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Abstract

The initial steps of logic synthesis of digital designs involve finding
minimized representations of Boolean logic functions. Existing
optimization methods rely on iterative minimization operations
that can result in a rapid increase in the runtime when the number of
variables and terms of the Boolean functions increase. We propose a
graph attention network (GAT) based logic minimization approach
called MinBLoG, to narrow down the solution search space for
Boolean functions. Our approach achieves more than 96% accuracy
in identifying implicants that are a part of the minimized solution
and ensures functional equivalency through correctness checking
procedures. Experiments show that MinBLoG delivers minimization
results for a wide range of Boolean functions significantly faster
than well-known existing methods.
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1 Introduction

Optimization of combinational logic plays a crucial role in meeting
timing, area and power goals in the implementation flow of digital
designs. Synthesis tools perform optimization at various stages,
such as pre-mapping, tech-mapping and post-mapping to meet the
design constraints. Many of these optimization algorithms are com-
putationally complex and significantly stretch the runtime of the
synthesis process, especially for large and complex designs. To move
past this runtime bottleneck, exploratory research is necessary to
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revisit and re-imagine underlying optimization algorithms that
modern synthesis tools are built upon. The rapid advancement of
machine learning (ML) and its application in the last decade places
it as a strong tool to re-architect legacy optimization algorithms for
not only better runtime, but also higher quality of result (QoR). The
capabilities of state-of-the-art ML models have been demonstrated
in [12], [13] by providing beneficial heuristics and accelerating im-
plementation flows. Further integration of ML in the core layers of
synthesis has the potential to leapfrog the performance of existing
algorithms and aid in quicker time to convergence.

In this paper, we propose a novel and fast method for mini-
mization of Boolean logic functions using a graph-based machine
learning model (MinBLoG). This work aims to be a step towards
redesigning underlying synthesis methods by leveraging the ad-
vances of machine learning. The main contributions of the work
are as follows:

e Develop and train a graph attention network (GAT) model for
minimizing Boolean logic functions that predicts minimized
implicants with ~96% accuracy.

e Develop robust correctness and coverage checking proce-
dures to ensure functional correctness of the results obtained
from the graph model prediction.

e Achieve over 40-100X faster average runtime compared to
Espresso [2] for a wide range of Boolean functions.

e MinBLo0G delivers the minimization quality that is within
92% of well-known minimization tool Espresso [2] for a wide
range of benchmark functions.

2 Related Research

The process of synthesizing digital designs requires both technology
independent and dependent optimization steps of the combinational
logic function defined in the design. Technology independent opti-
mization attempts to minimize the number of variables and logic
operations required to represent the Boolean logic functions. This
minimization task deals with Boolean functions represented as ei-
ther sum-of-product (SoP) or product-of-sum (PoS) and is referred to
as Two-Level Logic Minimization. Throughout the years, two main
categories of logic minimization algorithms have been established.
Algorithms such as Quine-McCluskey method [11], Karnaugh-Map
clustering method [5] perform exact two-level minimization, deliv-
ering a global minimum solution (minimum cover). Another class
of heuristic algorithms, such as Espresso [2], MINI [10] and BOOM
[7], aim to speed up time-to-solution by leveraging pre-defined
heuristic to reduce the number of iterations needed to arrive at an
acceptable solution, sacrificing the guarantee of a minimum cover.
A major drawback of both exact and heuristic algorithms is their
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worst-case computational complexity and runtime, which can grow
exponentially for Boolean functions with a large number of input
variables and product terms [4].

Multiple recent research contributions aim to leverage advance-
ments of machine learning to find compact representation of Boolean
logic. Boolformer [6] builds a transformer-based solution to find
compact representations of unknown logic functions when pro-
vided with a truth table of the function. While this may be useful in
the domain of design verification, the solution is currently limited to
10 variables and does not guarantee functionally equivalent repre-
sentation for partially specified functions. Different representations
of logic networks such as And-Inverter-Graphs (AIG) [15] and Bi-
nary Decision Diagram (BDD) [3] have also been explored, along
with associated algorithms for achieving minimized representation.
Minimization of AIG using machine learning driven heuristics is
explored in the work ABC-RL [19] to decrease the node and depth
metrics using ABC [15]. Another relevant work GAMORA [17]
accurately identifies known logic functions in a cluster of nodes
of an AIG. Although logic minimization was not explored in [17],
their approach could potentially allow replacing identified func-
tions using optimized macros to reduce the number of nodes and
depth.

The literature in this domain shows a growing trend of ML heuris-
tics being used to improve existing logic minimization algorithms.
However, there is an evident lack of work that aims to replace
legacy iterative algorithms and solve runtime bottlenecks by using
machine learning to narrow down the solution search space. The
approach in MinBLoG moves away from iterative algorithms and
thus is able to overcome runtime challenges while maintaining
functional correctness.

3 Background

There are different representations of Boolean logic functions, and
a set of terminologies are used to describe the function properties.
Some of the relevant terminologies and concepts are introduced in
this section.

3.1 Terminologies

The following terminologies are widely used in Boolean logic liter-
ature and is necessary to discuss the methodology.

Literal: The inverted or non-inverted version of a variable. Prod-
uct/Cube: A collection of literals joined by logical AND.
Sum-of-Product/SoP: A collection of cubes joined by logical OR.
Boolean functions are often represented in a SoP form.

Implicant: A cube that implies the value of a Boolean function. An
implicant may not contain all input variables.

Prime Implicant (PI): An implicant that is not contained by any
other implicant.

Cover: A set of implicants sufficient to define a function. A function
can have more than one cover.

Minimal Cover: A cover of a function with irredundant prime im-
plicants which is not contained in any other cover.

Minimum Cover: A cover of a function with minimum number of
prime implicants and literals. This is the global minimum of the
function.
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3.2 Boolean Functions and Minimization

Most common representations of Boolean functions are Sum-of-
Product (SoP) or Product-of-Sum (PoS) forms. The cubes in a SoP
function can be conveniently represented as a two-dimensional ma-
trix using Positional Cube Notation (PCN) [10]. SoP functions en-
coded as PCN matrices provide a computationally efficient method
for various Boolean operations. A Boolean SoP function F consist-
ing of 3 cubes (¢ = 3) and 3 variables (n = 3) is shown in equation
(1), along with its minimized form Fp,p.

F = xyz + Xyz + XZ Fppin = yz + X2 (1)
Each literal of an SoP function is represented using the following
notation: e Non-inverted variables: 1 o Inverted variables: 0 and
e Don’t-Care variables: 2. Following this notation, the PCN repre-
sentation of F and Fy,;, will be integer matrices of size ¢ X n and
cm X n as shown in equation (2).

1 1 1
P=lo 1 1 Pml-,,z[(z) ; (1)] @)
0 2 0

Here, P;,in contains a smaller number of cubes ¢y, as well as literals
compared to P while being functionally equivalent.

3.3 Logic Functions as Graphs

In parallel to PCN, logic functions are also often represented as
graphs or trees to enable efficient processing in Boolean algorithms
and logic synthesis. Some popular representations include Binary
Decision Diagrams (BDD)[3], And Inverter Graphs (AIG)[18] and
Majority Inverter Graphs (MIG) [1]. In this work we construct AIG
graphs from the PCN representation of an SoP function. For the
function in equation (1), we construct the graph shown in figure 1.

F=xyz+Xxyz+XxZ Fpp,=yz+XxZ

co cl «c2 me ml

Node Legend

O min cubes
O non-min cubes

Edge Legend

non-inverted —>
inverted -@>

co cl

Figure 1: Graph representation of the function F = xyz +xyz +
xZz with prime implicants from Fy;,;, highlighted in green.

The graph consists of the input nodes x,y and z, which are
progressively merged using logical AND nodes and inverting or
non-inverting edges to construct the cube expressions, denoted by
co = xyz,c1 = Xyz and cz = xz. The merging of nodes is intention-
ally performed in a pairwise manner, instead of hierarchical manner
which would require a smaller number of nodes. A Pairwise Merged
Graph (PMG) contains intermediate nodes with unique literal com-
binations, yielding a useful set of node expressions. In figure 1, it
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can be observed that the expressions of the prime implicants (PI)
from the minimized function Fy,;, appears in the PMG nodes m0
and m1. To further establish this observation, we conducted an
empirical study by constructing PMGs from a varying number of
variables and cubes. For each graph, we check the percentage of PI
expressions present in the expression of the nodes. This probability
of finding PI expression in nodes is highly dependent on the pair-
wise selection of input nodes for merging. We explored different
node-pair selection schemes: a) Random select b) Moving window
of size 2 ¢) Odd-even index and d) Pair inverted literals with non-
inverted literals, with padding if necessary. Results of our empirical
study shows that option d) provides the best balance of node count
and probability of finding the PI expressions in those nodes. The
results in figure 2 shows the percentage of PI expressions found
in the PMG nodes for functions varying in size from 8 to 40 vari-
ables. For any larger functions with more variables, the number
of nodes PMG will increase, improving the probability of finding
nodes with implicant expressions. Based on the observation that
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Figure 2: Empirical analysis of node count in Pairwise Merge
Graph with respect to variables and cubes. It also shows aver-
age percentage of minimized implicant expressions present
in node expressions of PMG.

the PMG of a function contains nodes that represent the solution of
the minimization problem allows us to represent the minimization
task as a graph node classification problem. Node classification is
an established domain of ML, providing us with powerful learning
models that are well suited for this task.

4 Methodology

Minimizing an SoP function F is the process of computing a set
of implicants Cpin that cover the set of cubes C of F. The set of
literals from Cpyin and C can be denoted by the sets Lyin and L
respectively. There can be different goals for technology indepen-
dent minimization: ¢ Minimizing number of cubes: |[Cpin| < |C|
e Minimizing number of literals: |L;uin| < |L| ® Minimizing both
Cubes and Literals. An ideal minimization process should produce
a minimized SoP form Fy,;,, containing a set of irreduntant prime
implicants necessary to cover F. If the PIs of Fy,;, contain no re-
dundant literals, then it can be considered as a minimum cover of
F. Most heuristic driven minimization approaches such as Espresso
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constructs minimal covers that may contain redundant literals. In
this work, we apply ML to identify PIs from the PMG representation
of SoP functions to construct a minimal cover and minimize the
number of literals required. Therefore, the quality of minimization
will largely depend on the availability of irredundant PI nodes in
the PMG and the accuracy of the GAT model to classify such PI
nodes. For a highly accurate model, any minor lapse or conflict
in functional equivalency is corrected in the post-inference stage
without incurring significant computational overhead.

4.1 Logic Optimization as an ML Task

Applying graph-based ML models to solve the logic optimization
problem reduces the computational complexity compared to exist-
ing iterative heuristics. An ML model yields results/predictions in
polynomial and significantly shorter time. For example, the com-
putation complexity of inference for a trained Graph Attention
Network (GAT) model is O(Lvd?) [9], where v is the number of
graph nodes, L is the number of convolution layers, and d is the
feature vector size. Constructing the proposed approach requires
realizing a training pipeline with the following components.
Training Pipeline Components:

o A synthetic SoP function generator to create training samples
of PCN encoded functions of arbitrary variable and cube size.

e A method to construct Pairwise Merged Graph (PMG) from
PCN encoded SoP functions and compute node features. True
minimized implicants of training samples are used to label
nodes with class 0: Non-implicant nodes and class 1: mini-
mized implicant nodes.

e A graph attention network (GAT) to classify PI nodes (class
1) with an aim to minimize mis-prediction.

Once a graph model is trained, a simpler inference pipeline can
be constructed using the following components
Inference Pipeline Components:

e An input stage that accepts a PCN encoded SoP function and
constructs a PMG.

e An inference stage where the pre-trained graph model pre-
dicts a subset of nodes as class 1 (PI nodes).

e A correctness check to filter out False-Positive (non-PI node
predicted as PI node) prediction and coverage check for False-
Negative (PI nodes predicted as non-PI nodes) prediction
and include missing implicant/terms in the final solution.

An overview of the training and inference pipeline is shown in
figure 3. The details of each step are elaborated in the following
sections.

4.2 Generating Functions

A PCN encoded SoP function is represented as a ¢ X n matrix, where
c is the number of cubes and n is the number of variables. A pro-
gram for generating SoP function was developed that can generate
single-output functions in PCN encoded format with controllable
distribution between ON-Set, OFF-Set and Don’t Care-Set. The
true minimized implicants of these functions were used to label
prime-implicant nodes for supervised learning.
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Figure 3: Overview of training and inference pipeline of MinBLoG.

4.3 Graph Representation

The maximum number of nodes required to construct a pairwise-
merge graph for PCN matrix of size ¢ X n is deterministic and can be
easily calculated. Merging the n input nodes in a pairwise manner
for a single cube will require [ = n — 1 merging layers. After layer
1, each subsequent layer will contain 1 node less than the previous
one. Thus, the sum of nodes across all layers can be calculated as
equation (3):
Cubeppges =n+n—-1+n—-2+..+n-1

Cubeppges =n(n+1)/2 ®)

The remaining cubes will share the input nodes and in the worst
case, will require n(n + 1)/2 — n nodes to implement the merging.
Therefore, the worst case bound for the number of nodes in a PMG
can be calculated as in equation (4):

PMG,ogdes =n(n+1)/2+ (c—1)n(n+1)/2-n
This can be simplified to (4)
PMGpoges =cn(n+1)/2—n

Considering the number of nodes required, the PMG construction
algorithm has complexity O(cn?). However, in practice many nodes
can be reused between cubes and the actual observed complexity
has linear dependence on n, as seen in figure 2.

4.3.1 Node Features. To enable a graph-based ML model, the SoP
graph nodes require meaningful features saved as vectors. The
following node features were computed for each node.

Node Type Encoding (INPUT, AND).

Number of outputs from the node.

Distance from the input nodes.

Number of variables, inverted variables, non-inverted vari-
ables and don’t care variables in native node expression
(Akxpr)

e Result of checking if Nexp, implies the original function.

The first three features are necessary to provide the GAT model
spatial knowledge of each node in a PMG. The 4th feature pro-
vides informs the model regarding the characteristics of the node

expression and last feature acts as a preliminary indication of non-
implying nodes that should not be considered as a PI node.

4.3.2  Node Labels. For specifying node labels, the Nexpy is com-
pared against the true minimized-implicants to determine between:
o Class 1/PI nodes: Node expression contains a PI e Class 0/Non-PI
nodes: Node expression does not contain a PI. The GAT model was
trained to perform binary classification to identify PI nodes.

4.4 GAT Model Training

A Graph Attention Network (GAT) [16] model was configured to
learn the binary node classification task. The GAT model consisted
of 5 GAT convolution layers, 4 attention heads, 64 hidden layers
and target-to-source message propagation. The model was trained
with 5000 synthetically generated SoP functions and evaluated with
1000 unseen SoP functions.

4.5 Correctness and Coverage Check

SoP minimization is a deterministic task, and a correct solution
must ensure complete coverage of the ON-Set and avoid overlap
from the OFF-Set of the function defined in the n dimensional
Boolean space by the original function F. A solution can be correct
yet sub-optimal if the minimized SoP contains redundant literals or
cubes. In the context of the GAT model prediction, the following
unwanted outcomes can be expected:

e False Positive(FP): True=0, Pred=1
Wrongly predicts a non PI-node as a PI-node. These results
must be excluded from the solution.

o False Negative(FN): True=1, Pred=0
Wrongly predicts PI-node as non PI-node. The lapse in func-
tion’s coverage due to FN predictions must be amended.

Given the statistical nature of the GAT prediction process, False-
Negatives and False-Positives will occur during every inference.
The logical sequence of ensuring correctness is shown in figure 4.

4.5.1 Filtering False-Positives. Wrongly predicted PI-node can be
detected by computing the intersection of the predicted implicant
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Figure 4: Logical steps of correctness checking and coverage
amendments for a prediction set of implicants

against the original functions OFF-Set. If the intersection is not
empty, then the predicted implicant does not imply the Function.
In formal definition:
A predicted implicant p is valid iff pF is un-satisfiable

To perform this check, the input function must be inverted. Inver-
sion of a Boolean function is necessary when the Off-set is not
provided in the function’s PCN specification. The Off-set can be
achieved efficiently applying the unate recursive complement algo-
rithm [14] on the union of a function On-set and DC-set (if-any).
We implement a fast vectorized version of Boolean function inver-
sion and compute the result of pF to filter out wrongly predicted
nodes. Although the worst-case runtime complexity of inversion
is O(2™), the real-world complexity of our implemented function
was linear with n, resulting from efficient tautology checks and
algebraic minimization heuristics used for early convergence.

4.5.2  Including False-Negative Coverage. When PI-nodes are pre-
dicted as non PI-nodes, the minimization solution will fail to cover
the ON-Set of the function. Fortunately, this lack of coverage can
be checked by inspecting how many of input cubes are covered
by the correctly predicted implicants. Any uncovered cubes can
be included as a part of the solution to ensure the coverage of the
solution. The computational complexity of checking coverage is
O(cn) where c is the number of cubes and n is the number of vari-
ables. Although this approach degrades the minimization quality
of solution, the effect was not significant in our experiments.

5 Experiment Results

5.1 Accuracy of GAT Model

The training of the GAT model was conducted using 5000 SoP
functions and their corresponding graphs. The node classes in the
training samples were imbalanced as there is large number of non
PI-nodes in each graph compared to PI-Nodes. This imbalance
was compensated with a dynamic class bias being applied while
computing the loss of each batch. The binary classification metrics
for the GAT classifier is shown in figure 5.
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Classification Metrics of the GAT model

Predicted @ Predicted 1
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Recall: 93.1%
FP Rate: 1.36%
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F1-Score: 81.7%
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Figure 5: The classification metrics of the GAT classifier for
classifying the nodes of PMGs from 1000 SoP functions

The success rate of the model in identifying minimized impli-
cants for large functions were also analyzed and can be seen in
figure 6. For a set of function ranging from 50 to 200 variables
and 200 cubes, the model achieves >92% success rate of detecting
minimized-implicants.

MinBLoG success rate for minimized implicant prediction
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Figure 6: The probability of the GAT model to correctly iden-
tify PIs in a function’s PMG. Higher identification rate re-
duces time spent in subsequent correctness steps.

5.2 Runtime and QoR Results

The reduction of computational complexity and speeding up the
time to solution was one of the primary driving factors of this
research. Figure 7 shows the growth in runtime for the main com-
ponents of MinBLoG with respect to the number of literals of a
function, highlighting the graph building stage to be the largest
contributor to the overall runtime of MinBLoG.

The runtime and quality of minimization from MinBLoG was
compared against legacy logic minimization algorithm Espresso
[2] (Heuristic Mode), ABC[15], TTMin [8] and BOOM-II [7] as
well as recent works from [6], [19] using synthetic benchmarks of
different function sizes. The type of the function was also varied
between e FR type: On-Set and Off-set are defined, @ FD type: On-Set
and DC-set are defined and e F type: Only On-Set is defined. We
analyzed Espresso in both Exact and Heuristic mode and chose to
exlclude exact mode from the results as it required significantly
longer runtime for most testcases and provided inconsistent literal
reduction compared to the heuristic mode. We also evaluated the
recent work Boolformer [6] and found its capability limited to
only 10 variables. Moreover, the results from Boolformer for the
functions were not functionally equivalent on many occurrences.
For each tool included in the results, we report a quality of results
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Figure 7: The growth of runtime for main components of Min-
BL0oG with respect to the number of literals (cube X variables).

(QoR) metric by calculating the ratio between original number
of literals and the number of literals in the minimized form. A
higher QoR number indicates a better literal reduction ratio. From
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the results listed in table 1, it can be observed that the runtime
of Espresso increases rapidly for an increase in size of FR type
functions. Although this slowdown doesn’t occur for FD and F
type functions, the achieved QoR is subpar compared to MinBLoG.
Logic minimization in ABC [15] and ABC-RL [19] is treated as
an AIG node minimization problem and iterative re-structuring
of the AIG is performed to minimize the function. However, this
approach does not yield significant literal reduction as seen in
the table 1. Boom-II delivers results only for FR type functions
and fails to reach QoR results compared to Espresso or MinBLoG.
MinBLoG is the only tool in the comparison that is able to provide
consistent literal reduction across all function types (FR, FD and F)
while being functionally correct. For large FR functions with 400
and 800 cubes, MinBLoG delivers results more than 40X and 100X
faster respectively. Therefore, it can be concluded that MinBLoG
outperforms the existing methods in runtime and yields better QoR
with functionally correct minimized results.

6 Conclusion

In this work we presented a Boolean logic minimization method
that relies on a graph attention network to identify minimized im-
plicants of Boolean logic functions. Using a graph representation
constructed from cubes of SoP functions, the trained GAT model is
able to identify minimal cover implicants for a function, while en-
suring functional correctness and coverage. The proposed method
delivers significantly faster runtime over Espresso and more recent
methods while maintaining near ideal quality of result.

Table 1: Runtime and QoR Comparison of MinBLoG against existing solutions for a wide range of synthetic functions.

Testcases Espresso(H)[2] ABC[15] ABC-RL[19]! BOOM-II[7]> | MinBLoG [This Work]

Func. Type | Var/Cube | Runtime(s) QoR Runtime(s) | QoR | Runtime(s) | QoR | Runtime(s) | QoR | Runtime(s) QoR
100/400 548.6 100.7 16.5 2.0 1143.4 2.0 0.1 53.4 13.5 94.6

100/800 3625.4 91.4 314 2.0 1861.6 2.0 0.6 47.2 31.0 88.6

FR Type 200/400 2520.0 283.0 48.8 2.0 3927.0 2.0 0.3 158.9 95.5 271.6
On-Set & 200/800 16651.8 278.4 74.5 2.0 6008.1 2.0 3.1 156.3 219.6 247.0
Off-Set 400/400 11574.5 704.2 142.8 2.0 Indefinite 0.3 395.4 779.3 664.2
400/800 | Indefinite long runtime 276.7 2.0 long runtime 2.3 386.8 1792.4 595.7

Average 6984.1 ‘ 291.5 98.5 2.0 3233.0 ‘ 2.0 1.1 199.7 533.9 327.0

100/400 0.4 1.7 19.5 1.7 489.7 1.6 14.5 85.1

100/800 7.5 1.6 30.4 1.6 2392.0 1.5 33.4 75.0

FD Type 200/400 0.9 1.6 60.6 1.6 FD Type Functions 98.4 230.5
On-Set & | 200/800 41.5 1.8 120.7 1.8 Indefinite are not supported 226.2 211.0
DC-Set 400/400 2.9 1.74 162.2 1.7 long runtime in BOOM-II 794.9 528.7
400/800 1058.8 1.6 440.8 1.6 1828.3 487.9
Average 185.3 1.7 139.0 1.7 1440.8 l 1.2 549.1 269.7

100/400 1.5 1.0 31.5 1.0 1483.6 1.0 14.1 82.5

100/800 67.5 1.0 70.5 1.0 4830.6 1.0 32.2 73.5
FType 200/400 3.2 1.0 95.3 1.0 F Type Functions 945 225.9
200/800 1120.8 1.0 335.3 1.0 Indefinite are not supported 217.5 215.3

On-Set . .

400/400 569.3 1.0 319.0 1.0 long runtime in BOOM-II 872.8 523.4
400/800 | Indefinite long runtime 726.3 1.0 ' 2007.5 492.7
Average 352.4 ‘ 1.0 263.0 1.0 3157.1 ‘ 1.0 588.2 268.9

" All runtime measured on system with AMD-5600G with 16GB RAM.
1 ABC-RL runtime are for multiple iterations till the literal reduction metric stops improving.
2 BOOM-II runs are conducted with literal reduction goals set to meet results achieved from Espresso.
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A Artifact Appendix
A.1 Abstract

The synthetically generated boolean functions used in this paper
are available online for use in any future research in this domain.

A.2 Description

A.2.1  How to access. The boolean function dataset cant be ac-
cessed at the following Zenodo link:
https://zenodo.org/doi/10.5281/zenodo.13307943

Additionally, a GitHub repository is made available for MinBLoG:
https://github.com/puprianka/minblog.git

A.3 Details of Dataset

The dataset contains synthetically generated boolean functions
in PLA format that can be used for testing runtime and QoR of
logic minimization approaches (e.g Espresso, BOOM, MinBLoG
etc.) The size of the functions ranges from 100 to 400 variables and
200 to 1000 cubes. The dataset is divided into three different types
of boolean functions:

F-Type: Functions specified using their ON-Set.

FR-Type: Functions specified using their ON-Set and OFF-Set.

FD-Type: Functions specified using their ON-Set and Don’t-Care-
Set (DC-Set).

The filenames of the individual PLA files indicate the size of the
function it contain. For example: fd_200_400-0.pla will contains an
FD type function with 200 variables and 400 cubes. The suffix 0 at
the end indicates it is the first of the 5 random functions generated
with 200 variables and 400 cubes.
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