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Abstract—A fundamental design principle of MultiPath TCP
(MPTCP) congestion control algorithm (CCA) is that an MPTCP
flow should be fair to and do not harm TCP flows. Unfortu-
nately, to deal with cost heterogeneity among subflow interfaces,
the existing cost-aware MPTCP CCAs often violate this design
principle in an attempt to minimize the cost. Based on the network
utility maximization (NUM) framework, we put forward Uni-
MPTCP(&J,n), a NUM-optimal, Unified MPTCP CCA with n
subflow paths and a n-dimension weight vector & with n — 1
independent elements. Uni-MPTCP(,n) abides by this design
principle for arbitrary & and can be customized to achieve specific
cost design objectives with proper adaptation of . As such, Uni-
MPTCP(&J, n) provides a unified solution to enable cost-aware
MPTCP CCAs, while adhering to the design principle. Finally, we
put forward an adaptation algorithm for, w, in Uni-MPTCP(w, 2),
aiming at maintaining a target MPTCP flow rate with minimum
cost for a cost-heterogeneity case with dual connectivity. The
test results based on NS-3 simulation demonstrate that Uni-
MPTCP(w, 2) can indeed effectively keep track of a given flow rate
target with minimum cost, while adhering to the design principle.

I. INTRODUCTION

By leveraging path diversity widely available in today’s
Internet, MultiPath TCP (MPTCP) [1], [2] can improve over
a traditional single-path TCP in terms of throughput, resource
utilization, reliability, and cost saving. In particular, the IETF-
standard-based MPTCP congestion control algorithm (CCA),
known as Linked Increase Adaptation (LIA) [3], can improve
over an Additive-Increase-and-Multiplicative-Decrease (AIMD)
based TCP CCA like TCP Reno, while being fair to TCP. LIA
was designed based on the following three design principles
(4]:

o P1: An MPTCP flow performs at least as well as a TCP
flow that uses the best path of all the subflow paths used
by the MPTCP flow;

« P2: No subflow in the MPTCP flow occupies more capac-
ity than a TCP flow using the same subflow path.

o P3: MPTCP allows resource pooling, i.e., balancing the
subflow rates in the face of congestion.

While the first principle, P1, is considered crucial to incen-
tivize users to use MPTCP, the second one, P2, ensures that
MPTCEP is fair to and does not harm TCP. The third one, P3,
is needed to maximize the MPTCP throughput performance.
Subsequent development of variants of LIA (e.g., Balia [5],
O-LIA [4] and UMPTCP [6]) and other types of MPTCP
CCAs (e.g., C-MPBBR [8] for BBR [9] and mpCubic [10]
for TCP Cubic [11]) followed suit, all attempting to adhere to

the three design principles, albeit some failed to abide by P1
and/or P2. Note that all but a few early MPTCP CCAs were
designed with P3 in mind, including all mentioned here. In what
follows, we exclusively focus on P1 and P2, assuming that P3
is automatically satisfied. Moreover, in this paper, we are only
concerned with the design of MPTCP CCAs for AIMD-based
TCP only.

In this paper, we argue that while P2 is indeed fundamental
and should serve as the underlying design principle for all
MPTCP CCAs, P1 is not and should be removed for the
following two reasons. First, in the face of cost heterogeneity,
i.e., subflows using different subflow interfaces incur different
costs (e.g., in terms of energy [7], [15], [26]-[29], channel
quality [16], [17], [20], [21], [30], [31] or monetary cost [20],
[21]), P1 may prevent MPTCP from being able to explore the
tradeoffs between performance and cost. This is simply because
to abide by this principle, an MPTCP flow will have to balance
the subflow rates on all the subflow paths in an attempt to
perform at least as well as all the TCP flows sharing those
subflow paths, regardless of cost. As such, the MPTCP flow
often yields to TCP flows on high-load, low-cost subflow paths
and heavily rely on low-load, high-cost subflow paths to stay
competitive, incurring unnecessary cost. Second, even without
cost heterogeneity (i.e., the costs for using different subflow
interfaces are the same), P1 may still prevent an MPTCP flow
from achieving its full potential, as we shall see in Section
II-B.

Unfortunately, the current approach is to either modify or
replace an existing MPTCP CCA with a new one to achieve
cost-related design objectives (e.g., [7], [15], [20], [21]). By
doing so, however, the existing cost-aware MPTCP CCAs not
only do away with P1 as expected, but often make it difficult to
determine whether or not they still adhere to P2. Moreover, they
are directly tailored to specific cost-related design objectives
and hence, are point solutions that must be done case by case,
separately. For example, different types of costs may call for
different cost-related design objectives, e.g., ~using lower cost
interfaces as much as possible unless the MPTCP flow rate
target cannot be achieved” versus “partitioning the flow rate into
subflow rates in such a way that the total energy consumption
is minimized” [18], [19].

With the above observations, it becomes clear that a more
fundamental and systematic solution is warranted. Specifically,
a new MPTCP CCA should be designed to replace LIA, so



that (a) it abides by P2; (b) it is backward compatible with
LIA; and (c) it can be customized to meet additional cost-
related design objectives. Such an MPTCP CCA, if successfully
designed, provides a unified baseline MPTCP CCA, from which
various cost-aware MPTCP CCAs can then be developed, all
with provable P2 compliance. The work in this paper aims at
achieving this design goal.

The approach taken for the work in this paper is based on the
network utility maximization (NUM) framework. We consider
TCP flows with a logarithm utility function of the flow rate that
captures AIMD behaviors of TCP CCAs like TCP Reno and
MPTCP flows with a logarithm utility function of the weighted
sum of subflow rates of n subflows, with n — 1 independent
tunable weights expressed in the form of a n-dimension vector
«. It makes the following major contributions:

1) We show that the NUM-optimal flow rate allocation for
an MPTCP flow co-existing with TCP flows abides by
P2 for arbitrary &;

2) We derive Uni-MPTCP(&, n), a NUM-optimal unified
MPTCP CCA, that achieves the above flow rate allocation
and hence, abides by P2. It is also customizable to meet
cost-related objectives via proper adaptation of J;

3) We apply Uni-MPTCP(w,2) to enable an MPTCP
flow with two subflow interfaces of different monetary
costs (e.g., free WiFi and a pay-as-you-go cellular).
By incorporating an adaptation algorithm for, w, Uni-
MPTCP(w, 2) aims at achieving a target MPTCP flow
rate with minimum cost;

4) NS-3 simulations show that Uni-MPTCP(w, 2) effectively
tracks a target rate with minimal cost under TCP Reno
dynamics, while complying with P2.

II. RELATED WORK

MPTCP has gained prominence for improving throughput,
reliability, resource utilization, and cost efficiency. Extensive
research has been devoted to the design of MPTCP variants to
meet these goals.

Early MPTCP CCAs lacked resource pooling (P3), instead
treating subflows as independent TCP flows—an approach
that proved overly aggressive and unfair to single-path TCP.
EWTCP [12] addressed this by reducing each subflow’s win-
dow growth rate by a factor of 1/n2, improving fairness but
still lacking P3. Consequently, it limited performance gains in
throughput, reliability, and cost.

The MPTCP CCAs developed after EWTCP have taken P3
as an underlying design principle by default, including LIA and
its variants (e.g., OLIA [4], Balia [5] and Semi-coupled [22]),
and other types of MPTCP CCA that were developed with
respect to other TCP CCAs, e.g., mpCubic [10] for TCP Cubic
[11] and C-MPBBR [8] for BBR [9]. As mentioned earlier,
all these MPTCP CCAs also aimed to fulfill P1 and P2. Note
that the reason for the need to use different MPTCP CCAs for
different types of TCP CCAs is that TCP CCAs belonging to
different types are generally incompatible with one another in
terms of aggressiveness in response to network dynamics. For

example, the two most widely deployed loss-based TCP CCAs,
TCP Reno [13] and TCP Cubic [11], are incompatible with each
other. With an AIMD congestion avoidance phase, TCP Reno is
much less aggressive than TCP Cubic that grows its congestion
window as a cubic function of time [14]. Consequently, to
abide by the three design principles, different MPTCP CCAs
must be designed for the two TCP CCAs, separately. All
the MPTCP CCAs mentioned sofar were designed empirically
without considering a global optimization objective, although
EWTCP and Semi-coupled turned out to be NUM-optimal,
as proven in [6]. More recently, NUM-optimal variants of
LIA were designed, including two families of MPTCP CCAs
[6], [24] and a hybrid MPTCP CCA [25]. However, all these
MPTCP CCAs are cost unaware.

As mobile devices become the dominant means for Internet
access, a large number of cost-aware MPTCP CCAs have
emerged to address cost-heterogeneity issues, concerning en-
ergy efficiency ( e.g., [7], [15], [26]-[29]), channel quality (e.g.,
[20], [21], [30], [31]), and monetary cost [20], [21]. These
MPTCP CCAs aim at achieving vastly different cost-related
design objectives and hence are point solutions. Moreover, most
of them were empirically designed without provable properties,
such as optimality and/or compliance with P2.

III. UNI-MPTCP(&,n)

A. Preparation

In this section, we introduce the NUM problem, the control
laws that solve the NUM problem in general and the TCP
utility function.

The NUM Problem: The Network Utility Maximization
(NUM) problem can be formally stated as follows [32]:

MCLI{Z U'i(z’i,17xi727"'7xi,mi)}; (1)

i=1
subject to link bandwidth constraints,

Z x5 — ¢ < 0;

i,5:1€L; ;

lel, 2)

where n, m;, L and L;; are the number of active flows,
the number of subflows in flow 7, the set of links in the
network, and the set of links that lie in the path of subflow j
in flow i, respectively; ¢; is the link bandwidth for link [ € L;
and U;(x;1,%i2,...,Tim,) is the user utility for flow ¢ as a
function of flow rates, x;;, for subflow j, j = 1,2,...,m;.
This formulation is fluid-flow based, meaning that the resource
allocated to each flow is measured in flow rate, a real-value
variable that can be changed continuously.

NUM-Optimal Control laws: According to [33], with
respect to the NUM problem given in Eq. (1), a family of
NUM-optimal distributed flow rate control laws for subflow j
in flow ¢ is given as,

&5 = 2ij(t, @i g, c95)[f (@i j) — (1 —cgj)] 3)
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where U;(z;1,%i2,...,%im,) can be any concave and strictly
increasing function of z; ;’s; z; (¢, ; j, cg;) can be any pos-
itive and piece-wise continuous scalar function and cg; is the
binary congestion indicator, cg; =1 if the path the subflow j
takes is congested and 0 otherwise; cgj is the logical negation of
cg;. The fact that this control law only uses binary information
as input for the control means that it is the ideal solution
for the development of NUM-optimal, end-to-end congestion
control protocols, which only uses source-inferrable binary
information, such as timeout or three duplicated ACKs, for the
control. The end-to-end TCP, e.g., TCP Reno, is an example of
such a protocol.

In summary, given concave utility functions, the associated
end-to-end distributed congestion control laws ensure that
each flow is regulated independently, allowing the system to
converge to a NUM-optimal allocation that maximizes the
aggregate utility under dynamic network conditions.

TCP utility function: Although the TCP CCA like TCP
Reno was designed empirically, based on the family of
control laws presented above, the work in [24] was able to
reverse engineer both the TCP slow start phase (SSP) and the
(AIMD)-based congestion avoidance phase (CAP) like TCP
Reno to derive the corresponding utility functions, implying
that TCP Reno is NUM optimal. In this section, we summarize
the key results from [24], which will then be used to derive
Uni-MPTCP(&, n).

Consider the following fluid-flow version of the generic,
end-to-end TCP congestion control with both SSP and AIMD-
based CAP [23] that captures the main behaviors of TCP Reno.

In the Slow Start Phase (SSP):
. ar if
T {—m:ﬁ

namely, multiplicative increase with coefficient « in the

absence of congestion (i.e., cg=0) and multiplicative decrease
with coefficient 3 in the presence of congestion (i.e., cg=1).

cg=20

cg =1, )

In the congestion Avoidance Phase (CAP):

P { I if cg=0
—px if cg=1,
namely, additive increase with increasing rate p in the absence
of congestion (i.e., cg=0) and multiplicative decrease with
coefficient [ in the presence of congestion (i.e., cg=1).

The idea is to reverse engineer the above generic TCP control
laws using Eq. (3) to find the corresponding utility function
Utep(x) and z; (¢, z, cg) for the control laws, if they do exist.
The work [23] provides the affirmative answer, which is stated

as follows:
In SSP:

(6)

Usep (@) = zlog(1 + %) (7)

and
z(t,x,cq) = (a+ p)x. 8)
In CAP:
Uiep() = (5 + a)llog(pu+ Br) = 1] = allog(5a) = 1] ©)
and
z(t,x) = p+ Pz (10)

Assuming Sz > u, the CAP utility function in Eq. (9) can be
approximately written as:

Uiep(xi) = =log(x;), an

™=

B. Utility Function of MPTCP

With the above preparation, now we are in a position to
address the core design challenge, i.e., what MPTCP utility
function should be used for MPTCP flows in order to achieve
the aforementioned design goal. Once the MPTCP utility func-
tion is known, the corresponding MPTCP CCA can then be
readily derived from Eq. (3).

To ensure backward compatibility and comparable compet-
itiveness with TCP, the MPTCP utility function should also
have two parts, corresponding to the SSP and CAP of TCP,
respectively. To this end, we simply reuse the two parts given
in Eqs. (7) and (11) with x being replaced by > ., v;y; as
the utility of MPTCP, where y; and ~; are the subflow rate and
subflow weight for the ith subflow of a MPTCP flow. Namely,
in SSP:

UmPth(yla Y2, -"7yn) = (Z 71y7)log(1 + %) (12)

i=1

In CAP:

" n
Umptcp(ylvaa 7yn) ~ EZOQ(Z ’Vlyz)
i=1

(13)
The part in the SSP makes the MPTCP flow as aggressive
as TCP Reno at the beginning of the MPTCP session or after
a timeout event occurs, which however, is considered rare,
relative to the fast recovery events due to the three duplicated
acks. In other words, most of the time, both the MPTCP flow
and TCP flows are in the CAP, competing for the resources
on the subflow paths of the MPTCP flow. This means that to
justify the use of this MPTCP utility function, what we need
to show is that the NUM-optimal flow rate allocation for the
following NUM problem indeed achieves our design goal:

Max {Z njlog(x;) + log(z wiyi)} (14)
j=1 i=1
subject to
;T + Y < ¢, for i=1,...,n. (15)

where y;, x;, n; and c; are the subflow rate, TCP flow rate,
the number of TCP flows and the bottleneck link bandwidth
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on the ith subflow path of the MPTCP flow and w; = 7;/7
for © = 1,...,n and w; = 1. Without loss of generality, we
assume that w; < 1V ¢, given that v; > ~; for ¢ =2,3,...,n.
We further denote, & = [1,ws,...,wy], i.., an n-dimension
vector with (n — 1) independent tunable elements. Note that
the MPTCP flow rate y = Z?:l y;. For simplicity, in this
formulation, we omitted the coefficient % for all logarithmic
utility functions and also recast U,piep in Eq. (13) into the
last term in Eq. (14) and omitted the constant term, log(71).
Obviously both omissions will not affect the NUM-optimal flow
rate allocation. Also note that this formulation considers only
steady-state flow rate allocation when all the TCP flows sharing
the same bottleneck link on any given subflow path ¢ share the
same flow rate, z;.

Now we have the following important results:

Theorem I: The NUM-optimal flow rate allocation for
the NUM problem in Eqgs. (14) and (15) possesses the
following properties: (a) it abides by P2 for arbitrary &J; (b)
it is backward compatible with the flow rate allocation when
LIA is employed to enable the MPTCP flow; and (c) it is
inherently customizable to meet additional cost-related design
objectives in terms of subflow rate allocation (See appendix A

TABLE I: Flow rate allocation

nacy nacy (n2+1)ey (no+1l)cy
w __naci
< (n1+1)ca (n1+1)c2 Sws nicy w > nica
c1 c1tweg <1
1 ni+1 ny+fng+1 ni
c2 __citwes c2
Z2 n2 w(ni+na+1) na+1
c1 _ ni(c1twer)
Y1 ni+1 ‘1 n1+tnatl 0
_ n2(c1twea) c2
Y2 0 €2 7 Glni+natl) n2+1
c1 (n1w+tng)(c1twez) c2
) np+1 c1+e2— w(ny+na+1) na+1

for the Proof).

Theorem I means that the NUM-optimal MPTCP CCA
corresponding to this logarithm utility with the tunable vector,
«, will indeed achieve our design goal.

To further confirm the above claim, we take a close look at
an easily solvable case, i.e., the case with n = 2. The NUM-
optimal flow rate allocation for the case is given in Table I and
also plotted in Fig.1 for the three distinct cases with respect to
the sole tunable parameter, w (i.e., ws), particularly at w = 1.
For each case, the plot on the left gives the subflow rates, y;
and yo, along with x1 and x». Clearly y1 < z1 and ys < z9
for all three cases, i.e., abiding by P2, confirming claim (a) in
Theorem I. For each case, the plot on the right presents the
MPTCP flow rate, y, again along with x; and x5. As one can
see, y > x1 and z» for all cases at w = 1, i.e., abiding by P1 as
well, hence compatible with LIA at w = 1, confirming claim
(b) in Theorem I. Moreover, by inspecting both plots for each
case, one should be convinced that by adjusting w, the relative
subflow rates, y; and ys can indeed be rebalanced, meaning
that cost-related objectives can be enforced without violating
P2, confirming claim (c) in Theorem I.

Interesting enough, a shrewd reader may have already noticed
that y may peak at w # 1, suggesting that abiding by P1, or
equivalently, forcing w = 1, may, in fact, limit the flow rate
for an MPTCP flow and hence, should be removed, as claimed
earlier. This seemingly counter-intuitive phenomenon can be
easily understood by inspecting case I. As w reduces to be
below %, yo starts to drop, yielding to x2. Meanwhile,
y1 starts to grow from 0, taking bandwidth from z;, and at
certain w value, y actually peaks. In other words, by allowing
TCP flows on some subflow paths to do better and some others
to do worse, the MPTCP flow may actually perform better
than attempting to do at least equally well as TCP flows on

all subflow paths. In fact, from the expression of y in Table I,
cing

it can be easily shown that y peaks at w = , /&2,
211

Finally, we present useful properties with respect to the
three cases that allow them to be uniquely identified by three
measurable flow rates:

Corollary I: The three cases can be uniquely identified
by the following criteria:

e Case I: if yo=1yr>uy,

e Case 2: if yo>y,andy,




e Case 3: if yo=1uy> Yr

where vyo, vy, Y- are the Uni-MPTCP(w,2) flow rates
measurable at w =1, w — 0 and w — o0, respectively.

Proof: We skip the proof as they can be easily confirmed by
visual inspection of Fig. 1.

C. Uni-MPTCP(&,n)

Similar to the MPTCP utilities, we simply reuse the two
parts given in Egs. (8) and (10) with x being replaced by
> wiy; as the z-functions for MPTCP. Then by applying
Egs. (3) and (4), we arrive at Uni-MPTCP(J, n) as follows:

In SSP:
. aw, if cg; =0
= 1Y ! g1 (16)
—Bwiyr if cgr = 1.
In CAP:
el if cg; =0
yl ~ i=1 Wiyi‘u ) gl (17)
—Bwiy if cg; = 1.

These control laws are fluid-flow based, and can be easily
converted into window based control protocols. In the context
of TCP Reno, which is window based, the flow rate is consid-
ered as a constant during each Round Trip Time (RTT), 7, and
adjusted every RTT. Let W and AW be the congestion control
window size and change of W at each RTT epoch, respectively.
As the congestion window size is doubled or halved in SSP
and increased by one MSS (i.e., the maximum segment size)
or halved in CAP, without or with congestion, respectively, «,
B and p can be approximated as,

ax=28~1/T, p=MSS/T (18)

Let y; = W; x MSS/7;. Then the congestion window size
change for subflow [ in each RTT, AW,, according to Egs.
(16) and (17), are,

In SSP:
W, if =0
Awim (19)
_T lf Cgl = 1
In CAP:
W if e =0
AW, ~ {”gﬁvﬁwiwi/”) - (20)
T2 lf Cgl = ]_

The above window-based Uni-MPTCP(&, n) is backward
compatible with LIA at & = T and TCP Reno at n = 1. Strictly
speaking, Uni-MPTCP(J, n) is not a protocol, but a family of
protocols taking different ¢ values. For any arbitrary network
with any given numbers of active Uni-MPTCP(&J, n) flows at
a given & and active AIMD-based TCP flows, the network
will be guaranteed to converge to a NUM-optimal operational
state where the flow rate allocation maximizes the total utility,
subject to the link capacity constraints. With an «-adaptation

—

algorithm that properly adjusts & in response to background

TCP flow fluctuations at a timescale much larger than a round-
trip-time (RTT), Uni-MPTCP(&, n) is expected to be able to
keep track of a given cost-related design objective, while being
able to converge to a new NUM-optimal operational state in
each ¢J-adaption epoch, while adhering P2 and P3.

IV. APPLICATION TO A COST-HETEROGENEITY CASE WITH
DuAL CONNECTIVITY

A. Problem Statement

We consider a cost-heterogeneity case with dual connectivity
where the per-byte costs for using two interfaces are different,
e.g., a free WiFi interface and a pay-as-you-go 5G interface.
The cost-related design objective is to strive to achieve a target
flow rate, A, with minimum cost.

An example target flow rate is the video encoding rate for
YouTube video streaming, which may be set at a given value by
the application or by a user [35]. Note that the target flow rate,
A, may or may not be attainable due to the need for the MPTCP
flow to abide by P2. In the context of our network model, We
assume that using interface 1 with capacity c; costs less than
using interface 2 with capacity co (will explain why shortly).
A naive solution that provides a guarantee of the target flow
rate, A, is to simply run one subflow as a TCP flow on interface
1, that is, let y; = x; at the bottleneck link and run the other
subflow on interface 2 with yo = A — y;. Although providing
target flow rate guarantee, this solution may violate P2, i.e.,
it cannot guarantee that yo < xo. With Uni-MPTCP(w, 2), the
compliance with P2 is guaranteed.

What’s left to be done is to design a w-adaptation algo-
rithm for Uni-MPTCP(w, 2) to achieve the above cost-related
design objective. As aforementioned, we assume that using
interface 1 costs less than using interface 2. This means that
0 < w = w9 < 1, which is desirable for the following reasons.
First, note that the flow rate allocation for the MPTCP flow
will be in favor of subflow path one when w < 1. So, to
minimize the cost, w should be as small as possible and should
not increase unless the flow rate target, A, cannot be attained.
Furthermore, it should not go beyond one when interface 2 is
favored over interface 1, meaning that the cost will become too
high to justify the effort to reach A.

B. A w-Adaptation Algorithm for Uni-MPTCP(w,2)

We propose a hybrid measurement-and-modeling-based
adaptation algorithm for w in (0, 1] to achieve the cost-related
design objective.

The idea is to only measure the flow rates, yg, y; and y,
at w = 1,0.01 and 100, respectively (note that in practice,
sampling w at 0.01 and 100 is the same as sampling at 0 and
00). The three measured flow rates are then used to identify
which of the three cases it is, based on the criteria given in
Corollary L. If it is Case 3, set w = 0.01, as y does not change
with w and the search is done. Otherwise use the following
logistic function with four parameters, «, 3, v and k, to model
the flow rate curve for both Cases 1 and 2 in 0 < w < 1,

v

Y= Tk T @D
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This function is found to be able to fit the simulated flow rate
curves well, when k is in double digits, e.g., k¥ = 30 and 3
is the w value corresponding to the flow rate y at about one-
third of the highest achievable flow rate, i.e., y at w = 1 for this
logistic function. With this understanding, we can then estimate
a and v as follows:

R Y, (22)
and
a+y =y, (23)
or
YR Yr — Yis (24)

assuming that the exponential term in the denominator ap-
proaches 0 and oo, when w — oo and 0, respectively.

Finally, with the combination of both a series of approxima-
tions, and trial and error, we find that,

. %+2xmax{2x§—i—,/g—i,0}
N 3

matches the w value at the one-third of the highest achievable
flow rate well.

The hybrid MPTCP flow rate prediction model is evalu-
ated through simulations conducted in the open-source NS-
3 network simulator [36], which has been extended to sup-
port MPTCP. We consider a low-bandwidth-and-low-delay
scenario where TCP Reno and the associated MPTCP like
Uni-MPTCP(W,n) and LIA work well (note that for high-
bandwidth-and-high-delay networks, TCP Cubic and the associ-
ated MPTCP work better). Namely, we set ¢c; = co = 10 Mbps
and the end-to-end propagation delay at 0.4 ms for all flows.
All the TCP flows run TCP Reno based on the simulation code
provided by NS-3. For each given ny and ns pair, 10 simulation
runs of 300 seconds each are performed at a given w, from
which the average Uni-MPTCP(w, 2) flow rate is recorded. This
is repeated for w taking values from 0.05 to 1 with step length
of 0.05.

Fig. 2 gives the flow rate curves based on theory (Table I),
hybrid model and measurement. Note that due to the use of a
fluid flow model versus a packet-based model, the gap between
the theory and measurement is inevitable. On one hand, the the-
ory predicts y2 = 0 as w — 0, whereas for Uni-MPTCP(w, 2),
the smallest y5 can reach is one maximum segment size (MSS)

(25)

per RTT, higher than that predicted by the theory. On the other
hand, Uni-MPTCP(w, 2) always achieves a lower high flow
rate, y, than that predicted by the theory, due to the congestion
feedback delays and discrete flow rate adaptation. In contrast,
the hybrid model matches the measurement much better.

Finally, We note that the peak of y predicted by the theory
in the left plot is barely visible by the measurement. This is
because at n = 2, it can be shown (not given in the paper) that
the achievable peak relative to yy at w = 1 is upper bounded at
8.7%. For this reason, our hybrid model simply assumes that y
is a non-decreasing function of w in [0, 1] without attempting
to capture the peak.

With the above hybrid model, the w-adaptation algorithm for
each search round is presented in Algorithm I. The algorithm
may be run periodically at a given interval 7' or on-demand
(e.g., triggered by measured changes of y; and y2) in response
to background TCP traffic fluctuations.

Algorithm 1 w-adaptation algorithm for cost-aware Uni-
MPTCP(w, 2)

Input:
target : Target flow rate
Output: a w value
Begin
// Run Uni-MPTCP(w,2) at w = 0.01,100,1 with 20
seconds each, to measure y;, ¥, Yo, respectively
if Case3 then
Return w = 0.01
else
/l Estimate «, 5 and + for logistic function
/I Calculate the peak flow rate from logistic function
end if
if target < y; then
Return w = 0.01
else if target > Peak flow rate then
Return w =1
else
/I calculate the w value corresponding to Target from
logistic function
Return w value
end if
End

C. Test of Uni-MPTCP(w,?2)

In this section, we test cost-aware Uni-MPTCP(w, 2) under
both stable and dynamically changing network conditions based
on NS-3 simulation. We consider the same scenario studied in
the previous section.

1) Per-sample Search Time: First, we need to test and see
what per-sample search time (i.e., the w sampling epoch) and
wait or measurement period should be used. Consider n; = 10,
ng = 1, i.e., case 1, and three different lengths of per-sample
search time: 10, 20 and 30 seconds. Fig. 3 depicts the measured
Uni-MPTCP(w, 2) flow rate over the entire search round that
involves three lengths of per-sample search time, at w = 0.01,
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Fig. 3: Different lengths of per-sample search time

TABLE II: Performances of different sets of per-sample search time

y; (Mbps) | yr (Mbps) | yo (Mbps) | w decision
Long run result 1.120801 4.50132 4.50132 0.152217
Measure 0s-10s 2.72832 3.24272 3.463455 0.01
Measure 0s-20s 2.05799 4.29819 4.0166 0.360981
Measure 0s-30s 1.77797 4.0276 4.3877 0.342145
Measure 5s-10s 1.51796 3.18734 3.5483 0.416855
Measure 5s-20s 1.30549 4.56857 4.08284 0.184515
Measure 5s-30s 1.23795 4.13308 4.36794 0.208344
Measure 10s-20s 1.16627 4.67518 4.37245 0.150182
Measure 10s-30s 1.1489 4.18582 4.45983 0.183954
Measure 15s-20s 1.20071 4.60178 4.40733 0.161596
Measure 15s-30s 1.15639 4.07374 441856 0.19562

100 and 1, in that order. First, the big spike found in the first
sampling epoch for all three cases is caused by the initial SSP.
This makes the 10-second case in Fig. 3(a) unable to stabilize
throughout the entire epoch. In contrast, for both the 20-second
and 30-second cases in Fig. 3 (b) and (c), the flow rates stabilize
before the end of the first half of the epoch, which appears to
be also true for the other two epochs. In other words, while for
the 10-second case it is hard to find a measurement period,
at least for the first epoch, in which reliable NUM-optimal
flow rate can be measured, for both of the other two cases,
letting the measurement period to be the second half of each
epoch for all three epochs appears to work well. Furthermore, as
aforementioned, one should keep the search time small to make
Uni-MPTCP(w, 2) as responsive to fluctuation of background
traffic as possible. For this reason, we would prefer the 20-
second case over the 30-second one.

2) Steady-State Case Study: In this case study, we assume
that the background traffic load is stable, meaning that through-
out the experiment, the numbers of TCP flows on the two
subflow bottleneck links are fixed at n; = 10 and ny = 1, i.e.,
Case 1. Furthermore, we consider the following cost model:

Ctota,l = Pcl Xy + Pc2 X Y2 (26)

where Ciotq; is the total Uni-MPTCP(w, 2) flow cost per unit
time, and P,.; and P.o are the per-byte costs for using the low-
cost and high-cost links, respectively, and we set, P.; = 0.1
and P, = 10.

We consider 5 different cases where the Uni-MPTCP(w, 2)
flow strives to attain 5 different target flow rates: 1.0 Mbps,
2.5 Mbps, 3.8 Mbps, 5.0 Mbps and 10 Mbps. These cases are
selected to cover three different possible scenarios. First, the
1.0 Mbps target can be fulfilled almost entirely by the low-
cost link with w taking a small value. Second, both the 2.5
Mbps and 3.8 Mbps targets fall in the region in which the
w-adaptation algorithm will be fully activated, called effective
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Fig. 4: Different user required data rate

TABLE III: Uni-MPTCP(w, 2) flow rates and costs at different target

flow rates
y (Mbps) | y1 (Mbps) | y2 (Mbps) Clotal

LIA 48715 0.1425 4729 47.30425
Uni-MPTCP(w, 2)(1.0Mbps) 1.0982 0.9085 0.1897 1.98785
Uni-MPTCP(w, 2)(2.5Mbps) 1.79725 0.8425 0.95475 9.63175
Uni-MPTCP(w, 2)(3.8Mbps) 3.5173 0.342 3.1753 31.7872
Uni-MPTCP(w, 2)(5.0Mbps) 4.89518 0.1438 475138 47.52818
Uni-MPTCP(w, 2)(10.0Mbps) 4.89518 0.1438 475138 47.52818

region hereafter. Third, both the 5.0 Mbps and 10.0 Mbps
targets are higher than the highest achievable flow rate and
hence, cannot be attained. In this case, the flow rate should
converge to the highest achievable rate.

The results are presented in Table III. It also includes the
result by running LIA. The purpose is to see how much one
can benefit from the cost-aware Uni-MPTCP(w, 2) in terms of
cost savings, compared to a cost-unaware protocol like LIA.
First of all, we note that Uni-MPTCP(w, 2) attains a flow rate
lower than the corresponding target, except for the case of 1
Mbps target. This can be understood with the reasoning given
in the previous section. Second, we note that Uni-MPTCP(w, 2)
tends to give relatively higher prediction errors when the targets
fall in the effective region. This is because in this region,
Uni-MPTCP(w, 2) needs to balance the loads between the two



TABLE IV: Uni-MPTCP(w, 2) flow rates in distinct time window

[60s-200s] [200s-300s] 360s onward
Y Y1 Y2 Y Y1 Y2 Y Y1 Y2
Scenario 1: Target rate=2.5Mbps | 1.79725 | 0.8425 | 0.95475 | 2.2373 | 1.8929 | 0.3444 | 2.343 1.6785 | 0.6645
Scenario 1: Target rate=3.8Mbps 3.5173 0.342 3.1753 2.3086 | 1.8487 | 0.4599 | 4.1822 | 0.2991 | 3.8831
Scenario 2: Target rate=2.5Mbps | 1.79725 | 0.8425 | 0.95475 | 1.4184 | 0.7766 | 0.6418 | 2.2716 0.365 1.9066
Scenario 2: Target rate=3.8Mbps 3.5173 0.342 3.1753 1.446 0.6553 | 0.7907 | 3.5667 | 0.1519 | 3.4148

n=10,my =1

n=10.m=1

ny=4,m=1
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Fig. 5: Dynamic network environment case study
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subflow paths, resulting in higher subflow rate fluctuations
as we shall see shortly. Moreover, although much improved
over the theoretical one, the hybrid solution that attempts to
capture the flow rate changes in the effective region can still
contribute significantly to the flow rate prediction errors. This
explains why the 2.5 Mbps target is not very well captured.
Third, for the two targets above the highest achievable flow
rate, Uni-MPTCP(w, 2) gives the same flow rate allocation at
w = 1, which is slightly higher than that of LIA with slightly
higher cost, as expected. Finally, it becomes clear that Uni-
MPTCP(w, 2) can provide significant cost savings over a cost-
oblivious protocol, such as LIA.

We also show Uni-MPTCP(w, 2) and LIA in action in Fig.
4. Only one search round is performed at the beginning (i.e.,
the shaded area in each plot). It confirms that Fig. 4 (b) and
(c), corresponding to the cases where the targets fall in the
effective region, are the most unstable ones due to subflow load
balancing. It also confirms that LIA is indeed neither cost, nor
target flow rate aware.

3) Dynamic Case Study: We consider two scenarios, both
with abrupt TCP flow load changes at 200 seconds. In scenario
1, n; = 10 and ny = 1 before 200 seconds and n; = 4 and
ny = 1 afterwards. In scenario 2, again, n; = 10 and ne = 1
before 200 seconds and n; = 10 and ny = 2 afterwards. For all
the TCP load cases of the two scenarios, both the 2.5 Mbps and

3.8 Mbps target flow rates fall in the effective region. In other
words, they are hard to keep track of, as the two subflow rates
need to be re-balanced after the load change for both scenarios.

We further assume that the searches are done periodically
with internal 7" = 300 seconds. This means that after the flow
load change at 200 seconds, there is a 100-second time window
in which the Uni-MPTCP(w, 2) flow rate may drift away from
the target flow rate. Consequently, we have three distinct time
windows:

o [60s,200s]: after the first search round and before the TCP

load change;

 [200s,300s]: after the TCP load change and before the

second search round;

e 360s onward: After the second search round.

The average Uni-MPTCP(w,2) flow rates in these time
windows for both scenarios are given in Table IV. First, before
TCP load changes, both scenarios give the same flow rate
allocation that tracks the corresponding target flow rates, as the
TCP loads are the same. Second, in the second time window,
the allocated flow rates indeed drift away from their respective
targets. Third, after the second search round, the flow rates are
able to track their respective targets again, as expected. Fig. 5
also depicts the target tracking process in action for the two
scenarios.

Finally, we note that a possible implementation of Uni-
MPTCP(w, 2) is to implement Uni-MPTCP(w, 2) in the Kernel
with a user-interface API that allows a w value in Uni-
MPTCP(w, 2) to be passed from the user space to the kernel.
This makes it possible to design w-adaptation algorithms to
achieve a wide range of design objectives in the user space.

V. CONCLUSIONS

In this paper, on the basis of the NUM framework, we
first argue that the first of the three MPTCP design principles
should be abandoned. Then we put forward Uni-MPTCP(dJ, n),
a NUM-optimal multipath congestion control protocol for
MPTCP flows with n subflow paths that abides by the re-
maining two MPTCP design principles at arbitrary ¢, an n-
dimension vector with (n— 1) independent elements, which can
be adapted to realize any specific cost-related design objectives.
Finally, with the design of an adaptation algorithm for w for a
cost-heterogeneity case with dual connectivity, we demonstrate
that Uni-MPTCP(w, 2) can effectively keep track of a given
multipath flow rate target with minimum cost.
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APPENDIX A
PROOF OF THEOREM I
First, with the property of logarithmic functions, Eq. (14) is
equivalent to:

Maz {3 wii) [ =71, 27
i=1 i=1
subject to,
;T + Y < ¢, for i=1,..n. (28)

First, we consider the case where & = T, ie., w; =1V 4, and
by applying the AM-GM inequality [34], we have,
e n; Yy + Zﬁzl NiZi\ N anl Ci\N
"vi < 7 = 7 29
T e A LG
where N = n + >."" | n,, is the total number of TCP flows
and subflows of the MPTCP flow. The equality holds if and

only if y = x1 = x5 = ... = x,, [34]. The last equality always
holds true, assuming that the TCP flows and subflow on each



subflow path can always saturate the bottleneck link bandwidth
of the subflow path.

The above result simply states that the NUM-optimal flow
rate allocation is y = 1 = 22 = ... = z,, when the product
on the left of the inequality is maximized. This is true as long
as the MPTCP subflows can be balanced to make this happen,
even subject to the subflow bottleneck link constraints in Eq.
(15). Now consider the case where some subflow bottleneck
link, say, the kth link, is the highest loaded one, and even
with y, = 0, zx (= cx/nyg) is still too small to be balanced
with y and other z;’s. In this case, the MPTCP flow will have
yr = 0 and attempt to balance the rest of the subflows so
that y = 1 = x2 = ... = z,, except for z (= cx/ny) to
maximize the left of the inequality. The process will repeat, if
the next highest loaded link again cannot be balanced, until
the MPTCP flow can balance the loads for the remaining
lower loaded links with larger x;’s. This proves that for the
NUM-optimal flow rate allocation, y = max{z1, 2, ...,z },
meaning that at & = 1, the NUM-optimal flow rate allocation
abides by PI1. Furthermore, the subflow rate, y;, cannot be
larger than x;, V i, because otherwise, by applying the AM-
GM inequality to y; [\, z;, which is part of the term on
the left of the inequality, can be increased by reducing y;,
given that y; + n;x; = ¢; is a constant. This means that at
& =1, the NUM-optimal flow rate allocation also abides by
P2. In summary, the NUM-optimal MPTCP CCA at & = 1 is
compatible with LIA, which proves that (b) is true.

Second, for the case where & # f i.e., at least one element
in &J is not equal 1. Consider w; < 1 (¢ > 1). It is clear that
at w; = 0, y; = 0, and y; increases with w; until it reaches
its maximum at w; = 1. Based on the same argument above,
this maximum value of y; cannot exceed x;. Hence, for any
given &, the flow rate allocation abides by P2, which proves
that (a) holds true. Furthermore, since changing w; changes y;,
by properly adjusting the relative values among w;’s, one can
balance subflow rates to achieve specific cost-related design
objectives, which proves that (c) also holds true.



