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Abstract—A fundamental design principle of MultiPath TCP
(MPTCP) congestion control algorithm (CCA) is that an MPTCP
flow should be fair to and do not harm TCP flows. Unfortu-
nately, to deal with cost heterogeneity among subflow interfaces,
the existing cost-aware MPTCP CCAs often violate this design
principle in an attempt to minimize the cost. Based on the network
utility maximization (NUM) framework, we put forward Uni-
MPTCP(É⃗, n), a NUM-optimal, Unified MPTCP CCA with n
subflow paths and a n-dimension weight vector É⃗ with n − 1

independent elements. Uni-MPTCP(É⃗, n) abides by this design
principle for arbitrary É⃗ and can be customized to achieve specific
cost design objectives with proper adaptation of É⃗. As such, Uni-
MPTCP(É⃗, n) provides a unified solution to enable cost-aware
MPTCP CCAs, while adhering to the design principle. Finally, we
put forward an adaptation algorithm for, É, in Uni-MPTCP(É, 2),
aiming at maintaining a target MPTCP flow rate with minimum
cost for a cost-heterogeneity case with dual connectivity. The
test results based on NS-3 simulation demonstrate that Uni-
MPTCP(É, 2) can indeed effectively keep track of a given flow rate
target with minimum cost, while adhering to the design principle.

I. INTRODUCTION

By leveraging path diversity widely available in today’s

Internet, MultiPath TCP (MPTCP) [1], [2] can improve over

a traditional single-path TCP in terms of throughput, resource

utilization, reliability, and cost saving. In particular, the IETF-

standard-based MPTCP congestion control algorithm (CCA),

known as Linked Increase Adaptation (LIA) [3], can improve

over an Additive-Increase-and-Multiplicative-Decrease (AIMD)

based TCP CCA like TCP Reno, while being fair to TCP. LIA

was designed based on the following three design principles

[4]:

• P1: An MPTCP flow performs at least as well as a TCP

flow that uses the best path of all the subflow paths used

by the MPTCP flow;

• P2: No subflow in the MPTCP flow occupies more capac-

ity than a TCP flow using the same subflow path.

• P3: MPTCP allows resource pooling, i.e., balancing the

subflow rates in the face of congestion.

While the first principle, P1, is considered crucial to incen-

tivize users to use MPTCP, the second one, P2, ensures that

MPTCP is fair to and does not harm TCP. The third one, P3,

is needed to maximize the MPTCP throughput performance.

Subsequent development of variants of LIA (e.g., Balia [5],

O-LIA [4] and UMPTCP [6]) and other types of MPTCP

CCAs (e.g., C-MPBBR [8] for BBR [9] and mpCubic [10]

for TCP Cubic [11]) followed suit, all attempting to adhere to

the three design principles, albeit some failed to abide by P1

and/or P2. Note that all but a few early MPTCP CCAs were

designed with P3 in mind, including all mentioned here. In what

follows, we exclusively focus on P1 and P2, assuming that P3

is automatically satisfied. Moreover, in this paper, we are only

concerned with the design of MPTCP CCAs for AIMD-based

TCP only.

In this paper, we argue that while P2 is indeed fundamental

and should serve as the underlying design principle for all

MPTCP CCAs, P1 is not and should be removed for the

following two reasons. First, in the face of cost heterogeneity,

i.e., subflows using different subflow interfaces incur different

costs (e.g., in terms of energy [7], [15], [26]–[29], channel

quality [16], [17], [20], [21], [30], [31] or monetary cost [20],

[21]), P1 may prevent MPTCP from being able to explore the

tradeoffs between performance and cost. This is simply because

to abide by this principle, an MPTCP flow will have to balance

the subflow rates on all the subflow paths in an attempt to

perform at least as well as all the TCP flows sharing those

subflow paths, regardless of cost. As such, the MPTCP flow

often yields to TCP flows on high-load, low-cost subflow paths

and heavily rely on low-load, high-cost subflow paths to stay

competitive, incurring unnecessary cost. Second, even without

cost heterogeneity (i.e., the costs for using different subflow

interfaces are the same), P1 may still prevent an MPTCP flow

from achieving its full potential, as we shall see in Section

III-B.

Unfortunately, the current approach is to either modify or

replace an existing MPTCP CCA with a new one to achieve

cost-related design objectives (e.g., [7], [15], [20], [21]). By

doing so, however, the existing cost-aware MPTCP CCAs not

only do away with P1 as expected, but often make it difficult to

determine whether or not they still adhere to P2. Moreover, they

are directly tailored to specific cost-related design objectives

and hence, are point solutions that must be done case by case,

separately. For example, different types of costs may call for

different cost-related design objectives, e.g., ”using lower cost

interfaces as much as possible unless the MPTCP flow rate

target cannot be achieved” versus ”partitioning the flow rate into

subflow rates in such a way that the total energy consumption

is minimized” [18], [19].

With the above observations, it becomes clear that a more

fundamental and systematic solution is warranted. Specifically,

a new MPTCP CCA should be designed to replace LIA, so



that (a) it abides by P2; (b) it is backward compatible with

LIA; and (c) it can be customized to meet additional cost-

related design objectives. Such an MPTCP CCA, if successfully

designed, provides a unified baseline MPTCP CCA, from which

various cost-aware MPTCP CCAs can then be developed, all

with provable P2 compliance. The work in this paper aims at

achieving this design goal.

The approach taken for the work in this paper is based on the

network utility maximization (NUM) framework. We consider

TCP flows with a logarithm utility function of the flow rate that

captures AIMD behaviors of TCP CCAs like TCP Reno and

MPTCP flows with a logarithm utility function of the weighted

sum of subflow rates of n subflows, with n − 1 independent

tunable weights expressed in the form of a n-dimension vector

É⃗. It makes the following major contributions:

1) We show that the NUM-optimal flow rate allocation for

an MPTCP flow co-existing with TCP flows abides by

P2 for arbitrary É⃗;

2) We derive Uni-MPTCP(É⃗, n), a NUM-optimal unified

MPTCP CCA, that achieves the above flow rate allocation

and hence, abides by P2. It is also customizable to meet

cost-related objectives via proper adaptation of É⃗;

3) We apply Uni-MPTCP(É, 2) to enable an MPTCP

flow with two subflow interfaces of different monetary

costs (e.g., free WiFi and a pay-as-you-go cellular).

By incorporating an adaptation algorithm for, É, Uni-

MPTCP(É, 2) aims at achieving a target MPTCP flow

rate with minimum cost;

4) NS-3 simulations show that Uni-MPTCP(É, 2) effectively

tracks a target rate with minimal cost under TCP Reno

dynamics, while complying with P2.

II. RELATED WORK

MPTCP has gained prominence for improving throughput,

reliability, resource utilization, and cost efficiency. Extensive

research has been devoted to the design of MPTCP variants to

meet these goals.

Early MPTCP CCAs lacked resource pooling (P3), instead

treating subflows as independent TCP flows—an approach

that proved overly aggressive and unfair to single-path TCP.

EWTCP [12] addressed this by reducing each subflow’s win-

dow growth rate by a factor of 1/n2, improving fairness but

still lacking P3. Consequently, it limited performance gains in

throughput, reliability, and cost.

The MPTCP CCAs developed after EWTCP have taken P3

as an underlying design principle by default, including LIA and

its variants (e.g., OLIA [4], Balia [5] and Semi-coupled [22]),

and other types of MPTCP CCA that were developed with

respect to other TCP CCAs, e.g., mpCubic [10] for TCP Cubic

[11] and C-MPBBR [8] for BBR [9]. As mentioned earlier,

all these MPTCP CCAs also aimed to fulfill P1 and P2. Note

that the reason for the need to use different MPTCP CCAs for

different types of TCP CCAs is that TCP CCAs belonging to

different types are generally incompatible with one another in

terms of aggressiveness in response to network dynamics. For

example, the two most widely deployed loss-based TCP CCAs,

TCP Reno [13] and TCP Cubic [11], are incompatible with each

other. With an AIMD congestion avoidance phase, TCP Reno is

much less aggressive than TCP Cubic that grows its congestion

window as a cubic function of time [14]. Consequently, to

abide by the three design principles, different MPTCP CCAs

must be designed for the two TCP CCAs, separately. All

the MPTCP CCAs mentioned sofar were designed empirically

without considering a global optimization objective, although

EWTCP and Semi-coupled turned out to be NUM-optimal,

as proven in [6]. More recently, NUM-optimal variants of

LIA were designed, including two families of MPTCP CCAs

[6], [24] and a hybrid MPTCP CCA [25]. However, all these

MPTCP CCAs are cost unaware.

As mobile devices become the dominant means for Internet

access, a large number of cost-aware MPTCP CCAs have

emerged to address cost-heterogeneity issues, concerning en-

ergy efficiency ( e.g., [7], [15], [26]–[29]), channel quality (e.g.,

[20], [21], [30], [31]), and monetary cost [20], [21]. These

MPTCP CCAs aim at achieving vastly different cost-related

design objectives and hence are point solutions. Moreover, most

of them were empirically designed without provable properties,

such as optimality and/or compliance with P2.

III. UNI-MPTCP(É⃗, n)

A. Preparation

In this section, we introduce the NUM problem, the control

laws that solve the NUM problem in general and the TCP

utility function.

The NUM Problem: The Network Utility Maximization

(NUM) problem can be formally stated as follows [32]:

Max{
n
∑

i=1

Ui(xi,1, xi,2, ..., xi,mi
)}, (1)

subject to link bandwidth constraints,
∑

i,j:l∈Li,j

xi,j − cl f 0; l ∈ L, (2)

where n, mi, L and Li,j are the number of active flows,

the number of subflows in flow i, the set of links in the

network, and the set of links that lie in the path of subflow j
in flow i, respectively; cl is the link bandwidth for link l ∈ L;

and Ui(xi,1, xi,2, ..., xi,mi
) is the user utility for flow i as a

function of flow rates, xi,j , for subflow j, j = 1, 2, ...,mi.

This formulation is fluid-flow based, meaning that the resource

allocated to each flow is measured in flow rate, a real-value

variable that can be changed continuously.

NUM-Optimal Control laws: According to [33], with

respect to the NUM problem given in Eq. (1), a family of

NUM-optimal distributed flow rate control laws for subflow j
in flow i is given as,

ẋi,j = zi,j(t, xi,j , cgj)[f(xi,j)− (1− cgj)] (3)



with

f(xi,j) = 1− e−∂Ui(xi,1,xi,2,...,xi,mi
)/∂xi,j , (4)

where Ui(xi,1, xi,2, ..., xi,mi
) can be any concave and strictly

increasing function of xi,j’s; zi,j(t, xi,j , cgj) can be any pos-

itive and piece-wise continuous scalar function and cgj is the

binary congestion indicator, cgj =1 if the path the subflow j
takes is congested and 0 otherwise; cgj is the logical negation of

cgj . The fact that this control law only uses binary information

as input for the control means that it is the ideal solution

for the development of NUM-optimal, end-to-end congestion

control protocols, which only uses source-inferrable binary

information, such as timeout or three duplicated ACKs, for the

control. The end-to-end TCP, e.g., TCP Reno, is an example of

such a protocol.

In summary, given concave utility functions, the associated

end-to-end distributed congestion control laws ensure that

each flow is regulated independently, allowing the system to

converge to a NUM-optimal allocation that maximizes the

aggregate utility under dynamic network conditions.

TCP utility function: Although the TCP CCA like TCP

Reno was designed empirically, based on the family of

control laws presented above, the work in [24] was able to

reverse engineer both the TCP slow start phase (SSP) and the

(AIMD)-based congestion avoidance phase (CAP) like TCP

Reno to derive the corresponding utility functions, implying

that TCP Reno is NUM optimal. In this section, we summarize

the key results from [24], which will then be used to derive

Uni-MPTCP(É⃗, n).

Consider the following fluid-flow version of the generic,

end-to-end TCP congestion control with both SSP and AIMD-

based CAP [23] that captures the main behaviors of TCP Reno.

In the Slow Start Phase (SSP):

ẋ =

{

³x if cg = 0
−´x if cg = 1,

(5)

namely, multiplicative increase with coefficient ³ in the

absence of congestion (i.e., cg=0) and multiplicative decrease

with coefficient ´ in the presence of congestion (i.e., cg=1).

In the congestion Avoidance Phase (CAP):

ẋ =

{

µ if cg = 0
−´x if cg = 1,

(6)

namely, additive increase with increasing rate µ in the absence

of congestion (i.e., cg=0) and multiplicative decrease with

coefficient ´ in the presence of congestion (i.e., cg=1).

The idea is to reverse engineer the above generic TCP control

laws using Eq. (3) to find the corresponding utility function

Utcp(x) and zi,j(t, x, cg) for the control laws, if they do exist.

The work [23] provides the affirmative answer, which is stated

as follows:

In SSP:

Utcp(x) = xlog(1 +
³

´
) (7)

and

z(t, x, cg) = (³+ ´)x. (8)

In CAP:

Utcp(x) = (
µ

´
+ x)[log(µ+ ´x)− 1]− x[log(´x)− 1] (9)

and

z(t, x) = µ+ ´x (10)

Assuming ´x k µ, the CAP utility function in Eq. (9) can be

approximately written as:

Utcp(xi) ≈
µ

´
log(xi), (11)

B. Utility Function of MPTCP

With the above preparation, now we are in a position to

address the core design challenge, i.e., what MPTCP utility

function should be used for MPTCP flows in order to achieve

the aforementioned design goal. Once the MPTCP utility func-

tion is known, the corresponding MPTCP CCA can then be

readily derived from Eq. (3).

To ensure backward compatibility and comparable compet-

itiveness with TCP, the MPTCP utility function should also

have two parts, corresponding to the SSP and CAP of TCP,

respectively. To this end, we simply reuse the two parts given

in Eqs. (7) and (11) with x being replaced by
∑n

i=1 µiyi as

the utility of MPTCP, where yi and µi are the subflow rate and

subflow weight for the ith subflow of a MPTCP flow. Namely,

in SSP:

Umptcp(y1, y2, ..., yn) = (

n
∑

i=1

µiyi)log(1 +
³

´
) (12)

In CAP:

Umptcp(y1, y2, ..., yn) ≈
µ

´
log(

n
∑

i=1

µiyi). (13)

The part in the SSP makes the MPTCP flow as aggressive

as TCP Reno at the beginning of the MPTCP session or after

a timeout event occurs, which however, is considered rare,

relative to the fast recovery events due to the three duplicated

acks. In other words, most of the time, both the MPTCP flow

and TCP flows are in the CAP, competing for the resources

on the subflow paths of the MPTCP flow. This means that to

justify the use of this MPTCP utility function, what we need

to show is that the NUM-optimal flow rate allocation for the

following NUM problem indeed achieves our design goal:

Max {
n
∑

j=1

nj log(xj) + log(
n
∑

i=1

Éiyi)} (14)

subject to

nixi + yi f ci, for i = 1, ..., n. (15)

where yi, xi, ni and ci are the subflow rate, TCP flow rate,

the number of TCP flows and the bottleneck link bandwidth



(a) Case 1: Subflows rate (b) Case 1: Total flow rate

(c) Case 2: Subflows rate (d) Case 2: Total flow rate

(e) Case 3: Subflows rate (f) Case 3: Total flow rate

Fig. 1: Flow rate allocation

on the ith subflow path of the MPTCP flow and Éi = µi/µ1
for i = 1, ..., n and É1 = 1. Without loss of generality, we

assume that Éi f 1 ∀ i, given that µ1 g µi for i = 2, 3, ..., n.

We further denote, É⃗ = [1, É2, ..., Én], i.e., an n-dimension

vector with (n − 1) independent tunable elements. Note that

the MPTCP flow rate y =
∑n

i=1 yi. For simplicity, in this

formulation, we omitted the coefficient µ
β for all logarithmic

utility functions and also recast Umptcp in Eq. (13) into the

last term in Eq. (14) and omitted the constant term, log(µ1).
Obviously both omissions will not affect the NUM-optimal flow

rate allocation. Also note that this formulation considers only

steady-state flow rate allocation when all the TCP flows sharing

the same bottleneck link on any given subflow path i share the

same flow rate, xi.

Now we have the following important results:

Theorem I: The NUM-optimal flow rate allocation for

the NUM problem in Eqs. (14) and (15) possesses the

following properties: (a) it abides by P2 for arbitrary É⃗; (b)

it is backward compatible with the flow rate allocation when

LIA is employed to enable the MPTCP flow; and (c) it is

inherently customizable to meet additional cost-related design

objectives in terms of subflow rate allocation (See appendix A

TABLE I: Flow rate allocation

ω <
n2c1

(n1+1)c2
n2c1

(n1+1)c2
≤ ω ≤

(n2+1)c1
n1c2

ω >
(n2+1)c1

n1c2

x1
c1

n1+1
c1+ωc2

n1+n2+1
c1

n1

x2
c2

n2

c1+ωc2

ω(n1+n2+1)
c2

n2+1

y1
c1

n1+1 c1 −
n1(c1+ωc2)
n1+n2+1

0

y2 0 c2 −
n2(c1+ωc2)
ω(n1+n2+1)

c2

n2+1

y
c1

n1+1 c1 + c2 −
(n1ω+n2)(c1+ωc2)

ω(n1+n2+1)

c2

n2+1

for the Proof).

Theorem I means that the NUM-optimal MPTCP CCA

corresponding to this logarithm utility with the tunable vector,

É⃗, will indeed achieve our design goal.

To further confirm the above claim, we take a close look at

an easily solvable case, i.e., the case with n = 2. The NUM-

optimal flow rate allocation for the case is given in Table I and

also plotted in Fig.1 for the three distinct cases with respect to

the sole tunable parameter, É (i.e., É2), particularly at É = 1.

For each case, the plot on the left gives the subflow rates, y1
and y2, along with x1 and x2. Clearly y1 f x1 and y2 f x2

for all three cases, i.e., abiding by P2, confirming claim (a) in

Theorem I. For each case, the plot on the right presents the

MPTCP flow rate, y, again along with x1 and x2. As one can

see, y g x1 and x2 for all cases at É = 1, i.e., abiding by P1 as

well, hence compatible with LIA at É = 1, confirming claim

(b) in Theorem I. Moreover, by inspecting both plots for each

case, one should be convinced that by adjusting É, the relative

subflow rates, y1 and y2 can indeed be rebalanced, meaning

that cost-related objectives can be enforced without violating

P2, confirming claim (c) in Theorem I.

Interesting enough, a shrewd reader may have already noticed

that y may peak at É ̸= 1, suggesting that abiding by P1, or

equivalently, forcing É = 1, may, in fact, limit the flow rate

for an MPTCP flow and hence, should be removed, as claimed

earlier. This seemingly counter-intuitive phenomenon can be

easily understood by inspecting case I. As É reduces to be

below
(n2+1)c1

n1c2
, y2 starts to drop, yielding to x2. Meanwhile,

y1 starts to grow from 0, taking bandwidth from x1, and at

certain É value, y actually peaks. In other words, by allowing

TCP flows on some subflow paths to do better and some others

to do worse, the MPTCP flow may actually perform better

than attempting to do at least equally well as TCP flows on

all subflow paths. In fact, from the expression of y in Table I,

it can be easily shown that y peaks at É =
√

c1n2

c2n1

.

Finally, we present useful properties with respect to the

three cases that allow them to be uniquely identified by three

measurable flow rates:

Corollary I: The three cases can be uniquely identified

by the following criteria:

• Case 1: if y0 = yr > yl,
• Case 2: if y0 > yr and yl,



• Case 3: if y0 = yl > yr,

where y0, yl, yr are the Uni-MPTCP(É, 2) flow rates

measurable at É = 1, É → 0 and É → ∞, respectively.

Proof: We skip the proof as they can be easily confirmed by

visual inspection of Fig. 1.

C. Uni-MPTCP(É⃗, n)

Similar to the MPTCP utilities, we simply reuse the two

parts given in Eqs. (8) and (10) with x being replaced by
∑n

i=1 Éiyi as the z-functions for MPTCP. Then by applying

Eqs. (3) and (4), we arrive at Uni-MPTCP(É⃗, n) as follows:

In SSP:

ẏl =

{

³Élyl if cgl = 0

−´Élyl if cgl = 1.
(16)

In CAP:

ẏl ≈

{

ωlyl∑
n
i=1

ωiyi
µ if cgl = 0

−´Élyl if cgl = 1.
(17)

These control laws are fluid-flow based, and can be easily

converted into window based control protocols. In the context

of TCP Reno, which is window based, the flow rate is consid-

ered as a constant during each Round Trip Time (RTT), Ä , and

adjusted every RTT. Let W and ∆W be the congestion control

window size and change of W at each RTT epoch, respectively.

As the congestion window size is doubled or halved in SSP

and increased by one MSS (i.e., the maximum segment size)

or halved in CAP, without or with congestion, respectively, ³,

´ and µ can be approximated as,

³ ≈ 2´ ≈ 1/Ä, µ = MSS/Ä (18)

Let yl = Wl × MSS/Äl. Then the congestion window size

change for subflow l in each RTT, ∆Wl, according to Eqs.

(16) and (17), are,

In SSP:

∆Wl ≈

{

ÉlWl if cgl = 0

−ωlWl

2 if cg1 = 1.
(19)

In CAP:

∆Wl ≈

{

ωlWl

τl(
∑

n
i=1

ωiWi/τi)
if cgl = 0

−ωlWl

2 if cgl = 1.
(20)

The above window-based Uni-MPTCP(É⃗, n) is backward

compatible with LIA at É⃗ = 1⃗ and TCP Reno at n = 1. Strictly

speaking, Uni-MPTCP(É⃗, n) is not a protocol, but a family of

protocols taking different É⃗ values. For any arbitrary network

with any given numbers of active Uni-MPTCP(É⃗, n) flows at

a given É⃗ and active AIMD-based TCP flows, the network

will be guaranteed to converge to a NUM-optimal operational

state where the flow rate allocation maximizes the total utility,

subject to the link capacity constraints. With an É⃗-adaptation

algorithm that properly adjusts É⃗ in response to background

TCP flow fluctuations at a timescale much larger than a round-

trip-time (RTT), Uni-MPTCP(É⃗, n) is expected to be able to

keep track of a given cost-related design objective, while being

able to converge to a new NUM-optimal operational state in

each É⃗-adaption epoch, while adhering P2 and P3.

IV. APPLICATION TO A COST-HETEROGENEITY CASE WITH

DUAL CONNECTIVITY

A. Problem Statement

We consider a cost-heterogeneity case with dual connectivity

where the per-byte costs for using two interfaces are different,

e.g., a free WiFi interface and a pay-as-you-go 5G interface.

The cost-related design objective is to strive to achieve a target

flow rate, ¼, with minimum cost.

An example target flow rate is the video encoding rate for

YouTube video streaming, which may be set at a given value by

the application or by a user [35]. Note that the target flow rate,

¼, may or may not be attainable due to the need for the MPTCP

flow to abide by P2. In the context of our network model, We

assume that using interface 1 with capacity c1 costs less than

using interface 2 with capacity c2 (will explain why shortly).

A naive solution that provides a guarantee of the target flow

rate, ¼, is to simply run one subflow as a TCP flow on interface

1, that is, let y1 = x1 at the bottleneck link and run the other

subflow on interface 2 with y2 = ¼ − y1. Although providing

target flow rate guarantee, this solution may violate P2, i.e.,

it cannot guarantee that y2 f x2. With Uni-MPTCP(É, 2), the

compliance with P2 is guaranteed.

What’s left to be done is to design a É-adaptation algo-

rithm for Uni-MPTCP(É, 2) to achieve the above cost-related

design objective. As aforementioned, we assume that using

interface 1 costs less than using interface 2. This means that

0 < É ≡ É2 f 1, which is desirable for the following reasons.

First, note that the flow rate allocation for the MPTCP flow

will be in favor of subflow path one when É < 1. So, to

minimize the cost, É should be as small as possible and should

not increase unless the flow rate target, ¼, cannot be attained.

Furthermore, it should not go beyond one when interface 2 is

favored over interface 1, meaning that the cost will become too

high to justify the effort to reach ¼.

B. A É-Adaptation Algorithm for Uni-MPTCP(É, 2)

We propose a hybrid measurement-and-modeling-based

adaptation algorithm for É in (0, 1] to achieve the cost-related

design objective.

The idea is to only measure the flow rates, y0, yl and yr
at É = 1, 0.01 and 100, respectively (note that in practice,

sampling É at 0.01 and 100 is the same as sampling at 0 and

∞). The three measured flow rates are then used to identify

which of the three cases it is, based on the criteria given in

Corollary I. If it is Case 3, set É = 0.01, as y does not change

with É and the search is done. Otherwise use the following

logistic function with four parameters, ³, ´, µ and k, to model

the flow rate curve for both Cases 1 and 2 in 0 < É f 1,

y =
µ

1 + e−k(ω−β)
+ ³. (21)



(a) n1 = 3, n2 = 1 (b) n1 = 10, n2 = 1

Fig. 2: Test of hybrid model

This function is found to be able to fit the simulated flow rate

curves well, when k is in double digits, e.g., k = 30 and ´
is the É value corresponding to the flow rate y at about one-

third of the highest achievable flow rate, i.e., y at É = 1 for this

logistic function. With this understanding, we can then estimate

³ and µ as follows:

³ ≈ yl, (22)

and

³+ µ ≈ yr, (23)

or

µ ≈ yr − yl, (24)

assuming that the exponential term in the denominator ap-

proaches 0 and ∞, when É → ∞ and 0, respectively.

Finally, with the combination of both a series of approxima-

tions, and trial and error, we find that,

´ =

√

yl

yr
+ 2×max{2× yl

yr
−
√

yl

yr
, 0}

3
(25)

matches the É value at the one-third of the highest achievable

flow rate well.

The hybrid MPTCP flow rate prediction model is evalu-

ated through simulations conducted in the open-source NS-

3 network simulator [36], which has been extended to sup-

port MPTCP. We consider a low-bandwidth-and-low-delay

scenario where TCP Reno and the associated MPTCP like

Uni-MPTCP(É⃗, n) and LIA work well (note that for high-

bandwidth-and-high-delay networks, TCP Cubic and the associ-

ated MPTCP work better). Namely, we set c1 = c2 = 10 Mbps

and the end-to-end propagation delay at 0.4 ms for all flows.

All the TCP flows run TCP Reno based on the simulation code

provided by NS-3. For each given n1 and n2 pair, 10 simulation

runs of 300 seconds each are performed at a given É, from

which the average Uni-MPTCP(É, 2) flow rate is recorded. This

is repeated for É taking values from 0.05 to 1 with step length

of 0.05.

Fig. 2 gives the flow rate curves based on theory (Table I),

hybrid model and measurement. Note that due to the use of a

fluid flow model versus a packet-based model, the gap between

the theory and measurement is inevitable. On one hand, the the-

ory predicts y2 = 0 as É → 0, whereas for Uni-MPTCP(É, 2),

the smallest y2 can reach is one maximum segment size (MSS)

per RTT, higher than that predicted by the theory. On the other

hand, Uni-MPTCP(É, 2) always achieves a lower high flow

rate, y, than that predicted by the theory, due to the congestion

feedback delays and discrete flow rate adaptation. In contrast,

the hybrid model matches the measurement much better.

Finally, We note that the peak of y predicted by the theory

in the left plot is barely visible by the measurement. This is

because at n = 2, it can be shown (not given in the paper) that

the achievable peak relative to y0 at É = 1 is upper bounded at

8.7%. For this reason, our hybrid model simply assumes that y
is a non-decreasing function of É in [0, 1] without attempting

to capture the peak.

With the above hybrid model, the É-adaptation algorithm for

each search round is presented in Algorithm I. The algorithm

may be run periodically at a given interval T or on-demand

(e.g., triggered by measured changes of y1 and y2) in response

to background TCP traffic fluctuations.

Algorithm 1 É-adaptation algorithm for cost-aware Uni-

MPTCP(É, 2)

Input:

target : Target flow rate

Output: a É value

Begin

// Run Uni-MPTCP(É, 2) at É = 0.01, 100, 1 with 20

seconds each, to measure yl, yr, y0, respectively

if Case3 then

Return É = 0.01

else

// Estimate ³, ´ and µ for logistic function

// Calculate the peak flow rate from logistic function

end if

if target < yl then

Return É = 0.01

else if target > Peak flow rate then

Return É = 1

else

// calculate the É value corresponding to Target from

logistic function

Return É value

end if

End

C. Test of Uni-MPTCP(É, 2)

In this section, we test cost-aware Uni-MPTCP(É, 2) under

both stable and dynamically changing network conditions based

on NS-3 simulation. We consider the same scenario studied in

the previous section.

1) Per-sample Search Time: First, we need to test and see

what per-sample search time (i.e., the É sampling epoch) and

wait or measurement period should be used. Consider n1 = 10,

n2 = 1, i.e., case 1, and three different lengths of per-sample

search time: 10, 20 and 30 seconds. Fig. 3 depicts the measured

Uni-MPTCP(É, 2) flow rate over the entire search round that

involves three lengths of per-sample search time, at É = 0.01,



(a) 10s (b) 20s (c) 30s

Fig. 3: Different lengths of per-sample search time

TABLE II: Performances of different sets of per-sample search time
yl (Mbps) yr (Mbps) y0 (Mbps) ω decision

Long run result 1.120801 4.50132 4.50132 0.152217

Measure 0s-10s 2.72832 3.24272 3.463455 0.01

Measure 0s-20s 2.05799 4.29819 4.0166 0.360981

Measure 0s-30s 1.77797 4.0276 4.3877 0.342145

Measure 5s-10s 1.51796 3.18734 3.5483 0.416855

Measure 5s-20s 1.30549 4.56857 4.08284 0.184515

Measure 5s-30s 1.23795 4.13308 4.36794 0.208344

Measure 10s-20s 1.16627 4.67518 4.37245 0.150182

Measure 10s-30s 1.1489 4.18582 4.45983 0.183954

Measure 15s-20s 1.20071 4.60178 4.40733 0.161596

Measure 15s-30s 1.15639 4.07374 4.41856 0.19562

100 and 1, in that order. First, the big spike found in the first

sampling epoch for all three cases is caused by the initial SSP.

This makes the 10-second case in Fig. 3(a) unable to stabilize

throughout the entire epoch. In contrast, for both the 20-second

and 30-second cases in Fig. 3 (b) and (c), the flow rates stabilize

before the end of the first half of the epoch, which appears to

be also true for the other two epochs. In other words, while for

the 10-second case it is hard to find a measurement period,

at least for the first epoch, in which reliable NUM-optimal

flow rate can be measured, for both of the other two cases,

letting the measurement period to be the second half of each

epoch for all three epochs appears to work well. Furthermore, as

aforementioned, one should keep the search time small to make

Uni-MPTCP(É, 2) as responsive to fluctuation of background

traffic as possible. For this reason, we would prefer the 20-

second case over the 30-second one.

2) Steady-State Case Study: In this case study, we assume

that the background traffic load is stable, meaning that through-

out the experiment, the numbers of TCP flows on the two

subflow bottleneck links are fixed at n1 = 10 and n2 = 1, i.e.,

Case 1. Furthermore, we consider the following cost model:

Ctotal = Pc1 × y1 + Pc2 × y2 (26)

where Ctotal is the total Uni-MPTCP(É, 2) flow cost per unit

time, and Pc1 and Pc2 are the per-byte costs for using the low-

cost and high-cost links, respectively, and we set, Pc1 = 0.1
and Pc2 = 10.

We consider 5 different cases where the Uni-MPTCP(É, 2)

flow strives to attain 5 different target flow rates: 1.0 Mbps,

2.5 Mbps, 3.8 Mbps, 5.0 Mbps and 10 Mbps. These cases are

selected to cover three different possible scenarios. First, the

1.0 Mbps target can be fulfilled almost entirely by the low-

cost link with É taking a small value. Second, both the 2.5

Mbps and 3.8 Mbps targets fall in the region in which the

É-adaptation algorithm will be fully activated, called effective

(a) Target rate = 1.0Mbps (b) Target rate = 2.5Mbps

(c) Target rate = 3.8Mbps (d) Target rate = 5.0Mbps

(e) Target rate = 10.0Mbps (f) LIA

Fig. 4: Different user required data rate

TABLE III: Uni-MPTCP(É, 2) flow rates and costs at different target
flow rates

y (Mbps) y1 (Mbps) y2 (Mbps) Ctotal

LIA 4.8715 0.1425 4.729 47.30425

Uni-MPTCP(ω, 2)(1.0Mbps) 1.0982 0.9085 0.1897 1.98785

Uni-MPTCP(ω, 2)(2.5Mbps) 1.79725 0.8425 0.95475 9.63175

Uni-MPTCP(ω, 2)(3.8Mbps) 3.5173 0.342 3.1753 31.7872

Uni-MPTCP(ω, 2)(5.0Mbps) 4.89518 0.1438 4.75138 47.52818

Uni-MPTCP(ω, 2)(10.0Mbps) 4.89518 0.1438 4.75138 47.52818

region hereafter. Third, both the 5.0 Mbps and 10.0 Mbps

targets are higher than the highest achievable flow rate and

hence, cannot be attained. In this case, the flow rate should

converge to the highest achievable rate.

The results are presented in Table III. It also includes the

result by running LIA. The purpose is to see how much one

can benefit from the cost-aware Uni-MPTCP(É, 2) in terms of

cost savings, compared to a cost-unaware protocol like LIA.

First of all, we note that Uni-MPTCP(É, 2) attains a flow rate

lower than the corresponding target, except for the case of 1

Mbps target. This can be understood with the reasoning given

in the previous section. Second, we note that Uni-MPTCP(É, 2)

tends to give relatively higher prediction errors when the targets

fall in the effective region. This is because in this region,

Uni-MPTCP(É, 2) needs to balance the loads between the two



TABLE IV: Uni-MPTCP(É, 2) flow rates in distinct time window
[60s-200s] [200s-300s] 360s onward

y y1 y2 y y1 y2 y y1 y2
Scenario 1: Target rate=2.5Mbps 1.79725 0.8425 0.95475 2.2373 1.8929 0.3444 2.343 1.6785 0.6645

Scenario 1: Target rate=3.8Mbps 3.5173 0.342 3.1753 2.3086 1.8487 0.4599 4.1822 0.2991 3.8831

Scenario 2: Target rate=2.5Mbps 1.79725 0.8425 0.95475 1.4184 0.7766 0.6418 2.2716 0.365 1.9066

Scenario 2: Target rate=3.8Mbps 3.5173 0.342 3.1753 1.446 0.6553 0.7907 3.5667 0.1519 3.4148

(a) Scenario 1: Target rate=2.5Mbps (b) Scenario 1: Target rate=3.8Mbps

(c) Scenario 2: Target rate=2.5Mbps (d) Scenario 2: Target rate=3.8Mbps

Fig. 5: Dynamic network environment case study

subflow paths, resulting in higher subflow rate fluctuations

as we shall see shortly. Moreover, although much improved

over the theoretical one, the hybrid solution that attempts to

capture the flow rate changes in the effective region can still

contribute significantly to the flow rate prediction errors. This

explains why the 2.5 Mbps target is not very well captured.

Third, for the two targets above the highest achievable flow

rate, Uni-MPTCP(É, 2) gives the same flow rate allocation at

É = 1, which is slightly higher than that of LIA with slightly

higher cost, as expected. Finally, it becomes clear that Uni-

MPTCP(É, 2) can provide significant cost savings over a cost-

oblivious protocol, such as LIA.

We also show Uni-MPTCP(É, 2) and LIA in action in Fig.

4. Only one search round is performed at the beginning (i.e.,

the shaded area in each plot). It confirms that Fig. 4 (b) and

(c), corresponding to the cases where the targets fall in the

effective region, are the most unstable ones due to subflow load

balancing. It also confirms that LIA is indeed neither cost, nor

target flow rate aware.

3) Dynamic Case Study: We consider two scenarios, both

with abrupt TCP flow load changes at 200 seconds. In scenario

1, n1 = 10 and n2 = 1 before 200 seconds and n1 = 4 and

n2 = 1 afterwards. In scenario 2, again, n1 = 10 and n2 = 1
before 200 seconds and n1 = 10 and n2 = 2 afterwards. For all

the TCP load cases of the two scenarios, both the 2.5 Mbps and

3.8 Mbps target flow rates fall in the effective region. In other

words, they are hard to keep track of, as the two subflow rates

need to be re-balanced after the load change for both scenarios.

We further assume that the searches are done periodically

with internal T = 300 seconds. This means that after the flow

load change at 200 seconds, there is a 100-second time window

in which the Uni-MPTCP(É, 2) flow rate may drift away from

the target flow rate. Consequently, we have three distinct time

windows:

• [60s, 200s]: after the first search round and before the TCP

load change;

• [200s, 300s]: after the TCP load change and before the

second search round;

• 360s onward: After the second search round.

The average Uni-MPTCP(É, 2) flow rates in these time

windows for both scenarios are given in Table IV. First, before

TCP load changes, both scenarios give the same flow rate

allocation that tracks the corresponding target flow rates, as the

TCP loads are the same. Second, in the second time window,

the allocated flow rates indeed drift away from their respective

targets. Third, after the second search round, the flow rates are

able to track their respective targets again, as expected. Fig. 5

also depicts the target tracking process in action for the two

scenarios.

Finally, we note that a possible implementation of Uni-

MPTCP(É, 2) is to implement Uni-MPTCP(É, 2) in the Kernel

with a user-interface API that allows a É value in Uni-

MPTCP(É, 2) to be passed from the user space to the kernel.

This makes it possible to design É-adaptation algorithms to

achieve a wide range of design objectives in the user space.

V. CONCLUSIONS

In this paper, on the basis of the NUM framework, we

first argue that the first of the three MPTCP design principles

should be abandoned. Then we put forward Uni-MPTCP(É⃗, n),

a NUM-optimal multipath congestion control protocol for

MPTCP flows with n subflow paths that abides by the re-

maining two MPTCP design principles at arbitrary É⃗, an n-

dimension vector with (n−1) independent elements, which can

be adapted to realize any specific cost-related design objectives.

Finally, with the design of an adaptation algorithm for É for a

cost-heterogeneity case with dual connectivity, we demonstrate

that Uni-MPTCP(É, 2) can effectively keep track of a given

multipath flow rate target with minimum cost.
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APPENDIX A

PROOF OF THEOREM I

First, with the property of logarithmic functions, Eq. (14) is

equivalent to:

Max {(

n
∑

i=1

Éiyi)

n
∏

i=1

xni

i }, (27)

subject to,

nixi + yi f ci, for i = 1, ..., n. (28)

First, we consider the case where É⃗ = 1⃗, i.e., Éi = 1 ∀ i, and

by applying the AM-GM inequality [34], we have,

y

n
∏

i=1

xni

i f (
y +

∑n
i=1 nixi

N
)N ≡ (

∑n
i=1 ci
N

)N , (29)

where N = n +
∑n

i=1 ni, is the total number of TCP flows

and subflows of the MPTCP flow. The equality holds if and

only if y = x1 = x2 = ... = xn [34]. The last equality always

holds true, assuming that the TCP flows and subflow on each



subflow path can always saturate the bottleneck link bandwidth

of the subflow path.

The above result simply states that the NUM-optimal flow

rate allocation is y = x1 = x2 = ... = xn, when the product

on the left of the inequality is maximized. This is true as long

as the MPTCP subflows can be balanced to make this happen,

even subject to the subflow bottleneck link constraints in Eq.

(15). Now consider the case where some subflow bottleneck

link, say, the kth link, is the highest loaded one, and even

with yk = 0, xk (= ck/nk) is still too small to be balanced

with y and other xi’s. In this case, the MPTCP flow will have

yk = 0 and attempt to balance the rest of the subflows so

that y = x1 = x2 = ... = xn, except for xk (= ck/nk) to

maximize the left of the inequality. The process will repeat, if

the next highest loaded link again cannot be balanced, until

the MPTCP flow can balance the loads for the remaining

lower loaded links with larger xi’s. This proves that for the

NUM-optimal flow rate allocation, y = max{x1, x2, ..., xn},

meaning that at É⃗ = 1⃗, the NUM-optimal flow rate allocation

abides by P1. Furthermore, the subflow rate, yi, cannot be

larger than xi, ∀ i, because otherwise, by applying the AM-

GM inequality to yi
∏ni

i=1 xi, which is part of the term on

the left of the inequality, can be increased by reducing yi,
given that yi + nixi ≡ ci is a constant. This means that at

É⃗ = 1⃗, the NUM-optimal flow rate allocation also abides by

P2. In summary, the NUM-optimal MPTCP CCA at É⃗ = 1⃗ is

compatible with LIA, which proves that (b) is true.

Second, for the case where É⃗ ̸= 1⃗, i.e., at least one element

in É⃗ is not equal 1. Consider Éi < 1 (i > 1). It is clear that

at Éi = 0, yi = 0, and yi increases with Éi until it reaches

its maximum at Éi = 1. Based on the same argument above,

this maximum value of yi cannot exceed xi. Hence, for any

given É⃗, the flow rate allocation abides by P2, which proves

that (a) holds true. Furthermore, since changing Éi changes yi,
by properly adjusting the relative values among Éi’s, one can

balance subflow rates to achieve specific cost-related design

objectives, which proves that (c) also holds true.


