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Abstract
In the past several decades, much attention has been focused on the effects of dispersal
on total populations of species. In Zhang (EL 20:1118–1128, 2017), a rigorous bio-
logical experiment was performed to confirm the mathematical conclusion: Dispersal
tends to enhance populations under a suitable hypothesis. In addition, mathematical
models keeping track of resource dynamics in population growth were also proposed
in Zhang (EL 20:1118–1128, 2017) to understand this remarkable phenomenon. In
these models, the self-regulated quantity “loss rate" of the population seems, in gen-
eral, difficult to measure experimentally. Our main goal in this paper is to study the
effects of relations between the loss rate and the resources, the role of dispersal, and
the impact of their interactions on total populations. We compare the total popula-
tion for small and large diffusion under various correlations between loss rate and the
resources. Biological evidence seems to support some specific correlations between
the loss rate and the resources.
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1 Introduction

Total population plays a vital role in theoretical and applied ecology. Its understanding
improves the schemes of species conservation and control of invasive species. As an
essential strategy for populations to adapt to spatially and temporally varying envi-
ronments, dispersal or diffusion noticeably influences the population’s abundance or
even survival. It is well-known that the carrying capacity in a constant environment
determines the total population. However, in spatially heterogeneous environments,
the total population is far more complex than the total carrying capacity. Numerous
theories have been developed for both discrete and continuous models.

Discrete models go back at least to Freedman andWaltman (1977) and Holt (1985),
in which a two-patch logistic model of a single population was studied. We refer
interested readers to DeAngelis and Zhang (2014), Elbetch et al. (2021), and Gao and
Lou (2022) for a more recent account of the development in this direction.

The classical logistic equation with diffusion has been traditionally used for single
species as a continuous model, and it was first observed by Lou (2006) that total
population always exceeds total carrying capacity in a heterogeneous environment
when the intrinsic growth rate is proportional to the carrying capacity. This remarkable
result was studied by DeAngelis et al. (2016) for a more general situation. In the case
of small diffusion, they extended the work of Lou (2006) and showed that when the
intrinsic growth rate of the population is positively correlated to the habitat’s carrying
capacity, dispersal benefits the species and its total population at equilibrium surpasses
the (total) carrying capacities. On the contrary, assuming that the intrinsic growth rate
is constant, i.e., independent of the local carrying capacity, Guo et al. (2020a) showed
that diffusion harms the population, i.e., at equilibrium, the heterogeneous distribution
of resources supports a population strictly smaller than the total carrying capacity. In
addition to its own biological significance, the total population is also essential in
analyzing the dynamics of the competition models of two species with diffusions. We
refer interested readers to Cantrell and Cosner (1991, 1998), Guo et al. (2020a, b),
He and Ni (2013a, b, 2016a, b, 2017), Lam and Ni (2012), Lou (2006, 2008) and
references therein for further details.

The mathematical results above seem to raise an interesting question: In reality,
does dispersal help the total population to surpass carrying capacity? Indeed, rigor-
ous empirical validation was rare until the recent works of Zhang et al. (2017). Zhang
et al. (2017) experimentally tested and confirmed the mathematical results of how
dispersal, i.e., diffusion, influences the total population of a single species under a
spatially heterogeneous environment. Zhang et al. (2017) conducted laboratory exper-
iments of budding yeast, where the yeast and the amino acid tryptophan serve as the
consumer and the resource, respectively. They set up a single “population" composed
of a single row of 12 wells in a plate, and each well had either a heterogeneous or
homogeneous distribution of resources (tryptophan). To control the diffusion, they
transferred 3% of the volume to adjacent positions for each well using the liquid
handling robot. Investigating the effects of the growth rate of the yeast in each hetero-
geneous and homogeneous environment, they further applied varying concentrations
of the macrolide eukaryotic antibiotic cycloheximide, which is a translation inhibitor
interfacing the growth rate of the yeast.
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Their experiments confirmed that diffusion increases the total population under
certain conditions, as predicted by logistic models. Moreover, to include resource
dynamics in their experiments, which reflects a more accurate and realistic situation,
new mathematical models were proposed in Zhang et al. (2017). However, as some of
the parameters in their models, such as the loss rate, seem delicate and perhaps even
difficult to measure experimentally, they also conducted numerical simulations to
analyze these models for various value ranges of the loss rate. Indeed, their simulation
results seemed to indicate that large diffusion might damage the total population
in heterogeneous environments when the loss rate and resource inputs have certain
relations. This raises an interesting point and seems to warrant further mathematical
studies and clarifications.

One of the model proposed in Zhang et al. (2017) (see Model I therein) was

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Zt = d�Z + Z(
r(x)N
k+N − g(x)Z) for x ∈ �, t > 0,

Nt = NR(x) − r(x)N Z
γ (k+N )

for x ∈ �, t > 0,

∂ν Z = 0 for x ∈ ∂�, t > 0,

Z(x, 0) = Z0(x), N (x, 0) = N0(x) for x ∈ �.

(1.1)

Here, Z(x, t) and N (x, t) are the densities of consumer population and resource,
respectively, the constant d denotes the diffusion rate of the consumer, r(x) is the
intrinsic growth rate of the consumer, k is the half-saturation rate, g(x) is the loss rate
due to self-regulation of the consumer population, NR(x) is the resource input, γ is
the yield rate, and �, the habitat, is a bounded smooth domain in Euclidean space RN

with ν denotes its unit outward normal.
Throughout this paper we assume that d , k and γ are positive constants, and r(x),

g(x) and NR(x) are (strictly) positive, smooth functions on �̄ (= �∪∂�)where� is
a bounded domain in Euclidean space RN , with smooth boundary ∂�, while Z0 and
N0 are non-negative, not identically zero and continuous functions on �̄.

The system (1.1) describes a diffusing population in an environment where the
resources are exploited and renewed. It turns out that the yield rate γ in the system
(1.1) is very important, as the work He et al. (2019, 2023) showed. Following (He
et al. 2019, 2023), we define

γ ∗(d) := inf
{
γ > 0

∣
∣
∣ inf

�
(NR − 1

γ
rθd) ≥ 0

}
= sup

�

rθd

NR
, (1.2)

and

γ∗(d) := sup
{
γ > 0

∣
∣
∣ sup

�

(NR − 1

γ
rw̃d) < 0

}
= sup

{
γ > 0

∣
∣
∣ sup

�

γ NR

rw̃d
< 1

}
,

(1.3)

123



20 Page 4 of 27 X. He et al.

where θd is the positive solution of

{
d�θ + θ(r − gθ) = 0 for x ∈ �,

∂νθ = 0 for x ∈ ∂�,
(1.4)

and w̃d is the positive solution of

{
d�w̃ + γ NR − gw̃2 = 0 for x ∈ �,

∂νw̃ = 0 for x ∈ ∂�.
(1.5)

It is well-known that (1.4) has a unique positive solution θd (cf. Propositions 3.2
and 3.3 in Cantrell and Cosner (2003)). As for the existence and uniqueness of w̃d in
(1.5), see the proofs of Theorem 3 and Corollary 2 in He et al. (2019).

Our starting point is the following fundamental result due to He et al. (2019, 2023).

Theorem 1.1 (He et al. (2023), Theorem B, Theorem 1.3) Suppose that r(x), NR(x)

and g(x) are positive and Hölder continuous in �̄, then:

(i) If γ ≥ γ ∗(d), then resource-unlimited positive steady state (θd ,∞) is globally
asymptotically stable for system (1.1);

(ii) If γ < γ∗(d), then system (1.1) has a unique resource-limited positive steady state(
w̃d ,

γ k NR
rw̃d−γ NR

)
, which is globally asymptotically stable.

Here, as t → ∞, the convergence of Z(·, t) is in the C1(�̄)-norm in both Parts (i)
and (ii) and the convergence of N (·, t) is uniform on �̄ in Part (i) and is pointwise on
� in Part (ii).

The above results concluded that if the yield rate γ ≥ γ ∗(d), the (θd ,∞) is the
unique positive steady state of the system (1.1), and it is globally asymptotically stable.
Here θd is the positive solution to the well-known logistic equation (1.4), which has
been studied by many authors in the last few decades; see, e.g. Cantrell and Cosner
(1991, 1998); DeAngelis et al. (2016); Guo et al. (2020a, b); Hastings (1983); He and
Ni (2013a, b, 2016a, b, 2017); Lam and Ni (2012); Li and Lou (2019); Lou (2006,
2008).

If the yield rate γ < γ∗(d), then
(
w̃d ,

γ k NR
rw̃d−γ NR

)
is the unique positive steady state

of the system (1.1) and it is globally asymptotically stable, where w̃d is the positive
solution of (1.5). He et al. (2019) proved that the total population

∫

�
w̃d dx is strictly

increasing in d for d > 0 if NR is nonconstant and g is a constant. In addition, Yao
and Li (2023) proved that if NR/g is nonconstant, max

�̄
w̃d is strictly decreasing and

min
�̄

w̃d is strictly increasing in d for d > 0.

Applying the maximum principle (cf. Lou and Ni (1999) Lemma 2.1) to (1.5),
we have g(x0)w̃2

d(x0) ≥ γ NR(x0), where w̃d(x0) = min
�̄

w̃d , x0 ∈ �̄. Thus, for all

d > 0, w̃d ≥ √
γ

√

min
�̄

NR
g .
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Denoting

γ0 := min
�̄

r2

N 2
R

min
�̄

NR

g
> 0, (1.6)

then by (1.3), for all d > 0, we have

γ0 ≤ γ∗(d), (1.7)

which implies that for all d > 0, γ∗(d) has a positive lower bound γ0 > 0.
The primary purpose of this paper is to investigate the properties of the steady state

of (1.1); or, more precisely, the positive solution of (1.5) for the case γ < γ0 ≤ γ∗(d),

for all d > 0, as Theorem 1.1 reduces the steady states of (1.1) to the solution of (1.5)
when γ is small.

Denoting

R(x) := γ NR(x), (1.8)

we rewrite (1.5) as follows for convenience:

{
d�u + R(x) − g(x)u2 = 0 for x ∈ �,

∂νu = 0 for x ∈ ∂�.
(1.9)

Denote the unique positive solution of (1.9) by ud with diffusion rate d.
As we remarked earlier, the yield rate γ is an important parameter: when γ is

large, the consumer Z(·, t) eventually converges to the steady state θd of the classical
logistic equation (1.4), while the resource tends to ∞ (which seems a bit unrealistic).
On the other hand, when γ is small, the consumer Z(·, t) always converges to the
unique steady state w̃d of (1.5) (or, ud of (1.9)), while the resource also reaches an
equilibrium.

It seems obvious that the (effective) resource input R is crucial - especially in the
case of small γ ; in fact, in this case, the loss rate g also turns out to be important. In
this paper we will focus on the properties of the total population

∫

�
ud dx , in terms of

the loss rate g(x) and the resources input R(x).
InHe et al. (2019), it was already established that if g ≡ constant and R �≡ constant,

then the total population
∫

�
ud dx is strictly increasing in d > 0. In Sect. 2 below, we

shall prove that, on the contrary, if R ≡ constant, and g �≡ constant, then
∫

�
ud dx is

strictly decreasing in d > 0. Motivated by these facts, we shall systematically study
the total population for more general cases, in terms of the loss rate g and the resources
input R.

It is not difficult to see that,

lim
d→0+

∫

�

ud dx =
∫

�

√
R/g dx .
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(See Theorem 2.2 below for a more detailed statement.) On the other hand, denoting,
f̄ = 1

|�|
∫

�
f (x) dx for continuous function f on �̄, it is standard to show that,

lim
d→∞

∫

�

ud dx =
∫

�

√

R̄/ḡ dx .

(See Theorem 2.3 below for details.)
Therefore, as a primary step in our study, we compare these two quantities

∫

�

√
R/g dx and

∫

�

√
R̄/ḡ dx . It turns out that two more quantities

∫

�

√
R̄/g dx and∫

�

√
R/ḡ dx are playing roles in this approach, as the following inequalities (which

follow from Hölder’s inequality) indicate:

∫

�

√

R̄/g dx >

∫

�

√

R̄/ḡ dx >

∫

�

√
R/ḡ dx, (1.10)

where both R and g are nonconstants. With (1.10), we are able to formulate conditions
on R and g to compare the total populations

∫

�
ud dx for large and small dispersal

rate d. This illustrates the role of dispersals in total populations and provides rigorous
proofs for the numerical simulations in Zhang et al. (2017).

A mathematical example is included in Sect. 5 to illustrate the effects of various
correlations between R and g. We also briefly discuss the biological significance of
the correlations between R and g in Sect. 6.

The paper is organized as follows: In Sect. 2, we introduce our main results. Section
3 studies the monotone properties of the total population. We investigate the effects
of various correlations between g and R on the total population for small and large
diffusion rates in Sect. 4. To illustrate our results, we include an example in Sect. 5.
Section 6 contains further remarks and discussions.

2 Main results

In He et al. (2019), the authors proved that the total population
∫

�
ud dx , where ud is

the unique positive solution of (1.9), strictly increases in d if 0 < g ≡ constant and
0 < R �≡ constant. Our first result here shows that, on the contrary, if we have, instead,
that 0 < R ≡ constant and 0 < g �≡ constant, then

∫

�
ud dx is strictly decreasing in

d.

Theorem 2.1 Assume that 0 < R ≡ const. and 0 < g �≡ const. on �̄, then
∫

�
ud dx

strictly decreases in d.

To facilitate the comparisons of total populations for d small and large and investi-
gate the total population’s monotone properties for small diffusion, our second result
focuses on the total population

∫

�
ud dx for d > 0 small.

Theorem 2.2 Assume that g > 0 and R > 0 on �̄. Then as d → 0+,

ud → √
R/g in C(�̄) ∩ H1(�), (2.1)
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and
∫

�

ud dx =
∫

�

√
R/g dx + d

8

∫

�

1

R2g
∇(R/g) · ∇(Rg) dx + o(d). (2.2)

In particular,

(i) if ∇(R/g) · ∇(Rg) ≥ (�≡)0 in �, then the total population
∫

�
ud dx is strictly

increasing as d > 0 small;
(ii) if ∇(R/g) · ∇(Rg) ≤ (�≡)0 in �, then the total population

∫

�
ud dx is strictly

decreasing as d > 0 small.

Motivated by the work of Zhang et al. (2017), it seems reasonable to explore the
various cases of the loss rate g depending on specific correlations with the resource
input R.

Definition 1 We say two positive functions φ and ψ on �̄ are positively correlated if

φ(x1) ≥ φ(x2) ⇐⇒ ψ(x1) ≥ ψ(x2),∀x1, x2 ∈ �̄,

and two positive functions φ and ψ on �̄ are negatively correlated if

φ(x1) ≥ φ(x2) ⇐⇒ ψ(x1) ≤ ψ(x2),∀x1, x2 ∈ �̄.

It turns out that the following correlations between g and R play vital roles in the
study of the total population for both small and large dispersal:

(L1) g/R and Rg are positively correlated;
(L2) R/g and g are positively correlated.

To illustrate the roles of large and small diffusion rates, we study the behavior of
the unique positive solution ud of (1.9) for d → ∞ and compare lim

d→∞
∫

�
ud dx with

lim
d→0+

∫

�
ud dx .

Theorem 2.3 Assume that g > 0, R > 0 on �̄. Then as d → ∞,

ud →
√

R̄/ḡ in C2(�̄). (2.3)

Suppose further that R/g �≡ const., then the following statements hold for the
positive solution ud:

(i) If g and R satisfy (L1), i.e., g/R and Rg are positively correlated, then

lim
d→0+

∫

�

ud dx =
∫

�

√
R/g dx >

∫

�

√

R̄/ḡ dx = lim
d→∞

∫

�

ud dx; (2.4)

(ii) If g and R satisfy (L2), i.e., R/g and g are positively correlated, then

lim
d→0+

∫

�

ud dx =
∫

�

√
R/g dx <

∫

�

√

R̄/ḡ dx = lim
d→∞

∫

�

ud dx . (2.5)
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Fig. 1 Four disjoint intervals I1, I2, I3 and I4 defined in (2.6)

As we shall see later, the following two more relations will play roles in the com-
parison between the quantities lim

d→0+
∫

�
ud dx and lim

d→∞
∫

�
ud dx (See Theorem 2.4

for details):

(L1+) g/R and R are positively correlated;
(L1−) Rg and R are negatively correlated.

Note that relations (L1+) and (L1−) are opposite to each other in the sense that,
(L1+) implies g and R are positively correlated while (L1−) implies g and R are
negatively correlated. Moreover, if g and R satisfy (L1+) or (L1−), then g and R
satisfy relation (L1). (see Remark 4.2 for details.)

Assuming that 0 < R, g �≡ const. and R/g �≡ const., by (1.10), we can split the
interval (0,+∞) into four disjoint slots I1, I2, I3, I4 (also see Fig. 1), where

I1 :=
[ ∫

�

√

R̄/g dx,+∞
)
, I2 :=

( ∫

�

√

R̄/ḡ dx,

∫

�

√

R̄/g dx
)
,

I3 :=
( ∫

�

√
R/ḡ dx,

∫

�

√

R̄/ḡ dx
]
, I4 :=

(
0,

∫

�

√
R/ḡ dx

]
.

(2.6)

We have the following sufficient conditions to determine which interval Ii , 1 ≤ i ≤
4 the quantity lim

d→0+
∫

�
ud dx = ∫

�

√
R/g dx falls within:

Theorem 2.4 Assume 0 < R, g �≡ const. and R/g �≡ const., then:

(i) If g and R satisfy relation (L1−), i.e., Rg and R are negatively correlated, then∫

�

√
R/g dx ∈ I1;

(ii) If g and R satisfy relation (L1+), i.e., g/R and R are positively correlated,
then

∫

�

√
R/g dx ∈ I2;

(iii) If g/R and g are positively correlated, then
∫

�

√
R/g dx >

∫

�

√
R/ḡ dx.

Moreover, we assume that |�| = 1,
√

R/g is a function of g, i.e.,

√
R/g(x) = l(g(x)),∀x ∈ �, (2.7)

with l(r) > 0, r > 0. Denoting L(r) := rl2(r), if l is a concave function and L
is a convex function on [min

�̄
g,max

�̄
g], then

∫

�

√
R/g dx ∈ I3;

(iv) If R/g2 and g are positively correlated, then
∫

�

√
R/g dx ∈ I4.

To reveal that
∫

�

√
R/g dx can fall within each interval Ii under specific corre-

lations between g and R, and to illustrate Theorem 2.4, we consider a special case
g = Rα , α ∈ R and assume that R is a positive, nonconstant, smooth function on �̄

with |�| = 1 (See Sect. 5 for details).
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Theorem 2.1 and Theorem 2.2 will be proved in Sect. 3. Section 4 will establish
Theorems 2.3 and 2.4. Section 5 will illustrate Theorem 2.4 with the example g = Rα .

3 Monotone properties of the total population

In this section, we first investigate the monotone properties of the total population for
a spatially homogeneous environment and prove Theorem 2.1. Second, we study the
behaviors of the positive solution ud and the monotone properties of total population∫

�
ud dx as d → 0+, where ud is the unique positive solution of (1.9).
Theorem 2.1 follows directly from Proposition 3.1, which is a more general result.

Proposition 3.1 Assume R, g > 0, R/g �≡ const. on �̄, then for the positive solution
ud of (1.9),

∫

�
Rud dx is strictly decreasing in d > 0.

Proof Denoting ∂ud/∂d by u′
d and differentiating both sides of (1.9) w.r.t. d, we

obtain:
{

d�u′
d + �ud − 2gudu′

d = 0 for x ∈ �,

∂νu′
d = 0 for x ∈ ∂�.

(3.1)

Multiply (1.9) with 2u′
d and (3.1) with ud , then subtract them to get

2d�udu′
d + 2Ru′

d − d�u′
dud − �udud = 0, for x ∈ �.

Integrating the above equation over �, we have, by Divergence Theorem,

d
∫

�

(∇u′
d) · (∇ud) dx −

∫

�

|∇ud |2 dx = 2
∫

�

Ru′
d dx . (3.2)

It suffices to show
∫

�
(∇u′

d) · (∇ud) ≤ 0 because ud �≡ const. To this end, multi-
plying (3.1) with u′

d and taking integration over �, we have

∫

�

(∇u′
d) · (∇ud) dx = −

∫

�

d|∇u′
d |2 dx − 2

∫

�

gud(u′
d)2 dx ≤ 0.

This completes the proof of Proposition 3.1. ��
Next, we analyze the asymptotic behavior of the positive solution ud and the mono-

tone behavior of the total population as d → 0+ and then prove Theorem 2.2. Our
proof of Theorem 2.2 is motivated by the work of DeAngelis et al. (2016) and is
organized as the following steps:

Proof of Theorem 2.2 Our first step is to show that

lim
d→0+

∥
∥
∥ud − √

R/g
∥
∥
∥

C(�̄)
= 0. (3.3)
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It suffices to show lim
d→0+

∥
∥
∥ud − √

R/g
∥
∥
∥∞ = 0 due to the continuity of

√
R/g and

ud .
Fix ε > 0 small, there exists a function ϑ+

ε ∈ C2(�̄) s.t.
√

R/g + ε
2 ≤ ϑ+

ε ≤√
R/g + ε in � and ∂νϑ

+
ε = 0 on ∂�. Since �ϑ+

ε is bounded in �̄, there exists
0 < d+

ε � 1 s.t. ∀0 < d < d+
ε ,

d�ϑ+
ε + R − g(ϑ+

ε )2 ≤ d�ϑ+
ε + g

(
− ε

√
R/g − ε2/4

)
≤ 0. (3.4)

Similarly, there exists a function ϑ−
ε ∈ C2(�̄) s.t.

√
R/g − ε ≤ ϑ−

ε ≤ √
R/g − ε

2
in � and ∂νϑ

−
ε = 0 on ∂�. Also, there exists 0 < d−

ε � 1 s.t. ∀0 < d < d−
ε ,

d�ϑ−
ε + R − g(ϑ−

ε )2 ≥ d�ϑ−
ε + g

(
ε
√

R/g − ε2/4
)

≥ 0. (3.5)

By (3.4) and (3.5), ∀0 < d < min{d+
ε , d−

ε }, (ϑ+
ε , ϑ−

ε ) is a pair of upper and
lower solution of (1.9) and 0 < ϑ−

ε < ϑ+
ε . By the uniqueness of positive solution

ud , we have ϑ−
ε ≤ ud ≤ ϑ+

ε and then
∥
∥
∥ud − √

R/g
∥
∥
∥∞ ≤ ε,∀0 < d < dε. So

lim sup
d→0+

∥
∥
∥ud − √

R/g
∥
∥
∥∞ ≤ ε, ∀ε > 0 and this proves (3.3).

Our second step is to show that

lim
d→0+

∥
∥
∥ud − √

R/g
∥
∥
∥

H1(�)
= 0. (3.6)

Setting ûd = ud − √
R/g, it suffices to show lim

d→0+
∫

�
|∇ûd |2 dx → 0. Then, by

(1.9),

d�ûd + d�
√

R/g − gûd

(
ud + √

R/g
)

= 0 for x ∈ �. (3.7)

Multiplying (3.7) with ûd
d and taking integration over �, then by Divergence The-

orem,

∫

�

|∇ûd |2 dx =
∫

∂�

ûd (∂ν ûd ) d S +
∫

�

�
(√

R/g
)

ûd dx − 1

d

∫

�

gû2
d

(
ud + √

R/g
)

dx

≤
∫

∂�

∣
∣
∣ûd

(
∇√

R/g
)

· �ν
∣
∣
∣ d S +

∫

�

∣
∣
∣�

(√
R/g

)
ûd

∣
∣
∣ dx

≤
∫

∂�

||ûd ||C(�̄)·
∥
∥
∥

(
∇√

R/g
)

· �ν
∥
∥
∥∞d S +

∫

�

||ûd ||C(�̄)·
∥
∥
∥�

(√
R/g

)∥
∥
∥∞dx

→ 0 as d → 0+ by (3.3).

Our third step is to prove that

lim
d→0+

∫

�

∣
∣
∣∇ud · ∇

( 1√
Rg + gud

)
− ∇√

R/g · ∇
( 1

2
√

Rg

)∣
∣
∣ dx = 0. (3.8)

123



Total population… Page 11 of 27 20

Notice that

∫

�

∣
∣
∣∇ud · ∇

( 1√
Rg + gud

)
− ∇√

R/g · ∇
( 1

2
√

Rg

)∣
∣
∣ dx

≤
∫

�

∣
∣
∣∇

(
ud − √

R/g
)

· ∇
( 1√

Rg + gud

)∣
∣
∣dx

+
∫

�

∣
∣
∣∇

√
R/g · ∇

( 1√
Rg + gud

− 1

2
√

Rg

)∣
∣
∣dx

=: I + I I .

Then Cauchy-Schwarz Inequaliy, boundedness of
∣
∣
∣∇

(
1√

Rg+gud

)∣
∣
∣ in L2(�), (3.3)

and (3.6) guarentee that I → 0 as d → 0+. As for I I , we have

1√
Rg + gud

− 1

2
√

Rg
=

√
Rg − gud

2(
√

Rg + gud)
√

Rg
= 1

2R + 2
√

Rgud

(√
R/g − ud

)
.

Then Cauchy-Schwarz Inequaliy, boundedness of 1
2R+2

√
Rgud

in C(�̄) ∩ H1(�),

(3.3) and (3.6) imply that I I → 0 as d → 0+.
Now, by (1.9), (3.3), (3.6) and (3.8),

∫

�

ud dx =
∫

�

√
R/g dx − d

∫

�

∇(ud) · ∇
( 1√

Rg + gud

)
dx

=
∫

�

√
R/g dx − d

∫

�

∇√
R/g · ∇

( 1

2
√

Rg

)
dx + o(d)

=
∫

�

√
R/g dx + d

8

∫

�

1

R2g
∇(R/g) · ∇ Rg dx + o(d),

as d → 0+ and this completes the proof of Theorem 2.2. ��
Remark 3.2 Under the assumption of Theorem 2.2, if we further assume R/g is a
function of Rg, i.e.,

(R/g)(x) = f (Rg(x)), x ∈ �,

where f is smooth and f > 0. Assume R/g, Rg �≡ const., it is easy to verify that

(i) if g and R satisfy relation (L1), then f ′ ≤ (�≡)0, so ∇(R/g) · ∇(Rg) ≤ (�≡)0 in
� and the total population

∫

�
ud dx is strictly decreasing for d > 0 small;

(ii) if g and R satisfy relation (L2), then f ′ ≥ (�≡)0, so ∇(R/g) · ∇(Rg) ≥ (�≡)0 in
� and the total population

∫

�
ud dx is strictly increasing for d > 0 small.

To end this section, we consider some special correlations between g and R:

Proposition 3.3 There are the following special correlations between g and R:
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(i) If R/g ≡ constant C1 > 0, then the total population is independent of the diffusion
rate d, that is, ∀d > 0,

∫

�
ud dx = √

C1|�|.
(ii) If 0 < R, g �≡ constant and Rg ≡ constant C2 > 0, then the total population∫

�
ud dx is decreasing for small d > 0. Moreover, ∀d > 0,

∫

�

ud dx < lim
d→0+

∫

�

ud dx . (3.9)

Here, Part (i) is trivial. As for Part (ii), we introduce another equation:

{
d�v + 2R − 2

√
Rg v = 0 for x ∈ �,

∂νv = 0 for x ∈ ∂�.
(3.10)

Since
(
max

�̄

√
R/g,min

�̄

√
R/g

)
is a pair of upper and lower solutions, (3.10) has

a positive solution, denoted as vd , which is unique by Fredholm Alternative Theorem.
By standard elliptic regularity, vd ∈ C2(�̄), for d > 0.

Proposition 3.4 Suppose R, g > 0, ∀d > 0, the positive solution ud of (1.9) is a
subsolution of (3.10). If we further assume R/g �≡ const., then ud ≤ (�≡)vd .

Proof By (1.9), we have

d�ud + 2R − 2
√

Rgud = R + gu2
d − 2

√
Rgud = (

√
R − √

gud)2 ≥ 0.

(3.11)

Thus ud is a subsolution of (3.10). Suppose the equality holds in (3.11), then ud ≡√
R/g, so �ud ≡ 0 in � by (1.9). By ∂νud = 0, ud ≡ const., that is, R/g ≡ const.

This completes our proof of Proposition 3.4. ��

Proof of Proposition 3.3 (ii) By Proposition 3.4, ud ≤ (�≡)vd , where vd satisfies

{
d�vd + 2R − 2

√
C2vd = 0 for x ∈ �,

∂νvd = 0 for x ∈ ∂�.
(3.12)

Integrating (3.12) over �, by ∂νvd = 0,∀x ∈ ∂� and Divergence Theorem,

∫

�

vd dx = 1√
C2

∫

�

R dx =
∫

�

R/
√

C2 dx =
∫

�

√
R/g dx,∀d > 0.

Since ud ≤ (�≡)vd ,∀d > 0, then
∫

�
ud dx <

∫

�
vd dx = ∫

�

√
R/g dx =

lim
d→0+

∫

�
ud dx by Theorem 2.2. This completes our proof of Proposition 3.3. ��
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4 Effects of correlations between g and R on the total population

In this Section, we investigate the effects of various correlations between g and R on
the total population for small and large diffusion and prove Theorems 2.3 and 2.4.

Initially, we explore the correlations between positive functions φ and ψ on �̄:

Proposition 4.1 Assume φ and ψ are two positive functions on �̄. For any n ∈ N
+,

(i) If φ and ψ are positively correlated, then φ and φψn are positively correlated.
(ii) If φ and ψ are negatively correlated, then φ and ψn/φ are negatively correlated.

Proof It is clear that for positive functions φ and ψ , we have

φ and ψ are positively correlated ⇐⇒ φ and 1/ψ are negatively correlated.

(4.1)

By (4.1), it suffices to prove assertion (i). Assuming φ and ψ are positively corre-
lated, for arbitrary x1, x2 ∈ �̄, we consider the following two cases:
if φ(x1) ≥ φ(x2), then ψ(x1) ≥ ψ(x2), so ψn(x1) ≥ ψn(x2) and φψn(x1) ≥
φψn(x2);
if φ(x1) < φ(x2), then ψ(x1) ≤ ψ(x2), so ψn(x1) ≤ ψn(x2) and φψn(x1) <

φψn(x2).
Thus φ(x1) ≥ φ(x2) ⇐⇒ φψn(x1) ≥ φψn(x2). We complete the proof of Propo-

sition 4.1. ��
Remark 4.2 Applying Proposition 4.1 to (L1), (L1+), (L1−) and (L2), we have
(i) The two opposite relations (L1+) and (L1−) both imply (L1). (L1+) is opposite

to (L1−) in the sense that, (L1+) implies that g and R are positively correlated
while (L1−) implies that g and R are negatively correlated.

(ii) (L2) implies that g/R and Rg are negatively correlated, which is opposite to
(L1).

Next, we introduce the following proposition as the key to the proof of Theorem
2.4.

Proposition 4.3 Suppose φ and ψ are two positive and smooth functions on �̄.

(i) If φ and ψ are positively (negatively resp.) correlated, then

|�|
∫

�

φψ dx ≥ (≤ resp.)

(∫

�

φ dx

) (∫

�

ψ dx

)

; (4.2)

(ii) If φ and ψ/φ are positively correlated, then

|�|(
∫

�

φψ dx)2 ≥
(∫

�

φ2 dx

) (∫

�

ψ dx

)2

. (4.3)
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Our approach for Proposition 4.3 is motivated by the work of DeAngelis et al.
(2016). We approximate the integrals by their Riemann sums and apply the following
lemmas. (See Appendix A for the proof of Proposition 4.3)

Lemma 4.4 (DeAngelis et al. (2016) Lemma 26) Suppose there are two finite
sequences of nonnegative real numbers {ai }n

i=1 and {bi }n
i=1, s.t. {ai }n

i=1 is an increas-
ing sequence.
If {bi }n

i=1 is an increasing (decreasing resp.) sequence, then

n(a1b1 + a2b2 + · · · + anbn) ≥ (≤ resp.)

(a1 + a2 + · · · + an)(b1 + b2 + · · · + bn). (4.4)

Lemma 4.5 Suppose that {ai }n
i=1 and {bi }n

i=1 are two finite increasing sequences of

positive real numbers. If the sequence
{

bi
ai

}n

i=1
is also increasing, then

n(a1b1 + a2b2 + · · · + anbn)2 ≥ (a2
1 + a2

2

+ · · · + a2
n)(b1 + b2 + · · · + bn)2. (4.5)

For the proof of Lemma 4.4, we refer to the work of DeAngelis et al. (2016). We
prove Lemma 4.5 by induction and see Appendix A for the proof.

With Proposition 4.3, we come to the

Proof of Theorem 2.4 First, we prove (i) . Denote φ = √
R, ψ =

√
1
g , then ψ/φ =

√
1

Rg andφ andψ/φ are positively correlated. Then lim
d→0+

∫

�
ud dx = ∫

�

√
R/g dx ≥

∫

�

√
R̄/g dx is guaranteed by Proposition 4.3 (ii).

Then, we prove (ii), and to do this, we first prove
∫

�

√
R̄/ḡ dx <

∫

�

√
R/g dx =

lim
d→0+

∫

�
ud dx . By Hölder’s inequality and the assumption R/g �≡ const., we have

∫

�

√
Rg dx <

√∫

�
R dx

√∫

�
g dx . So

∫

�

√

R̄/ḡ dx = |�|
√∫

�
R dx

∫

�
g dx

< |�|
∫

�
R dx

∫

�

√
Rg dx

. (4.6)

Since (L1+) implies that
√

R/g and
√

Rg are negatively correlated by Remark 4.2,
it follows directly from Proposition 4.3 (i) that

|�|
∫

�

R dx ≤
( ∫

�

√
R/g dx

)( ∫

�

√
Rg dx

)
. (4.7)

By (4.6) and (4.7), we have
∫

�

√
R̄/ḡ dx <

∫

�

√
R/g dx .
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We now prove that lim
d→0+

∫

�
ud dx = ∫

�

√
R/g dx <

∫

�

√
R̄/g dx . By Remark

4.2, (L1+) implies that 1/g and R are negatively correlated. Then, by Proposition 4.3
(i),

∫

�

√
R/g dx ≤ 1

|�|
∫

�

√
R dx ·

∫

�

√
1/g dx <

√∫

�
R dx

|�| ·
∫

�

√
1/g dx =

∫

�

√

R̄/g dx .

Note that the strict inequality above follows from Hölder’s inequality and the
assumption R �≡ const. Therefore,

∫

�

√
R/g dx <

∫

�

√
R̄/g dx .

Next, we prove (iii). As for
∫

�

√
R/ḡ dx <

∫

�

√
R/g dx , the proof is similar to that

of
∫

�

√
R/g dx <

∫

�

√
R̄/g dx in (ii). We include the proof here for completeness.

Note that g/R and g are positively correlated is equivalent to R/g and g are nega-
tively correlated. Then by Proposition 4.3 (i),

∫

�

√
R dx ≤ 1

|�|
∫

�

√
R/g dx

∫

�

√
g <

∫

�

√
R/g dx

√∫

�
g dx

|�| = √
ḡ

∫

�

√
R/g dx .

Here, the strict inequality above follows from Hölder’s inequality and the assump-
tion that g �≡ const. Consequently,

∫

�

√
R/ḡ dx <

∫

�

√
R/g dx .

To prove
∫

�

√
R/g dx ≤ ∫

�

√
R̄/ḡ dx , we assume functions l and L as in the

assumption, then
√

R/g = l(g) and R = L(g). Since l is a concave function, L is a
convex function and |�| = 1, by Jensen’s inequality, we have

( ∫

�

l(g)dx
)2 ·

∫

�

g dx ≤ l2
( ∫

�

g dx
)
·
( ∫

�

g dx
)

= L
( ∫

�

g dx
)

≤
∫

�

L(g)dx .

(4.8)

This implies
∫

�

√
R/g dx ≤ ∫

�

√
R̄/ḡ dx and completes our proof for (iii).

The proof of (iv) is similar to that of (i) with φ,ψ being replaced by φ = √
g, ψ =√

R/g, and henceforth is omitted. Hence, we complete the proof of Theorem 2.4. ��
To end this section, we determine the behavior of ud as d → ∞ and complete the

proof of Theorem 2.3.

Proof of Theorem 2.3 First, we prove (2.3), i.e., ud →
√

R̄/ḡ in C2(�̄), as d → ∞.
Apply the maximum principle (cf. Lou and Ni (1999) Lemma 2.1) to (1.5), we have
g(x1)u2

d(x1) ≤ R(x1), where ud(x1) = max
�̄

ud , x1 ∈ �̄. So ||ud ||∞ ≤ ||√R/g||∞,

∀d > 0. Then by standard elliptic regularity, {ud : d � 1} is a bounded subset in
C2,α(�̄), where 0 < α < 1. Pass to a subsequence if necessary, udk → some u∞ in
C2(�̄) as k → ∞. Dividing (1.9) by d on both sides, we have:

�ud + 1

d
(R − gu2

d) = 0. (4.9)

By (4.9), �u∞ ≡ 0 and ∂νu∞ = 0, then u∞ ≡ some const. L . Integrating both
sides of (4.9) over �, by ∂νudk = 0 on ∂�, we have

∫

�
(R − gu2

dk
) dx = 0. Sending
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k → ∞, we have
∫

�
R dx = L2

∫

�
g dx , i.e., L =

√
R̄/ḡ. Since this works for every

subsequence {dk}∞k=1, we prove (2.3).
By (4.6), (4.7), Part (i) is directly derived from the proof of Theorem 2.4 (ii). As for

Part (ii), it suffices to show
( ∫

�

√
R/g dx

)2( ∫

�
g dx

)
< |�|2 ∫

�
R dx . By Hölder’s

inequality and Proposition 4.3 (i), we have

( ∫

�

√
R/g dx

)2(
∫

�

g dx
)

< |�|
( ∫

�

R/g dx
)( ∫

�

g dx
)

≤ |�|2
∫

�

R dx,

since R/g and g are positively correlated. (Here, strict inequality follows fromHölder’s
inequality and the assumption R/g �≡ const.) This finishes our proof of Theorem 2.3.

��

5 Illustration of Theorem 2.4 with g = R˛

Assume R is a positive, smooth, and nonconstant function on �̄ with |�| = 1, and
g = Rα, α ∈ R. For simplicity, we assume R ≥ 1 on �̄. Define p1, p2, p3, μ as
follows:

p1(α) :=
∫

�

√

R̄/g dx, p2(α) :=
∫

�

√

R̄/ḡ dx,

p3(α) :=
∫

�

√
R/ḡ dx, μ(α) :=

∫

�

√
R/g dx .

(5.1)

(Here, quantities pi ’s and μ depend on α and are denoted as pi (α)’s and μ(α).)
We see that quantities pi ’s are the endpoints of intervals Ii ’s and the quantity μ =
lim

d→0+
∫

�
ud dx . By Hölder’s Inequality and R �≡ const., we have

p1(α) ≥ p2(α) > p3(α),∀α ∈ R and p1(α) = p2(α) ⇐⇒ α = 0. (5.2)

By Theorem 2.4, with g = Rα , we have:

if α ≤ −1, then g and R satisfy (L1−), so p1(α) ≤ μ(α), i.e.,
∫

�

√
R/g dx ∈ I1;

(5.3)

if 0 ≤ α ≤ 1/2, then R/g2 and g are positively correlated, so 0 < μ(α) ≤ p3(α),

i.e.,
∫

�

√
R/g dx ∈ I4;

(5.4)

if 1 < α, then g and R satisfy (L1+), so p2(α) < μ(α) < p1(α),

i.e.,
∫

�

√
R/g dx ∈ I2.

(5.5)

123



Total population… Page 17 of 27 20

Fig. 2 The behaviors of μ, p1, p2, p3 w.r.t. α. (Here, the monotonicity of μ, p1, p2, p3 w.r.t. α is due to
the assumption R ≥ 1.)

Now, we present the behaviors of μ, p1, p2, p3 with respect to α (also see Fig. 2):

Proposition 5.1 For every positive smooth function R �≡ const. on � with |�| = 1 and
g = Rα , there is a unique group of numbers (α1(R), α2(R), α3(R), α4(R), α5(R))

with −1 < α1(R) < α2(R) < α3(R) = 0 < 1
2 < α4(R) < α5(R) = 1 satisfying:

(i) μ(α1) = p1(α1); μ(α2) = p2(α2); μ(α3) = p3(α3); μ(α4) = p3(α4); μ(α5) =
p2(α5).

(ii) ∀α ∈ (−∞, α1), p1(α) < μ(α), then μ(α) ∈ I1;
∀α ∈ (α1, α2) ∪ (α5,+∞), p2(α) < μ(α) < p1(α), i.e., μ(α) ∈ I2;
∀α ∈ (α2, α3) ∪ (α4, α5), p3(α) < μ(α) < p2(α), then μ(α) ∈ I3.
∀α ∈ (α3, α4), 0 < μ(α) < p3(α), then μ(α) ∈ I4.

Next, we investigate the derivatives of p1, p2, p3, μ with respect to α to determine
their behaviors at each αi , 1 ≤ i ≤ 5.

Proposition 5.2 Suppose R �≡ const. is a positive and smooth function on �̄ and |�| =
1. Let g = Rα , p1(α) = ∫

�

√
R̄/g dx, p2(α) = ∫

�

√
R̄/ḡ dx, p3(α) = ∫

�

√
R/ḡ dx,

and μ(α) = ∫

�

√
R/g dx. Then the following statements holds for p1, p2, p3 and μ:

(i) ∀β ∈ R satisfying p1(β) = μ(β), we have ∂μ
∂α

(β) <
∂ p1
∂α

(β);

(ii) For i = 2, 3, ∀β ∈ R satisfying pi (β) = μ(β), we have ∂μ
∂α

(β) < (>

resp.) ∂ pi
∂α

(β), given β < (> resp.) 1/3.
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To prove Proposition 5.2, we define F(η) :=
∫

� Rη ln R dx
∫

� Rη dx
, η ∈ R, then by Hölder’s

inequality and R �≡ const., we have, for η ∈ R,

∂

∂η
F(η) = (

∫

�
Rη ln2 R dx)(

∫

�
Rη dx) − (

∫

�
Rη ln R dx)2

(
∫

�
Rη dx)2

≥ (
∫

�
Rη| ln R|2 dx)(

∫

�
Rη dx) − (

∫

�
Rη| ln R|dx)2

(
∫

�
Rη dx)2

> 0,

i.e., F(η) is strictly increasing in η ∈ R.

(5.6)

Next, we apply (5.6) repeatedly in the proof of Proposition 5.2.

Proof of Proposition 5.2 We first prove (i). Notice

∂μ

∂α
(β) <

∂ p1
∂α

(β) ⇐⇒
∫

�

R
1−β
2 ln R dx >

√∫

�

R dx
∫

�

R− β
2 ln R dx

⇐⇒
∫

�
R

1−β
2 ln R dx

∫

�
R

1−β
2 dx

>

∫

�
R− β

2 ln R dx
∫

�
R− β

2 dx
,

where the last equivalence follows from
√∫

�
R dx

∫

�
R− β

2 dx = ∫

�
R

1−β
2 dx , derived

from p1(β) = μ(β). Then by (5.6) and 1−β
2 > −β

2 ,∀β ∈ R, we prove ∂μ
∂α

(β) <
∂ p1
∂α

(β).
Second, we prove (ii), and it suffices to prove for i = 2 (the proof for i = 3 is

similar and henceforth is omitted). As the same process in (i), we have:

∂μ

∂α
(β) < (> resp.)

∂ p2
∂α

(β) ⇐⇒
∫

�
R

1−β
2 ln R dx

∫

�
R

1−β
2

dx > (< resp.)

∫

�
Rβ ln R dx

∫

�
Rβ dx

.

By (5.6) and the fact 1−β
2 > (< resp.) β,∀β < (> resp.) 1/3, we prove (ii). This

completes our proof of Proposition 5.2. ��
Proof of Proposition 5.1 Fix positive smooth function R �≡ const. on�. We first prove
the existence of a group of numbers (αi , α2, α3, α4, α5) satisfying Proposition 5.1 (i)
and

α2 ≤ α3 ≤ 0 < α4 < α5. (5.7)

Notice that (5.2), (5.3), (5.4), (5.5) and continuity of p1, p2, p3, μw.r.t.α guarantee
the existence of such αi ’s, 1 ≤ i ≤ 5, and moreover α1 ≤ α2. Next, we prove the
uniqueness of the above αi ,∀1 ≤ i ≤ 5.

By Proposition 5.2 (i), ∂μ
∂α

(α1) <
∂ p1
∂α

(α1), which guarantees the uniqueness of α1
for μ(α1) = p1(α1). By (5.3), −1 ≤ α1. Similarly, by Proposition 5.2 (ii), α2 and α3
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are unique forμ(α2) = p2(α2), μ(α3) = p3(α3)with α2, α3 ≤ 0. Moreover, we have
α3 = 0 because μ(0) = p3(0).

As for α4, by Proposition 5.2 (ii), it suffices to show α4 > 1/3. Let β̃ = min{β >

0|μ(β) = p3(β)}.Byμ(0) = p3(0) andProposition 5.2 (ii), we have ∂μ
∂α

(0) <
∂ p3
∂α

(0).

So β̃ > 0, μ(β̃) = p3(β̃) and ∂μ
∂α

(β̃) ≥ ∂ p3
∂α

(β̃). It remains to prove β̃ > 1/3. By

Proposition 5.2 (ii) again, if β̃ < 1/3, then ∂μ
∂α

(β̃) <
∂ p3
∂α

(β̃), which is a contradiction.
Suppose β̃ = 1/3, then derived from μ(β̃) = p3(β̃), we have (

∫

�
R1/2)2 dx =

(
∫

�
R1/3)3 dx , which implies R ≡ const. by Hölder’s inequality, contradicting to our

assumptions. Furthermore, by (5.5), we have α4 ≥ 1/2.
Now, we consider α5 and α5 ≥ 1/2 by (5.7). Proposition 5.2 (ii) guarantees the

uniqueness of α5 for μ(α5) = p2(α5) with α5 > 0, and α5 = {1} because of μ(1) =
p2(1).

By (5.2), (5.3), (5.4), (5.5), (5.7) and uniqueness of the above αi ’s, we have

− 1 ≤ α1 < α2 < α3 = 0 <
1

2
≤ α4 < α5 = 1 (5.8)

and αi ’s satisfy Proposition 5.1 (ii).
Ultimately, we exclude the possibilities of α1 = −1 and α4 = 1

2 . If α1 = −1, then
in μ(α1) = p1(α1), we have

∫

�
R dx = (

∫

�

√
R)2 dx , which implies R ≡ const. by

Hölder’s inequality, contradicting to our assumptions. Similarly, α4 = 1
2 provides the

same contradiction. Hence, we complete the proof of Proposition 5.1. ��
Remark 5.3 By Proposition 5.1 above, we see that,

− 1 < α1(R) < α2(R) < 0 and
1

2
< α4(R) < 1, (5.9)

for all positive nonconstant smooth functions R. It seems natural to ask whether there
are more precise lower and upper bounds. Here, we give a negative answer. Assume
N = 1,� = (0, 1). After careful examination of the proofs, we see that Proposition
5.1 also holds for positive step functions on �. Now, letting M ≥ 1 be a constant, we
consider the following step functions:

R1,M (x) =
{
1, 0 < x < 1/2,

M, 1/2 < x < 1; and R2,M (x) =
{
1, 0 < x < 1 − 1/M,

M, 1 − 1/M < x < 1.

(5.10)

By Proposition 5.1, αi (R1,M ) and αi (R2,M ) exist for all 1 ≤ i ≤ 5, and moreover,

lim
M→∞ α1(R1,M ) = lim

M→∞ α2(R1,M ) = 0, lim
M→∞ α4(R1,M ) = 1, (5.11)

lim
M→∞ α1(R2,M ) = lim

M→∞ α2(R2,M ) = −1, lim
M→∞ α4(R2,M ) = 1

2
. (5.12)
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Proof In order to prove (5.11) and (5.12), by (5.9), it suffices to show lim
M→∞ α1(R1,M ) =

0, lim
M→∞ α4(R1,M ) = 1, lim

M→∞ α2(R2,M ) = −1 and lim
M→∞ α4(R2,M ) = 1

2 . We show

lim
M→∞ α1(R1,M ) = 0 here. The similar proof of other assertions is omitted.

Suppose to the contrary, there is a ε1 > 0, there exists a sequence {Mk}∞k=1 s.t.
Mk → +∞ as k → ∞ and α1(R1,Mk ) ≤ −ε1,∀k ≥ 1. By direct calculation of
p1(α1(R1,Mk )) = μ(α1(R1,Mk )), we have

(
1

Mk
+ 1

)(
M

α1(R1,Mk )/2
k + 1

)2

(
M

(α1(R1,Mk )−1)/2
k + 1

)2 = 2. (5.13)

As k → ∞, since α1(R1,Mk ) ≤ −ε1 < 0, Mk → +∞, (5.13) implies that 1 = 2,
which is impossible. This completes the proof of Remark 5.3. ��

6 Concluding remarks and discussions

This paper investigates a consumer-resource model proposed by Zhang et al. (2017)
whose global dynamics was investigated by He et al. (2019, 2023) for both large and
small yield rates. For low yield rates, we study the properties of the resource-limited
positive steady state of the model (1.1), namely, the positive solution of (1.9).

We first prove that the total population with homogeneously distributed resources
but spatially heterogeneous loss rate strictly decreases as the diffusion rate increases.
Next, we study the asymptotic behavior of the positive solution ud of (1.9) as the
diffusion rate is small or large and analyze the corresponding dispersal effects for
the total population. Moreover, we compare the total population for small and large
dispersal under various correlations between loss rate g and the (effective) resource
input R.

Correlations between the loss rate g and the resource input R play a vital role in
our study of the total population for both small and large diffusion rates. Biological
evidence seems to support some specific correlations between g and R. Biro et al.
(2003) studied the effects of the daphnid food density on mortality and the mean
autumn mass of young rainbow trout (Oncorhynchus mykiss). They concluded that
mortality decreases and the mean autumn mass increases with more food (See Figure
5 in Biro et al. (2003)), which seems to imply that g is negatively correlated to R in
their experiment. Moreover, increasing soil nutrients, e.g., fertilization use improves
the population growth rate and decreases mortality for a few reasons. For instance,
Davis (2007) has found a 40 % lower seed mortality rate with fertilizer applications
due to a decrease in microbial predation.

However, over-fertilization can lead to higher mortality according to the well-
accepted nitrogen-limitation hypothesis, which predicts a positive response in species
performance to dietary nitrogen content and seems to imply a positive correlation
between g and R. For example, fertilization increased the nitrogen concentration of
both host-plant species and decreased the survival of larvae in all six Lepidoptera
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species by at least one-third (see Kurze et al. (2018) Figures 3 and 4). Furthermore,
eutrophication, owing to nitrogen and phosphorus enrichment in the sediments or
aquatic system, is one of the major environmental threats to biodiversity conserva-
tion. For instance, eutrophication due to fertilizer use has been shown to have negative
effects on the distribution and the abundance ofwaterbirds due to the long-term storage
of nutrients (e.g., phosphorus) in sediment (Møller and Laursen (2015)).

It is important to study how diffusion affects populations in systems with multiple
trophic levels in the context of high nutrient level (e.g., eutrophication), andwe hope to
take up this project in a future study to better map interactions between various biotic
components (cf. Desprez et al. (1992), Dorgham (2014) and Johnson et al. (2007)).

Mathematically, it is possible to relax our assumptions on the resource input g and
the loss rate R to allow them to be nonnegative instead of strictly positive. We shall
leave the details to the interested readers.

By Theorem 2.2, Theorem 2.3 and (1.3),

lim
d→0+ γ∗(d) = min

�̄

r2

gNR
=: γ1 and lim

d→∞ γ∗(d) = min
�̄

r2

N 2
R

·
∫

�
NR dx

∫

�
g dx

=: γ2.

(6.1)

Thus, we can apply Theorem 2.2, Theorem 2.3 and Theorem 2.4 to system (1.1)
under the assumption γ < min{γ1, γ2}, which is a relaxation of the assumption γ <

γ0.
To conclude this section, we briefly discuss the numerical simulations of the one-

dimensional discrete version of system (1.1) described by Zhang et al. (2017) (See
equations (2a), (2b) therein with mi ≡ 0, for all 1 ≤ i ≤ 12 and η = 0), for each
1 ≤ i ≤ 12:

{
∂tUi = rmaxNi

k+Ni
Ui − giU 2

i − D(Ui − 1
2Ui−1 − 1

2Ui+1),

∂t Ni = Ninput,i − rmaxNi Ui
γ (k+Ni )

.
(6.2)

There are 12 patches in (6.2). Each patch is linked to others by nearest-neighbor
diffusion, and there is only one-sided diffusion for two end patches (patches 1 and 12).

Set rmax = 0.1, k = 0.1, γ = 0.01 and set

gi =
{
positive constant godd for odd i,

0.001 for even i .
(6.3)

Set Ninput,i = 0.31, for all i’s in the homogeneous case. For a heterogeneous case,
set

Ninput,i =
{
0.02 for odd i,

0.6 for even i .
(6.4)
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By (6.1), for all 0 < godd < 100 ∗ 10−3, we have

min{γ1, γ2} ≥ 1

6
> γ = 0.01. (6.5)

Thus, with R := γ NR , for all 0 < godd < 100∗10−3, we can apply Theorems 1.1,
2.2 and 2.3 to model (6.2) to get

TRAPAhetero, no diffusion =
∫

�

√
R/g dx,TRAPAhetero, diffusion =

∫

�

√

R̄/ḡ dx,

TRAPAhomo, no diffusion =
∫

�

√

R̄/g dx .

(6.6)

InFigure 3ofZhang et al. (2017), theynumerically investigated the total populations
exhibited in (6.6) as functions of godd for both small and large diffusion.Our theoretical
results of comparison between the integrals in (6.6) follow fromTheorems 2.3 and 2.4,
which seem consistent with the numerical simulation results of Zhang et al. (2017).
(See Table 1 here.)

Table 1 The value range of godd guaranteeing that the following inequalities hold for theoretical estimates
in this paper and numerical simulation in Zhang et al. (2017)

Theoretical results (by
Theorems 2.3 and 2.4)

Numerical simulation results in
Zhang et al. (2017)

∫

�

√
R/g dx <

∫

�

√
R̄/ḡ dx godd < 1

30 ∗ 10−3 or

godd > 30 ∗ 10−3
godd < 0.038 ∗ 10−3 or

godd > 2.3 ∗ 10−3

∫

�

√
R/g dx >

∫

�

√
R̄/ḡ dx 1

30 ∗ 10−3 < godd < 10−3 0.038 ∗ 10−3 < godd <

2.3 ∗ 10−3

∫

�

√
R/g dx <

∫

�

√
R̄/g dx godd < 10−3 godd < 3.6 ∗ 10−3

∫

�

√
R/g dx >

∫

�

√
R̄/g dx godd > 30 ∗ 10−3 godd > 3.6 ∗ 10−3

Appendix A: Proof of Lemma 4.5 and Proposition 4.3

In Appendix, we present the proof of Lemma 4.5 and Proposition 4.3. First, we prove
Lemma 4.5, and to do so, we introduce another lemma:

Lemma A.1 Assume n ≥ 2. Suppose that {ai }n
i=1 and {bi }n

i=1 are two finite increasing

sequences of positive real numbers. If the sequence
{

bi
ai

}n

i=1
is also increasing, then

n−1∑

j=1

a j b j ·
n−1∑

j=1

(a j b j + 2anbn) ≥
n−1∑

j=1

b j ·
n−1∑

j=1

(a2
nb j + 2a2

j bn). (A.1)
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Proof of LemmaA.1 We prove Lemma A.1 by induction.
Suppose n = 2, then (A.1) holds if a1 = a2. We consider the case a1 < a2, then

(A.1) ⇐⇒ 2b1b2a1(a2 − a1) ≥ (a2
2 − a2

1)b
2
1 ⇐⇒ 2b2a1 ≥ (a2 + a1)b1,

and 2b2a1 ≥ (a2 + a1)b1 holds because b2 ≥ b1 and
b2
a2

≥ b1
a1
.

Now suppose the statement holds for n = 2, · · · , k−1, we consider the case n = k:

the left-handed side (abbreviated to L.H.S. for convenience) of (A.1)

=
[( k−2∑

j=1

a j b j

)
+ ak−1bk−1

]
·
[ k−2∑

j=1

(a j b j + 2akbk) + ak−1bk−1 + 2akbk

]

=
( k−2∑

j=1

a j b j

)
·

k−2∑

j=1

(a j b j + 2akbk) + ak−1bk−1(ak−1bk−1 + 2akbk)

+ ak−1bk−1

k−2∑

j=1

(a j b j + 2akbk) + (ak−1bk−1 + 2akbk) ·
k−2∑

j=1

a j b j ;

the right-handed side (abbreviated to R.H.S. for convenience) of (A.1)

=
[( k−2∑

j=1

b j

)
+ bk−1

]
·
[ k−2∑

j=1

(a2
k b j + 2a2

j bk) + a2
k bk−1 + 2a2

k−1bk

]

=
( k−2∑

j=1

b j

)
·

k−2∑

j=1

(a2
k b j + 2a2

j bk) + bk−1(a
2
k bk−1 + 2a2

k−1bk)

+ (a2
k bk−1 + 2a2

k−1bk)·
( k−2∑

j=1

b j

)
+ bk−1

k−2∑

j=1

(a2
k b j + 2a2

j bk).

By the induction hypothesis, we have

( k−2∑

j=1

a j b j

)
·

k−2∑

j=1

(a j b j + 2akbk) ≥
( k−2∑

j=1

b j

)
·

k−2∑

j=1

(a2
k b j + 2a2

j bk),

and by the case n = 2, with a1, a2, b1, b2 replacing by ak−1, ak, bk−1, bk , respectively,
we obtain

ak−1bk−1(ak−1bk−1 + 2akbk) ≥ bk−1(a
2
k bk−1 + 2a2

k−1bk).
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It remains to show

ak−1bk−1

k−2∑

j=1

(a j b j + 2akbk) + (ak−1bk−1 + 2akbk) ·
k−2∑

j=1

a j b j

≥ (a2
k bk−1 + 2a2

k−1bk)·
( k−2∑

j=1

b j

)
+ bk−1

k−2∑

j=1

(a2
k b j + 2a2

j bk),

(A.2)

which follows from the following claim: ∀1 ≤ j ≤ k − 2,

ak−1bk−1(a j b j + 2akbk) + a j b j (ak−1bk−1 + 2akbk)

≥ b j (a
2
k bk−1 + 2a2

k−1bk) + bk−1(a
2
k b j + 2a2

j bk).
(A.3)

Denote c1 := a j bk−1, d1 := b j ak−1, c2 := akb j , d2 := a j bk , c3 := ak−1bk ,
d3 := akbk−1. Then, we obtain 0 < c1 ≤ d2 and 0 < d1 ≤ c2. By direct calculation,
we have

(d2 − c1)(c2 − d1) ≥ 0,

that is,

c1d1 + d2c2 ≥ c1c2 + d1d2.

Similarly, as 0 < c1 ≤ d3, 0 < d1 ≤ c3 and 0 < c2 ≤ d3, 0 < d2 ≤ c3, we
obtain

c1d1 + d3c3 ≥ c1c3 + d3d1 and c2d2 + d3c3 ≥ c2c3 + d3d2.

So, we have

the L.H.S. of (A.3) =(c1d1 + d2c2) + (c1d1 + d3c3) + (c2d2 + d3c3)

≥(c1c2 + d1d2) + (c1c3 + d3d1) + (c2c3 + d3d2).
(A.4)

Similarly, we have

the R.H.S. of (A.3) =(d1c3 + c2d3) + (c2d3 + d2c1) + (d1c3 + c1d2)

≤(d1d3 + c2c3) + (c2c1 + d2d3) + (d1d2 + c1c3),
(A.5)

by direct calculation and the facts that 0 < d1 ≤ c2, 0 < d3 ≤ c3, 0 < c2 ≤ d2, 0 <

c1 ≤ d3, 0 < d1 ≤ c1, 0 < d2 ≤ c3.
Our assertion follows from (A.4) and (A.5). Now, the inequality (A.2) holds, and

our proof of Lemma A.1 is complete. ��
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Proof of Lemma 4.5 We prove Lemma 4.5 by induction. When n = 1 the statement
holds obviously. Suppose the statement holds for the n = 1, 2, · · · , k − 1 case, then
we consider the case n = k. Notice that

the L.H.S. of (4.5)

= k
[( k−1∑

j=1

a j b j

)2 + 2akbk

( k−1∑

j=1

a j b j

)
+ a2

k b2k

]

= (k − 1)
( k−1∑

j=1

a j b j

)2 +
k−1∑

j=1

a j b j ·
k−1∑

j=1

(a j b j + 2akbk) + akbk

k−1∑

j=1

(2a j b j + akbk) + a2
k b2k ;

the R.H.S. of (4.5)

=
( k−1∑

j=1

a2
j + a2

k

)
·
[( k−1∑

j=1

b j

)2 + 2bk

k−1∑

j=1

b j + b2k

]

=
( k−1∑

j=1

a2
j

)
·
( k−1∑

j=1

b j

)2+
( k−1∑

j=1

b j

)
·
[ k−1∑

j=1

(a2
k b j + 2a2

j bk)
]

+ bk

[ k−1∑

j=1

(2a2
k b j + a2

j bk)
]

+ a2
k b2k .

By the induction hypothesis and Lemma A.1, it remains to show

akbk

k−1∑

j=1

(2a j b j + akbk) ≥ bk

[k−1∑

j=1

(2a2
k b j + a2

j bk)
]
, (A.6)

which is equivalent to show
∑k−1

j=1((a
2
k − a2

j )bk) ≥ ∑k−1
j=1(2b j ak(ak − a j )).

So ∀1 ≤ j ≤ k − 1, it suffices to show

(a2
k − a2

j )bk ≥ 2b j ak(ak − a j ). (A.7)

If ak = a j , then (A.7) holds trivially. If ak > a j , then the inequality holds because
bk
ak

≥ b j
a j

and bk ≥ b j ,∀1 ≤ j ≤ k − 1. This finishes the proof of Lemma 4.5. ��
With Lemmas 4.4 and 4.5, we are ready for the

Proof of Proposition 4.3 We approximate the integrals by their Riemann sums and set

ai = φ(xi ), bi = ψ(xi ),∀i = 1, 2, · · · , n, (A.8)

where {xi }n
i=1 are uniformly distributed in�. We can rearrange sequences {ai }n

i=1 and{bi }n
i=1 in the order that {ai }n

i=1 is ascending.
We prove (i) here, and the proof of (ii) is similar and henceforth is omitted. It

suffices to prove for the case φ and ψ are positively correlated, then {bi }n
i=1 is also

ascending. By Lemma 4.4, we have the following inequality:

n
n∑

i=1

ai bi ≥
( n∑

i=1

ai

)
·
( n∑

i=1

bi

)
⇐⇒ 1

n

n∑

i=1

φ(xi )ψ(xi ) ≥ 1

n

( n∑

i=1

φ(xi )
)

· 1
n

( n∑

i=1

ψ(xi )
)
.

123



20 Page 26 of 27 X. He et al.

Letting n → ∞, we have (4.2) and finish the proof of Proposition 4.3. ��
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