022)’s positional features can be found in Appendix F.

Our L-STEP achieves effectiveness with efficiency. First, our L-STEP only considers 1-hop neighborhood for information aggregation and processes representations with simple MLP transformations. More importantly, L-STEP integrates node and edge features along with evolving positional encodings, which is informative to support task out-performance. The integration is intuitive and does not really rely on heavy attention mechanisms.

¹https://tgb.complexdatalab.com/docs/leader_linkprop/#tbl-review-v2

²https://tgb.complexdatalab.com/docs/leader_linkprop/#tbl-coin-v2

7. Conclusion

In this paper, we propose a simple temporal link prediction model, L-STEP, which only relies on learnable positional encoding and MLPs to achieve out-performance over SOTA graph transformers in temporal link prediction tasks. In addition to theoretical analysis of the effectiveness and efficiency, we design comprehensive experiments to demonstrate the empirical performance of L-STEP.

Acknowledgments

This work is supported by National Science Foundation under Award No. IIS-2117902, and the U.S. Department of Homeland Security under Grant Award Number 17STQAC00001-08-00. The views and conclusions are those of the authors and should not be interpreted as representing the official policies of the funding agencies or the government.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

References

Ban, Y., Zou, J., Li, Z., Qi, Y., Fu, D., Kang, J., Tong, H., and He, J. Pagerank bandits for link prediction. In *NeurIPS*, 2024.

Chen, J., Gao, K., Li, G., and He, K. Nagphormer: A tokenized graph transformer for node classification in large graphs. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=8KYeilt30w>.

Cong, W., Zhang, S., Kang, J., Yuan, B., Wu, H., Zhou, X., Tong, H., and Mahdavi, M. Do we really need complicated model architectures for temporal networks? In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=ayPPc0SyLv1>.

Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., and Anuar, N. B. Applications of link prediction in social networks: A review. *Journal of Network and Computer Applications*, 166:102716, 2020.

Diao, C. and Loynd, R. Relational attention: Generalizing transformers for graph-structured tasks. In *The Eleventh International Conference on Learning Representations*, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=cFuMmbWiN6>.

Dwivedi, V. P. and Bresson, X. A generalization of transformer networks to graphs. *CoRR*, abs/2012.09699, 2020. URL <https://arxiv.org/abs/2012.09699>.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. Graph neural networks with learnable structural and positional representations. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=wTTjnvGphYj>.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking graph neural networks. *J. Mach. Learn. Res.*, 24:43:1–43:48, 2023. URL <http://jmlr.org/papers/v24/22-0567.html>.

Fu, D. and He, J. DPPIN: A biological repository of dynamic protein-protein interaction network data. In *IEEE International Conference on Big Data*, 2022.

Fu, D., Zhou, D., and He, J. Local motif clustering on time-evolving graphs. In *KDD*, 2020.

Fu, D., Fang, L., Maciejewski, R., Torvik, V. I., and He, J. Meta-learned metrics over multi-evolution temporal graphs. In *KDD*, 2022.

Fu, D., Zhou, D., Maciejewski, R., Croitoru, A., Boyd, M., and He, J. Fairness-aware clique-preserving spectral clustering of temporal graphs. In *WWW*, 2023.

Fu, D., Hua, Z., Xie, Y., Fang, J., Zhang, S., Sancak, K., Wu, H., Malevich, A., He, J., and Long, B. Vcr-graphomer: A mini-batch graph transformer via virtual connections. In *ICLR*, 2024.

Gastinger, J., Huang, S., Galkin, M., Loghmani, E., Parviz, A., Poursafaei, F., Danovitch, J., Rossi, E., Koutis, I., Stuckenschmidt, H., Rabbany, R., and Rabusseau, G. TGB 2.0: A benchmark for learning on temporal knowledge graphs and heterogeneous graphs. *CoRR*, abs/2406.09639, 2024. doi: 10.48550/ARXIV.2406.09639. URL <https://doi.org/10.48550/arXiv.2406.09639>.

Gupta, G. D., Coyaud, É., Gonçalves, J., Mojarrad, B. A., Liu, Y., Wu, Q., Gheiratmand, L., Comartin, D., Tkach, J. M., Cheung, S. W., et al. A dynamic protein interaction landscape of the human centrosome-cilium interface. *Cell*, 163(6):1484–1499, 2015.

He, X., Fu, D., Tong, H., Maciejewski, R., and He, J. Temporal heterogeneous graph generation with privacy, utility, and efficiency. In *ICLR*, 2025.

Huang, Z., Li, X., and Chen, H. Link prediction approach to collaborative filtering. In *Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries*, pp. 141–142, 2005.

Kazemi, S. M., Goel, R., Jain, K., Kobyzhev, I., Sethi, A., Forsyth, P., and Poupart, P. Representation learning for dynamic graphs: A survey. *J. Mach. Learn. Res.*, 21:70:1–70:73, 2020. URL <http://jmlr.org/papers/v21/19-447.html>.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., and Hong, S. Pure transformers are powerful graph learners. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

Kumar, A., Singh, S. S., Singh, K., and Biswas, B. Link prediction techniques, applications, and performance: A survey. *Physica A: Statistical Mechanics and its Applications*, 553:124289, 2020.

Kumar, S., Zhang, X., and Leskovec, J. Predicting dynamic embedding trajectory in temporal interaction networks. In Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., and Karypis, G. (eds.), *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019*, pp. 1269–1278. ACM, 2019. doi: 10.1145/3292500.3330895. URL <https://doi.org/10.1145/3292500.3330895>.

Langley, P. Crafting papers on machine learning. In Langley, P. (ed.), *Proceedings of the 17th International Conference on Machine Learning (ICML 2000)*, pp. 1207–1216, Stanford, CA, 2000. Morgan Kaufmann.

Le, D., Zhao, K., Wang, M., and Wu, Y. Graphlingo: Domain knowledge exploration by synchronizing knowledge graphs and large language models. In *40th IEEE International Conference on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024*, pp. 5477–5480. IEEE, 2024a. doi: 10.1109/ICDE60146.2024.00432. URL <https://doi.org/10.1109/ICDE60146.2024.00432>.

Le, D., Zhong, S., Liu, Z., Xu, S., Chaudhary, V., Zhou, K., and Xu, Z. Knowledge graphs can be learned with just intersection features. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024b. URL <https://openreview.net/forum?id=A15G1Vytqi>.

Li, Z., Fu, D., and He, J. Everything evolves in personalized pagerank. In *WWW*, 2023.

Li, Z., Zheng, L., Jin, B., Fu, D., Jing, B., Ban, Y., He, J., and Han, J. Can graph neural networks learn language with extremely weak text supervision? *CoRR*, 2024.

Li, Z., Fu, D., Ai, M., and He, J. Apex²: Adaptive and extreme summarization for personalized knowledge graphs. In *KDD*, 2025a.

Li, Z., Lin, X., Liu, Z., Zou, J., Wu, Z., Zheng, L., Fu, D., Zhu, Y., Hamann, H. F., Tong, H., and He, J. Language in the flow of time: Time-series-paired texts weaved into a unified temporal narrative. *CoRR*, 2025b.

Lin, X., Liu, Z., Fu, D., Qiu, R., and Tong, H. Backtime: Backdoor attacks on multivariate time series forecasting. In *NeurIPS*, 2024.

Liu, Z., Qiu, R., Zeng, Z., Yoo, H., Zhou, D., Xu, Z., Zhu, Y., Weldemariam, K., He, J., and Tong, H. Class-imbalanced graph learning without class rebalancing. In *ICML*, 2024.

Lu, L. and Zhou, T. Link prediction in complex networks: A survey. *CoRR*, abs/1010.0725, 2010. URL <http://arxiv.org/abs/1010.0725>.

Martínez, V., Berzal, F., and Talavera, J. C. C. A survey of link prediction in complex networks. *ACM Comput. Surv.*, 49(4):69:1–69:33, 2017. doi: 10.1145/3012704. URL <https://doi.org/10.1145/3012704>.

Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W., Zhao, P., Huang, J., Ananiadou, S., and Rong, Y. Transformer for graphs: An overview from architecture perspective. *CoRR*, abs/2202.08455, 2022. URL <https://arxiv.org/abs/2202.08455>.

Müller, L., Galkin, M., Morris, C., and Rampásek, L. Attending to graph transformers. *CoRR*, abs/2302.04181, 2023. doi: 10.48550/ARXIV.2302.04181. URL <https://doi.org/10.48550/arXiv.2302.04181>.

Poursafaei, F., Huang, S., Pehrline, K., and Rabbany, R. Towards better evaluation for dynamic link prediction. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

Rampásek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. Recipe for a general, powerful, scalable graph transformer. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., and Bronstein, M. M. Temporal graph networks for deep learning on dynamic graphs. *CoRR*, abs/2006.10637, 2020. URL <https://arxiv.org/abs/2006.10637>.

Souza, A. H., Mesquita, D., Kaski, S., and Garg, V. Provably expressive temporal graph networks. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

Sundararajan, D. *The discrete Fourier transform: theory, algorithms and applications*. World Scientific, 2001.

Taylor, I. W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., Bull, S., Pawson, T., Morris, Q., and Wrana, J. L. Dynamic modularity in protein interaction networks predicts breast cancer outcome. *Nature biotechnology*, 27(2):199–204, 2009.

Tian, Y., Qi, Y., and Guo, F. Freedyg: Frequency enhanced continuous-time dynamic graph model for link prediction. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=82Mc5ilInM>.

Tieu, K., Fu, D., Zhu, Y., Hamann, H. F., and He, J. Temporal graph neural tangent kernel with graphon-guaranteed. In *NeurIPS*, 2024.

Tieu, K., Fu, D., Wu, J., and He, J. Invariant link selector for spatial-temporal out-of-distribution problem. In *The 28th International Conference on Artificial Intelligence and Statistics*, 2025.

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. Dyrep: Learning representations over dynamic graphs. In *7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=HyePrhR5KX>.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fb0d053c1c4a845aa-Abstract.html>.

Wang, L., Chang, X., Li, S., Chu, Y., Li, H., Zhang, W., He, X., Song, L., Zhou, J., and Yang, H. TCL: transformer-based dynamic graph modelling via contrastive learning. *CoRR*, abs/2105.07944, 2021a. URL <https://arxiv.org/abs/2105.07944>.

Wang, L., Hassani, K., Zhang, S., Fu, D., Yuan, B., Cong, W., Hua, Z., Wu, H., Yao, N., and Long, B. Learning graph quantized tokenizers. In *ICLR*, 2025.

Wang, Y., Chang, Y., Liu, Y., Leskovec, J., and Li, P. Inductive representation learning in temporal networks via causal anonymous walks. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021b. URL <https://openreview.net/forum?id=KYPz4YsCPj>.

Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., and Achan, K. Inductive representation learning on temporal graphs. In *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=rJeW1yHYwH>.

Xu, Z., Hassani, K., Zhang, S., Zeng, H., Yasunaga, M., Wang, L., Fu, D., Yao, N., Long, B., and Tong, H. Language models are graph learners. *CoRR*, 2024.

Yu, L., Sun, L., Du, B., and Lv, W. Towards better dynamic graph learning: New architecture and unified library. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

Zheng, L., Fu, D., Maciejewski, R., and He, J. Drgnn: Deep residual graph neural network with contrastive learning. *Transactions on Machine Learning Research*, 2024a.

Zheng, L., Jing, B., Li, Z., Zeng, Z., Wei, T., Ai, M., He, X., Liu, L., Fu, D., You, J., Tong, H., and He, J. Pyg-ssl: A graph self-supervised learning toolkit. *CoRR*, 2024b.

Zhong, S., Le, D., Liu, Z., Jiang, Z., Ye, A., Zhang, J., Yuan, J., Zhou, K., Xu, Z., Ma, J., Xu, S., Chaudhary, V., and Hu, X. Gnn also deserve editing, and they need it more than once. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=rIc9adYbH2>.

Zhou, D., Zheng, L., Fu, D., Han, J., and He, J. Mentorgnn: Deriving curriculum for pre-training gnn. In *CIKM*, 2022.

Zou, J., Fu, D., Chen, S., He, X., Li, Z., Zhu, Y., Han, J.,
and He, J. GTR: graph-table-rag for cross-table question
answering. *CoRR*, 2025.

A. Appendix Contents

The appendix contains the following information:

- Appendix [B](#): Pseudo-code of L-STEP
- Appendix [C](#): Proof of LPE
- Appendix [D](#): Elaborations on the Learnable Filter
- Appendix [E](#): Theoretical Time Complexity of L-STEP
- Appendix [F](#): Detailed Theoretical and Empirical Comparison with Provably Expressive Temporal Graph Networks
- Appendix [G](#): Dataset Details
- Appendix [H](#): More Experiments
 - Appendix [H.1](#): The effectiveness comparison in more learning and sampling settings
 - Appendix [H.2](#): MLPs and Transformers performance on the proposed LPE positional encoding method
 - Appendix [H.3](#): Running time comparison with SOTAs
 - Appendix [H.4](#): LPE ablation studies wrt input node and edge features
 - Appendix [H.5](#): Analysis of important hyperparameters
 - Appendix [H.6](#): Robustness of L-STEP with different initial positional encoding input
- Appendix [I](#): Reproducibility of L-STEP

B. Pseudo-code for L-STEP

In this section, we provide the pseudo-code for L-STEP. Specifically, Algorithm. 1 summarizes the computational process of the Node-Link-Positional Encoder, Algorithm. 2 demonstrates the computation of the objective loss function, and finally, Algorithm. 3 briefly describe the training procedure of L-STEP as a neural architecture.

Algorithm 1 Temporal Representation

Require: node u , time t

Ensure: Temporal Representation for u at t

```

 $\{\hat{\mathbf{p}}_u^{t_j}\}_{j=1}^L \leftarrow \text{Eq. 1}$ 
 $\tilde{\mathbf{p}}_u^t \leftarrow 1 \text{ Eq. 2}$ 
 $\mathbf{h}_{u,N}^t \leftarrow n \text{ Eq. 4}$ 
 $\mathbf{H}_{u,E}^t \leftarrow \text{Eq. 5}$ 
 $\mathbf{h}_{u,E}^t \leftarrow \text{Eq. 5}$ 
 $\mathbf{h}_{u,N||E}^t \leftarrow \text{Eq. 6}$ 
 $\hat{\mathbf{h}}_{u,P}^t \leftarrow \text{Eq. 7}$ 
 $\mathbf{h}_{u,P}^t \leftarrow \text{Eq. 8}$ 
 $\mathbf{h}_u^t \leftarrow \text{Eq. 9}$ 
return  $\mathbf{h}_u^t$ 

```

Algorithm 2 Loss Function

Require: B positive samples, B negative samples

Ensure: \mathcal{L}

```

 $\mathcal{L}_{lp} \leftarrow 0$ 
 $\mathcal{L}_{pe} \leftarrow 0$ 
for  $i \in [1, \dots, B]$  do
     $\mathbf{h}_{u_i^{(pos)}}^t \leftarrow$  Algorithm. 1( $u_i^{(pos)}$ ,  $t$ )
     $\mathbf{h}_{v_i^{(pos)}}^t \leftarrow$  Algorithm. 1( $v_i^{(pos)}$ ,  $t$ )
     $\mathbf{h}_{u_i^{(neg)}}^t \leftarrow$  Algorithm. 1( $u_i^{(neg)}$ ,  $t$ )
     $\mathbf{h}_{v_i^{(neg)}}^t \leftarrow$  Algorithm. 1( $v_i^{(neg)}$ ,  $t$ )
     $\hat{y}_i^{(pos)} \leftarrow$  Eq. 10 with  $\mathbf{h}_{u_i^{(pos)}}^t, \mathbf{h}_{v_i^{(pos)}}^t$ 
     $\hat{y}_i^{(neg)} \leftarrow$  Eq. 10 with  $\mathbf{h}_{u_i^{(neg)}}^t, \mathbf{h}_{v_i^{(neg)}}^t$ 
     $\mathcal{L}_{lp} \leftarrow \mathcal{L}_{lp} + \log(\hat{y}_i^{(pos)}) + (1 - \log(\hat{y}_i^{(neg)}))$ 
     $\mathcal{L}_{pe} \leftarrow \mathcal{L}_{pe} + \|\tilde{\mathbf{p}}_{u_i^{(pos)}}^{t_i} - \tilde{\mathbf{p}}_{v_i^{(pos)}}^{t_i}\|_2 - \alpha_{neg} \|\tilde{\mathbf{p}}_{u_i^{(neg)}}^{t_i} - \tilde{\mathbf{p}}_{v_i^{(neg)}}^{t_i}\|_2$ 
end for
 $\mathcal{L}_{lp} \leftarrow -\mathcal{L}_{lp}/(2B)$ 
 $\mathcal{L}_{pe} \leftarrow \mathcal{L}_{pe}/B$ 
 $\mathcal{L} \leftarrow$  Eq. 13

```

Algorithm 3 Training Pipeline of L-STEP

Require: Data-loader over G , number of epochs (# Epochs)

Ensure: Link Predictions

```

Initialize the PE of the initial snapshot with its Laplacian PE:  $\mathbf{p}^{t_0} \leftarrow$  Laplacian PE of  $G^{t_0}$ 
for epoch in  $[1, \dots, \# \text{Epochs}]$  do
    for ( $B$  positive samples,  $B$  negative samples) in Data-loader do
         $\mathcal{L} \leftarrow$  Algorithm. 2( $B$  positive samples,  $B$  negative samples)
        Back-propagate  $\mathcal{L}$ 
        for  $t$  in  $[t_1, \dots, t_B]$  do
            if Finish link prediction at time  $t$  ( $t \in [t_1, t_B]$ ) then
                reveal new links and update positional encoding:  $\forall u, \mathbf{p}_u^t \leftarrow$  Eq. 3
            end if
        end for
    end for
end for

```

C. Proof of Theorem 4.1

We start our proof for Eq. 14 by first stating the following Lemma about the eigenvalues of n -node ring graph, denoted by R_n .

Lemma C.1. *The real-valued part of the Fourier basis is the eigenvector of the Laplacian of the ring graph. Specifically, for a n -node ring graph R_n , the k -th eigenvector of its Laplacian, $\mathbf{L}(R_n)$, is*

$$\mathbf{u}_k^{ring} = \begin{bmatrix} \cos(2\pi \cdot 0/n) \\ \cos(2\pi \cdot 1/n) \\ \vdots \\ \cos(2\pi \cdot (n-1))/n \end{bmatrix} \in \mathbb{R}^n \quad (15)$$

and its corresponding eigenvalue is $\lambda_k^{ring} = 2 - \cos(2\pi k/n)$.

Lemma C.1 is motivated by Lemma 5.2.1 from the lecture³. Based on that, we can then extend to prove our Theorem 4.1 as follows.

Proof. For short of notation, in the rest of this proof, suppose the positional encoding of snapshots at $L + 1$ distinct timestamps before t are denoted as $\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^L$, which are the Laplacian eigenvector of graph snapshots at t_0, \dots, t_L , and $\tilde{\mathbf{p}}_u^t$ and $\tilde{\mathbf{p}}_u^{t'}$ are denoted as $\tilde{\mathbf{p}}^{L+1}$ and $\tilde{\mathbf{p}}^{L+2}$, respectively. Again, for short of notation, we omit the subscript u in the positional encoding notations. In addition, we denote $\mathbf{L}(R_n)$ as the (un-normalized) Laplacian of a n -node ring graph, R_n .

We start by giving the definition of “slow-changing” network. We suppose that our network is “slow-changing”, in terms of graph topology, thus, we can assume the eigenvector of the Laplacian does not vary across timestamps, i.e., $\mathbf{p}^0 \approx \dots \approx \mathbf{p}^L$, so now we focus on bounding the left-hand side of Eq. 14.

We start by considering the following equation:

$$\begin{aligned} & \tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^{L+2} + \tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^L + ([\mathbf{p}^0 - \mathbf{p}^L \ 0 \ 0 \ \dots \ \mathbf{p}^{L+1} - \mathbf{p}^1]) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_{t-1} \end{bmatrix} = \\ &= ([\mathbf{p}^1 \ \mathbf{p}^2 \ \dots \ \mathbf{p}^L] - [\mathbf{p}^2 \ \mathbf{p}^3 \ \dots \ \mathbf{p}^{L+1}] \\ &+ [\mathbf{p}^1 \ \mathbf{p}^2 \ \dots \ \mathbf{p}^L] - [\mathbf{p}^0 \ \mathbf{p}^1 \ \dots \ \mathbf{p}^{L-1}] \\ &+ [\mathbf{p}^0 - \mathbf{p}^L \ 0 \ 0 \ \dots \ \mathbf{p}^{L+1} - \mathbf{p}^1]) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_{t-1} \end{bmatrix} \\ &= ([\mathbf{p}^1 - \mathbf{p}^2 + \mathbf{p}^1 - \mathbf{p}^0 \ \dots \ \mathbf{p}^i - \mathbf{p}^{i+1} + \mathbf{p}^i - \mathbf{p}^{i-1} \ \dots \ \mathbf{p}^L - \mathbf{p}^{L+1} + \mathbf{p}^L - \mathbf{p}^{L-1}] \\ &+ [\mathbf{p}^0 - \mathbf{p}^L \ 0 \ 0 \ \dots \ \mathbf{p}^{L+1} - \mathbf{p}^1]) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_{t-1} \end{bmatrix} \\ &= ([\mathbf{p}^1 - \mathbf{p}^2 + \mathbf{p}^1 - \mathbf{p}^L \ \dots \ \mathbf{p}^i - \mathbf{p}^{i+1} + \mathbf{p}^i - \mathbf{p}^{i-1} \ \dots \ \mathbf{p}^L - \mathbf{p}^1 + \mathbf{p}^L - \mathbf{p}^{L-1}]) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \mathbf{p}^1 \\ \dots \\ \mathbf{p}^L \end{bmatrix} \\ &= [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] L(R_L) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix} \end{aligned} \quad (16)$$

The eigen-decomposition of $L(R_L)$ is $L(R_L) = F \Lambda F^{-1}$, where Λ is a diagonal matrix with the i -th entry is λ_i^{ring} . Thus

³<https://www.cs.yale.edu/homes/spielman/561/lect05-15.pdf>

$$\begin{aligned}
 & [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] L(R_L) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix} \\
 &= [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] \mathbf{F} \Lambda \mathbf{F}^{-1} \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix} \\
 &= [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] \mathbf{F} (\Lambda \mathbf{W}_{filter}) \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix}
 \end{aligned} \tag{17}$$

For simplicity, let \mathbf{W}_{filter} be a diagonal matrix, thus $(\Lambda \mathbf{W}_{filter})$ is a diagonal matrix.

Therefore, we obtain

$$\begin{aligned}
 & [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] \mathbf{F} (\Lambda \mathbf{W}_{filter}) \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix} \\
 &= [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] \sum_{i=1}^L (\Lambda W_{filter})_i \mathbf{F}_{:,i} (\mathbf{F}_{:,i}^{-1})^T \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix}
 \end{aligned} \tag{18}$$

Thus,

$$\begin{aligned}
 & \tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^{L+2} + \tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^L + ([\mathbf{p}^0 - \mathbf{p}^L \ 0 \ 0 \ \dots \ \mathbf{p}^{L+1} - \mathbf{p}^1]) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_{t-1} \end{bmatrix} = \\
 &= [\mathbf{p}^1 \ \dots \ \mathbf{p}^L] \sum_{i=1}^L (\Lambda W_{filter})_i \mathbf{F}_{:,i} (\mathbf{F}_{:,i}^{-1})^T \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_L \end{bmatrix} \\
 &= \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \left(\sum_{j=1}^L \alpha_j \mathbf{p}^j \right) \right) \\
 &\Rightarrow \tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^{L+2} = \tilde{\mathbf{p}}^L - \tilde{\mathbf{p}}^{L+1} - ([\mathbf{p}^0 - \mathbf{p}^L \ 0 \ 0 \ \dots \ \mathbf{p}^{L+1} - \mathbf{p}^1]) \mathbf{F} \mathbf{W}_{filter} \mathbf{F}^{-1} \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_{t-1} \end{bmatrix} \\
 &+ \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \left(\sum_{j=1}^L \alpha_j \mathbf{p}^j \right) \right)
 \end{aligned} \tag{19}$$

Therefore,

$$\begin{aligned}
 \|\tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^{L+2}\|_2 &\leq \left\| \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \right) \left(\sum_{j=1}^L \alpha_j \mathbf{p}^j \right) \right\|_2 + \|\tilde{\mathbf{p}}^{L+1} - \tilde{\mathbf{p}}^L\|_2 \\
 &\leq \left\| \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \right) \left(\sum_{j=1}^L \alpha_j \mathbf{p}^j \right) \right\|_2 + \left\| \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \right) \left(\sum_{j=0}^{L-1} \alpha_j \mathbf{p}^j \right) \right\|_2 + \|\tilde{\mathbf{p}}^L - \tilde{\mathbf{p}}^{L-1}\|_2 \\
 &\leq \dots \\
 &\leq \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \right) \left\| \left(\sum_{j=1}^L \alpha_j \mathbf{p}^j \right) \right\|_2 + \left(\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i \right) \left\| \sum_{j=0}^{L-1} (L-1-j) \alpha_{j+1} \mathbf{p}^j \right\|_2
 \end{aligned} \tag{20}$$

where the first inequality holds due to the assumption of “slow-changing” network.

For simplicity, we assume $\alpha_1, \alpha_2, \dots, \alpha_{t-1}$ and the length of positional encoding $P^{(t)}$ is normalized, i.e $\alpha_1 + \dots + \alpha_{t-1} = 1$. Thus,

$$(20) \leq \left(\sum_{i=1}^L |(\Lambda \mathbf{W}_{filter})_i| \right) \cdot (2L - 2) \tag{21}$$

Since $L \ll N$, thus choosing t small enough and choosing the filter such that $\sum_{i=1}^L (\Lambda \mathbf{W}_{filter})_i < 1$ shows that the past positional encoding can be a well approximation of the positional encoding of the future snapshot. \square

D. Positional Encodings, Signals, and Noises Filtering

To start with, we pave the way for understanding our learnable filter by unraveling how positional encodings could be regarded as signals on graphs.

Let the Laplacian eigen-decomposition of a graph snapshot G^t be $\mathbf{L}^t = \mathbf{U} \Lambda \mathbf{U}^\top$. Suppose G^t has n nodes, then $\mathbf{U} \in \mathbb{R}^{n \times n}$, where \mathbf{U} ’s columns are G^t ’s eigenvectors, and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, where $\lambda_1 \leq \lambda_2 \dots \lambda_n$, is a diagonal matrix consisting of \mathbf{L}^t ’s eigenvalues. In addition, let $\mathbf{u}_i \in \mathbb{R}^n$ be the i^{th} eigenvector of \mathbf{L} and its j^{th} entry denoted as $\mathbf{u}_{i,j}$, then, the positional encoding of node i is defined as $\mathbf{p}_i = [\mathbf{u}_{1,i}, \dots, \mathbf{u}_{n,i}]^\top \in \mathbb{R}^n$. In our case, the graph signal constructed by \mathbf{p}_i is a multi-dimensional signal. It is noteworthy that our paper does not consider graph signal constructed by the eigenvectors, and thus our multi-dimensional signals formed by positional encodings, \mathbf{p}_i , are not associated with signals yielded by eigenvalues λ_i .

Next, we discuss the essence of using DFT and learnable filters to filter noises by elaborating what kinds of noises would be filtered by our design. (1) First, it is the change is caused by randomness. To be more specific, DFT is applied on the sequence of u ’s positional encodings at previous timestamps and the learnable filter is designed to filter noises across dimensions in the spectral domain. If the signal changes from high-frequency to low-frequency (or vice versa) over time by randomness, then the learnable filter filters out noise in the spectral domain of the sequence. (2) Second, it is the changes caused by entity activities. It is also notable that the change pattern may reflect the historical properties of a batch of certain nodes, which is part of evidence for the current time decision making. Because our SimpleTLP updates positional encoding at each timestamp as shown in Eq. 3, this pattern will be recorded into the representation learning process constrained by the loss functions as shown in Eq. 11 and Eq. 12.

E. Theoretical time complexity comparison with SOTAs

Now, we give an in-depth analysis of the complexity of DyGFormer and FreeDyG as follows.

Suppose we are given E query links: $\{(u_i, v_i, t_i)\}_{i=1}^E$. As we move to new timestamps, new connections and new nodes will emerge, resulting in the changes in some nodes’ neighborhoods; then, both L-STEP and DyGFormer need to update

historical neighbors for some nodes. (Note that for a node, both L-STEP and DyGFormer consider its historical neighbors, so both methods would need to perform an update if its neighborhood changes).

For each link (u_i, v_i, t_i) , DyGFormer and FreeDyG first need to obtain the neighbor co-occurrence information of the node pair (u_i, v_i) as follows. Suppose u_i has p historical neighbors, a_1, \dots, a_p , and v_i has q historical neighbors, b_1, \dots, b_q , then the neighbor co-occurrence scheme of DyGFormer and FreeDyG requires counting (1) the number of times a_1, \dots, a_p are involved in interactions with v_i before time t_i and (2) the number of times b_1, \dots, b_q are involved in interactions with u_i before time t_i . In other words, for an arbitrary link (u_i, v_i, t_i) , the neighbor co-occurrence framework of DyGFormer and FreeDyG makes the computation of u_i depend on v_i 's information, as they have to count how many times historical neighbors of u_i are also v_i 's historical neighbors, and vice versa. Thus, in order to make predictions for the aforementioned query links, DyGFormer and FreeDyG require at least $\mathcal{O}(E)$ complexity.

On the other hand, for L-STEP, we first consider the unique nodes among $u_1, \dots, u_E, v_1, \dots, v_E$. Suppose there are n unique nodes, and let us denote them as c_1, \dots, c_n , then we could compute their temporal representation as stated in Eq. 9. Moreover, in the process of obtaining the necessary components for Eq. 9, for any node c_i , we only use c_i 's related information (most recent temporal neighbors / links and its previous positional encoding). Thus, it takes L-STEP $\mathcal{O}(n)$ time to compute the representation for these n nodes. To predict an arbitrary link (u_i, v_i, t_i) , we simply retrieve the representation for u_i, v_i that we just computed and apply Eq. 10

In summary, DyGFormer and FreeDyG have $\mathcal{O}(E)$ since they process a node pair (u, v) -related information, while L-STEP's complexity linearly scales with the number of nodes.

F. Detailed theoretical and empirical comparison with related works

In this section, we provide a comparative discussion and experimental comparison between our method L-STEP and PINT (Souza et al., 2022), a method for temporal link prediction that also leverages positional features.

To be more specific, PINT (Souza et al., 2022) proposes relative positional features that count the number of temporal walks of a given length between 2 nodes. As stated in PINT (Souza et al., 2022), temporal walks are defined as follows. An $(L - 1)$ -length temporal walk is $W = \{(w_1, t_1), (w_2, t_2), \dots, (w_L, t_L)\}$, where $t_1 > t_2 > \dots > t_L$ and (w_{i-1}, w_i, t_i) is an interaction in the given temporal graph. In summary, PINT proposes a relative positional encoding that represents pair-wise node “distance” (here, the “distance” is the number of L -length temporal walks, assuming L is given). On the other hand, our L-STEP learnable positional encodings (LPE) fall into the category of global positional encodings, which encode the position of the node relative to the global structure of the graph.

Table 3. Performance comparison between PINT and L-STEP in *transductive setting* and *inductive setting* with random negative sampling strategy

Dataset	Method	Transductive AP	Transductive ROC-AUC	Inductive AP	Inductive ROC-AUC
Enron	PINT	81.60 ± 0.67	84.50 ± 0.60	67.01 ± 2.76	70.41 ± 2.34
	L-STEP (Ours)	93.96 ± 0.36	95.98 ± 0.23	89.17 ± 0.88	92.30 ± 0.57
UCI	PINT	95.77 ± 0.11	94.89 ± 0.15	94.14 ± 0.05	92.51 ± 0.07
	L-STEP (Ours)	96.67 ± 0.47	97.62 ± 0.23	94.60 ± 0.41	95.88 ± 0.17

Next, we present the empirical comparison between L-STEP and PINT (Souza et al., 2022) in Table 3. As shown in Table 3, our L-STEP outperforms PINT in all experimental settings (transductive and inductive). Regarding PINT's empirical evaluation, we adopt PINT's official implementation (via the GitHub link provided in the (Souza et al., 2022)) and use the exact hyperparameters presented in the PINT paper to reproduce their results on these datasets. Moreover, PINT (Souza et al., 2022) and L-STEP use the same data split.

G. Datasets

Here, in Table 4, we report a detailed regarding 13 datasets in our empirical assessment, which includes the domain, number of nodes, number of links, dimension of raw node and edge features. The statistics of Benchmark TGB are available at <https://tgb.complexdatabl.com/docs/linkprop>.

Table 4. Statistics of the datasets.

Datasets	Domains	#Nodes	#Links	#N&L	Feat	Bipartite	Duration	Unique Steps	Time	Granularity
Wikipedia	Social	9,227	157,474	– & 172	True	1 month	152,757	Unix timestamps		
Reddit	Social	10,984	672,447	– & 172	True	1 month	669,065	Unix timestamps		
MOOC	Interaction	7,144	411,749	– & 4	True	17 months	345,600	Unix timestamps		
LastFM	Interaction	1,980	1,293,103	– & –	True	1 month	1,283,614	Unix timestamps		
Enron	Social	184	125,235	– & –	False	3 years	22,632	Unix timestamps		
Social Evo.	Proximity	74	2,099,519	– & 2	False	8 months	565,932	Unix timestamps		
UCI	Social	1,899	59,835	– & –	False	196 days	58,911	Unix timestamps		
Flights	Transport	13,169	1,927,145	– & 1	False	4 months	122		days	
Can. Parl.	Politics	734	74,478	– & 1	False	14 years	14		years	
US Legis.	Politics	225	60,396	– & 1	False	12 congresses	12		congresses	
UN Trade	Economics	255	507,497	– & 1	False	32 years	32		years	
UN Vote	Politics	201	1,035,742	– & 1	False	72 years	72		years	
Contact	Proximity	692	2,426,279	– & 1	False	1 month	8,064		5 minutes	

H. More experimental results

H.1. Empirical results for different negative sampling strategies

We provide empirical results for (1) random NSS for inductive setting in Table 5 (2) historical NSS for transductive setting in Table 6 and inductive setting in Table 7, (3) inductive NSS under transductive setting in Table 8 and inductive setting in Table 9.

 Table 5. Performance Comparison in the *inductive setting* with *random negative sampling strategy*.

Metric	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	FreeDyG	L-STEP
AP	Wikipedia	94.82 ± 0.20	92.43 ± 0.37	96.22 ± 0.07	97.83 ± 0.04	98.24 ± 0.03	96.22 ± 0.17	96.65 ± 0.02	98.59 ± 0.03	98.97 ± 0.01	99.15 ± 0.04
	Reddit	96.50 ± 0.13	96.09 ± 0.11	97.09 ± 0.04	97.50 ± 0.07	98.62 ± 0.01	94.09 ± 0.07	95.26 ± 0.02	98.84 ± 0.02	98.91 ± 0.01	98.02 ± 0.09
	MOOC	79.63 ± 1.92	81.07 ± 0.44	85.50 ± 0.19	89.04 ± 1.17	81.42 ± 0.24	80.60 ± 0.22	81.41 ± 0.21	86.96 ± 0.43	87.75 ± 0.62	88.49 ± 0.24
	LastFM	81.61 ± 3.82	83.02 ± 1.48	78.63 ± 0.31	81.45 ± 4.29	89.42 ± 0.07	73.53 ± 1.66	82.11 ± 0.42	94.23 ± 0.09	94.89 ± 0.01	96.25 ± 0.43
	Enron	80.72 ± 1.39	74.55 ± 3.95	67.05 ± 1.51	77.94 ± 1.02	86.35 ± 0.51	76.14 ± 0.79	75.88 ± 0.48	89.76 ± 0.34	89.69 ± 0.17	89.17 ± 0.88
	Social Evo.	91.96 ± 0.48	90.04 ± 0.47	91.41 ± 0.16	90.77 ± 0.86	79.94 ± 0.18	91.55 ± 0.09	91.86 ± 0.06	93.14 ± 0.04	94.76 ± 0.05	91.71 ± 0.32
	UCI	79.86 ± 1.48	57.48 ± 1.87	79.54 ± 0.48	88.12 ± 2.05	92.73 ± 0.06	87.36 ± 2.03	91.19 ± 0.42	94.54 ± 0.12	94.85 ± 0.10	94.60 ± 0.41
	Flights	94.74 ± 0.37	92.88 ± 0.73	88.73 ± 0.33	95.03 ± 0.60	97.06 ± 0.02	83.41 ± 0.07	83.03 ± 0.05	97.79 ± 0.02	96.42 ± 0.32	97.43 ± 0.15
	Can. Parl.	53.92 ± 0.94	54.02 ± 0.76	55.18 ± 0.79	54.10 ± 0.93	55.80 ± 0.69	54.30 ± 0.66	55.91 ± 0.82	87.74 ± 0.71	52.96 ± 1.05	92.25 ± 0.24
	US Legis.	54.93 ± 2.29	57.28 ± 0.71	51.00 ± 3.11	58.63 ± 0.37	53.17 ± 1.20	52.59 ± 0.97	50.71 ± 0.76	54.28 ± 2.87	53.05 ± 2.59	61.98 ± 1.31
	UN Trade	59.65 ± 0.77	57.02 ± 0.69	61.03 ± 0.18	58.31 ± 3.15	65.24 ± 0.21	62.21 ± 0.12	62.17 ± 0.31	64.55 ± 0.62	-	76.80 ± 2.01
	UN Vote	56.64 ± 0.96	54.62 ± 2.22	52.24 ± 1.46	58.85 ± 2.51	49.94 ± 0.45	51.60 ± 0.97	50.68 ± 0.44	55.93 ± 0.39	50.51 ± 1.02	75.09 ± 0.34
	Contact	94.34 ± 1.45	92.18 ± 0.41	95.87 ± 0.11	93.82 ± 0.99	89.55 ± 0.30	91.11 ± 0.12	90.59 ± 0.05	98.03 ± 0.02	97.66 ± 0.04	97.25 ± 0.07
Avg. Rank		6.38	7.54	7.08	5.31	5.38	7.54	6.92	2.62	4.15	2.08
ROC-AUC	Wikipedia	94.33 ± 0.27	91.49 ± 0.45	95.90 ± 0.09	97.72 ± 0.03	98.03 ± 0.04	95.57 ± 0.20	96.30 ± 0.04	98.48 ± 0.03	99.01 ± 0.02	99.30 ± 0.03
	Reddit	96.52 ± 0.13	96.05 ± 0.12	96.98 ± 0.04	97.39 ± 0.07	98.42 ± 0.02	93.80 ± 0.07	94.97 ± 0.05	98.71 ± 0.01	98.84 ± 0.01	98.49 ± 0.06
	MOOC	83.16 ± 1.30	84.03 ± 0.49	86.84 ± 0.17	91.24 ± 0.99	81.86 ± 0.25	81.43 ± 0.19	82.77 ± 0.24	87.62 ± 0.51	87.01 ± 0.74	90.63 ± 0.21
	LastFM	81.13 ± 3.39	82.24 ± 1.51	76.99 ± 0.29	82.61 ± 3.15	87.82 ± 0.12	70.84 ± 0.85	80.37 ± 0.18	94.08 ± 0.08	94.32 ± 0.03	97.66 ± 0.21
	Enron	81.96 ± 1.34	76.34 ± 4.20	64.63 ± 1.74	78.83 ± 1.11	87.02 ± 0.50	72.33 ± 0.99	76.51 ± 0.71	90.69 ± 0.26	89.51 ± 0.20	92.30 ± 0.57
	Social Evo.	93.70 ± 0.29	91.18 ± 0.49	93.41 ± 0.19	93.43 ± 0.59	84.73 ± 0.27	93.71 ± 0.18	94.09 ± 0.07	95.29 ± 0.03	96.41 ± 0.07	94.09 ± 0.24
	UCI	78.80 ± 0.94	58.08 ± 1.81	77.64 ± 0.38	86.68 ± 2.29	90.40 ± 0.11	84.49 ± 1.82	89.30 ± 0.57	92.63 ± 0.13	93.01 ± 0.08	95.88 ± 0.17
	Flights	95.21 ± 0.32	93.56 ± 0.70	88.64 ± 0.35	95.92 ± 0.43	96.86 ± 0.02	82.48 ± 0.01	82.27 ± 0.06	97.80 ± 0.02	96.05 ± 0.29	98.46 ± 0.07
	Can. Parl.	53.81 ± 1.14	55.27 ± 0.49	56.51 ± 0.75	55.86 ± 0.75	58.83 ± 1.13	55.83 ± 1.07	58.32 ± 1.08	89.33 ± 0.48	52.89 ± 1.61	95.06 ± 0.11
	US Legis.	58.12 ± 2.35	61.07 ± 0.56	48.27 ± 3.50	62.38 ± 0.48	51.49 ± 1.13	50.43 ± 1.48	47.20 ± 0.89	53.21 ± 3.04	53.01 ± 3.14	66.18 ± 1.19
	UN Trade	62.28 ± 0.50	58.82 ± 0.98	62.72 ± 0.12	59.99 ± 3.50	67.05 ± 0.21	63.76 ± 0.07	63.48 ± 0.37	67.25 ± 1.05	-	83.95 ± 1.76
	UN Vote	58.13 ± 1.43	55.13 ± 3.46	51.83 ± 1.35	61.23 ± 2.71	48.34 ± 0.76	50.51 ± 1.05	50.04 ± 0.86	56.73 ± 0.69	49.97 ± 1.22	82.01 ± 0.21
	Contact	95.37 ± 0.92	91.89 ± 0.38	96.53 ± 0.10	94.84 ± 0.75	89.07 ± 0.34	93.05 ± 0.09	92.83 ± 0.05	98.30 ± 0.02	98.11 ± 0.02	97.99 ± 0.07
Avg. Rank		6.38	7.54	7.08	4.92	5.77	7.77	7.08	2.62	4.31	1.54

Table 6. Performance comparison in the *transductive setting* with *historical negative sampling strategy*.

Metric	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	FreeDyG	L-STEP
AP	Wikipedia	83.01 \pm 0.66	79.93 \pm 0.56	87.38 \pm 0.22	86.86 \pm 0.33	71.21 \pm 1.67	89.05 \pm 0.39	90.90 \pm 0.10	82.23 \pm 2.54	91.59 \pm 0.57	99.10 \pm 0.51
	Reddit	80.03 \pm 0.36	79.83 \pm 0.31	79.55 \pm 0.20	81.22 \pm 0.61	80.82 \pm 0.45	77.14 \pm 0.16	78.44 \pm 0.18	81.57 \pm 0.67	85.67 \pm 1.01	93.25 \pm 1.13
	MOOC	78.94 \pm 1.25	75.60 \pm 1.12	82.19 \pm 0.62	87.06 \pm 1.93	74.05 \pm 0.95	77.06 \pm 0.41	77.77 \pm 0.92	85.85 \pm 0.66	86.71 \pm 0.81	96.52 \pm 1.58
	LastFM	74.35 \pm 3.81	74.92 \pm 2.46	71.59 \pm 0.24	76.87 \pm 4.64	69.86 \pm 0.43	59.30 \pm 2.31	72.47 \pm 0.49	81.57 \pm 0.48	79.71 \pm 0.51	94.88 \pm 1.35
	Enron	69.85 \pm 2.70	71.19 \pm 2.76	64.07 \pm 1.05	73.91 \pm 1.76	64.73 \pm 0.36	70.66 \pm 0.39	77.98 \pm 0.92	75.63 \pm 0.73	78.87 \pm 0.82	95.42 \pm 0.53
	Social Evo.	87.44 \pm 6.78	93.29 \pm 0.43	95.01 \pm 0.44	94.45 \pm 0.56	85.53 \pm 0.38	94.74 \pm 0.31	94.93 \pm 0.31	97.38 \pm 0.14	97.79 \pm 0.23	90.19 \pm 2.01
	UCI	75.24 \pm 5.80	55.10 \pm 3.14	68.27 \pm 1.37	80.43 \pm 2.12	65.30 \pm 0.43	80.25 \pm 2.74	84.11 \pm 1.35	82.17 \pm 0.82	86.10 \pm 1.19	80.76 \pm 1.88
	Flights	66.48 \pm 2.59	67.61 \pm 0.99	72.38 \pm 0.18	66.70 \pm 1.64	64.72 \pm 0.97	70.68 \pm 0.24	71.47 \pm 0.26	66.59 \pm 0.49	66.13 \pm 1.23	82.02 \pm 2.39
	Can. Parl.	51.79 \pm 0.63	63.31 \pm 1.23	67.13 \pm 0.84	68.42 \pm 3.07	66.53 \pm 2.77	65.93 \pm 3.00	74.34 \pm 0.87	97.00 \pm 0.31	72.22 \pm 2.47	75.03 \pm 1.76
	US Legis.	51.71 \pm 5.76	86.88 \pm 2.25	62.14 \pm 6.60	74.00 \pm 7.57	68.82 \pm 8.23	80.53 \pm 3.95	81.65 \pm 1.02	85.30 \pm 3.88	69.94 \pm 0.59	62.66 \pm 3.54
	UN Trade	61.39 \pm 1.83	59.19 \pm 1.07	55.74 \pm 0.91	58.44 \pm 5.51	55.71 \pm 0.38	55.90 \pm 1.17	57.05 \pm 1.22	64.41 \pm 1.40	-	80.00 \pm 1.55
	UN Vote	70.02 \pm 0.81	69.30 \pm 1.12	52.96 \pm 2.14	69.37 \pm 3.93	51.26 \pm 0.04	52.30 \pm 2.35	51.20 \pm 1.60	60.84 \pm 1.58	50.61 \pm 2.46	61.43 \pm 1.07
	Contact	95.31 \pm 2.13	96.39 \pm 0.20	96.05 \pm 0.52	93.05 \pm 2.35	84.16 \pm 0.49	93.86 \pm 0.21	93.36 \pm 0.41	97.57 \pm 0.06	97.32 \pm 0.48	80.24 \pm 1.98
	Avg. Rank	6.62	6.0	6.31	4.85	8.62	6.62	5.08	3.38	4.23	3.31
ROC-AUC	Wikipedia	80.77 \pm 0.73	77.74 \pm 0.33	82.87 \pm 0.22	82.74 \pm 0.32	67.84 \pm 0.64	85.76 \pm 0.46	87.68 \pm 0.17	78.80 \pm 1.95	82.78 \pm 0.30	99.21 \pm 0.48
	Reddit	80.52 \pm 0.32	80.15 \pm 0.18	79.33 \pm 0.16	81.11 \pm 0.19	80.27 \pm 0.30	76.49 \pm 0.16	77.80 \pm 0.12	80.54 \pm 0.29	85.92 \pm 0.10	96.40 \pm 0.59
	MOOC	82.75 \pm 0.83	81.06 \pm 0.94	80.81 \pm 0.67	88.00 \pm 1.80	71.57 \pm 1.07	72.09 \pm 0.56	76.68 \pm 1.40	87.04 \pm 0.35	88.32 \pm 0.99	97.69 \pm 0.94
	LastFM	75.22 \pm 2.36	74.65 \pm 1.98	64.27 \pm 0.26	77.97 \pm 3.04	67.88 \pm 0.24	47.24 \pm 3.13	64.21 \pm 0.73	78.78 \pm 0.35	73.53 \pm 0.12	97.66 \pm 1.96
	Enron	75.39 \pm 2.37	74.69 \pm 3.55	61.85 \pm 1.43	77.09 \pm 2.22	65.10 \pm 0.34	67.95 \pm 0.88	75.27 \pm 1.14	76.55 \pm 0.52	75.74 \pm 0.72	95.79 \pm 0.33
	Social Evo.	90.06 \pm 3.15	93.12 \pm 0.34	93.08 \pm 0.59	94.71 \pm 0.53	87.43 \pm 0.15	93.44 \pm 0.68	94.39 \pm 0.31	97.28 \pm 0.07	97.42 \pm 0.02	93.60 \pm 2.27
	UCI	78.64 \pm 3.50	57.91 \pm 3.12	58.89 \pm 1.57	77.25 \pm 2.68	57.86 \pm 0.15	72.25 \pm 3.46	77.54 \pm 2.02	76.97 \pm 0.24	80.38 \pm 0.26	90.59 \pm 1.60
	Flights	68.97 \pm 1.87	69.43 \pm 0.90	72.20 \pm 0.16	68.39 \pm 0.95	66.11 \pm 0.71	70.57 \pm 0.18	70.37 \pm 0.23	68.09 \pm 0.43	67.83 \pm 1.46	92.84 \pm 1.21
	Can. Parl.	62.44 \pm 1.11	70.16 \pm 1.70	70.86 \pm 0.94	73.23 \pm 3.08	72.06 \pm 3.94	69.95 \pm 3.70	79.03 \pm 1.01	97.61 \pm 0.40	77.59 \pm 6.22	87.22 \pm 1.85
	US Legis.	67.47 \pm 6.40	91.44 \pm 1.18	73.47 \pm 5.25	83.53 \pm 4.53	78.62 \pm 7.46	83.97 \pm 3.71	85.17 \pm 0.70	90.77 \pm 1.96	63.49 \pm 13.04	76.64 \pm 3.38
	UN Trade	68.92 \pm 1.40	64.36 \pm 1.40	60.37 \pm 0.68	63.93 \pm 5.41	63.09 \pm 0.74	61.43 \pm 1.04	63.20 \pm 1.54	73.86 \pm 1.13	-	87.67 \pm 1.80
	UN Vote	76.84 \pm 1.01	74.72 \pm 1.43	53.95 \pm 3.15	73.40 \pm 5.20	51.27 \pm 0.33	52.29 \pm 2.39	52.61 \pm 1.44	64.27 \pm 1.78	52.76 \pm 2.85	72.92 \pm 1.73
	Contact	96.35 \pm 0.92	96.00 \pm 0.23	95.39 \pm 0.43	93.76 \pm 1.29	83.06 \pm 0.32	93.34 \pm 0.19	93.14 \pm 0.34	97.17 \pm 0.05	97.12 \pm 0.24	90.99 \pm 1.80
	Avg. Rank	5.38	5.69	6.92	4.31	8.54	7.15	5.69	3.69	4.92	2.69

 Table 7. Performance comparison in the *inductive setting* with *historical negative sampling strategy*.

Metric	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	FreeDyG	L-STEP
AP	Wikipedia	68.69 \pm 0.39	62.18 \pm 1.27	84.17 \pm 0.22	81.76 \pm 0.32	67.27 \pm 1.63	82.20 \pm 2.18	87.60 \pm 0.30	71.42 \pm 4.43	82.78 \pm 0.30	98.45 \pm 0.88
	Reddit	62.34 \pm 0.54	61.60 \pm 0.72	63.47 \pm 0.36	64.85 \pm 0.85	63.67 \pm 0.41	60.83 \pm 0.25	64.50 \pm 0.26	65.37 \pm 0.60	66.02 \pm 0.41	85.74 \pm 2.46
	MOOC	63.22 \pm 1.55	62.93 \pm 1.24	76.73 \pm 0.29	77.07 \pm 3.41	74.68 \pm 0.68	74.27 \pm 0.53	74.00 \pm 0.97	80.82 \pm 0.30	81.63 \pm 0.33	95.17 \pm 2.78
	LastFM	70.39 \pm 4.31	71.45 \pm 1.76	76.27 \pm 0.25	66.65 \pm 6.11	71.33 \pm 0.47	65.78 \pm 0.65	76.42 \pm 0.22	76.35 \pm 0.52	77.28 \pm 0.21	92.96 \pm 1.08
	Enron	65.86 \pm 3.71	62.08 \pm 2.27	61.40 \pm 1.31	62.91 \pm 1.16	60.70 \pm 0.36	67.11 \pm 0.62	72.37 \pm 1.37	67.07 \pm 0.62	73.01 \pm 0.88	99.37 \pm 1.01
	Social Evo.	88.51 \pm 0.87	88.72 \pm 1.10	93.97 \pm 0.54	90.66 \pm 1.62	79.83 \pm 0.38	94.10 \pm 0.31	94.01 \pm 0.47	96.82 \pm 0.16	96.69 \pm 0.14	85.13 \pm 1.05
	UCI	63.11 \pm 2.27	52.47 \pm 2.06	70.52 \pm 0.93	70.78 \pm 0.78	64.54 \pm 0.47	76.71 \pm 1.00	81.66 \pm 0.49	72.13 \pm 1.87	82.35 \pm 0.39	75.97 \pm 1.13
	Flights	61.01 \pm 1.65	62.83 \pm 1.31	64.72 \pm 0.36	59.31 \pm 1.43	56.82 \pm 0.57	64.50 \pm 0.25	65.28 \pm 0.24	57.11 \pm 0.21	56.72 \pm 1.30	71.54 \pm 2.12
	Can. Parl.	52.60 \pm 0.88	52.28 \pm 0.31	56.72 \pm 0.47	54.42 \pm 0.77	57.14 \pm 0.07	55.71 \pm 0.74	55.84 \pm 0.73	87.40 \pm 0.85	52.15 \pm 0.84	68.91 \pm 1.63
	US Legis.	52.94 \pm 2.11	62.10 \pm 1.41	51.83 \pm 3.95	61.18 \pm 1.10	55.56 \pm 1.71	53.87 \pm 1.41	52.03 \pm 1.02	56.31 \pm 3.46	53.63 \pm 4.38	49.51 \pm 1.09
	UN Trade	55.46 \pm 1.19	55.49 \pm 0.84	55.28 \pm 0.71	52.80 \pm 3.19	55.00 \pm 0.38	55.76 \pm 1.03	54.94 \pm 0.97	53.20 \pm 1.07	-	79.09 \pm 1.86
	UN Vote	61.04 \pm 1.30	60.22 \pm 1.78	53.05 \pm 3.10	63.74 \pm 3.00	47.98 \pm 0.84	54.19 \pm 2.17	48.09 \pm 0.43	52.63 \pm 1.26	50.23 \pm 1.65	61.89 \pm 1.28
	Contact	90.42 \pm 2.34	89.22 \pm 0.66	94.15 \pm 0.45	88.13 \pm 1.50	74.20 \pm 0.80	90.44 \pm 0.17	89.91 \pm 0.36	93.56 \pm 0.52	93.26 \pm 1.42	79.08 \pm 2.24
	Avg. Rank	6.85	6.85	5.31	5.85	7.54	5.23	4.92	4.38	4.77	3.31
ROC-AUC	Wikipedia	61.86 \pm 0.53	57.54 \pm 1.09	78.38 \pm 0.20	75.75 \pm 0.29	62.04 \pm 0.65	79.79 \pm 0.96	82.87 \pm 0.21	68.33 \pm 2.82	82.08 \pm 0.32	98.59 \pm 0.82
	Reddit	61.69 \pm 0.39	60.45 \pm 0.37	64.43 \pm 0.27	64.55 \pm 0.50	64.94 \pm 0.21	61.43 \pm 0.26	64.27 \pm 0.13	64.81 \pm 0.25</td		

Table 8. Performance comparison in the *transductive setting* with *inductive negative sampling strategy*.

Metric	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	FreeDyG	L-STEP
AP	Wikipedia	75.65 \pm 0.79	70.21 \pm 1.58	87.00 \pm 0.16	85.62 \pm 0.44	74.06 \pm 2.62	86.76 \pm 0.72	88.59 \pm 0.17	78.29 \pm 5.38	90.05 \pm 0.79	98.66 \pm 0.94
	Reddit	86.98 \pm 0.16	86.30 \pm 0.26	89.59 \pm 0.24	88.10 \pm 0.24	91.67 \pm 0.24	87.45 \pm 0.29	85.26 \pm 0.11	91.11 \pm 0.40	90.74 \pm 0.17	98.15 \pm 0.48
	MOOC	65.23 \pm 2.19	61.66 \pm 0.95	75.95 \pm 0.64	77.50 \pm 2.91	73.51 \pm 0.94	74.65 \pm 0.54	74.27 \pm 0.92	81.24 \pm 0.69	83.01 \pm 0.87	97.49 \pm 0.99
	LastFM	62.67 \pm 4.49	64.41 \pm 2.70	71.13 \pm 0.17	65.95 \pm 5.98	67.48 \pm 0.77	58.21 \pm 0.89	68.12 \pm 0.33	73.97 \pm 0.50	72.19 \pm 0.24	93.92 \pm 1.10
	Enron	68.96 \pm 0.98	67.79 \pm 1.53	63.94 \pm 1.36	70.89 \pm 2.72	75.15 \pm 0.58	71.29 \pm 0.32	75.01 \pm 0.79	77.41 \pm 0.89	77.81 \pm 0.65	98.98 \pm 0.53
	Social Evo.	89.82 \pm 4.11	93.28 \pm 0.48	94.84 \pm 0.44	95.13 \pm 0.56	88.32 \pm 0.27	94.90 \pm 0.36	94.72 \pm 0.33	97.68 \pm 0.10	97.57 \pm 0.15	90.53 \pm 1.88
	UCI	65.99 \pm 1.40	54.79 \pm 1.76	68.67 \pm 0.84	70.94 \pm 0.71	64.61 \pm 0.48	76.01 \pm 1.11	80.10 \pm 0.51	72.25 \pm 1.71	82.35 \pm 0.73	74.08 \pm 1.84
	Flights	69.07 \pm 4.02	70.57 \pm 1.82	75.48 \pm 0.26	71.09 \pm 2.72	69.18 \pm 1.52	74.62 \pm 0.18	74.87 \pm 0.21	70.92 \pm 1.78	65.56 \pm 1.10	80.75 \pm 1.51
	Can. Parl.	48.42 \pm 0.66	58.61 \pm 0.86	68.82 \pm 1.21	65.34 \pm 2.87	67.75 \pm 1.00	65.85 \pm 1.75	69.48 \pm 0.63	95.44 \pm 0.57	59.83 \pm 5.15	73.79 \pm 1.26
	US Legis.	50.27 \pm 5.13	83.44 \pm 1.16	61.91 \pm 5.82	67.57 \pm 6.47	65.81 \pm 8.52	78.15 \pm 3.34	79.63 \pm 0.84	81.25 \pm 3.62	51.64 \pm 5.36	57.67 \pm 3.10
ROC-AUC	UN Trade	60.42 \pm 1.48	60.19 \pm 1.24	60.61 \pm 1.24	61.04 \pm 6.01	62.54 \pm 0.67	61.06 \pm 1.74	60.15 \pm 1.29	55.79 \pm 1.02	-	80.96 \pm 1.12
	UN Vote	67.79 \pm 1.46	67.53 \pm 1.98	52.89 \pm 1.61	67.63 \pm 2.67	52.19 \pm 0.34	50.62 \pm 0.82	51.60 \pm 0.73	51.91 \pm 0.84	51.14 \pm 1.56	59.42 \pm 3.73
	Contact	93.43 \pm 1.78	94.18 \pm 0.10	94.35 \pm 0.48	90.18 \pm 3.28	89.31 \pm 0.27	91.35 \pm 0.21	90.87 \pm 0.35	94.75 \pm 0.28	94.89 \pm 0.89	80.15 \pm 1.48
	Avg. Rank	7.69	7.23	5.08	5.38	6.46	5.69	5.38	3.92	4.85	3.31
	Wikipedia	70.96 \pm 0.78	67.36 \pm 0.96	81.93 \pm 0.22	80.97 \pm 0.31	70.95 \pm 0.95	82.19 \pm 0.48	84.28 \pm 0.30	75.09 \pm 3.70	82.74 \pm 0.32	98.78 \pm 0.91
	Reddit	83.51 \pm 0.15	82.90 \pm 0.31	87.13 \pm 0.20	84.56 \pm 0.24	88.04 \pm 0.29	84.67 \pm 0.29	82.21 \pm 0.13	86.23 \pm 0.51	84.38 \pm 0.21	98.51 \pm 0.40
	MOOC	66.63 \pm 2.30	63.26 \pm 1.01	73.18 \pm 0.33	77.44 \pm 2.86	70.32 \pm 1.43	70.36 \pm 0.37	72.45 \pm 0.72	80.76 \pm 0.76	78.47 \pm 0.94	98.31 \pm 0.59
	LastFM	61.32 \pm 3.49	62.15 \pm 2.12	63.99 \pm 0.21	65.46 \pm 4.27	67.92 \pm 0.44	46.93 \pm 2.59	60.22 \pm 0.32	69.25 \pm 0.36	72.30 \pm 0.59	97.08 \pm 1.47
	Enron	70.92 \pm 1.05	68.73 \pm 1.34	60.45 \pm 2.12	71.34 \pm 2.46	75.17 \pm 0.50	67.64 \pm 0.86	71.53 \pm 0.85	74.07 \pm 0.64	77.27 \pm 0.61	95.79 \pm 0.33
ind	Social Evo.	90.01 \pm 3.19	93.07 \pm 0.38	92.94 \pm 0.61	95.24 \pm 0.56	89.93 \pm 0.15	93.44 \pm 0.72	94.22 \pm 0.32	97.51 \pm 0.06	98.47 \pm 0.02	93.73 \pm 2.22
	UCI	64.14 \pm 1.26	54.25 \pm 2.01	60.80 \pm 1.01	64.11 \pm 1.04	58.06 \pm 0.26	70.05 \pm 1.86	74.59 \pm 0.74	65.96 \pm 1.18	75.39 \pm 0.57	84.09 \pm 1.61
	Flights	69.99 \pm 3.10	71.13 \pm 1.55	73.47 \pm 0.18	71.63 \pm 1.72	69.70 \pm 0.75	72.54 \pm 0.19	72.21 \pm 0.21	69.53 \pm 1.17	64.04 \pm 0.55	92.32 \pm 1.51
	Can. Parl.	52.88 \pm 0.80	63.53 \pm 0.65	72.47 \pm 1.18	69.57 \pm 2.81	72.93 \pm 1.78	69.47 \pm 2.12	70.52 \pm 0.94	96.70 \pm 0.59	65.58 \pm 5.71	85.80 \pm 1.51
	US Legis.	59.05 \pm 5.52	89.44 \pm 0.71	71.62 \pm 5.42	78.12 \pm 4.46	76.45 \pm 7.02	82.54 \pm 3.91	84.22 \pm 0.91	87.96 \pm 1.80	60.71 \pm 9.72	70.81 \pm 3.72
	UN Trade	66.82 \pm 1.27	65.60 \pm 1.28	66.13 \pm 0.78	66.37 \pm 5.39	71.73 \pm 0.74	67.80 \pm 1.21	66.53 \pm 1.22	62.56 \pm 1.51	-	87.92 \pm 1.61
	UN Vote	73.73 \pm 1.61	72.80 \pm 2.16	53.04 \pm 2.58	72.69 \pm 3.72	52.75 \pm 0.90	52.02 \pm 1.64	51.89 \pm 0.74	53.37 \pm 1.26	51.95 \pm 2.14	70.70 \pm 3.58
	Contact	94.47 \pm 1.08	94.23 \pm 0.18	94.10 \pm 0.41	91.64 \pm 1.72	87.68 \pm 0.24	91.23 \pm 0.19	90.96 \pm 0.27	95.01 \pm 0.15	95.41 \pm 0.49	90.68 \pm 1.59
	Avg. Rank	6.92	7.0	5.85	5.23	6.23	5.92	5.69	4.23	4.62	3.31

 Table 9. Performance comparison in the *inductive setting* with *inductive negative sampling strategy*.

Metric	Datasets	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	FreeDyG	L-STEP
ind	Wikipedia	68.70 \pm 0.39	62.19 \pm 1.28	84.17 \pm 0.22	81.77 \pm 0.32	67.24 \pm 1.63	82.20 \pm 2.18	87.60 \pm 0.29	71.42 \pm 4.43	87.54 \pm 0.26	98.45 \pm 0.88
	Reddit	62.32 \pm 0.54	61.58 \pm 0.72	63.40 \pm 0.36	64.84 \pm 0.84	63.65 \pm 0.41	60.81 \pm 0.26	64.49 \pm 0.25	65.35 \pm 0.60	64.98 \pm 0.20	85.76 \pm 2.46
	MOOC	63.22 \pm 1.55	62.92 \pm 1.24	76.72 \pm 0.30	77.07 \pm 3.40	74.69 \pm 0.68	74.28 \pm 0.53	73.99 \pm 0.97	80.82 \pm 0.30	81.41 \pm 0.31	95.17 \pm 2.78
	LastFM	70.39 \pm 4.31	71.45 \pm 1.75	76.28 \pm 0.25	69.46 \pm 4.65	71.33 \pm 0.47	65.78 \pm 0.65	76.42 \pm 0.22	76.35 \pm 0.52	77.01 \pm 0.43	92.96 \pm 1.08
	Enron	65.86 \pm 3.71	62.08 \pm 2.27	61.40 \pm 1.30	62.90 \pm 1.66	60.72 \pm 0.36	67.11 \pm 0.62	72.37 \pm 1.38	67.07 \pm 0.62	72.85 \pm 0.81	89.36 \pm 1.01
	Social Evo.	88.51 \pm 0.87	88.72 \pm 1.10	93.97 \pm 0.54	90.65 \pm 1.62	79.83 \pm 0.39	94.10 \pm 0.32	94.01 \pm 0.47	96.82 \pm 0.17	96.91 \pm 0.12	85.13 \pm 1.05
	UCI	63.16 \pm 2.27	52.47 \pm 2.09	70.49 \pm 0.93	70.73 \pm 0.79	64.54 \pm 0.47	76.65 \pm 0.99	81.64 \pm 0.49	72.13 \pm 1.86	82.06 \pm 0.58	75.97 \pm 1.13
	Flights	61.01 \pm 1.66	62.83 \pm 1.31	64.72 \pm 0.37	59.32 \pm 1.45	56.82 \pm 0.56	64.50 \pm 0.25	65.29 \pm 0.24	57.11 \pm 0.20	56.70 \pm 1.17	69.14 \pm 1.19
	Can. Parl.	52.58 \pm 0.86	52.24 \pm 0.28	56.46 \pm 0.50	54.18 \pm 0.73	57.06 \pm 0.08	55.46 \pm 0.69	55.76 \pm 0.65	87.22 \pm 0.82	52.33 \pm 0.87	69.59 \pm 1.45
	US Legis.	52.94 \pm 2.11	62.10 \pm 1.41	51.83 \pm 3.95	61.18 \pm 1.10	55.56 \pm 1.71	53.87 \pm 1.41	52.03 \pm 1.02	56.31 \pm 3.46	53.63 \pm 4.38	49.51 \pm 1.09
ind	UN Trade	55.43 \pm 1.20	55.42 \pm 0.87	55.58 \pm 0.68	58.20 \pm 3.24	54.97 \pm 0.38	55.66 \pm 0.98	54.88 \pm 1.01	52.56 \pm 1.70	-	79.12 \pm 1.84
	UN Vote	61.17 \pm 1.33	60.29 \pm 1.79	53.08 \pm 3.10	63.71 \pm 2.97	48.01 \pm 0.82	54.13 \pm 2.16	48.10 \pm 0.40	52.61 \pm 1.25	50.21 \pm 1.74	61.88 \pm 1.27
	Contact	90.43 \pm 2.33	89.22 \pm 0.65	94.14 \pm 0.45	88.12 \pm 1.50	74.19 \pm 0.81	90.43 \pm 0.17	89.91 \pm 0.36	93.55 \pm 0.52	93.26 \pm 1.41	79.09 \pm 1.25
	Avg. Rank	6.85	7.08	5.23	5.77	7.54	5.23	4.92	4.46	4.62	3.31
	Wikipedia	61.87 \pm 0.53	57.54 \pm 1.09	78.38 \pm 0.20	75.76 \pm 0.29	62.02 \pm 0.65	79.79 \pm 0.96	82.88 \pm 0.21	68.33 \pm 2.82	83.17 \pm 0.31	98.59 \pm 0.82
	Reddit	61.69 \pm 0.39	60.44 \pm 0.37	64.39 \pm 0.50	64.91 \pm 0.21	61.36 \pm 0.26	64.27 \pm 0.13	64.80 \pm 0.25	64.51 \pm		

H.2. Demonstrating the MLPs and Transformers on the proposed LPE positional encoding

Here, we empirically show that simple architectures like MLPs can fully harness our learnable positional encoding to finish temporal link prediction tasks.

By performing an ablation study of using Transformers (instead of MLPs) to help L-STEP learn positional encodings, as shown in Table 10, we can discern (1) in most cases (i.e., 9 of 13 datasets), our vanilla L-STEP can outperform, and the gain is not marginal; (2) in a few cases, adding the attention mechanism on L-STEP to replace MLPs can boost the performance to a small extent, and it is prone to cost more computational memory, like OOM in the Flights dataset.

Table 10. Comparison of replacing MLPs in L-STEP with Transformers.

Dataset	Method	Transductive AP	Transductive ROC-AUC	Inductive AP	Inductive ROC-AUC
Wikipedia	L-STEP + Attention	98.50 \pm 0.73	98.85 \pm 0.50	98.11 \pm 0.83	98.49 \pm 0.62
	L-STEP	99.34 \pm 0.04	99.48 \pm 0.03	99.15 \pm 0.04	99.30 \pm 0.03
Reddit	L-STEP + Attention	98.90 \pm 0.10	99.13 \pm 0.08	97.75 \pm 0.26	98.29 \pm 0.16
	L-STEP	99.37 \pm 0.04	99.49 \pm 0.03	98.02 \pm 0.09	98.49 \pm 0.06
MOOC	L-STEP + Attention	82.46 \pm 3.61	85.38 \pm 2.93	82.57 \pm 4.24	85.80 \pm 3.18
	L-STEP	86.94 \pm 0.34	89.28 \pm 0.28	88.49 \pm 0.24	90.63 \pm 0.21
LastFM	L-STEP + Attention	95.50 \pm 0.70	97.19 \pm 0.50	96.07 \pm 0.36	97.62 \pm 0.25
	L-STEP	96.06 \pm 0.30	97.52 \pm 0.17	96.25 \pm 0.43	97.66 \pm 0.21
Enron	L-STEP + Attention	92.56 \pm 0.53	95.02 \pm 0.33	86.41 \pm 1.15	90.70 \pm 0.72
	L-STEP	93.96 \pm 0.36	95.98 \pm 0.23	89.17 \pm 0.88	92.30 \pm 0.57
SocialEvo	L-STEP + Attention	90.26 \pm 0.69	92.61 \pm 0.58	90.75 \pm 0.31	93.50 \pm 0.30
	L-STEP	92.22 \pm 0.25	94.33 \pm 0.21	91.71 \pm 0.32	94.09 \pm 0.24
UCI	L-STEP + Attention	96.06 \pm 0.53	97.12 \pm 0.41	93.00 \pm 1.30	94.59 \pm 0.85
	L-STEP	96.67 \pm 0.47	97.62 \pm 0.23	94.60 \pm 0.41	95.88 \pm 0.17
Flights	L-STEP + Attention	OOM	OOM	OOM	OOM
	L-STEP	98.94 \pm 0.10	99.38 \pm 0.04	97.43 \pm 0.15	98.46 \pm 0.07
Can. Parl.	L-STEP + Attention	98.36 \pm 0.12	99.01 \pm 0.07	92.59 \pm 0.32	95.37 \pm 0.25
	L-STEP	98.24 \pm 0.11	98.97 \pm 0.06	92.25 \pm 0.24	95.06 \pm 0.11
US Legis.	L-STEP + Attention	76.84 \pm 0.61	84.16 \pm 0.40	64.07 \pm 1.31	68.13 \pm 1.78
	L-STEP	76.74 \pm 0.60	83.89 \pm 0.43	61.98 \pm 1.31	66.18 \pm 1.19
UN Trade.	L-STEP + Attention	77.45 \pm 3.27	83.94 \pm 2.23	79.83 \pm 3.28	85.95 \pm 2.13
	L-STEP	75.84 \pm 2.08	83.17 \pm 1.28	76.80 \pm 2.01	83.95 \pm 1.76
UN Vote	L-STEP + Attention	74.65 \pm 0.46	80.73 \pm 0.40	76.10 \pm 0.88	82.89 \pm 0.64
	L-STEP	73.40 \pm 0.03	79.59 \pm 0.02	75.09 \pm 0.34	82.01 \pm 0.21
Contact	L-STEP + Attention	97.32 \pm 0.15	98.12 \pm 0.10	96.05 \pm 0.41	97.18 \pm 0.21
	L-STEP	98.16 \pm 0.09	98.72 \pm 0.06	97.25 \pm 0.07	97.99 \pm 0.07

Based on the above analysis, our design gets verified in-depth: the proposed learnable positional encoding is effective and friendly to lightweight neural architectures, and even simple MLPs can fully exploit its expressive power.

H.3. Empirical runtime comparison with SOTAs

Table 11. Comparison in runtime (in seconds) and number of training epochs of L-STEP and DyGFormer across 5 runs on US Legis and UN Trade.

Dataset	Method	Total time for 5 runs (in seconds)	Number of training epochs
US Legis	L-STEP	[287.19, 257.18, 251.49, 248.92, 305.09]	[21, 18, 17, 17, 21]
	DyGFormer	[1251.97, 1697.56, 1112.50, 756.80, 1092.77]	[27, 37, 24, 16, 23]
	FreeDyG	[1019.91, 871.21, 1061.15, 1070.41, 868.03]	[17, 13, 18, 18, 13]
UN Trade	L-STEP	[2922.14, 2857.13, 2450.84, 2593.40, 2740.26]	[21, 21, 18, 18, 19]
	DyGFormer	[12847.83, 21167.01, 20380.42, 9901.51, 39374.45]	[33, 55, 53, 25, 95]
	FreeDyG	-	-

We present the runtime comparison between L-STEP and DyGFormer (Yu et al., 2023), FreeDyG (Tian et al., 2024), recent SOTA methods, on *US Legis* and *UN Trade* datasets, in Table 11. As shown in Table 11, our running time is lower than SOTAs in terms of convergence time.

H.4. Empirical results for ablation study

Next, we conduct an ablation study to examine the ability of the learnable positional encoding in the link prediction task.

Specifically, we consider the following cases: (1) only leveraging LPE to make predictions (i.e., we omit node/edge features and only employ positional encoding learned by LPE to obtain link predictions); (2) omitting LPE module (i.e., only relying on node and link features).

First, we provide the performance comparison between L-STEP and only using LPE module (denoted as “Only LPE”) to obtain link predictions under transductive and inductive settings with random negative sampling strategy. As shown in Table 12, on most datasets, the performance obtained by only leveraging LPE is already competitive, which suggests the positional encoding is informative enough to support downstream tasks. Also, we can observe that LPE positional encodings can collaborate well with node and edge features to boost performance.

Table 12. Comparison between only LPE and L-STEP with random negative sampling strategy.

Dataset	Transductive setting				Inductive setting			
	AP		ROC-AUC		AP		ROC-AUC	
	L-STEP	Only LPE	L-STEP	Only LPE	L-STEP	Only LPE	L-STEP	Only LPE
Wikipedia	99.34 ± 0.04	99.07 ± 0.03	99.48 ± 0.03	99.42 ± 0.03	99.15 ± 0.04	98.77 ± 0.05	99.30 ± 0.03	98.99 ± 0.03
Reddit	99.37 ± 0.04	98.67 ± 0.07	99.49 ± 0.03	99.13 ± 0.05	98.02 ± 0.09	95.44 ± 0.29	98.49 ± 0.06	96.71 ± 0.16
MOOC	86.94 ± 0.34	81.55 ± 0.53	89.28 ± 0.28	83.04 ± 0.44	88.49 ± 0.24	80.04 ± 0.40	90.63 ± 0.21	81.70 ± 0.39
Lastfm	96.06 ± 0.30	92.84 ± 0.54	97.52 ± 0.17	94.43 ± 0.38	96.25 ± 0.43	94.27 ± 0.36	97.66 ± 0.21	96.22 ± 0.22
Enron	93.96 ± 0.36	93.82 ± 0.44	95.98 ± 0.23	95.95 ± 0.31	89.17 ± 0.88	89.15 ± 1.32	92.30 ± 0.57	92.33 ± 0.79
Social Evo.	92.22 ± 0.25	91.56 ± 0.79	94.33 ± 0.21	93.76 ± 0.63	91.71 ± 0.32	90.42 ± 1.68	94.09 ± 0.24	93.28 ± 0.97
UCI	96.67 ± 0.47	96.83 ± 0.19	97.62 ± 0.23	97.89 ± 0.10	94.60 ± 0.41	94.60 ± 0.46	95.88 ± 0.17	96.17 ± 0.22
Flights	98.94 ± 0.10	99.10 ± 0.03	99.38 ± 0.04	99.43 ± 0.06	97.43 ± 0.15	97.81 ± 0.25	98.46 ± 0.07	98.62 ± 0.11
Can. Parl.	98.24 ± 0.11	98.41 ± 0.06	98.97 ± 0.06	99.03 ± 0.03	92.25 ± 0.24	92.13 ± 0.24	95.06 ± 0.11	95.09 ± 0.07
US Legis.	76.74 ± 0.60	77.36 ± 0.26	83.89 ± 0.43	84.36 ± 0.20	61.98 ± 1.31	63.47 ± 0.63	66.18 ± 1.19	66.75 ± 0.57
UN Trade	75.84 ± 2.08	78.46 ± 0.97	83.17 ± 1.28	77.81 ± 1.78	76.80 ± 2.01	84.85 ± 0.89	83.95 ± 1.76	84.89 ± 1.39
UN Vote	73.40 ± 0.03	70.99 ± 0.11	79.59 ± 0.02	76.67 ± 0.09	75.09 ± 0.34	70.01 ± 0.69	82.01 ± 0.21	77.36 ± 0.51
Contact	98.16 ± 0.09	97.73 ± 0.04	98.72 ± 0.06	98.40 ± 0.03	97.25 ± 0.07	96.38 ± 0.09	97.99 ± 0.07	97.37 ± 0.07

Second, we present the comparison between L-STEP and only using node/edge features, i.e., omitting the LPE module from L-STEP (denoted as “W/o LPE”). As shown in Table 13, L-STEP performs the best on all datasets, further suggesting that performance would be negatively affected without employing LPE.

Table 13. Comparison between not using LPE and L-STEP with random negative sampling strategy.

Dataset	Transductive setting				Inductive setting			
	AP		ROC-AUC		AP		ROC-AUC	
	L-STEP	W/o LPE	L-STEP	W/o LPE	L-STEP	W/o LPE	L-STEP	W/o LPE
Wikipedia	99.34 ± 0.04	96.52 ± 0.06	99.48 ± 0.03	96.15 ± 0.08	99.15 ± 0.04	96.11 ± 0.09	99.30 ± 0.03	95.64 ± 0.11
Reddit	99.37 ± 0.04	97.07 ± 0.08	99.49 ± 0.03	96.96 ± 0.07	98.02 ± 0.09	95.10 ± 0.06	98.49 ± 0.06	95.02 ± 0.06
MOOC	86.94 ± 0.34	81.89 ± 0.32	89.28 ± 0.28	83.24 ± 0.29	88.49 ± 0.24	80.65 ± 0.28	90.63 ± 0.21	82.19 ± 0.26
LastFM	96.06 ± 0.30	74.63 ± 0.41	97.52 ± 0.17	73.48 ± 0.40	96.25 ± 0.43	82.08 ± 0.46	97.66 ± 0.21	80.74 ± 0.37
Enron	93.96 ± 0.36	82.49 ± 0.85	95.98 ± 0.23	84.18 ± 0.53	89.17 ± 0.88	76.14 ± 0.82	92.30 ± 0.57	76.63 ± 0.65
Social Evo.	92.22 ± 0.25	91.17 ± 0.21	94.33 ± 0.21	93.30 ± 0.17	91.71 ± 0.32	89.38 ± 0.30	94.09 ± 0.24	91.85 ± 0.24
UCI	96.67 ± 0.47	91.79 ± 4.08	97.62 ± 0.23	90.51 ± 3.45	94.60 ± 0.41	89.58 ± 3.41	95.88 ± 0.17	87.88 ± 3.10
Flights	98.94 ± 0.10	90.91 ± 0.02	99.38 ± 0.04	91.03 ± 0.01	97.43 ± 0.15	82.72 ± 0.05	98.46 ± 0.07	82.05 ± 0.04
Can. Parl.	98.24 ± 0.11	67.19 ± 1.39	98.97 ± 0.06	76.51 ± 1.37	92.25 ± 0.24	52.47 ± 0.88	95.06 ± 0.11	50.99 ± 1.72
US Legis.	76.74 ± 0.60	60.98 ± 5.43	83.89 ± 0.43	65.76 ± 7.15	61.98 ± 1.31	52.59 ± 2.13	66.18 ± 1.19	53.75 ± 1.07
UN Trade	75.84 ± 2.08	62.04 ± 0.72	83.17 ± 1.28	65.91 ± 0.62	76.80 ± 2.01	61.84 ± 0.53	83.95 ± 1.76	63.54 ± 0.54
UN Vote	73.40 ± 0.03	52.29 ± 0.44	79.59 ± 0.02	52.55 ± 0.61	75.09 ± 0.34	50.74 ± 0.82	82.01 ± 0.21	49.39 ± 0.75
Contact	98.16 ± 0.09	91.39 ± 0.05	98.72 ± 0.06	93.57 ± 0.04	97.25 ± 0.07	89.71 ± 0.05	97.99 ± 0.07	92.24 ± 0.05

Combining the results from Tables 12 and 13, we discern that (1) in most cases, the full design of L-STEP is the best and removing any component can lead to suboptimal results, (2) in a few cases, only using LPE can also perform competitively,

which suggests that the Learnable Positional Encoding module in our L-STEP is relatively dominating than input node and edge features.

H.5. Empirical results for parameter analysis

H.5.1. PARAMETER ANALYSIS FOR t_{gap}

Here, we examine how varying the values of t_{gap} affects the performance of L-STEP under both *transductive* and *inductive* settings with random negative sampling.

Table 14. AP and ROC-AUC with various values of t_{gap} under *transductive setting* and random negative sampling.

Dataset	Metric	$t_{gap} = 10$	$t_{gap} = 50$	$t_{gap} = 1000$	$t_{gap} = 2000$
Enron	AP	93.77 ± 0.28	93.82 ± 0.11	93.96 ± 0.36	93.70 ± 0.43
	ROC-AUC	95.83 ± 0.14	95.86 ± 0.07	95.98 ± 0.23	95.83 ± 0.21
UN Vote	AP	73.40 ± 0.03	73.38 ± 0.07	73.39 ± 0.08	73.28 ± 0.33
	ROC-AUC	79.59 ± 0.02	79.54 ± 0.08	79.57 ± 0.06	79.53 ± 0.22

Table 15. AP and ROC-AUC with various values of t_{gap} under *inductive setting* and random negative sampling.

Dataset	Metric	$t_{gap} = 10$	$t_{gap} = 50$	$t_{gap} = 1000$	$t_{gap} = 2000$
Enron	AP	88.43 ± 0.52	88.76 ± 0.62	89.17 ± 0.88	88.41 ± 0.21
	ROC-AUC	91.83 ± 0.37	92.02 ± 0.37	92.30 ± 0.57	91.86 ± 0.24
Un Vote	AP	75.09 ± 0.34	75.01 ± 0.29	74.92 ± 0.48	74.73 ± 0.44
	ROC-AUC	82.01 ± 0.21	79.54 ± 0.08	81.85 ± 0.32	81.77 ± 0.16

We conduct the parameter analysis on two datasets: *Enron* and *UN Vote*, and adjusting t_{gap} to different values: $\{10, 50, 1000, 2000\}$. Due to the page limit, we report the results in Table 14 for *transductive* and Table 15 for *inductive* setting, respectively. The best results are emphasized with **bold**. Firstly, it is worth noting that the ratio #Links / (Unique Steps) of *UN Vote* is much larger than that of *Enron*, since *UN Vote* has significantly more links and fewer number of unique steps than *Enron*, as stated in Table 4, implying *UN Vote* is much denser than *Enron*. From Tables 14 and 15, we can see that the best performance on *UN Vote* is derived from $t_{gap} = 10$, which is the smallest value, while the best result on *Enron* is obtained by a much larger value of t_{gap} , which is 1000. These findings indicate that a small t_{gap} value functions effectively for dense graphs, whereas a larger t_{gap} value is suited for sparse graphs. The detailed configurations are reported in Table 22 further suggest this finding, as the t_{gap} values associated with the sparse dataset (*Wikipedia*, *Reddit*, *MOOC*, *LastFM*, *Enron*, *Social Evo.*, *UCI*) mostly are in the range of $[1000, 2000]$, while the t_{gap} values employed for *Can. Parl.*, *US Legis.*, *UN Trade*, *UN Vote*, and *Contact* are only less than or equal to 10.

We report the results for the parameter analysis regarding how the performance change with different values of t_{gap} Tables 14 and 15.

H.5.2. PARAMETER ANALYSIS FOR K

Next, we conduct parameter analysis for the neighborhood size, K , with random negative sampling, and report the results under *transductive* and *inductive* settings in Table 16 and Table 17, respectively.

Table 16. AP and ROC-AUC with various values of K under *transductive setting* and random negative sampling.

Dataset	Metric	$K = 5$	$K = 20$	$K = 50$	$K = 100$
Enron	AP	93.32 ± 0.25	93.96 ± 0.36	93.53 ± 0.51	93.22 ± 0.38
	ROC-AUC	95.50 ± 0.16	95.98 ± 0.23	95.71 ± 0.31	95.48 ± 0.19
UN Vote	AP	72.08 ± 0.73	73.40 ± 0.03	73.49 ± 0.10	73.31 ± 0.13
	ROC-AUC	78.92 ± 0.33	79.59 ± 0.02	79.69 ± 0.10	79.58 ± 0.08

According to the tables, we can discern that: (1) in a few cases, increasing K can slightly increase the performance, but it is prone to cost more computational complexity; (2) in most cases, increasing K does not add much to the performance, which

Table 17. AP and ROC-AUC with various values of K under *inductive setting* and random negative sampling.

Dataset	Metric	$K = 5$	$K = 20$	$K = 50$	$K = 100$
Enron	AP	89.72 ± 0.50	94.60 ± 0.41	88.99 ± 1.04	88.29 ± 0.58
	ROC-AUC	92.65 ± 0.33	95.88 ± 0.17	92.11 ± 0.65	91.64 ± 0.36
UN Vote	AP	77.76 ± 0.49	75.09 ± 0.34	75.10 ± 0.34	73.92 ± 0.75
	ROC-AUC	83.73 ± 0.23	83.95 ± 1.76	81.96 ± 0.25	80.94 ± 0.82

suggests that close neighbors have already had enough information to support downstream tasks.

H.5.3. PARAMETER ANALYSIS FOR L

Here, we report the parameter analysis for L as follows on Can. Parl. dataset in Table 18.

 Table 18. AP and ROC-AUC with various values of L under *transductive setting* and *inductive setting* with random negative sampling.

Dataset		Transductive AP	Transductive ROC-AUC	Inductive AP	Inductive ROC-AUC
Can. Parl	$L = 20$	98.24 ± 0.11	98.97 ± 0.06	92.25 ± 0.24	95.06 ± 0.11
	$L = 50$	98.26 ± 0.06	98.94 ± 0.03	92.15 ± 0.34	95.11 ± 0.17
	$L = 100$	98.11 ± 0.21	98.85 ± 0.11	92.16 ± 0.98	95.25 ± 0.56
	$L = 200$	97.04 ± 0.22	98.37 ± 0.09	91.96 ± 0.59	95.19 ± 0.38

From Table 18, we can observe that our proposed L-STEP just relies on looking back a few historical information to make the correct information, as L increases, the performance can be downgraded, and the best performance exists between 20 and 50, which discovery demonstrates that the near past history plays a more important role in the current decision making than the long past history.

H.5.4. PARAMETER ANALYSIS FOR α_{neg}

We present the parameter analysis for α_{neg} on Can. Parl. dataset in Table 19.

 Table 19. AP and ROC-AUC with various values of α_{neg} under *transductive setting* and *inductive setting* with random negative sampling.

Dataset		Transductive AP	Transductive ROC-AUC	Inductive AP	Inductive ROC-AUC
Can. Parl	$\alpha_{neg} = 0.05$	98.26 ± 0.13	98.98 ± 0.05	92.24 ± 0.09	95.09 ± 0.11
	$\alpha_{neg} = 0.1$	98.28 ± 0.09	98.98 ± 0.05	92.35 ± 0.21	95.09 ± 0.09
	$\alpha_{neg} = 0.3$	98.24 ± 0.11	98.97 ± 0.06	92.25 ± 0.24	95.06 ± 0.11
	$\alpha_{neg} = 0.5$	98.28 ± 0.13	98.97 ± 0.05	91.48 ± 0.23	94.75 ± 0.16
	$\alpha_{neg} = 0.95$	98.24 ± 0.18	98.95 ± 0.09	91.09 ± 0.49	94.53 ± 0.32

In general, Table 19 shows (1) our proposed method L-STEP is robust towards different choices of α_{neg} , and (2) usually a smaller weight of negative pairs can help the model concentrate more on the positive pairs and boost the performance.

H.5.5. PARAMETER ANALYSIS FOR α_{pe}

We present the parameter analysis for α_{neg} on Enron dataset in Table 20.

α_{neg} stands for the weight of the loss function of learnable positional encoding. As shown in the Table 20, we can observe that (1) our L-STEP is robust towards different choices of α_{pe} , and (2) a considerable weight, e.g., 0.5, is optimal, too large or too small weight can induce suboptimal results.

Table 20. AP and ROC-AUC with various values of α_{pe} under *transductive setting* and *inductive setting* with random negative sampling.

Dataset		Transductive AP	Transductive ROC-AUC	Inductive AP	Inductive ROC-AUC
Enron	$\alpha_{pe} = 0.05$	92.81 ± 0.82	95.32 ± 0.38	86.49 ± 1.52	90.91 ± 0.61
	$\alpha_{pe} = 0.3$	93.96 ± 0.36	95.98 ± 0.23	89.17 ± 0.88	92.30 ± 0.57
	$\alpha_{pe} = 0.5$	93.94 ± 0.10	95.90 ± 0.06	88.92 ± 0.39	92.12 ± 0.22
	$\alpha_{pe} = 0.95$	94.00 ± 0.28	95.92 ± 0.17	88.67 ± 0.34	91.91 ± 0.30

H.6. Different positional encoding initialization

In this section, we demonstrate that L-STEP can be equipped with different positional encoding method, other than Laplacian PE. Specifically, our work aims to introduce a general framework on how to approximate positional encodings at a current time solely based on information from previous timestamps to outperform in temporal link prediction task, and we do not want to constraint the type of positional encodings. In Table 21, we provide the comparison between initializing the positional encodings at initial timestamp with Laplacian PE and Random Walk PE (Dwivedi et al., 2022) under two settings, *transductive* and *inductive*, with random negative sampling.

 Table 21. Comparison in Positional Encoding initialization with Laplacian and Random Walk Positional Encoding under *transductive* and *inductive* settings with random negative sampling.

Dataset	Positional Encoding	Transductive AP	Transductive ROC-AUC	Inductive AP	Inductive ROC-AUC
Enron	Random Walk PE	93.79 ± 0.67	95.88 ± 0.40	89.11 ± 0.83	92.43 ± 0.64
	Laplacian PE	93.96 ± 0.36	95.98 ± 0.23	89.17 ± 0.88	92.30 ± 0.57

Based on Table 21, we can discern that (1) L-STEP can handle different positional encodings and perform robustly; (2) different positional encodings bring slightly different performances and finding a powerful positional encoding is a promising future direction to trigger more interesting works.

I. Reproducibility

I.1. Different Negative Sampling Strategies (NSS)

In brief, random NSS samples possible node pairs uniformly at random, historical NSS samples negative edges from the edges occurring in past timestamps but are absent in the present time, and inductive NSS samples edges that are unseen during the training time. We refer readers to (Poursafaei et al., 2022) for more details regarding these three sampling strategies.

Configuration and implementation details. Following the training procedure of (Yu et al., 2023), L-STEP is trained with a maximum of 200 epochs, and we employ early stopping with patience 10 during the training process. We leverage the Adam optimizer with learning rate of 0.0001. For a more detailed description of the model’s implementation, computational resources, and configurations of hyper-parameters over all 13 datasets, we refer readers to Appendix I.2, I.3.

Across Table 1, Table 5, Table 6, Table 7, Table 8, and Table 9, the model with the best performance, in terms of metric scores AP and AUC-ROC, on the validation set will be selected for testing. We run L-STEP 5 times with different random seeds from 0 to 4 and report the average metric score. Results from all other baselines are also obtained in the same manner (Yu et al., 2023).

I.2. Model Configurations, Hyper-parameters, and Computing Resources

We first report the configuration and hyper-parameters that are unchanged for all 13 datasets:

- Dimension of time encoding: $d_T = 100$.
- Dimension of node encoding: $d_N = 172$.
- Dimension of edge encoding: $d_E = 172$.

- Dimension of positional encoding: $d_P = 172$ (only for *Social Evo.*, $d_P = 72$).
- Hyper-parameters for time encoding function: $\alpha = 10, \beta = 10$.
- Weight of negative samples in positional encoding loss: $\alpha_{neg} = 0.3$.
- Weight of positional encoding loss in objective loss function of L-STEP $\alpha_{pe} = 0.5$.

Table 22. Configurations of the number of recent snapshots for computing LPE, time window for node features, recent interactions for edge features, and batch size over 13 datasets

Dataset	L	t_{gap}	K	Batch size
Wikipedia	100	1000	15	128
Reddit	100	1000	20	200
MOOC	100	2000	30	128
Lastfm	100	1000	30	128
Enron	100	1000	20	64
Social Evo.	100	1000	20	128
UCI	200	500	30	100
Flights	100	1000	30	128
Can. Parl.	20	2	10	64
US Legis.	50	2	10	200
UN Trade	200	6	30	200
UN Vote	100	10	20	128
Contact	200	10	20	128

The experiments are coded by Python and are performed on a Linux machine with a single NVIDIA Tesla V100 32GB GPU. The code will be released upon paper's publication.

Next, for reproducibility, we present detailed hyper-parameters across 13 datasets in Table 22.

I.3. Running L-STEP on Continuous Time Dynamic Graphs

The definition of discrete time and continuous time dynamic graphs can be referred to the survey paper (Kazemi et al., 2020), where

- Continuous Time Dynamic Graph (CTDG) is represented as $((v_2, v_5), t_1), ((v_1, v_2), t_2), \dots$, as shown in its Example 2;
- Discrete Time Dynamic Graph (DTDG) is represented as a set of G_1, G_2, \dots, G_T , where $G_t = (V_t, E_t)$ is the graph at snapshot t , V_t is the set of nodes in G_t , and E_t is the set of edges in G_t .

In this viewpoint, our method is designed for discrete time. However, we can see a clear transformation between CTDG and DTDG: if we aggregate edges that happen at the same timestamp t into a set, then it is the graph snapshot G_t . This is not invented by us, a similar example can be seen in Example 3 of the survey paper (Kazemi et al., 2020).

Because the introduction and theoretical derivation on the snapshot level are much easier to understand by people, and using “a set of continuous-time edges” every time when we do theoretical derivation and illustration can be wordy and hurt the presentation. Since graph snapshot and relevant concepts are already existing in the community and cover the meaning, then we choose to follow them.

Then, in this section, we elaborate how L-STEP can be evaluated on Continuous Time Dynamic Graphs. Firstly, we explain the data batching procedure for Continuous Time Dynamic Graphs as follows. Suppose we are given a CTDG with T interactions, $G = \{u_i, v_i, t_i\}_{i=1}^T$, where $t_1 \leq \dots \leq t_T$ and (u_i, v_i, t_i) denotes the link occurrence between u_i, v_i at time t_i . Let the batch size be B , then a data batch would be B consecutive interactions from $\{u_i, v_i, t_i\}_{i=1}^T$. Specifically, suppose $T = B \cdot K$ (for some K), then our 1st data batch would be the first B link occurrences of G : $\{u_i, v_i, t_i\}_{i=1}^B$. The 2nd data batch would be the next B consecutive interactions, $\{u_i, v_i, t_i\}_{i=B+1}^{2B}$, and so on. In this way, now we obtain K data

batches. Moreover, as a batch is a stream of B events, so we can regard a data batch as a mini temporal graph with B link occurrences. This data batching technique is also employed by other baselines.

Next, we explain the evaluation process of L-STEP. Consider an arbitrary data batch $\{u_j, v_j, \tau_j\}_{j=1}^B$. If this is the first data batch, then we first extract all links occurrence (without the timestamps), $\{u_j, v_j\}_{j=1}^B$, transform this to a static graph, and obtain the Laplacian eigenvectors of this graph to initialize the positional encoding for each node. If a node of G does not belong to this graph then we initialize the positional encoding of that node with a zero vector. Here, let the "initial" positional encoding for node u as \mathbf{p}_u^1 . As we advance to the 2nd data batch, we first compute the approximated positional encoding for all nodes, $\tilde{\mathbf{p}}^2$, as stated in Eq. 1, 2, based on \mathbf{p}^1 . In this way, following Eq. 1, 2, we can iteratively compute the approximate positional encoding for the k -th batch, $\tilde{\mathbf{p}}^k$, based on the sequence of previous L positional encodings, $\mathbf{p}^{k-L}, \dots, \mathbf{p}^{k-1}$, corresponding to previous L data batches.

For our current data batch (suppose this is the k -th batch), $\{u_j, v_j, \tau_j\}_{j=1}^B$, we now describe how to obtain the link predictions. For each query (u_j, v_j, τ_j) , we obtain $\mathbf{h}_{u_j, N||E}^{\tau_j}$, as defined in Eq. 6, and $\mathbf{h}_{u_j, P}^{\tau_j}$, as stated in Eq. 8, using $\tilde{\mathbf{p}}_u^k$. Finally, we combine $\mathbf{h}_{u_j, N||E}^{\tau_j}, \mathbf{h}_{u_j, P}^{\tau_j}$ to obtain the temporal representation at time τ_j for u_j , $\mathbf{h}_{u_j}^{\tau_j}$. Similarly, we obtain the temporal representation for v_j , $\mathbf{h}_{v_j}^{\tau_j}$. Finally, following Eq. 10, we obtain the link prediction for (u_j, v_j, τ_j) using $\mathbf{h}_{u_j}^{\tau_j}, \mathbf{h}_{v_j}^{\tau_j}$.

In summary, we ideally would want to obtain the positional encoding of a node u , $\mathbf{p}_u^t \in \mathbb{R}^{d_P}$ for every temporal graph snapshot. However, for training efficiency, our implementation computes the positional encoding for the graph corresponding to a data batch.