
MinBLoG: Minimization of Boolean Logic Functions using Graph
A�ention Network

Prianka Sengupta
Aakash Tyagi
Jiang Hu

Texas A&M University

College Station, Texas, USA

Vivek K Rajan
Hesham Mostafa
Somdeb Majumdar

Intel Inc

USA

Abstract

The initial steps of logic synthesis of digital designs involve �nding

minimized representations of Boolean logic functions. Existing

optimization methods rely on iterative minimization operations

that can result in a rapid increase in the runtimewhen the number of

variables and terms of the Boolean functions increase. We propose a

graph attention network (GAT) based logic minimization approach

called MinBLoG, to narrow down the solution search space for

Boolean functions. Our approach achieves more than 96% accuracy

in identifying implicants that are a part of the minimized solution

and ensures functional equivalency through correctness checking

procedures. Experiments show thatMinBLoG delivers minimization

results for a wide range of Boolean functions signi�cantly faster

than well-known existing methods.

CCS Concepts

• Hardware → Circuit optimization.

Keywords

Boolean Logic Minimization, Graph Attention Network, Machine

Learning

ACM Reference Format:

Prianka Sengupta, Aakash Tyagi, Jiang Hu, Vivek K Rajan, Hesham Mostafa,
and Somdeb Majumdar. 2024. MinBLoG: Minimization of Boolean Logic
Functions using Graph Attention Network. In 2024 ACM/IEEE International
Symposium on Machine Learning for CAD (MLCAD ’24), September 9–11,
2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3670474.3685962

1 Introduction

Optimization of combinational logic plays a crucial role in meeting

timing, area and power goals in the implementation �ow of digital
designs. Synthesis tools perform optimization at various stages,
such as pre-mapping, tech-mapping and post-mapping to meet the
design constraints. Many of these optimization algorithms are com-

putationally complex and signi�cantly stretch the runtime of the
synthesis process, especially for large and complex designs. To move

past this runtime bottleneck, exploratory research is necessary to

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685962

revisit and re-imagine underlying optimization algorithms that

modern synthesis tools are built upon. The rapid advancement of

machine learning (ML) and its application in the last decade places

it as a strong tool to re-architect legacy optimization algorithms for

not only better runtime, but also higher quality of result (QoR). The

capabilities of state-of-the-art ML models have been demonstrated

in [12], [13] by providing bene�cial heuristics and accelerating im-

plementation �ows. Further integration of ML in the core layers of

synthesis has the potential to leapfrog the performance of existing

algorithms and aid in quicker time to convergence.

In this paper, we propose a novel and fast method for mini-

mization of Boolean logic functions using a graph-based machine

learning model (MinBLoG). This work aims to be a step towards

redesigning underlying synthesis methods by leveraging the ad-

vances of machine learning. The main contributions of the work

are as follows:

• Develop and train a graph attention network (GAT)model for

minimizing Boolean logic functions that predicts minimized

implicants with ∼96% accuracy.

• Develop robust correctness and coverage checking proce-

dures to ensure functional correctness of the results obtained

from the graph model prediction.

• Achieve over 40-100X faster average runtime compared to

Espresso [2] for a wide range of Boolean functions.

• MinBLoG delivers the minimization quality that is within

92% of well-known minimization tool Espresso [2] for a wide

range of benchmark functions.

2 Related Research

The process of synthesizing digital designs requires both technology

independent and dependent optimization steps of the combinational

logic function de�ned in the design. Technology independent opti-

mization attempts to minimize the number of variables and logic

operations required to represent the Boolean logic functions. This

minimization task deals with Boolean functions represented as ei-

ther sum-of-product (SoP) or product-of-sum (PoS) and is referred to

as Two-Level Logic Minimization. Throughout the years, two main

categories of logic minimization algorithms have been established.

Algorithms such as Quine-McCluskey method [11], Karnaugh-Map

clustering method [5] perform exact two-level minimization, deliv-

ering a global minimum solution (minimum cover). Another class

of heuristic algorithms, such as Espresso [2], MINI [10] and BOOM

[7], aim to speed up time-to-solution by leveraging pre-de�ned

heuristic to reduce the number of iterations needed to arrive at an

acceptable solution, sacri�cing the guarantee of a minimum cover.

A major drawback of both exact and heuristic algorithms is their

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Prianka Sengupta, Aakash Tyagi, Jiang Hu, Vivek K Rajan, Hesham Mostafa, and Somdeb Majumdar

worst-case computational complexity and runtime, which can grow

exponentially for Boolean functions with a large number of input

variables and product terms [4].

Multiple recent research contributions aim to leverage advance-

ments ofmachine learning to �nd compact representation of Boolean

logic. Boolformer [6] builds a transformer-based solution to �nd

compact representations of unknown logic functions when pro-

vided with a truth table of the function. While this may be useful in

the domain of design veri�cation, the solution is currently limited to

10 variables and does not guarantee functionally equivalent repre-

sentation for partially speci�ed functions. Di�erent representations

of logic networks such as And-Inverter-Graphs (AIG) [15] and Bi-

nary Decision Diagram (BDD) [3] have also been explored, along

with associated algorithms for achieving minimized representation.

Minimization of AIG using machine learning driven heuristics is

explored in the work ABC-RL [19] to decrease the node and depth

metrics using ABC [15]. Another relevant work GAMORA [17]

accurately identi�es known logic functions in a cluster of nodes

of an AIG. Although logic minimization was not explored in [17],

their approach could potentially allow replacing identi�ed func-

tions using optimized macros to reduce the number of nodes and

depth.

The literature in this domain shows a growing trend ofML heuris-

tics being used to improve existing logic minimization algorithms.

However, there is an evident lack of work that aims to replace

legacy iterative algorithms and solve runtime bottlenecks by using

machine learning to narrow down the solution search space. The

approach in MinBLoG moves away from iterative algorithms and

thus is able to overcome runtime challenges while maintaining

functional correctness.

3 Background

There are di�erent representations of Boolean logic functions, and

a set of terminologies are used to describe the function properties.

Some of the relevant terminologies and concepts are introduced in

this section.

3.1 Terminologies

The following terminologies are widely used in Boolean logic liter-

ature and is necessary to discuss the methodology.

Literal: The inverted or non-inverted version of a variable. Prod-

uct/Cube: A collection of literals joined by logical AND.

Sum-of-Product/SoP: A collection of cubes joined by logical OR.

Boolean functions are often represented in a SoP form.

Implicant: A cube that implies the value of a Boolean function. An

implicant may not contain all input variables.

Prime Implicant (PI): An implicant that is not contained by any

other implicant.

Cover: A set of implicants su�cient to de�ne a function. A function

can have more than one cover.

Minimal Cover: A cover of a function with irredundant prime im-

plicants which is not contained in any other cover.

Minimum Cover: A cover of a function with minimum number of

prime implicants and literals. This is the global minimum of the

function.

3.2 Boolean Functions and Minimization

Most common representations of Boolean functions are Sum-of-

Product (SoP) or Product-of-Sum (PoS) forms. The cubes in a SoP

function can be conveniently represented as a two-dimensional ma-

trix using Positional Cube Notation (PCN) [10]. SoP functions en-

coded as PCN matrices provide a computationally e�cient method

for various Boolean operations. A Boolean SoP function � consist-

ing of 3 cubes (2 = 3) and 3 variables (= = 3) is shown in equation

(1), along with its minimized form �ģğĤ .

� = G~I + Ḡ~I + ḠĪ �ģğĤ = ~I + ḠĪ (1)

Each literal of an SoP function is represented using the following

notation: • Non-inverted variables: 1 • Inverted variables: 0 and

• Don’t-Care variables: 2. Following this notation, the PCN repre-

sentation of � and �ģğĤ will be integer matrices of size 2 × = and

2ģ × = as shown in equation (2).

% =



1 1 1

0 1 1

0 2 0


%ģğĤ =

[
2 1 1

0 2 0

]
(2)

Here, %ģğĤ contains a smaller number of cubes 2ģ as well as literals

compared to % while being functionally equivalent.

3.3 Logic Functions as Graphs

In parallel to PCN, logic functions are also often represented as

graphs or trees to enable e�cient processing in Boolean algorithms

and logic synthesis. Some popular representations include Binary

Decision Diagrams (BDD)[3], And Inverter Graphs (AIG)[18] and

Majority Inverter Graphs (MIG) [1]. In this work we construct AIG

graphs from the PCN representation of an SoP function. For the

function in equation (1), we construct the graph shown in �gure 1.

Figure 1: Graph representation of the function � = G~I + Ḡ~I +

ḠĪ with prime implicants from �ģğĤ highlighted in green.

The graph consists of the input nodes G,~ and I, which are

progressively merged using logical AND nodes and inverting or

non-inverting edges to construct the cube expressions, denoted by

20 = G~I, 21 = Ḡ~I and 22 = ḠĪ. The merging of nodes is intention-

ally performed in a pairwise manner, instead of hierarchical manner

which would require a smaller number of nodes. A Pairwise Merged

Graph (PMG) contains intermediate nodes with unique literal com-

binations, yielding a useful set of node expressions. In �gure 1, it

MinBLoG: Minimization of Boolean Logic Functions using Graph A�ention Network MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

can be observed that the expressions of the prime implicants (PI)

from the minimized function �ģğĤ appears in the PMG nodes<0

and <1. To further establish this observation, we conducted an

empirical study by constructing PMGs from a varying number of

variables and cubes. For each graph, we check the percentage of PI

expressions present in the expression of the nodes. This probability

of �nding PI expression in nodes is highly dependent on the pair-

wise selection of input nodes for merging. We explored di�erent

node-pair selection schemes: a) Random select b) Moving window

of size 2 c) Odd-even index and d) Pair inverted literals with non-

inverted literals, with padding if necessary. Results of our empirical

study shows that option d) provides the best balance of node count

and probability of �nding the PI expressions in those nodes. The

results in �gure 2 shows the percentage of PI expressions found

in the PMG nodes for functions varying in size from 8 to 40 vari-

ables. For any larger functions with more variables, the number

of nodes PMG will increase, improving the probability of �nding

nodes with implicant expressions. Based on the observation that

Figure 2: Empirical analysis of node count in Pairwise Merge

Graph with respect to variables and cubes. It also shows aver-

age percentage of minimized implicant expressions present

in node expressions of PMG.

the PMG of a function contains nodes that represent the solution of

the minimization problem allows us to represent the minimization

task as a graph node classi�cation problem. Node classi�cation is

an established domain of ML, providing us with powerful learning

models that are well suited for this task.

4 Methodology

Minimizing an SoP function � is the process of computing a set

of implicants �ģğĤ that cover the set of cubes � of � . The set of

literals from �ģğĤ and � can be denoted by the sets !ģğĤ and !

respectively. There can be di�erent goals for technology indepen-

dent minimization: • Minimizing number of cubes: |�ģğĤ | < |� |

• Minimizing number of literals: |!ģğĤ | < |! | • Minimizing both

Cubes and Literals. An ideal minimization process should produce

a minimized SoP form �ģğĤ , containing a set of irreduntant prime

implicants necessary to cover � . If the PIs of �ģğĤ contain no re-

dundant literals, then it can be considered as a minimum cover of

� . Most heuristic driven minimization approaches such as Espresso

constructs minimal covers that may contain redundant literals. In

this work, we apply ML to identify PIs from the PMG representation

of SoP functions to construct a minimal cover and minimize the

number of literals required. Therefore, the quality of minimization

will largely depend on the availability of irredundant PI nodes in

the PMG and the accuracy of the GAT model to classify such PI

nodes. For a highly accurate model, any minor lapse or con�ict

in functional equivalency is corrected in the post-inference stage

without incurring signi�cant computational overhead.

4.1 Logic Optimization as an ML Task

Applying graph-based ML models to solve the logic optimization

problem reduces the computational complexity compared to exist-

ing iterative heuristics. An ML model yields results/predictions in

polynomial and signi�cantly shorter time. For example, the com-

putation complexity of inference for a trained Graph Attention

Network (GAT) model is $ (!E32) [9], where E is the number of

graph nodes, ! is the number of convolution layers, and 3 is the

feature vector size. Constructing the proposed approach requires

realizing a training pipeline with the following components.

Training Pipeline Components:

• A synthetic SoP function generator to create training samples

of PCN encoded functions of arbitrary variable and cube size.

• A method to construct Pairwise Merged Graph (PMG) from

PCN encoded SoP functions and compute node features. True

minimized implicants of training samples are used to label

nodes with class 0: Non-implicant nodes and class 1: mini-

mized implicant nodes.

• A graph attention network (GAT) to classify PI nodes (class

1) with an aim to minimize mis-prediction.

Once a graph model is trained, a simpler inference pipeline can

be constructed using the following components

Inference Pipeline Components:

• An input stage that accepts a PCN encoded SoP function and

constructs a PMG.

• An inference stage where the pre-trained graph model pre-

dicts a subset of nodes as class 1 (PI nodes).

• A correctness check to �lter out False-Positive (non-PI node

predicted as PI node) prediction and coverage check for False-

Negative (PI nodes predicted as non-PI nodes) prediction

and include missing implicant/terms in the �nal solution.

An overview of the training and inference pipeline is shown in

�gure 3. The details of each step are elaborated in the following

sections.

4.2 Generating Functions

A PCN encoded SoP function is represented as a 2×= matrix, where

2 is the number of cubes and = is the number of variables. A pro-

gram for generating SoP function was developed that can generate

single-output functions in PCN encoded format with controllable

distribution between ON-Set, OFF-Set and Don’t Care-Set. The

true minimized implicants of these functions were used to label

prime-implicant nodes for supervised learning.

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Prianka Sengupta, Aakash Tyagi, Jiang Hu, Vivek K Rajan, Hesham Mostafa, and Somdeb Majumdar

Figure 3: Overview of training and inference pipeline of MinBLoG.

4.3 Graph Representation

The maximum number of nodes required to construct a pairwise-

merge graph for PCNmatrix of size 2×= is deterministic and can be

easily calculated. Merging the = input nodes in a pairwise manner

for a single cube will require ; = = − 1 merging layers. After layer

1, each subsequent layer will contain 1 node less than the previous

one. Thus, the sum of nodes across all layers can be calculated as

equation (3):

�D14ĤĥĚěĩ = = + = − 1 + = − 2 + ... + = − ;

�D14ĤĥĚěĩ = =(= + 1)/2
(3)

The remaining cubes will share the input nodes and in the worst

case, will require =(= + 1)/2 − = nodes to implement the merging.

Therefore, the worst case bound for the number of nodes in a PMG

can be calculated as in equation (4):

%"�ĤĥĚěĩ = =(= + 1)/2 + (2 − 1)=(= + 1)/2 − =

This can be simpli�ed to

%"�ĤĥĚěĩ = 2=(= + 1)/2 − =

(4)

Considering the number of nodes required, the PMG construction

algorithm has complexity$ (2=2). However, in practice many nodes

can be reused between cubes and the actual observed complexity

has linear dependence on =, as seen in �gure 2.

4.3.1 Node Features. To enable a graph-based ML model, the SoP

graph nodes require meaningful features saved as vectors. The

following node features were computed for each node.

• Node Type Encoding (INPUT, AND).

• Number of outputs from the node.

• Distance from the input nodes.

• Number of variables, inverted variables, non-inverted vari-

ables and don’t care variables in native node expression

(#ěĮĦĨ).

• Result of checking if #ěĮĦĨ implies the original function.

The �rst three features are necessary to provide the GAT model

spatial knowledge of each node in a PMG. The 4th feature pro-

vides informs the model regarding the characteristics of the node

expression and last feature acts as a preliminary indication of non-

implying nodes that should not be considered as a PI node.

4.3.2 Node Labels. For specifying node labels, the #ěĮĦĨ is com-

pared against the true minimized-implicants to determine between:

• Class 1/PI nodes: Node expression contains a PI • Class 0/Non-PI

nodes: Node expression does not contain a PI. The GAT model was

trained to perform binary classi�cation to identify PI nodes.

4.4 GAT Model Training

A Graph Attention Network (GAT) [16] model was con�gured to

learn the binary node classi�cation task. The GAT model consisted

of 5 GAT convolution layers, 4 attention heads, 64 hidden layers

and target-to-source message propagation. The model was trained

with 5000 synthetically generated SoP functions and evaluated with

1000 unseen SoP functions.

4.5 Correctness and Coverage Check

SoP minimization is a deterministic task, and a correct solution

must ensure complete coverage of the ON-Set and avoid overlap

from the OFF-Set of the function de�ned in the = dimensional

Boolean space by the original function � . A solution can be correct

yet sub-optimal if the minimized SoP contains redundant literals or

cubes. In the context of the GAT model prediction, the following

unwanted outcomes can be expected:

• False Positive(FP): True=0, Pred=1

Wrongly predicts a non PI-node as a PI-node. These results

must be excluded from the solution.

• False Negative(FN): True=1, Pred=0

Wrongly predicts PI-node as non PI-node. The lapse in func-

tion’s coverage due to FN predictions must be amended.

Given the statistical nature of the GAT prediction process, False-

Negatives and False-Positives will occur during every inference.

The logical sequence of ensuring correctness is shown in �gure 4.

4.5.1 Filtering False-Positives. Wrongly predicted PI-node can be

detected by computing the intersection of the predicted implicant

MinBLoG: Minimization of Boolean Logic Functions using Graph A�ention Network MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Figure 4: Logical steps of correctness checking and coverage

amendments for a prediction set of implicants

against the original functions OFF-Set. If the intersection is not

empty, then the predicted implicant does not imply the Function.

In formal de�nition:

A predicted implicant ? is valid i� ?�̄ is un-satis�able

To perform this check, the input function must be inverted. Inver-

sion of a Boolean function is necessary when the O�-set is not

provided in the function’s PCN speci�cation. The O�-set can be

achieved e�ciently applying the unate recursive complement algo-

rithm [14] on the union of a function On-set and DC-set (if-any).

We implement a fast vectorized version of Boolean function inver-

sion and compute the result of ?�̄ to �lter out wrongly predicted

nodes. Although the worst-case runtime complexity of inversion

is $ (2Ĥ), the real-world complexity of our implemented function

was linear with =, resulting from e�cient tautology checks and

algebraic minimization heuristics used for early convergence.

4.5.2 Including False-Negative Coverage. When PI-nodes are pre-

dicted as non PI-nodes, the minimization solution will fail to cover

the ON-Set of the function. Fortunately, this lack of coverage can

be checked by inspecting how many of input cubes are covered

by the correctly predicted implicants. Any uncovered cubes can

be included as a part of the solution to ensure the coverage of the

solution. The computational complexity of checking coverage is

$ (2=) where 2 is the number of cubes and = is the number of vari-

ables. Although this approach degrades the minimization quality

of solution, the e�ect was not signi�cant in our experiments.

5 Experiment Results

5.1 Accuracy of GAT Model

The training of the GAT model was conducted using 5000 SoP

functions and their corresponding graphs. The node classes in the

training samples were imbalanced as there is large number of non

PI-nodes in each graph compared to PI-Nodes. This imbalance

was compensated with a dynamic class bias being applied while

computing the loss of each batch. The binary classi�cation metrics

for the GAT classi�er is shown in �gure 5.

Figure 5: The classi�cation metrics of the GAT classi�er for

classifying the nodes of PMGs from 1000 SoP functions

The success rate of the model in identifying minimized impli-

cants for large functions were also analyzed and can be seen in

�gure 6. For a set of function ranging from 50 to 200 variables

and 200 cubes, the model achieves >92% success rate of detecting

minimized-implicants.

Figure 6: The probability of the GAT model to correctly iden-

tify PIs in a function’s PMG. Higher identi�cation rate re-

duces time spent in subsequent correctness steps.

5.2 Runtime and QoR Results

The reduction of computational complexity and speeding up the

time to solution was one of the primary driving factors of this

research. Figure 7 shows the growth in runtime for the main com-

ponents of MinBLoG with respect to the number of literals of a

function, highlighting the graph building stage to be the largest

contributor to the overall runtime of MinBLoG.

The runtime and quality of minimization from MinBLoG was

compared against legacy logic minimization algorithm Espresso

[2] (Heuristic Mode), ABC[15], TTMin [8] and BOOM-II [7] as

well as recent works from [6], [19] using synthetic benchmarks of

di�erent function sizes. The type of the function was also varied

between • FR type: On-Set andO�-set are de�ned, • FD type: On-Set

and DC-set are de�ned and • F type: Only On-Set is de�ned. We

analyzed Espresso in both Exact and Heuristic mode and chose to

exlclude exact mode from the results as it required signi�cantly

longer runtime for most testcases and provided inconsistent literal

reduction compared to the heuristic mode. We also evaluated the

recent work Boolformer [6] and found its capability limited to

only 10 variables. Moreover, the results from Boolformer for the

functions were not functionally equivalent on many occurrences.

For each tool included in the results, we report a quality of results

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Prianka Sengupta, Aakash Tyagi, Jiang Hu, Vivek K Rajan, Hesham Mostafa, and Somdeb Majumdar

Figure 7: The growth of runtime formain components ofMin-

BLoG with respect to the number of literals (2D14×E0A801;4B).

(QoR) metric by calculating the ratio between original number

of literals and the number of literals in the minimized form. A

higher QoR number indicates a better literal reduction ratio. From

the results listed in table 1, it can be observed that the runtime

of Espresso increases rapidly for an increase in size of FR type

functions. Although this slowdown doesn’t occur for FD and F

type functions, the achieved QoR is subpar compared to MinBLoG.

Logic minimization in ABC [15] and ABC-RL [19] is treated as

an AIG node minimization problem and iterative re-structuring

of the AIG is performed to minimize the function. However, this

approach does not yield signi�cant literal reduction as seen in

the table 1. Boom-II delivers results only for FR type functions

and fails to reach QoR results compared to Espresso or MinBLoG.

MinBLoG is the only tool in the comparison that is able to provide

consistent literal reduction across all function types (FR, FD and F)

while being functionally correct. For large FR functions with 400

and 800 cubes, MinBLoG delivers results more than 40X and 100X

faster respectively. Therefore, it can be concluded that MinBLoG

outperforms the existing methods in runtime and yields better QoR

with functionally correct minimized results.

6 Conclusion

In this work we presented a Boolean logic minimization method

that relies on a graph attention network to identify minimized im-

plicants of Boolean logic functions. Using a graph representation

constructed from cubes of SoP functions, the trained GAT model is

able to identify minimal cover implicants for a function, while en-

suring functional correctness and coverage. The proposed method

delivers signi�cantly faster runtime over Espresso and more recent

methods while maintaining near ideal quality of result.

Table 1: Runtime and QoR Comparison of MinBLoG against existing solutions for a wide range of synthetic functions.

Testcases Espresso(H)[2] ABC[15] ABC-RL[19]1 BOOM-II[7]2 MinBLoG [This Work]

Func. Type Var/Cube Runtime(s) QoR Runtime(s) QoR Runtime(s) QoR Runtime(s) QoR Runtime(s) QoR

FR Type

On-Set &

O�-Set

100/400 548.6 100.7 16.5 2.0 1143.4 2.0 0.1 53.4 13.5 94.6

100/800 3625.4 91.4 31.4 2.0 1861.6 2.0 0.6 47.2 31.0 88.6

200/400 2520.0 283.0 48.8 2.0 3927.0 2.0 0.3 158.9 95.5 271.6

200/800 16651.8 278.4 74.5 2.0 6008.1 2.0 3.1 156.3 219.6 247.0

400/400 11574.5 704.2 142.8 2.0 Inde�nite

long runtime

0.3 395.4 779.3 664.2

400/800 Inde�nite long runtime 276.7 2.0 2.3 386.8 1792.4 595.7

Average 6984.1 291.5 98.5 2.0 3233.0 2.0 1.1 199.7 533.9 327.0

FD Type

On-Set &

DC-Set

100/400 0.4 1.7 19.5 1.7 489.7 1.6

FD Type Functions

are not supported

in BOOM-II

14.5 85.1

100/800 7.5 1.6 30.4 1.6 2392.0 1.5 33.4 75.0

200/400 0.9 1.6 60.6 1.6

Inde�nite

long runtime

98.4 230.5

200/800 41.5 1.8 120.7 1.8 226.2 211.0

400/400 2.9 1.74 162.2 1.7 794.9 528.7

400/800 1058.8 1.6 440.8 1.6 1828.3 487.9

Average 185.3 1.7 139.0 1.7 1440.8 1.2 549.1 269.7

F Type

On-Set

100/400 1.5 1.0 31.5 1.0 1483.6 1.0

F Type Functions

are not supported

in BOOM-II

14.1 82.5

100/800 67.5 1.0 70.5 1.0 4830.6 1.0 32.2 73.5

200/400 3.2 1.0 95.3 1.0

Inde�nite

long runtime

94.5 225.9

200/800 1120.8 1.0 335.3 1.0 217.5 215.3

400/400 569.3 1.0 319.0 1.0 872.8 523.4

400/800 Inde�nite long runtime 726.3 1.0 2007.5 492.7

Average 352.4 1.0 263.0 1.0 3157.1 1.0 588.2 268.9

* All runtime measured on system with AMD-5600G with 16GB RAM.
1 ABC-RL runtime are for multiple iterations till the literal reduction metric stops improving.
2 BOOM-II runs are conducted with literal reduction goals set to meet results achieved from Espresso.

MinBLoG: Minimization of Boolean Logic Functions using Graph A�ention Network MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Acknowledgments

This work is partially supported by NSF (CCF-2106725 and CCF-

2212346) and SRC (GRC-CADT-3013.001/3014.001).

References
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2016.

Majority-Inverter Graph: A New Paradigm for Logic Optimization. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 35, 5 (2016),
806–819. https://doi.org/10.1109/TCAD.2015.2488484

[2] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. McMullen,
and Gary D. Hachtel. 1984. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, USA.

[3] Randal E Bryant. 1992. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys (CSUR) 24, 3 (1992), 293–318.

[4] Ashok K. Chandra and George Markowsky. 1978. On the number of prime
implicants. Discrete Mathematics 24, 1 (1978), 7–11. https://doi.org/10.1016/0012-
365X(78)90168-1

[5] Olivier Coudert. 1994. Two-level logic minimization: an overview. Integration 17,
2 (1994), 97–140.

[6] Stéphane d’Ascoli, Samy Bengio, Josh Susskind, and Emmanuel Abbé. 2023.
Boolformer: Symbolic Regression of Logic Functions with Transformers. arXiv
preprint arXiv:2309.12207 (2023).

[7] Petr Fiser and Hana Kubátová. 2006. Flexible two-level Booleanminimizer BOOM-
II and its applications. In 9th EUROMICRO Conference on Digital System Design
(DSD’06). IEEE, 369–376.

[8] Petr Fiser and David Toman. 2009. A Fast SOP Minimizer for Logic Funcions
Described by Many Product Terms. In 2009 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools. IEEE, 757–764.

[9] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. SIGN: Scalable Inception Graph Neural
Networks. arXiv:2004.11198 [cs.LG]

[10] S. J. Hong, R. G. Cain, and D. L. Ostapko. 1974. MINI: A Heuristic Approach
for Logic Minimization. IBM Journal of Research and Development 18, 5 (1974),
443–458. https://doi.org/10.1147/rd.185.0443

[11] Jiangbo Huang. 2014. Programing implementation of the Quine-McCluskey
method for minimization of Boolean expression. arXiv:1410.1059 [cs.OH]

[12] Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu.
2022. DeepGate: Learning Neural Representations of Logic Gates. In Proceedings
of the 59th ACM/IEEE Design Automation Conference (San Francisco, California)
(DAC ’22). Association for Computing Machinery, New York, NY, USA, 667–672.
https://doi.org/10.1145/3489517.3530497

[13] Yingjie Li, Mingju Liu, Alan Mishchenko, and Cunxi Yu. 2023. Invited Paper:
Verilog-to-PyG - A Framework for Graph Learning and Augmentation on RTL
Designs. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD). 1–4. https://doi.org/10.1109/ICCAD57390.2023.10323741

[14] Giovanni De Micheli. 1994. Synthesis and Optimization of Digital Circuits (1st
ed.). McGraw-Hill Higher Education.

[15] Alan Mishchenko et al. 2007. ABC: A system for sequential synthesis and veri�-
cation. URL http://www. eecs. berkeley. edu/alanmi/abc 17 (2007).

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

[17] Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. 2023. Gamora:
Graph Learning based Symbolic Reasoning for Large-Scale Boolean Networks.
arXiv preprint arXiv:2303.08256 (2023).

[18] Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. 2017. Fast algebraic rewriting
based on and-inverter graphs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 9 (2017), 1907–1911.

[19] Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z Pan. 2020. Explor-
ing logic optimizations with reinforcement learning and graph convolutional
network. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for
CAD. 145–150.

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Prianka Sengupta, Aakash Tyagi, Jiang Hu, Vivek K Rajan, Hesham Mostafa, and Somdeb Majumdar

A Artifact Appendix

A.1 Abstract

The synthetically generated boolean functions used in this paper

are available online for use in any future research in this domain.

A.2 Description

A.2.1 How to access. The boolean function dataset cant be ac-

cessed at the following Zenodo link:

https://zenodo.org/doi/10.5281/zenodo.13307943

Additionally, a GitHub repository is made available for MinBLoG:

https://github.com/puprianka/minblog.git

A.3 Details of Dataset

The dataset contains synthetically generated boolean functions

in PLA format that can be used for testing runtime and QoR of

logic minimization approaches (e.g Espresso, BOOM, MinBLoG

etc.) The size of the functions ranges from 100 to 400 variables and

200 to 1000 cubes. The dataset is divided into three di�erent types

of boolean functions:

F-Type: Functions speci�ed using their ON-Set.

FR-Type: Functions speci�ed using their ON-Set and OFF-Set.

FD-Type: Functions speci�ed using their ON-Set and Don’t-Care-

Set (DC-Set).

The �lenames of the individual PLA �les indicate the size of the

function it contain. For example: fd_200_400-0.pla will contains an

FD type function with 200 variables and 400 cubes. The su�x 0 at

the end indicates it is the �rst of the 5 random functions generated

with 200 variables and 400 cubes.

	Abstract
	1 Introduction
	2 Related Research
	3 Background
	3.1 Terminologies
	3.2 Boolean Functions and Minimization
	3.3 Logic Functions as Graphs

	4 Methodology
	4.1 Logic Optimization as an ML Task
	4.2 Generating Functions
	4.3 Graph Representation
	4.4 GAT Model Training
	4.5 Correctness and Coverage Check

	5 Experiment Results
	5.1 Accuracy of GAT Model
	5.2 Runtime and QoR Results

	6 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description
	A.3 Details of Dataset

