
Flip-Flop Centric Incremental Placement for Simultaneous
Timing and Clock Network Power Optimization

Cristhian Roman-Vicharra
Texas A&M University

cristhianroman@tamu.edu

Yiran Chen
Duke University

yiran.chen@duke.edu

Jiang Hu
Texas A&M University
jianghu@tamu.edu

Abstract
Flip-�ops are simultaneously endpoints of combinational logic timing
paths and leaf nodes of clock networks. Hence, �ip-�op placement
signi�cantly a�ects both circuit timing and clock network power.
Previous works on �ip-�op clustering/placement are mostly based
on geometric models, which have limited accuracy for timing and
power estimation. Moreover, these methods cannot account for the
impact of clock tree synthesis parameters. In order to overcome this
drawback, we develop CNN-based circuit timing and clock network
power models. The CNN models are further applied to guide �ip-�op
centric incremental placement for simultaneous timing and clock
network power optimization. Experimental results on benchmark
circuits show that our method outperforms state-of-the-art previous
works on timing, power, and computation runtime.

CCS Concepts
• Hardware→ Electronic design automation.

Keywords
Clock network power, timing performance, co-optimization, place-
ment

1 Introduction
Apart from functional correctness, satisfactory timing performance
and low power dissipation are perhaps the two most important ob-
jectives for almost all digital IC designs. Flip-�ops play a critical role
in achieving both objectives due to their structural locations at the
boundary between combinational logic circuits and clock networks.
They are endpoints of circuit timing paths, and therefore �ip-�op
placement directly a�ects path delay as well as timing slack. At the
same time, �ip-�ops are leaf nodes of clock networks, which often
constitute the largest power consumer in many chip designs. Since
the number of clock bu�ers and clock network wirelength heavily
depends on �ip-�op locations, �ip-�op placement is also an e�ective
leverage for clock network power reduction.

Due to the importance of �ip-�op placement, there have been
numerous studies on �ip-�op clustering [2, 3, 6–10, 14–16]. Many
of these works aim to facilitate multi-bit �ip-�ops, which are sig-
ni�cantly more power-e�cient than unclustered �ip-�ops. Indeed,
remarkable clock network power reduction has been achieved in
these works. However, most of these works handle circuit timing in
a very conservative manner. Speci�cally, they move only �ip-�ops
while keeping all logic cells �xed. With this constraint, timing is
addressed by limiting �ip-�op moving ranges according to the timing
slacks prior to clustering. Thus, timing is merely addressed according
to the principle of “do-no-harm" instead of proactive optimization.
There are two drawbacks to this approach. First, �ip-�ops associated
with negative slacks cannot be moved although a movement may po-
tentially improve timing. Second, �xed logic cells restrict the degree
of freedom for �ip-�ops to be clustered. For example, in Figure 1(a),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685949

the �ip-�op movement is restricted to be within the red dotted box
due to limited timing slack and �xed logic cells. However, if the logic
cells can move as in Figure 1(b), the �ip-�op can be relocated out of
the box without degrading timing. Hence, moving logic cells allows
an increased chance for �ip-�ops to be clustered.

FFCell

C
e
ll

FF

Cell

C
e
ll

(a) (b)

Cell

C
e
ll

Cell

C
e
ll

Figure 1: (a) Conventional techniques where logic cells are
�xed and the movement of a �ip-�op is bounded (in the red
dotted box). (b) Our approach allows cells near �ip-�ops to
be moved, enabling the �ip-�op to move in a larger range for
better clustering.

In [7], timing is explicitly optimized along with �ip-�op clustering.
However, the timing model used in [7] is overly simpli�ed. Again,
this work only allows �ip-�ops to be moved while keeping all logic
cells �xed. Based on this simpli�cation, the timing between two se-
quentially adjacently �ip-�ops is estimated by the Euclidean distance
between them. The e�ectiveness of such estimation is restricted to
designs where timing paths in layout are monotone. The example
in Figure 2 illustrates a failure of this estimation. When the �ip-�op
locations are changed from Figure 2(a) to (b), the path wirelength as
well as delay are slightly increased although the distance between
the two �ip-�ops becomes smaller.

FF Cell Cell FF

FF

Cell Cell

FF

(a) (b)

Figure 2: From (a) to (b), the two �ip-�ops are closer but the
path delay is slightly increased.

It is observed that CTS (Clock Tree Synthesis) parameters may
cause signi�cant di�erences in timing and power even for the same
placement solution. Figure 3 shows the total negative slack and clock
network power for two circuits. Based on the same placement solu-
tion, CTS is performed on each circuit with three di�erent parameter
settings. However, this e�ect has been largely ignored in previous
works on �ip-�op clustering/placement.

In this work, we propose a new approach of Flip-�op Centric Incre-
mental Placement (FCIP) in an e�ort to overcome the drawbacks of
previous works. Given a global placement, our FCIP performs incre-
mental placement for �ip-�ops and a small subset of logic cells struc-
turally near �ip-�ops. Both circuit timing and clock network power
are explicitly optimized in FCIP. Moreover, machine learning models
that consider CTS parameters are constructed and employed in the
placement optimization. Experimental results on benchmark circuits
show that FCIP outperforms the state-of-the-art previous work on

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Roman-Vicharra et al.

Figure 3: Post-CTS (a) total negative slack and (b) clock network
power using the same placement solution with three di�erent
CTS parameter settings.

all of circuit timing, power and computation runtime. Although re-
lated, our FCIP is orthogonal to conventional �ip-�op clustering and
multi-bit �ip-�op generation techniques. The contributions of this
work are summarized as follows.

• This is the �rst incremental placement work optimizing both �ip-
�op and nearby logic cell locations for clock network power reduc-
tion, to the best of our knowledge.
• This is the �rst ML-based approach for simultaneous timing and
power optimization in placement, to the best of our knowledge.
• Our incremental placement can capture the e�ect of CTS (Clock
Tree Synthesis) parameters, which have not been considered in
previous works.
• Experimental results on benchmark circuits show that our FCIP
approach outperforms the state-of-the-art previous works in terms
of timing, power, and computation runtime.

2 Previous Related Works
An early work on �ip-�op placement is [11], where �ip-�ops are
attracted to Manhattan circles during cell placement according to
prescribed skew targets so that clock network size and power are
reduced. However, its solution evaluation is based on a very simple
power model. It also considers circuit timing in terms of Elmore delay
model, which may be far away from static timing analysis. The work
of [8] clusters �ip-�ops to formmulti-bit �ip-�ops. It considers timing
by enforcing wirelength bounds for fanin and fanout nets of �ip-�ops
while logic cells are �xed. As such, timing is not explicitly optimized
and it also causes 7.5% wirelength increase, which is signi�cant. This
work is extended in [16] to reduce the wirelength overhead. However,
timing is still simply considered through wirelength bounds for nets
incident to �ip-�ops without explicit optimization. In [15], �ip-�ops
are clustered using weighted K-means algorithm while timing is ad-
dressed by merely minimizing disturbance to the initial placement.
The work of [10] is also �ip-�op clustering based on K-means al-
gorithm and network �ow, and does not explicitly optimize timing
either. An ILP-based incremental �ip-�op placement method is de-
veloped in [14], where timing is not explicitly optimized either. A
heuristic [6] is proposed to merge �ip-�ops to formmulti-bit �ip-�ops
and no tradeo� with timing is considered. The work of [2] performs
�ip-�op clustering using mean shift algorithm, which leads to clock
power reduction and timing performance degradation. In [13], a tim-
ing driven placement technique is proposed to be compatible with
�ip-�op clustering. It demonstrates signi�cant timing improvement
without reporting power results. In [7], �ip-�ops are clustered for
optimizations of both power and timing. However, timing is eval-
uated with a geometric surrogate model, which is inaccurate. The
work of [12] involves both clock and combinational logic domains.
It is a useful skew optimization technique with focus on circuit tim-
ing while clock network power is not considered. In [3], a slack
redistribution technique is introduced to improve timing of �ip-�op
clustering methods. However, the improvement is limited. Recently,
a new heuristic is proposed in [9] for �ip-�op clustering and demon-
strates encouraging results. Overall, existing approaches either do
not explicitly optimize timing or use overly simpli�ed models.

3 Overview and Problem Formulation
Given a global placement solution, our FCIP incrementally places
�ip-�ops and a subset of logic cells that are structurally near �ip-�ops
such that a linear combination of Clock Network Power (CNP) and the
absolute value of TNS (Total Negative Slack) is minimized subject to
cell density constraints. The circuit is represented by a graph� (+ , �),
where + is the set of cells including �ip-�ops and � indicates the set
of nets. The cells are partitioned into three disjoint subsets +ĂĂ for
�ip-�ops,+ģę for movable logic cells and+Ĝ ę for �xed logic cells, i.e.,

+ = +ĂĂ ∪+ģę ∪+Ĝ ę . The movable logic cells are those within :-hops

from any �ip-�ops in the circuit graph, where : is a parameter. The
decision variables are p = (x, y), the location vectors for all �ip-�ops
and movable cells +ĂĂ ∪+ģę . The entire layout region is tessellated
into a 2D array of bins � and dĘ represents the cell density in a bin
1 ∈ �. Then, the FCIP problem is formulated as

min
p

¨(p) = U% (p) + (1 − U) |) (p) |

subject to dĘ f dģėĮ ,∀1 ∈ �,

Wwhere % (p) is the total clock network power,) (p) is the TNS, dģėĮ
is the upper limit for bin cell density, and U is a weighting factor for
the tradeo� between clock network power and TNS. TNS and power
values are normalized before being added together. Please note that
wirelength is implicitly captured in the timing model. Moreover, the
overall impact on the wirelength from an incremental placement is
small. As shown in Figure 4, placement legalization and CTS (Clock
Tree Synthesis) are subsequently performed. The �nal solutions are
evaluated according to post-CTS timing and power analysis.

Global Placement
RePlAce

Flip-flop Centric
Incremental Placement

Placement
Legalization

Clock Tree
Synthesis

Figure 4: FCIP (Flip-�op centric incremental placement) in a
design �ow.

4 The Proposed FCIP Method
In this section, we describe machine learning models for clock net-
work power and post-CTS TNS estimation, and the FCIP optimization
method.

4.1 Machine Learning Models for Power and
Timing Estimation

Given a global placement solution, the machine learning models are
to estimate clock network power and post-CTS TNS resulting from
the placement. We employ CNN (Convolutional Neural Network)
models for two reasons. First, the model is preferred to be di�er-
entiable so that it can provide gradients in solving the nonlinear
programming problem of FCIP. Therefore, decision tree-based mod-
els, such as random forest and XGBoost, and SVM (Support Vector
Machine) are excluded, despite their popularity. Second, it should
provide adequate accuracy and CNNs are shown to be more accurate
than other di�erentiable models such as linear regression.

Figure 5: CNN architectures for (a) clock network power and
(b) post-CTS TNS estimation.

The CNN architectures for clock network power and post-CTS
TNS estimation are depicted in Figure 5. The power model consists
of 2 convolution layers, a max-pooling layer, a batch normalization

FF Centric Incremental Placement for Simultaneous Optimization MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

layer, and 3 fully connected (FC) layers. Similarly, the timing model
consists of 2 stages of 2 convolution and a max-pooling layers, a
batch normalization layer, and 4 FC layers. In both models, we use
the recti�ed linear unit (ReLU) function for the FC layers. Layout-
related spatial features are fed into the convolution layers, while
non-spatial features, such as CTS parameters, are directly fed to FC
layers. The outputs provide regression results of power and timing
estimation.

4.2 Clock Network Power Model Features
Feature selection plays a critical role in the e�ectiveness of a ma-
chine learning model. The model features for clock network power
estimation are summarized as follows.

• Flip-�op placement density distribution. Evidently, clock network
power heavily depends on �ip-�op distributions. For the same
number of �ip-�ops occupies the same area, clustered �ip-�ops
lead to smaller clock network power than uniformly distributed
�ip-�ops. The �ip-�op density is described in the same way as cell
density in RePlAce [4] such that the density function is di�eren-
tiable with respect to �ip-�op locations. If the entire layout region
is tessellated into a 2D array of bins �, then the �ip-�op density of
a bin 1 ∈ � is described by

�ĂĂ (1, p) =
∑

ĂĂğ ∈Ę

@ğkğ , (1)

where @ğ is the electric charge proportional to the area of �ip-�op
��ğ , andkğ the electric potential of �ip-�op ��ğ . The bin densities
form a 2D array similar to an image feature for CNN.
• Density function � (1, p) for all cells including �ip-�ops, movable
logic cells and �xed logic cells. Although logic cells are not part
of a clock network, they present placement congestion that may
a�ect clock bu�er placement. This density function also forms a
2D array and can be treated as an image.
• The CTS parameter values form a one-dimension vector and serve
as additional features fed to an FC layer in the CNN.

4.3 Timing Model Features
There are two important features for the timing (TNS) model: spatial
and path-based.

• The spatial feature associates placement with timing criticality of
each net. For each net 4 ∈ �, its driver resistance is denoted by 'ě
and its total sink capacitance is represented by �ě . Let 3ě,0 be the
logic depth from this net to its source �ip-�op and 3ě,Ġ , 9>0 be the
logic depth from the 9Īℎ sink of net 4 to the destination �ip-�op,
then the logic path length of net 4 is de�ned by

!ě = 3ě,0 +max(3ě,1, 3ě,2, · · ·).

The HPWL (Half-Perimeter Wire-Length) of each net 4 is estimated
in the same way as in RePlAce [4], and its G-coordinate component
is given by

,ě (p) =

∑
ğ∈ě Gğ exp(Gğ/W)∑
ğ∈ě exp(Gğ/W)

−

∑
ğ∈ě Gğ exp(−Gğ/W)∑
ğ∈ě exp(−Gğ/W)

,

where Gğ is the G-coordinate of pin 8 in the net and W is a smoothing
factor. Please note that this function is di�erentiable with respect
to cell locations. Then, the spatial feature of net 4 ∈ � is given by

�ě (p) = !ě · 'ě ·�ě ·,ě (p). (2)

To a certain degree, this represents a net wirelength weighted by its
timing criticality. For each placement bin 1 ∈ �, the spatial feature
is given by

� (1, p) =
∑

ě overlap Ę∈þ

Wě (1) · �ě (p), (3)

whereWě (1) shows the proportion of net bounding box of 4 overlap-
ping with 1 ∈ �. Nets incident to only �xed cells are also included

in the model as context. Even the same features of movable cells
may result in di�erent timing estimates in di�erent contexts.
• The path-based feature for a single path is de�ned as

�ĦėĪℎ (p) =
∑

ě∈ĦėĪℎ

'ě ·�ě ·,ě (p) (4)

We extract the top- timing critical paths according to timing
analysis from the initial global placement solution and feed the
features of these paths to an FC layer in the CNN model.
• The CTS parameter values serve additional features fed to an FC
layer since clock skew a�ects circuit timing.

4.4 Simultaneous Timing and Power
Optimization

The FCIP problem formulated in Section 3 is solved using a gradient
descent heuristic with backtracking. Starting from an initial global
placement solution, �ip-�ops and movable cells are moved iteratively.
In each iteration, the gradients of the objective function ¨(p) with
respect to coordinates of+ĂĂ and+ģę are computed according to the
CNN models and the chain rule. Next, �ip-�ops and movable cells
are moved in the negative direction of the gradients with certain
step sizes. Movable cells structurally farther away from �ip-�ops are
moved with smaller step sizes to limit perturbation to the initial solu-
tion. If these moves cause a violation of the bin cell density constraint
dĘfdģėĮ , some cell moves are backtracked till the constraint is sat-
is�ed. Once feasible moves are committed, the algorithm proceeds to
the next iteration. The iterations terminate when the gradients are
su�ciently small.

4.4.1 Power gradient computation. First, the gradient of clock net-
work power % (p) with respect to features �ĂĂ (1, p) and � (1, p)
are obtained as ∇ĀĂĂ

% (1, p) and ∇Ā% (1, p), respectively, for all bins
1 ∈ � through backpropagation in the CNN.

For a cell Eğ ∈ +ĂĂ∪+ģę , which is located in bin 1 ∈ �, its corre-
sponding power gradient with respect to its G-coordinate is obtained
according to the chain rule as

∇Įğ% (p) =
m�ĂĂ (1, p)

mGğ
· ∇ĀĂĂ

% (p) |Ę +
m� (1, p)

mGğ
· ∇Ā% (p) |Ę

where ∇ĀĂĂ
% (p) |Ę is the power gradient with respect to feature

�ĂĂ (1, p) for bin 1. In the electrostatic analogy from RePlAce, the
gradient of the potential energy is di�erentiable and computed as

m� (1, p)

mGğ
= −@ğEx (1),

where Ex is the horizontal electric �eld in bin 1 ∈ �. The gradients
for ~-coordinates of �ip-�ops and movable cells are computed in the
same way.

4.4.2 Timing gradient computation. Similarly, the gradient of TNS
with respect to the G-coordinate of cell Eğ ∈ +ĂĂ ∪+ģę is obtained by

∇Įğ) (p) =
m� (1, p)

mGğ
· ∇Ă) (p) |Ę +

m�ĦėĪℎ (p)

mGğ
· ∇ĂĦėĪℎ) (p),

where 1 indicates the bin for Eğ and ∇Ă) (p) |Ę is the timing gradi-
ent with respect to feature � (1, p) in bin 1. Using the de�nitions in
Section 4.3, we calculate the derivative of � (p) as

m� (1, p)

mGğ
=

∑

ě overlap Ę

Wě (1) · !ě · 'ě ·�ě ·
m,ě (p)

mGğ
,

and the derivative
ĉĂĦėĪℎ (p)

ĉĮğ
=

∑
ě∈ĦėĪℎ 'ě ·�ě ·

ĉēě (p)
ĉĮğ

, where
ĉēě (p)
ĉĮğ

is computed in the same way as in RePlAce and is 0 if net 4 does not
contain Eğ .

The overall algorithm of our FCIP heuristic is outlined in Algo-
rithm 1. Line 1 implies that we ensure that the cell density after FCIP
does not exceed that of the initial placement. Lines 4-6 check the
termination criteria for the iterations. Lines 7-10 compute the power

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Roman-Vicharra et al.

and timing gradients with respect to cell locations, where subscripts
5 and ? indicate features and placement, respectively. The overall
gradient is calculated in line 12. Line 13 moves each cell, and where
?ğ indicates (Gğ , ~ğ) for cell Eğ . Note that the step size is scaled by

2−ġğ , where :ğ is the number of graph hops from Eğ to its nearest
�ip-�op. Although we allow some logic cells to move, we restrict the
moving range if a cell is not structurally close to a �ip-�op. This is to
limit perturbation to the initial solution, which has been optimized
for wirelength minimization. Lines 15-22 enforce the cell density
constraint. If the cell density of a bin exceeds dģėĮ , we backtrack the
locations of the cells in the bin one by one till the density constraint
is satis�ed.

Algorithm 1 FCIP (Flip-�op Centric Incremental Placement)

Input: Initial placement p0, step size [, weight U , max iterations
9ģėĮ

Output: Optimized placement pĥĦĪ

1: dģėĮ ← max_density(p0) ² Density of initial placement
2: 9 ← 0 ² Iteration index
3: while 9 f 9ģėĮ do
4: if gradient is su�ciently small then
5: return pĥĦĪ ← pĠ

6: end if
7: ∇Ĝ %←backpropagation(% (pĠ)) ² Gradients w.r.t. features

8: ∇Ĝ)←backpropagation() (pĠ))

9: Compute ∇p% (p
Ġ) ² Gradients w.r.t. placement

10: Compute ∇p) (p
Ġ)

11: for each Eğ ∈ +ĂĂ ∪+ģę do ² Update cell locations
12: ∇Ħğ¨(p

Ġ) ← U∇Ħğ% (p
Ġ) + (1 − U)∇Ħğ) (p

Ġ)

13: ?ġ+1ğ = ?ġğ − [· 2
−ġğ · ∇Ħğ¨(p

Ġ) ² :ğ hops from FF
14: end for
15: for each 1 ∈ � do ² Enforce density constraint
16: 8 ← 1 ² Index of cells in 1
17: while dĘ > dģėĮ do

18: ?
Ġ+1
ğ ← ?

Ġ
ğ ² ?ğ is location of cell Eğ

19: 8 ← 8 + 1
20: Update dĘ
21: end while
22: end for
23: end while
24: return pĥĦĪ ← pĠģėĮ

5 Experiments

5.1 ML Model Training and Testing Data
The machine learning model training and testing data are generated
based on 14 circuit designs in the IWLS 2005 benchmarks [1] using
45=< technology. These designs are in the top 14 rows of Table 1.
For each design, two logic synthesis results are obtained through
Synopsys Design Compiler using di�erent parameter settings. Subse-
quently, 30 placement results (unclustered solutions) are generated
for each synthesis solution using Cadence Innovus with di�erent
parameter values. For 30 of the placement solutions, 9 �ip-�op clus-
tered solutions are generated according to the K-means algorithm
as [15] using di�erent parameter values. Each clustered solution is
then perturbed through data augmentation techniques to produce 10
perturbed solutions. Each unclustered solutions is sent to Cadence
Innovus to acquire 128 CTS solutions using di�erent parameter val-
ues, while each clustered-perturbed solution to acquire a single CTS
solution. In total, there are 2×30×128 + 30×9×(1+10)=10650 data
samples per design. However, the leon2 design has 1416 data samples
due to the extended data generation time, following the same pro-
cedure as the other designs. Consequently, the total number of data
samples amounts to 139866. Among these 14 designs, 11 are used for

model training and validation during the training procedure, while
the remaining 3 are for testing (boldface in Table 1). Thus, training
and testing data are strictly separated.

Table 1: Designs for ML model and optimization: Top 11 for
model training, middle 3 (in boldface) for model testing, and
bottom 7 for testcases of optimization.

Nestlist 1 Netlist 2
Design # FFs # Total # FFs # Total
aes_core 530 15,906 530 15,529
des3_area 128 1,865 128 1,833
mem_ctrl 1,065 4,078 1,083 4,182
systemcaes 670 4,932 670 4,975
systemcdes 190 2,444 190 2,401

tv80 359 5,851 359 5,758
usb_funct 1,745 8,951 1,746 8,356
vga_lcd 17,057 56,441 17,079 56,266

wb_conmax 770 25,881 770 24,679
wb_dma 523 2,470 563 2,581
leon2 364,521 513,965 -

ac97_ctr 2,199 7,279 2,199 6,975
ethernet 10,544 38,998 10,544 37,971

pci_bridge32 3,315 11,296 3,359 11,128
des_perf 8,808 13,139 -

leon3-avnet 451,560 636,525 -
leon3mp 265,666 374,494 -
netcard 248,453 346,249 -

5.2 Power and Timing Model Performance
The performance of the machine models is evaluated using the MSE
(Mean Squared Error) and the coe�cient of determination (R2) met-

rics on the testing dataset. MSE is de�ned as"(�= 1
Ĥ

∑Ĥ
ğ=1 (~ğ−~̂ğ)

2,
where ~ğ is the ground truth in the testing dataset and ~̂ğ is the
prediction by the model. The R2 coe�cient is de�ned as '2=1 −∑Ĥ
ğ=1 (~ğ−~̂ğ)

2/
∑Ĥ
ğ=1 (~ğ−~̄)

2, where ~̄ is the mean of ground truth
values in the testing dataset.

Table 2: Performance of CNN and linear regression models.

Design Model
Power Timing

MSE R2 MSE R2

ac97_ctrl
CNN 0.224 0.937 0.905 0.958

Linear R. 0.738 0.793 3.519 0.836

ethernet
CNN 0.256 0.890 1.099 0.924

Linear R. 0.784 0.663 4.153 0.713

pci_bridge32
CNN 0.253 0.926 1.012 0.953

Linear R. 0.782 0.771 3.604 0.832

Average
CNN 0.244 0.918 1.005 0.945

Linear R. 0.768 0.742 3.759 0.794

We compared our proposed CNN models with linear regression
models, an alternative di�erentiable model, and the results are shown
in Table 2. Evidently, CNN signi�cantly outperforms linear regression
in terms of both MSE and R2 coe�cient, con�rming our choice of
CNN as architecture for our power and timing models. The total CNN
training time for the timing model is approximately 2.4 hours, while
for the power model it is 0.6 hours, using an NVIDIA GeForce MX130
GPU during the training procedures. The CNN and linear regression
models are implemented using PyTorch and scikit-learn libraries in
Python language, respectively.

5.3 Optimization Testcases and Experiment Setup
The three testing designs with the �rst synthesis parameters (netlist 1
and boldface) and four designs at the bottom of Table 1 are employed
for evaluating the following four placement optimization techniques.

FF Centric Incremental Placement for Simultaneous Optimization MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

• Baseline: RePlAce [4], a state-of-art placer, is used for global place-
ment of a design to obtain the initial placement solution. Then, the
solution is legalized and used as the baseline.
• Our FCIP is performed upon initial global placement solutions
obtained through RePlAce and then legalized. The step size [is
typically set to 0.001, timing critical paths to 30, hop :ğ to {2,3,4}
and max iteration 9ģėĮ to [100,200] based on the design size. The
feature extraction, chain-rule computation, and gradient-based
optimizer are implemented using C++ language.
• FCIP-P is a variation of FCIP that aims to optimize clock net-
work power without degrading post-CTS TNS. It is performed
upon initial global placement obtained from RePlAce, followed by
legalization of the solution.
• W-Kmeans [15], is a previous work of �ip-�op clustering based
on an initial global placement, which is RePlAce. The placement
solution after clustering is also legalized.
• FLA [7] is a state-of-the-art previous work that optimizes both
timing and power, although it employs a very simple timing model.
Its ILP (Integer Linear Programming) is solved using the Gurobi
solver. The solutions after FLA are legalized.

The legalization for all methods is obtained by OpenDP [5]. CTS is
performed using Cadence Innovus for all legalized solutions. The
CTS parameters used in the models and CTS procedure are max skew,
max fanout, max cap trunk, max cap leaf, max trans trunk, max trunk
leaf, and max latency. All timing and power results are based on
post-CTS analysis using Innovus. The experiments were run on an
Intel Core i7-1065G7 CPU 1.3GHz with 16GB RAM.

5.4 Main Results on Timing and Power
Optimization

Table 3 shows the results for the four methods FCIP, FCIP-P, W-
Kmeans and FLA. The results indicate that our FCIP and FCIP-P
introduce almost similar disturbance compared to FLA [7], and much
less than W-Kmeans [15]. Our FCIP and FCIP-P achieve average sav-
ing in clock network power of 9.4% and 14.1%, respectively, compared
to 7.3% for FLA and 5.3% for W-Kmeans. In terms of post-CTS TNS,
our FCIP shows an average improvement of 15.9%, while FLA of 8%
andW-Kmeans of 8.9%. Our FCIP disturbs the HPWL in the initial so-
lution by an average of 2%, while FLA of 1.9% (a similar amount) and
W-Kmeans of 3.5%. In FCIP-P, the timing improvement is constrained
using the weighting factor U , allowing for an additional 4.7% saving
in clock network power over FCIP at the cost of a small increment of
HPWL. In terms of CPU runtime, our FCIP is 3× faster than FLA and
takes slightly more time than W-Kmeans.

5.5 Importance of CTS Parameters for
Timing/Power Optimization

CTS parameters are included in the features for our CNN-based tim-
ing and power models. To demonstrate the importance of including
CTS parameters, we compare optimizations with CNN models that
do not use CTS parameters in the following variants.

• FCIP-woCTS. Only the CTS parameters are skipped in the CNN
models while keeping everything else the same as in FCIP. Please
note that one placement solution leads to multiple CTS solutions
with di�erent parameters in training data.
• FCIP-1train-sameCTS. Similar to FCIP-woCTS, except that only
one CTS solution is used for each placement in the training. The
CTS parameters in the �nal solution evaluation are the same as
those in the training data.
• FCIP-1train-di�CTS. Similar to FCIP-woCTS, except that only one
CTS solution is used for each placement in the training. The CTS
parameters in the �nal solution evaluation are di�erent from those
in the training data.

The normalized average results for three circuits are shown in Fig-
ure 6. It can be seen that FCIP-woCTS worsens WNS, TNS, and clock

network power. Training models with multiple CTS solutions for a
single placement solution means that one set of features corresponds
to di�erent labels, making model training di�cult and ine�ective.
The results from FCIP-1train-di�CTS are also poor as the CTS param-
eters in the �nal solution evaluation are di�erent from those in the
training. Although the results of FCIP-1train-sameCTS are good, its
use is highly restrictive, requiring CTS parameters in a design �ow
to be �xed and the same as those in the model training data. Overall,
FCIP produces the best results with much better �exibility.

Figure 6: Comparing results using timing and power models
without CTS parameters as features.

5.6 Power-Timing Tradeo�
We study the impact of the weighting factor U on post-CTS TNS and
clock network power across optimization iterations in Figure 7 for the
design ac97_ctrl. In the timing-only mode, where U=0, the absolute
value of TNS decreases over iterations and eventually reaches 12.86ns
in TNS, while the power increases from 5.75 to 5.92mW. On the
other hand, the power-only mode achieves a power reduction to
4.85mW at the cost of worsening TNS from −24.20 to −25.49. The co-
optimization mode (U=0.45) achieves results in between the timing-
and power-only modes.

Figure 7: Optimization of design ac97_ctrl in timing-, power-
only and co-optimization modes.

In Figure 8, we present the timing-power tradeo� for two designs
(ac97_ctrl and ethernet) obtained through our FCIP by varying the
weighting factor U and hops : , which is the max-hop-distance from
movable cells to a �ip-�op. The tradeo� curves are also compared
with solutions from alternative methods. In most times, our FCIP
solutions dominate those of the baseline, W-Kmeans and FLA. Setting
:=0 is similar to many previous works where all logic cells are �xed.
It is evident that allowing some logic cells to move generally improves
solution quality. The knee-point solutions are usually around U=0.5.
On the other hand, increasing the hops : would eventually degrade
the solution quality in both timing and power.

5.7 Impact of Step Size [in Results
The step size [is an important parameter that determines the conver-
gence and the number of iterations in the gradient search. Figure 9
shows that there is a sweet spot around [=0.001, which is adopted in
FCIP, and either smaller or larger step size [degrades both timing
and power results.

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Roman-Vicharra et al.

Table 3: Optimization results of post-CTS TNS and clock network power for 7 designs in the IWLS 2005 benchmark.

Design Method
HPWL Timing (ns) Power (mW) CPU
(×108) WNS TNS Clock net. Total (sec)

ac97_ctrl

Baseline 1.54 -0.039 -24.198 5.75 12.47 -
FCIP 1.58 -0.026 -15.093 5.28 12.09 25
FCIP-P 1.57 -0.037 -23.864 4.91 11.62 26
W-Kmeans 1.59 -0.050 -27.620 5.43 12.38 10
FLA 1.56 -0.030 -20.298 5.35 12.09 15

ethernet

Baseline 8.36 -0.320 -64.169 45.19 267.56 -
FCIP 8.60 -0.199 -53.715 40.13 263.43 63
FCIP-P 8.58 -0.316 -63.679 37.94 256.82 60
W-Kmeans 9.02 -0.268 -71.146 42.91 269.00 28
FLA 8.53 -0.252 -60.196 41.58 265.72 72

pci_bridge32

Baseline 3.52 -0.076 -6.193 5.60 20.33 -
FCIP 3.62 -0.058 -4.708 4.80 19.71 33
FCIP-P 3.64 -0.073 -6.142 4.59 19.34 35
W-Kmeans 3.65 -0.107 -7.671 5.31 22.16 20
FLA 3.60 -0.068 -5.689 4.98 20.25 56

des_perf

Baseline 6.71 -0.086 -67.100 28.21 149.03 -
FCIP 6.82 -0.074 -57.290 24.50 145.48 44
FCIP-P 6.85 -0.083 -66.719 23.39 144.56 39
W-Kmeans 6.86 -0.092 -71.367 25.69 146.56 23
FLA 6.83 -0.079 -60.164 25.63 146.07 64

netcard

Baseline 45.33 -1.463 -676.470 202.75 495.88 -
FCIP 45.81 -1.204 -611.823 187.12 482.04 337
FCIP-P 45.84 -1.461 -672.392 174.29 466.73 311
W-Kmeans 46.16 -1.497 -697.182 192.84 485.17 295
FLA 45.92 -1.292 -619.861 188.61 483.26 1024

leon3mp

Baseline 50.27 -1.655 -738.824 289.71 633.51 -
FCIP 51.32 -1.529 -698.831 270.38 615.92 356
FCIP-P 51.71 -1.638 -735.525 257.89 604.26 344
W-Kmeans 52.19 -1.691 -754.973 275.97 619.98 312
FLA 51.89 -1.576 -709.187 274.30 618.46 1270

leon3-avnet

Baseline 89.17 -1.920 -1718.146 498.48 1102.67 -
FCIP 90.24 -1.817 -1656.362 475.31 1081.25 517
FCIP-P 90.51 -1.917 -1711.384 459.11 1064.38 502
W-Kmeans 91.16 -1.948 -1751.285 482.76 1087.19 496
FLA 90.72 -1.892 -1665.731 480.92 1085.63 1792

Norm. Average

Baseline 1 1 1 1 1 -
FCIP 1.020 0.799 0.841 0.906 0.975 1
FCIP-P 1.022 0.978 0.993 0.859 0.953 0.958
W-Kmeans 1.035 1.092 1.089 0.947 0.988 0.861
FLA 1.019 0.884 0.920 0.927 0.982 3.122

Figure 8: Power-timing tradeo� when varying the factor U
from 0 to 1 and the hops : in FCIP for (a) ac97_ctrl and (b)
ethernet designs.

6 Conclusions and Future Research
Flip-�op placement signi�cantly a�ects both circuit timing and clock
network power. Previous works are mostly focused on power re-
duction and handle timing in a very conservative manner. We pro-
pose a simultaneous timing and clock network power optimization
technique integrated with �ip-�op centric incremental placement.
The optimization is guided by machine learning models, enabling
post-CTS timing and power estimation and capturing the e�ect of

Figure 9: Optimization results for ethernet design using several
values of step size [.

CTS parameter setting. Experimental results on benchmark circuits
show that the proposed method signi�cantly outperforms the state-
of-the-art previous works in terms of timing, power and computation
runtime. In future research, we will integrate FCIP with multi-bit
�ip-�op generation to obtain further power reduction.

Acknowledgments
This work is partially supported by NSF (CCF-2106725 and CCF-
2212346) and SRC (GRC-CADT-3013.001/3014.001). We thank Mr.
Hailiang Hu for discussions throughout this work.

FF Centric Incremental Placement for Simultaneous Optimization MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

References
[1] Christoph Albrecht. 2005. IWLS 2005 benchmarks. In International Workshop for

Logic Synthesis (IWLS), Vol. 9.
[2] Ya-Chu Chang, Tung-Wei Lin, Iris Hui-Ru Jiang, and Gi-Joon Nam. 2019. Graceful

register clustering by e�ective mean shift algorithm for power and timing balancing.
In Proceedings of the 2019 International Symposium on Physical Design. 11–18.

[3] Yen-Yu Chen, Hao-Yu Wu, Iris Hui-Ru Jiang, Cheng-Hong Tsai, and Chien-Cheng
Wu. 2024. Slack Redistributed Register Clustering with Mixed-Driving Strength
Multi-bit Flip-Flops. In Proceedings of the 2024 International Symposium on Physical
Design. 21–29.

[4] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. 2018.
Replace: Advancing solution quality and routability validation in global placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38,
9 (2018), 1717–1730.

[5] SangGi Do, MingyuWoo, and Seokhyeong Kang. 2019. Fence-Region-Aware Mixed-
Height Standard Cell Legalization. In Proceedings of the 2019 on Great Lakes Sympo-
sium on VLSI (Tysons Corner, VA, USA) (GLSVLSI ’19). Association for Computing
Machinery, New York, NY, USA, 259–262. https://doi.org/10.1145/3299874.3318012

[6] Chaochao Feng, Daheng Yue, Zhenyu Zhao, and Zhuofan Liao. 2018. A param-
eterized timing-aware �ip-�op merging algorithm for clock power reduction. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
881–884.

[7] Chau-Chin Huang, Gustavo Tellez, Gi-Joon Nam, and Yao-Wen Chang. 2020. Latch
Clustering for Timing-Power Co-Optimization. In 2020 57th ACM/IEEE Design
Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.9218617

[8] Iris Hui-Ru Jiang, Chih-Long Chang, and Yu-Ming Yang. 2012. INTEGRA: Fast
multibit �ip-�op clustering for clock power saving. IEEE Transactions on computer-
aided design of integrated circuits and systems 31, 2 (2012), 192–204.

[9] Andrew B Kahng, Sayak Kundu, and Shreyas Thumathy. 2024. Scalable Flip-Flop
Clustering Using Divide and Conquer For Capacitated K-Means. (2024).

[10] Andrew B Kahng, Jiajia Li, and LutongWang. 2016. Improved �op tray-based design
implementation for power reduction. In 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–8.

[11] Yongqiang Lu, CN Sze, Xianlong Hong, Qiang Zhou, Yici Cai, Liang Huang, and
Jiang Hu. 2005. Register placement for low power clock network. In Proceedings of
the 2005 Asia and South Paci�c Design Automation Conference. 588–593.

[12] Yi-Chen Lu, Wei-Ting Chan, Deyuan Guo, Sudipto Kundu, Vishal Khandelwal,
and Sung Kyu Lim. 2023. RL-CCD: Concurrent clock and data optimization using
attention-based self-supervised reinforcement learning. In 2023 60th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[13] Dimitrios Mangiras, Apostolos Stefanidis, Ioannis Seitanidis, Chrysostomos
Nicopoulos, and Giorgos Dimitrakopoulos. 2019. Timing-driven placement opti-
mization facilitated by timing-compatibility �ip-�op clustering. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2019), 2835–
2848.

[14] Ioannis Seitanidis, Giorgos Dimitrakopoulos, Pavlos Mattheakis, Laurent Masse-
Navete, and David Chinnery. 2017. Timing driven incremental multi-bit register
composition using a placement-aware ILP formulation. In Proceedings of the 54th
Annual Design Automation Conference 2017. 1–6.

[15] Gang Wu, Yue Xu, Dean Wu, Manoj Ragupathy, Yu-yen Mo, and Chris Chu. 2016.
Flip-�op clustering by weighted K-means algorithm. In Proceedings of the 53rd
Annual Design Automation Conference (Austin, Texas) (DAC ’16). Association for
Computing Machinery, New York, NY, USA, Article 82, 6 pages. https://doi.org/10.
1145/2897937.2898025

[16] Chang Xu, Guojie Luo, Peixin Li, Yiyu Shi, and Iris Hui-Ru Jiang. 2016. Analyti-
cal clustering score with application to postplacement register clustering. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 21, 3 (2016),
1–18.

	Abstract
	1 Introduction
	2 Previous Related Works
	3 Overview and Problem Formulation
	4 The Proposed FCIP Method
	4.1 Machine Learning Models for Power and Timing Estimation
	4.2 Clock Network Power Model Features
	4.3 Timing Model Features
	4.4 Simultaneous Timing and Power Optimization

	5 Experiments
	5.1 ML Model Training and Testing Data
	5.2 Power and Timing Model Performance
	5.3 Optimization Testcases and Experiment Setup
	5.4 Main Results on Timing and Power Optimization
	5.5 Importance of CTS Parameters for Timing/Power Optimization
	5.6 Power-Timing Tradeoff
	5.7 Impact of Step Size n in Results

	6 Conclusions and Future Research
	Acknowledgments
	References

